
Automation of Quantum Chemistry Workflows

by

Victoria M. Ingman
(Under the Direction of Steven E. Wheeler)

Abstract

Quantum chemistry has made tremendous strides in recent years, and modern methods now enable
accurate predictions of the properties of a wide range of chemical systems. However, what now limits
the use of quantum chemistry in many cutting-edge chemical applications is the sheer number of com-
putations required to provide predictions ahead of experiment. One potential solution to this growing
problem is the automation of routine tasks or even entire quantum chemistry work�ows. Toward this
end, we describe the development of robust command line and graphical tools to manipulate molecular
structures, submit and monitor jobs, and automate quantum chemistry work�ows. First, we describe
QChASM, our suite of free, open-source tools for quantum chemistry automation and structure manip-
ulation. Central to QChASM is AaronTools, a Python package for building and manipulating complex
molecular structures and performing routine computational tasks. Next, we describe AaronJr, which is a
new work�ow manager for QChASM that provides a simple yet �exible command line interface to build
and execute quantum chemistry work�ows across many popular quantum chemistry packages. Finally,
we show example applications that can be automated using AaronJr in order to showcase both the ease
with which new work�ows can be described and the power of AaronJr to automate a wide range of quan-
tum chemistry applications. The ultimate hope is that by automating the mundane tasks that currently
dominate day-to-day life of the computational chemist (building molecular structures, creating input �les,
submitting and monitoring jobs, checking and parsing output �les, and analyzing results), QChASM
will allow computational chemists to instead focus on the chemistry, not the computations.

Index words: quantum chemistry, density functional theory, automation tools

Automation of Quantum Chemistry Workflows

by

Victoria M. Ingman

B.S., University of Tennessee, 2016

A Dissertation Submitted to the Graduate Faculty of the
University of Georgia in Partial Ful�llment of the Requirements for the Degree

Doctor of Philosophy

Athens, Georgia

2021

©2021
Victoria M. Ingman
All Rights Reserved

Automation of Quantum Chemistry Workflows

by

Victoria M. Ingman

Major Professor: Steven E. Wheeler

Committee: Henry F. Schaefer III
Kyle Johnsen

Electronic Version Approved:

Ron Walcott
Vice Provost for Graduate Education and Dean of the Graduate School
The University of Georgia
August 2021

Dedication

To Charlie, for always believing in me. And to my family, for ensuring I had the opportunity to reach my
full potential.

iv

Contents

List of Figures vi

1 Introduction 1
1.1 Virtual Screening of Chemical Systems . 1
1.2 Perl-based AARON and AaronTools . 2
1.3 AARON Applications . 2
1.4 Overcoming the Shortcomings of AARON and AaronTools 6
1.5 Aim of This Dissertation . 9

2 QChASM: Quantum Chemistry Automation and Structure Manipulation 10
2.1 Abstract . 11
2.2 Introduction . 11
2.3 AaronTools . 12
2.4 AARON . 21
2.5 SEQCROW . 22
2.6 Conclusions . 23
2.7 Acknowledgements . 24
2.8 Funding Information . 24

3 AaronJr: A Python Toolkit for Automating Quantum Chemistry Work�ows 25
3.1 Abstract . 26
3.2 Introduction . 26
3.3 Overview of AaronJr . 28
3.4 AaronJr Implementation . 39
3.5 Availability and Installation . 41
3.6 Conclusions . 41
3.7 Funding Information . 42

4 Example Applications of AaronJr 43
4.1 Introduction . 43
4.2 Simple Examples . 44

v

4.3 Screening multiple ligands and substrates for a catalytic cycle 46
4.4 Conclusions . 47

5 Conclusion 51

Appendices 52

A Canonical Ranking Algorithm for Atoms 52

Bibliography 54

vi

List of Figures

1.1 A) Asymmetric propargylation of benzaldehyde studied by Doney et al.5 B) 60 potential
catalysts built by considering ten substituents appended to six sca�olds. C) Five unique
con�gurations of theC2-symmetric bidentate catalyst, two chlorines, alkyl nucleophile,
and aromatic aldehyde compatible with this reaction. 3

1.2 Asymmetric hydrogenation studied by Guan et al.6 5
1.3 Regioselective Ir-catalyzed CH activation studied by Schaefer et al.13 6
1.4 Data structure comparison of select attributes for a water molecule. The “&” symbol is

used to denote an object reference. 7

2.1 Main components of QChASM . 12
2.2 a) Dimer of 3-methylindole and 3,9-dihydro-purine-2,6-dione from Ref. [23] before and

after rotation of 3,9-dihydro-purine-2,6-dione by 60◦ around the vector normal to the
ring plane; b) TS for a stereoselective epoxide ring opening catalyzed by the chiral phos-
phoric acid TRIP, from Ref. [24], highlighting the six iPr and one OMe that will be
rotated by makeConf (selected hydrogen atoms removed for clarity); c) TS for an Ir-
catalyzed CH activation reaction before and after substitution of atoms 11 and 13 with Me
groups and replacement of the Me group at atom 25 with a Ph ring usingsubstitute; d)
Use of mapLigand to replace a model ZDMP ligand with (S)-BINAP in a TS structure
for a Noyori asymmetric hydrogenation of acetaldehyde. 14

2.3 Use of the function map_ligand to replace the ligand in a TS structure for an enantios-
elective Markovnikov hydroboration (from Ref. [29]) of a terminal alkene with (S,S)-
Me-DuPhos . 19

2.4 Screenshots of SEQCROW showing the QM Input Generator allowing users to save
‘Presets’ of common input �le types for Gaussian, Orca, and Psi4, the calculation of
Sterimol parameters, and the Normal Mode Visualization and IR Spectra Plotting . . . 23

3.1 AaronJr work�ow overview . 28
3.2 Equivalent AaronJr input �les requesting the geometry optimization and vibrational

frequencies at the B3LYP/6-31G(d) level of theory for all geometries in the directory
Example1 . 30

3.3 Currently available job types in AaronJr . 30

vii

3.4 Default work�ows included with AaronJr. Users can de�ne new work�ows either from
scratch or by importing and modifying these default work�ows. 31

3.5 Extending a default work�ow, with alternate theory parameters for the added step. . . . 32
3.6 Example [Geometry] section converting the structure of ethane to disilane 33
3.7 Dihedral scan of ethane . 33
3.8 Using the [Reaction] section for structure speci�cation 34
3.9 Simple AaronJr input �le that would result in the geometry optimization and frequency

computations of 448 unique intermediates and TS structures generated by combinations
of substitutions and ligand mappings of eight previously computed template structures
(one of which is shown, along with key atom numbers) 36

3.10 Using a project con�guration �le (project.ini) to tie together multiple con�guration �les
(rxn.ini, reactants.ini, and products.ini) . 37

3.11 Using the [Plot] section for multi-step reactions 40

4.1 The six possible octahedral coordination complexes generated 45
4.2 The structure saved as “urea.xyz”, with atom numbering shown 46
4.3 Intramolecular chlorocarbamoylation . 47
4.4 Gibbs free energy (kcal/mol) pathway for select steps in the catalytic cycle at the CPCM

(toluene) M06L/def2-TZVP//B3LYP/6-31G(d) (LANL2DZ) level of theory at 373 K. . 48
4.5 Parent (left) and one of its child (right) input �les for the multi-step reaction run. . . . 49

A.1 RMSD of tBu rotations (left) should be zero, and one should be able to align ethanol
and ethanethiol (right) despite their atoms being di�erent. 52

viii

Chapter 1

Introduction

1.1 Virtual Screening of Chemical Systems
While advancements in computing are continuously making computational chemistry a cheaper and
quicker way to investigate chemical systems, the manual application of these methods for many projects
can be a daunting task. For example, generating the input �les for the hundreds of transition state (TS)
structures that are often necessary to estimate experimentally measurable properties, such as enantiomeric
excess (% ee), is almost impossible without well-honed skills at the command line. Additionally, modifying
each of these structures in a graphical molecule builder, such as GaussView1 or Avogadro,2 to test the
e�ects of functional group modi�cations, alternative ligands, or reaction conditions, is an incredibly time
consuming and error prone process. It follows that some amount of automation is necessary to e�ciently
screen chemical systems computationally.

Furthermore, many experimental chemists who may not consider themselves “computer people” can
miss out on insights they might have gleaned from a computational study thanks to the high barrier of
entry to interact with computational software. A small (but potentially disastrous) typographical error
in an input �le may go unnoticed even by the experienced computational chemist, and it is not always
easy to discern where in the output �le to look for information on what caused the error. Something as
routine as collecting the energies from several output �les and organizing them into a spreadsheet can
become a time consuming and error-prone task for someone with little scripting experience.

The QChASM3 suite of tools was designed to help experienced computational chemists more e�-
ciently conduct their research, while also reducing the barrier to entry for inexperienced users and thereby
catalyzing the adoption of computational tools amongst a broader audience. With more data gener-
ated, there is increased potential for insights via cheminformatics studies and for explaining or expanding
chemical intuition. Additionally, computational screening can help identify promising leads to pursue
experimentally, thus saving time, money, and resources. The �eld of chemistry as a whole can bene�t
from increased computational activity and easy to use tools for generating and analyzing this data.

1

1.2 Perl-based AARON and AaronTools
The Perl version of AaronTools was developed by Guan, Ingman, Rooks, and Wheeler starting around
2014.4–7 It provides object-oriented functionality capable of measuring and manipulating molecular struc-
tures, as well as tools for data analysis and job submission. Many of the functionalities of AaronTools are
now also available as command line scripts. These tools allow for the automation of many common tasks
in computational chemistry. For example, AaronTools makes it trivial to perform a dihedral scan around
a bond and write these new geometries to �les for later computations. AaronTools can scan through a
set of output �les and compile data of interest, such as bond lengths, the RMSD compared to a reference
structure, or thermochemical data. It is also possible to make functional group substitutions and map
new ligands or organocatalyst onto a previously built structure. These tools simplify making adjustments
to work already done without having to start over from square one; the user can build it once and let
AaronTools do the rest.

AARON7 (An Automated Reaction Optimizer for New catalysts) is a toolkit built on the Perl version
of AaronTools for the speci�c purpose of predicting enatio- and regioselectivity of catalytic reactions.
While originally designed for a speci�c class of bipyridine N,N′-dioxide catalyzed asymmetric alkylation
reactions,4,5 AARON can now handle both transition metal centered catalysts as well as fully organic
catalysts. AARON interfaces with the computational package Gaussian 098 to automate optimizations
for structures generated from template structures. AARON will submit jobs on the user’s behalf and
monitor their progress, making adjustments to molecular structures or computational parameters to �x
errors detected along the way. After the initial set up, AARON can be run in the background, gathering
data for screening ligands or exploring substrate scope for catalytic systems. In this way, the user is able to
focus on chemical exploration and discovery rather than the monotonous process of submitting hundreds
of jobs by hand.

1.3 AARON Applications

AARON has been applied to a number of catalytic reactions.4–6,9 By providing automated predictions of
catalytic activity and stereoselectivity, AARON opens the door for the computational screening of virtual
libraries of catalysts for targeted reactions.

One of the primary uses of AARON is to screen potential ligands or organocatalysts for asymmetric
reactions, with the goal of identifying potential new catalysts with superior selectivity and/or activity. For
example, Doney et al. used an early version of AARON to make predictions for a library of 59 bipyridine-
N,N’-dioxide derived catalysts for the asymmetric propargylation of benzaldehyde (see Figures 1.1A and
B).5 These 59 catalysts were built by appending one of ten functional groups on to six parent sca�olds
(one catalyst was too sterically crowded to be viable), a task greatly facilitated using the mapping and
substitution functionalities provided by AaronTools. For each of theC2 symmetric catalysts, �ve di�erent
geometric arrangements of the ligands are possible (see Figure 1.1C), and the alkyl nucleophile can add
to either face of the benzaldehyde — doubling the number of TS structures that must be considered for

2

Figure 1.1: A) Asymmetric propargylation of benzaldehyde studied by Doney et al.5 B) 60 potential catalysts
built by considering ten substituents appended to six sca�olds. C) Five unique con�gurations of theC2-
symmetric bidentate catalyst, two chlorines, alkyl nucleophile, and aromatic aldehyde compatible with
this reaction.

each catalyst in the library. AARON was used to automatically optimize these TS structures for each of
the 59 catalysts.

The predicted enantioselectivities ranged from 45% ee (S) to 99% ee (R), with 12 catalysts predicted
to perform in excess of 95% ee (R). When comparing these catalysts, there is quite a bit of variation in
the energetic distribution of TS structures, illustrating the importance of considering all accessible TS
structures, rather than just the lowest-lying R- and S-structures. For example, modest improvements in
selectivity across the substituted varieties based on sca�olds 1 and 5 are generally due to changes in relative
energies seen for the higher energy TS structures, while the energy gap between the two lowest-lying
TS structures is essentially the same. Since AARON automatically calculates the Boltzmann weighted
selectivities and presents a summary table with relative energies, enthalpies, and free energies (using both
RRHO and quasi-RRHO schemes),10 these subtle e�ects on the performance of catalysts can be predicted
and analyzed easily.

As alluded to previously, the ease of gathering data for all 59 catalysts allowed more time for investi-
gating what changes to the catalyst have the most impact on the reaction and why this may be the case.
Although the e�ect the substituents had on selectivity for each catalyst sca�old was not always straight-

3

forward, it was noted that BP2(R) (i.e. the TS leading to the (R)-product built from con�guration BP2)
could be preferentially stabilized by tuning the electrostatic environment of the formyl C H on the ben-
zaldehyde. In light of this insight, a new catalyst sca�old was designed with two cyclohexane rings fused to
sca�old 1. With more conformational �exibility due to the cyclohexane rings, which in some cases broke
theC2 symmetry (since each ring could adopt a di�erent conformation than the other) and doubled the
number of possible ligand arrangements, the number of TS structures needed to predict performance was
drastically increased. Starting from 60 structures from a simpli�ed version of the �nal catalyst, AARON
was used to determine the most important TS structures for full analysis. This new catalyst was predicted
to give greater than 99% ee and to outperform other sca�olds analyzed with similar substituents. This
success illustrates how valuable it is to be able to generate computational data for large numbers of similar
catalysts. Because a legion of e�ects can impact the performance (both positively and negatively) of any
given catalyst, computational screening can inform new developments much more easily when enough
data is present to see larger trends.

Subsequently, Malkov et al.11 synthesized and tested close analogs of some of the catalysts screened
by Doney et al.5 While not all of these catalysts performed exactly as predicted, Malkov et al. were able
to identify a catalyst exhibiting far greater activity and selectivity across a broad range of substrates for
this reaction than previously available. Subsequent computational analyses of this new catalyst revealed
that the origin of selectivity matched that of the original computationally designed version, representing
a triumph for both AARON and computational catalyst design in general.

AARON has also been used by Guan and Wheeler6 to screen chiral ligands for transition metal cat-
alyzed reactions, including for the asymmetric hydrogenation of (E)-β-aryl-N-acetyl enamides (see Fig-
ure 1.2).12 Without automation, computational investigation of this reaction for even just one ligand
would have been tedious at best. Two hydride transfers from the metal to the substrate are necessary, at
the α- and β-position, and the order in which these transfers occur is dependent on the nature of both
the catalyst and the substrate. Because the ligand may in�uence the order of these hydride transfers, it
is necessary to model both steps when investigating the performance of a new ligand. Additionally, the
arrangement of the ligands around the metal center yields two possible transition state structures for ei-
ther α- or β-hydride transfer. Finally, the rearrangement of the hydride-complex leads to two possible TS
structures as well, although either arrangement for the initial hydride transfer will lead to the same two
hydride-complex rearrangements. Thus, there are eight TS structures, four from the �rst step and four
from the second step. However, these TS structures only take into account one enantiomeric product,
increasing the �nal number of TS structures that must be considered to 16. Furthermore, each of the TS
structures can spawn many conformations due to rotatable groups. Using AARON, 32 distinct pathways
were found for L1, comprising 42 TS structures within 5 kcal/mol of the lowest TS structure. Because
many pathways leading to the major and minor products are so close in energy, a Boltzmann weighting of
these accessible pathways was necessary to predict the selectivity of L1. Similarly, for L2-L5, hundreds of
TS structures were identi�ed for each ligand, and the Boltzmann weighted selectivity predictions were in
good agreement with experiment.

4

Figure 1.2: Asymmetric hydrogenation studied by Guan et al.6

Once again, AARON alleviated the tedium of �nding the plethora of distinct TS structures needed
to predict the selectivity of these six reactions. Because AARON can not only make substitutions to
functional groups, but also map new ligands to the catalyst (in this case, using the phosphorus atoms
as anchors to map a new ligand), it is trivial to screen a catalog of ligands using the templates already
developed. This means that the extra time and e�ort to screen multiple ligands, compared to a single
ligand, is essentially all computation time. Due to the e�ciency of utilizing the AARON work�ow, the
authors could put their e�orts towards discovery. By noting the unfavorable steric interactions between
the aryl groups of the catalyst and substrate for the TS structures leading to the (S)-product for L5, it
was postulated that extending this ligand could further exaggerate the energetic favorability of the (R)-
pathway over the (S). Two methyl groups were added in the 4 and 5 positions on the 9-anthracenyl group
of WingPhos (L5) to give X-WingPhos (L6). Theoretical results gathered by AARON indicate an increase
in both activity and selectivity for this new ligand, compared to L5, with a Boltzmann weighted free-energy
di�erence between the (S) and (R) pathways of 9.5 kcal/mol (compared to 6.2 kcal/mol for L5). Thus, the
AARON work�ow can be invaluable by automating the optimization of many catalysts and bringing us
closer to true computationally-driven rational catalyst design.

Finally, AARON was recently used by Schaefer et al.13 to benchmark popular DFT methods for an
Ir-catalyzed CH-activation reaction (see Figure 1.3). Identifying the best DFT level of theory for a given
problem generally depends on benchmarks of the performance of di�erent DFT functionals, basis sets,
and e�ective core potentials (ECPs) for similar reactions. While there have been countless benchmarks
of DFT methods for organic systems, there are relatively few benchmarks of properties of transition

5

Figure 1.3: Regioselective Ir-catalyzed CH activation studied by Schaefer et al.13

metal containing compounds. There are even fewer, if any, benchmarks of the performance of DFT
methods for problems in selective transition metal catalyzed reactions. This is, presumably, in large part
due to the tedium associated with optimizing the hundreds or thousands of TS structures needed to assess
predictions from DFT methods across a statistically meaningful set of reactions. Leveraging the power of
AARON, such a project becomes feasible. By altering the computational parameters speci�ed in a copy
of the AARON input �le, the structures can be computed at the new level of theory without any further
user intervention, and results parsing methods greatly simplify the data collection process.

1.4 Overcoming the Shortcomings of AARON and AaronTools
Despite the successful application of AARON to many of important catalytic systems, a number of
shortcomings of AARON have become clear. Many of these stem from AaronTools itself: it is neither
user-friendly nor easily extensible.

To help address the �rst issue, command line scripts were made for many AaronTools methods, al-
lowing users to take advantage of our tools without needing to learn the Perl programming language.
However, attempting to expand the capabilities of our tools exposed deeper �aws in the data structures
used to represent molecular systems and in the implementation of the methods. This fragility of the
underlying code structure meant developing new tools was an incredibly bug-prone process and often
required the developer to build new tools in a less than optimal way in order to integrate with the rest of
the code base. This, in turn, made future developments even more di�cult to accomplish.

As a result of these shortcomings, the entire AaronTools code base was re-written in Python, with a
guiding principle of facilitating future extensions and applications. Using the Python language instead of
Perl automatically increased the number of users able to take advantage of our tools in their own research,
since Python is a much more popular language among scientists (particularly those not stuck in the past).
We have also made the toolkit available on the Python Package Index for installation via pip, making it
much easier for new users to get started. Additionally, a comprehensive testing suite was developed to
help ensure future changes to the code base do not break existing implementations of the tools already
developed. New test cases are easily added when unexpected behavior is discovered and addressed.

6

However, the rewrite was not a simple translation from Perl to Python. Ensuring the ability to in-
tegrate our tools with other libraries and software, as well as providing a good user experience, has been
achieved by staying mindful and forward-thinking with regards to data structure design, thorough docu-
mentation, and elegant error handling.

First, the data structure for molecules was redesigned (Figure 1.4). In the Perl implementation, in-
formation about the atoms in the molecule — such as the atoms’ coordinates, their elements, and their
connections to other atoms — were stored in parallel arrays with each index in the array associated with
one atom. This was ine�cient and made it much too easy for a developer to introduce bugs. For example,
using the Perl AaronTools the arrays for each attribute must all be changed when adding or removing
atoms or molecular fragments (e.g. when adding substituents to molecular structures). Furthermore, the
index associated with a particular atom must remain conserved across all arrays, meaning any change in
the order of items in any of the arrays must be re�ected in all the other attribute arrays. One can see how
this inherently fragile data structure did little to facilitate the development of new tools and methods.

Figure 1.4: Data structure comparison of select attributes for a water molecule. The “&” symbol is used
to denote an object reference.

Instead, a new Atom object was created to store all the necessary attributes together, with a single Atom
array as the basis of theGeometryobject that contains all the information that was once spread over several
attributes. This change to the overall data structure used for representing molecules within AaronTools

7

made modi�cations to the molecular structure much easier to code and eliminated many avenues for
mistakes to occur. Additionally, the atom’s index in the Atom array was no longer the only way to �nd
a single Atom. Pointers to individual Atom objects could be stored in the connectivity attribute, thus
eliminating the reliance on consistent atom ordering within the Geometry object’s Atom array. This also
makes partitioning of the molecule into sub-structural components (such as ligands or functional groups)
faster and cleaner as graph-based algorithms (such as breadth-�rst search) can now be easily applied to the
inter-linked Atom objects.

To ease modi�cation or measurement, a tag and name attribute is also given to each Atom allowing
one to search for particular atoms based on its membership to sub-structural components as well as its
index in the original input molecule, respectively. Membership to a ligand, functional group, etc. is
determined upon initialization of the Geometry object and used to tag the atoms. The atoms are assigned
a name attribute based on the atom indices of the original structure, and the atoms each maintain their
name regardless of any other changes made to the molecule. It is also now much easier for a programmer
to interact with AaronTools, as one can easily search for particular atoms, such as �nding all oxygen atoms
that are part of an alcohol group or �nding the atoms in a ligand that are coordinated with the metal center
of a catalytic system. Furthermore, one can open the original structure in a graphical molecular viewer
and know that the indices displayed there correspond to the name given to each atom in the structure,
thus making it easy to modify di�erent aspects of the structure without worrying about modi�cations
disrupting the atom index used when calling various AaronTools methods.

Similar to the Perl version of AaronTools, the Perl implementation of AARON7 was di�cult to
extend and debug. The implementation was designed with asymmetric catalysis in mind, and it was
necessary to “trick” AARON to handle other types of systems. This, by de�nition, required the user to
have detailed knowledge of the inner-workings of the program, which was made even more hopeless due
to sparse documentation and a lack of proper error handling techniques. To make matters worse, logging
and tracking procedures left much to be desired; an untold number of hours were wasted attempting to
simply �nd or reproduce bugs, let alone actually �xing the issue.

Additionally, while AARON can produce conformers stemming from functional group rotations,
there are other conformational changes, such as ring �ips, that remain outside of its purview. Grimme,
et al. have developed a conformer/rotamer generation program, Crest,14 which uses a combination of
vibrational mode following, molecular dynamics simulations, and “genetic” structure crossing to build
an ensemble of structures. Vibrational mode following computes the harmonic vibrational frequencies
of an optimized structure. Then, displacements along low frequency normal modes are used to �nd new
minima along this now one-dimensional potential energy surface. This is done in a stepwise fashion,
where partial geometry optimizations are performed as steps are taken along this displacement vector.
By relaxing everything other than the displacement of interest, the procedure e�ectively includes non-
linear e�ects. Next, these generated structures are subjected to molecular dynamics runs at three di�erent
temperatures; snapshots are taken and added to the ensemble. If at any point a lower lying conformer
is found, the harmonic frequencies of this new structure are computed and the procedure is restarted.
Finally, the “genetic crossing” portion of the procedure takes the lowest lying structure found during the

8

mode following and molecular dynamics steps and modi�es it by replacing portions of the structure’s
Z-matrix with that of other structures. Due to the design of AARON, seamlessly interfacing Crest with
AARON proved problematic.

A new, Python-based tool (AaronJr: Automates All Reactions and Optimizations, Normally Just
Right) was developed as a replacement for AARON that addressed these and other shortcomings, while
also providing a much more general means of de�ning and executing quantum chemistry work�ows.
Thanks to the greater extensibility of the AaronJr code base, interfacing with Crest is now possible, and
the user can take advantage of this robust conformer space sampling procedure.

The switch to Python itself was bene�cial to the project. Python has built in exception handling and
its object-based approach makes it easy for developers to design speci�c exceptions for the objects they
implement. Additionally, these exceptions are part of a hierarchy, allowing one to handle particular types
of errors while allowing other unexpected errors to cause the program to exit and print a traceback of
where the error occurred. As an example, if one is expecting a numerical argument to a function, but a
string is passed, one can catch a TypeError and attempt to convert the string to a numerical type. If this
conversion is not possible, a ValueError is instead raised. One could also catch any error produced (the
Exception error is the most general exception and will catch any error) and modify the error message to
include additional information needed for debugging or to help the user identify any errors in their input
�les or user-made scripts.

In contrast, while Perl does have exception handling modules available through CPAN, they are not
part of the standard library. These modules are essentially emulating a feature that is built into almost
every other programming language. Being forced to use non-standard modules inherently makes installa-
tion more di�cult for new users, but not using them makes for graceless code (as a best case) and could
introduce security bugs (as a worst case). Indeed, to emulate error handling blocks in Perl requires testing
eval blocks for failures, meaning it is possible to execute dangerous code if one is either malicious or
simply not careful.

The net result of the Python re-write of AaronTools and the development of AaronJr is a much more
robust suite of tools for structure manipulation and quantum chemistry automation.

1.5 Aim of This Dissertation
The aim of this dissertation is to describe the development of new Python tools that overcome the short-
comings of the Perl-based AARON and AaronTools, thereby providing powerful new tools for automated
quantum chemistry work�ows. I �rst introduce QChASM (Chapter 2), which is a new collection of free,
open-source tools for quantum chemistry automation and structure manipulation, with a focus on the
new Python implementation of AaronTools. I then describe AaronJr in Chapter 3, which is a complete
rewrite of AARON to enable the automation of any quantum chemistry work�ow. AaronJr utilizes
the Python-based AaronTools, combined with the FireWorks work�ow software,15 to enable much more
�exible automation of modern quantum chemistry chemical applications. I then describe example appli-
cations of AaronJr in Chapter 4, followed by concluding remarks in Chapter 5.

9

Chapter 2

QChASM: Quantum Chemistry
Automation and Structure

Manipulation1

1Ingman, V. M.; Schaefer, T. J.; Andreola, L. R.; Wheeler, S. E. WIREs Comp.Mol. Sci. 11, e1510 (2021). Copyright 2020
John Wiley & Sons. Reprinted here with permission of the publisher.

10

2.1 Abstract
As the tools of computational quantum chemistry have continued to mature, larger and more complex
molecular systems have become amenable to computational study. However, studies of these complex
systems often require the execution of enormous numbers of computations, which can be a tedious and
error-prone process if done manually. We have developed a suite of free, open-source tools to facilitate the
automation of quantum chemistry work�ows. These tools are collected under the organization QChASM
(Quantum Chemistry Automation and Structure Manipulation) and include functionality for building
and manipulating complex molecular structures and performing routine tasks (AaronTools), a toolkit
for automating TS optimizations and predictions of the outcomes of selective homogeneous catalytic
reactions, and a plug-in for UCSF ChimeraX that provides a graphical interface for building complex
molecular structures and representing output from quantum chemistry computations. These tools are
described below, with a focus on the recent Python implementation of AaronTools.

2.2 Introduction
A growing challenge in modern applications of computational quantum chemistry is managing the sheer
number of computations that must be performed when tackling complex molecular systems. This prob-
lem is particularly severe in the realm of homogeneous catalysis, in which the reliable prediction of catalyst
activity and selectivity often requires the optimization of hundreds of transition state (TS) structures.16–18

Studies of potential new catalysts are often limited to only a few examples of a given reaction because
�nding so many TS structures for just one system requires a lot of time, and expanding the search to more
variations of a given reaction is not always feasible within time constraints.

To address this and other challenges, we are developing a set of free, open source tools for struc-
ture manipulation and automation, collected under the organization QChASM (Quantum Chemistry
Automation and Structure Manipulation, see Figure 2.1). QChASM currently comprises three main
packages: AaronTools, AARON, and SEQCROW. AaronTools is a collection of tools (available as Perl
modules or as a Python package) for building, measuring, manipulating, and comparing molecular struc-
tures; constructing input and parsing output �les; submitting and monitoring jobs in high-performance
computing environments; and analyzing data. AARON is a computational toolkit, written using Aaron-
Tools, to automate the geometry optimization of the many TS structures and energy minima required to
predict the activity and selectivity of homogeneous catalytic reactions. Finally, SEQCROW is a plug-in for
UCSF ChimeraX19 that adds tools to build and modify complex molecular structures, map new catalysts
and ligands onto previously-computed structures, manage AaronTools libraries, construct input �les for
quantum chemistry packages, and run and manage jobs.

11

Quantum
emistryCh

utomation andA

tructureS

anipulationM

Toolkit for:
• Automated optimizations
of TS structures for
predicting selectivities
of homogeneous catalytic
reactions

AARON

Graphical interface for:
• building and manipulating
molecular structures
• Representing molecular
structures and output from
QM computations

SEQCROW

AaronTools

Perl and Python library for:
• building and manipulating
molecular structures;
• constructing input files
and parsing output files;
• submitting and monitoring
jobs

Figure 2.1: Main components of QChASM

These tools, described below, together facilitate the automation of quantum chemistry applications
to complex molecular systems. Because AARON has been described recently7 and a separate publication
on SEQCROW is in preparation, we focus primarily on AaronTools, particularly the recent Python
implementation. Our goal is to show that with these tools, users will be able to tackle more challenging
problems by spending their time thinking about molecules instead of frittering away the hours building
molecular structures, generating input �les, submitting jobs, and parsing output �les.

2.3 AaronTools
In many quantum chemistry applications, a model system is used as a common framework to construct
coordinates of many new molecules. For instance, you might consider a series of substituted analogs of a
given molecule or need to optimize structures for di�erent substrates or catalysts along the same reaction
pathway. Typically, coordinates for such structures are generated using any of a number of available
graphical molecular builders; however, this requires the user to make changes �le by �le, which is time
consuming and can lead to mistakes, inconsistencies in atom numbering, etc. To avoid these mistakes, we
have made central to AaronTools utilities to streamline the generation of complex molecular structures
from either a simple script or the command line. These tools enable the generation of structures quickly
and methodically, and are concise and �exible enough to be incorporated in work�ows in many types of

12

quantum chemistry applications, not limited to catalysis. There are two primary ways to use AaronTools,
through either a series of stand-alone command line scripts or the underlying Perl or Python objects.

2.3.1 Command Line Scripts
The AaronTools command line scripts provide basic functionality for structure measurement, manipula-
tion, and comparison, as well as tools for output parsing and analysis. Most of these scripts provide a single
speci�c function, such as modifying a distance, angle, or dihedral angle, adding or changing a substituent,
or extracting thermochemical information from an output �le. Internally, all structure manipulations are
performed in Cartesian coordinates. Each command provides basic usage documentation and command
line conveniences (e.g. �le name globbing, pipes, and output redirection) are supported. In many cases,
a simple shell script can be used to string together individual command line scripts to build up an auto-
mated work�ow. A few examples are provided here (additional examples and usage help can be found on
the AaronTools GitHub Wiki; see Additional Reading, below). While the Perl and Python AaronTools
provide command line scripts with similar functionality, below we demonstrate the Python-based scripts.

A simple example using an AaronTools command line script is measuring a particular dihedral angle
from a set of structures using the dihedral command with the --measure argument. For instance, the
following will determine the dihedral angle de�ned by atoms 1, 2, 3, and 4 for each XYZ �le in the current
directory and print the value of the corresponding angle:

dihedral.py --measure 1 2 3 4 *.xyz

This and other command line scripts can also take output �les from Gaussian,20 Psi4,21 or ORCA,22

from which they will automatically extract the last set of molecular coordinates (e.g. from a geometry
optimization).

A slightly more complex example uses dihedral to generate structures for a torsional scan. The
--set argument accepts the four atoms de�ning the dihedral angle followed by the desired angle. Alterna-
tively, the --change argument can be used to alter the selected torsional angle by the speci�ed amount.
We note that currently, dihedral can not change a dihedral angle involving four atoms within a ring
and does not automatically resolve steric clashes or close contants that occur as the result of a change in
dihedral angle. Combined with a simple for loop, the structures for each point along a torsional scan
can be created and saved using the --output argument. For example, the following bash loop uses the
coordinates from original.xyz to generate 35 new structures (each saved as a new XYZ �le) by rotating
the dihedral angle de�ned by atoms 1, 2, 3 and 4, in 10◦ increments:

for d in $(seq 0 10 350); do
dihedral.py original.xyz --set 1 2 3 4 "$d" --output "rotated_$d.xyz"

done

Structures or components of structures can be translated using the translate command or rotated
around any speci�ed bond or axis using the rotate command. This includes simple rotations around
the Cartesian axes as well as axes de�ned between centroids of groups of atoms or perpendicular to sets

13

of atoms. For instance, Figure 2.2a shows the rotation of one component (atoms 20-34) of the stacked
dimer in dimer.xyz by 60◦ around the axis perpendicular to the plane de�ned by atoms 20-30:

rotate.py dimer.xyz --targets 20-34 --perpendicular 20-30 --angle 60

11

13
25

c)

substitute

Ir_TS.xyz

a)

rotate

b)

TRIP_TS.xyz

dimer.xyz

simple_TS.xyz

d)

mapLigand

23

24

Figure 2.2: a) Dimer of 3-methylindole and 3,9-dihydro-purine-2,6-dione from Ref. [23] before and after
rotation of 3,9-dihydro-purine-2,6-dione by 60◦ around the vector normal to the ring plane; b) TS for
a stereoselective epoxide ring opening catalyzed by the chiral phosphoric acid TRIP, from Ref. [24],
highlighting the six iPr and one OMe that will be rotated by makeConf (selected hydrogen atoms removed
for clarity); c) TS for an Ir-catalyzed CH activation reaction before and after substitution of atoms 11 and
13 with Me groups and replacement of the Me group at atom 25 with a Ph ring using substitute; d)
Use of mapLigand to replace a model ZDMP ligand with (S)-BINAP in a TS structure for a Noyori
asymmetric hydrogenation of acetaldehyde.

14

A common task encountered in quantum chemistry applications is the generation of rotamers of
substituents (e.g. iPr, OMe, etc). In systems with multiple rotatable groups, the number of potential
conformations can be astronomical. The makeConf command automatically generates new conformers
of a given structure by rotating all or selected substituents. AaronTools contains a library of common
substituents along with information about the number of unique rotamers and the angles separating these
rotamers. For example, in the AaronTools library a Ph substituent can exist as two rotamers, separated
by 90◦. Users can easily augment this library with their own, custom library, or override the number
of rotamers considered for built-in substituents. makeConf uses this information to build rotameric
structures. For instance, provided the TS structure shown in Figure 2.2b, makeConf will, by default,
generate 2916 rotamers by considering three rotamers each of the six iPr groups and two rotamers of the
OMe and OH groups. In this case, we would not need to consider rotations of the OH group, because
we are con�dent that the OH—O hydrogen bond will be maintained in all low-lying TS structures. As
such, we could use makeConf to automatically generate the 1458 rotamers by considering rotations of
only the iPr and OMe groups, requesting that the generated conformers be written as separate XYZ �les
in a directory called Conformers:

makeConf.py TRIP_TS.xyz --substituent OMe iPr --output Conformers

Alternatively, speci�c iPr substituents could be rotated as identi�ed by atom numbers. The structures
generated by makeConf.py could then be optimized at a chosen level of theory to identify accessible TS
structures, for example. Often, conformers generated by makeConf will exhibit steric clashes. Options
allow for severe steric clashes to be automatically resolved or for such structures to simply not be printed.

The substitute command provides a �exible means of replacing any monovalent atom or sub-
stituent with a substituent from the built-in or user-de�ned libraries. To demonstrate this, Figure 2.2c
shows the replacement of hydrogens 11 and 13 with methyl groups and the methyl group at atom 25 with a
Ph ring in a TS structure for an Ir-catalyzed CH activation reaction via:

substitute.py Ir_TS.xyz -s 11,13=Me 25=Ph --minimize

With the --minimize argument, substitute will rotate the added substituents to minimize the Len-
nard-Jones energy, ensuring that new substituents are added in relatively low-energy orientations.

Additionally, rmsdAlign can be used to align two structures, minimizing the root mean squared
deviation (RMSD) between the atom positions. This includes an e�cient canonicalization scheme (trig-
gered by the option --sort) that will automatically sort atoms within each structure to account for
changes in numbering or degenerate rotations of substituents. For example, the following will calculate
the RMSD between all XYZ �les in a directory and a reference structure (ref.xyz), printing the results
as comma-separated values:

rmsdAlign.py align/*.xyz --reference ref.xyz --sort -csv --output results.csv

AaronTools contains a library of nearly 100 achiral and chiral ligands as well as common organocata-
lysts. As with the substituent library, users can easily add their own custom ligand library. ThemapLigand
command provides an e�cient means of replacing speci�ed ligand(s) or catalyst(s) with other ones from
either the built-in or individual user library. One could use mapLigand to take previously computed

15

structures along a reaction pathway and replace the catalyst with another across each structure. The result-
ing geometries can then be optimized at the chosen level of theory to quickly explore reaction mechanisms
for variations of a given reaction. As an example, Figure 2.2d shows the use of mapLigand to replace
a simple bidentate ligand (ZDMP, bound to the metal through atoms 23 and 24) with the chiral ligand
(S)-BINAP in a TS structure for a Noyori asymmetric hydrogenation of acetaldehyde:25

mapLigand.py simple_TS.xyz --ligand 23,24=S-BINAP

AaronTools can also extract thermochemical information from Gaussian (G09 or G16), ORCA, or
Psi4 output �les while also computing Grimme’s quasi-RRHO10 free energies. Options enable the user to
automatically combine higher-level single point energies with thermochemical corrections computed at
lower levels of theory, recalculate thermochemical corrections at a di�erent temperature, and recursively
search directories for output �les. For example, the following extracts the energy from a set of single point
jobs and combines these with enthalpy, RRHO free energy, and quasi-RRHO free energy corrections
based on data extracted from the corresponding frequency jobs. The resulting data is printed to a csv
�le, along with warnings for any cases in which the single point and frequency jobs appear to use di�erent
geometries.

grabThermo.py --recursive *freq.log -sp *sp.log -csv --output thermo.csv

Finally, the commands makeInput.py and submitJob.py allow for the creation of Gaussian, Psi4,
and Orca input �les from the command line and submission to common queueing systems, respectively.
For the creation of input �les, level of theory and options are speci�ed on the command line. Command
line options also allow for the speci�cation of bond constraints, DFT integration grids, etc., allowing
the user to build sophisticated input �les for these three computational chemistry packages all from the
command line. Another command, fetchMolecule.py can generate initial molecular coordinates from
SMILES or IUPAC names. As with all AaronTools command line scripts, output from one script can
be read as STDIN for another, which makes it possible to fetch coordinates and place these directly into
an input �le. For instance, the following will build an Orca input �le for the geometry optimization the
structure of 1,3,5-trinitrotoluene at the B3LYP/def2TZVP level of theory:

fetchMolecule.py --iupac "1,3,5-trinitrotoluene" |
makeInput.py --method b3lyp --basis def2tzvp --optimize --output-format orca

The resulting input �le could subsequently be submitted using submitJob.py.
Command line scripts are also available to measure or change inter-atomic distances and bond angles,

change the element of a given atom (e.g. convert a C to an N, including automatic adjustment of hydrogen
atoms to satisfy valency), change the chirality of a chiral center, calculate Sterimol parameters,26 and follow
imaginary vibrational modes, among others. These scripts provide command line access to common tasks
encountered in quantum chemistry applications, allowing users to streamline and automate large portions
of their work�ows.

16

2.3.2 Scripting with Perl and Python
While the combination of AaronTools command line scripts enable the construction of automated work-
�ows, more complex tools can be developed by directly using the objects implemented in the AaronTools
modules (e.g. AARON and SEQCROW; see below). Some features of the Perl-based AaronTools have
been described previously;7 here, we provide a complementary description of the new Python AaronTools
package.

The Atom class

Unlike the Perl version of AaronTools,7 which uses indexed arrays within a Geometry object to keep
track of atom information, the Python package introduces a new Atom class. Each Atom object contains
all information associated with an individual atom, including the element and its coordinates as well
as connections to other atoms, associated Lennard-Jones parameters, and tags useful for �ltering and
sorting. This data structure allows for more graceful and powerful interactions with molecular structures.
For example, a molecular graph can be easily obtained by following the Atom.connections attributes
throughout the structure. Additionally, the Atom.tags attribute allows AaronTools processes, as well
as the programmer, to quickly identify structural components. Finally, extensibility is facilitated since
sub-classes can be built on top of the Atom class without needing to rede�ne large swaths of code to use
them. For instance, the Atom class was recently extended for use in parsing output �les and writing input
�les for ONIOM computations,27 which requires additional information to properly delineate regions
of molecules that will be treated at di�erent levels of theory.

The Geometry class

The most general way of interacting with a molecular structure is by using a Geometry object. Atoms
and their coordinates are read from a number of common �le formats, including XYZ �les, Gaussian
input and output �les, and output �les from Psi421 and ORCA22 or from the AaronTools libraries. Atom
connectivity is automatically determined. Utilities are available to transform or analyze the molecular
structure or to prepare it for a work�ow. For instance, one can perform substitutions, locate substituents
by either name (e.g. Me, Ph, and iPr) or the atoms to which they are connected, determine the shortest
path between speci�ed atoms, identify molecular fragments, etc. After the desired changes are made,
the Geometry object can be written to either an XYZ �le or a Gaussian, ORCA, or Psi4 input �le (see
Managing Jobs, below).

The following illustrates the use of a Geometry object to add substituents by reading the coordinates
of benzene and replacing atom 7 with a methyl group and atoms 8, 9, and 12 with NO2 groups to generate
TNT:

geom = Geometry("benzene.xyz")
geom.substitute("Me", "7")
o_and_p_positions = geom.find("8,9,12")
for position in o_and_p_positions:

17

geom.substitute("NO2", position)
geom.write(outfile="tnt.xyz")

The above example usedfind to locate atoms by atom number, which obviously requires the program-
mer to know the atom numbering in the �le benzene.xyz. However, find o�ers far more �exibility,
allowing the programmer to locate atoms based on combinations of attributes including the element,
the number and identity of bonded neighbors, and the distance from a given atom either spatially or
connectively. As an example, the following will perform the same transformation of benzene to TNT, but
without any prior knowledge of the atom ordering by �rst �nding any hydrogen atom (h1), then locating
the hydrogens that are three and �ve bonds away (the o- and p-hydrogens). The former is then substituted
with Me and the latter with nitro groups.

geom = Geometry("benzene.xyz")
h1 = geom.find("H")[0]
o_and_p_positions = geom.find([BondsFrom(h1, 3), BondsFrom(h1, 5)], "H")
geom.substitute("Me", h1)
for position in o_and_p_positions:

geom.substitute("NO2", position)
geom.write(outfile="tnt.xyz")

Additionally, substituents can be detected and identi�ed by name. For example, the following reads
the geometry of TNT (tnt.xyz), detects all attached substituents, and then removes the methyl group
using remove_fragment to leave 1,3,5-trinitrobenzene:

geom = Geometry("tnt.xyz")
geom.detect_substituents()
for sub in geom.substituents:

if sub.name == "Me":
methyl_carbon = geom.find("Me", "C")
geom.remove_fragment(methyl_carbon, sub.end)

geom.write("trinitrobenzene.xyz")

In this example, remove_fragment requires the �rst and last atom of a fragment, so we use sub.end to
request the last atom within the substituent.

Another feature of Geometry is the ability to add fused rings to structures. For example, one can
convert benzene to naphthalene by �rst locating any hydrogen, then �nding a second hydrogen three
bonds away, and �nally using ring_substitute to replace these two hydrogens with a new benzene
ring:

geom = Geometry("benzene.xyz")
h1 = geom.find("H")[0]
h2 = geom.find(BondsFrom(h1, 3), "H")[0]
geom.ring_substitute([h1, h2], "benzene")
geom.write(outfile="naphthalene.xyz")

More complicated transformations can be achieved using combinations of find, substitute, and
ring_substitute, all without knowledge of atom ordering.

18

Finally, the Geometry class provides the function map_ligand that allows the programmer to re-
place any speci�ed ligand(s) with another ligand with the same total denticity. For instance, one can replace
a bidentate ligand with another bidentate ligand, or a combination of a bidentate and monodentate ligand
with a tridentate ligand. As an example, the following reads the coordinates of a TS structure for the enan-
tioselective Markovnikov hydroboration of an alkene from TS.xyz,28 locates the two phosphorus atoms
of the original ligand using find, and then replaces this ligand with (S,S)-Me-DuPhos using map_ligand
(see Figure 2.3):

oldcat = Geometry("TS.xyz")
Ps = oldcat.find("P")
oldcat.map_ligand("SS-Me-DuPhos", Ps)

In more complex cases (e.g. systems with additional P atoms or multiple ligands), one could locate the
correct ligand atoms through the use of more re�ned attributes, as discussed above.

TS.xyz

map_ligand

Figure 2.3: Use of the function map_ligand to replace the ligand in a TS structure for an enantioselective
Markovnikov hydroboration (from Ref. [29]) of a terminal alkene with (S,S)-Me-DuPhos

The Geometry class provides many other functions, including computing Lennard-Jones energies,
aligning structures for evaluating RMSDs, measuring and changing bond distances, angles, and dihedral
angles, comparing connectivities between structures, canonicalizing atom ordering, identifying the short-
est path between atoms, and performing substitutions, rotations, translations, etc. Information on these
is readily available on the command line through pydoc.

Managing Jobs

Finally, AaronTools provides functions to create input �les for Gaussian, ORCA, and Psi4 and to submit
and monitor jobs using popular queuing software (Slurm, Torque/MOAB, LSF, and SGE). Combined
with the structure manipulation capabilities described above, these functions enable the development of
complex toolkits and automated work�ows. For this purpose, a Theory class provides an intuitive means
of setting the level of theory as well as job type (optimization, vibrational frequencies, etc), charge and
multiplicity, and other job-speci�c options (number of processors, integration grids for DFT computa-
tions, etc). A Theory object can contain a BasisSet object to facilitate speci�cation of more complex
basis sets (e.g. ECPs, auxiliary basis sets, etc.). Once constructed, a Theory object can be passed to a
Geometry object in order to automatically construct the corresponding input �le for the chosen software

19

package. The resulting input �le can then be submitted using a SubmitProcess object, with an option
to await all running jobs in the current directory to �nish before proceeding.

As an example, the following will read the geometry from dimer.xyz (e.g. Figure 2.2a) and optimize
this structure using Gaussian at the ωB97X-D/def2-TZVP level of theory. Once this job is complete, the
script reads the optimized geometry and then uses ORCA to run a DLPNO-CCSD(T)/cc-pVQZ single
point.

#read initial coordinates
geom = Geometry("dimer.xyz")

#method for optimization
dft_theory = Theory(method="wB97X-D", basis="def2-TZVP", processors=14,

memory=24, job_type=OptimizationJob())

#write optimization input file and submit, waiting for job to finish
geom.write(outfile="opt.com", theory=dft_theory)
opt_job = SubmitProcess(fname="opt.com", walltime=24, processors=14, memory=28)
opt_job.submit(wait=True)

#read the optimized structure
opt_geom = Geometry("opt.log")
#basis set and method for DLPNO-CCSD(T) single point
dlpno_basis = BasisSet([Basis("cc-pVQZ"), Basis("cc-pVQZ", aux_type="C")])
dlpno_theory = Theory(method="DLPNO-CCSD(T)", basis=dlpno_basis, processors=4,

memory=28, job_type=SinglePointJob())

#Write DLPNO-CCSD(T) input file and submit
opt_geom.write(outfile="dlpno.inp", theory=dlpno_theory, simple=["TightSCF"])
dlpno_job = SubmitProcess(fname="dlpno.inp", walltime=24, processors=4, memory=32)
dlpno_job.submit(wait=True)

2.3.3 Remote Job Submission with FireWorks
We are currently extending AaronTools to work with the FireWorks work�ow software,15 which will allow
more rapid deployment of AaronTools-based tools across di�erent HPC environments. FireWorks is a free,
open-source toolkit for managing HPC work�ows over arbitrary computing resources, including those
that have queueing systems. As such, the integration of AaronTools and AARON with FireWorks will
also enable remote job submission across multiple computer clusters and job monitoring and management
via a web interface. This added functionality will be part of the new Python-based AARON (AARON2),
which is currently in development.

20

2.4 AARON
One example of a complex tool developed using the Perl-based AaronTools is AARON, which has been
described in detail before.7 Brie�y, AARON interfaces with Gaussian09 or Gaussian16 to automate the op-
timization of TS structures derived from templates through substitutions or changes of ligand/organocat-
alyst. First, the user provides the TS con�gurations to be considered in the form of a TS library (i.e.
template structures leading to the R- or S-product of an enantioselective reaction), or they are requested
from the built-in template library. Next, any requested changes to the template are handled, such as map-
ping a new ligand or making substitutions. Additionally, conformers of rotatable groups are sampled
automatically. After structure generation, an initial re�nement is performed, freezing the unchanged
parts of the structure and relaxing the new additions, generally at an inexpensive level of theory (e.g. semi-
empirical). Next, geometry optimizations at the density functional theory (DFT) level are done, �rst with
any forming or breaking bonds frozen, and then with no constraints. After a full geometry optimization,
harmonic frequencies and thermochemistry can be computed. If structures exhibit the wrong number
of imaginary vibrational modes, AARON will attempt to automatically resolve the problem through
additional constrained and unconstrained optimizations. If desired, a �nal single-point computation can
be done at a higher level of theory, which is then combined with the thermochemical corrections derived
from the original level of theory. While all these computations are running, AARON is continuously
monitoring their status — handling common errors, resubmitting failed jobs, and resolving unexpected
structural changes (for example, by constraining a problematic bond) — all without user intervention.
Finally, after all computations are �nished, AARON parses the output �les, analyzes the thermochem-
istry to generate a summary of the results and predict product ratios based on a Boltzmann weighting of
accessible pathways, and generates the associated Supporting Information.

The primary use of AARON is to accelerate predictions of the activity and selectivity of homogeneous
catalysts by automating optimization of TS structures. This automation allows computational predictions
of selectivities for more examples of a given reaction than could reasonably be done without it. This opens
the door for a number of exciting possibilities, including virtually screening catalysts with DFT methods
and benchmarking DFT methods on statistically signi�cant numbers of catalysts. AARON has been
applied to a number of catalytic reactions,5,6,9 several of which were recently summarized7 and is currently
being used to benchmark DFT methods for an Ir-catalyzed CH activation reaction (See Figure 2.2c).
Overall, the automation provided by AARON brings us closer to true computationally-driven rational
catalyst design. The current version of AARON7 is built using the Perl-based AaronTools. A more
powerful Python version of AARON (AARON2) is currently in development that will exploit the added
�exibility of the Python implementation of AaronTools.

2.4.1 Automated Conformer Searches using XTB/Crest
Vital to successful applications of AARON is the generation of all reasonable con�gurations and con-
formers in the construction of a TS template library. We have had recent success doing this by combining
Grimme’s XTB/Crest automated conformational search14 with AARON. For instance, starting from

21

one conformation of each con�guration, Crest can be used to generate a collection of conformations for
an initial TS template library (constraining any forming or breaking bonds), which can then be further
re�ned using AARON. This avoids the often cumbersome task of enumerating conformations when con-
structing a TS template library, particularly in cases of ring-�ips and other more complex conformational
changes that are not handled automatically by AARON.

2.5 SEQCROW
While the main utility of AaronTools is the ability to build and manipulate complex molecular structures
from the command line or from within a Perl or Python script, use of a graphical interface is often ad-
vantageous. While graphical molecular builders abound, few are well suited for the rapid construction of
the structures encountered in studies of homogeneous catalysis. We are developing a plug-in for UCSF
ChimeraX19 called SEQCROW that provides the power of AaronTools within a graphical user interface.
For example, SEQCROW can be used to generate and explore potential TS structures for transition metal
catalyzed reactions using di�erent chiral ligands or perform substitutions and add fused rings to structures.
SEQCROW also contains graphics presets for the generation of publication-quality images of small to
medium sized molecular structures and extends the capabilities of ChimeraX to be able to generate input
�les for popular quantum chemistry packages and run these jobs, plot simulated spectra, calculate thermal
energy corrections, etc. (see Figure 2.4). SEQCROW is still in development, but is available through the
ChimeraX ‘Toolshed.’ It will be described more fully in a forthcoming publication.

22

Figure 2.4: Screenshots of SEQCROW showing the QM Input Generator allowing users to save ‘Presets’
of common input �le types for Gaussian, Orca, and Psi4, the calculation of Sterimol parameters, and the
Normal Mode Visualization and IR Spectra Plotting

2.6 Conclusions
As quantum chemists have gravitated to larger and more complex molecular systems, new challenges have
emerged regarding the execution of large numbers of computations, parsing the corresponding output
�les, and verifying and managing the resulting data. In the context of catalysis, reliable predictions of
catalyst performance often require consideration of hundreds of potential TS structures. The time re-

23

quired to generate input �les, run the required jobs, and check the resulting output �les often prevents the
assessment of large numbers of potential catalysts, precluding e�ective computational catalyst design. We
have developed a suite of open-source tools (QChASM) to meet some of these challenges. The workhorse
of QChASM is AaronTools, which consists of Perl and Python tools for building, measuring, and manip-
ulating molecular structures. Using AaronTools, one can quickly and intuitively perform substitutions
or exchange chiral and achiral ligands, submit and monitor jobs, and construct input and parse output
�les from popular electronic structure packages. AARON is a more specialized toolkit for automated
predictions of selectivities for catalytic reactions. Finally, SEQCROW provides a graphical interface to
exploit the power of AaronTools, build input �les for QM computations, and generate molecular images.

While these tools were initially developed for applications in computational catalysis, they should
be of general use by the quantum chemistry community, AaronTools being particularly broad in its
applicability. For example, we have relied extensively on AaronTools in our studies of stacking interactions
and supramolecular complexes.30 Furthermore, as free, open-source tools, contributions from others are
welcomed in order to build even more powerful and useful tools for the broader computational chemistry
community.

2.7 Acknowledgements
We thank B. J. Rooks and Y. Guan for their e�orts in the development of AARON and the Perl-based
AaronTools as well as M. R. Haas, A. C. Doney, and A. N. Bootsma for feedback and testing. Molecular
graphics were generated in UCSF ChimeraX, developed by the Resource for Biocomputing, Visualization,
and Informatics at the University of California, San Francisco. We have no con�icts of interest to declare.

2.8 Funding Information
This work was funded by National Science Foundation Grants CHE-1266022 and CHE-1665407.

24

Chapter 3

AaronJr: A Python Toolkit for
Automating Quantum Chemistry

Workflows1

1Ingman, V. M.; Wheeler, S. E. To be submitted to the Journal of Chemical Theory and Computation.

25

3.1 Abstract
Modern quantum chemistry applications often require the execution of hundreds or even thousands of
individual computations, sometimes using multiple quantum chemistry packages. Manually creating
the corresponding input �les, checking the resulting output �les, and managing the generated data can
quickly become cumbersome. To combat this growing problem, we have developed AaronJr (Automates
Any Reaction or Optimization, Normally Just Right), which provides a simple yet powerful command
line interface to de�ne and execute automated quantum chemistry work�ows which use the packages
Gaussian, ORCA, Psi4, Crest, and/or xtb. Sensible defaults for common tasks allow for the de�nition and
deployment of work�ows from within a simple, user-readable INI formatted input �le, while the �exibil-
ity of the input and con�guration �les facilitates the de�nition of complex new work�ows or modi�cation
of existing work�ows. Key features include the automated resolution of errors, including structural vali-
dation which checks for unexpected changes in atom connectivity during (seemingly successful) geometry
optimizations, the storage and display of key results, and the generation of resource usage summaries.

3.2 Introduction
With continued hardware and algorithmic advances, many quantum chemists have turned their attention
to increasingly complex chemical applications.31–33 A side-e�ect of this natural evolution of the �eld is the
rapidly growing number of computations that must be performed for a given project. For example, mech-
anistic investigations of a single transition metal catalyzed reaction can require the geometry optimization
of dozens of transition state (TS) structures and intermediates.34,35 For each of these stationary points, one
often needs to consider many potential conformations or con�gurations of the substrate(s) and ligand(s)
around the metal, resulting in the need to carry out hundreds of optimizations of TS structures and local
minima.16,17 Furthermore, many applications also involve single point computations at higher levels of
theory, the evaluation of solvent e�ects, bonding analyses, etc. The net result is that looking at a single
reaction mechanism can require hundreds or even thousands of individual computations, each generating
data in the form of molecular structures, energies, and other values that must be parsed from text �les with
content formatting varying among di�erent software packages. Each of these computations can result in
errors, requiring user intervention to �rst identify and then resolve errors through either modi�cation of
the input �le (e.g. adding new keywords) or modifying the initial molecular structure (e.g. adjusting bond
lengths to ensure a saddle point optimization corresponds to the correct TS structure). Studying multiple
examples of a given reaction, which is required for any iterative computational design process,9,18,36 further
multiplies the number of computations that must be performed. Manually building initial molecular
structures, creating the corresponding input �les, parsing the resulting output �les, resolving errors, and
managing the data generated by such expansive projects quickly becomes cumbersome. An unfortunate
consequence is that many potentially impactful applications of quantum chemistry to complex chemical
systems are simply avoided because they would be too onerous to complete.

26

A number of tools have been developed to try to combat this growing problem by automating some
or all aspects of quantum chemistry computations. These are part of a growing ecosystem of tools that do
not themselves perform quantum chemistry computations, but instead facilitate the e�cient use of exist-
ing quantum chemistry packages or analyses of results. Some are targeted to specialized tasks or particular
types of quantum chemical applications. For instance, we previously developed AARON (An Auto-
mated Reaction Optimizer for New Catalysts),7 which is a toolkit for automating the TS optimizations
required for predicting the outcome of stereoselective catalytic reactions.5,6,9 Tools have been developed
for building molecular and supramolecular structures,37–40 automatically computing reaction energy pro-
�les for organic and organometallic reactions,41 and even generating supporting information,42 among
other tasks.

Other tools allow for the development of more general automated work�ows. QMFlows43 allows
users to build a work�ow, including input �le generation, intelligent parallel job execution, and output
�le post-processing, via a concise but �exible Python API. Several computational chemistry software
packages are supported; the use of generalized keywords for de�ning computational tasks (e.g. geometry
optimizations, vibrational frequency computations) as well as for computational parameters (e.g. DFT
functional, basis set) allows users to switch between software packages easily, while software-speci�c
keywords are available for advanced use cases. Similarly, the open-source quantum chemistry package
Psi444 allows for the de�nition of work�ows within the input �le or within a Python script. However,
while powerful, both QMFlows and Psi4 have some limitations in terms of work�ow development and
deployment. For instance, they require users to know Python in order to develop even simple work�ows,
limiting their use. Moreover, even though failed jobs can be identi�ed and restarted, and job dependencies
de�ned, neither Psi4 nor QMFlows provides automated resolution of failed computations. That is, the
user must explicitly code the appropriate response if something as simple as an SCF convergence failure
occurs during a given step in a work�ow. Additionally, more subtle errors such as unexpected changes in
atom connectivity during geometry optimizations or the optimization to an undesired TS structure go
undetected. This can result in the automated execution of computations that will ultimately be discarded,
representing an unfortunate waste of computational resources.

We have developed a suite of tools for quantum chemistry automation and structure manipulation
(QChASM)3 designed for both experienced computational chemists and newcomers to the �eld. Below,
we describe a new QChASM tool called AaronJr (Automates Any Reaction or Optimization, Normally
Just Right). AaronJr provides a general, easy to use command line interface for creating and executing
quantum chemistry work�ows using any combination of the quantum chemistry packages Gaussian,20

ORCA,22,45 Psi4,21 Crest,14 and xtb.46 By automating job generation and submission, as well as parsing
and storing results and resolving errors, AaronJr allows computational chemists to focus on chemistry
instead of managing the vast number of computations that must be run for modern quantum chemistry
applications.

27

3.3 Overview of AaronJr
AaronJr is written using the Python package AaronTools3 for structure manipulation, input �le creation,
and output parsing. Simple con�guration �les allow the user to easily de�ne work�ows (default work�ows
are available for use or extension), set computational parameters, and connect to high-performance com-
puting systems. Basic work�ow management, queue submission, resource tracking, and computational
output storage is done using the FireWorks Python library,15 which is a free, open-source toolkit for man-
aging work�ows over arbitrary computing resources, including those with queueing systems. This library
provides tools to submit jobs to high performance computing (HPC) systems, de�ne dynamic work�ows,
and record the results of computations in a central database. Using these tools, the dynamic work�ow
implementation in AaronJr tracks job progress, records any errors detected in the computational output,
and automatically resolves common errors encountered during quantum chemistry computations. The
overall work�ow of AaronJr is depicted in Figure 3.1. More details on the implementation are provided
below (See AaronJr Implementation).

Figure 3.1: AaronJr work�ow overview

Most generally, a quantum chemistry work�ow requires the speci�cation and/or construction of a
set of initial molecular structures followed by a series of computations at potentially di�erent levels of
theory using one or more quantum chemistry packages. Input and con�guration �les for AaronJr are
INI-format text �les (see examples below), allowing even inexperienced users to develop robust work�ows
without any programming experience. Comments can provide further notes and clarity within these �les.
The AaronJr input �le allows the user to de�ne a work�ow from scratch or by using/modifying one of the
provided default work�ows and to supply one or more molecular structure template �les. These template

28

structures can be used as-is or can be modi�ed using the AaronTools package.3 As such, users can exploit
the plethora of ligands and functional groups from the AaronTools libraries for quick and easy structural
generation/modi�cation; tools are also available to facilitate adding ligands and functional groups to a
personal library. Many �le formats for these template structures are supported, including XYZ and SDF
�les, as well as input or output �les from Gaussian,20 ORCA,22,45 and Psi4.21 Molecular structures can
also be speci�ed using SMILES. These template structures will be either used as-is or modi�ed to build
the desired structures.

While complete work�ows for a particular series of computations can be de�ned within an AaronJr
input �le, AaronJr allows the creation of system-wide (AaronTools/config.ini) or user-de�ned
($AARONLIB/config.ini) con�guration �les that de�ne default work�ows or other parameters used
to generate jobs. These default work�ows can be imported and modi�ed within an AaronJr input INI �le,
allowing for very compact and simple AaronJr input �les for routine applications and the quick de�nition
of new, modi�ed work�ows built on existing defaults.

Once a work�ow has been de�ned, AaronJr will execute all required computations as separate jobs
on the designated local or remote HPC resource, while also respecting job dependencies thanks to the
dynamic work�ow implementation. Adapters are included for popular queueing systems and can be
modi�ed to work with particular implementations. By running jobs separately when possible, AaronJr
provides e�cient coarse-grained parallelization to maximally exploit modern HPC resources. The user
can set a default executable (e.g. Gaussian, ORCA, etc.) and other job parameters (number of nodes,
cores, memory, walltime, etc.) for all steps or for individual steps within the work�ow.

As is vital for any automation tool, AaronJr continually monitors all running jobs to identify and
resolve errors. Any errant job is killed, �xed, and resubmitted, ensuring that wasted CPU cycles are
minimized. This includes errors arising from unexpected changes in atom connectivity during geometry
optimizations, as well as more mundane errors such as SCF convergence errors or simply running out of
requested walltime.

3.3.1 AaronJr Input File
The AaronJr input �le has three required sections, [Job], [Theory], and [Geometry], which

specify the steps in the work�ow, the levels of theory for these steps, and the structural template �les,
respectively. For example, an AaronJr input �le requesting B3LYP/6-31G(d) geometry optimizations47

and vibrational frequency computations for all structures in the directory Example1 (and recursively in
any subdirectories) is shown in Figure 3.2 (left).

The [Job] section is used to de�ne a work�ow as a series of job types each preceded by a step number
(currently supported job types are depicted in Figure 3.3). These step numbers not only designate the
order that the steps in the work�ow will be executed but also serve as reference labels for step-speci�c
parameters in this or other sections of the input �le.

Alternatively, the [Job] section can import default work�ows and then use these as-is or make modi-
�cations. For example, Figure 3.2 (right) shows essentially the same input �le but now imports the built-in
work�ow ’Minimum.’ This default work�ow, taken from the config.ini installed with AaronJr, is

29

[Job]
1 type = optimize
2 type = frequencies

[Theory]
method = b3lyp
basis = 6-31G(d)

[Geometry]
structure = Example1

[Job]
Include = Minimum

[Theory]
method = b3lyp
basis = 6-31G(d)

[Geometry]
structure = Example1

Figure 3.2: Equivalent AaronJr input �les requesting the geometry optimization and vibrational frequen-
cies at the B3LYP/6-31G(d) level of theory for all geometries in the directory Example1

single-point
gradient
optimize
optimize.changed
optimize.constrained
optimize.ts
frequencies
conformers
conformers.constrained

Figure 3.3: Currently available job types in AaronJr

30

shown in Figure 3.4. In step 1, any new atoms or groups added to the template structure(s) (e.g. a new
sub-structural substitution or mapping) are relaxed with the conserved portion of the geometry frozen;
if no changes were made to the template(s), this step is automatically skipped. This is followed by a full
geometry optimization to an energy minimum and vibrational frequencies in steps 2 and 3, respectively.

[Job.Minimum]
1 type=optimize.changes
2 type=optimize
3 type=frequencies

[Job.TS]
1 type=optimize.changes
2 type=optimize.constrained
3 type=optimize.ts
4 type=frequencies

[Job.CrestMinimum]
1 type=optimize.changes
1 exec_type = xtb
2 type=conformers
2 exec_type=crest
3 type=optimize
4 type=frequencies

[Job.CrestTS]
1 type=optimize.changes
1 exec_type = xtb
2 type=conformers.constrained
2 exec_type=crest
3 type=optimize.constrained
4 type=optimize.ts
5 type=frequencies

Figure 3.4: Default work�ows included with AaronJr. Users can de�ne new work�ows either from scratch
or by importing and modifying these default work�ows.

AaronJr will repeatedly attempt to resolve any errors encountered during each step by modifying
parameters present in the input �le or molecular structure, or even returning to previous steps in the
work�ow if necessary. For instance, if there is an SCF convergence failure, AaronJr will add the appropriate
keywords for the corresponding quantum chemistry package to successfully converge the SCF iterations.
Moreover, if a change in the atom connectivity is detected during any geometry optimization, AaronJr will
attempt to �x this through small structural modi�cations (i.e. by shortening or lengthening problematic
bonds). This avoids the unnecessary continuation of doomed geometry optimizations. This is particularly
important in the case of TS optimizations, for which one often needs to try multiple initial geometries

31

before successfully locating the correct �rst order saddle point. By default, each subsequent step in a
given work�ow requires the error-free completion of the previous step. Alternatively, the user can request
that two or more steps be run concurrently given successful completion of a previous step. For instance,
one could run an NBO analysis,48 solvent single point energy, and higher-order single point energy all
concurrently once the geometry optimization step is completed.

The [Theory] section allows the user to specify levels of theory for all or selected steps in the work-
�ow de�ned in the [Job] section. In Figure 3.2, the B3LYP/6-31G(d) level of theory is used for all steps.
The level of theory and other parameters (e.g. solvent, temperature, etc.) can be set for individual steps by
preceding keywords with the corresponding step number from the [Job] section (see examples below).
Additional job types, beyond those listed in Figure 3.3, can be designated by specifying program-speci�c in-
put parameters within the [Theory] section. For example, setting “route = pop NBO” in the [Theory]
section of the AaronJr input �le will include “pop=NBO” in the corresponding Gaussian input �les,
triggering an NBO analysis48 even though this is not one of the built-in job types.

The user can also modify the default work�ows from within the AaronJr input �le. For example,
one could augment the default Minimum work�ow by adding a single point energy at a di�erent level of
theory (see Figure 3.5). In Figure 3.5, a DLPNO-CCSD(T)/cc-pVQZ single point energy49–53 is added to
the imported work�ow as a fourth step. Because the method and basis set keywords are preceded by ‘4’,
these modi�cations to the level of theory will only be applied to step 4 within the work�ow; all other steps
will be done with B3LYP/6-31G(d). Furthermore, this example requests that ORCA be used for step 4
(via “exec-type = orca” in the [Job] section), while the default executable de�ned in the user’s default
con�guration is used for all other steps. The user can also insert intermediate steps before or into a default
work�ow by specifying appropriately numbered steps (e.g. adding step 2.5 will result in a new step being
inserted between steps 2 and 3).

[Job]
Include = Minimum
4 type = single-point
4 exec-type=orca

[Theory]
method = b3lyp
basis = 6-31G(d)
4 method = dlpno-ccsd(t)
4 basis = cc-pVQZ
4 aux basis cc-pVQZ/C

[Geometry]
structure = Example1

Figure 3.5: Extending a default work�ow, with alternate theory parameters for the added step.

32

Mixed basis sets or basis set/ECP combinations are simply speci�ed within the [Theory] section.
For instance, the user can request the 6-31G(d) basis set be used in all non-transition metal (‘!tm’) atoms
and LANL2DZ basis and ECP54 be used on any transition metal (‘tm’) atoms via

basis = !tm 6-31G(d)
tm LANL2DZ

ecp = tm LANL2DZ

within the [Theory] section.
Finally, the [Geometry] section identi�es one or more structure templates for which the de�ned

work�ow will be executed. This could be the name of a directory, as in the above examples, in which
case AaronJr executes the work�ow for all geometry-containing �les in that directory (and subdirectories
therein). Alternatively, ‘structure’ could be set to one or more SMILES strings or names of �les containing
molecular coordinates.

Additionally, the [Geometry] section allows for far more general and much �ner control over the
speci�cation of template structures. Use of the &call keyword allows the user to take advantage of any
of the AaronTools methods de�ned for Geometry objects.3 Figure 3.6 shows a simple example in which
the carbon atoms of ethane (de�ned using the SMILES string ‘CC’) are changed to silicon, and the Si Si
bond length is adjusted accordingly (setting dist=None in the call to change_distance() will default
to the distance de�ned by the corresponding atomic radii).

[Geometry]
structure = CC
&call:

structure.change_element("1", "Si")
structure.change_element("2", "Si")
structure.change_distance("1", "2", dist=None)

Figure 3.6: Example [Geometry] section converting the structure of ethane to disilane

As a more complex example, Figure 3.7 shows the [Geometry] speci�cation for generating the struc-
tures corresponding to a dihedral scan of ethane. This snippet showcases the use of the&for keyword, iter-
ating over angles from 0–360◦ (inclusive) at 10◦ increments (speci�ed using the Python built-in range()
method) and using the change_dihedral() method implemented in AaronTools to set the H-C-C-H
dihedral appropriately. AaronJr would then run the desired work�ow on each of these structures.

[Geometry]
structure.0 = CC
&for i in range(0, 370, 10):

structure.i = structure.0.copy()
structure.i.change_dihedral("3", "1", "2", "6", i)

Figure 3.7: Dihedral scan of ethane

33

The successful use of templates for initial structures for complex molecular systems requires templates
that are as close as possible to the targeted geometries. In the case of organic and organometallic reactions,
this often means using slightly di�erent templates for a given reaction depending on the modi�cations that
will be performed. This is particularly important in cases in which intermediates or TS structures change
qualitatively depending on the nature of the substrate or catalyst. AaronJr makes this simple by allowing
the user to specify “reaction” and “template” keywords within a special [Reaction] section. While
initially provided for backwards-compatibility for AARON,7 using this template structure speci�cation
style provides two convenient features. First, structure �les with names starting with “int” or “INT”
will automatically be assigned the Job.Minimum work�ow and those starting with “ts” or “TS” will
be assigned the Job.TS work�ow (unless the “include” option is used to override this behavior in the
AaronJr input �le). Second, selectivity can be automatically detected based on subdirectory names (cis,
trans, R, S, E, or Z) and used to provide selectivity summaries in the results display. An example directory
structure, with the accompanying AaronJr input �le, is given in Figure 3.8. This example will automatically
optimize all structures in the $AARONLIB/template_geoms/Allylation/NN-dioxide directory at
the B3LYP/6-31G(d) level of theory to TS structures. Note that this input �le could be further simpli�ed
by setting default method and basis set keywords in the user’s config.ini.

[Reaction]
reaction = Allylation
template = NN-dioxide

no [Job] section necessary,
workflow assignment detected
automatically

[Theory]
method = B3LYP
basis = 6-31G(d)

Figure 3.8: Using the [Reaction] section for structure speci�cation

34

Structure Modi�cation

Above, structural templates were used unaltered (or with simple and minimal changes, as in the &call
and &for usage examples). This is useful if the user wants to execute a given work�ow using structures
generated by or extracted from some external source or from previous computations. However, the
AaronJr input �le has a number of optional sections that can be used to modify the speci�ed template
structures, making it easy to automatically screen a variety of changes to many template �les at once. For
example, the user could request all combinations of a set of template structures modi�ed by adding any
number of di�erent substituents or changing a ligand on a metal center. AaronJr can also automatically
build and optimize structures for all unique coordination compounds built from adding speci�ed ligands
to a given metal center using the templates provided by Simas et al.55 More �ne-tuned changes to template
structures (adjusting bond lengths, angles, dihedral angles, etc.) can be made by directly calling AaronTools
functions. In this way, AaronJr facilitates the execution of a given work�ow for large libraries of molecular
structures. For instance, one can use AaronJr to examine the impact of multiple substituents on some
molecular system or screen potential ligands for a given reaction, automatically computing all stationary
points along a catalytic reaction pathway for any number of chiral or achiral ligands. Moreover, all of this
can be done from a single, simple input �le.

Figure 3.9 gives an example using combinations of substrate substitutions and ligand mappings applied
to eight intermediate and TS template structures (located in the chlorocarbamoylation/Pd-PAPh
sub-directory of the user’s template library). One of the template structures is shown on the right, with
the atoms involved in de�ning modi�cations labeled. Running AaronJr with this input will automatically
optimize 448 structures to either minima or �rst order saddle points (using the default level of theory
de�ned by the user in config.ini), resolving all errors along the way and providing a summary of results
when complete.

Conformer Generation with AaronJr

AaronJr can use Crest14 to generate conformers using the [Job.CrestMinimum] and [Job.CrestTS]
default work�ows for energy minima and TS structures, respectively. After an initial optimization of any
changes using XTB, these work�ows then perform the conformers (for minima) or
conformers.constrained (for TS structures) job types using Crest (see Figure 3.4). The conformers
generated by Crest are automatically loaded during job validation and used to build child work�ows that
will be appended to the parent work�ow. Conformer screening parameters (such as the energy window
or minimum RMSD di�erence between conformers) can be set for the Crest run or as job validation
settings using the AaronJr con�guration �le. For example, the user may wish to have Crest, which is quite
fast, generate structures for conformers within a 10 kcal/mol window. However, performing DFT opti-
mizations of all the generated structures can be prohibitively resource intensive. Options in the AaronJr
con�guration �le can be used to request DFT optimization for only the structures within, say, a 5 kcal/mol
window and widen this request later if needed. AaronJr will automatically screen out unwanted or dupli-
cated conformer structures from the child work�ows or pick up additional conformer structures during

35

[Geometry]
reaction = chlorocarbamoylation
template = Pd-PAPh
8 template structures

[Substitution]
&combinations:

32,42,52 = F,Cl,H, Me,Et,iPr,tBu
103 = F,Cl,Br,I

28 different substitutions

[Mapping]
Pd-PPh3: 62=PPh3
2 ligands (original and PPh3)

448 structures generated!

Figure 3.9: Simple AaronJr input �le that would result in the geometry optimization and frequency
computations of 448 unique intermediates and TS structures generated by combinations of substitutions
and ligand mappings of eight previously computed template structures (one of which is shown, along
with key atom numbers)

a later run if these screening parameters change. In the future, machine learning methods will be used to
make AaronJr more intelligent when choosing which conformers to submit for more re�ned optimiza-
tions, allowing the more e�cient sampling of even larger regions of conformer space without hopelessly
increasing the computational workload.

The Use of Multiple Input Files

More complex applications sometimes require the use of multiple INI �les that are referenced within
the [Config] section of a single project input �le (see Figure 3.10). This can be especially helpful when
[Substitution] or [Mapping] sections need to be de�ned di�erently for certain structures. For ex-
ample, ligand mapping on the catalyst would not be done for the dissociated reactant/product structures,
while substitutions might be de�ned di�erently for reactants versus products or TS structures, such as in
the case of bimolecular bond forming reactions, in order to account for changes in atom numbering.

36

project.ini

[Config]
rxn = rxn.ini
reactant = reactants.ini
product = products.ini

[Theory]
method = B3LYP
basis = !tm 6-31G(d)

tm LANL2DZ
ecp = tm LANL2DZ

rxn.ini

[Reaction]
reaction = hydrogenation
template = S-BINAP

[Mapping]
R-BINAP: 20,21=R-BINAP

reactants.ini

[Geometry]
structure = reactants_dir

[Job]
include = Minimum

products.ini

[Geometry]
structure = products_dir

[Job]
include = Minimum

Figure 3.10: Using a project con�guration �le (project.ini) to tie together multiple con�guration �les
(rxn.ini, reactants.ini, and products.ini)

Running AaronJr
Armed with an input �le, AaronJr has four main operation modes: run, results, resources, and plot.
Each of these commands have speci�c usage help available using AaronJr <command> --help at the
command line.

The run command

The run command is used to run the work�ow de�ned in the AaronJr input �le:

AaronJr run my_project.ini

If the jobs associated with the de�ned work�ow are not present in the FireWorks database (e.g. when
running a work�ow for the �rst time), new jobs are created and assigned a FireWork ID and Work�ow
ID. Alternatively, if the AaronJr run has been exited and restarted, this command will resume the run,
after ensuring any updates are re�ected in the database; this includes downloading computational output
�les from the HPC resource, validating the current output �les and resolution of errors, and starting new
work�ows from child structures (such as conformers) or newly discovered templates (e.g. if a directory
was provided to the ‘structure’ keyword, additional templates added to that directory will be automatically
picked up when AaronJr is restarted). Theupdate command is also available to simply ensure the status of

37

all jobs is up to date without continuing with the run. After the jobs are collected, a monitoring routine
is called for each job, which allows for real-time tracking of the job’s progress. This routine can print
statuses and look for errors both during and after execution of the jobs. A --sleep parameter can be
supplied to de�ne how long to wait between each call to the monitoring routine (default is �ve minutes).

The results command

The results command is used to print thermochemistry or other pertinent values parsed from the
computational output �les or to save these values in a comma-separated value �le for further analysis in ex-
ternal programs. Using command line �ags, the user may specify which thermochemical values to display,
whether these should be displayed in absolute or relative terms, which units to use, which structures will
be included in the display, how thermal corrections will be applied, and more. When performing modi�ca-
tions (ligand mapping or substitutions), a separate table for each change is printed, and the lowest energy
structure within that group is used to determine the relative thermochemistry (unless explicitly de�ned,
see below). For applicable systems, detected stereo- or regio-selectivity will be used to calculate predicted
selectivities, and Boltzmann-weighting can be applied to relative thermochemical values and displayed;
once again, the results are grouped by modi�cation prior to performing these calculations. Users can even
hook in AaronTools command line scripts to print a variety of measurements about the structures using
the --script �ag. For example,

AaronJr results my_project.ini --script ’bond.py -m 1 2’

will print the bond length between atoms 1 and 2 for each optimized structure.
Since a work�ow will generally consist of multiple steps, the results routine takes this into account.

By default, results for the latest (i.e. with the highest step-number) completed step is loaded and addi-
tional results from lower steps are pulled in as needed (this behavior can be changed using options in the
[Results] section, see below). For example, a higher-level single point computation, run as the last step
in a work�ow, will provide an electronic energy but not the vibrational frequencies needed for calculat-
ing thermal corrections; in this case, vibrational frequencies are automatically pulled in from a previous
step. This allows the application of thermal corrections to higher-level single point energies. Additionally,
the command line interface allows thermal corrections to be re-calculated at di�erent temperatures than
what was speci�ed during the computational run without running any additional jobs, as well as to use
di�erent methods to determine these corrections (RRHO, quasi-RRHO, or quasi-harmonic free energy
corrections are available, with user-speci�ed frequency cuto�s if applicable).10,56

Finally, a[Results] section in the con�guration �le can be used to handle more complicated analysis
needs. Finer-tune control over results loading is made available in the [Results] section of the input �le:
the ‘load’ keyword is used to specify the order in which steps should be loaded (e.g. ‘load = 4 3’), and the
‘calc’ keyword can be used to specify exactly how certain quantities should be calculated using attributes
and methods available for each step’s CompOutput AaronTools object (e.g.: ‘calc: free_energy = 4.energy
+ 3.calc_G_corr()’) The ‘relative’ keyword allows the user to de�ne which structure the thermochemistry
output will be set relative to. The implementation is intelligent enough to group modi�cations together

38

when displaying relative thermochemistry, meaning one merely speci�es which template structure gives
rise to the structure for which thermochemical values should be set relative to. For certain projects, it may
be necessary to perform simple arithmetic on the results for certain structures to get meaningful relative
energies, for example when comparing TS structure energies to those of the separated reactants or products.
In such cases, the user can de�ne simple functions of the templates using a keyword starting with an
ampersand (&). As a simple example, say we wanted to look at the O-H deprotonation energy for a variety
of alcohols, ROH + B RO– + HB+. We have our templates, MeOH.xyz, OH.xyz, MeO.xyz, and
HOH.xyz, to which we will apply various substitutions to generate di�erent alcohol structures. We could
de�ne relative = MeOH + OH and &products = MeO + HOH in our [Results] section. Now, an
additional row in the display tables (one for each substitution), labeled ‘products’, will be appended and
it’s value will correspond to the O H deprotonation energy for the alcohol.

The resources command

The resource command allows for printing of CPU usage and related metrics or saving of these to a
comma-separated value �le. This allows users to better understand their resource usage and make mod-
i�cations to resource requests if necessary. This can be especially important for HPC resources in high-
demand, as requesting more resources than necessary can lead to jobs queued for long periods of time
waiting unnecessarily for extra resources that are not truly needed. Especially for users new to using shared
computational resources, it can greatly help the user get a feel for resource usage for their projects.

The plot command

Finally, the plot command can be used to print potential energy diagrams for multi-step reactions; a
di�erent plot will be produced for each modi�cation (i.e. each substitution or ligand mapping combina-
tion). The[Path] section in the AaronJr input �le is used to de�ne which steps are to be displayed, which
structures correspond to each step in the reaction, what labels to use, and allows for customizations such
as colors used (e.g. cis is red, trans is blue), line thickness, or aspect ratio. Template names (or &keywords
in the [Results] section) are used to specify how the plot will be organized, and a wildcard character
(‘*’) can be used in place of selectivity speci�cations (e.g. cis, trans) and will be propagated to the labels
appropriately. Figure 3.11 shows the [Plot] section speci�cation used (left) to generate the diagram on
the right. Each line in the ‘path’ option corresponds to a step in the diagram; the template speci�cation is
in curly brackets, followed by the label name in square brackets (in this case, the template structures are
from other con�guration �les, which are pulled in using the [Configs] section, and these names pre�x
the template speci�cation).

3.4 AaronJr Implementation
Collecting template structure �les, parsing requested modi�cations from the con�guration �le and apply-
ing them to the templates, generating computational input �les, and parsing computational output �les

39

[Configs]
1a = reactant.ini
rxn = rxn.ini
2a = product.ini

[Plot]
color = red, blue
path:

1a{INT} [Reactant]
rxn{INT_*} [*-Int]
rxn{TS_Isom} [Isom TS]
rxn{INT_*} [*-Int]
rxn{TS_RE_*} [* RE TS]
2a{INT_*} [*-Product]

Figure 3.11: Using the [Plot] section for multi-step reactions

is handled by modules implemented in the AaronTools package.3 The AaronTools.fileIO module
currently includes support for Gaussian,20 Orca,22 Psi4,21 xtb,46 and Crest.14 While additional work is still
needed to ensure the error-resolution implementation is appropriately de�ned for all software packages
(currently only Gaussian is fully supported for all errors detected by AaronTools) most errors can be
automatically resolved and any that cannot are reported to the user in an easy to understand manner.

Building the executable scripts that are responsible for calling the di�erent computational chemistry
packages is done using the Jinja2 templating library to �ll in necessary information, such as the working
directory, scratch directory, and �le names for the input and output �les. For xtb and Crest, command
line options are used extensively to specify the charge, level of theory, etc., and Jinja2 allows for �exible
template design (such as if-else blocks) to handle the wide array of possibilities for appropriately generating
the script. These templates are provided in the AaronJr library, but the user can alter these by placing an
updated copy in their personal library, with a location de�ned by the AARONLIB environmental variable.

The Paramiko library is used for connecting to remote computing resources and handling remote
�le transfers, allowing users to run AaronJr on a workstation or laptop via the command line shell while
submitting jobs to remote HPC resources via standard SSH and SFTP protocols using key authentication.

FireWorks15 allows for the de�nition of an FWAction that will be performed once a job �nishes run-
ning. This allows AaronJr to store computational results in the database, to update the atomic coordinates
for use in the following steps, and to update the job speci�cation parameters when resolving errors. The
job progress monitoring included with FireWorks will automatically mark jobs with bad exit statuses. A
job is marked as FIZZLED if problems were encountered that report a non-zero exit status to the shell.
These are usually caused either by errors in the executable script templates or issues with the queue itself, so

40

a limit of three retries is imposed. The user is provided with a description of the error (�le not found, can-
not connect to queue, <command> returned non-zero exit status, etc.) and instructed to re-run AaronJr
after �xing the source of the error — or to contact us with a bug report if the error is on our end. However,
errors found in computational output �les (wrong number of negative eigenvalues, optimization step
limit surpassed, syntax error in input �le, etc.) are handled automatically by AaronJr. Because FireWorks
only knows if a job has completed successfully, not if the content of the output �le is unacceptable for
moving forward in the work�ow, a validation method has been written that will mark completed jobs
with computational errors that need to be resolved as DEFUSED. If a job is marked as DEFUSED, an
error resolution method is called that will make modi�cations to the job (adding keywords to the compu-
tational input �le, updating the atomic coordinates, etc.) and re-run the step. In some cases, especially for
TS structure optimizations, it is necessary to return to a previous step and make corrections to that job
as well, and AaronJr is capable of doing so. A limit of ten retries is imposed to prevent disastrously poor
template structures from being in�nitely resubmitted and wasting computational resources.

The FWAction also allows us to specify what data or metadata should be stored in the database.
Chemically pertinent information is parsed from the computational output �les using AaronTools, as well
as information concerning the run itself, such as the number of optimization steps, resources used, theory
parameters assigned, etc. This information is converted to JSON format and stored in the FireWorks
database, allowing both tracking of past runs for logging purposes as well as providing the opportunity
to implement smarter error-correction schemes.

3.5 Availability and Installation
AaronJr is free and open source and available through GitHub.57 Installation and con�guration instruc-
tions are provided in our GitHub Wiki.

3.6 Conclusions
The �elds of quantum chemistry and electronic structure theory have made tremendous advances over the
last two decades, and we are now armed with methods capable of providing robust predictions for complex
molecular systems. These advances have created a new problem arising from the need to manage the large
numbers of computations that are required for modern chemical applications. Above, we described the
QChASM work�ow manager AaronJr, which allows for the simple automation of complex quantum
chemistry work�ows across the quantum chemistry packages Gaussian, Psi4, ORCA, Crest, and xtb.
This includes automated error handling, data collection, and convenience commands for data analysis.

AaronJr should further open the door for widespread applications of modern quantum chemistry
methods to challenging chemical problems. Most importantly, by eliminating the need for the manual
creation of input �les and parsing of output �les, AaronJr frees the computational chemist to focus on
the chemistry rather than spending their days making input �les, parsing output �les, and babysitting
HPC job progress.

41

3.7 Funding Information
This work was funded by National Science Foundation Grant CHE-1665407.

42

Chapter 4

Example Applications of AaronJr

4.1 Introduction
AaronJr provides a �exible yet simple command line interface to automate nearly any quantum chemistry
application using Gaussian, ORCA, Psi4, xtb, and Crest. To further demonstrate both the simplicity and
power of AaronJr, we describe several hypothetical projects that can be carried out using AaronJr using a
single input �le or combination of several simple input �les.

As discussed in the previous chapter, all required information can be contained in a single AaronJr in-
put �le. More practically, the user can set personal defaults that allow for more compact and concise input
�les for typical applications. These defaults can then be overridden for entire work�ows or for individual
steps within a work�ow. In the following examples, to reduce the amount of clutter in the example input
�les, we assume the user has a personal default con�guration �le (stored at $AARONLIB/config.ini)
containing the following:

remote directory for saving computational input/output files
remote_dir = /home/%{$HPC:user}/chem/%{$name}

[Theory]
method = B3LYP
basis = !tm 6-31G(d)

tm LANL2DZ
options for relaxation of changes
1 method = PM6

[Job]
exec_type = gaussian
memory = %{$procs * 2}GB
procs = %{$ppn * $nodes}
nodes = 1
ppn = 8
wall = 12

43

options for relaxation of changes
1 ppn = 2
1 wall = 2

[HPC]
user = myusername123
host = hpc.host.address
scratch_dir = /scratch/%{$user}
queue_type = SLURM
queue = batch

This provides defaults for all input �les, with any necessary values added or overwritten in the AaronJr
input �le.

Note that one may use functions to de�ne option values; these functions are enclosed in “%{..}”
and variables corresponding to other option values follow the syntax “$<Option Name>” if the variable
corresponds to an option in the same section or “$<Section Name>:<Option Name>” if an option from
a di�erent section is needed. For example, the number of processors requested (‘procs’ in the [Job]
section) is equal to the product of the processors per node and the number of nodes, and the memory
requested (‘memory’ in the [Job] section) is 2GB for each processor; now we only need to update the
‘ppn’ option in our project’s AaronJr input �le — the values for the ‘procs’ and ‘memory’ options will be
resolved automatically. Similarly, the remote directory to store input and output �les is built using the
user name for the HPC and the name associated with the AaronJr input; the value of ‘name’ will default
to the �le name of the AaronJr input �le, without the ‘.ini’ �le extension, but can be explicitly set using
the ‘name’ keyword in the global section (the unlabeled section at the top of the �le) of the input �le.
These functions are evaluated at runtime, allowing one to greatly simplify AaronJr input �les while still
ensuring �exibility. This example user con�guration is also available on the AaronJr GitHub wiki page.57

4.2 Simple Examples

4.2.1 Generating isomers for a metal-centered coordination complex
A common task in coordination chemistry is the enumeration and optimization of all possible coor-
dination complexes of a given set of ligands around a metal center. For multi-dentate ligands lacking
symmetry, the number of such complexes can quickly reach the hundreds, and generating these manually
is best avoided. The following input �le instructs AaronJr to build the six unique octahedral coordination
complexes of two CO ligands, two PPh3 ligands, and two H ligands bound to Fe (see Figure 4.1). The
[Job.Minimum] work�ow is applied, which will consist of a geometry optimization and a vibrational
frequencies computation. The processors per node requested is 6, which will cause the values for ‘procs’
and ‘memory’ to be updated to 6 and 12GB, respectively. Any �les needed to run the jobs on the HPC
will be stored under the chem/Fe_coordination_complex subdirectory of the user’s home area on
the HPC cluster.

44

Figure 4.1: The six possible octahedral coordination complexes generated

name = Fe_coordination_complex

[Geometry]
structure:

coordination_complex = octahedral
center = Fe
ligands = CO CO PPh3 PPh3 H H

[Job]
include = Minimum
ppn = 6

4.2.2 Optimizing urea and thiourea derivatives

name = urea_derivatives

[Geometry]
structure.O = urea.xyz
&call:

structure.S = structure.O.copy()
structure.S.change_element("O", "S", adjust_bonds=True)

45

[Substitution]
&combinations:

6 = H, Me, Et, iPr, tBu, F, Cl, Br, I, CF3
7 = H, Me, Et, iPr, tBu, F, Cl, Br, I, CF3

[Theory]
basis = !I 6-31G(d)

I LANL2DZ
ecp = I LANL2DZ

[Job]
include = Minimum
ppn = 4

This input �le will produce 200 structures total, 100 structures each from the urea and thiourea templates.
In the [Geometry] section, “urea.xyz” is loaded as “structure.O”, and the ‘&call’ directive is used to
call AaronTools methods to store a copy as “structure.S” and change the oxygen atom to a sulfur atom
(adjusting the bond length as necessary). In the [Substitution] section, the ‘&combinations’ directive
is used to replace atoms 6 and 7 (see Figure 4.2) with all combinations of the substituents listed. Notice
that although atoms 6 and 7 were originally hydrogens, the H substituent is included in the combination
scheme; this is necessary to ensure that singly-substituted derivatives (atom 6 or atom 7 are substituted, not
both) are included. We have also updated the ‘basis’ and ‘ecp’ settings, as our user-default con�guration
would attempt to apply the 6-31G(d) basis set to iodine (which is unde�ned); if this had been forgotten,
AaronJr would exit the run and print an error message instructing the user to �x the basis set in their input
�le. The ‘ppn’ requested has also been reduced due to the small size of the molecules considered.

Figure 4.2: The structure saved as “urea.xyz”, with atom numbering shown

4.3 Screening multiple ligands and substrates for a catalytic cycle
As a �nal example, we consider a more complex potential application involving the screening of multiple
ligands and substrates for a Pd-catalyzed cyclization. Methylene oxindoles are found in many pharmaceu-

46

tically active molecules and are useful intermediates in natural product syntheses.58 In 2015, Schoenebeck,
Lautens, et al. reported an exclusively trans-selective intramolecular chlorocarbamoylation of alkynes
using a palladium-centered catalyst featuring a phosphoadamantane (PA-Ph) ligand to form methylene
oxindoles (see Figure 4.3).59

N
Bn

OCl

TIPS

Pd2(dba)3
PAPh

PhMe, 100◦C
N

Bn

O

TIPS
Cl

O

Me

P
Ph

Me
O

Me
O

Me

PAPh

Figure 4.3: Intramolecular chlorocarbamoylation

Their computational study suggested this selectivity is due to accessible cis/trans isomerization (Isom
TS) of the aklyne-insertion intermediate (Int), prior to reductive elimination (RE TS) leading to the �nal
product. Because the trans-intermediate and the trans-reductive elimination transition state are lower
in energy than their corresponding cis-isomers, only the trans-product was observed experimentally.59

However, one may wonder how changes to the alkyne substrate or PA-Ph ligand would a�ect the relative
energies of the transition states and intermediates and how these changes would a�ect the �nal prod-
uct ratios. Such a question can be easily answered by exploiting the automation provided by AaronJr.
Figure 4.4 shows the reaction pathway diagrams for the original substrate and a substituted substrate
created using the AaronJr plot command. Figure 4.5 shows the project input �le, as well as one of the
child con�gurations; the other child con�gurations are similar, simply with di�ering atom indices for the
substitution requests and di�ering template locations.

While the results shown in Figure 4.4 show some variation in how favorable cis-reductive elimina-
tion is when the substrate is changed, the entire reaction path must be considered to truly determine
how a given change to the reaction would a�ect the catalytic cycle and product ratios. In the case of
changing TIPS on the reactant to a trichlorosilyl (TCS) group, the reaction intermediates corresponding
to the reactant/catalyst complex are more favorable than the �nal products (Figure 4.4), meaning the
turnover frequency of the catalyst would become detrimentally reduced. Additionally, while the cis-RE
TS structure has a reasonable barrier, the isomerization pathway is essentially inaccessible. Thus, while
selectivity was reversed, more adjustments are needed for this reaction to be promising enough to warrant
experimental study.

4.4 Conclusions
As shown above, AaronJr allows for the automation of quantum chemistry applications ranging from the
generation and optimization of all possible coordination compounds of a given composition, substituted
analogs of some template structure, and even the screening of multiple ligands and substrates for complex

47

Original substrate

Modi�ed substrate TCS: (iPr groups of TIPS substituted for Cl)

Figure 4.4: Gibbs free energy (kcal/mol) pathway for select steps in the catalytic cycle at the CPCM
(toluene) M06L/def2-TZVP//B3LYP/6-31G(d) (LANL2DZ) level of theory at 373 K.

48

chlorocarbamoylation.ini

[Configs]
rxn = ./rxn.ini
1a = ./reactant.ini
2a = ./product.ini
Pd_PAPh2 = ./Pd-PAPh2.ini
PAPh = ./PAPh.ini

[Results]
&cat = Pd_PAPh2 - PAPh
&1a = 1a + cat:None
&2a = 2a + cat:None
relative = 1a{INT}
selectivity = cis, trans

[Plot]
color = red, blue
path:

1a{INT} [Reactant]
rxn{INT_*} [*-Int]
rxn{TS_Isom} [Isom TS]
rxn{INT_*} [*-Int]
rxn{TS_RE_*} [* RE TS]
2a{INT_*} [*-Product]

rxn.ini

[Reaction]
reaction = chlorocarbamoylation
template = Pd-PAPh

[Theory]
include = detect
solvent = toluene
solvent_model = cpcm
5 type = SP
5 method = M06L
5 basis = def2tzvp

[Substitution]
reopt=True
TMS: 32,42,52=Me
TES: 32,42,52=Et
TTBS: 32,42,52=tBu
TCS: 32,42,52=Cl
TFS: 32,42,52=F
TOS: 32,42,52=OH

Figure 4.5: Parent (left) and one of its child (right) input �les for the multi-step reaction run.

49

organometallic reactions. Our hope is that by automating the routine tasks encountered in quantum
chemistry applications we, as a �eld, can turn more aggressively toward even more complex and compelling
molecular systems.

50

Chapter 5

Conclusion

The QChASM suite of tools can help make computational chemistry an even more invaluable tool for
research, and these tools have already been widely adopted across academia and industry. By automating
the steps taken to complete a project, AaronJr can provide computational chemists with the ability to
focus on chemistry rather than on the tedious process of submitting jobs, addressing errors, and collating
results. Using AaronTools — whether via AaronJr, using the SEQCROW plugin, on the command line,
or in a Python script — allows one to e�ciently build and modify structure �les for systems of interest as
well as to quickly gather the information about these systems needed for analysis.

Additionally, I believe these tools can help experimental chemists take advantage of the insights one
can glean from computational studies, which will increase experimental e�ciency with respect to time,
money, and resources. The error correction and monitoring methods implemented in AaronJr drastically
reduce the time spent determining the cause of a failed computation and adjusting the computational
parameters or chemical structure to rectify the error. When automated error resolution methods fail,
concise error messages make it easier to remedy the situation by hand, as even simple typos or missing �les
can produce cryptic error messages in the computational output. The data collection and analysis tools
provided are �exible but powerful and can alleviate the need to become a command line power-user as
well as limiting the possibility of data transcription mistakes that are so common when, say, copying and
pasting data from output �les into a spreadsheet. All this, in turn, means inexperienced and experienced
users alike can turn their attention to discovery and exploration.

The �exible design of the AaronJr code base and the improved data structures in AaronTools allow
for application to many varying types of systems of interest, and extension to support new computational
chemistry programs or new structural modi�cation methods or data collection methods to address speci�c
research needs is possible. This means our tools can grow as the �eld of computational chemistry grows
and allows us to better address the needs of our users as the adoption of our tools into research work�ows
increases. Overall, I believe our work greatly contributes to the growth of the �eld as a whole and can
improve the quality and e�ciency of computational investigations of chemical systems.

51

Appendix A

Canonical Ranking Algorithm for
Atoms

One incredibly useful application of the new AaronTools data structures (speci�cally, the Geometry and
Atom objects) is the ability to canonically order the atoms in a molecule. This allows one, for example, to
perform an RMSD calculation of two similar molecules without the atoms being in the same order — a
task that is necessary when comparing conformers as symmetric rotations of functional groups (Figure A.1,
left). An invariant string, inspired by those described in the canonical SMILES implementation,60 is
produced for each atom which encodes the number of non-hydrogen connections, the sum of bond
orders for bonds with non-hydrogen atoms, the atomic number, and the number of attached hydrogens.
Using this invariant allows for chemically relevant similarities to be conserved. For example, changing the
oxygen atom of an alcohol to a sulfur atom would result in the same canonical order for both the alcohol
and the thiol (in most cases), allowing one to easily compare molecules with chemically similar structures
despite their actual atoms being di�erent (Figure A.1, right).

1

2

3 2

3

1

OH SH

Figure A.1: RMSD of tBu rotations (left) should be zero, and one should be able to align ethanol and
ethanethiol (right) despite their atoms being di�erent.

The ranking algorithm is similar to that described in work by Landrum et al.,61 however, ties are also
broken based on the relative location of atoms in Cartesian space. First, the initial invariants are used to
partition the atoms into groups that share the same invariant. Next, an attempt at breaking ties in each
partition containing two or more atoms is undertaken. The rank of an atom is multiplied by the ranks of
each connected atom (using prime number ranks to ensure products are distinct), and then these resulting
ranks are used to break ties. The atom list is then partitioned again, and partitions containing multiple
atoms are iteratively improved by using the neighbors’ prime-rank product until no further changes in

52

the partitions occur. At this point, it is no longer possible to break ties based purely on atom identity and
connectivity.

Tied atoms sharing a common neighbor are now broken geometrically. An axis of rotation is de�ned
going from the center of mass of the structure to the common neighbor. A reference point is chosen to
be the center of mass of the tied atoms, unless this is too close to the axis of rotation — in that case the
tied-atom closest to the center of mass is used. The angle of rotation from this starting point to the tied
atoms is calculated using the four-quadrant inverse tangent function; this gives radian values between −π
and π. If this does not break the tie to a reasonable level (i.e., the angles produced are equivalent to one
decimal place), the angle calculation is done again using a rotational axis de�ned by the center of mass of
atoms connected to the shared atom that are not part of the tie, instead of the center of mass of the entire
molecule; this gives a more localized rotation axis and can improve the distinction between tied atoms,
but it is slower to calculate and thus only used when needed. These resulting angles are used to order the
tied atoms and update the partitions. Spatial tie-breaking followed by neighbors’ ranks tie-breaking is
repeated until no changes occur in the rankings.

This algorithm allows for chirality to be taken into account in the canonical ranking system, and
maintains ties when they occur due to symmetry. The AaronTools canonical ranking code can be used in
future development of symmetry detection and chirality determination methods.

53

Bibliography

(1) Dennington, R.; Keith, T.; Millam, J. GaussView, Version 6.1.1, 2019.

(2) Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. J
Cheminform 2012, 4, 1–17.

(3) Ingman, V. M.; Schaefer, A. J.; Andreola, A. R.; Wheeler, S. E. WIREs Comp. Mol. Sci. 2020, 11,
e1510.

(4) Rooks, B. J.; Haas, M. R.; Sepúlveda, D.; Lu, T.; Wheeler, S. E. ACS Catalysis 2014, 5, 272–280.

(5) Doney, A. C.; Rooks, B. J.; Lu, T.; Wheeler, S. E. ACS Catalysis 2016, 6, 7948–7955.

(6) Guan, Y.; Wheeler, S. E. Angew Chem Int Ed Engl 2017, 56, 9101–9105.

(7) Guan, Y.; Ingman, V. M.; Rooks, B. J.; Wheeler, S. E. J Chem Theory Comput 2018, 14, 5249–5261.

(8) Frisch, M. J. et al. Gaussian 09 Revision E.01, Gaussian Inc. Wallingford CT 2009.

(9) Wheeler, S. E.; Seguin, T. J.; Guan, Y.; Doney, A. C. Acc Chem Res 2016, 49, 1061–9.

(10) Grimme, S. Chemistry A European Journal 2012, 18, 9955–64.

(11) Vaganov, V. Y.; Fukazawa, Y.; Kondratyev, N. S.; Shipilovskikh, S. A.; Wheeler, S. E.; Rubtsov,
A. E.; Malkov, A. E. Adv. Synth. Catal. 2021, 362, 5467–5474.

(12) Liu, G.; Liu, X.; Cai, Z.; Jiao, G.; Xu, G.; Tang, W. Angew Chem Int Ed Engl 2013, 52, 4235–8.

(13) Schaefer, A. J.; Wheeler, S. E. in preparation.

(14) Pracht, P.; Bohle, F.; Grimme, S. Phys. Chem. Chem. Phys. 2020, 22, 7169–7192.

(15) Jain, A.; Ong, S. P.; Chen, W.; Medasani, B.; Qu, X.; Kocher, M.; Brafman, M.; Petretto, G.;
Rignanese, G.-M.; Hautier, G.; Gunter, D.; Persson, K. A. Concurrency andComputation: Practice
and Experience 2015, 27, CPE-14-0307.R2, 5037–5059.

(16) Santoro, S.; Kalek, M.; Huang, G.; Himo, F. Acc Chem Res 2016, 49, 1006–18.

(17) Vitek, A. K.; Jugovic, T. M. E.; Zimmerman, P. M. ACS Catalysis 2020, 10, 7136–7145.

(18) Foscato, M.; Jensen, V. R. ACS Catalysis 2020, 10, 2354–2377.

(19) Goddard, T. D.; Huang, C. C.; Meng, E. C.; Pettersen, E. F.; Couch, G. S.; Morris, J. H.; Ferrin,
T. E. Protein Sci 2018, 27, 14–25.

54

(20) Frisch, M. J. et al. Gaussian 16 Revision C.01, Gaussian Inc. Wallingford CT, 2016.

(21) Turney, J. M. et al. Wiley Interdisciplinary Reviews-Computational Molecular Science 2012, 2,
556–565.

(22) Neese, F. Wiley InterdisciplinaryReviews-ComputationalMolecularScience 2018, 8, DOI: 132710.
1002/wcms.1327.

(23) Bootsma, A. N.; Doney, A. C.; Wheeler, S. E. Journal of the American Chemical Society 2019, 141,
11027–11035.

(24) Seguin, T. J.; Wheeler, S. E. ACS Catalysis 2016, 6, 2681–2688.

(25) Sandoval, C. A.; Ohkuma, T.; Muniz, K.; Noyori, R. J Am Chem Soc 2003, 125, 13490–503.

(26) Verloop, A.; Hoogenstraaten, W.; Tipker, J. Drug Design 1976, 165–207.

(27) Vreven, T.; Byun, K. S.; Komáromi, I.; Dapprich, S.; Montgomery, J. A.; Morokuma, K.; Frisch,
M. J. Journal of Chemical Theory and Computation 2006, 2, 815–826.

(28) Iwamoto, H.; Imamoto, T.; Ito, H. Nature Communications 2018, 9, 2290.

(29) Iwamoto, H.; Imamoto, T.; Ito, H. Nat Commun 2018, 9, 2290.

(30) Wheeler, S. E. Accounts of Chemical Research 2013, 46, 1029–1038.

(31) Houk, K. N.; Liu, F. Accounts of Chemical Research 2017, 50, 539–543.

(32) Lam, Y. H.; Grayson, M. N.; Holland, M. C.; Simon, A.; Houk, K. N. Acc Chem Res 2016, 49,
750–62.

(33) Peng, Q.; Duarte, F.; Paton, R. S. Chem. Soc. Rev. 2016, 45, 6093–6107.

(34) Ryu, H.; Park, J.; Kim, H. K.; Park, J. Y.; Kim, S.-T.; Baik, M.-H. Organometallics 2018, 37, 3228–
3239.

(35) Ahn, S.; Hong, M.; Sundararajan, M.; Ess, D. H.; Baik, M. H. Chem Rev 2019, 119, 6509–6560.

(36) Poree, C.; Schoenebeck, F. Acc Chem Res 2017, 50, 605–608.

(37) Sobez, J. G.; Reiher, M. J Chem InfModel 2020, 60, 3884–3900.

(38) Young, T. A.; Gheorghe, R.; Duarte, F. J Chem InfModel 2020, 60, 3546–3557.

(39) Ioannidis, E. I.; Gani, T. Z.; Kulik, H. J. J Comput Chem 2016, 37, 2106–17.

(40) Turcani, L.; Berardo, E.; Jelfs, K. E. J Comput Chem 2018, 39, 1931–1942.

(41) Young, T. A.; Silcock, J. J.; Sterling, A. J.; Duarte, F. Angew Chem Int Ed Engl 2020, DOI: 10.
1002/anie.202011941.

(42) Rodriguez-Guerra Pedregal, J.; Gomez-Orellana, P.; Marechal, J. D. J Chem Inf Model 2018, 58,
561–564.

(43) Zapata, F.; Ridder, L.; Hidding, J.; Jacob, C. R.; Infante, I.; Visscher, L. J Chem InfModel 2019,
59, 3191–3197.

55

https://doi.org/1327 10.1002/wcms.1327
https://doi.org/1327 10.1002/wcms.1327
https://doi.org/10.1002/anie.202011941
https://doi.org/10.1002/anie.202011941

(44) Parrish, R. M. et al. J Chem Theory Comput 2017, 13, 3185–3197.

(45) Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. J Chem Phys 2020, 152, 224108.

(46) Bannwarth, C.; Caldeweyher, E.; Ehlert, S.; Hansen, A.; Pracht, P.; Seibert, J.; Spicher, S.; Grimme,
S. WIREs Comput. Mol. Sci. 2021, 11, e1493.

(47) Becke, A. D. The Journal of Chemical Physics 1993, 98, 5648–5652.

(48) Foster, J. P.; Weinhold, F. Journal of the American Chemical Society 1980, 102, 7211–7218.

(49) Pinski, P.; Riplinger, C.; Valeev, E. F.; Neese, F. J Chem Phys 2015, 143, 034108.

(50) Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F. J Chem Phys 2013, 139, 134101.

(51) Riplinger, C.; Neese, F. J Chem Phys 2013, 138, 034106.

(52) Neese, F.; Hansen, A.; Liakos, D. G. J Chem Phys 2009, 131, 064103.

(53) Dunning, T. H. Journal of Chemical Physics 1989, 90, 1007–1023.

(54) Hay, P. J.; Wadt, W. R. The Journal of Chemical Physics 1985, 82, 270–283.

(55) Silva, F. T.; Lins, S. L. S.; Simas, A. M. Inorg Chem 2018, 57, 10557–10567.

(56) Ribeiro, R. F.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J Phys Chem B 2011, 115, 14556–62.

(57) Q-ChASM: Quantum Chemistry Automation and Structure Manipulation, GitHub.

(58) Le, C. M.; Sperger, T.; Fu, R.; Hou, X.; Lim, Y. H.; Schoenebeck, F.; Lautens, M. J. Am. Chem.
Soc. 2016, 138, 14441–14448.

(59) Le, C. M.; Hou, X.; Sperger, T.; Schoenebeck, F.; Lautens, M. Angew. Chem. Int. Ed. 2015, 54,
15897–15900.

(60) Weininger, D.; Weininger, A.; Weininger, J. L. J. Chem. Inf. Model. 1989, 29, 97–101.

(61) Schneider, N.; Sayle, R. A.; Landrum, G. A. J. Chem. Inf. Model. 2015, 55, 2111–2120.

56

	List of Figures
	Introduction
	Virtual Screening of Chemical Systems
	Perl-based AARON and AaronTools
	AARON Applications
	Overcoming the Shortcomings of AARON and AaronTools
	Aim of This Dissertation

	QChASM: Quantum Chemistry Automation and Structure Manipulation
	Abstract
	Introduction
	AaronTools
	AARON
	SEQCROW
	Conclusions
	Acknowledgements
	Funding Information

	AaronJr: A Python Toolkit for Automating Quantum Chemistry Workflows
	Abstract
	Introduction
	Overview of AaronJr
	AaronJr Implementation
	Availability and Installation
	Conclusions
	Funding Information

	Example Applications of AaronJr
	Introduction
	Simple Examples
	Screening multiple ligands and substrates for a catalytic cycle
	Conclusions

	Conclusion
	Appendices
	Canonical Ranking Algorithm for Atoms
	Bibliography

