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ABSTRACT 

Multiple previous reports have established that climate change disproportionately impacts 

smallholder farmers in developing countries. This study investigates the impact of farmers’ 

decision to adapt to climate change on crop revenue and revenue risk exposure using household 

surveys from three different agro-ecological regions of Nepal. I utilize a control function 

approach in an endogenous switching regression framework to account for the self-selection 

problem due to both observables and unobservables. Identification of the model comes from the 

spatial variation in access to extension service, road, market, and climate information. I find that 

adapting to climate change increases crop revenue and reduces revenue risk exposure, while the 

counterfactual analysis shows the considerable heterogeneities in the outcomes among adapters 

and non-adapters. Our findings imply that adapting to climate change can be an effective 

management practice to mitigate the risks associated with climate change and increase resilience. 
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CHAPTER 1 

INTRODUCTION 

Climate change is a persistent global threat that is both extremely important and highly 

complex. The causes and consequences of climate change are diverse and manifested with some 

interesting irony whereby low-income countries, which contribute the least to climate change, 

are the most vulnerable to its effects (Tol, 2009).  Crops are highly sensitive to climatic 

variations, which can affect both yields as well as the variance associated with the yield (Ray et 

al., 2015). Moreover, smallholder farmers are particularly susceptible to climate change, 

potentially due to conventional farming practices, inadequate access and limited affordability of 

technological advancements, reliance on rain-fed agriculture, and increasing incidence of poverty 

(Mulwa et al., 2017). This vulnerability in agricultural production caused by climate change can 

lead to food insecurity and a reduction in farmers’ real income (Cervantes-Godoy et al., 2013). 

Potentially harmful climate change events include significant shifts in weather patterns, high 

levels of greenhouse gas emissions, change in atmospheric CO2 concentrations, increased global 

temperature, deterioration of water quality, and extreme climatic events such as severe flooding, 

droughts, and rising sea levels. The incidence of these events has increased in recent years 

(Hoegh-Guldberg et al., 2019; Kulp and Strauss, 2019) and may have increasingly negative 

impacts on agricultural activities. Faced with these conditions, farmers are compelled to make 

essential adaptation responses (Tang and Hailu, 2020). 

Agricultural systems are highly dynamic, with producers and consumers continuously 

responding to changes in crop and livestock yields, food prices, input prices, resource 
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availability, and technological change (Adams et al., 1998). To maximize output, increase 

income, and meet the food demands of a rapidly growing population, a focus on adaptation 

strategies to manage the risks posed by climate change in agriculture is warranted. Accordingly, 

a substantial body of literature has emerged that investigates the complex interactions between 

climate change, agricultural systems, and human responses.  Previous studies have indicated that 

agriculture might benefit from climate change in the future if suitable adaptations are 

implemented (Dixon et al., 2013; Tingem and Rivington, 2009). While many farmers have 

implemented adaptation strategies by adjusting their farm management practices, the intensity 

and adaptation measures vary considerably based on climatic, social, economic, and institutional 

factors (IPCC, 2007; Below et al., 2012; Deressa et al., 2009). Multiple studies on adaptation to 

climate change in developing countries show variations in farmers’ responses to climate change 

such as in terms of planning, either short term or long term; timing,  whether reactive or 

anticipatory; privacy, if decisions are private or public, and in various other forms such as 

technical, institutional, behavioral, or educational choices (Smit and Skinner, 2002; 

Venkateswarlu and Shanker, 2009; Alam et al., 2016; Kabir et al., 2017; Ngigi et al., 2017; Cui 

and Xie, 2021, for instance). These climate change adaptation decisions have been attributed to 

age, information, experience, capital availability, access to credit facilities and institutions 

(Deressa et al., 2011) and may translate to differentials in agricultural productivity (Diallo et al., 

2020). 

Similarly, experience gained from changes in climatic patterns has also led smallholder 

farmers to adapt based on their existing knowledge and technologies (Leclere et al., 2013). 

However, micro evidence on the impacts of climate change adaptation techniques on farm 

income and associated variances is scant. These insights are crucial for identifying adaptation 
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approaches at the field level and understanding their implications with regard to crop revenue 

and risk exposures. 

Recent studies have assessed the impact of adaptation on farm productivity based on 

farmers’ actual practices. A study by Di Falco et al. (2011) on Ethiopian farmers finds that 

farmers’ adaptation practices can increase food production and that households that did not adapt 

to climate change would gain the most from implementing adaptation practices. Similarly, a 

survey among rice farmers in China conducted by Huang et al. (2015) indicates that adapting 

agriculture to climate change increases rice yields and reduces the overall magnitude of risk, 

especially the downside risk of rice yields. However, adequate documentation of the effects of 

adaptation measures on farm income and downside revenue risk exposure is lacking.                                                                                                              

This study utilizes survey data on Nepal to expand the empirical evidence on farm 

income and the risk implications of farmers’ climate change adaptation decisions. Our analytical 

framework is formulated with careful attention to deal with important modeling challenges. 

Firstly, since adaptation decisions are voluntary, farmers may self-select into adapter or non-

adapter groups. This self-selection can lead to biased (inconsistent) parameter estimates.  

Moreover, unobserved heterogeneities in the characteristics of farming households may affect 

both the adaptation decision process as well as outcomes of interest. The omission of an innate 

ability variable, for instance, among the adapters could overestimate or underestimate the actual 

effect of adaptation decisions on farm household’s crop revenue and revenue risks. 

Consequently, unresolved endogeneity issues can produce inconsistent parameter estimates. In 

order to achieve a robust causal estimation of the impact of climate change adaptation on crop 

revenue, it is vital that the analysis address the issue of endogeneity. I employ a control function 

approach in the endogenous switching regression framework (ESR-CF) that permits substantial 
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heterogeneity to address this potential self-selection and omitted variable bias. The ESR-CF is 

modeled as a two-stage framework, where the first stage is a probit estimation of the adaptation 

decision, which is later employed to estimate the crop revenue equation using the control 

function (CF) approach where the adaptation decision is the only endogenous element in the 

endogenous switching regression (ESR) model. Combined with instrumental variables 

estimation, this CF approach/model estimates all parameters under standard maintained 

assumptions (Murtazashvili and Wooldridge, 2016). In this analysis, the instruments for 

adaptation decisions include measures such as distance to road, distance to market, distance to 

the extension service center, and climate information. Since I control for several household and 

farm characteristics, it is plausible to think that these instruments have no direct effects on crop 

revenue, thus satisfying the exclusion restriction. The selected instruments used in this study 

have been validated in the extant literature as strong predictors of farm households’ adaptation 

decisions, which theoretically fulfills the relevancy requirement.  Moreover, test results provide 

suggestive evidence of self-selection on adaptation decisions, which further validates our 

empirical strategy and highlights the heterogeneous effects of adaptation. This is the first study 

to deal with self-selection bias using the control function approach in analyzing climate change 

adaptation to the best of our knowledge.  

Our results indicate that using at least one adaptation strategy to climate change is 

associated with a 9 percentage point increase in crop revenue. This effect further increases to 

21.6 percent when using a CF approach and controlling for other factors. I also show that 

adapting to climate change increases crop revenue skewness by 6.4 percent, which is associated 

with the same percentage point reduction in downside revenue risk. I also observe the differential 

impacts of adaptation decisions among adapters and non-adapters. Together/ In combination, our 
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findings suggest that adaptation measures are a viable strategy for increasing revenue and 

managing the risks posed by climate change. 

It is evident that climate change profoundly impacts agriculture and affects crop 

productivity, crop quality, and crop revenue. In response, local governments and crop growers all 

over the world take measures to mitigate the consequences of climate change. Quantifying the 

effectiveness of climate change adaptation measures is vital to evaluate existing efforts and 

formulate new adaptation measures to offset the potential negative effects of climate change and 

ensure food security.  

The remainder of this article proceeds as follows. The next section discusses the 

geographical context and data collection. I then describe the empirical strategy. That is followed 

by a presentation of the empirical results. The last two sections discuss heterogeneity analysis of 

the results and conclude, respectively.  
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CHAPTER 2 

METHODOLOGY 

2.1 Geographical Context 

Nepal is an agricultural country with nearly 66 percent of the active population engaging in 

agriculture for their livelihood and contributing around 35 percent of its GDP (MOAD, 2015). 

Nepal has a great deal of variation in climatic conditions. It can be broadly divided into four 

ecological regions: Terai (60 m above sea level (masl)- 500masl), the Mid-Hill (500-2000 masl), 

the Upper-Hill (2000-3000 masl), and the Mountain (3000-8848 masl). Terai is the hottest part of 

the country, where the maximum temperature can go above 40° C while the mountain region 

remains largely cool with persistent snow throughout the year (Shrestha and Aryal, 2011). The 

major crops grown are rice, maize, wheat, barley, millet, buckwheat, potato, and oilseeds 

representing more than 90% of the total grain production and cultivated area (Gumma et al. 

2011). The crop production system dramatically varies with the climatic and ecological regions. 

Crops are mostly grown from the lowlands of the Terai/plains to the upper hills. Crops primarily 

grown in Terai are rice, maize, wheat, and oilseeds. Maize and rice-based cropping systems are 

predominant in the Mid-Hills. Rice production generally takes place in the wetlands, while the 

dryland is devoted to maize and wheat cultivation. Potato, barley, and buckwheat-based cropping 

system are practiced in the Upper-Hills. However, low temperatures and short growing seasons 

limit crop growth in the high mountains rendering year-round agriculture practically impossible.  
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2.2 Data Collection 

The data set used in this study comes from household surveys conducted between August to 

November 2015. Based on the agro-climatic zones and regional cropping system, the survey 

covered three agro-ecological regions in Nepal: tropical (Terai), subtropical (Mid-hills), and 

warm temperate (Upper-hills). I first identified the major crop-producing districts in each of the 

three agro-ecological regions. I selected two districts within each agro-ecological region based 

on agricultural production in 2014: Chitwan and Nawalparasi in the Tropical region, Lamjung 

and Dhading in the Mid-hills, Nuwakot, and Myagdi in the Upper hills. I selected four village 

development committees (VDCs1) within each district to examine climate change adaptation and 

its potential impacts on crop revenue. The selection procedure starts with identifying all VDCs 

with the highest proportion of households that relied on farming for their living. From the 

identified VDCs, only those VDCs that also faced weather shocks during any growing season in 

the last five years were selected. From the list of VDCs identified in phase two, four VDCs from 

each district were selected with guidance from the District Agricultural Development Office. 

Subsequently, thirty households from each VDCs were chosen randomly using a random number 

generator for the surveyed, with 240 (4*30*2) households from each agro-ecological region. Our 

target population was smallholder farmers. This approach allows us to select the farming families 

that could have experienced weather shocks during their farming operations and resemble the 

average farming household in Nepal. Overall, the sample is a cross-section of 720 randomly 

selected households (240 households  * 3 agro-ecological regions) across the country. After 

employing further data cleaning protocols, the final sample size is reduced to 713 households. 

 
1 VDCs were the smallest administrative unit of Nepal at the time of survey. 
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The survey instruments used in the household survey were structured and pretested 

questionnaires. The survey collects comprehensive information about household demographic 

characteristics, farm activities, crop production details, input use, yield, and revenue, climate 

change perception, information, and adaptation. For the primary outcomes of this study, I asked 

if a household employs any climate change adaptation measures. In the sample, 416 out of 713 

households had adopted some adaptation measures when they were surveyed.  

2.3 Estimation Strategy 

A household’s decision to adapt to climate change and the impact of adaptation decision 

on crop revenue is modeled in a two-step framework. The first stage consists of modeling the 

climate change adaptation decision. The household decision of whether to practice adaptation 

measures is considered under the random utility framework. The theoretical assumption posits 

that a risk-neutral farm household decides whether to adapt to climate change by taking into 

account the net benefit derived from adaptation and maximizing the expected utility. Let 𝐷𝑖 

denote the binary adaptation indicator2, which takes on a value of 1 for a household 𝑖 that adapts 

to climate change by adjusting farm management practice in response to long-term changes in 

weather parameters (for example, temperature, rainfall, and humidity) and 0 otherwise. A farm 

household 𝑖 decides on whether to implement an adaptation strategy based on the expected net 

benefit and costs of adaptation (𝐶𝑖. Assume 𝑈𝑖0 and 𝑈𝑖1 are expected utility derived from 

 
2I code the adaptation as a binary variable which takes a value 1 if a farm household implemented at least 

one adaptation measure a year prior to the survey year, and otherwise zero. In our sample, in many cases, 

housholds implemented more than one adaptation and it is  not possible to disentangle the effect of 

individual adaptation measure on the outcome of interest. If a fam household implemented any coping 

measures they are likely to follow other strategies in response to changing climatic and weather 

conditions. In addtiona, considering the sample size, I did not fit a binary probit regression models 

separately for each of adaptation strategies (or multivariate probit models).  
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deciding to adapt and not to adapt, respectively. A farm household 𝑖 selects into adaptation 

decision if the net utility 𝑈𝑖
∗(𝑈𝑖

∗ = 𝑈𝑖1 − 𝑈𝑖0 − 𝐶𝑖) from doing so is positive. The net utility can 

be represented by a latent continuous variable, which is unknown to the researcher, but can be 

specified as a function of a vector of observable variables, 𝑧𝑖, and unobservables, 𝜔𝑖 as: 

𝑈𝑖
∗ = 𝑧𝑖𝛾+𝜔𝑖 , 𝐷𝑖 = 1[𝑈𝑖

∗ > 0]          𝑖 = 1, 2, … 𝑁            (1) 

where 𝛾 is a vector of coefficients, 1[. ] is an indicator function which equals 1 if the statement 

inside the bracket is true and 0 otherwise,𝜔𝑖 independently follows 𝑁(0, 1), and 𝑖 = 1,2, … 𝑁 are 

a number of households. 

In the second stage, I model implementing climate change adaptation practices on crop revenue 

and downside revenue risk exposure. Let 𝑦𝑖 be the crop revenues3, which is a linear function of 

exogenous farm and household characteristics 𝑋𝑖 and the adaptation decision, 𝐷𝑖. In particular, 𝑦𝑖 

is assumed to be generated as 

𝑦𝑖 = 𝑋𝑖𝛽 + 𝛼𝐷𝑖 + 𝜖𝑖                                            (2) 

where 𝛽 represents a vector of parameters to be estimated,𝛼  is the coefficient associated with 

the binary indicator of adaptation 𝐷𝑖, and 𝜖𝑖 is an unobserved component.  

The most common way to examine the impact of adaptation to climate change on crop 

revenue would be to estimate equation (2) by ordinary least squares (OLS). The OLS estimates, 

however, are not consistent because selection into adaptation decision is most likely not random. 

That means a households’ decision to undertake adaptation (or not to undertake adaptation) is 

voluntary and based on their self-selection. Selection into treatment determines the adaptation 

status, 𝐷𝑖. Nonrandom selection occurs if the unobserved component 𝜖𝑖 is correlated with an 

 
3Crop revenue is the sum the net crop revenues (gross revenue- variable cost of productions) per hectare of cropland 

from all crops in a cropping year prior to the survey year.  
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indicator of adaptation (i.e., 𝑐𝑜𝑟𝑟(𝐷𝑖 , 𝜖𝑖) ≠ 0) causing potential endogeneity (Imbens and 

Wooldridge 2009). This implies that 𝜖𝑖 is either correlated with the regressors determining 

adaptation decision or correlated with an unobservable term in the selection equation, 𝜔𝑖.  

Individuals differ with respect to several observed and unobserved characteristics. 

Subsequently, there are two types of nonrandom selection: the selection on the observables and 

selection on the unobservables. Selection on the unobservable may occur because farmers who 

choose to adapt to climate change may share common unobserved characteristics, such as innate 

managerial skill, technical abilities, individual preferences, and social networks, which could 

correlate with the outcome variables. For instance, if the most talented and determined farmers 

decide to adapt, but the model fails to account for such innate skills and farmers’ motivation, 

estimates will be biased. On the other hand, adapting and non-adapting households may have 

systematically different observed characteristics that influence selection on the observables. Such 

features affect the cost of adaptation and/or expected return, leading to heterogenous adaptation 

behaviors and the inaccurate effect of adaptation on crop revenue. Under homogenous treatment 

effects, selection bias occurs if 𝐷𝑖 is correlated with 𝜔𝑖 whereas the selection equation (1) 

becomes more severe in the presence of heterogeneous treatment effects when the correlation 

between 𝜔𝑖 and 𝐷𝑖 may arise through 𝜖𝑖 or the idiosyncratic gains from adaptation (Blundell and 

Dias, 2009).  

Several approaches have been used to solve this problem: (a) selection models (Heckman 

and Robb, 1986; Powell, 1994), (b) instrumental variable models (Heckman and Vytlacil, 2005; 

Heckman et al., 2006), and (c) matching methods4 (Heckman and Navarro, 2004). To account for 

 
4Matching is also used, which is a form of non-parametric least-squares that assume that all relevant 

unobservables are accurately proxied by observable. The widely used matching methods are propensity 

 

https://onlinelibrary.wiley.com/doi/10.1093/aepp/ppx062#ppx062-B29
https://onlinelibrary.wiley.com/doi/10.1093/aepp/ppx062#ppx062-B29
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the endogeneity problem discussed above, I utilize the ESR model studied by Heckman (1976), 

where the coefficient on a binary endogenous variable is allowed to differ across units in both 

observed and unobserved ways. The ESR can be estimated with the two-step method using CF or 

simultaneously via full information maximum likelihood (ESR-FIML). The ESR-FIML 

developed by Lokshin and Sajaia (2004) has increasingly been used in climate change adaptation 

studies (Di Falco and Veronesi, 2013; Huang et al., 2015; Ojo and Baiyegunhi, 2020). 

Wooldridge (2010) notes that the maximum likelihood (ML) method produces the most efficient 

estimators and asymptotically correct standard error estimates under the appropriate assumption. 

However, ML estimators are likely to be vulnerable to misspecification (Greene, 2003, p.421). 

Under certain circumstances, such as dealing with small sample size, the ML estimation can be 

computationally complicated and costly to implement, limiting its use (Nguimkeu et al., 2019). 

For instance, correlations between the selection equation (1) and the outcomes equation (2) 

errors might not be efficiently estimated, resulting in multiple local maxima or, at times, leading 

to non-convergence problems. Further, the ML jointly estimated parameters are computationally 

taxing as they would also require full specification of joint distribution and require high 

dimensional integration (Peel 2014; Murtazashvili and Wooldridge 2016). 

In contrast, the two-step method always results in convergence. A CF approach, 

combined with instrumental variables, produces consistent estimation in the presence of 

endogenous regressors under standard identification assumptions (Wooldridge 2015). It takes 

 
score matching and inverse probability-weighted with regression adjustment (Cattaneo, 2010; Tilahun 

et al., 2016). Rosenbaum and Rubin (1983) defined the propensity score as the conditional probability of 

assignment to a treatment given a vector of covariates. Based entirely on the observed characteristics, the 

matching approaches balance the observed distribution of covariates across adopting and non-adopting 

households. However, these approaches do not account for unobservable characteristics, thus leading to 

misspecification and inconsistent estimators (Andam et al., 2008). Further, results of propensity score 

matching may be biased due to propensity score model misspecification. 
 

https://onlinelibrary.wiley.com/doi/full/10.1002/agr.21522#agr21522-bib-0025
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into account the non-linear interaction between an endogenous regressor and the error terms 

(Adepoju and Oni, 2014). Besides, unlike the ESR-FIML, the ESR-CF approach provides a 

direct marginal effect of endogenous binary treatment on outcome variables. The ESR-CF will 

provide consistent estimates in the presence of unobserved heterogeneity between adapters and 

non-adapters (Murtazashvili and Wooldridge, 2016). Considering these issues, I employ the CF 

in the ESR model studied by Murtazashvili and Wooldridge (2016)5. 

Consider the following ESR model 

𝑦𝑖 = (1 − 𝐷𝑖)𝑋𝑖𝛽0 + 𝐷𝑖𝑋𝑖𝛽1 + (1 − 𝐷𝑖)𝜖𝑖0 + 𝐷𝑖𝜖𝑖1                                            (3) 

where𝐷𝑖 is the endogenous switching indicator for individual 𝑖, 𝑋𝑖 is a vector of exogenous 

covariates, with the first element being unity, and 𝜖𝑖0 and 𝜖𝑖1 are unobservables. It can be derived 

by simple substitution from a counterfactual framework: 

𝑦𝑖 = (1 − 𝐷𝑖)𝑦𝑖
0 + 𝐷𝑖𝑦𝑖

1                                (4) 

𝑦𝑖
0 = 𝑋𝑖𝛽0 + 𝜖𝑖0                                            (5) 

𝑦𝑖
1 = 𝑋𝑖𝛽1 + 𝜖𝑖1                                             (6) 

where 𝑦𝑖
0 and 𝑦𝑖

1are the counterfactual outcomes, and a binary variable 𝐷𝑖 can be correlated with 

(𝜖𝑖0, 𝜖𝑖1. To estimate the ESR model, equation (4) can be written as  

𝑦𝑖 = 𝑋𝑖𝛽0 + 𝐷𝑖𝑋𝑖𝛾 + 𝜖𝑖0 + 𝐷𝑖𝜗𝑖1                                            (7) 

were 𝜗𝑖1 = 𝜖𝑖1 − 𝜖𝑖0 and 𝛾 = 𝛽1 − 𝛽0. Without the presence of 𝐷𝑖𝜗𝑖1, I could estimate equation 

(7) by standard instrumental variable estimators. In this case, the standard instrumental variable 

estimators will be inconsistent. The problem with applying the instrumental variable method in 

the above equation is that the term 𝐷𝑖𝜗𝑖1 is assumed to be correlated with explanatory variables 

 
5 Unlike Murtazashvili and Wooldridge (2016), I assume all covariates (except a binary adaptation variable) in the 

ESR model to be exogenous. 
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𝑋 even under strong independence assumption because of the endogeneity of  𝐷𝑖 (Murtazashvili 

and Wooldridge, 2016). However, I can identify equation (7) using a CF for 𝐷𝑖.Let 𝑧1𝑖 be an 

instrumental variable (excluded exogenous variable from 𝑋𝑖for 𝐷𝑖, so that 𝑧𝑖 = 𝑓(𝑋𝑖, 𝑧1𝑖), a 

vector of exogenous variables. I can therefore write  

𝐷𝑖 = 1[𝑧𝑖𝜋 + 𝜔𝑖 > 0]                       (8) 

where 𝜋 is a vector of coefficients for excluded exogenous variables.  

Now, I make the following two assumptions  

1. (𝜗𝑖1, 𝜔𝑖) is independent of 𝑧𝑖 

2. 𝜔𝑖~𝑁(0,1). 

Under these assumptions, the generalized error function, which has a mean zero conditional on 

𝐷𝑖 , 𝑧, is given by: 

 𝐸(𝜔𝑖|𝐷𝑖 , 𝑧𝑖) = 𝑔(𝐷𝑖 , 𝑧𝑖𝜋) = 𝐷𝑖𝜆(𝑧𝑖𝜋) − (1 − 𝐷𝑖)𝜆(−𝑧𝑖𝜋),                                            (9) 

where 𝜆(. ) = 𝜙 (. ) 𝛷⁄ (. ) is inverse Mill’s ratio (IMR), and 𝜙(. ) and 𝛷(. ) are the standard 

normal density and cumulative distribution functions, respectively (Wooldridge, 2015). 

Then, the estimating resulting equation becomes 

𝐸(𝑦𝑖|𝐷𝑖 , 𝑧𝑖) = 𝑋𝑖𝛽0 + 𝐷𝑖𝑋𝑖𝛾 + 𝐸((𝜖𝑖0 + 𝐷𝑖𝜗𝑖1) 𝐷𝑖⁄ , 𝑧𝑖).                                             (10) 

Generally, 𝐸(𝜖𝑖0 + 𝐷𝑖 𝜗𝑖1 𝑧𝑖⁄ , 𝐷𝑖) depends on the joint distribution of (𝜖𝑖0 + 𝐷𝑖𝜗𝑖1, 𝐷𝑖) given 𝑧𝑖. 

Again, from the linearity assumption, 𝐸(𝜖𝑖0|𝜔𝑖) = 𝜌0𝜔𝑖, and 𝐸(𝜗𝑖1|𝜔𝑖) = 𝜌1𝜔𝑖, where 𝜌0 =

𝐸 (𝜔𝑖, 𝜖𝑖0) 𝐸⁄ (𝜔𝑖
2), and 𝜌1 = 𝐸 (𝜔𝑖, 𝜖𝑖1) 𝐸⁄ (𝜔𝑖

2) are the population regression coefficients 

(Wooldridge, 2010). These would then result in the following: 

𝐸(𝜖𝑖0 + 𝐷𝑖𝜗𝑖1|𝐷𝑖 , 𝑧𝑖) = 𝜌0𝜔𝑖 + 𝐷𝑖𝜌1𝜔𝑖=(𝜌0 + 𝐷𝑖𝜌1)𝜔𝑖.                                             (11) 

Using the equations (9) and (11) 

𝐸(𝜖𝑖0 + 𝐷𝑖𝜗𝑖1|𝐷𝑖 , 𝑧𝑖) = (𝜌0 + 𝐷𝑖𝜌1){𝐷𝑖𝜆(𝑧𝑖𝜋) − (1 − 𝐷𝑖)𝜆(−𝑧𝑖𝜋)}.                                (12) 
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Given all of the above formulations and derivations, the resulting equation then becomes,  

𝐸(𝑦𝑖|𝐷𝑖 , 𝑧𝑖) = 𝑋𝑖𝛽0 + 𝐷𝑖𝑋𝛾 + (𝜌0 + 𝐷𝑖𝜌1){𝐷𝑖𝜆(𝑧𝑖𝜋) − (1 − 𝐷𝑖)𝜆(−𝑧𝑖𝜋)}.                         (13) 

The parameters in generalized error function and IMR are estimated from a first-stage probit. In 

order to achieve identification, We should satisfy the exclusion restriction whereby we need at 

least one excluded exogenous variable (𝑧1𝑖 in the probit model for 𝐷𝑖 that is not included in the 

outcome equation). We also require evidence of 𝜋 ≠ 0 for the instrument to be valid and need to 

impose a rank condition to ensure consistency.  

2.3.1 Control function approach 

Under the given assumptions, the following two-step procedure gives consistent 

parameter estimates. The first step involves the estimation of the probit model of 𝐷𝑖 on 

𝑧𝑖(𝑧𝑖 = 𝑋𝑖, 𝑧1𝑖) as 

𝑃(𝐷𝑖 = 1|𝑧𝑖) = Φ(𝑧1𝑖𝜋1 + X𝑖𝜋2)                                                (14) 

where 𝜋1 and 𝜋2 are coefficients. In order to achieve identification, I impose the usual exclusion 

restriction. The excluded exogenous variable(s) should affect the adaptation decision but not 

directly affect the yield. In other words, the effect of the instrumental variables on the outcome 

should come only through adaptation. 

Accordingly, the main challenge in this approach is identifying suitable instruments. I 

exclude from the crop revenue equation the following four exogenous covariates - climate 

information, distance to road, distance to market, and distance to nearest extension service 

center-from the outcome equation to exploit them as instruments for adaptation decision. These 

instruments have been used in several past studies, such as distance to market (Suri 2011; Mishra 

et al., 2018), distance to the nearest extension center (Cawley et al., 2018; Issahaku and Abdulai, 

2020), distance to the road (Dhakal and Escalante, 2020), distance to the market (Suri 2011; 
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Adego et al., 2019), and climate information (Di Falco et al., 2011; Khanal et al., 2018). The 

excluded instruments, 𝑧𝑖 have to be strongly correlated with the endogenous adaptation status, 𝐷𝑖 

and uncorrelated with the unobservable error, 𝜔𝑖. The exclusion restrictions (𝐸[𝑧′𝜔] = 0 cannot 

be directly tested, but an identification test is feasible as there are more excluded instruments 

than an endogenous regressor. The condition 𝐸[𝑧𝑖
′𝑋𝑖] ≠ 0 determines the strength of 

identification. I maintain that the instruments have no direct effects on crop revenue once I 

control the adaptation decision. Since I control for several household and farm characteristics, it 

is plausible to think that these instruments satisfy the exogeneity and relevancy requirement and 

can be considered valid instruments for adaptation decisions.  

In the second step, generalized residuals are obtained as  

𝑟̂𝑖 = 𝐷𝑖𝜆(𝑧𝑖𝜋̂) − (1 − 𝐷𝑖)𝜆(−𝑧𝑖𝜋̂).                                                   (15) 

Subsequently, our preferred estimating equation would be  

𝑦𝑖 = X𝑖𝛽0 + 𝐷𝑖X𝑖𝛾 + 𝜌0𝑟̂𝑖 + 𝜌1𝐷𝑖𝑟̂𝑖 + 𝜖𝑖                                         (16) 

which is estimated by two-stage least squares using instrumental variables (𝑧𝑖, 𝐷𝑖𝑧𝑖 , 𝑟̂𝑖 , 𝐷𝑖𝑟̂𝑖) and 

where 𝛽0 𝛾 𝜌0, 𝜌1are the parameters. I use the Huber/White sandwich estimator for the robust 

heteroskedasticity standard errors and standard errors clustered at the village level.  

           In the final step, equation (16) is estimated separately when 𝐷𝑖 = 1 and 𝐷𝑖 = 0 to get 

different estimations for adapters (𝑦𝑖
(1)) and non-adapters (𝑦𝑖

(0)), where IMR are 𝜆(𝑧𝑖𝜋̂) and 

𝜆(−𝑧𝑖𝜋̂), respectively. In doing so, the estimating equation would be  

𝑦𝑖
(1) = X𝑖𝛽1 + (𝜌0 + 𝜌1)𝑟̂𝑖 + 𝜖𝑖                                             (17) 

𝑦𝑖
(0) = X𝑖𝛽0 + 𝜌0𝑟̂𝑖 + 𝜖𝑖.                                                        (18) 
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2.3.2 Counter-factual analysis 

Since this analysis examines the effect of climate change adaptation decisions on crop 

revenue and downside revenue risk exposure, it is then designed to estimate the treatment effect. 

The difficulty of observing the same household in both adapting and non-adapting conditions 

leads to various population-level treatment effects used in applied economics (Heckman and 

Vytlacil, 2005). The three most used treatment parameters to explore the impact of adaptation in 

the program evaluation literature are the average treatment effect (ATE), the average treatment 

effect on treated (ATT), and the average treatment effect on untreated (ATU). The ATE measure 

would be the average outcome if individuals were randomly assigned to treatment, and ATT 

measures the average effects on individuals specifically assigned to treatment. ATT, then, is the 

appropriate parameter to identify the impact of adaptation on adapting households. If, however, 

the interest focus is on the impact of adaptation on households of a certain type as if they were 

randomly selected, then ATE is the parameter of interest to recover.  The ATE, ATT, and ATU 

measures are defined using conventions introduced by Wooldridge (2015), as follows: 

𝐴𝑇𝐸 = 𝐸(𝑦𝑖
(1) − 𝑦𝑖

(0)).                                                                               (19) 

From equations (17) and (18) 𝐴𝑇𝐸 can be written as 

𝐴𝑇𝐸 = 𝑋𝛽1 + (𝜌0 + 𝜌1)𝑟̂𝑖 − 𝑋𝛽0 + 𝜌0𝑟̂𝑖 = (𝛽1 − 𝛽0)𝑋 + 𝜌1𝑟̂𝑖.                   (20) 

 The 𝑦𝑖
(1) and 𝑦𝑖

(0) are not directly observed, but 𝑦̂𝑖
(1)

 and  𝑦̂𝑖
(0)

 can be estimated from the above 

equation, as follows: 

𝐴𝑇𝐸̂ = 𝑁−1 ∑ [ 𝑦̂𝑖
(1)

−  𝑦̂𝑖
(0)

]𝑁
𝑖=1 .                                                                    (21) 

The effect of adoption on the adopting farm household (i.e., ATT)) is given by  

𝐴𝑇𝑇 = 𝐸(𝑦𝑖
(1) − 𝑦𝑖

(0)|𝐷𝑖 = 1).                                                                    (22) 

The 𝐴𝑇𝑇 can thus be estimated as  
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𝐴𝑇𝑇̂ = 𝑁−1 ∑ 𝑦𝑖(𝐷𝑖 = 1)[ 𝑦̂𝑖
(1)

−  𝑦̂𝑖
(0)

]𝑁
𝑖=1 .                                                  (23) 

On the other hand, the effect of adaptation on the non-adapting households (ATU) is given by 

𝐴𝑇𝑈=𝐸(𝑦𝑖
(1) − 𝑦𝑖

(0)|𝐷𝑖 = 0).                                                                      (24) 

The 𝐴𝑇𝑈 is estimated as  

𝐴𝑇𝑈̂ = 𝑁−1 ∑ 𝑦𝑖(𝐷𝑖 = 0)[ 𝑦̂𝑖
(1)

−  𝑦̂𝑖
(0)

]𝑁
𝑖=1  .                                                 (25) 
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CHAPTER 3 

RESULTS 

I first report summary statistics of variables used in our analysis. I then estimate the equation 

(16) for the full sample and equation (17) and equation (18) for adapting and non-adapting 

households, respectively, to examine the extent to which the estimated effect is heterogeneous 

across adaptation status.  

3.1 Summary statistics 

Table 1 reports summary statistics and statistical significance tests on equality of means 

and proportions for continuous variables and dummy variables, respectively. Overall, 58 percent 

of farmers in our sample reported using at least one adaptive measure against climate change. 

More than two-thirds of adapting households have implemented multiple adaptation practices in 

response to climate change. Detailed farm household’s adaptation strategies are  provided in 

Appendix A.  

Results presented in Column 4 in Table 1 clearly show that households that adapt to 

climate change are different from those that do not. In our sample, adapting households, on 

average, cultivated 0.24 more hectares, were 11.8 percent more likely to have access to 

irrigation, and usually had a household head 1.8 years younger than their non-adapter peers. 

Adapting households were also 20.7 percent more likely to have an educated household head and 

15.3 percent more likely to access credit services. Further, they were also 21.1 percent more 

likely to have attended a training or meeting on climate change and 24.7 percent more likely to 
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have a cooperative group member in their household. The average adapting household in our 

sample earned 9138.7 Nepalese Rupees more in crop revenues each year than non-adapters. 

Although this difference in crop revenue is statistically significant at the five percent level, it 

does not account for selection bias due to observed and unobserved heterogeneities among the 

two types of households. These attributes have to be considered while designing adaptation 

interventions. Appendix B presents the distribution of crop revenue by adaptation status. As the 

plots indicate, when the distribution shifted to the right, adapters have higher crop revenue than 

non-adapters.  
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Table 1. Descriptive statistics of variables  

Variable name Full Sample 

(1) 

Adapters 

(2) 

Non-adapters 

(3) 

Difference 

(4) 

Male  0.561 0.500 0.646 -0.146*** 

 (0.020) (0.018) (0.031)  

Age (years) 47.233 46.478 48.290 -1.811** 

 (0.546) (1.171) (0.547)  

Squared age (years) 2377.819 2302.387 2483.475 -181.087** 

 (61.912) (116.324) (42.996)  

Household size (log) 1.778 1.797 1.750 0.046 

 (0.023) (0.032) (0.031)  

Cultivated area (ha) 0.420 0.523 0.276 0.247*** 

 (0.035) (0.058) (0.022)  

Educated  0.666 0.752 0.545 0.207*** 

 (0.037) (0.027) (0.077)  

Access to credit  0.487 0.550 0.397 0.153*** 

 (0.022) (0.031) (0.049)  

Irrigated land 0.504 0.553 0.434 0.118*** 

 (0.036) (0.055) (0.020)  

Terai 0.337 0.313 0.370 -0.057 

 (0.335) (0.322) (0.350)  

Mid-hill 0.328 0.334 0.320 0.014 

 (0.334) (0.343) (0.321)  

Training/meeting attended  0.494 0.582 0.370 0.211*** 

 (0.041) (0.081) (0.019)  

Cooperative/group members 0.609 0.712 0.465 0.247*** 

 (0.065) (0.056) (0.086)  

Total assets (’00,000 NPR) 25.522 27.077 24.411 2.666 

 (4.857) (5.772) (4.138)  

Distance to the nearest market 

(minutes) 

19.972 14.433 27.731 -13.297*** 

(0.572) (0.217) (1.015)  

Distance to the nearest road 

(minutes)   

29.312 15.824 38.942 -23.117*** 

(1.705) (2.121) (2.393)  

Climate information  0.456 0.582 0.279 0.302*** 

 (0.015) (0.028) (0.017)  

Distance to the nearest extension 

center (minutes) 

26.067 19.320 35.519 -16.198*** 

(1.696) (1.029) (3.222)  

Crop revenue (log NPR) 10.898 10.979 10.785 0.194*** 

 (0.048) (0.056) (0.065)  

Adaptation 0.583    

 (0.022)    

N 713 416 297  
Robust standard errors clustered at the village level are in parentheses. *Significant at the 10% level; **Significant 

at the 5% level; ***Significant at the 1% level.  

NPR: Nepalese Rupee, Exchange rate: 1 US $ = Nepalese Rupees 106 at the time of survey 

(https://www.nrb.org.np/) 

 



 

21 

3.2 Are instruments valid? 

To account for the potential endogeneity of adaptation status arising from self-selection, I 

instrumented the adaptation decision with four instrumental variables (IVs); climate information, 

distance to road, market, and nearest extension center. The validity of the IVs is a major 

challenge in the identification strategy of our model. In order for the IVs to be valid instruments, 

they have to satisfy two conditions: 1) IVs should affect the probability of adaptation decision, 

which is a nontrivial function of instruments; and 2) they should not have a direct effect on crop 

revenue, but instead affect outcomes only though the possibility of adaptation conditional on 

covariates. Three of the four variables are distance measures generally assumed to be exogenous 

to the decision to adapt (see Card, 2001; Carneiro et al., 2017; for instance). Each distance 

variable is coded in terms of self-reported time instead of the physical distance. This is because 

farm households can easily measure how long it takes to get to their destinations. I argue that 

location of residence is exogenous after I account for a detailed set of individual and farm 

characteristics, namely age, education status, dummies for agro-ecological regions, land area, 

and indicator for irrigated land.  

Appendix C provides the results of the validity tests of the instruments. I ran probit 

regression model where the dependent variable takes a value of 1 if a farm household 

implemented at least one adaptation strategy; otherwise, zero. The results establish the strength 

of the IVs as determinants of farmers’ adaptation decisions. All four instruments were found to 

be jointly significant at the 1 percent level. The F-statistic value in the first stage regression is 

93.96 (p-value<0.0001), which satisfies the theoretical relevancy requirement for instrument 

validity. Appendix C also reports the p-value results for testing the null hypothesis that IVs affect 

crop revenue. Results of a joint test on all IV coefficients indicate that IVs determine the crop 
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revenue directly. Another issue with IVs is their strength. I empirically tested the weak 

instrumental variables issue and rejected the null hypothesis that our IVs are weak (Stock and 

Yogo, 2005) 6. Moreover, I argue that our IVs also satisfy the exclusion restriction criteria after 

controlling for covariates. In addition, I checked the validity of these instruments by performing 

a simple falsification test based on the premise that valid instruments affect the adaptation 

decision but will not affect the crop revenue per hectare among farm households that did not 

adapt (Di Falco et al., 2011). Our instruments are statistically significant determinants of climate 

change adaptation decision (Chi-square statistics =299.72 and p-value=<0.001) but not of crop 

revenue and downside revenue risk exposure among non- adapting households (F-statistics 

=24.79 and p-value=<0.001).  

3.3 Drivers of adaptation decision 

A probit regression model is estimated to quantify the impacts of various explanatory 

variables affecting a household’s decision to adapt. Column 2 of Table 2 presents the probit 

model estimates from our probit model with adaptation decision as a dependent variable, which 

helps explain why some households implement adaptation measure(s) and others do not. Column 

3 provides the marginal effects of the probit estimates the impacts of unit changes in explanatory 

variables on the dependent variable.  

All three distance-based instrumental variables have significant and negative effects on 

the probability of adapting. Our findings indicate that farmers with easy access to roads, 

extension centers, and markets are more likely to implement climate change adaptation. Results 

suggest that access to resources and government technical services can lessen implementation 

 
6
Assuming tolerable bias rate of 5%, for four excluded IVs to instrument for a single endogenous variable the 

critical value of the Cragg-Donald Wald statistic (F-statistic) is 13.91. 
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constraints and are more likely to adapt to climate change. Similarly, having access to irrigation 

services, participation in training or meetings related to climate change, and membership in a 

cooperative/group was also associated with increased adaptation rates. Female farmers tend to be 

more inclined to implement adaptation measures. These findings are consistent with previous 

findings of earlier studies.  

Structural and demographic factors also influence the adaptation decision; having an 

extra hectare of land under cultivation made farmers 11.3 percent more likely to adapt while 

having 100,000 Nepalese Rupees more in assets also increased the probability of adaptation by 5 

percent. Both of these estimates are statistically significant at the 5 percent level. Bryan et al. 

(2009), for instance, find that wealth is a key determinant in farmers’ decision to adapt and that 

adaptation increased with improved access to extension, credit, and climate information in 

Ethiopia. This relationship is likely attributed to the fact that affluent households have the ability 

to absorb shocks and are more resilient. This result supports evidence that poor farm households 

may be more vulnerable to adverse effects of climate change (Wang et al., 2014; Huang et al., 

2015). Obayelu et al. (2014) and Trinh et al. (2018) establish that high farm incomes, female 

farmers, farmers’ accumulation of information on climate change, and greater access to credit 

services and extension services are key determinants in farmers’ adaptation decisions. In 

addition, our finding on the significance of the household head’s education status is consistent 

with previous findings (Deressa et al., 2011; Di Falco and Veronesi,2014). However, factors 

affecting adaptation measures are often context and location-specific, thus requiring caution in 

the interpretation of results. In this regard, Toth et al. (2017) acknowledged that defined factors 

determining adaptation measures are not always apparent. 
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3.4 Impact on crop revenue 

Column 4 in Table 2 presents the results of an ordinary least squares (OLS) estimation of 

crop revenues with an indicator variable for the adaptation and no switching decision. Column 5 

in Table 2 presents coefficient estimates from the ESR-CF described in the previous section, 

again with crop revenues (in Nepalese Rupees) as the dependent variable. Our main finding is 

that adaptation decision against climate change results in higher crop revenues for farmers. 

Based on our OLS specification, I find that households that adapt to climate change earn 9.1 

percent more in crop revenues compared to non-adapting households. This effect increases to 

21.6 percent when using our CF specification. This disparity between the OLS and CF estimates 

is due to the fact that the latter accounts for unobserved heterogeneities. In contrast, the OLS 

specification does not accommodate such differences in unobservable characteristics, thus 

leading to biased estimates.  

An important consideration in this analysis is the coefficient estimate on generalized 

residuals obtained in the CF model. Here, the coefficient is negative and statistically significant, 

which implies selection bias due to systematic differences in observables and unobservables 

factors between adapters and non-adapters. Results also show that the downside bias due to self-

selection is substantial, resulting in suboptimal policy decisions if ignored.    

The control variables in our models are farm and household characteristics such as age, 

education, family size, land area, access to credit, membership in the organization, and agro-

ecological regions fixed effects. I also interact generalized residual with all included exogenous 

variables in the model7. It is useful to estimate such a rich model for two reasons; 1) the model is 

fairly flexible, and 2) by allowing the impact of generalized residual (which is an instrument for 

 
7 For brevity, I have not reported interaction between generalized residual and included exogenous 

variables.  
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adaptation status) to vary with individual and farm characteristics, additional variation in the 

instrument will be allowed. 

Most of our coefficient estimates from our two specifications have the same (expected?) 

signs and statistical significance. Key determinants of crop revenues are the same as those 

driving adaptations. I find that gender and education along with access to credit services, 

information and extension services, and area under cultivation, are the most important drivers of 

crop revenues. The only variable that is statistically significant in the OLS regression but not in 

the CF regression is irrigation. I hypothesize this might be due to selection bias in the OLS 

estimates.  

Appendix D shows the coefficient estimates of crop revenues among adapting and non-

adapting households from the ESR-CF. I find differential effects of covariates on crop revenue 

across adapters and non-adapters. For non-adapting households, age, education status, and 

membership in a cooperative group are important factors affecting crop revenue, while these 

variable coefficient estimates are not statistically significant among adapters. On the other hand, 

crop revenues earned by adapters are affected by access to credit services, irrigation, and 

participation in training or meetings. Gender and the area under cultivation are significant factors 

affecting crop revenues for both adapters and non-adapters. 
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Table 2. Estimation of farmers adaptation decision and its impact on crop revenue 

Variable name Adaptation (1/0) 

Probit  

(1) 

dy/dxa  

 

(2) 

Crop revenue (NPR) 

OLS  

(3) 

CF  

(4) 

Male  -0.547*** -0.212*** 0.223*** 0.221*** 

 (0.131) (0.051) (0.037) (0.036) 

Age (years) 0.020 0.008 0.012* 0.013* 

 (0.018) (0.007) (0.007) (0.007) 

Squared age (years) -0.000 -0.000 -0.000* -0.000** 

 (0.000) (0.000) (0.000) (0.000) 

Household size (log) 0.023 0.009 0.028 0.027 

 (0.157) (0.061) (0.043) (0.043) 

Cultivated area (ha) 0.292*** 0.113*** 0.036*** 0.039*** 

 (0.050) (0.019) (0.014) (0.014) 

Educated  0.444*** 0.172*** 0.156*** 0.153*** 

 (0.139) (0.054) (0.041) (0.041) 

Access to credit  0.213 0.083 0.108*** 0.101*** 

 (0.131) (0.051) (0.036) (0.036) 

Irrigated land 0.229* 0.089* 0.104*** 0.100 

 (0.131) (0.051) (0.036) (0.036) 

Terai -0.935*** -0.363*** 0.017 0.005 

 (0.172) (0.067) (0.045) (0.045) 

Mid-hill -0.424*** -0.164*** -0.103** -0.114*** 

 (0.164) (0.063) (0.044) (0.044) 

Training/meeting attended  0.290** 0.113** 0.099*** 0.096*** 

 (0.133) (0.052) (0.037) (0.037) 

Cooperative/group members 0.358*** 0.139*** 0.111*** 0.108*** 

 (0.135) (0.052) (0.039) (0.039) 

Total assets (’00,000 NPR) 0.014*** 0.005*** 0.001** 0.002*** 

 (0.003) (0.001) (0.001) (0.001) 

Distance to the nearest 

market (minutes) 

-0.027*** -0.010***   

(0.006) (0.002)   

Distance to the nearest road 

(minutes)   

-0.365** -0.142**   

(0.152) (0.059)   

Climate information  0.672*** 0.261***   

 (0.136) (0.053)   

Distance to the nearest 

extension center (minutes) 

-0.053*** -0.021***   

(0.006) (0.002)   

Adaptation   0.091** 0.216*** 

   (0.039) (0.065) 

Generalized residual    -0.114*** 

    (0.044) 

Constant 0.307  10.039*** 9.958*** 

 (0.543)  (0.179) (0.183) 

R-squared   0.214 0.221 
Note: CF represents the control function approach. Robust standard errors clustered at the village level are in 

parentheses. *Significant at the 10% level; **Significant at the 5% level; ***Significant at the 1% level.   

 ady/dx, Maginal effect, which is computed at the mean value of the X variables. NPR represents Nepalese Rupee, 

exchange rate: 1 US $ = Nepalese Rupees 106 at the time of survey (https://www.nrb.org.np/) 



 

27 

Appendix D shows the coefficient estimates of crop revenues among adapting and non-

adapting households from the ESR-CF. I find differential effects of covariates on crop revenue 

across adapters and non-adapters. For non-adapting households, age, education status, and 

membership in a cooperative group are important factors affecting crop revenue, while these 

variable’s coefficient estimates are not statistically significant among adapters. On the other 

hand, crop revenues earned by adapters are affected by access to credit services, irrigation, and 

participation in training or meetings. Gender and the area under cultivation are significant factors 

affecting crop revenues for both adapters and non-adapters.  

3.5 Skewness of crop revenues 

An important aspect of crop production, especially for farmers in developing countries, is 

the downside risk associated with crop revenue. In this analysis, downside revenue risk exposure 

is measured using the third moment of the revenue distribution function. An increase in crop 

revenue skewness indicates a reduction in downside risk (signifying decreases in the probability 

of crop failure and lower revenues). Column 2 in Table 3 reports the OLS coefficients results, 

using skewness of crop revenue as the dependent variable. The coefficient on the variable of 

interest, adaptation, is not significant, thus implying that adaptation does not affect the 

households’ downside revenue risk exposure. However, this approach assumes that the 

adaptation decision is exogenously determined while it may be potentially endogenous due to 

sample selection. Hence, the OLS estimates may be inaccurate and inconsistent. Columns 3, 4, 

and 5 present the ESR-CF estimates, which account for sample selection in the skewness 

function. Our results from the full sample (Column 3 in Table 3) show that having an older and 

educated household head, more area under cultivation, higher levels of assets, greater access to 

credit services and irrigation facilities, and participation in training and meetings are associated 
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with increases in the skewness of crop revenues. Our sample shows that using at least one 

adaptation strategy against climate change results in a 6.4 percent increase in the skewness. 

Differences in skewness are essential to farmers as an increase in skewness indicates a reduction 

in downside risk and a decrease in the probability of crop failure (Di Falco and Chavas, 2009). 

Similarly, an increase in the skewness of revenue will protect farmers against the downside risk 

in income from farming.  

I also use our CF specification to determine factors affecting skewness separately for 

adapters and non-adapters. The difference in the skewness estimates between these two 

household categories explains the presence of substantial heterogeneity. In the case of adapters, I 

find access to credit services and the area under cultivation as the most critical determinants of 

skewness. Having access to credit increases the skewness associated with crop revenues by 5.9 

percent, while the effect of cultivating an extra hectare of land on skewness is an increment of 

2.4 percent. Besides these, age and total assets owned are also significant determinants of 

skewness for adapting households. On the other hand, among non-adapters, the most important 

factors affecting skewness in revenue are education status, access to irrigation services, and 

participation in climate change meetings.               
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Table 3. Estimation of downside revenue risk exposure  

 

Variable name 

Skewness 

Full sample 

OLS  

(1) 

Full sample  

CF 

(2) 

Adapters 

CF 

(3) 

Non-adapters 

CF 

(4) 

Male  -0.013 -0.014 -0.041 0.026 

 (0.021) (0.021) (0.027) (0.035) 

Age (years) 0.003 0.003 0.008* -0.001 

 (0.003) (0.003) (0.004) (0.004) 

Squared age of (years) -0.000 -0.000 -0.000 0.000 

 (0.000) (0.000) (0.000) (0.000) 

Household size (log) 0.002 0.002 -0.029 0.046 

 (0.024) (0.024) (0.030) (0.040) 

Cultivated area (ha) 0.021*** 0.022*** 0.024*** 0.015 

 (0.008) (0.008) (0.009) (0.013) 

Educated  0.051** 0.050** 0.019 0.086** 

 (0.023) (0.023) (0.028) (0.037) 

Access to credit  0.055*** 0.052** 0.059** 0.043 

 (0.021) (0.021) (0.026) (0.033) 

Irrigated land 0.069*** 0.067*** 0.038 0.108*** 

 (0.022) (0.022) (0.030) (0.032) 

Terai -0.038 -0.043 -0.001 -0.084** 

 (0.028) (0.028) (0.041) (0.042) 

Mid-hill -0.003 -0.007 -0.007 -0.018 

 (0.025) (0.025) (0.032) (0.041) 

Training/meeting 

attended  

0.043** 0.041** 0.001 0.098*** 

(0.021) (0.021) (0.030) (0.031) 

Cooperative/ group 

members 

0.014 0.013 -0.016 0.050 

(0.021) (0.021) (0.024) (0.035) 

Total assets (’00,000 

NPR) 

0.001* 0.001** 0.001** 0.001 

(0.000) (0.000) (0.000) (0.001) 

Adaptation 0.017 0.064*   

 (0.022) (0.036)   

Generalized residual  -0.043* 0.046 -0.105*** 

  (0.024) (0.040) (0.030) 

Constant -0.451*** -0.482*** -0.440*** -0.573*** 

 (0.091) (0.094) (0.117) (0.140) 

Observations 713 713 416 297 

R-squared 0.072 0.075 0.056 0.170 
Note: CF represents the control function approach. Robust standard errors clustered at the village level are in 

parentheses. *Significant at the 10% level; **Significant at the 5% level; ***Significant at the 1% level.  

NPR represents Nepalese Rupee, Exchange rate: 1 US $ = Nepalese Rupees 106 at the time of survey 

(https://www.nrb.org.np/). The dependent variable “Skewness” refers to the third central moment of revenue 

function, which represents the downside revenue risk exposure. 

https://www.nrb.org.np/
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3.6 Heterogeneity analysis 

The ESR-CF model can be applied further to produce corrected predictions of 

counterfactual crop revenue and downside revenue risk exposure. It can be used to compare the 

expected crop revenue and downside revenue risk exposures of adapting and non-adapting 

households. Specifically, this extension can examine the crop revenue and expected downside 

revenue risk exposure in the counterfactual case when adapting households had not adapted and 

non-adapting households had they adapted. Table 4 reports the estimates for the average 

treatment effects (ATT and ATU) of adaptation on crop revenue and downside revenue risk 

exposure. Results indicate that adapting households have significantly higher crop revenues and 

experience lower levels of downside risk. Unlike simple differences in mean, these coefficients 

also account for selection bias due to systematic differences between adapters and non-adapters. 

On average, adapting households earn around 13 thousand Nepalese rupees more annually than 

they would have had they decided not to adapt. The annual difference in the average treatment 

effects between adapters and non-adapters was around 7,712 Nepalese Rupees. 

Adapters also realized a significantly lower exposure to downside risk due to their 

decision. In our sample, households that adapted to climate change would have faced a downside 

risk that was about 0.105 units higher (about 37 percent) had they not chosen to adapt to climate 

change. These estimates suggest that the use of climate change adaptation decisions by 

households has an important role in hedging against losses due to unexpected climatic events. 
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Table 4. Heterogeneity in crop revenue and downside exposure among adapters and non-adapters 

 

Sub-samples  

Decision stage  

Treatment effects  

(3) 

To adapt 

(1) 

No to adapt 

(2) 

Crop revenue  

Adapting household   𝑦11^ =63009.434 𝑦10^ =49976.675 𝐴𝑇𝑇^  = 

13032.759*** 

Not adapting household 𝑦01^ =59963.010 𝑦00^ =54642.625 𝐴𝑇𝑈^ = 5320.385*** 

Heterogenous effects  𝑦11^ −

𝑦01^ =3046.424 

𝑦10^ − 𝑦00^ =-

4665.95 

𝐴𝑇𝑇^ -

𝐴𝑇𝑈^ =7712.374 

Downside revenue risk exposure  

Adapting household   𝑦11^ =−0.180 𝑦10^ = −0.285 𝐴𝑇𝑇^ = 0.105*** 

Not adapting household 𝑦01^ =−0.215 𝑦00^ = −0.272 𝐴𝑇𝑈^ = 0.057*** 

Heterogenous effects 𝑦11^ − 𝑦01^ = 0.035 𝑦10^ − 𝑦00^ = −0.013 𝐴𝑇𝑇^ -𝐴𝑇𝑈^ =0.048 

Note: ATT represents the effect of the adaptation on the households that adapted, while ATU represents the effect of 

the adaptation on the households that did not adapt *Significant at the 10% level; **Significant at the 5% level; 

***Significant at the 1% level. 

3.7 Robustness check 

In order to test the strength of our empirical results, several robustness checks for our 

main specification were conducted.  First, I utilized the treatment effect model (Cong and 

Drukker 2001; Cameron and Trivedi, 2005) to control the potential endogeneity of adaptation 

decisions. Results from the treatment model are consistent with the main results. In addition to 

using the treatment effect model, I report Propensity Score Matching (PSM) and Inverse 

Probability Weighted Regression Adjustment (IPRWA) estimates (presented in Appendix E) to 

check the robustness of the results. Results indicate that both crop revenue and downside revenue 

risk exposure are significantly higher for adapting households vis-à-vis the non-adapting 

households. The resulting estimates under the PSM and IPWRA models are consistent with those 

obtained using the ESR-CF approach. The results suggest an inability to control for unobservable 

effects in underestimating ATEs in the PSM. These findings are in line with earlier studies that 

validate the PSM’s shortcomings in technology adoption literature (Andam et al., 2008; Shahzad 
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and Abdulai, 2021). I also carried out a standard instrumental variable approach to estimate the 

impacts of adaptation decisions on crop revenue. The results are consistent with the findings 

under our main specification. 
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CHAPTER 4 

CONCLUSION 

 As global climate patterns change, farmers must make adaptation decisions to maintain 

the viability of their business operations while mitigating possible risk repercussions.  There are 

numerous potential adaptation measures available at the farm level, depending upon the 

geographical regions, farming types, farm size, and household wealth. Farmers adjust their 

farming practices to deal with the adverse impact of climate change. However, few studies 

explore the effectiveness of adaptation decisions to reduce the risk associated with it. 

Using household survey data from Nepal and utilizing the control function approach in 

the endogenous switching framework, this study examines the economic gains that can be 

realized from implementing climate change adaptation. In order to ensure the reliability of this 

study’s empirical contributions, the analytical model was formulated with careful consideration 

provided to possible endogeneity issues arising from self-selection bias.  

 Our findings indicate that farmers’ adaptation decisions are significantly influenced by 

structural, demographic, and social capital-related factors involving access to information, 

networks, and other useful community resources. This study’s empirical framework pursues 

adaptation decisions by establishing considerable benefits in the form of revenue enhancement 

and revenue risk reduction.  Specifically, adapting farm households realize substantial and 

distinguishable gains in revenues and declines in risk levels relative to their non-adapting peer 

households.   
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As many farm economies start to acknowledge the reality of climate change and the 

urgency of risk-mitigating adaptation strategies that can be implemented at the farm level, this 

study’s findings can serve as motivations for potential adaptation proponents.  Moreover, our 

research can provide directional guidance for policy formulation purposes by identifying 

important facets of social interactions and resource endowments that may elicit adaptation 

choices and enhance their potential return and risk benefits. Effective policies geared towards 

promoting optimized adaptation decisions will be instrumental in reverting the fallacy of the 

climate change reality so that smaller households may overcome the economic challenges of 

climate change – an evolving global concern whose propagation they are the least responsible 

for.  
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APPENDICES 

Appendix A. Climate change adaptation strategies used by the farmers  

Adaptation strategies Frequency Percentage 

Adjusting planting and harvest date  105 25.24 

Planting improved/ drought resistant/flood tolerant crop varieties 159 38.22 

Mixed/intercropping cropping/crop diversification 173 41.59 

Soil and water conservation techniques  108 25.96 

Inorganic fertilizer/improved organic manure use  144 34.62 

Application of herbicides/insecticides  94 22.6 

Note: In our sample, out of adapting households, 279 households have practiced more than single adaptation 

strategies.   



 

41 

 
Appendix B. Distribution of crop revenue (log) between adapters and non-adapters  
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Appendix C. Validity of Instruments  

 

Variable name  

Crop revenue Adaptation (1/0) 

OLS 

(1) 

Probit 

(2) 

LPM  

(3) 

Distance to the nearest market 

(minutes) 

-0.001 -0.027*** -0.006*** 

(0.002) (0.005) (0.001) 

Distance to the nearest road 

(minutes)   

0.030 -0.652*** -0.171*** 

(0.090) (0.129) (0.034) 

Climate information  0.019 0.599*** 0.173*** 

 (0.073) (0.113) (0.031) 

Distance to the nearest 

extension center (minutes) 

0.001 -0.040*** -0.011*** 

(0.002) (0.005) (0.001) 

Constant 10.772*** 1.288*** 0.856*** 

 (0.081) (0.147) (0.037) 

Observations 297 713 713 

R-squared 0.002 0.309 0.347 

LR chi2(4)  299.72  

F statistics   93.96 

Robust standard errors clustered at the village level are in parentheses. *Significant at the 10% level; **Significant 

at the 5% level; ***Significant at the 1% level.  
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Appendix D. Estimation of crop revenue using control function for adapters and non-adapters  

Variable name Crop revenue (NPR) 

Adopters 

(1) 

Non Adapters 

(2) 

Male  0.164*** 0.297*** 

 (0.042) (0.064) 

Age (years) 0.006 0.021** 

 (0.007) (0.010) 

Squared age (years) -0.000 -0.000** 

 (0.000) (0.000) 

Household size (log) 0.005 0.069 

 (0.054) (0.077) 

Cultivated area (ha) 0.033** 0.040* 

 (0.016) (0.021) 

Educated  0.076 0.210*** 

 (0.050) (0.064) 

Access to credit  0.171*** -0.005 

 (0.043) (0.063) 

Irrigated land 0.098** 0.092 

 (0.044) (0.062) 

Terai -0.050 0.120 

 (0.054) (0.078) 

Mid-hill -0.158*** -0.012 

 (0.052) (0.079) 

Training/meeting attended  0.116** 0.079 

 (0.045) (0.064) 

Cooperative/group members 0.059 0.157** 

 (0.048) (0.063) 

Total assests (’00,000 NPR) 0.002*** 0.001 

 (0.001) (0.001) 

Generalized residual -0.259*** -0.014 

 (0.069) (0.065) 

Constant 10.559*** 9.620*** 

 (0.188) (0.295) 

Observations 416 297 

R-squared 0.228 0.228 

Note: Robust standard errors clustered at the village level are in parentheses. *Significant at the 10% level; 

**Significant at the 5% level; ***Significant at the 1% level. NPR represents the Nepali Rupee; the exchange rate 

was USD 1 = 106 Nepali rupee at the time of the survey.  



 

44 

Appendix E. Estimation of farmers adaptation decision and its impact on crop revenue using 

treatment effect and matching methods 

Variable name Adaptation(1/0) 

Probit  

(1) 

Log(Crop revenue (NPR))a 

Treatment effect  

(2) 

IV  

(3) 

Male  -0.547*** 0.243*** 0.244*** 

 (0.131) (0.040) (0.037) 

Age (years) 0.020 0.012* 0.012 

 (0.018) (0.007) (0.008) 

Squared age (years) -0.000 -0.000* -0.000* 

 (0.000) (0.000) (0.000) 

Household size (log) 0.023 0.025 0.025 

 (0.157) (0.044) (0.034) 

Cultivated area (ha) 0.292*** 0.029** 0.028* 

 (0.050) (0.014) (0.015) 

Educated  0.444*** 0.136*** 0.134*** 

 (0.139) (0.043) (0.052) 

Access to credit  0.213 0.097*** 0.096** 

 (0.131) (0.037) (0.039) 

Irrigated land 0.229* 0.094** 0.094** 

 (0.131) (0.037) (0.044) 

Terai -0.935*** 0.038 0.039 

 (0.172) (0.048) (0.047) 

Mid-hill -0.424*** -0.095** -0.095* 

 (0.164) (0.044) (0.050) 

Training/meeting attended  0.290** 0.086** 0.086*** 

(0.133) (0.038) (0.031) 

Cooperative/ group members 0.358*** 0.093** 0.092** 

(0.135) (0.041) (0.046) 

Total assests (’00,000 NPR) 0.014*** 0.001** 0.001* 

(0.003) (0.001) (0.001) 

Distance to the nearest market 

(minutes) 

-0.027***   

(0.006)   

Distance to the nearest road 

(minutes)   

-0.365**   

(0.152)   

Climate information  0.672***   

 (0.136)   

Distance to the nearest extension 

center (minutes) 

-0.053***   

(0.006)   

Adaptation  0.197** 0.203** 

  (0.090) (0.088) 

Constant 0.307 10.021*** 10.020*** 

 (0.543) (0.176) (0.224) 

ATEPSM 0.194   

 (0.038)   

ATEIPWRA 0.137   

 (0.036)   

Observations 713 713 713 

R-squared   0.205 

Wald test of indep. eqns. (rho = 0): chi2(1) =     2.18   Prob > chi2 = 0.1397  
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Note: CF represents the control function approach. Robust standard errors clustered at the village level are in 

parentheses. *Significant at the 10% level; **Significant at the 5% level; ***Significant at the 1% level.   

NPR represents Nepalese Rupee, Exchange rate: 1 US $ = Nepalese Rupees 106 at the time of survey 

(https://www.nrb.org.np/) 

 


