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ABSTRACT 

 Millions of households rely on onsite wastewater treatment systems (OWTSs) to safely 

treat domestic wastewater; however, OWTSs can become environmental hazards when they are 

not sited properly or maintained.  To better understand the drivers of OWTS maintenance and 

failure, we examined relationships between site-level OWTS characteristics and system repair, 

pumping, and anomalous pumping records in Athens-Clarke County, Georgia, USA.  We found 

that the oldest OWTSs (> 50 years) had the highest probabilities of being repaired and exhibiting 

signs of hydraulic failure.  Notably, newer OWTSs (2-10 years) were approximately equally as 

likely as older systems to exhibit signs of hydraulic failure.  These findings suggest that repair 

and replacement efforts should emphasize older systems that are at or near the end of their 

serviceable life, and the hydraulic performance of both newer and older OWTSs should be 

monitored.  These insights can aid decision makers in equitably prioritizing wastewater 

infrastructure investments and policies. 
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CHAPTER 1 

ASSESSING RELATIONSHIPS BETWEEN PATTERNS OF ONSITE WASTEWATER 

TREATMENT SYSTEM MAINTENANCE AND ENVIRONMENTAL VARIABLES IN 

ATHENS-CLARKE COUNTY, GEORGIA 

 

Introduction 

 Approximately one-fifth of American homes rely on onsite wastewater treatment systems 

(OWTSs) to safely dispose of their sewage.1,2  In total, these aging systems process 

approximately 4 billion gallons of wastewater per day in the United States (US).3  Conventional 

subsurface OWTSs are the most common onsite wastewater treatment option, as they offer an 

affordable alternative to central sewer system expansion4 and thus tend to service rural and 

suburban residential areas beyond the extent of sewer networks.  When properly designed, 

installed, and maintained, OWTSs can effectively remove pathogenic5,6 and nutrient7,8 pollution 

from wastewater.  However, these systems can also become sources of nonpoint pollution in 

watersheds where they are malfunctioning or maintained improperly.9–11 

 Installation and site-specific factors can affect OWTS performance and lead to increased 

risk of hydraulic failure (i.e., surface ponding, system backup).  Characteristics including 

edaphic and geologic conditions, water table dynamics, landscape position and slope, and lot 

area influence OWTS system function.12,13  Conventional subsurface OWTSs have three primary 

components that are integral to their performance: (i) the septic tank, which collects and retains a 

large portion of the influent biosolids and grease, (ii) the subsurface wastewater infiltration 
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system (also called a drainfield, infiltration trench, or leach field), which transmits and 

distributes wastewater effluent from the septic tank to the receiving soils, and (iii) the receiving 

soils, which absorb water and process contaminants.12,14  Drainfields rely on spatially 

heterogeneous soil biogeochemical processes to treat OWTS effluent, but the US Environmental 

Protection Agency (US EPA) estimates that only one-third of the nation’s land area has soils 

suitable for conventional OWTSs.14  Therefore, it is likely that a significant portion of OWTSs 

are not functioning effectively due to improper siting and subsequent performance issues (e.g. ref 

15).  Three well-recognized and potentially interrelated subsurface site characteristics that may 

hydrologically impede drainfield effectiveness are the receiving soil’s hydraulic conductivity, the 

presence of low-conductivity or impermeable restrictive layers, and depth to the water 

table.12,16,17  Additionally, other topographic site characteristics that control drainage patterns 

such as slope, curvature (i.e., convexity versus concavity), and upslope contributing area may 

influence OWTS performance at the site level.14,17–19  Because of the potential for partially 

treated wastewater to leach into ground or surface waters, the siting, design, and maintenance of 

OWTSs has significant implications for community health and drinking water supplies.16,20,21  

Regular maintenance, including desludging (or pumping) in which biosolids are removed 

from the OWTS tank, is critical to ensure these systems function properly.  The US EPA 

recommends OWTS owners get their systems inspected every three years and pumped either 

every three to five years or when biosolids in the OWTS tank exceed 30% of its volume.14,22  

However, these guidelines are not often followed because the costs of OWTS maintenance can 

be substantial.23,24  Unless system failure leads to sewage backflow into the house or ponding 

within the drainfield, improperly functioning systems may go unnoticed.  The diffuse nature of 

pollution from failing OWTSs and a general lack of understanding about subsurface flow within 
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drainfields25,26 means it is unlikely that any single OWTS owner could be held accountable for 

downstream water degradation; therefore, the environmental costs of these malfunctioning 

systems are borne by society as a whole, rather than individual owners.27,28  Furthermore, 

programs that replace failing systems (e.g. ref 29) act to subsidize the costs of OWTS repairs or 

replacement, but jurisdictions can face substantial resistance from homeowners when trying to 

administer these programs.30  Such initiatives also retroactively address OWTS failure instead of 

supporting proactive planning to prevent future contamination threats.  Finally, and remarkably, 

some homeowners may not even be aware that they have an OWTS,15 and thus homeowner 

action, including system inspections and maintenance, would not occur unless hydraulic failure 

ensues.  

In general, OWTS infrastructure in the US is aging31 and failures are increasingly 

common as system components deteriorate.  Studies of drainfield effluent acceptance rates 

suggest that conventional subsurface OWTSs can remain hydraulically operational for 11 to 

more than 30 years,16 but approximately half of OWTSs 19 to 27 years old can be expected to 

show evidence of failure.32,33  Because OWTS installations tend to occur in clusters when 

housing developments are built, failures also may be clustered in space and time.  Though 

realized OWTS lifespans are dependent upon factors such as maintenance and effluent loading 

rates, it is also likely that site characteristics contribute to OWTS service life.  It remains unclear 

how interactions among siting, installation, maintenance, and use characteristics determine the 

effective lifespan of an OWTS. 

Due to their decentralized nature and the general lack of available data for privately-

owned OWTSs,34 research has generally focused on the environmental effects of OWTSs above 

density thresholds at the watershed scale (e.g. refs 35–37).  There are far fewer studies on the 
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potential impact of an individual faulty or ill-maintained OWTS on water quality.  Yet many 

state38,39 and federal14,40 guidelines highlight the potential impact poorly-maintained systems may 

have on surface and groundwater resources.  Work by Macintosh and colleagues10 in three rural 

catchments in north Ireland found that replacing specific malfunctioning OWTSs could result in 

reduced phosphorus concentrations downstream.  Identifying the site-level characteristics of 

OWTSs that are at higher risk of failure is especially valuable to local resource managers who 

are tasked with ensuring environmental and community health. 

 To better understand the drivers of OWTS maintenance and failure, we explored 

relationships between OWTS age, environmental setting, and repair and pumping records for 

OWTSs in Athens-Clarke County, Georgia, USA.  We collaborated with the local government to 

leverage a 46-year OWTS repair dataset (May 1972 – March 2018), and a 38-month (January 

2017 – February 2020) dataset of OWTS tank pumping within the county.  Our overarching goal 

was to use these records to identify where and when OWTSs fail to support municipal efforts to 

equitably prioritize investments in wastewater treatment infrastructure.  We identified OWTSs 

that exhibited pumping patterns that are indicative of failing systems (hereafter “anomalous 

pumping”) based on whether (i) the OWTS had been pumped twice or more, thereby exceeding 

the US EPA’s guideline of one pump per three to five years, and/or (ii) the volume pumped from 

the system exceeded the tank capacity listed in county installation records.  First, we tested the 

ability of OWTS age and site characteristics to explain variability in repair, pumping, and 

anomalous pumping.  Using best-fit regression models, we developed probability curves to 

estimate the likelihood of OWTSs to be repaired or to exhibit anomalous pumping.  Secondly, 

we assessed relationships between systems that had repair records and those that exhibited 

anomalous pumping to test whether anomalous pumping may be a correlate of necessary repairs.  
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We also calculated the proportion of OWTSs that were pumped and then subsequently repaired 

within three years, which could indicate that the homeowner knew that their system might need 

additional maintenance.  

 

Data and Methods 

Athens-Clarke County (ACC) is located in the Appalachian Piedmont region of Georgia.  

With a land area of approximately 116 square miles, ACC is Georgia’s smallest county by area 

and the state’s sixth most populous metropolitan area, with an estimated 126 913 residents.41  

Approximately 75% of ACC residents are serviced by the central sewer system, with 

approximately 32 000 residents dependent on OWTSs to dispose of and treat their wastewater.42  

To guide wastewater infrastructure decisions, ACC has invested substantial resources into 

developing and maintaining a county-wide geospatial dataset of all OWTSs, their ages, 

volumetric tank capacities, and repair and desludging histories.43  

The county provided spatial and tabular data consisting of all registered OWTSs in the 

study area (n = 9802), from which we filtered out occurrences of missing data, abandoned 

systems, those with accountable damage (e.g., house fires, windthrown trees), and records with 

uncertain geolocations (Figure 1).  Methods similar to Capps et al.43 were used to verify the 

locational accuracy of a subset of the remaining OWTSs.  Installation dates of OWTSs in this 

dataset with high locational accuracy (n = 8826) ranged from January 1940 – March 2018.  With 

these cleaned data, we filtered out points with missing predictor values, which were mostly 

OWTSs on the periphery of the study area (refined dataset n = 8786; Figure 2).  Subsequently, 

we calculated system age in years as the number of years between system installation and 

October 28, 2020 (the date of data retrieval).  Repair records for OWTSs (May 1972 – March 
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2018), which were submitted to ACC’s Department of Public Health when repair work was 

conducted on any OWTS in the jurisdiction, were used to calculate a binary response of whether 

each OWTS was repaired (n = 690; Figure 3).   

 

Figure 1. Conceptual diagram of processes used to filter, refine, and divide the dataset for the repair and pumping analyses.  

Date of installations for the cleaned dataset with high location confidence ranged from January 1940 – March 2018.  OWTS 

repair records (May 1972 – March 2018) were submitted to the Athens-Clarke County Department of Public Health when repair 

work was conducted at the location.  Pumping records (January 2017 – February 2020) were collated from pumping manifests 

submitted to the Public Utilities Department when pumping companies disposed of septage at the Cedar Creek Water 

Reclamation Facility.  Data included in the repair and pumping analyses are not exclusive, as all data points in the pumping 

analyses are a subset of data in the repair analysis, with the additional restriction of requiring a specified OWTS tank capacity.  

The corresponding number of records in each dataset or removal are indicated by the bold number in parentheses. 

To examine OWTS pumping behaviors, the point locations and attributes of the cleaned 

county dataset were filtered to remove records without specified septic tank capacities and those 

with missing predictor values (refined dataset n = 7676).  This subset of OWTSs was combined 

with OWTS pumping information from more than 3000 OWTS tank pumping manifests (January 
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2017 – February 2020), which were recorded when septic pumping trucks unloaded biosolids at 

ACC’s Cedar Creek Water Reclamation Facility.  The scale used to estimate septic truck load in 

gallons at Cedar Creek was intermittently out of service during the period of record.  During 

these times, discharged volumes were estimated by the OWTS pumpers, though as the pumping 

companies are charged by gallon,44 it may have been beneficial for them to report lower, more 

conservative, volumes.  Thus, some of these values may have been underestimated.  There were 

also instances of pumping events at addresses that were not yet entered into the county’s OWTS 

location dataset.  These manifest records from addresses without registered OWTS point 

locations may be the result of illegally installed systems, exceptionally old units that predate 

record-keeping, missing county records, or incorrectly entered addresses.  As registered locations 

could not be confirmed for these records, these pumping events were not included in the 

pumping analysis of this study.  A total of 1605 pumping events were associated with points in 

the refined dataset.  Address, pumped volume, and date from each manifest were associated with 

the OWTS locations in the refined dataset and a binary response of pumped/not pumped was 

determined for each of the 7676 tanks in the refined dataset.   

The Cedar Creek Water Reclamation Facility in ACC charges relatively low prices45 for 

septage disposal and is one of the only treatment plants in a multicounty area that accepts 

septage.46  Hence, we assumed that if an OWTS tank in ACC was pumped in this 38-month 

period, there would be a record of the pumping event in the county’s manifests.  We also 

assumed that all OWTSs were maintained legally.  In other words, we have no records for homes 

that straight pipe raw sewage off their property or for pumpers who illegally dispose of their 

septage.  To identify systems with anomalous pumping, we subset the total population of 

OWTSs with manifest records based upon binary arguments of whether (i) the OWTS had been 
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pumped twice or more, thereby exceeding the US EPA’s guideline of one pump per three to five 

years, and/or (ii) the pumped volume recorded on the manifest exceeded the tank capacity listed 

in county installation records.  We assumed these instances of volume exceedance could be 

indicative of hydraulic drainfield failure and subsequent backup of effluent into the OWTS tank.   

 To characterize OWTS site conditions, we used widely available elevation, soil, and 

stream channel data.  We used 30-meter resolution digital elevation model data from the US 

Geological Survey47 to calculate the topographic wetness index in the study area.  The 

topographic wetness index (Equation 1) is a unitless approximation of soil moisture as a function 

of local topography and contributing area48 and has been used to assess pluvial flooding risk in 

land use planning.49  We used the Terrain Analysis Using Digital Elevation Models (TauDEM) 

ArcGIS toolbox50 to calculate slope, flow direction and contributing area using the D-infinity 

method (we added a value of 1.0e-6 to slopes with 0 to prevent division by zero).   

𝑊 =	 ln &
𝛼

tan𝛽+	 
Equation 1. Topographic wetness index as defined by Beven and Kirby.48  W is the wetness index, α is the upslope contributing 

area divided by the flow width, and tanβ is the steepest local slope. 

We used Esri’s ArcMap desktop application51 for spatial processing and the R statistical 

environment52 for statistical analysis.  At the time of this study, we did not have access to county 

soil assessments, which are used to determine OWTS drainfield suitability at the time of 

installation.  Therefore, we retrieved Gridded Soil Survey Geographic Database (gSSURGO) 

data for the study area using the Natural Resources Conservation Service’s Soil Data 

Development Toolbox plugin for ArcMap.53,54  The soil data used to permit OWTSs are based on 

high resolution soil maps or in-situ observations, while gSSURGO is an interpolated dataset that 

lacks onsite observations in many areas.  Although soil values in this nationally available dataset 

are likely correlated with local conditions, gSSURGO data can differ slightly from the higher 
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resolution data that OWTS permitters often have access to.  Gridded soil values for saturated 

hydraulic conductivity were calculated using a weighted average of soil conditions between 30-

183cm below the surface, as Georgia Department of Public Health regulations necessitate 

drainfield pipe installations to occur 15-30cm (6-12in) below the soil surface.39  Gridded values 

for average depth to seasonal water table were calculated using the gSSURGO monthly 

(January-December) water table depth estimates.  Values for depth to restrictive layer were 

calculated across the study area using the gSSURGO database.  A raster layer of distance to 

stream was calculated using stream channel data from the National Hydrography Dataset Plus 

(NHD Plus) High Resolution dataset55 to estimate each OWTS’s potential exposure to fluvial 

flooding.  A summary of predictor variables is found in Table 1. 

To test whether site-level environmental conditions could predict OWTS maintenance 

occurrence, we developed and subsequently tested candidate and null models for each binary 

response variable (repaired/no repairs, pumped/no pumps, and anomalous pumping/no 

anomalous pumping) using logistic regression.  We defined models to test combinations of the 

following variables: OWTS age, topographic wetness index, distance to the nearest stream, and 

three soil variables: saturated hydraulic conductivity, depth to restrictive layer, and depth to 

seasonal water table (Table 2).  We tested a quadratic term for age because we hypothesized that 

younger OWTSs may exhibit signs of hydraulic failure due to installation or usage error at 

similar rates to older systems, which may be expected to fail due to system deterioration and soil 

clogging.  A quadratic age term would allow the model to detect higher incidences of 

maintenance at either end of the dataset’s age distribution, while moderately aged systems might 

be expected to have lower maintenance rates when compared to these temporal extremes.  We 

only tested the three soil variables in combination because we believe these predictors together 
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contribute to documented OWTS repair and pumping patterns and that no single soil condition is 

likely driving these patterns.  Models were assessed and weighted using the Bayesian 

information criterion (BIC), due to the tendency of this method to favor parsimony in large 

datasets.56  Top performing models were verified for discrimination performance using the area 

under the receiver operating characteristic curve (AUC) calculation.  Semivariogram plots and 

residual maps were used to assess spatial autocorrelation and residual clustering in candidate 

models with the highest BIC weights. 

We also evaluated how anomalous pumping in OWTSs might be indicative of necessary 

repairs using linear regressions between recent repairs and anomalous pumping.  To do this, we 

restricted the date range of the repair dataset to five years prior to the earliest pumping record 

(January 2012) and assessed this single model’s performance based on its p-value.  We also 

identified the number OWTSs with pumping events that were subsequently followed by a repair 

event.  Due to the short temporal overlap of the pumping and repair datasets (January 2017 – 

March 2018) we did not specify a date lag between pumping and repair event (i.e., all OWTSs 

that met these conditions were included). 

Table 1. Predictor variables included in candidate models for the repair, pumping, and anomalous pumping analyses and 

variable abbreviations used in Tables 2 and 4. 

Predictor Category Predictor Variable Abbreviation 

Age 
Years since OWTS installation AGE 

Quadratic age of OWTS  AGE2 

Environmental 
Topographic wetness index TWI 

Distance to NHD Plus stream  DIST.S 

Soils 

Saturated hydraulic conductivity KSAT 

Depth to restrictive layer DEP.R 

Depth to seasonal water table DEP.WT 
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Table 2. Response variables and candidate models for the repair, pumping, and anomalous pumping analyses.  The presence 

of anomalous pumping was also used as a predictor of recent repairs.  “X” indicates which candidate models were tested to 

predict each of the three response variables.  Abbreviations as in Table 1. 

Response 
Candidate Models 

Repair Pumping Anomalous 
Pumping 

X X X AGE 
X  X AGE + AGE2 
X X X DIST.S 
X X X TWI 
X X X AGE + DIST.S 
X X X AGE + TWI 
X X X AGE + DIST.S + TWI 
X X X AGE + KSAT + DEP.R + DEP.WT 
X X X AGE + KSAT + DEP.R + DEP.WT + TWI 
X*   Anomalous Pumping 

*Repairs in this analysis were restricted to five years prior to the earliest pumping record. 
AGE = Years since OWTS installation; AGE2 = Quadratic age of OWTS; DIST.S = Distance to NHD Plus stream; TWI = 
Topographic wetness index; KSAT = Saturated hydraulic conductivity; DEP.R = Depth to restrictive layer; DEP.WT = Depth to 
seasonal water table. 
 

Results 

The installation dates for OWTSs with high location confidence (n = 8826) ranged from 

January 1940 – March 2018 and the median age of OWTSs in the county was 35 years.  The 

median age of OWTSs in the repair dataset (n = 8786) was also 35 years, and the median age of 

repaired OWTSs was 65 years.  The median age of OWTSs in the pumping dataset (i.e., those 

with s high location confidence and specified capacities; n = 7676) was slightly younger, at 33 

years, and the median age of a pumped system was 34 years.  On average, approximately 0.5% 

of the 8826 OWTSs in the study area were pumped per month over the 38-month period of 

pumping records.  December of 2018 was the month with the highest percent of pumped systems 

(0.8%), and September of 2019 had the lowest single-month proportion of pumped systems 
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during the study period (0.2%).  Additional summary statistics for OWTSs included in each of 

the analyses are detailed in Table 3. 

Table 3. Summary statistics for OWTSs in Athens-Clarke County, Georgia.  The size of each respective dataset can be found in 

Figure 1. 

Summary Statistic Value Units 
Median age of OWTSs in county 35 years 
Median age of OWTSs in repair dataset 35 years 
Median age of repaired OWTSs 65 years 
Percent of OWTSs repaired† 7.8 percent 
Median age of OWTSs in pumping dataset 33 years 
Median age of pumped OWTSs  34 years 
Percent of OWTSs pumped† 12.2 percent 
Average volume of an individual pump 1202 gallons 
Percent of systems pumped annually*† 5.7 percent 
Percent of pumping events which resulted in volume exceedances† 43.4 percent 
Percent of OWTSs which had volume exceedances† 6.5 percent 
Percent of OWTSs which were pumped more than once† 2.5 percent 
Total volume of septage pumped in 38 months 1 933 307 gallons 
Average monthly volume of septage pumped in the county 57 196.5 gallons 

† Percent of OWTSs out of the 8826 OWTSs with high location confidence (see Figure 1) 
*Percent calculated using monthly averages over a 38-month period of pumping records, multiplied by 12 
 

Repair records existed for 690, or 7.8%, of the 8826 OWTSs with high location 

confidence.  Though candidate models that included distance to the nearest stream, topographic 

wetness index, and the three soil variables had low BIC weights, we found that OWTS age alone 

was a good predictor of whether a system was repaired (Table 4).  This model identified 

incidents of OWTS repairs slightly better than a random model (AUC = 0.589) and no spatial 

autocorrelation was present in this model’s residuals (Appendix A). 

There were 1605 pumping manifests from 1076 OWTS tanks during the period of record, 

meaning 12.2% of the 8826 OWTSs were pumped in the 38-month period of record.  Of these 

pumping manifests, 697 of the 1605 manifests had reported volumes greater or equal to the 

OWTS tank from which they came.  We identified anomalous pumping for 638 OWTSs of the 

1076 with manifest records, 218 of which were pumped two or more times per three years.  The 
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most frequently pumped OWTS was desludged 40 times.  Additionally, 576 out of the 1076 

OWTSs with pumping records had pumping events where OWTS tank pumped volume was 

greater or equal to the tank’s total capacity (Figure 4). 

 

Figure 2. Age (years since OWTS installation) and spatial distribution of Athens-Clarke County OWTSs included in the 

repair analysis (n = 8786).  County installation records range from January 1940 – March 2018 and data were retrieved in 

October 2020.  The US EPA suggests a serviceable OWTS life of approximately 15-40 years depending on siting and 

maintenance conditions.57  The dataset of all registered OWTS locations provided by the county were filtered for quality control 

and assurance (see Figure 1).  A shaded relief layer and stream networks were included to emphasize the spatial heterogeneity of 

these systems. 

 

Table 4. Top performing models per response, as assessed by their Bayesian information criterion (BIC) weight.  The model 

for predicting system repairs predicted positive incidents slightly better than a random model (AUC = 0.589).  Likewise, the 
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quadratic model that predicted volume exceedances performed slightly better than a random model (AUC = 0.576).  

Abbreviations as in Table 1. 

Response Model BIC Weight 

Repair AGE 0.81 

Pumping Null 0.90 

Anomalous Pumping  Frequency Null 0.81 

Volume AGE + AGE2 0.99 

Either Null 0.69 

 

Figure 3. Age and spatial distribution of repaired OWTSs in Athens-Clarke County (n = 690).  County installation records 

range from January 1940 – March 2018 and repair dates range from May 1972 – March 2018.  Data were retrieved in October 

2020.  The dataset of all registered OWTS locations provided by the county were filtered for quality control and assurance (see 

Figure 1).  A shaded relief layer and stream networks were included to emphasize the spatial heterogeneity of these systems with 

repair records. 
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Figure 4. Age, spatial distribution, and maximum volume exceedance (gallons) of OWTS tanks in a 38-month period of 

pumping records (January 2017 – February 2020; n = 576).  Maximum volume exceedance was calculated as the difference 

between the recorded septage volume and the installed OWTS tank size.  A dataset of all registered OWTS locations was 

provided by the county and these data were filtered for quality control and assurance (see Figure 1).  A shaded relief layer and 

stream networks were included to emphasize the spatial heterogeneity of these systems with volume exceedances. 

No candidate models in the pumping/no pumping analysis outperformed the null model 

(Table 4).  Candidate models also failed to outperform a null model in the anomalous pumping 

analysis both for OWTSs that were frequently pumped and in the pooled frequently pumped or 

volume exceedance pump analysis.  However, we found that a model with a quadratic age term 

performed well at predicting the occurrence of OWTS tanks with volume exceedance (Table 4; 

Figure 5).  This model indicates that tanks during this period of record had a higher probability 
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of pumped septage exceeding the installed tank capacity when they were either relatively new or 

relatively old.  The top performing volume exceedance model identified positive incidences of 

this type of anomalous pumping slightly better than a random model (AUC = 0.576).  No spatial 

autocorrelation was present in this model’s residuals (Appendix A). 

   

Figure 5. (a) Probability of system repair per OWTS age (years between installation and October 2020), (b) probability of 

volume exceedance per quadratic OWTS age.  Gray shading represents 95% confidence intervals.  Secondary y-axes indicate 

frequency of binned ages per analysis, which are displayed as underlying histograms. 

After restricting the repair dataset by the date of the repair event, we found that 100 

OWTSs were repaired during or five years prior to the pumping data record period.  

Additionally, there was repair and anomalous pumping concurrence in 18 OWTSs, and we 

documented a weak statistical relationship between repairs and anomalous pumping (p = 0.106).  

Only 18 OWTSs were repaired during the pumping data record period.  Of these 18 systems that 

were repaired between January 2017 and March 2018, five of them had a prerequisite pump, 

ranging from eight months to three days before the repair event. 

 

Discussion 

 Decentralized wastewater treatment infrastructure is a critical component of water 

management in many regions of the US,58 and based on land development projections for 

(a) (b) 
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suburban areas,59,60 this is likely to remain true well into the future.  Scientists and natural 

resource managers at the local,61 state,62 and federal63 levels have highlighted the threats that 

poorly sited or maintained OWTSs present to human health and the environment.  However, data 

describing relationships between system characteristics, including age and edaphic conditions, 

and maintenance records, including pumping and repair, are exceptionally limited.  Here, we 

used an exceptionally complete county-wide dataset to assess relationships between site-level 

OWTS conditions and pumping and repair patterns.  We found that OWTS age was a strong 

predictor of pumping and repairs and that older OWTSs were more likely to receive repair work.  

Our analysis of OWTS anomalous pumping patterns suggests that both newer systems, which 

may have been improperly sited or designed, and older systems that are nearing the end of their 

service life are most likely to exhibit signs of hydraulic failure.  Our findings also suggest that 

widely available spatial data likely do not have high enough spatial resolution to capture 

environmental conditions at the local (i.e., drainfield) scale.  Collectively, our results indicate 

that younger OWTSs should be monitored for hydraulic performance within the first few years 

of installation, while areas with older OWTSs should be targeted for sewer network expansion or 

proactive repair and/or replacement programs. 

Our study suggests that as an OWTS ages, it is increasingly likely to need to be repaired.  

This finding is supported by both empirical studies and anecdotal evidence.  Using similar repair 

records, Noss and Billa64 calculated that OWTSs in Amherst, Massachusetts had an expected 

half-life of approximately 25 years, though the probability of failure quickly increased after this 

age.  In contrast to our findings, the US EPA reported an OWTS lifespan of 15 to 40 years,57 

which is the age range of OWTSs in our dataset that were least likely to show evidence of 

hydraulic failure.  There is general agreement that OWTS monitoring, maintenance, and 
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replacement efforts should be focused on systems that are approaching the end of their service 

life (e.g. refs 16,38,63).  However, the realized lifespans of individual OWTSs are variable, so 

local practitioners would need to develop objective OWTS performance definitions to 

impartially implement such programs. 

 Our unique dataset of pumping records also provided some valuable insights into how 

these systems are maintained and when potential problems may arise.  Unfortunately, we were 

unable to predict the occurrence of a binary pumped/not pumped response with our candidate 

models.  There are several possible reasons for this.  First, the resolution of spatial data in the 

study area may not have been sufficient to detect meaningful differences among sites, suggesting 

that these widely available spatial predictors provide little insight into site-level OWTS 

management.  Second, the socio-economic status of homeowners very likely plays a role in 

whether a household decides to get their OWTS pumped.65  Finally, homeowners may lack the 

knowledge that their home is serviced by an OWTS or that regular maintenance is required for 

the system to remain functional.15,66  The annualized pumping rate of 5.7% we found for ACC 

systems is significantly lower than the annualized pumping rate of 11% that Silverman reported 

in a study of OWTS maintenance in northwest Ohio.67  In a similar study of OWTS owners in 

King County, Washington, 47% of survey respondents indicated that they had pumped their 

system in the last five years.68  The annual percent of pumped OWTSs we found is markedly low 

when compared to these other studies, though due to the date range restrictions of the dataset we 

used, we are uncertain of the number of OWTS owners who serviced their systems in the 

preceding years. 

The broad-scale phenomenon of anomalous OWTS pumping reported in this study, 

particularly in young systems (2-10 years), has not been previously reported.  We posit three 
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explanations for these unexpected results.  First, the high failure rate of recently installed 

OWTSs may indicate incorrectly constructed systems.  In a study of OWTS drainfield 

performance in North Carolina Piedmont soils, Coulter et al.69 showed that over half of OWTSs 

on certain clayey soils failed within two years of installation.  The researchers attributed these 

failures to one of three causes: (i) the presence of a shallow impervious layer, (ii) poor surface 

drainage, or (iii) construction damage to the soils during installation.  Second, new homeowners 

may not know that system loading is limited by soil absorption rates and overload the system.  

Third, it is well established that the biologically active layer of soil directly below the drainfield 

(i.e., the biomat) undergoes rapid development within the first years of installation.70  Soil 

clogging from fine particulate matter or elevated loading rates can negatively affect this layer’s 

development and may result in reduced water acceptance rates.71  Any of these three site-level 

attributes may cause drainfields to become saturated and backup into the OWTS tank, resulting 

in volume exceedance events.  The presence of garbage disposals can also dramatically increase 

the suspended solid loading rate to OWTS tanks and subsequently the drainfield, which may 

cause faster than expected clogging and reduced acceptance rates.12  The use of these appliances 

may be contributing in part to volume exceedances at OWTSs of any age.  We also documented 

the expected pattern of increasing anomalous pumping with system age.  This suggests that 

systems that had exceeded the recommended life expectancy of OWTSs (in this study >50 years) 

may be failing due to system deterioration and the reduction in absorption rates due to soil 

clogging over time. 

Our finding that OWTSs with anomalous pumping records are weak, yet potentially 

consequential, correlates of recent repairs provides additional insights into how these 

decentralized systems were maintained.  This relationship suggests many systems that were 
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pumped at frequencies or volumes indicative of hydraulic failure were also the same OWTSs 

which received repair work.  We speculate that these systems may have been sited 

inappropriately.  In a survey of OWTSs on hydraulically sensitive soils in Connecticut, Groff and 

Obeda72 found that homeowners continued to experience signs of hydraulic system failure, even 

after repair work was done.  Owning an OWTS that concurrently exhibits signs of hydraulic 

failure, and results in anomalous pumping, and also necessitates repairs, would result in 

exceptionally high costs for homeowners.  Data on OWTS repair expenses from the Boulder 

County Public Health Department, Colorado showed that 60% of repairs had an average cost 

of $14 866 per event,73 while regular pumping usually costs several hundred dollars per event.57  

As few homeowners are likely to invest this much into their wastewater system, these prohibitive 

expenses suggest that there may be many OWTSs that need repair work, but whose homeowners 

choose to only get their systems pumped as a cheaper, short-term fix.  Alternatively, 

homeowners may initially invest in repair work, but if their system continues to fail, they may 

feel they have reached the limit of how much they can or are willing to invest in their OWTS and 

opt to let the system fail.  Therefore, our analysis only captures a subset of OWTSs where 

owner(s) have invested substantial capital into both pumping and repairs. 

The socioeconomic status of OWTS owners may also contribute to many of the pumping 

and repair phenomena we report in this study.  The costs of OWTS pumping, inspection, and 

repairs can be economically prohibitive for many people, even when they know that their system 

is failing.  Our data indicate that in ACC, older systems are more likely to be repaired and are 

approximately equally as likely to exhibit signs of hydraulic failure as a young system.  This 

finding may be relevant to class and racial divides in housing.  Using a long-term, nationally-

representative dataset of pre-retirement Americans, Flippen74 found that on average, African 
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Americans are more likely to own older houses.  Previous work in ACC has documented that 

older OWTSs are disproportionately located in predominately non-white and/or impoverished 

census blocks in ACC.43  Hence, the deleterious effects of failing decentralized wastewater 

infrastructure may be impacting vulnerable communities to a greater degree than what is 

currently recognized.  Future work should couple census and cadastral data with wastewater 

infrastructure to provide insights into community wealth and resilience to help identify areas of 

high management priority.   

Municipal governments throughout the US are challenged to manage decentralized 

wastewater infrastructure with relatively limited information.  With a national median housing 

age of 37 years31 and the understanding that only a small portion of malfunctioning OWTSs are 

ever repaired or replaced by homeowners,14,68 it is very likely that aging and obsolete 

decentralized wastewater infrastructure is commonplace.  However, ACC is unique in that it has 

invested in a robust and continually updated dataset of OWTS locations and maintenance.  Yet, 

there are still many unknowns in the county dataset.  For instance, we have only a portion of the 

“positive” incidences of repairs, and we cannot quantify the number of OWTSs that need repairs 

but have not received any work.  Additionally, the analysis of volume exceedance pumps in this 

study most likely documents situations where hydraulic failure was evident.  Nevertheless, these 

kinds of records do not provide insight about drainfield failures where groundwater or surface 

water contamination is likely.  Further site-specific assessments would be needed to identify the 

characteristics of those OWTSs that are failing to completely treat wastewater. 

By coupling Public Utilities Department pumping records with installation and repair 

records from the Georgia Department of Public Health, our study indicates that older OWTSs (> 

50 years) are subject to greater failure rates than younger systems.  Thus, policies should be 
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considered to support OWTS maintenance or replacement of older OWTSs.  Notably, our 

analysis also identified a markedly low OWTS pumping rate during the period of record.  

Education initiatives are relatively inexpensive and if the OWTS data were combined with 

property and housing records that document building age, this information could be used in 

targeted outreach efforts to notify homeowners when their OWTSs are due for maintenance.  

However, the effectiveness of outreach programs alone to change homeowner OWTS 

maintenance behavior is likely low,67 and should be only one component in watershed 

management efforts.  Regulations to monitor and incentivize specific OWTS management 

outcomes, such as more robust installation guidelines and appropriate pumping intervals,64,75 

may also lead to increased homeowner participation in regular OWTS maintenance.  

Surprisingly, our results suggest that younger systems are also subject to hydraulic failure.  

These instances may be attributed to poor placement or installation practices, suggesting local 

governments may want to invest in more training for and oversight of OWTS installation.  

However, more work is needed to understand the causes of system failure.  The findings from 

this study highlight that widely available spatial data may not be granular enough to account for 

site-level phenomenon associated with decentralized wastewater treatment.  Municipalities 

should continue investing in site assessments before approving OWTS installations.  By 

specifying the maintenance and risk characteristics of OWTSs, managers may be better informed 

to implement programs to monitor system performance and address the externalities introduced 

by malfunctioning OWTSs.  Focusing efforts on both newly installed OWTSs as well as aging 

ones may help managers identify systems that are not performing adequately and guide decision 

makers in prioritizing wastewater infrastructure investments and policies. 

 



 

23 

 

 

REFERENCES 

(1)  Eggers, F. J.; Thackeray, A. 32 Years of Housing Data; Project No. 017-002; Bethesda, 

MD, 2007. 

(2)  US Census Bureau. American Housing Survey for the United States: 2007; H150/07; U.S. 

Government Printing Office: Washington, D.C., 2008. 

(3)  US Environmental Protection Agency. Annual Report 2013: Decentralized Wastewater 

Management Program Highlights; EPA-832-R-140006; 2013. 

(4)  US Environmental Protection Agency. Response to Congress on Use of Decentralized 

Wastewater Treatment Systems; 1997. 

(5)  Bouma, J.; Ziebell, W. A.; Walker, W. G.; Olcott, P. G.; McCoy, E.; Hole, F. D. Soil 

Absorption of Septic Tank Effulent: A Field Study of Some Major Soils in Wisconsin; 

Madison, WI, 1972. 

(6)  Van Cuyk, S.; Siegrist, R. L.; Lowe, K.; Harvey, R. W. Evaluating Microbial Purification 

during Soil Treatment of Wastewater with Multicomponent Tracer and Surrogate Tests. J. 

Environ. Qual. 2004, 33 (1), 316–329. https://doi.org/10.2134/jeq2004.3160. 

(7)  Stewart, L. W.; Reneau, R. B. Shallowly Placed, Low Pressure Distribution System to 

Treat Domestic Wastewater in Soils with Fluctuating High Water Tables. J. Environ. 

Qual. 1988, 17 (3), 499–504. https://doi.org/10.2134/jeq1988.00472425001700030026x. 

(8)  Walker, W. G.; Bouma, J.; Keeney, D. R.; Magdoff, F. R. Nitrogen Transformations 

During Subsurface Disposal of Septic Tank Effluent in Sands: I. Soil Transformations. J. 

Environ. Qual. 1973, 2 (4), 475–480. 



 

24 

(9)  Arnscheidt, J.; Jordan, P.; Li, S.; McCormick, S.; McFaul, R.; McGrogan, H. J.; Neal, M.; 

Sims, J. T. Defining the Sources of Low-Flow Phosphorus Transfers in Complex 

Catchments. Sci. Total Environ. 2007, 382 (1), 1–13. 

https://doi.org/10.1016/j.scitotenv.2007.03.036. 

(10)  Macintosh, K. A.; Jordan, P.; Cassidy, R.; Arnscheidt, J.; Ward, C. Low Flow Water 

Quality in Rivers; Septic Tank Systems and High-Resolution Phosphorus Signals. Sci. 

Total Environ. 2011, 412–413, 58–65. https://doi.org/10.1016/j.scitotenv.2011.10.012. 

(11)  Katz, B. G.; Griffin, D. W.; McMahon, P. B.; Harden, H. S.; Wade, E.; Hicks, R. W.; 

Chanton, J. P. Fate of Effluent-Borne Contaminants beneath Septic Tank Drainfields 

Overlying a Karst Aquifer. J. Environ. Qual. 2010, 39 (4), 1181–1195. 

https://doi.org/10.2134/jeq2009.0244. 

(12)  Otis, R. J.; Boyle, W. C.; Clements, E. V.; Schmidt, C. J. Design Manual: Onsite 

Wastewater Treatment and Disposal Systems; Cincinnati, OH, 1980. 

(13)  Dunne, T.; Leopold, L. B. Water in the Soil. In Water in Environmental Planning; W. H. 

Freeman and Company: San Francisco, CA, 1978; pp 163–191. 

(14)  US Environmental Protection Agency. Onsite Wastewater Treatment System Manual; US 

EPA/625/R-00/008; 2002. 

(15)  Goonetilleke, A.; Dawes, L. A. Audit of Septic Tank Performance. In Proceedings of the 

Conference On-site ’01 Advancing on-site wastewater systems; Patterson, R. A., Ed.; 

Lanfax Laboratories: Armidale, Australia, 2001; pp 155–162. 

(16)  Siegrist, R. L.; Tyler, E. J.; Peter D. Jenssen. Design and Performance of Onsite 

Wastewater Soil Absorption Systems. In National Research Needs Conference 

Proceedings: Risk- Based Decision Making for Onsite Wastewater Treatment.; St. Louis, 



 

25 

MO, 2000; p 51. 

(17)  Collick, A. S.; Easton, Z. M.; Montalto, F. A.; Gao, B.; Kim, Y.-J.; Day, L.; Steenhuis, T. 

S. Hydrological Evaluation of Septic Disposal Field Design in Sloping Terrains. J. 

Environ. Eng. 2006, 132 (10), 1289–1297. https://doi.org/10.1061/(ASCE)0733-

9372(2006)132:10(1289). 

(18)  Dawes, L.; Goonetilleke, A. An Investigation into the Role of Site and Soil Characteristics 

in Onsite Sewage Treatment. Environ. Geol. 2003, 44 (4), 467–477. 

https://doi.org/10.1007/s00254-003-0781-6. 

(19)  Hassett, J. M.; Chan, A.; Martin, J. S.; DeJohn, T. Effectiveness of Alternative On-Site 

Wastewater Treatment Technologies in the Catskill/Delaware Watershed. In Eleventh 

Individual and Small Community Sewage Systems Conference Proceedings; American 

Society of Agricultural and Biological Engineers: Warwick, RI, 2007; pp 1–11. 

https://doi.org/10.13031/2013.24020. 

(20)  Gold, A. J.; Sims, J. T. Research Needs in Decentralized Wastewater Treatment and 

Management: A Risk-Based Approach To Nutrient Contamination. In National Research 

Needs Conference Proceedings: Risk-based decision making for onsite wastewater 

treatment; Electric Power Research Institute, U.S. Environmental Protection Agency, and 

National Decentralized Water Resources Capacity Development Project: St. Louis, MO, 

2000; pp 122–151. 

(21)  Van Cuyk, S.; Siegrist, R. L. Pathogen Fate in Wastewater Soil Absorbtion Systems as 

Affected by Effluent Quality and Soil Clogging Genesis. In Proceedings of the 9th 

National Symposium on Individual and Small Community Sewage Systems; Mancl, K., 

Ed.; American Society of Agricultural Engineers: Fort Worth, TX, 2001; pp 125–136. 



 

26 

(22)  US Environmental Protection Agency. A Homeowner’s Guide to Septic Systems; EPA-

832-B-02-005; Cincinnati, OH, 2005. 

(23)  Kohler, L. E.; Silverstein, J.; Rajagopalan, B. Risk-Cost Estimation of On-Site 

Wastewater Treatment System Failures Using Extreme Value Analysis. Water Environ. 

Res. 2016, 89 (5), 406–415. https://doi.org/10.2175/106143016x14609975747289. 

(24)  Williams, J. R.; Powell, G. M.; Jones, R. D.; Murat, A.; Perry, W. R. Costs of Individual 

Onsite Wastewater Treatment Systems. In On-Site Wastewater Treatment X; Mankin, K. 

R., Ed.; American Society of Agricultural and Biological Engineers: Sacramento, CA, 

2004; Vol. 701P0104, pp 130–139. 

(25)  Cardona, M. E. Nutrient and Pathogen Contributions To Surface and Subsurface Waters 

from On-Site Wastewater Systems - A Review; Raleigh, NC, 1998. 

(26)  Beal, C. D.; Gardner, E. A.; Menzies, N. W. Process, Performance, and Pollution 

Potential: A Review of Septic Tank - Soil Absorption Systems. Soil Res. 2005, 43 (7), 

781. https://doi.org/10.1071/SR05018. 

(27)  Mohamed, R. Why Households in the United States Do Not Maintain Their Septic 

Systems and Why State-Led Regulations Are Necessary: Explanations from Public Goods 

Theory. Int. J. Sustain. Dev. Plan. 2009, 4 (2), 143–157. https://doi.org/10.2495/SDP-V4-

N2-143-157. 

(28)  Pugel, K. Policy Reform Alternatives to Combat Failure of Onsite Wastewater Treatment 

Systems. J. Sci. Policy Gov. 2019, 14 (1). 

(29)  US Environmental Protection Agency. Funding for septic systems 

https://www.epa.gov/septic/funding-septic-systems (accessed Jan 2, 2021). 

(30)  Hughes, J.; Simonson, A. Government Financing for On-Site Wastewater Treatment 



 

27 

Facilities in North Carolina. Pop. Gov. 2005, No. Fall, 37–45. 

(31)  American Society of Civil Engineers. Wastewater; 2021. 

(32)  Clayton, J. W. An Analysis of Septic Tank Survival Data From 1952 to 1972 in Fairfax 

County, Virginia. J. Environ. Health 1974, 36 (6), 562–567. 

(33)  Winneberger, J. T. Sanitary Surveys and Survival Curves of Septic Tank Systems. J. 

Environ. Health 1975, 38 (1), 36–39. 

(34)  Withers, P. J. A.; Jordan, P.; May, L.; Jarvie, H. P.; Deal, N. E. Do Septic Tank Systems 

Pose a Hidden Threat to Water Quality? Front. Ecol. Environ. 2014, 12 (2), 123–130. 

https://doi.org/10.1890/130131. 

(35)  Yates, M. V. Septic Tank Density and Ground-Water Contamination. Groundwater 1985, 

23 (5), 586–591. 

(36)  Oliver, C. W.; Risse, L. M.; Radcliffe, D. E.; Habteselassie, M.; Clarke, J. Evaluating 

Potential Impacts of On-Site Wastewater Treatment Systems on the Nitrogen Load and 

Baseflow in Streams of Watersheds in Metropolitan Atlanta, Georgia. Trans. ASABE 

2014, 57 (4), 1121–1128. https://doi.org/10.13031/trans.57.10329. 

(37)  Borchardt, M. A.; Chyou, P. H.; DeVries, E. O.; Belongia, E. A. Septic System Density 

and Infectious Diarrhea in a Defined Population of Children. Environ. Health Perspect. 

2003, 111 (5), 742–748. https://doi.org/10.1289/ehp.5914. 

(38)  Georgia Department of Public Health. Background and Use of Onsite Wastewater 

Treatment Systems in Georgia; 2019. 

(39)  Georgia Department of Public Health. Manual for On-Site Sewage Management Systems; 

O.C.G.A. Sect.12-8-1, 31-2A-6, and 31-2A-11, 2019. 

(40)  US Environmental Protection Agency. Voluntary National Guidelines for Management of 



 

28 

Onsite and Clustered (Decentralized) Wastewater Treatment Systems; US EPA 832-B-03-

001; 2003. 

(41)  US Census Bureau. QuickFacts: Athens-Clarke County (balance), Georgia 

https://www.census.gov/quickfacts/athensclarkecountybalancegeorgia (accessed Apr 4, 

2020). 

(42)  Athens-Clarke County Public Utilities Department. Water Reclamation 

https://www.accgov.com/1235/Water-Reclamation (accessed Dec 10, 2020). 

(43)  Capps, K. A.; Bateman McDonald, J. M.; Gaur, N.; Parsons, R. Assessing the Socio-

Environmental Risk of Onsite Wastewater Treatment Systems to Inform Management 

Decisions. Environ. Sci. Technol. 2020, 54 (23), 14843–14853. 

https://doi.org/10.1021/acs.est.0c03909. 

(44)  Shaw-Burgess, C.; Bloyer, D. Getting a Handle on It. Georg. Oper. 2020, 57 (1), 55–60. 

(45)  Athens-Clarke County Public Utilities Department. Sewer/Wastewater/Septage Rates 

https://www.accgov.com/1223/Sewer-Wastewater-Septage-Rates (accessed Jun 11, 2021). 

(46)  Georgia Environmental Protection Division. County Environmental Protection Division 

Permitted Public Wastewater Treatment Facilities Accepting Septage. 2017, pp 1–2. 

(47)  US Geological Survey. National Elevation Dataset - 30 Meter: The National Map Viewer. 

US Geological Survey 2013. 

(48)  Beven, K. J.; Kirby, M. J. A Physically Based, Variable Contributing Area Model of 

Basin Hydrology / Un Modèle à Base Physique de Zone d’appel Variable de l’hydrologie 

Du Bassin Versant. Hydrol. Sci. J. 1979, 24 (1), 43–69. 

https://doi.org/10.1080/02626667909491834. 

(49)  Pourali, S. H.; Arrowsmith, C.; Chrisman, N.; Matkan, A. A.; Mitchell, D. Topography 



 

29 

Wetness Index Application in Flood-Risk-Based Land Use Planning. Appl. Spat. Anal. 

Policy 2016, 9 (1), 39–54. https://doi.org/10.1007/s12061-014-9130-2. 

(50)  Tarboton, D. Terrain Analysis Using Digital Elevation Models (TauDEM). Utah Water 

Research Laboratory, Utah State University 2016. 

(51)  Esri. ArcMap. Redlands, CA 2019. 

(52)  R Core Team. R: A Language and Environment for Statistical Computing. R Foundation 

for Statistical Computing: Vienna, Austria 2020. 

(53)  Soil Survey Staff. Soil Data Development Toolbox. United States Department of 

Agriculture, Natural Resources Conservation Service 2020. 

(54)  Soil Survey Staff. Gridded Soil Survey Geographic (GSSURGO) Database for Clarke and 

Oconee Counties, Georgia. United States Department of Agriculture, Natural Resources 

Conservation Service 2020. 

(55)  US Geological Survey. National Hydrography Dataset Plus High Resolution (NHDPlus 

HR): The National Map Viewer. US Geological Survey, National Geospatial Program 

2018. 

(56)  Aho, K.; Derryberry, D.; Peterson, T. Model Selection for Ecologists: The Worldviews of 

AIC and BIC. Ecology 2014, 95 (3), 631–636. 

(57)  US Environmental Protection Agency. New Homebuyer’s Guide to Septic Systems; EPA-

832-F-17-009; Washington, D.C., 2017. 

(58)  US Census Bureau. Characteristics of New Housing: Type of Sewage System by Water 

Supply Source in New Single-Family Houses Completed; Washington, D.C., 2020. 

(59)  Hamidi, S.; Ewing, R. A Longitudinal Study of Changes in Urban Sprawl between 2000 

and 2010 in the United States. Landsc. Urban Plan. 2014, 128, 72–82. 



 

30 

https://doi.org/10.1016/j.landurbplan.2014.04.021. 

(60)  Homer, C.; Dewitz, J.; Jin, S.; Xian, G.; Costello, C.; Danielson, P.; Gass, L.; Funk, M.; 

Wickham, J.; Stehman, S.; Auch, R.; Riitters, K. Conterminous United States Land Cover 

Change Patterns 2001–2016 from the 2016 National Land Cover Database. ISPRS J. 

Photogramm. Remote Sens. 2020, 162 (March), 184–199. 

https://doi.org/10.1016/j.isprsjprs.2020.02.019. 

(61)  Walker, R. L.; Cotton, C. F.; Payne, K. A. A GIS Inventory of On-Site Septic Systems 

Adjacent to the Coastal Waters of McIntosh County, Georgia; Athens, GA, 2003. 

(62)  Macrellis, A.; Douglas, B. Update of the Advanced On-Site Wastewater Treatment and 

Management Market Study: State Reports; 05-DEC-3SGd; Gloucester, MA, 2009. 

(63)  US Environmental Protection Agency. Decentralized Wastewater Treatment Systems: A 

Program Strategy; Cincinnati, OH, 2005. 

(64)  Noss, R. R.; Billa, M. Septic System Maintenance Management. J. Urban Plan. Dev. 

1988, 114 (2), 73–90. https://doi.org/10.1061/(ASCE)0733-9488(1988)114:2(73). 

(65)  Flowers, C. F.; Ward, J. K.; Winkler, I. Flushed and Forgotten: Sanitation and 

Wastewater in Rural Communities in the United States; Lowndes County, AL, 2019. 

(66)  Harrison, M.; Stanwyck, E.; Beckingham, B.; Starry, O.; Hanlon, B.; Newcomer, J. Smart 

Growth and the Septic Tank: Wastewater Treatment and Growth Management in the 

Baltimore Region. Land use policy 2012, 29 (3), 483–492. 

https://doi.org/10.1016/j.landusepol.2011.08.007. 

(67)  Silverman, G. S. The Effectiveness of Education as a Tool to Manage Onsite Septic 

Systems. J. Environ. Health 2005, 68 (1), 17–22. 

(68)  Gomez, A.; Taylor, M.; Nicola, R. M. Development of Effective On-Site Sewage Disposal 



 

31 

Surveys in King County, Washington. J. Environ. Health 1992, 54 (5), 20–25. 

(69)  Coulter, J. B.; Bendixen, T. W.; Edwards, A. B. Appendices to Study of Seepage Beds; 

Cincinnati, OH, 1960. 

(70)  Siegrist, R. L.; Boyle, W. C. Wastewater-Induced Soil Clogging Development. J. Environ. 

Eng. 1987, 113 (3), 550–566. 

(71)  Siegrist, R. L. Soil Clogging during Subsurface Wastewater Infiltration as Affected by 

Effluent Composition and Loading Rate. J. Environ. Qual. 1987, 16 (2), 181–187. 

https://doi.org/10.2134/jeq1987.00472425001600020016x. 

(72)  Groff, D. W.; Obeda, B. A. Septic Performance in Hydrologically Sensitive Soils. 

Wetlands 1982, 2 (1), 286–302. https://doi.org/10.1007/BF03160562. 

(73)  Kohler, L. E.; Silverstein, J.; Rajagopalan, B. Predicting Life Cycle Failures of On-Site 

Wastewater Treatment Systems Using Generalized Additive Models. Environ. Eng. Sci. 

2016, 33 (2), 112–124. https://doi.org/10.1089/ees.2015.0275. 

(74)  Flippen, C. Unequal Returns to Housing Investments? A Study of Real Housing 

Appreciation among Black, White, and Hispanic Households. Soc. Forces 2004, 82 (4), 

1523–1551. https://doi.org/10.1353/sof.2004.0069. 

(75)  Goehring, D. R.; Carr, F. R. Septic System Problems on an Urban Fringe. J. Water 

Resour. Plan. Manag. Div. 1980, 106 (1), 89–102. 

https://doi.org/10.1061/JWRDDC.0000158. 

  



 

32 

 

 

APPENDIX A 

SUPPLEMENTAL FIGURES 

Residual maps and semivariograms were developed and assessed for each top model in 

the study.  Residual maps help to identify any occurrences of spatial clustering in model 

residuals.  Semivariogram plots show the dissimilarity of spatial points across varying lag 

distances.  By plotting the semi-variance of the model residuals, semivariograms help us 

determine if spatial autocorrelation remains in the model residuals or if most of the variance is 

explained by our candidate model. 

 

Supplemental 1. Spatial distribution of model residuals for the top performing “AGE” model in the repair analysis.  
Coordinate system is NAD 83 - State Plane Georgia West FIPS 1002 Feet (EPSG:2240). 
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Supplemental 2. Semivariogram for top performing “AGE” model in the repair analysis.  Distance units are in feet. 
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Supplemental 3. Spatial distribution of model residuals for the top performing “AGE + AGE2” model in the volume 
exceedance anomalous pumping analysis.  Coordinate system is NAD 83 - State Plane Georgia West FIPS 1002 Feet 
(EPSG:2240). 
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Supplemental 4. Semivariogram for top performing “AGE + AGE2” model in the volume exceedance anomalous pumping 
analysis.  Distance units are in feet. 
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APPENDIX B 

R CODE AND SELECT OUTPUTS 

 The following code was written and finalized in the R statistical environment.  Raster 

predictor variables consist of the topographic wetness index, soil conditions (average saturated 

hydraulic conductivity, depth to water table, and depth to restrictive layer) and distance to 

stream.  Response variables are coded as the binary presence/absence of OWTS pumping, 

anomalous pumping, or repairs at OWTS point locations.  Spatial data for both predictor and 

response variables were mostly pre-processed in ArcMap 10.7.  Some additional dataset sub-

setting and quality assurance measures were conducted in R.  For reproducibility and security, 

personal directory path names have been substituted by “./” or “.\” depending on the file or driver 

being accessed. 

OWTS Logistic Regression 

Kyle Connelly 

June 26th, 2021  

# Install and load packages 
#install.packages("arcgisbinding", repos="https://r.esri.com", type="win.binary") 
library(arcgisbinding); arc.check_product() #interact with gdb's 

## *** Please call arc.check_product() to define a desktop license. 

## product: ArcGIS Desktop (10.7.1.11595) 
## license: Advanced 
## version: 1.0.1.244 

library(AICcmodavg) 
library(raster) 

## Loading required package: sp 

library(rgdal) 
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## rgdal: version: 1.5-21, (SVN revision 1105) 
## Geospatial Data Abstraction Library extensions to R successfully loaded 
 

## Loaded GDAL runtime: GDAL 3.0.4, released 2020/01/28 
## Path to GDAL shared files: C:/Users/knc51897/AppData/Local/RStudio-Desktop/R-4.0.3/library/
rgdal/gdal 
## GDAL binary built with GEOS: TRUE  
## Loaded PROJ runtime: Rel. 6.3.1, February 10th, 2020, [PJ_VERSION: 631] 
## Path to PROJ shared files: C:/Users/knc51897/AppData/Local/RStudio-Desktop/R-4.0.3/library/
rgdal/proj 
## Linking to sp version:1.4-5 
## To mute warnings of possible GDAL/OSR exportToProj4() degradation, 
## use options("rgdal_show_exportToProj4_warnings"="none") before loading rgdal. 

library(rgeos) 

## rgeos version: 0.5-5, (SVN revision 640) 
##  GEOS runtime version: 3.8.0-CAPI-1.13.1  
##  Linking to sp version: 1.4-4  
##  Polygon checking: TRUE 

library(ModelMetrics) 

##  
## Attaching package: 'ModelMetrics' 

## The following object is masked from 'package:base': 
##  
##     kappa 

library(spatialEco) 

##  
## Attaching package: 'spatialEco' 

## The following object is masked from 'package:raster': 
##  
##     shift 

# setwd(.) 
 
# Load pre-processed raster data (i.e., predictor layers) 
twi <- as.raster(arc.raster(arc.open("./ACC_twi_1.tif"))) 
wt_dep <- as.raster(arc.raster(arc.open("./ACC_Dep2WatTbl_WTA_1.tif"))) 
ksat <- as.raster(arc.raster(arc.open("./ACC_Ksat_WTA_30to183cm_1.tif"))) 
restr_dep <- as.raster(arc.raster(arc.open("./ACC_Dep2ResLyr_WTA_1.tif"))) 
dist_strm <- as.raster(arc.raster(arc.open("./ACC_dist_strm_1.tif"))) 
 
# Create raster stack (collection of rasters with same extent and resolution) and rename compo
nents 
rs <- stack(twi,wt_dep,ksat,restr_dep,dist_strm) 
names(rs) <- c('topo.wet','wtrtbl.dep','sat.cond','dep.to.restr','dist.strm') 
 
# Convert stack to grid (preserves names) 

rs_grd <- writeRaster(rs,"SDMStack.grd", format="raster", overwrite=TRUE) 
 
# Read in repair, pumping, and anomalous pumping response point shapefiles (0/1 data of observ
ations and absences) 
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gdb_path <- "./ACC_Sewer_and_Septic_knc.gdb" 
repair <- readOGR(dsn=gdb_path, layer="SepticTanks_Repaired1") 

## OGR data source with driver: OpenFileGDB  
## Source: ".\ACC_Sewer_and_Septic_knc.gdb", layer: "SepticTanks_Repaired1" 
 

## with 8826 features 
## It has 27 fields 

repair1 <- readOGR(dsn=gdb_path, layer="SepticTanks_Repaired1") 

## OGR data source with driver: OpenFileGDB  
## Source: ".\ACC_Sewer_and_Septic_knc.gdb", layer: "SepticTanks_Repaired1" 
## with 8826 features 
## It has 27 fields 

pump <- readOGR(dsn=gdb_path, layer="SepticTanks_Pump1") 

## OGR data source with driver: OpenFileGDB  
## Source: ".\ACC_Sewer_and_Septic_knc.gdb", layer: "SepticTanks_Pump1" 
## with 7709 features 
## It has 35 fields 

pump.anom <- readOGR(dsn=gdb_path, layer="SepticTanks_Pump_Anom1") 

## OGR data source with driver: OpenFileGDB  
## Source: ".\ACC_Sewer_and_Septic_knc.gdb", layer: "SepticTanks_Pump_Anom1" 
## with 1077 features 
## It has 54 fields 

# Extract raster values of predictor variables to OWTS points 
repair_extr <- data.frame(extract(rs_grd, repair)) 

## Warning in .local(x, y, ...): Transforming SpatialPoints to the CRS of the 
## Raster 

pump_extr <- data.frame(extract(rs_grd, pump)) 

## Warning in .local(x, y, ...): Transforming SpatialPoints to the CRS of the 
## Raster 

pump.anom_extr <- data.frame(extract(rs_grd, pump.anom)) 

## Warning in .local(x, y, ...): Transforming SpatialPoints to the CRS of the 
## Raster 

# Append extracted values to the OWTS point tables 
repair@data <- data.frame(repair@data, repair_extr[match(rownames(repair@data), rownames(repai
r_extr)),]) 
pump@data <- data.frame(pump@data, pump_extr[match(rownames(pump@data), rownames(pump_extr)),] 
) 
 
pump.anom@data <- data.frame(pump.anom@data, pump.anom_extr[match(rownames(pump.anom@data), ro
wnames(pump.anom_extr)),]) 
 
# Drop observations with N/A's in predictor variable columns (largely points outside or on edg
e of study extent) 
repair <- sp.na.omit(repair, col.name = "topo.wet") 
repair <- sp.na.omit(repair, col.name = "wtrtbl.dep") 
repair <- sp.na.omit(repair, col.name = "sat.cond") 
repair <- sp.na.omit(repair, col.name = "dep.to.restr") 
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pump <- sp.na.omit(pump, col.name = "topo.wet")  
pump <- sp.na.omit(pump, col.name = "wtrtbl.dep") 
pump <- sp.na.omit(pump, col.name = "sat.cond") 
pump.anom <- sp.na.omit(pump.anom, col.name = "topo.wet") 
 
# Center covariates 
repair@data$Age.C <- repair@data$Age - mean(repair@data$Age) 
repair@data$dist.strm.C <- repair@data$dist.strm - mean(repair@data$dist.strm) 
repair@data$topo.wet.C <- repair@data$topo.wet - mean(repair@data$topo.wet) 
repair@data$wtrtbl.dep.C <- repair@data$wtrtbl.dep - mean(repair@data$wtrtbl.dep) 
repair@data$sat.cond.C <- repair@data$sat.cond - mean(repair@data$sat.cond) 
repair@data$dep.to.restr.C <- repair@data$dep.to.restr - mean(repair@data$dep.to.restr) 
pump@data$Age.C <- pump@data$Age - mean(pump@data$Age) 
pump@data$dist.strm.C <- pump@data$dist.strm - mean(pump@data$dist.strm) 
pump@data$topo.wet.C <- pump@data$topo.wet - mean(pump@data$topo.wet) 
pump@data$wtrtbl.dep.C <- pump@data$wtrtbl.dep - mean(pump@data$wtrtbl.dep) 
pump@data$sat.cond.C <- pump@data$sat.cond - mean(pump@data$sat.cond) 
pump@data$dep.to.restr.C <- pump@data$dep.to.restr - mean(pump@data$dep.to.restr) 
pump.anom@data$Age.C <- pump.anom@data$Age - mean(pump.anom@data$Age) 
pump.anom@data$dist.strm.C <- pump.anom@data$dist.strm - mean(pump.anom@data$dist.strm) 
pump.anom@data$topo.wet.C <- pump.anom@data$topo.wet - mean(pump.anom@data$topo.wet) 
pump.anom@data$wtrtbl.dep.C <- pump.anom@data$wtrtbl.dep - mean(pump.anom@data$wtrtbl.dep) 
pump.anom@data$sat.cond.C <- pump.anom@data$sat.cond - mean(pump.anom@data$sat.cond) 
pump.anom@data$dep.to.restr.C <- pump.anom@data$dep.to.restr - mean(pump.anom@data$dep.to.rest
r) 
 
# Calculate correlations among predictor variables and display correlation matrices 
(repr_spmn_R <- cor(repair@data[,c(33:38)], method="spearman")) 

##                      Age.C dist.strm.C  topo.wet.C wtrtbl.dep.C  sat.cond.C 
## Age.C           1.00000000  0.09246566  0.03721647  -0.00357821  0.04833696 
## dist.strm.C     0.09246566  1.00000000  0.16365787   0.14160730  0.01247559 
## topo.wet.C      0.03721647  0.16365787  1.00000000  -0.01319048  0.07364810 
## wtrtbl.dep.C   -0.00357821  0.14160730 -0.01319048   1.00000000 -0.23582587 
## sat.cond.C      0.04833696  0.01247559  0.07364810  -0.23582587  1.00000000 
## dep.to.restr.C  0.05437435  0.09999574  0.08092591   0.05265809  0.62250946 
##                dep.to.restr.C 
## Age.C              0.05437435 
## dist.strm.C        0.09999574 
## topo.wet.C         0.08092591 
## wtrtbl.dep.C       0.05265809 
## sat.cond.C         0.62250946 
## dep.to.restr.C     1.00000000 

(pump_spmn_R <- cor(pump@data[,c(41:46)], method="spearman")) 

##                       Age.C  dist.strm.C  topo.wet.C wtrtbl.dep.C   sat.cond.C 
## Age.C           1.000000000  0.058378028  0.01240769 -0.005213071  0.049533773 
## dist.strm.C     0.058378028  1.000000000  0.15408125  0.154928263 -0.004652192 
## topo.wet.C      0.012407691  0.154081248  1.00000000 -0.013589027  0.075739536 
## wtrtbl.dep.C   -0.005213071  0.154928263 -0.01358903  1.000000000 -0.199440454 
## sat.cond.C      0.049533773 -0.004652192  0.07573954 -0.199440454  1.000000000 
## dep.to.restr.C  0.056863774  0.085783875  0.08270727  0.061944760  0.623173379 
##                dep.to.restr.C 
## Age.C              0.05686377 
## dist.strm.C        0.08578387 
## topo.wet.C         0.08270727 
## wtrtbl.dep.C       0.06194476 
## sat.cond.C         0.62317338 
## dep.to.restr.C     1.00000000 
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(pump.a_spmn_R <- cor(pump.anom@data[,c(60:65)], method="spearman")) 

##                      Age.C dist.strm.C   topo.wet.C wtrtbl.dep.C   sat.cond.C 
## Age.C          1.000000000 0.110886952  0.004430343  0.024608380  0.007092071 
## dist.strm.C    0.110886952 1.000000000  0.180596040  0.129442315  0.002743354 
## topo.wet.C     0.004430343 0.180596040  1.000000000 -0.003316183  0.083171035 
## wtrtbl.dep.C   0.024608380 0.129442315 -0.003316183  1.000000000 -0.205337531 
## sat.cond.C     0.007092071 0.002743354  0.083171035 -0.205337531  1.000000000 
## dep.to.restr.C 0.068011399 0.106130962  0.076144265  0.039096620  0.551456952 
##                dep.to.restr.C 
## Age.C              0.06801140 
## dist.strm.C        0.10613096 
## topo.wet.C         0.07614426 
## wtrtbl.dep.C       0.03909662 
## sat.cond.C         0.55145695 
## dep.to.restr.C     1.00000000 

# Run candidate models with centered predictor variables 
##  Repaired 
lr01_r <- glm(Repaired ~ Age.C, family=binomial(link="logit"), repair) 
lr02_r <- glm(Repaired ~ dist.strm.C, family=binomial(link="logit"), repair) 
lr03_r <- glm(Repaired ~ topo.wet.C, family=binomial(link="logit"), repair) 
lr04_r <- glm(Repaired ~ Age.C + I(Age.C^2), family=binomial(link="logit"), repair) 
lr05_r <- glm(Repaired ~ Age.C + dist.strm.C, family=binomial(link="logit"), repair) 
lr06_r <- glm(Repaired ~ Age.C + topo.wet.C, family=binomial(link="logit"), repair) 
lr07_r <- glm(Repaired ~ Age.C + dist.strm.C + topo.wet.C, family=binomial(link="logit"), repa
ir) 
lr08_r <- glm(Repaired ~ Age.C + sat.cond.C + wtrtbl.dep.C +dep.to.restr.C, family=binomial(li
nk="logit"), repair) 
lr09_r <- glm(Repaired ~ Age.C + sat.cond.C + wtrtbl.dep.C +dep.to.restr.C + topo.wet.C, famil
y=binomial(link="logit"), repair) 
lr00_r <- glm(Repaired ~ 1, family=binomial(link="logit"), repair) 
##  Pumped 
lr01_p <- glm(Pumped ~ Age.C, family=binomial(link="logit"), pump) 
lr02_p <- glm(Pumped ~ dist.strm.C, family=binomial(link="logit"), pump) 
lr03_p <- glm(Pumped ~ topo.wet.C, family=binomial(link="logit"), pump) 
lr04_p <- glm(Pumped ~ Age.C + dist.strm.C, family=binomial(link="logit"), pump) 
lr05_p <- glm(Pumped ~ Age.C + topo.wet.C, family=binomial(link="logit"), pump) 
lr06_p <- glm(Pumped ~ Age.C + dist.strm.C + topo.wet.C, family=binomial(link="logit"), pump) 
lr07_p <- glm(Pumped ~ Age.C + sat.cond.C + wtrtbl.dep.C +dep.to.restr.C, family=binomial(link
="logit"), pump) 
lr08_p <- glm(Pumped ~ Age.C + sat.cond.C + wtrtbl.dep.C +dep.to.restr.C + topo.wet.C, family=
binomial(link="logit"), pump) 
lr00_p <- glm(Pumped ~ 1, family=binomial(link="logit"), pump) 
## Anomalous Pumping 
###  Pumping frequency (>=2 pumps in 3 year period) 
lr01_p_a_f <- glm(Pump_Freq ~ Age.C, family=binomial(link="logit"), pump.anom) 
lr02_p_a_f <- glm(Pump_Freq ~ dist.strm.C, family=binomial(link="logit"), pump.anom) 
lr03_p_a_f <- glm(Pump_Freq ~ topo.wet.C, family=binomial(link="logit"), pump.anom) 
lr04_p_a_f <- glm(Pump_Freq ~ Age.C + I(Age.C^2), family=binomial(link="logit"), pump.anom) 
lr05_p_a_f <- glm(Pump_Freq ~ Age.C + dist.strm.C, family=binomial(link="logit"), pump.anom) 
lr06_p_a_f <- glm(Pump_Freq ~ Age.C + topo.wet.C, family=binomial(link="logit"), pump.anom) 
lr07_p_a_f <- glm(Pump_Freq ~ Age.C + dist.strm.C + topo.wet.C, family=binomial(link="logit"), 
pump.anom) 
lr08_p_a_f <- glm(Pump_Freq ~ Age.C + sat.cond.C + wtrtbl.dep.C +dep.to.restr.C, family=binomi
al(link="logit"), pump.anom) 
lr09_p_a_f <- glm(Pump_Freq ~ Age.C + sat.cond.C + wtrtbl.dep.C +dep.to.restr.C + topo.wet.C, 
family=binomial(link="logit"), pump.anom) 

lr00_p_a_f <- glm(Pump_Freq ~ 1, family=binomial(link="logit"), pump.anom) 
###  Pumping volume (manifest recorded volume >= OWTS capacity) 



 

41 

lr01_p_a_v <- glm(Max_Over_Cap ~ Age.C, family=binomial(link="logit"), pump.anom) 
lr02_p_a_v <- glm(Max_Over_Cap ~ dist.strm.C, family=binomial(link="logit"), pump.anom) 
lr03_p_a_v <- glm(Max_Over_Cap ~ topo.wet.C, family=binomial(link="logit"), pump.anom) 
lr04_p_a_v <- glm(Max_Over_Cap ~ Age.C + I(Age.C^2), family=binomial(link="logit"), pump.anom) 
lr05_p_a_v <- glm(Max_Over_Cap ~ Age.C + dist.strm.C, family=binomial(link="logit"), pump.anom
) 
lr06_p_a_v <- glm(Max_Over_Cap ~ Age.C + topo.wet.C, family=binomial(link="logit"), pump.anom) 
lr07_p_a_v <- glm(Max_Over_Cap ~ Age.C + dist.strm.C + topo.wet.C, family=binomial(link="logit
"), pump.anom) 
lr08_p_a_v <- glm(Max_Over_Cap ~ Age.C + sat.cond.C + wtrtbl.dep.C +dep.to.restr.C, family=bin
omial(link="logit"), pump.anom) 
lr09_p_a_v <- glm(Max_Over_Cap ~ Age.C + sat.cond.C + wtrtbl.dep.C +dep.to.restr.C + topo.wet.
C, family=binomial(link="logit"), pump.anom) 
lr00_p_a_v <- glm(Max_Over_Cap ~ 1, family=binomial(link="logit"), pump.anom) 
###  Any anomalous pumping (either frequently pumped OR volume exceedance) 
lr01_p_a_a <- glm(Pump_Anom ~ Age.C, family=binomial(link="logit"), pump.anom) 
lr02_p_a_a <- glm(Pump_Anom ~ dist.strm.C, family=binomial(link="logit"), pump.anom) 
lr03_p_a_a <- glm(Pump_Anom ~ topo.wet.C, family=binomial(link="logit"), pump.anom) 
lr04_p_a_a <- glm(Pump_Anom ~ Age.C + I(Age.C^2), family=binomial(link="logit"), pump.anom) 
lr05_p_a_a <- glm(Pump_Anom ~ Age.C + dist.strm.C, family=binomial(link="logit"), pump.anom) 
lr06_p_a_a <- glm(Pump_Anom ~ Age.C + topo.wet.C, family=binomial(link="logit"), pump.anom) 
lr07_p_a_a <- glm(Pump_Anom ~ Age.C + dist.strm.C + topo.wet.C, family=binomial(link="logit"), 
pump.anom) 
lr08_p_a_a <- glm(Pump_Anom ~ Age.C + sat.cond.C + wtrtbl.dep.C + dep.to.restr.C, family=binom
ial(link="logit"), pump.anom) 
lr09_p_a_a <- glm(Pump_Anom ~ Age.C + sat.cond.C + wtrtbl.dep.C +dep.to.restr.C + topo.wet.C, 
family=binomial(link="logit"), pump.anom) 
lr00_p_a_a <- glm(Pump_Anom ~ 1, family=binomial(link="logit"), pump.anom) 
 
# Create lists of all the models and name them 
repr_Mdls <- list(lr01_r, lr02_r, lr03_r, lr04_r, lr05_r, lr06_r, lr07_r, lr08_r, lr09_r, lr00
_r) 
pump_Mdls <- list(lr01_p, lr02_p, lr03_p, lr04_p, lr05_p, lr06_p, lr07_p, lr08_p, lr00_p) 
pump_anom_freq_Mdls <- list(lr01_p_a_f, lr02_p_a_f, lr03_p_a_f, lr04_p_a_f, lr05_p_a_f, lr06_p
_a_f, lr07_p_a_f, lr08_p_a_f, lr09_p_a_f, lr00_p_a_f) 
pump_anom_vol_Mdls <- list(lr01_p_a_v, lr02_p_a_v, lr03_p_a_v, lr04_p_a_v, lr05_p_a_v, lr06_p_
a_v, lr07_p_a_v, lr08_p_a_v, lr09_p_a_v, lr00_p_a_v) 
pump_anom_all_Mdls <- list(lr01_p_a_a, lr02_p_a_a, lr03_p_a_a, lr04_p_a_a, lr05_p_a_a, lr06_p_
a_a, lr07_p_a_a, lr08_p_a_a, lr09_p_a_a, lr00_p_a_a) 
 
lrNames_r <- c("Age","Strm.Dist","TWI","Age.Quad","Age.Strm", "Age.TWI", "Age.Fld","Age.Soil",
"Age.Soil.TWI","Null") 
lrNames_p <- c("Age","Strm.Dist","TWI","Age.Strm","Age.TWI","Age.Fld","Age.Soil","Age.Soil.TWI
","Null") 
lrNames_p_a_f <- c("Age","Strm.Dist","TWI","Age.Quad","Age.Strm", "Age.TWI", "Age.Fld","Age.So
il","Age.Soil.TWI","Null") 
lrNames_p_a_v <- c("Age","Strm.Dist","TWI","Age.Quad","Age.Strm", "Age.TWI", "Age.Fld","Age.So
il","Age.Soil.TWI","Null") 
lrNames_p_a_a <- c("Age","Strm.Dist","TWI","Age.Quad","Age.Strm", "Age.TWI", "Age.Fld","Age.So
il","Age.Soil.TWI","Null") 
 

# Calculate and print BIC tables 
(bicWt_r <- bictab(cand.set = repr_Mdls, modnames = lrNames_r, sort = TRUE, c.hat=1)) 

##  
## Model selection based on BIC: 
##  
##              K     BIC Delta_BIC BICWt Cum.Wt       LL 
## Age          2 4805.58      0.00  0.81   0.81 -2393.71 
## Age.Strm     3 4808.82      3.24  0.16   0.97 -2390.79 
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## Age.Quad     3 4813.82      8.24  0.01   0.99 -2393.29 
## Age.TWI      3 4814.45      8.87  0.01   1.00 -2393.60 
## Age.Fld      4 4817.16     11.58  0.00   1.00 -2390.42 
## Age.Soil     5 4831.21     25.63  0.00   1.00 -2392.90 
## Age.Soil.TWI 6 4840.05     34.47  0.00   1.00 -2392.78 
## Strm.Dist    2 4843.60     38.02  0.00   1.00 -2412.72 
## Null         1 4844.44     38.86  0.00   1.00 -2417.68 
## TWI          2 4853.51     47.93  0.00   1.00 -2417.67 

(bicWt_p <- bictab(cand.set = pump_Mdls, modnames = lrNames_p, sort = TRUE, c.hat=1)) 

##  
## Model selection based on BIC: 
##  
##              K     BIC Delta_BIC BICWt Cum.Wt       LL 
## Null         1 6234.51      0.00  0.90   0.90 -3112.78 
## Strm.Dist    2 6239.28      4.77  0.08   0.98 -3110.69 
## Age          2 6243.43      8.92  0.01   0.99 -3112.77 
## TWI          2 6243.45      8.95  0.01   1.00 -3112.78 
## Age.Strm     3 6248.15     13.65  0.00   1.00 -3110.66 
## Age.TWI      3 6252.37     17.86  0.00   1.00 -3112.77 
## Age.Fld      4 6257.03     22.52  0.00   1.00 -3110.62 
## Age.Soil     5 6266.90     32.39  0.00   1.00 -3111.09 
## Age.Soil.TWI 6 6275.85     41.34  0.00   1.00 -3111.09 

(bicWt_p_a_f <- bictab(cand.set=pump_anom_freq_Mdls, modnames=lrNames_p_a_f, sort=TRUE, c.hat=
1)) 

##  
## Model selection based on BIC: 
##  
##              K     BIC Delta_BIC BICWt Cum.Wt      LL 
## Null         1 1069.27      0.00  0.81   0.81 -531.15 
## Age          2 1073.54      4.27  0.10   0.90 -529.79 
## TWI          2 1075.11      5.84  0.04   0.95 -530.57 
## Strm.Dist    2 1075.67      6.39  0.03   0.98 -530.85 
## Age.Quad     3 1078.25      8.97  0.01   0.99 -528.65 
## Age.TWI      3 1079.23      9.96  0.01   1.00 -529.14 
## Age.Strm     3 1080.17     10.90  0.00   1.00 -529.61 
## Age.Fld      4 1086.04     16.77  0.00   1.00 -529.06 
## Age.Soil     5 1089.36     20.09  0.00   1.00 -527.23 
## Age.Soil.TWI 6 1094.87     25.60  0.00   1.00 -526.49 

(bicWt_p_a_v <- bictab(cand.set=pump_anom_vol_Mdls, modnames=lrNames_p_a_v, sort=TRUE, c.hat=1
)) 

##  
## Model selection based on BIC: 
##  
##              K     BIC Delta_BIC BICWt Cum.Wt      LL 
## Age.Quad     3 1483.83      0.00  0.99   0.99 -731.45 
## Null         1 1493.26      9.43  0.01   1.00 -743.14 
## Strm.Dist    2 1496.85     13.01  0.00   1.00 -741.44 
## TWI          2 1499.22     15.39  0.00   1.00 -742.63 
## Age          2 1500.07     16.23  0.00   1.00 -743.05 
## Age.Strm     3 1503.78     19.95  0.00   1.00 -741.42 
## Age.TWI      3 1505.99     22.16  0.00   1.00 -742.52 
## Age.Fld      4 1510.18     26.35  0.00   1.00 -741.13 
## Age.Soil     5 1513.27     29.44  0.00   1.00 -739.18 
## Age.Soil.TWI 6 1519.44     35.61  0.00   1.00 -738.78 
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(bicWt_p_a_a <- bictab(cand.set=pump_anom_all_Mdls, modnames=lrNames_p_a_a, sort=TRUE, c.hat=1
)) 

##  
## Model selection based on BIC: 
##  
##              K     BIC Delta_BIC BICWt Cum.Wt      LL 
## Null         1 1461.24      0.00  0.69   0.69 -727.13 
## Strm.Dist    2 1464.60      3.35  0.13   0.82 -725.32 
## Age.Quad     3 1464.76      3.52  0.12   0.93 -721.91 
## TWI          2 1467.35      6.11  0.03   0.97 -726.69 
## Age          2 1467.70      6.46  0.03   0.99 -726.87 
## Age.Strm     3 1471.30     10.06  0.00   1.00 -725.18 
## Age.TWI      3 1473.75     12.51  0.00   1.00 -726.41 
## Age.Fld      4 1477.81     16.57  0.00   1.00 -724.94 
## Age.Soil     5 1485.98     24.73  0.00   1.00 -725.54 
## Age.Soil.TWI 6 1492.10     30.86  0.00   1.00 -725.11 

# Inspect top models 
summary(lr01_r) 

##  
## Call: 
## glm(formula = Repaired ~ Age.C, family = binomial(link = "logit"),  
##     data = repair) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -0.5950  -0.4359  -0.3909  -0.3470   2.5158   
##  
## Coefficients: 
##              Estimate Std. Error z value Pr(>|z|)     
## (Intercept) -2.494128   0.040813 -61.112  < 2e-16 *** 
## Age.C        0.018969   0.002748   6.903 5.09e-12 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 4835.4  on 8785  degrees of freedom 
## Residual deviance: 4787.4  on 8784  degrees of freedom 

## AIC: 4791.4 
##  
## Number of Fisher Scoring iterations: 5 

summary(lr04_p_a_v) 

##  
## Call: 
## glm(formula = Max_Over_Cap ~ Age.C + I(Age.C^2), family = binomial(link = "logit"),  
##     data = pump.anom) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -1.8648  -1.1687   0.8856   1.1456   1.2456   
##  
## Coefficients: 
##               Estimate Std. Error z value Pr(>|z|)     
## (Intercept) -0.1571172  0.0879798  -1.786   0.0741 .   
## Age.C        0.0037342  0.0051816   0.721   0.4711     
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## I(Age.C^2)   0.0020253  0.0004388   4.616 3.91e-06 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 1486.3  on 1075  degrees of freedom 
## Residual deviance: 1462.9  on 1073  degrees of freedom 
## AIC: 1468.9 
##  
## Number of Fisher Scoring iterations: 4 

# Check 90% confidence intervals to see if they cross zero 
confint(lr01_r, level = 0.90) 

## Waiting for profiling to be done... 

##                    5 %        95 % 
## (Intercept) -2.5619450 -2.42766361 
## Age.C        0.0144546  0.02349611 

confint(lr04_p_a_v, level = 0.90) 

## Waiting for profiling to be done... 

##                      5 %         95 % 
## (Intercept) -0.302362123 -0.012838271 
## Age.C       -0.004779256  0.012275578 
## I(Age.C^2)   0.001315311  0.002759602 

# Create new data tables to make predictions to based on top models 
## Repair (Age) 
n_rep_dat <- data.frame(Age.C = seq(min(repair@data$Age.C), max(repair@data$Age.C), length = 1
000)) 
Link_01_r <- predict(lr01_r, newdata = n_rep_dat, type="link", se.fit = TRUE) 

n_rep_dat$Age <- seq(min(repair@data$Age), max(repair@data$Age), length = 1000) 
n_rep_dat$p <- plogis(Link_01_r$fit) 
n_rep_dat$lwr <- plogis(Link_01_r$fit - 1.96*Link_01_r$se.fit) 
n_rep_dat$upr <- plogis(Link_01_r$fit + 1.96*Link_01_r$se.fit) 
 
## Anomalous Pumping: Volume 
n_vol_dat <- data.frame(Age.C=seq(min(pump.anom@data$Age.C), max(pump.anom@data$Age.C), length
=1000)) 
Link_04_vol <- predict(lr04_p_a_v, newdata=n_vol_dat, se.fit=TRUE, type="link") 
n_vol_dat$Age <- seq(min(pump.anom@data$Age), max(pump.anom@data$Age), length=1000) 
n_vol_dat$p <- plogis(Link_04_vol$fit) 
n_vol_dat$lwr <- plogis(Link_04_vol$fit - 1.96*Link_04_vol$se.fit) 
n_vol_dat$upr <- plogis(Link_04_vol$fit + 1.96*Link_04_vol$se.fit) 
 
# AUC calculations 
library(ROCR) 
 
# Repair Model 
## Age (lr01_r) 
# Create predictions 
prob_lr01_r <- predict(lr01_r, repair@data, se.fit = TRUE, type = "response") 
pred_lr01_r <- prediction(prob_lr01_r[1], repair@data$Repaired) 
 
# Calculate and print area under the curve 
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auc_lr01_r <- performance(pred_lr01_r, "auc") 
auc_lr01_r@y.values 

## [[1]] 
## [1] 0.5892685 

# Pumping Models 
## Volume Exceedance 
### Age + Age^2 (lr04_p_a_v) 
# Create predictions 
prob_lr04_p_a_v <- predict(lr04_p_a_v, pump.anom@data, se.fit = TRUE, type = "response") 
pred_lr04_p_a_v <- prediction(prob_lr04_p_a_v[1], pump.anom@data$Max_Over_Cap) 

# Calculate and print area under the curve 
auc_lr04_p_a_v <- performance(pred_lr04_p_a_v, "auc") 
auc_lr04_p_a_v@y.values 

## [[1]] 
## [1] 0.5759514 

# Plot predicted probabilities 
windowsFonts(TNR = windowsFont("Times New Roman")) 
## Repair 
par(mar = c(5,5,2,5)) 
hist(repair@data$Age, main=NA, axes=F, xlab=NA, ylab=NA, ylim=range(0,3500), 
     col =  adjustcolor("grey", alpha.f = 0.35)) 
axis(side = 4, family="TNR", seq(0,1500,250)) 
par(new = TRUE) 
plot(p ~ Age, data = n_rep_dat, type="l", lwd = 2.5, xlab="System Age (years)", ylab="Probabil
ity of System Repair", family="TNR", ylim=c(0.0,0.2)) 
mtext(side = 4, line = 3, family="TNR", "Frequency") 
polygon(x = c(n_rep_dat$Age, rev(n_rep_dat$Age)), 
        y = c(n_rep_dat$lwr, rev(n_rep_dat$upr)), 
        col =  adjustcolor("grey", alpha.f = 0.5), border = NA) 
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## Anomalous pumping: Volume 
par(mar = c(5,5,2,5)) 
hist(pump.anom@data$Age, main=NA, axes=F, xlab=NA, ylab=NA, ylim=range(0,500), 
     col =  adjustcolor("grey", alpha.f = 0.35)) 
axis(side = 4, family="TNR", seq(0,250,50)) 
par(new = TRUE) 
plot(p ~ Age, data = n_vol_dat, xlab="System Age (years)", ylab="Probability of Volume Exceeda
nce", family="TNR", ylim=c(0,1), type = "l", lwd = 2.5) 
mtext(side = 4, line = 3, family="TNR", "Frequency") 
polygon(x = c(n_vol_dat$Age, rev(n_vol_dat$Age)), 
        y = c(n_vol_dat$lwr, rev(n_vol_dat$upr)), 
        col =  adjustcolor("grey", alpha.f = 0.5), border = NA) 

 
# Regressions between OWTS repaired within 5 years of pumping records and those with any anoma
lous pumping 
# Subset anomalous pumping SpatialPointsDataFrame by sites which have been repaired since 01/0
1/2012 (5 years prior to the earliest pumping record) 
pump.anom.rep <- sp.na.omit(pump.anom, col.name = "Repaired5") 
 
# Calculate correlations among variables and display correlation matrix 
(pump.a.r_spmn_R <- cor(pump.anom.rep@data[,c(48,49,52)], method="spearman")) 

##               Pump_Anom Max_Over_Cap  Repaired5 
## Pump_Anom    1.00000000    0.8247245 0.06139246 
## Max_Over_Cap 0.82472455    1.0000000 0.16376789 
## Repaired5    0.06139246    0.1637679 1.00000000 

# Run logistic regression models between binary anomalous pumping occurrence and repair occurr
ence 
lr01_p_a_r <- glm(Repaired5 ~ Pump_Anom, family=binomial(link="logit"), pump.anom.rep) 
lr02_p_a_r <- glm(Repaired5 ~ Max_Over_Cap, family=binomial(link="logit"), pump.anom.rep) 
 
# Summarize models 
summary(lr01_p_a_r) 
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##  
## Call: 
## glm(formula = Repaired5 ~ Pump_Anom, family = binomial(link = "logit"),  
##     data = pump.anom.rep) 

##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -0.7910  -0.7910  -0.6905  -0.1126   1.7610   
##  
## Coefficients: 
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -1.3122     0.4258  -3.082  0.00206 ** 
## Pump_Anom     0.3107     0.5072   0.613  0.54013    
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 112.47  on 99  degrees of freedom 
## Residual deviance: 112.08  on 98  degrees of freedom 
## AIC: 116.08 
##  
## Number of Fisher Scoring iterations: 4 

summary(lr02_p_a_r) 

##  
## Call: 
## glm(formula = Repaired5 ~ Max_Over_Cap, family = binomial(link = "logit"),  
##     data = pump.anom.rep) 
##  
## Deviance Residuals:  
##      Min        1Q    Median        3Q       Max   
## -0.86205  -0.86205  -0.60386  -0.07045   1.89302   
##  
## Coefficients: 
##              Estimate Std. Error z value Pr(>|z|)     
## (Intercept)   -1.6094     0.4140  -3.887 0.000101 *** 
## Max_Over_Cap   0.8109     0.5020   1.615 0.106211     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 112.47  on 99  degrees of freedom 
## Residual deviance: 109.69  on 98  degrees of freedom 

## AIC: 113.69 
##  
## Number of Fisher Scoring iterations: 4 

# Summary statistics 
median(repair1@data$Age) 

## [1] 35 

median(repair@data$Age) 

## [1] 35 
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with(repair@data, median(Age[Repaired = 1])) 

## [1] 65 

median(pump@data$Age) 

## [1] 33 

with(pump@data, median(Age[Pumped == 1])) 

## [1] 34 

sum(pump@data$FREQUENCY==0) 

## [1] 6599 

sum(pump@data$FREQUENCY>=2) 

## [1] 211 

mean(pump@data$FREQUENCY) 

## [1] 0.2040125 

with(pump@data, mean(FREQUENCY[FREQUENCY >= 1])) 

## [1] 1.454039 

sum(c(pump.anom.rep$Repaired5 == 1 & pump.anom.rep$Max_Over_Cap == 1)) 

## [1] 18 

 


