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Abstract

Ecologists have long been interested in understanding the causal links between environmental

stochasticity and population abundance. Most theories developed to explain these dynamics

use a deterministic representation of the natural world where substantial changes of a popu-

lation’s size occur through one of two paths as explained by alternative stable states. Either

the system moves into another stable state due to an external push, or the equilibrium pop-

ulation size itself changes as a kinetic parameter changes. However, if the natural world is

recast using a stochastic representation, a third path arises: noise-induced transitions (NITs).

By taking stochasticity in the natural world into account, the location and/or number of

equilibrium population sizes can change. NITs have been demonstrated in chemistry and

physics but have largely been ignored in ecology. This dissertation consists of two combined

theoretical/empirical studies to demonstrate NITs in biological populations. First, I demon-

strate the destabilizing effects of environmental noise through a noise-induced extinction—as

expected under the ecological dogma of stochasticity—using chemostats of the cyanobacteria,

Aphanizomenon flos-aqua. Then, I present the surprising result of noise-induced persistence

in stochastically harvested populations using microcosms of Saccharomyces cerevisiae. This

dissertation is the first step in building a concept map of noise-induced outcomes given dif-



ferent combinations of nonlinear dynamics and types of environmental noise. Building upon

these results, we can develop a heuristic understanding of how and when a stochastic rather

than deterministic model is a more appropriate description of the natural world.

Index words: Environmental stochasticity, Extinction, Microcosm, Noise-induced
transition, Population dynamics, Transitions
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Introduction

1.1 Overview

Nature presents itself in many different states. Understanding and explaining how popula-

tions, communities, and ecosystems switch between these states is an overarching problem

(May, 2001; Strogatz, 2001; Cushing et al., 2001; Chase, 2003). This is especially the case

during catastrophic changes, such as sudden extinction caused by a disproportionately small

change in the population’s vital rates (Post & Forchhammer, 2002; Stenseth et al., 2002;

Scheffer et al., 2001, 2009). These rapid extinction events are typically explained by one of

two mechanisms (Nolting & Abbott, 2016).

The first is a change in kinetic parameter value. For example, in the logistic map if the

kinetic parameter of intrinsic growth rate drops below zero (r ≤ 0) the non-zero equilibrium

population size (K, previously stable, now unstable) exchanges stability with the extinction

equilibrium (previously unstable, now stable). The population size then moves towards the

newly stable equilibrium of extinction (Fig. 1.1A). A population approaching the stability

switch in equilibrium values has a unique set of characteristics, a subset of these charac-

teristics are referred to as critical slowing down and has been experimentally demonstrated

(Drake & Griffen, 2010).

The second mechanism used to explain rapid extinction is a change in the local equi-

librium value. In this case, extinction and a non-zero equilibrium population size are both
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stable and are buffered by an unstable intermediate equilibrium. Populations with this pat-

tern of stable-unstable-stable equilibrium values are said to have alternative stable states

(Fig. 1.1B). A population with alternative stable states can undergo rapid extinction when

the population size falls below the intermediate population size equilibrium (as reviewed by

Thornton et al., 2014).

However, there is a third possible mechanism to explain catastrophic change (May, 1973).

Rather than the population size moving towards the locally stable equilibrium size, the

number and location of the equilibrium population size change (Fig. 1.1C). While sometimes

more broadly defined, within this work the appearance and disappearance of equilibrium

values is referred to as a phase transition, or transition. Usually we think about a macroscopic

parameter (such as one of the kinetic parameters) driving the phase transition. But, in

stochastic systems there is another possibility: the system noise itself may induce qualitative

changes in the steady state which is now considered to be a probability distribution, rather

than a deterministic limiting behavior like a point equilibrium or limit cycle. When the

mechanism causing the phase transition is a change in the magnitude of environmental

variability this phenomenon may be called a noise-induced phase transition, or shortened

to noise-induced transition (NIT; Horsthemke & Lefever, 2006; Kabashima et al., 1979a;

Kawakubo et al., 1973b,a; Kabashima et al., 1976; Kawakubo et al., 1981; Briggs & Rauscher,

1973; De Kepper & Horsthemke, 1979a; Arecchi & Harrison, 2012).

The possibility and prevalence of NITs in ecological systems has been overlooked for the

last 50 years. However, advances in computational power and the move towards ecological

‘big data’ have made exploring this new mechanisms highly tractable (Farley et al., 2018).

Not only can this mechanism now be explored, it should be explored now. As we observe

the 6th mass extinction in the Anthropocene age, many ecological systems are believed to

be approaching their sustainability limits (Wake & Vredenburg, 2008; Barnosky et al., 2011;

Ceballos et al., 2017). Additionally, environmental noise is expected to increase with climate

change (Thornton et al., 2014). It is entirely possible that as ecological systems approach
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their critical points, environmental stochasticity will independently increase representing a

double threat to the resilience of historically robust ecosystems. The combination of these

factors requires systematically incorporating environmental noise into the understanding,

modeling and forecasting of population dynamics. The remainder of this chapter reviews

some general ideas about NIT, and place it in the context of current ecological work. The

following chapters report on the first experimental demonstrations of a NIT in biological

systems paired with a mechanistic model’s predictions.

1.2 Exploring An Alternative Mechanism: Case Stud-

ies

This section reviews NITs in ecological population models. The impact of environmental

noise will be highlighted by first reviewing the deterministic model, and then modifying the

model to include environmental stochasticity. While comparing models, I assume that the

reader is familiar with deterministic models but not necessarily stochastic models. For this

reason I will occasionally introduce terminology and concepts used in stochastic models, and

when possible draw connections to the deterministic counterpart. Next, I review theoretical

studies of NITs in grassland ecosystems. Finally, I review a few empirical studies from other

disciplines.

1.2.1 Ecological Case Studies of NIT

Case Study 1: Logistic model

A NIT can be illustrated by first exploring a continuous time logistic model in a constant

environment, and then comparing to the same population in a randomly varying environ-

ment.

dN

dt
= rN(Ko −N) (1.1)
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Figure 1.1: Potential diagram and corresponding histogram of population size. Panels A, and
B represent conventional mechanisms leading to qualitative change, while panel C describes
the mechanism explored in this work. (A) When a kinetic parameter value is below a
threshold to maintain a non-zero population size, extinction colored in red is the only stable
equilibrium value. This is reflected in a histogram of the population size over time, where
the most likely population size is zero. If the population is perturbed (ie. an immigration
event), the population size will eventually return to zero. Extinction can also be one of
two alternative stable states, as in the case of populations subject to an Allee effect. If the
population is perturbed such that the size drops below the minimum threshold represented
by the peak between the two wells in (B), the population will go extinct. However, this is
reversible by an immigration of individuals larger than the minimum threshold. In the case
of a noise-induced transition, the potential diagram changes shape. Panel C is an example of
a noise-induced extinction where a system with minimal environmental noise has two stable
states. As the environmental noise is increased, the potential diagram undergoes a transition
such that extinction becomes the only stable state. This transition can be detected by a
qualitative change in the histogram.

The equilibria of this model are extinction and carrying capacity (N? = (0, Ko)). The

stability of the equilibria is determined by the growth rate parameter r. For populations with

a sufficiently large growth rate (r > 0), the carrying capacity (K) is the stable equilibrium,

while extinction is an unstable equilibrium. If the growth rate falls below the threshold
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(r = 0), the stability is exchanged. The logistic model can be simplified by rescaling time

(t′ = rt). This rescaling restricts the model to the space of parameters where (r > 0) (Eq

1.2).

f(N) = N(Ko −N) (1.2)

Now, natural populations exist in constantly changing environments, for instance with

respect to the resources available to the population, causing the environment’s instantaneous

carrying capacity to fluctuate. This environmental stochasticity can be introduced into the

system by replacing the constant carrying capacity parameter (Ko) with a random normal

variable of mean Ko and variance sgn.

f(N) = N(Kgn −N)

Kgn ∼ N(Ko, sgn)

(1.3)

This stochastic model cannot be studied as above due to the impact of the random vari-

able on the model’s stability. However, there are direct analogs. Instead of calculating the

state values at the root of the model (ie. solve for N? when dN
dt

= 0), the system’s steady

state value must be expressed in probabilistic terms. When the noise is very small, the most

probable states are parametrically equivalent to the equilibrium values of the deterministic

model. The probability density function (pdf) which is the inverse of the potential land-

scape for 1.3 can be derived using the Fokker-Planck equation and Ito’s interpretation of a

stochastic equation such that

p(N) =

[
sgn
2

Γ
(2ko
sgn
− 1
)]−1(2N

sgn

)(2ko/sgn)−2
exp

(2N

sgn

)
. (1.4)

This solution was first derived by May (1973) (but see Ridolfi et al., 2011, for method). In

cases where the pdf cannot be analytically derived as above, it can be numerically obtained.
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Since 1.4 is a function of sgn, it is easy to explore the impact of environmental stochastic-

ity, or noise on the PDF shape or mode (Fig. 1.2). The stochastic and deterministic models

have similar mean population sizes at small values of sgn. Gradually the mean population

size decreases as sgn increases from zero to Ko/2, above this value the PDF mode has shifted

to extinction. Despite exhibiting a non-zero carrying capacity, the system is likely to go ex-

tinct within a short (ecologically relevant) time. Finally, at sgn ≥ Ko extinction is the only

possible population size. Additionally, the time to extinction is also a decreasing function of

the environmental stochasticity (Adler & Drake, 2008).

Figure 1.2: Impact of a random normally distributed carrying capacity with increasing
variance (sgn) on pdf and mode population size (Nm). The mode population size, Nm, is
derived from Eq 1.4 and calculated as Nm = Ko − 2sgn.
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Case Study 2: Logistic model with variable harvest

NIT are not only found in a logistic system with a variable carrying capacity, and can be

present in many ecological systems with non-linear relationships. Here we build on the initial

logistic example by adding an additional proportional mortality rate due to harvesting (h)

such that (in the deterministic case)

dN

dt
= rN(Ko −N)− hN. (1.5)

The equilibrium values are N? = 0 (unstable state), and N? = Ko − h/r (stable state)

assuming Ko > h/r . However, a constant harvest rate is a highly idealized abstraction and

can be replaced with a Poisson harvest process such that the harvest rate (h) is modeled

as white shot noise (WSN) with a mean waiting time between harvests, 1/λ, and a mean

proportional harvest α which are drawn from an exponential and Gaussian distribution,

respectively. In other words, an instantaneous harvest that occurs at different time intervals

and variable intensity. WSN is analytically tractable when normalized by the constant

carrying capacity. As derived by Ridolfi et al. (2011, see Box 2.3, or 4.3.1) the steady state

probability distribution solution to the stochastic model is

p

(
N

Ko

)
=

Γ
(
1
α

)
Γ
(
1
α
− λ

α

)
Γ
(
λ
α

)( N

Ko

) 1
α
− λ
α
−1(

1− N

Ko

) λ
α
−1

(1.6)

where Γ(·) is the gamma function (Γ(n) = (n − 1)!).While in the previous example,

the shape of the PDF was dictated by a single variable (sgn of Kgn), the PDF of a system

experiencing WSN is a function of both harvest frequency (λ) and intensity (α). If the shape

of the PDF is studied over this parameter space, we find distinct boundaries that correspond

to rapid qualitative changes in the shape of the PDF (Fig. 1.3).
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Figure 1.3: The pdf of a logistic model changes as a function of mean harvest frequency, and
mean proportion harvested. The shaded regions have qualitatively different pdf shapes, and
modes. In region I (green), the stochastic model has a mode of carrying capacity and the
population would have dynamics similar to the equivalent deterministic model. In region II
(blue), the mode population size decreases. In region III (purple), bistability appears. If
observing populations in this region, the population dynamics may be described using an
alternative stable state framework attributing state switching to some spurious force. Finally
in region IV (pink), the system undergoes a noise-induced extinction, meaning the mode is
at N=0. In the white region, extinction is the only possibility.
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1.2.2 Appearance of NIT in models of grassland ecosystems

The ecological case studies presented are abstractions of ecological systems, which may

or may not reflect observed dynamics in natural systems. Encouragingly, NITs appear in

mechanistic models of savanna-woodland dynamics with data-derived parameters.

Grass dominated savannas are lost to shrub encroachment leading to a woodland dom-

inated system. The switching between these two alternative stable states, grassland and

shrubs, is moderated by intermittent fires D’Odorico et al. (2006). However, there is spatial

heterogeneity in these systems which lead to mosaic patches of grasslands and shrubs at the

local scale. While this patterning was originally explained through deterministic hydrologic

feedback cycles, this pattern can also be explained by the variation in intermittent fires

(D’Odorico et al., 2007). When variation in precipitation is incorporated into the model a

new stable state, bare soil, arises (Yu et al., 2016). These models have also been applied

to dryland plant ecosystems that alternate between bare soil and vegetative states based on

rainfall. As the variance in rainfall increases a third stable state arises at an intermediate

between the deterministic model’s alternative stable states. By incorporating the variance

in rainfall the potential landscape’s hysteresis loop is replaced with a smooth, continuous

increasing function (D’Odorico et al., 2005).

1.2.3 NITs in other disciplines

NITs are not unique to ecological systems, and much of the foundational work pre-dates

ecological work presented above. The following section reviews the models and corresponding

experimental demonstrations of this behavior in other systems.

Physical systems

Some of the earliest studies of noise-induced transitions were in the physical sciences. An

oscillating circuit can be pushed from an oscillating to non-oscillating state by introducing a
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white noise current to the system’s sinusoidal current which changes the decay constant, and

aligned with the theoretical predictions. The transition between states cannot be attributed

to changes in parameter values since critical slowing down indicated by increased variance

was not observed prior to the transition. The lack of critical slowing down was used to

assert this phase transition as noise-induced (Kabashima et al., 1979b). Similar approaches

pairing theoretical predictions, and experimental data have shown NIT in lasers (Arecchi &

Harrison, 2012), and electrical oscillators (Kawakubo et al., 1973b,a; Kabashima et al., 1976;

Kawakubo et al., 1981).

Chemical reactions

The Briggs-Rauscher (BR) oscillating chemical reaction is another experimental system that

exhibits a NIT. The closed system BR reaction is an oscillating iodine clock, that cycles

through iodide, iodine, and triiodide which in the presence of starch is colorless, amber,

and dark blue, respectively (Briggs & Rauscher, 1973). However, in a steady flow tank

reactor (or open system) this reaction is photosensitive and exhibits many non-equilibrium

phenomena including multiple steady states, limit cycles, and chaotic behavior. The open

system BR reaction displays a hysteresis loop as a function of the constant light intensity

resulting in initial condition dependent alternative stable states. At high light conditions the

reaction is non-oscillating and triiodide is the dominant species (dark blue), while low light

conditions favor an oscillating reaction. At intermediate light intensities, the reaction state

can be either oscillatory or non-oscillatory. Environmental noise is introduced by replacing

the constant light condition with light following a Gaussian white noise distribution. When

environmental noise is introduced the bistability region is roughly doubled, and is shifted to

lower mean light values such that the bistability region in a non-fluctuating and fluctuating

environment do not overlap (De Kepper & Horsthemke, 1979b). In other words, if light is

slowly increased the reaction becomes non-oscillatory at lower mean light values in a variable

environment when compared to a constant light environment.
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1.3 Detecting NITs in experimental systems

Despite being foundational to any empirical demonstration of NITs, I have not explained

why the mode of the stochastic model’s probability density is equivalent to the deterministic

equilibrium. This section reviews the connection between the stationary probability density

in a stochastic model and the deterministic model. I will walk through a generic model

before moving onto the a logistic model following Horsthemke & Lefever (2006) explanation.

First, we start with some deterministic model

dX = fλ(X)dt = (h(X) + λg(X))dt (1.7)

where X is the state of the system, and λ depends on the environment. If the constant

λ is replaced with a white noise term λt = λ + σξt, it can be written based on the Ito’s

stochastic differential equation (SDE Horsthemke & Lefever, 2006)

dXt = [h(Xt) + λg(Xt)]dt+ σg(Xt)dWt. (1.8)

From equation (1.8) we can use the Fokker-Planck equation (FPE) to find the stationary

probability density of the system state X. The FPE, which describes how the probability

density p(x, t) changes over time,

δtp(x, t) = −δxfλ(x)p(x, t) +
σ2

2
δxxg

2(x)p(x, t) (1.9)

is used to find the stationary distribution, ps(x),by taking the limit of the FPE solution,

p(x, t), for time tending to infinity.

This process of defining the SDE and FPE can be repeated for a more biologically relevant,

Verhulst model,
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dXt = λX −X2. (1.10)

which has two stationary solutions, x = (0, λ). Once again, we can add white noise into

the model by replacing the constant λ with λt = λ+ σξt resulting in the SDE

dXt = [λXt −X2
t ]dt+ σg(Xt)dWt

= f(Xt)dt+ σg(Xt)dWt

(1.11)

and the corresponding FPE

δtp(x, t) = −δx[(λx− x2)p(x, t)] +
σ2

2
δxxx

2p(x, t). (1.12)

The FPE is used to find the stationary probability density

ps(x) = Cx(2λ/σ
2)−2 exp

(
−2x

σ2

)
, (1.13)

where C is a normalizing constant so the integral of ps(x) = 1. By examining 1.13 we can

conclude that ps(x) is integrable over [0,∞), and that a solution only exists if the exponent

of x is greater than zero so λ > σ2. We can also calculate the extrema of ps(x) by solving

for the root of the derivative of ps(x) (eq. 1.13) over [0,∞] so

λxm − x2m − σ2xm = 0 (1.14)

is true when xm1 = 0 or xm2 = λ − σ2 as long as xm ≥ 0. Looking closer at 1.14, it

consists of three terms. The first two terms, λxm − x2m, are identical to the deterministic

model 1.10, and the third term is multiplied by the noise intensity, σ. This shows that the

mode is the stochastic analog of the equilibrium in a deterministic model. As the noise

intensity approaches zero, the extrema approach the deterministic equilibria. However, as

the noise increase to σ2 > λ the extremum, xm2 , approaches zero until there is only a single
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extrema at zero. Therefore any change in the extrema is due to noise alone.

We can repeat the same process of solving for the extrema of ps(x) for the general SDE

1.8 by using the general FPE equation 1.9 to calculate the ps(x) which can then be used the

find the extrema of the probability density are by solving for the root of dps(x)/dx which is

[h(xm) + λg(xm)]− σ2g(xm)g′(xm) = 0. (1.15)

As before, this expression can be broken down into two components, the first is the de-

terministic equilibria and the second is the effect on the extrema from the external noise,

σ. The ability to decompose the extrema expression into these components demonstrates

that the probability extrema (ie. modes) are an appropriate equivalent to the deterministic

equilibria.

As a minor secondary point, the extrema are an appropriate metric to track transitions for

two reasons. First, transitions are a change in the qualitative change to the potential meaning

the extrema must change for a transition to occur. Second, other available metrics —such as

the mean or higher moments —are not unique to a distribution, meaning a transition could

occur with minimal change in the mean, variance, etc.

1.4 Natural systems are ideal for NITs: noisy and non-

linear

The case studies presented above demonstrated how environmental noise can dramatically

change population trajectories. Environmental noise is an inherent requirement for a noise-

induced transition, while nonlinearity increases the likelihood of NITs arising (but see Lewon-

tin & Cohen, 1969). Given persistent environmental noise and prevalence of nonlinear re-

lationships in population dynamics, they are an ideal natural system to observe the NITs

phenomena in biological systems. In addition to the inherent stochasticity in natural sys-
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tems, the Anthropocene has increased environmental noise indirectly and directly.

The Anthropocene is defined, in part, by our impact on the climate. Predictions about

climate change include an increase in the frequency and magnitude of warm spells, or heat

waves across most land areas over the period of decades to centuries (Thornton et al., 2014).

Expected increases or decreases in precipitation vary by region, but the proportion of precip-

itation occurring during heavy rainfall events is expected to increase globally. These changes

in climate variability, rather than mean value, are often more meaningful for biological sys-

tems. For example, the agricultural gross domestic product of sub-Saharan countries are

closely tied to the interannual rainfall variability (Thornton et al., 2014). For theses rea-

sons, I consider environmental noise associated with climate change to be an example of an

indirect anthropogenic effect on environmental noise.

On one hand, indirect anthropogenic noise is a slow process that takes place over geolog-

ical time. On the other hand, a direct anthropogenic effect on environmental noise will be

more instantaneous. The direct harvesting, or manipulation of population sizes falls into this

category. Direct anthropogenic effects on environmental noise have a much shorter time be-

tween cause and effect, and the potential to be localized. The difference in geographic (local

vs global) and time (ecological vs geological) scales would require different detection meth-

ods, and stakeholders to change the anthropologically introduced noise. These differences in

the scale and the appropriate response is why I have made this distinction.

1.4.1 Theory beyond the small noise assumption

Most relevant ecological theory has been developed with the assumption that environmental

noise is relatively small, and merely introduces minor fluctuations around the deterministic

equilibrium. This “small noise” assumption is used to justify constant mean parameter

values when developing theoretical models. Exploring the limitations to this assumption can

be traced to the early discrete time models of Lewontin & Cohen (1969), and has shaped

the foundations of extinction theory.
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Extinction theory predicts that increasing environmental noise should increase time to

establishment and probability of extinction, while decreasing the time to extinction. An

experimental test of these predictions did not show an effect of environmental noise on time

to establishment, but did increase probability of extinction and reduced time to extinction

(Drake & Lodge, 2004). However, the relationship between extinction and environmental

noise depends on the organizational level of interest. While environmental noise can have

a negative impact on a population’s persistence, when multiple competing populations are

considered, environmental noise can have a stabilizing effect by allowing co-existence (Adler

& Drake, 2008; D’Odorico et al., 2008). As in models of a single population, environmen-

tal noise can also increase metapopulations’ probability of extinction. Increasing variation

of vital rates in metapopulations require larger patch sizes to maintain the same viability

level (ie. 5% extinction probability in five years). Troublingly for conservation efforts, the

minimum patch size is predicted to increase exponentially with environmental stochasticity

(Verboom et al., 2010).

1.5 Bringing theory to life

The previous sections have reviewed our current understanding of catastrophic change in nat-

ural systems. Traditionally, mechanisms explaining catastrophic change, kinetic parameter

change and alternative stable states, have been developed under the small noise assumption

(Fig. 1.1A,B). Predictions arising from these small noise mechanisms have been tested us-

ing observational data and experimental microcosms (As reviewed by Schröder et al., 2005;

Scheffer & Carpenter, 2003; Scheffer et al., 2012).

However, if we relax the small noise assumption an alternative, novel and overlooked

mechanism, NITs, can explain our observations of catastrophic changes (Fig. 1.1C). To

date, NITs in ecological systems have been described using theoretical models. As seen in

the ecological case studies, incorporating the variance of a parameter value can identify a
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previously unknown thresholds seriously impeding our predictive accuracy of future popu-

lations. The need to understand where these thresholds lie is compounded by the expected

increase in climate variability with climate change, and the prevalence of currently stressed

natural systems that characterize the Anthropocene.

Noise-induced transitions fundamentally change our understanding of nature’s predictabil-

ity. I will build on these concepts by translating the theoretical work into empirical studies

to demonstrate NITs. This will be done by pairing mechanistic models with single species

microbial microcosms experiments. The quantitative methods create system specific testable

predictions, while microcosms allow for highly replicated counterfactual conditions (Drake

& Kramer, 2012). I predict that adding environmental noise in the experimental micro-

cosms will result in population extinctions, while those in a constant environment will persist

indefinitely.

I demonstrate NITs in two separate microbial microcosm systems. The first microbial

system uses the cyanobacteria, Aphanizomenon flos-aqua, and a well described mechanistic

model of the species growth within a well mixed chemostat (Gerla et al., 2011). Environ-

mental noise is introduced by growing the cultures under variable light conditions. This

manipulation is equivalent to the first case study, variable carrying capacity, presented. I

predict that populations exposed to environmental noise will bleach due to photo-inhibition

before going extinct. This work can be found in chapters 2 (model) and 3 (experiment).

The second system uses the yeast, Saccharomyces cerevisiae BY4741:YFP, grown on a

substrate and paired with a generic logistic growth model including harvesting (Dai et al.,

2012; Dennis, 2002). In this case, environmental noise will be introduced by variable harvest

frequency and proportion just as in the second case study. I predict that the populations

subject to variable harvest will fail to produce visible colonies, while those subject to constant

harvest will produce visible colonies. This work can be found in chapter 4 (model) and 5

(experiment).

Finally, I will generalize the findings in the concluding chapter.
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Mechanistic model of Aphanizomenon

growth in a randomly fluctuating envi-

ronment

2.1 Introduction

Understanding the causes of fluctuations in population abundance over time is a key aim

of population ecology. These fluctuations have been attributed to climate, trophic inter-

actions, and non-linear dynamics (Post & Forchhammer, 2002; Stenseth et al., 2002; May,

1976; Cushing et al., 2001). These mechanisms were described assuming that a determin-

istic model was an appropriate description of the natural world. Of course, a deterministic

representation is not always appropriate. For example, environmental conditions may be

better represented with a random variable rather than a constant parameter value (May,

1973). Despite acknowledging this, much of the theory developed around environmental

stochasticity has been restricted to larger perturbations that lead to catastrophic change by

pushing the system from state to another state or small perturbations that create a cloud

of points around the deterministic equilibria. The challenge with this conception of environ-

mental stochasticity, or noise, is appropriately categorizing perturbations as large or small.

As an alternative framework, we can use to a stochastic model rather then a deterministic
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description of populations.

The shift from a deterministic to stochastic interpretation of natural systems changes

our conceptual understanding of stability within the system. I will first review stability in

a deterministic model and then how stability is defined within a stochastic model. A deter-

ministic model, with constant parameter values, has stable and unstable equilibria. Stability

is conceptually based on sensitivity to perturbations, defined mathematically by eigenvalues

(local stability) or a Lyapunov function (global stability). An equilibrium is stable if the

system returns to that value after a small perturbation, while any perturbations at an un-

stable equilibrium will not result in the system returning to the state prior to perturbations.

Alternatively, a ball-and-valley model, the geometric equivalent of the potential function,

allows us to develop some intuition about the system stability (as reviewed by Nolting &

Abbott, 2016). Here, the system state is the location of the ball, while the peaks and valleys

are the unstable and stable equilibria, respectively. The ball follows gravity to the closest

valley, or basin of attraction. Depending on the strength, perturbations can either wiggle

the ball at the bottom of the valley or move the ball to another valley by pushing the ball

uphill.

When the same phenomenological model is recast as a stochastic model, stability is de-

scribed in probabilistic terms. The probability distribution of population size is derived from

the Fokker-Planck equation which takes into account the ”drift” caused by the stochasticity

and the ”friction” of the underlying deterministic processes (May, 1973). The extrema of

the probability distribution are analogous to deterministic equilibria given that the distri-

bution approaches a Dirac delta peak at the deterministic equilibrium as variance tends to

zero (Horsthemke & Lefever, 2006). This is demonstrated analytically by examining the

expression for the extrema of the probability density function which can be broken down

into two terms. The first term always matches the deterministic equilibria regardless of

external noise, while the second term is a function of the external noise represented by the

noise variance. As the noise approaches zero, the stochastic equilibria approaches the deter-
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ministic equilibria. Given that we are able to evaluate the stability of a stochastic system

with respect to the deterministic counterpart, we can easily explore the impact of noise on

stability.

Interestingly, incorporating environmental stochasticity into models can yield qualita-

tively different picture of stability compared with the deterministic equivalent. Returning

to the ball-and-valley model, environmental stochasticity can create, destroy, move, or re-

shape the peaks and valleys the ball moves along. The change in number and/or location

of basins of attraction is referred to as a transition, and in this case it is a noise-induced

transition (NIT). Other fields, mainly chemistry and physics, interested in system dynamics

have demonstrated NITs are possible in experiments (Horsthemke & Lefever, 2006). While

ecology has overlooked NITs since theoretical models were presented in the 1970s, NITs

can have a profound impact on our understanding of population ecology, and conservation.

However, we have never attempted to recreate this phenomena in an experimental system

(May, 1973).

This chapter reports on a theoretical analysis for a type of NIT, a noise-induced ex-

tinction (NIE), in an experimental system by using a mechanistic model of algal growth

which accounts for photo-inhibition, and light attenuation in a well mixed chemostat. A

deterministic model published by Huisman & Weissing (1994) was modified to include vari-

able incident light. Simulations with a range of environmental noise were analyzed to make

testable predictions for future chemostat experiments. First, I will present the mechanistic

model without environmental noise. Secondly, I will present the same model with environ-

mental noise added to the incident light. Finally, I will compare the simulations from the

deterministic and stochastic models to identify the noise threshold where the behavior of the

two models diverge indicating the region where a NIE should be observed in the experimental

system.
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2.2 Methods

The impact of environmental noise on Aphanizomenon flos-aqua population dynamics was

modeled as a stochastic differential equation (SDE) where incident light is a random nor-

mal variable. The SDE model was based on a previously described, mechanistic, ordinary

differential equation (ODE) model developed by Huisman & Weissing (1994). Both mod-

els assume the population is grown in a well mixed, and light-limited chemostat. From

this assumption, the growth rate is a function of photosynthetically active radiation (PAR,

λ = [400− 700nm]). However, is not constant across depth in the chemostat. The incident

light (Iin) is attenuated following the Beer-Lambert law which accounts for light pathlength

or depth (z), light absorbance due to the media (Kbg), light absorbance of an algal cell (k),

and the current algal density (A; Eq. 2.1). Additionally, the reproductive response to is non-

linear. Like most cyanobacteria, Aphanizomenon growth is inhibited at high light intensities.

Early mechanistic models of photoinhibition collapsed the cellular photosynthetic machinery

into a photosynthetic factory (PSF) which could be in one of three states: resting, active,

or inhibited (Eilers & Peeters, 1988). This PSF function can then be rewritten in terms of

pmax, the maximum specific production rate, Iopt, the optimal light intensity, and Ik, the

light intensity at pmax if the initial slope of the p-I curve was maintained (Eq. 2.2, Fig. 2.1,

Gerla et al. (2011)). The population overcomes photo-inhibition through self-shading which

results in an Allee effect or a minimum critical density at a given light intensity. The strength

of the Allee effect increases with the difference between Iopt and Ik(Fig. 2.1). Eq. 2.1 and

Eq. 2.2 are used to derive the per capita growth rate as the average light available to the

population calculated by the integral of the light attenuation function, I(z), divided by the

total depth zmax minus cell loss in the effluent, l (Eq. 2.3). It is important to note that the

unit of the population density, A, is light attenuation (m−1, See Appendix A for details).

This non-traditional unit was used because it is easy to measure, and match experimental

data. See Tbl. 2.1 and Tbl. 2.2 for parameter units and values.
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I(z) = Iin ∗ exp
(
− z(kA+Kbg)

)
(2.1)

P (I) =
pmaxI

Ik
I2opt

I2 +
(

1− 2 Ik
Iopt

)
I + Ik

(2.2)

dA

dt
= A

(
1

zmax

∫ zmax

0

P (I(z))dz − l

)
(2.3)

The symbolic solution to the ODE model was obtained using Maple 2016 (Eq. 2.3),

and was used to verify the numerical results (See Appendix B). The numerical solution

was obtained using R package deSolve (R Core Team, 2018; Soetaert et al., 2010). The

deterministic point equilibria were used to guide selection of initial conditions for SDE model

simulations. Environmental noise was added to the ODE model by replacing the constant

incident light parameter, Iin = 600, with a random normal variable Iin N(600, σ2) creating

the SDE model. A new light condition was drawn every 28 minutes in the simulation. The

state space was explored by using a factorial design of initial population densities (A0 =

(1, 25)), and environmental noise (σ = (0, 500)). Simulations were run in parallel using R

software (R Core Team (2018); Corporation & Weston (2018); Microsoft & Weston (2017),

see Appendix C for code). For each of the 12,500 initial condition by environmental noise

treatments 100 simulations were run for 500 days (approx. 125 generations under ideal

growth conditions). Simulations were thinned by 90% and a burn-in period of 300 days

was removed prior to any analysis. Population trajectories were converted to histograms to

derive the steady state distribution, and mode(s). The area under the normalized steady

state distribution is equivalent to the probability of a given population size.
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2.3 Results

The steady state of the deterministic system is incident light dependent, while the steady

state of the stochastic system is dependent on both the mean and variance of the incident

light. Based on both analytic and numeric solutions of the deterministic model, alternative

stable states arise between constant incident light values of 370−1050 PAR (Fig. 2.2). Pop-

ulations grown with a constant incident light of 600 PAR have a minimum viable density

(Nc) of 6.98 m−1 and an upper stable equilibrium of 21.35 m−1. Based on this, the mean

incident light of 600 PAR was chosen for the stochastic model simulations. As the environ-

mental noise (σ) was increased, the stochastic and deterministic model behavior diverged

(Fig. 2.3). The effect of environmental noise on the most probable population size was de-

termined by tracking the mode(s) of the steady state distribution. Populations simulated

with low to moderate environmental noise (0 < σ ≤ 200) were likely to approach the local

stable equilibrium (extinction or 21.35 m−1) as determined by the initial population size.

Additionally, sufficiently large initial populations (A0 >> Nc) were unlikely to go extinct

within 100 days of the simulation post burn-in period (Fig. 2.5).

Populations simulated with large environmental noise (200 < σ ≤ 300) were more likely

to go extinct despite sufficiently large initial populations. This is due to a narrowing of the

initial conditions that could lead to persistence due to an increased unstable equilibrium and

a decreased upper stable equilibrium (Fig. 2.4). Populations that were able to persist had a

suppressed mode, never reaching the deterministic upper equilibrium value. All populations

simulated with extreme environmental noise (σ ≥ 320) went extinct within the simulation

period regardless of initial population size.

In between 300 < σ < 320 the last hints of the deterministic behavior disappear even for

sufficiently large initial populations and noise-induced extinctions prevail. This can be seen in

the increase in the left tail of the steady state distribution (Fig. 2.6). Additionally, the speed

of extinction increased with environmental noise. The collapse of the upper equilibrium
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branch resulting in a single equilibrium value at extinction is recovered in the stochastic

bifurcation diagram (Fig. 2.4).

2.4 Discussion

I modified a mechanistic growth model of Aphanizomenon published by Huisman & Weissing

(1994) to incorporate stochastic incident light conditions. The stochastic conditions were

drawn from a random normal variable with a mean of 600 PAR, and a range of noise

intensities (∼ N(600PAR, σ2)). Population simulations with stochastic incident light were

compared to simulations with a constant ideal incident light of 600 PAR. The simulations

were used to calculate the equilibria under varying initial state and noise conditions. When

the environmental noise was increased past σ = 325, the stochastic stability profile underwent

a qualitative change with respect to the deterministic stability profile resulting in a single

equilibrium at extinction. This is a theoretical demonstration of environmental variability

causing population extinctions despite an ideal mean environmental condition, also known

as a noise-induced extinction.

Most prior work on noise-induced extinctions and more generally noise-induced transi-

tions has been done outside the field of ecology (Kabashima et al., 1979; Kawakubo et al.,

1973b,a; Kabashima et al., 1976; Kawakubo et al., 1981; Briggs & Rauscher, 1973; De Kepper

& Horsthemke, 1979). For example, Arecchi & Harrison (2012) paired stochastic models with

experimental data to demonstrate noise-induced transitions leading to bistability in lasers.

While ecology and statistical physics are disparate, the transition process to bistability in

lasers overlaps with the transition to extinction in populations. The path to extinction in

ecological populations is often initiated by an initial transition to bistability. Populations

with two deterministic equilibria grown under stochastic environmental conditions often pass

through a bimodal phase with extinction and the upper equilibrium becoming equally prob-

able population sizes before transitioning to extinction as the only outcome. This is the case
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for at least state-dependent dichotomous noise, white shot noise in the logistic harvest model,

and Gaussian white noise in the genetic model (D’Odorico et al., 2007, 2006; Horsthemke &

Lefever, 2006).

Within the ecological disciplines, NITs were introduced by May (1973) through noise-

induced extinction using the logistic model with a stochastic carrying capacity. In trying

to assess if our findings of a noise-induced extinction are expected under previously devel-

oped theory, we must take the underling deterministic stability and the type of noise into

account. Like much of the theoretical work describing grassland ecosystems, the A. flos-

aqua system also has alternative stable states in the deterministic skeleton (Yu et al., 2016;

D’Odorico et al., 2007). Noise in the grassland systems gives rise to an intermediate stable

state within the stochastic system, in essence the noise enhances the system’s stability by

flattening the hysteresis loop to a continuous monotonic relationship between environmental

condition and system state (D’Odorico et al., 2005). This flattening also occurs in the al-

gal system demonstrated by the downward curve of the upper equilibrium of the stochastic

bifurcation between an environmental noise of σ = (150, 325) (Fig.2.4). However, the algal

system still undergoes a discontinuous or first-order transition to extinction at σ ∼ 325.

This difference in transition outcomes, stability and extinction, between the grassland and

algal systems is a bit surprising but also stresses the need to take the type of noise into

account when making predictions on the type of noise-induced transition. The algal growth

model incorporates continuous Gaussian white noise, as opposed to the grassland ecosystems

subjected to discrete noise (dichotomous or shot) (Ridolfi et al., 2011). In other instances

of Gaussian white noise, most notably, May (1973) logistic model with a stochastic carrying

capacity, extinction is the end point for the phase transition induced by the stochastic noise.

In summary, a noise-induced extinction is unexpected based on the underlying deterministic

non-linearity, but expected based on the type of noise incorporated into the deterministic

dynamics. These contrasting hypotheses for the transition outcome in this system stresses

the need to develop a better heuristic understanding of when and how the non-linear system
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properties and noise influence the type of phase transition expected.

The likelihood of a system experiencing an extreme value increases with environmen-

tal noise. This might lead some to ask if the observed critical dynamics are truly system

properties or arise from the sampling process used to create the environmental noise. There

are three different ways to respond to this critic. First, we can infer the NITs are due to

the environmental noise rather than the sampling processes by measuring the probability of

a small population size at different noise treatments. If the observed extinctions in model

simulations are the result of the sampling process, we would expect a non-monotonic relation-

ship between the probability of a small population size and the noise treatment. Whereas a

monotonic relationship would be observed if extinction arose from the dynamical properties

of the system experiencing noise as is the case for this work (Fig. 2.6). Additionally, time

to extinction continuously decreases with increasing noise treatments which had been pre-

dicted by (Drake & Lodge, 2004). Secondly, the possibility of the sampling process driving

the observations has been rigorously tested by comparing systems experiencing dichotomous

Markov noise where the environment switches between two value with a random variable

permanence time, and those experiencing the two environmental values at a fixed perma-

nence time. NITs only appear in the systems experiencing the variable switching rate, and

not in the constant switching rate environment (Ridolfi et al., 2011; Horsthemke & Lefever,

2006). Finally, the last response to critics surrounding the mechanism that gives rise to the

transitions draws on the connection between the deterministic and stochastic equilibria. The

expression for the extrema of the probability density function of the stochastic model, which

are treated as equivalents to the deterministic equilibria, can be broken down into two terms

(Horsthemke & Lefever, 2006). The first term is merely the deterministic equilibria, and

the second is multiplied by the noise term. As the noise term approaches zero, stochastic

equilibria approaches the deterministic equilibria. From this, we can conclude any deviation

between the deterministic and stochastic equilibria is a sole function of the noise term.

Fluctuations in population abundances overtime have been attributed to multiple factors
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including climate, trophic interactions, and non-linear dynamics (Post & Forchhammer, 2002;

May, 1976; Cushing et al., 2001). These mechanisms all assume a deterministic representa-

tion of the system is sufficient, even as our understanding of the importance of stochasticity

increases (Connell & Slatyer, 1977; Lewontin, 1969; May, 1977; Nolting & Abbott, 2016;

Dennis et al., 1991; Tuljapurkar & Orzack, 1980). This work incorporates environmental

stochasticity into a deterministic growth model of Aphanizomenon flos-aqua and reports the

theoretical analysis of a noise-induced extinction by predicting the intensity of environmental

noise needed for the deterministic and stochastic models to qualitatively differ in stability.

These predictions can now be experimentally tested to determine the plausibility of NITs in

biological systems which is the first step to developing a heuristic understanding of NITs in

ecology.
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2.5 Figures

Figure 2.1: Specific production of Aphanizomenon flas-aqua as a function of incident light.
The relationship is described by Eq. 2.2 and is a function of the maximum growth rate
(pmax), the light intensity at the maximum growth rate (Iopt), and the light intensity of the
maximum growth rate in the absence of photoinhibition (Ik).
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Figure 2.2: Analytical and numeric solution of the ODE model. The analytical solution is in
black. The stable equilibrium is a solid line, and unstable equilibrium is the dashed line. The
region of alternative stable states is between 370− 1050 PAR. The R code for the numeric
solution was tested against the analytical solution. The numeric solution is plotted as the
green points. These equilibrium values were based on a starting population of 10 m−1.
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Figure 2.3: The top row are examples of simulated populations subject to light with a
mean intensity of 600 PAR, and increasing environmental noise (sigma = 200,300,325, and
375, from left to right). The red dashed line is the deterministic critical threshold (Nc).
Simulations were initialized with a range of population densities, and were used to calculate
the steady state of the stochastic model shown in the bottom row after removing a 400 day
burn-in period.
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Figure 2.4: Stochastic bifurcation diagram and heatmap. The deterministic equivalent
steady (solid line) and unsteady (dashed line) equilibrium are plotted as a function of envi-
ronmental noise (σ, µ = 600 PAR).The equilibrium values were estimated from the modes
and anti-modes of the density distribution calculated for each environmental noise. These
distributions were used to create the heatmap. The hot and cool colors indicate a mode and
anti-mode, respectively.
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Figure 2.5: The proportion of 100 simulated populations that went extinct within 100 days.
The extinction rate is a function of environmental noise (∼ N(600 PAR, σ2)) and initial
population size (A0). The critical threshold for the deterministic model is Nc = 6.98 m−1.
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Figure 2.6: The probability of a simulated population being less than 0.5m−1 when started
near the deterministic upper equilibrium value (A0 = 22m−1). Probability and standard
error was calculated from 100 simulated populations for 100 days after a burn-in period
of 400 days, and is the area for P (A < 0.5m−1) of the steady state distribution. The
probability of a very small population increases monotonically with environmental noise
(∼ N(600 PAR, σ2)).
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2.6 Tables

Table 2.1: Constant Parameter Values. Parameter values were either directly measured,
calculated from their relationship to measurable values, or estimated from the population
growth rate.

Parameter Fixed Value Interpretation Units Variable Type

zmax 0.035 total water column depth (mixing depth) m measured, fixed
Kbg 0.0011 total attenuation due to nonphy-

toplankton componenets (back-
ground turbidity)

m−1 measured, fixed

k 1 specific attenuation coefficient of
phytoplankton

m2g−1 derived, fixed

I?opt 150 light intensity where pmax is observed? PAR estimated, fixed
I?k 40 light intensity where pmax would

be observed in absence of
photoinhibition?

PAR estimated, fixed

p?max 0.49 max growth rate of culture? day−1 estimated, fixed
l 0.4 specific loss rate day−1 measured, varies

with time due to
experimental er-
ror

? Estimated by Veraart et al. (2012).
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Table 2.2: Variable Parameter Values. These values varied between simulations to capture
the impact of initial condition dependent steady states.

Parameter Value Range Interpretation Units

A0 (1,25) by 5 initial population density
(light attenuation)

g m−1

Iin ∼ N(600, (0− 600)2) light intensity? µmol photons m2 sec−1 ≡ PAR
τn (6× 10−3, 4× 10−2) integral time step passed to

lsoda
day−1

τe (6× 10−3, 4× 10−2 ) environmental noise time
step, duration of noise

day−1

? The model expects units of PAR, however the lights are programmed using duty cycle
(0,255). A standard curve will be used to convert PAR to duty cycle for experimental
treatments.
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2.7 Appendix A: Model Units

The incident light decays with depth according to the Beer-Lambert law. The light intensity

at a given depth, I(z), is in units of PAR.
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I(z) = Iin ∗ exp
(
− zkA+ zKbg)

)
= ∗exp

(
− cmcm2
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cm3
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1

cm

)
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(2.4)

The specific production function is

P (I) =
I

Ik
I2opt

I2 +
(

1− 2 Ik
Iopt

)
I + Ik

, (2.5)

and is unit free. All incident light, I∗, has a unit of and cancel each other out. Therefore

P (I(z)) is also unit free.

dA

dt
= A pmax

1

zmax

∫ zmax

0

P (I(z))dz − lA
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(
pmax

1
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∫ zmax

0

P (I(z))dz − l
)

=
1

m

( 1

day

1

m

∫ zmax

0

P (I(z)) m− 1

day

)
=

1

m

1

day

(2.6)

2.8 Appendix B: Symbolic Solution

The symbolic solution to the ODE model (Eq. 2.3) was obtained using Maple 2016. The

parameters of the primary productivity at a given light intensity (P (I), Eq. 2.2) were

condensed so
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P (I) =
I

Ik
I2opt

I2 +
(

1− 2 Ik
Iopt

)
I + Ik

=
I

a ∗ I2 + b ∗ I + c

(2.7)

where

a =
Ik
I2opt

b =
(

1− 2
Ik
Iopt

)
c = Ik.

With these substitutions, the solution is

∫ zmax

0

P (I(z))dz = 2AIinpmax



arctan

(
2aI2in exp[(zmax(−Ak−Kbg)]+bIin

d

)
+ arctan

(
2aI2in+bIin

d

)
dzmax(Ak +Kbg)


− lA (2.8)

where

d =
√
I2in(4ac− b2).

2.9 Appendix C: R Code

Below are the functions, and objects used to simulate Aphanizomenon growth.

2.9.1 Global Parameter Values

These values are from Veraart et al. (2012).

Ik <- 40 # Light intensity at p_max if p(I) slope was linear (PAR)

Iopt <- 150 # Optimal light for photosynthesis (PAR)
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loss <- 0.4 #Dilution Rate (day ^-1)

prod.max <- 0.49 # maximium specific production rate when plotted as a

function of light intensity (day ^-1)

media.atten <- 10^-6 #Light extinction of media (m ^-1)

algal.atten <- 3 # Light extinction coefficient of biomass (m ^-1)

depth <- .05 #chamber depth (m)

2.9.2 Dynamical Model

All simulations call on PIz.growth as the func argument in the lsoda function as part of

the deSolve

PIz.growth <- function(t, y, params){

A <- y #algal biomass density (g/m^3) OR total biomass of water col (g/

cm^2)

#parameters needed

# A, (mg/mL)

# Iin , incident light (PAR)

# Ik = Iink # Light intensity at p_max if p(I) slope was linear (PAR)

# l = loss , #Dilution Rate (hour ^-1)

# pmax = prod.max , #max specific production rate (hour ^-1)

# kd = media.atten , background light attentuation (cm^-1)

# k = algal.atten , algal light attenutation (cm^2/mg)

# zmax = depth , depth (cm)

# Imm = immigration (mg/mL),

with(as.list(c(params)), {

dA <- Imm + A * (-l + pmax * (2 * Iin *

(atan(Iin*(2*Iin*(Ik / ((Ik+Idiff) ^ 2))+(1 - 2 * (Ik / (Ik+Idiff))))

/ sqrt(Iin^2 * (-(1 - 2 * (Ik / (Ik+Idiff)))^2 + 4*(Ik / ((Ik+Idiff

) ^ 2))*Ik)))

- atan(Iin*(2*(Ik / ((Ik+Idiff) ^ 2))*Iin*exp(-zmax*A*k - zmax*kd) +

(1 - 2 * (Ik / (Ik+Idiff)))) / sqrt(Iin^2 *(-(1 - 2 * (Ik / (Ik+
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Idiff)))^2 + 4*(Ik / ((Ik+Idiff) ^ 2))*Ik)))) / (zmax*(A*k+kd) *

sqrt(Iin^2 * (-(1 - 2 * (Ik / (Ik+Idiff)))^2+4*(Ik / ((Ik+Idiff) ^

2))*Ik))))) #everything after pmax is the light integrated , density

dep growth rate

return(list(dA))

})

}

2.9.3 Simulate Environmental Conditions

The environmental conditions were simulated separately than the population trajectories

to easy computational load, and allowed for reproducibility when changing the underlying

deterministic model.

#function to return matrix with ncol(n.sim * length(light.sd)) and nrows(t

.max/delta.t). Each col has mean light.mean and standard deviation

light.sd

light.series=function(t.max , n.sim=20, light.mean =600, light.sd=0, delta.t

= 0.02, delta.ratio=1, rep.seed =9782435){

#delta.t: integral step size for lsoda (Days)

#delta.ratio: length of environmental noise time step vs system time

step. MUST BE WHOLE NUMBER

#t.max: max time in series/ length of time series (Days)

#n.sim: number of replicates or simulations for given light.sd condition

#light.mean: mean light of normal distribution

#light.sd: sd of light from a normal distribution , can be a vector

light.treatment <- NULL

if(delta.ratio ==1){
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tau <- round(t.max/delta.t) #determine number of light conditions in a

simulation times long with interval delta.t

}else{

tau <- round(t.max/(delta.t*delta.ratio))

}

for( k in light.sd){ #for multiple sd treatments if wanted

for(j in (1:n.sim)){ #j cols for each light.sd (k) treatment

rep.j <- rnorm(tau , light.mean , k) #light regime for single

simulation

rep.j[rep.j<0] <- 0.01 #negative light is replaced with zero PAR

light.treatment <- cbind(light.treatment , rep.j) #save it in a

matrix

}

}

if(delta.ratio!=1){light.treatment <- apply(light.treatment ,2,rep , each=

delta.ratio)}

return(light.treatment)

}

2.9.4 Simulate Populations with Light Conditions

The single light condition function aphani.sim is called in the parallel function aphani.para.sim.

#Function to run simulations with varying light

aphani.sim=function(A0 ,light.treatment , light.sd="", delta.t=0.02, n.sim

=20,pmax=prod.max , l=loss ,Iink =Ik ,Iind=Idiff ,zmax=depth ,k=algal.

atten ,kd=media.atten , immigration =1*10^-10, colnm = TRUE){

#Updated with PIz.growth in RatePIz.R
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PIz.growth <- function(t, y, params){

A <- y #light attenuation (m^-1)

#parameters needed

# A, light attenuation (m^-1)

# Iin , incident light (PAR)

# Ik = Iink # Light intensity at p_max if p(I) slope was linear (PAR)

# l = loss , #Dilution Rate (day ^-1)

# pmax = prod.max , #max specific production rate (day^-1)

# kd = media.atten , background light attentuation (m^-1)

# k = algal.atten , algal light attenutation (m^-1)

# zmax = depth , depth (m)

# Imm = immigration ,

# a = a1 , (Iink / ((Iink+Idiff) ^ 2))

# b = b1 , (1 - 2 * (Iink / (Iink+Idiff)))

with(as.list(c(params)), {

dA <- Imm + A * (-l + pmax * (2 * Iin *

(atan(Iin*(2*Iin*(Ik / ((Ik+Idiff) ^ 2))+(1 - 2 * (Ik / (Ik+Idiff)))

) / sqrt(Iin^2 * (-(1 - 2 * (Ik / (Ik+Idiff)))^2 + 4*(Ik / ((Ik+

Idiff) ^ 2))*Ik)))

- atan(Iin*(2*(Ik / ((Ik+Idiff) ^ 2))*Iin*exp(-zmax*A*k - zmax*kd) +

(1 - 2 * (Ik / (Ik+Idiff)))) / sqrt(Iin^2 *(-(1 - 2 * (Ik / (Ik+

Idiff)))^2 + 4*(Ik / ((Ik+Idiff) ^ 2))*Ik)))) / (zmax*(A*k+kd) *

sqrt(Iin^2 * (-(1 - 2 * (Ik / (Ik+Idiff)))^2+4*(Ik / ((Iink+Idiff)

^ 2))*Ik))))) #everything after pmax is the light integrated ,

density dep growth rate

return(list(dA))

})

}

require(deSolve)

#A0 starting population

#light.treatment: matrix of incident light created by light.series ()
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#delta.t: delta.t used to make light.treatment

#light.sd: sd used to make light.series (), used for naming col

#n.sims: number of sim at each sd in light_series , used for naming col

w.solution <- c()

for(r in c(1: ncol(light.treatment))) { #loop through light sequence for

each replicate population

w.series <-c() #for first time step in simulation

I.treatment <- as.numeric(light.treatment [1,r]) #pull out starting

incident light

ode.params <- c(pmax=pmax , Ik=Iink , Idiff=Iind , Iin=I.treatment , zmax

=zmax , k=k, kd=kd, l=l, Imm=immigration) #parameters for ode solver

ode.times <- c(0,delta.t) #time for ode solver

w.series <- lsoda(A0, ode.times , PIz.growth , parms=ode.params) #ode

solve from t=0 to delta.t

for(t in 2:nrow(light.treatment)){ # loop through remaining time steps

of replicate population

A <- w.series[nrow(w.series) ,2] #set population density based on

last ode solution

#if NA set to 0

#if(w.series[nrow(w.series) ,2]=="NaN") {A <- 0} else {A <- w.series[

nrow(w.series) ,2]}

I.treatment <- as.numeric(light.treatment[t,r]) #pull out incident

light of current time step

ode.params <- c(pmax=pmax , Ik=Iink , Idiff=Iind , Iin=I.treatment ,

zmax=zmax , k=k, kd=kd , l=l, Imm=immigration) #parameters for ode

solver , update I.treatment

ode.times <- c(w.series[nrow(w.series) ,1],w.series[nrow(w.series)

,1]+delta.t ) #time for ode solver

w.temp <- lsoda(A, ode.times , PIz.growth , parms=ode.params)[2,] #
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save time , and w at next time step

w.series <- rbind(w.series ,w.temp)#save it

}

if(r==1) {w.solution <- w.series} else {w.solution <-cbind(w.solution ,w

.series [,2])} #for first simulation

}

rownames(w.solution)<-NULL

if(colnm == TRUE){colnames(w.solution) <- c("time", paste("A0",A0 , "sd",

rep(light.sd , each=n.sim),".rep" ,1:n.sim , sep=""))} #name each

population (col) with treatment conditions

return(w.solution)

}

2.9.5 Parallel Simulation Functions

The function light.series.list is used to create the environmental noise. This is then

fed into aphani.para.sim to create simulations.

#function to return list of matrix with ncol(n.sim * length(light.sd)) and

nrows(t.max/delta.t). Each col has mean light.mean and standard

deviation light.sd, each list entry has a different light.sd

light.series.list=function(t.max , n.sim=100, light.mean =600, light.sd=0,

delta.t = 0.02, delta.ratio =1){

#delta.t: integral step size for lsoda (Days)

#delta.ratio: length of environmental noise time step vs system time

step. MUST BE WHOLE NUMBER

#t.max: max time in series/ length of time series (Days)

#n.sim: number of replicates or simulations for given light.sd condition

#light.mean: mean light of normal distribution

#light.sd: sd of light from a normal distribution , can be a vector
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light.list <- list()

if(delta.ratio ==1){

tau <- round(t.max/delta.t) #determine number of light conditions in a

simulation times long with interval delta.t

}else{

tau <- round(t.max/(delta.t*delta.ratio))

}

for( k in 1: length(light.sd)){ #for multiple sd treatments if wanted

light.treatment <- NULL

for(j in (1:n.sim)){ #j cols for each light.sd (k) treatment

rep.j <- rnorm(tau , light.mean , light.sd[k]) #light regime for

single simulation

rep.j[rep.j<0] <- 0.01 #negative light is replaced with zero PAR

light.treatment <- cbind(light.treatment , rep.j) #save it in a

matrix

}

if(delta.ratio!=1){light.treatment <- apply(light.treatment ,2,rep ,

each=delta.ratio)}

light.list[[k]] <- light.treatment

}

return(light.list)

}

#Function to run many sims with different initial conditions but same set

of light treatments in parallel (ie. vertical slice of stochastic

bifurcation plot)

#updated with Idiff instead of Iopt based on new PIz.growth ode function

aphani.para.sim = function(cores = 2,
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A0.seq ,

treat.list ,

treat.names ,

aphani.sim1 = aphani.sim ,

delta.t = 0.02,

pm = prod.max ,

ls = loss ,

Ik1 = Ik ,

Id1 =Idiff ,

dp = depth ,

aa = algal.atten ,

ma = media.atten ,

immi = 1 * 10 ^ -10) {

# cores: number of cores to use in parallel

# A0.seq: initial conditions to simulate for each light.list entry

# treat.list: made by light.series.list; list of light treatments with

length unique(light.sd)

#treat.names: vector of light.sd used to make treat.list

#model parameter values held constant

# delta.t=0.02

# pmax=prod.max

# l=loss

# Iink =Ik

# Iinopt=Iopt

# zmax=depth

# k=algal.atten

# kd=media.atten

# immigration =1*10^-10

require(dplyr)

require(doParallel)

require(foreach)
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merge.by.time <- function(a, b) {

merge(a, b, by="time")

}

# make cluster

cl <- makeCluster(cores)

registerDoParallel(cl)

results <-

foreach(i = 1: length(treat.list), .packages = "foreach") %dopar% { #

default returns each iteration as an entry in a list

foreach(A = A0.seq , .combine = merge.by.time) %do% {

aphani.sim1(

A0 = A,

light.treatment = treat.list[[i]],

light.sd = treat.names[i],

delta.t = 0.02,

n.sim = ncol(treat.list[[i]]),

pmax = pm ,

l = ls ,

Iink = Ik1 ,

Iind = Id1 ,

zmax = dp ,

k = aa ,

kd = ma ,

immigration = immi

)

}

}

stopCluster(cl)
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return(results)

}

2.9.6 R Session Details

sessionInfo ()

R version 3.6.1 (2019 -07 -05)

Platform: x86_64-pc-linux -gnu (64-bit)

Running under: Ubuntu 18.04.5 LTS

Matrix products: default

BLAS: /usr/lib/x86_64-linux -gnu/openblas/libblas.so.3

LAPACK: /usr/lib/x86_64-linux -gnu/libopenblasp -r0 .2.20. so

locale:

[1] LC_CTYPE=en_US.UTF -8

[2] LC_NUMERIC=C

[3] LC_TIME=en_US.UTF -8

[4] LC_COLLATE=en_US.UTF -8

[5] LC_MONETARY=en_US.UTF -8

[6] LC_MESSAGES=en_US.UTF -8

[7] LC_PAPER=en_US.UTF -8

[8] LC_NAME=C

[9] LC_ADDRESS=C

[10] LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF -8

[12] LC_IDENTIFICATION=C

attached base packages:

[1] parallel stats graphics

[4] grDevices utils datasets

[7] methods base
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other attached packages:

[1] doParallel_1.0.14 iterators_1.0.12

[3] foreach_1.4.7 dplyr_0.8.3

[5] deSolve_1.24

loaded via a namespace (and not attached):

[1] Rcpp_1.0.2 codetools_0.2-16

[3] crayon_1.3.4 assertthat_0.2.1

[5] R6_2.4.0 magrittr_1.5

[7] pillar_1.4.2 rlang_0.4.10

[9] rstudioapi_0.11 tools_3.6.1

[11] glue_1.3.1 purrr_0.3.2

[13] compiler_3.6.1 pkgconfig_2.0.2

[15] tidyselect_1.1.0 tibble_2.1.3
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Experimental demonstration of a noise-

induced transition

3.1 Introduction

Natural systems continuously change and take on new states. Ecologists have developed

theories to explain these changes in population abundance over time such as community

succession, competitive exclusion, predator-prey limit cycles and alternative stable states

(abbreviated as ASS; Connell & Slatyer, 1977; Lewontin, 1969; May, 1977; Nolting & Ab-

bott, 2016). Within the ASS framework, the system changes states either due to external

disturbances or a change in the stability landscape. This landscape is created by plotting

the system’s potential against the system value such that the minima and maxima are stable

and unstable equilibria, respectively (Strogatz, 2001). Stability can be intuitively determined

by imagining the current system state is a ball sitting on the plotted potential surface (as

reviewed by Nolting & Abbott, 2016). The ball follows gravity to the closest valley or stable

equilibrium. Changes in the state of the system arise in one of two paths (Beisner et al.,

2003). In the first path, the stability landscape changes with a change in a parameter value.

As an example, we can think about the logistic model which has equilibria at zero, and car-

rying capacity (K). Given the growth rate (r) is greater than one, the potential function will

have a valley centered at the carrying capacity and a peak at zero. As the carrying capacity
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is decreased, the valley in the potential function shifts towards extinction until K = 0. When

the carrying capacity is zero, the potential function has a peak at carrying capacity and a

valley at extinction. Changes in the parameter value do not always map one-to-one onto

changes in the potential function (Scheffer et al., 2001, 2009). If we repeated this process

by slowly decreasing the growth rate, the potential function would not change until the rate

is equal to one. In the second path, perturbations can change the system state by pushing

the ball from one valley or basin of attraction to another, rather than shifting the location

of the valley. Examples of sufficiently large perturbations include species introduction, cli-

mate oscillations, and sea-level rise (Chase, 2003; McGlathery et al., 2013; Jia et al., 2015;

Scheffer et al., 2001) Despite acknowledging the role of external forces, most theory about

alternative stable states focuses on a shift in a mean environmental parameter value while

ignoring parameter variance (Beisner et al., 2003).

The theories described above, for the most part, assume that a deterministic model of

the system is an appropriate approximation for understanding the dynamics. However, in

cases with strong non-linear feedback and noise on a similar time scale as the deterministic

system a stochastic model is more appropriate (May, 1973; Tuljapurkar & Orzack, 1980;

Horsthemke & Lefever, 2006; Ridolfi et al., 2011a). As an example, May (1973) compared

a logistic model with either a fixed or varying carrying capacity (K vs Ksg ∼ N(µ, σ2)).

When the variance in the carrying capacity was small, the equilibria of the deterministic and

stochastic model were similar. In other words, in the ball-and-valley model a small variance

wobbles the ball at the bottom of the valley, in this case at the carrying capacity. As the

variance increases the upper equilibrium decreases or the valley shifts from the carrying

capacity towards extinction. At σ ≤ K/2 the system undergoes a transition and the most

probable population size is extinction. This qualitative change in the shape of the potential

function is called a transition, and in this case it is a noise-induced transition (NIT). The

noise-induced extinction (NIE) described by May (1973) is a subset of transitions that can

result in a change in the number and/or location of valleys in the potential landscape (Ridolfi
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et al., 2011b).

While equilibria are point or limit-cycles in deterministic models, equilibria in a stochas-

tic model are defined in probabilistic terms. Here, the extrema of the stationary probability

distribution (SPD) of population size is the stochastic equivalence of deterministic equilib-

ria; modes correspond to stable equilibria while anti-modes correspond unstable equilibria

(Horsthemke & Lefever, 2006). The NIT can be shown analytically by solving for the SPD

extrema which breaks down into two terms (Horsthemke & Lefever, 2006). The first term

is the extrema in the noise-free model, and the second term of the SPD extrema expression

is multiplied by the variance, so as the variance tends to zero the extrema approach the

deterministic, noise-free equilibria. The ability to breakdown the expression for the extrema

into two terms is critical for two reasons. First, the extrema change with a transition making

it an appropriate metric to detect the occurrence of NITs. Second, the change in extrema

is dependent only on the variance or noise in the system making it a specific metric for

detecting NITs. These characteristics support the use of a single metric, extrema, to detect

NITs in empirical systems.

While this novel mechanism leading to alternative states was proposed over 50 years

ago, it has been understudied in ecology (but see Ridolfi et al., 2011b). To date, NIT has

been explored in ecological models but to our knowledge it has not been empirically demon-

strated in a biological system. Outside of ecology, NITs have been successfully modeled

and experimentally demonstrated in electric and chemical systems (Horsthemke & Lefever,

2006).

To investigate the possibility of NIT in biological systems, I conducted experiments us-

ing chemostats of the cyanobacteria Aphanizomenon flos-aquae. Based on simulations of the

system, I expect to observe a noise-induced extinction (NIE) when light variability passes

a given threshold, while maintaining a constant mean light intensity. First, I present the

constant light experiments which are used to parameterize the model with system specific

parameter values. Then, I present the results from the chemostat experiments where popu-
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lations were grown under variable light.

3.2 Methods

The possibility of a NIE was examined using eight 500mL chemostats of Aphanizomenon

flos-aquae based on the design developed by Huisman et al. (1999, see Appendix A for

details). White environmental noise was introduced by changing the output of the LED

grow lights which also modified the photosynthetically active radiation (PAR).

Populations were subject to a two-by-two factorial of mean light conditions (µ = (83, 300PAR)),

and environmental noise (σ = (0, µ/2)). When presenting information about light variability,

I will use standard deviation rather than variance so the all units are in PAR, rather than

PAR and PAR2.

3.2.1 Model Parameterization & Treatment Selection

The stochastic model had a deterministic skeleton developed by Huisman & Weissing (1994).

The deterministic model using the light intensity at a given depth (3.1), and the productivity

at a given light intensity (3.2) to calculate the algal density’s (A) rate of change at a given

cell density (3.3). See Tbl. 3.1 for parameter definition and units.

I(z) = Iin ∗ exp
(
− z(kA+Kbg)

)
(3.1)

P (I) =
pmaxI

Ik
I2opt

I2 +
(

1− 2 Ik
Iopt

)
I + Ik

(3.2)

dA

dt
= A

(
1

zmax

∫ zmax

0

P (I(z))dz − l

)
(3.3)

Simulating the deterministic dynamics require 6 parameters, half of which can be directly

measured, while the other half were estimated by simultaneously fitting the dynamical model
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to multiple populations grown under a range of constant light conditions. The parameters

max depth (zmax), algal light attenuation (k), and background light attenuation (kd) were

directly measured, while the maximum specific production rate (pmax), the optimal light

intensity (Iopt), and the light intensity at pmax if the initial slope of the p-I curve was main-

tained (Ik) were estimated by trajectory matching in R using package deSolve (R Core Team,

2018; Soetaert et al., 2010)(See Appendix B for R code). The system specific parameters

were used to simulate populations subject to constant or variable light. In the case of variable

light the Iin constant parameter was replaced with a random normal variable Iwn N(µ, σ2).

A 4-point light deviation gradient that spanned the NIT to extinction was selected (Ch. 2).

Two of the eight chambers were randomly assigned to each treatment, light conditions were

drawn from a normal distribution with the treatment standard deviation for each replicate.

Enough conditions were drawn to allow the experiment to run for 30 days with the light

condition changing every minute. This table of chamber x light condition was used by the

Arduino Mega 2560 REV3 to change the light intensity of the LEDs through pulse-width

modulation.

3.2.2 Culture & Chemostat Methods

A culture of A. flos-aquae CCMP2764 was obtained from the Bigelow National Center for

Marine Algae and Microbiota (https://ncma.bigelow.org/). The algal cultures were main-

tained in BG-11 media without trace metals at 20◦ C with a 16:8 hour light dark cycle (Tbl.

3.2 Vanderploeg et al., 2001).

All chemostats within an experimental block were started with 500mL from a well mixed

4L culture with an ≈ OD600−blank = 0.15. A 4 x 10W LED light grid attached to a heat

sink was placed 3.5cm from the chamber. This design was efficient at diffusing heat and did

not require a water jacket for cooling. The dilution rate was set at 0.2 day−1. However,

the rate varied over time and chamber so all effluent was measured for an accurate rate.

Populations were sampled every 12 hours by collecting effluent from the twelfth hour. This
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effluent was used to measure turbidity and in vivo chlorophyll-a and phycocyanin florescence

using a plate reader and a 96 well plate (Biotek H1 Synergy ; Nunc part no. 265301). The

use of turbidity and florescence allowed us to distinguish between increased turbidity due to

cell growth or death. Florescence was not used alone as a measure of population size due

to plate reader sensitivity not being able to detect extinction. The experiment was ended

either when all populations went extinct, or settled to a constant density (± 5% over 48

hours). Extinction was defined as no visible cells in a 1ml sub-sample.

Significant differences in the end point of the time series were detected by an ANOVA,

and if needed, a Bonferroni corrected t-test.

3.3 Results

Populations grown under different constant light conditions different in their dynamics (Fig.

3.1) The estimated parameters were qualitatively similar to previously published values, and

indicated the mean light treatment should be 300 PAR (Tbl. 3.3). However, attempts to cul-

ture A. flos-aquae near the previously published, and estimated optimal light, ∼ 150 PAR,

had failed due to cell bleaching which is a sign of high light stress. Given that I knew

the estimated parameters and resulting simulations were not representative of the system, I

added a mean light experimental treatment of µ = 83 PAR that I was able to successfully

grow A. flos-aquae in the past. I chose to use one non-zero standard deviation treatment

of half of the mean assuming that the true stochastic bifurcation would scale similarly with

the simulated bifurcation diagram (Ch.2 Fig.2.4). This treatment selection created a 2x2

factorial design and was run within a single block so that each mean light (83, 300 PAR)

by standard deviation (0, 0.5 × mean) was replicated twice. I was not interested in the

interaction between the two factors, as is the norm with factorial designs, so each mean

light treatment was analyzed separately. All populations with a mean light of 300 PAR

went declined, while within the mean PAR of 83 only those subject to variable light con-
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dition declined (Fig 3.2). The populations grown with and without variable light at mean

of 300 PAR went extinct. Due to lost replicates, no statistical analysis was done on this

group. Within the lower mean light treatment, the growth in the variable environment was

significantly different than in the constant environment (Welch two sample t-test t(1.94)

= 22.14, p=0.002; t(1.00)=17.41,p=0.037;t(1.07)=47.37,p=0.011 for turbidity, chlorophyll,

and phycocyanin, respectively).

3.4 Discussion

Ecologists have long sought to understand mechanisms that lead to shifts in population sizes

(Lewontin & Cohen, 1969; May, 1976; Cushing et al., 2001; Scheffer, 2020). Most developed

theory rely on a deterministic representation of the world (Nicholson, 1957; Durrett & Levin,

1994; Kendall et al., 1999; Henson et al., 2001; Coulson et al., 2004). This is despite theo-

retical analysis predicting stochastic forces can reshape stability in ecological systems (May,

1973; Horsthemke & Lefever, 2006; Ridolfi et al., 2011a). The presented work highlights the

importance of environmental stochasticity by experimentally demonstrating a noise-induced

extinction, a type of noise-induced transition using chemostats of the cyanobacteria, A. flos-

aquae. Chemostats where grown under constant light, or variable light with a mean intensity

of 83 PAR (∼ N(µ, σ2) where σ = (0, µ/2), respectively). To the best of my knowledge, this

is the first experimental demonstration of a NIE in a biological system.

For this particular study system, I found our strain of A. flos-aquae to be substantially

more light sensitive than other work using the same species. Veraart et al. (2012) reported

observing the maximum growth rate at a constant incident light greater than 700 PAR; our

constant light model also predicted a similar range. However, when I attempted to grow

cultures under these predicted ideal conditions the cultures bleached or washed out with 300

PAR, less than half of the predicted ideal incident light. Initially, I suspected the cultures

were starting below the unstable equilibrium in the region of bistability (Fig. 2.2). However
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in most cases, the populations declined from the starting density regardless of that initial

density. This could imply that there is something not captured in our system design that is

incorporated into the mechanistic model or our design differs in some significant way from

the more recently published designs (Veraart et al., 2012). I believe it to be the later, given

the discrepancies in ideal incident light between the model predictions and experimental

results. The original design by Huisman et al. (1999) used incandescent lights which are a

significant heat source when ran constantly. A 1.2cm water jacket was used to absorb and

disperse the heat away from the culture but also had a side effect of reducing the incident

light experienced by the culture through scattering. The water jacket is, I believe mistakenly,

omitted in later design descriptions which use more efficient LEDs (Veraart et al., 2012).

The mismatch between the model predictions and observed growth does not detract from

the strength of evidence for the NIE. The model predictions and experimental outcomes

matched qualitatively. This work clearly demonstrated the ability for populations grown

under a constant light condition of 83 PAR to persist while those experiencing variable light

did not. Ideally, I would have been able to execute the initial experimental design testing

a range of variances in higher replication to determine the region of the phase transition.

However, this system is extremely sensitive to experimental conditions; as such, we were

unable to achieve such a high level of replication, in spite of years of trials.

This demonstration of a noise-induced extinction used single species mesocosms, and a

contrived source of environmental variability. This type of simplification have lead some

to question the generality of mesocosm work (Carpenter, 1996; Schindler, 1998). However,

this approach allows for the demonstration of yet to be observed ecological phenomena by

creating a model system (Drake & Kramer, 2012). The essential properties of a model used

to detect NITs, non-linear dynamics and an understanding of how the environmental noise

propagates through the system, are captured in this experimental design. This meets the

criteria for model-based reasoning and reasoning by analogy which asserts that a variable

and response in a mesocosms is analogous to a variable and response in nature (Drake &
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Kramer, 2012).

The established alternative stable states theory dictates that a system’s stability changes

through one of two mechanisms. Demonstrating a NIE provides a third path to stability

changes, along with a kinetic parameter change or a large environmental perturbation (Nolt-

ing & Abbott, 2016). ASS has been an active research field since its introduction, this is

particularly true given an outcome of ASS is a disproportionately large change in the sys-

tem state as a response to a small environmental change past a threshold (Lewontin, 1969;

Holling, 1973; Sutherland, 1974; May, 1977; Beisner et al., 2003; Scheffer, 2020). Despite

this, there have been numerous studies and meta-analyses to identify the threshold between

stable states for a given environmental condition (Hillebrand et al., 2020). However, these

general thresholds are unlikely to be detected (Hillebrand et al., 2020). Focusing on labora-

tory and field experiments looking for evidence of ASS, 38% of the studies demonstrated an

absence of ASS (8 out of 21 studies Schröder et al., 2005). The identification of ASS related

thresholds are even more muddled by stochastic models that mimic deterministic models

with ASS (Abbott & Nolting, 2017; Fukami & Nakajima, 2011). Clear thresholds between

alternative stable states could arise if the variance of the environmental condition was also

included as a predictor in addition to pulse perturbations. This is the case for grassland

primary productivity when precipitation means are constant but variance in precipitation

increases. The increased precipitation variance decreases net primary productivity by up to

50% (Ratajczak et al., 2018).

The experimental demonstration of a noise-induced transition, in addition to the mixed

evidence for alternative stable states, suggests to me that it is time to move from a deter-

ministic representation of the world to one which incorporates stochasticity and thinks of

stability in quasi-stationary terms. This transition needs to be led by experimentalists us-

ing study systems with well defined nonlinearity, short generation times, and characterized

environmental stochasticity in natural populations. Through this work, we can develop a

heuristic understanding of how and when a stochastic rather than deterministic model is a
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more appropriate description of the natural world.
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3.5 Tables

Table 3.1: Model Parameter Values. Parameter values were either directly measured,
calculated from their relationship to measurable values, or estimated from the population
growth rate.

Parameter Interpretation Units Variable Type

A population density gm−1 measured re-
sponse

zmax total water column depth (mixing depth) m measured, fixed
Kbg total attenuation due to back-

ground turbidity
m−1 measured, fixed

k specific attenuation coefficient of
phytoplankton

m2g−1 derived, fixed

I incident light at surface PAR variable based
on treatment

Iopt light intensity where pmax is observed PAR estimated, fixed

Ik light intensity where pmax would
be observed in absence of pho-
toinhibition

PAR estimated, fixed

pmax max growth rate of culture day−1 estimated, fixed
l specific loss rate day−1 measured, varies

with time due to
experimental er-
ror
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Table 3.2: Completed BG-11 media compounds and concentrations per liter. The pH was
adjusted to 6.8 before heat sterilization.

Compound Concentration (µM)

CaCl2 • 2H2O 250
MgSO4 • 7H2O 300
NaHCO3 10,000
K2HPO4 • 3H2O 180
NaNO3 2,000
Na2CO3 190
citric acid 30
ferric ammonium citrate 30
EDTA (disodium magnesium) 3

Table 3.3: Parameter values that were estimated for the constant light growth rate experi-
ment, and those that have been published by Veraart et al. (2012).Parameters marked with
a star (?) can be directly measured from the experimental set up.

Parameter Estimated Previously Published

z?max 0.035 0.05
K?
bg 0.047 10−6

k? 2.02 3
Iopt 261 150
Ik 68.8 40.0
pmax 0.023 0.490
l? 0.2 0.4

3.6 Figures
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Figure 3.1: Growth under constant light was used to estimate model parameters pmax,Ik,and
Iopt. The different response to a range of light intensity shows the non-linear, non-monotonic
relationship between light and growth rate. The need to use multiple types of population
measurements is exemplified in the 87 PAR treatment which has a high turbidity, but low
florescence indicating the culture was bleaching and on the way to extinction.
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Figure 3.2: A 2X2 comparison of growth under constant and variable light at two mean
values. The control of constant light (◦) is used to determine the effect of the variable light
treatment which follows a normal distribution with the given mean (color), and standard
deviation of half of the mean (�). The experimental apparatus malfunctioned resulting in
the loss of replicates in the mean PAR of 300 treatment. The populations subject to constant
light at 83 PAR are significantly different from the variable light treatment with a mean
PAR of 83 in all three measures of population density (t-test; p-value= 0.002,0.037,0.011 for
turbidity, chlorophyll, and phycocyanin, respectively.
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3.7 Appendix A: Experimental apparatus design

3.7.1 Chemostat

The chemostat chambers were custom made out of acrylic. The 4 ports were used for media

input, effluent output, air for mixing, and an air release. The volume of the chamber was

set by the height of the effluent output line. The in-going air line connected to a custom

made glass y-splitter so air was forced into each rounded corner which created a mixing

current. All luer fittings, and connecting components were stock parts from scientific supply

companies.
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Figure 3.3: Initial design for the acrylic chambers built for the experiment. The total volume
of the chamber was 525mL. The u-shape piece was cut from a solid block before panels were
glued to either side to create the sides. Measurements in square brackets are in cm, otherwise
units of inches are used.
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Figure 3.4: The final design for the chambers included an additional port on top, deepening
the u-shape well for a total volume of 700mL, and clamps to keep the lid in place. The
additional volume allowed for a working volume of 500mL with head space between the
culture and media in port.
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3.7.2 Lights

The light apparatus for each chemostat was built by mounting 4 LED lights to an aluminum

heat sink block cooled with a computer fan. The lights were powered by a standard 45W

AC adapter computer power supply, and dimmed by the LED driver based on the Arduino

signal. The unique parts for this build are listed below.

• Mean Well LDD-700H DC/DC constant current LED driver

• SatisLED 5W High Power LED part number HPL5W10BW (warm White 2700-3500

deg K, 7.0-7.5V-700mA, water clear lens color, 650 700 lumens, 120 angle) archived

web page

• Arduino Mega 2560 REV3

• CHENBO Micro SD SDHC TF Card Adapter reader module with SPI interface ASIN

B06Y581CWF

Arduino Code

The code was written such that the light was set for each chamber every minute. This

was done by sequentially reading lines from a text file on an mini-SD card attached to the

Arduino. Each line contained 8 comma separated values corresponding to the 8 chambers’

duty cycle for that minute.

//for pattern matching txt file to pin value

#include <Regexp.h>

//for SD card

#include <SPI.h>

#include <SdFat.h>

#include "sdios.h"
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SdFat sd;

File file;

// print error code

#define errorHalt(msg) {Serial.println(F(msg)); SysCall ::halt();}

// define pins to be used for lights , sd card , etc.

const uint8_t chipSelect = 53;

const int lightPins [] = {2,3,4,5, 6, 7, 8, 9};

int j = 0;

int k = 0;

int i = 0; // counter for line

int linecount = 1;

unsigned long previousMillis = 60000; // will store last time LRD was read

const long interval = 60000; //time between readings (ms), 1 minutes =6000

0, 5min = 300000

// create a serial stream

ArduinoOutStream cout(Serial);

// ifstream sdin(" dutycycle.txt");

// --------------------------------

void setup() {

// begin serial to print error messages

Serial.begin(9600);

// Initialize at the highest speed supported by the board that is

// not over 50 MHz. Try a lower speed if SPI errors occur.

if (!sd.begin(chipSelect , SD_SCK_MHZ(50))) {

sd.initErrorHalt ();

}
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//Set up LED PWMpins

for ( k = 0; k < 8; k = k + 1) {

pinMode(lightPins[k], OUTPUT ); //set LED pin mode to output

}

}

void loop() {

const int line_buffer_size = 32; // each file row is 32 characters that

ends with line return /n

char buffer[line_buffer_size ];

// timer to keep track of when to change light PMW

unsigned long currentMillis = millis (); //note the time

if (currentMillis - previousMillis >= interval) {

// save the last time you changed the LED

previousMillis = currentMillis;

//Read lines till you get the one that you want

ifstream sdin("FILE_NAME.txt"); // open file;

for ( i = 0; i < linecount ; i = i + 1) {

sdin.getline(buffer , line_buffer_size , ’\n’); // store file line into

buffer

}

// parse the buffer by commas and assign to LED pins

MatchState ms;

ms.Target(buffer); //tell ms what the target is

unsigned int index = 0;

// what we are searching (the target)

char buf[100];
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int lightDC = 0;

while (true)

{

char results = ms.Match("(%d+) ,(%d+) ,(%d+) ,(%d+) ,(%d+) ,(%d+) ,(%d+) ,(%d

+)", index);

if (results == REGEXP_MATCHED)

{

for (j = 0; j < ms.level; j++) {

lightDC = atoi(ms.GetCapture(buf , j)); //read as the correct format

for the analogWrite function

analogWrite(lightPins[j], lightDC); // set DC for each pin

cout << lightDC << endl;

}

index = ms.MatchStart + ms.MatchLength;

}

else

break;

}

// Update line counter

linecount = linecount + 1;

}

R Code

The R code used to simulate environmental noise text file read by the Arduino.

#Arduino is expecting 8 3-digit numbers separated by commas per line.

#prep to convert data from PAR -> duty cycle
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#load look up table

load("../Constants/data_out/DCPARlookUpTable.Rdata")

#easiest to round DC in look up and then use join function

LU <- lookUpDC %>%

rename(PAR = value) %>%

mutate(Duty.Cycle = round(dc))

#Some math to figure out how many environmental conditions needed per

experiment

exp.length <- 60*24*30 #minutes

t.enviro <- 1 #how long each condition lasts

n.total <- exp.length/t.enviro #total number of noise conditions

#Set treatment information; half of previous experiment

PARmean <- 86/2

sd.treatment <- c(0,PARmean*.2, PARmean*.4, PARmean*.8 )

n.reps <- 2

sd.seq <- rep(sd.treatment , each=n.reps)

#Block 1

#randomly assign treatment to chambers

chamber <- sample(c(1:8), size =8)

#pull noise values and convert to duty cycle

noise.seq <- foreach(i=c(1: length(sd.seq))) %do% {

data.frame(cbind(time=c(1:n.total),PAR=rnorm(n=n.total ,

mean = PARmean , sd= sd.seq[i]))) %>%

mutate(PAR = ifelse(PAR > 0, round(PAR) ,0)) %>%

left_join(LU , by="PAR") %>% #convert to DC

mutate(Duty.Cycle = ifelse(Duty.Cycle > 255, 255,Duty.

Cycle)) %>% #if greater than max , put max
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select(-dc)

}

#check mean and sd- looks good

noise.check <- foreach(i=c(1: length(sd.seq)), .combine=’rbind ’) %do% {

cbind(sdtreat=sd.seq[i],mean = mean(noise.seq[[i]]$PAR)

, sd=sd(noise.seq[[i]]$PAR), Negatives = sum(ifelse(

noise.seq[[i]]$PAR <0,1,0)))}

#put duty cycle into format expected by Arduino

block1 <- matrix(data=NA , nrow=n.total , ncol= 8)

for(i in 1:8){

block1[,chamber[i]] <- sprintf("%03d",noise.seq[[i]]$Duty.Cycle) #add

leading zero

}

#save noise

write.table(block1 ,sep=",", file = "data_raw/treatments/gut2_52021. txt",

row.names = FALSE , col.names = FALSE)

3.8 Appendix B: R Code

#dynamical model; estimating Ik, Iopt , and pmax. All other values are

known.

dAdt.model = function(t, x, params) {

A <- x #local var A

with(as.list(c(params)), {

loss <- lfunc(t) #define l as a function of t, left -cont piecewise

function , needs to be defined outside of objective function
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dA <- A*(pmax*(2*I*(atan(I*(2*I*(Ik/Iopt ^2)+(1-2*Ik/Iopt))/sqrt(I^2*

(-(1-2*Ik/Iopt)^2+4*(Ik/Iopt ^2)*Ik))) - atan(I*(2*(Ik/Iopt ^2)*I*exp

(-zmax*A*k-zmax*kd)+(1-2*Ik/Iopt))/sqrt(I^2*(-(1-2*Ik/Iopt)^2+4*(Ik

/Iopt ^2)*Ik))))/(zmax*(A*k+kd)*sqrt(I^2*(-(1-2*Ik/Iopt)^2+4*(Ik/

Iopt ^2)*Ik))))-loss)

list(c(dA), obsloss = loss) #return list of results

})

}

#Constrained Objective Functions for biologically possible values

#Biological requirements

##parameter search space to only positive values by parameterizing log

(parameter)

##penalty added to SSE if Ik >= Iopt

##minimize SSE for all trajectories at once

constrained.sse.dAdt = function(params0 , alldata , constants=c(3.5, k.est ,

kd.est)) {

#constants <- c(zmax , k, kd)

#data is long table of observations

library(foreach)

sse <- NULL

#fit parameters that minimize sse of all trajectories simultaneously

foreach(i = unique(alldata$pop.no)) %do% {

data <- alldata %>% filter(pop.no == i)

#time dep loss rate

obsloss <- cbind(time=data$time , l=data$l) #create df of measured loss

rate

lfunc <<- approxfun(obsloss ,rule=2, method="constant", f=1) #define l

as a function of t, left -cont piece -wise function , needs to be

83



defined outside of objective function , use double arrow to put

function into global environment

t <- data$time #hour of experiment

A <- data$TSS #observed value of population size in **mg/mL**

A0 <- data$TSS [1] #starting value of population

I.treatment <- data$light.PAR[1] #incident light condition

out <- as.data.frame(ode(A0 , times=t,dAdt.model , c(pmax=exp(params0

[1]), Iopt=exp(params0 [2]), Ik=exp(params0 [3]), I=I.treatment , zmax

=constants [1], k=constants [2], kd=constants [3])))

#Penalty for violating biological sense

if(params0 [2] < params0 [3]) { #biological sense: Iopt (params0 [2]) >

Ik (params0 [3])

sse[i] <- sum((out[2]-A)^2) +1000 #sum of sq error penalty

} else if(params0 [1] > 1) { #biological sense: pmax is proportion

sse[i] <- sum((out[2]-A)^2) +1000 #sum of sq error penalty

} else

sse[i] <- sum((out[2]-A)^2) #sum of sq error

}

sum(sse)

}

params0 <- c( -0.69 ,3.5 ,3.6) #initial log transformed values for pmax , Iopt

and Ik

tmp.fit <- optim(params0 , constrained.sse.dAdt , alldata=block.OD) #

estimate parameters based on all trajectory; OD data converted to mg/mL

using standard curve

sessionInfo ()

R version 4.0.4 (2021-02-15)

Platform: x86_64-apple -darwin17.0 (64-bit)
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Running under: macOS Catalina 10.15.7

Matrix products: default

BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/

Frameworks/vecLib.framework/Versions/A/libBLAS.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/

libRlapack.dylib

locale:

[1] en_US.UTF -8/en_US.UTF -8/en_US.UTF -8/C/en_US.UTF -8/en_US.UTF -8

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] dplyr_1.0.5 colorspace_2.0-0 rootSolve_1.8.2.1 foreach_1.5.1

[5] deSolve_1.28 gplots_3.1.1

loaded via a namespace (and not attached):

[1] Rcpp_1.0.6 knitr_1.31 magrittr_2.0.1 tidyselect_1

.1.0

[5] R6_2.5.0 rlang_0.4.10 fansi_0.4.2 stringr_1.4.

0

[9] plyr_1.8.6 caTools_1.18.1 tools_4.0.4 xfun_0.22

[13] KernSmooth_2.23-18 utf8_1.2.1 iterators_1.0.13 htmltools_0.

5.1.1

[17] ellipsis_0.3.2 gtools_3.8.2 yaml_2.2.1 digest_0.6.2

7

[21] tibble_3.1.0 lifecycle_1.0.0 crayon_1.4.1 reshape2_1.4

.4

[25] purrr_0.3.4 codetools_0.2-18 vctrs_0.3.8 bitops_1.0-6

[29] glue_1.4.2 evaluate_0.14 rmarkdown_2.7 stringi_1.5.

3
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[33] compiler_4.0.4 pillar_1.5.1 generics_0.1.0 pkgconfig_2.

0.3
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Figure 3.5: Picture of LEDs used. This design (as opposed to starboard
allowed for easier mounting of the LED to the heat sink. The solid back also made it easier

to create a uniform layer of silver thermal grease.
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Model of Saccharomyces cerevisiae growth

exposed to noisy harvesting

4.1 Introduction

Understanding the causal links between environmental stochasticity and population abun-

dance, especially with respect to extinction, is a long-standing question in ecology (Dennis

et al., 1991; Tuljapurkar & Orzack, 1980; Lewontin & Cohen, 1969). Traditionally, environ-

mental stochasticity is linked to an increased extinction risk, and a reduced time to extinction

via increased variance in the population size (as reviewed by Griffen & Drake, 2008). Hu-

mans directly influence the variation in population abundance through direct removal of

individuals or harvesting. As in the well studied case of fisheries, harvested stocks fluctuate

more than unharvested populations (Anderson et al., 2008; Jonzén et al., 2002). However,

based on theoretical studies, the increased stock fluctuation leading to extinction cannot be

solely, if at all, explained by fluctuations in harvesting pressure (Jonzén et al., 2002; Brau-

mann, 1999, 2002). This indicates there is some phenomenological process missing from our

deterministic description of the natural world. However, stochastic models of populations

subject to a random harvest process predict that harvesting can cause extirpation alone

(Ridolfi et al., 2011). These stochastic models indicate a noise-induced transition (NIT) is

the cause of random harvesting related extirpation (Horsthemke & Lefever, 2006).
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The ability for environmental stochasticity to re-shape the stability landscape, also known

as a noise-induced transition (NIT), is a well established theory but has been given little

attention in ecology (May, 1973). Before discussing stochastic models with NIT in ecology,

I will briefly review deterministic stability using the ball-and-valley model. This model is

the geometric equivalent of the potential function, and is useful when developing intuition

about system stability (as reviewed by Nolting & Abbott, 2016). Simply, population size

runs along the x-axis and the potential energy on the y. The current population size is

represented by a ball, and moves with gravity to the lowest point. If there are multiple

valleys, the current population is the outcome of initial conditions and external perturbations.

External perturbations, if large enough, can push a system state uphill out of one valley to

another passing through a peak. These valleys and peaks are stable and unstable equilibria,

respectively (Strogatz, 2001). System state, population size, can also change if the underlying

stability landscape changes. For example, if the harvest rate is larger than growth rate the

landscape changes so that the only valley is at extinction. Noise-induced transitions also

alter the number and/or location of peaks and valleys, but through a different mechanism

(Ridolfi et al., 2011; Nolting & Abbott, 2016). NITs are studied using stochastic differential

equations (SDE). I will briefly review SDE stability analysis and the ODE analogs which

will help in understanding the analysis method used in this paper. Unlike ODEs which

have point equilibria or limit cycles, stochastic models inherently do not settle to a single

point or set of points. Given this, stability within an SDE is defined by probabilistic terms

in the form of the stationary probability distribution (SDP). The SDP can often be found

by solving the Fokker-Planck equation of the SDE (Horsthemke & Lefever, 2006). When

solving for the maxima of the SDP, the expression can be broken down into two terms. The

first term is seen to be identical to the deterministic equilibria, while the second term is

multiplied by the noise intensity. This means as the noise approaches zero, the SPD maxima

approaches the deterministic equilibria. Alternatively, the distribution can be calculated

numerically by fitting a curve to a histogram of population sizes from simulated population
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time series (Horsthemke & Lefever, 2006). In either approach, the modes and antimodes

(the least frequent value between two modes) of the probability distribution are analogous

to stable and unstable equilibria of an ODE.

To this point, I have presented a subset of NITs, noise-induced extinction (NIE). Inter-

estingly, under a subset of conditions environmental stochasticity can act as a stabilizing

force leading to persistence, or bistability between extirpation and persistence (May, 1973;

Ridolfi et al., 2011). Returning to the ball-and-valley model, noise-induced persistence can

be reached by multiple topographical changes. For example, bistability is produced by val-

leys at persistence and extinction but there is no requirement about the relative depths or

slope gradients. In the simplest form, noise-induced persistence holds the stability landscape

nearly constant while the persistence valley disappears in the noise-free equivalent ball-and-

valley model. Of course, NIT does not always lead to equilibrium shifts between extirpation

and persistence or vice versa (May, 1973). Noise-induced extinction or persistence are the

extreme outcomes on the possible spectrum of NIT outcomes. We have chosen to study

these extremes because they require less sensitivity to detect making them experimentally

tractable.

The previous chapters demonstrated noise-induced extinctions within an algal mesocosm.

The noise in the algal system is an example of the indirect effects of the Anthropocene. That

is to say, increases in atmospheric carbon due to humans are predicted to change the mean

and increase the variance of temperature and precipitation over time (Salinger, 2005; Karl

& Trenberth, 2003). While photosynthetic radiation in nature is not expected to change as

in the mesocosm experiments, it can constrain primary productivity just like temperature or

precipitation. The time scale of indirect anthropogenic environmental noise is on the same

order as climate change - decades, centuries, or longer.

However, that does not mean that the theory of noise-induced transitions should be

tabled until it is relevant. The Anthropocene also includes population management practices

that directly create environmental noise. Harvesting, culling, or other methods of reducing
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population sizes can vary over time. For example, management practices based on effort

(ie. hunting season, daily catch limits, etc.) have the potential to remove wildly different

portions of the population from harvest to harvest (Parkinson et al., 2004; Fukasawa et al.,

2020). Additionally, direct anthropogenic environmental noise can be modified on a much

shorter time scale than indirect anthropogenic noise given the recurrent nature of harvesting.

The plausibility of harvest noise-induced transitions has the potential to be a powerful tool

for managers. In order to understand the potential for noise-induced transitions in ecological

systems, we must explore more combinations of models with nonlinear feedback, and noise

source (direct vs. indirect).

In the following quantitative and empirical paired chapters, I used a new experimental

system to build on our understanding of noise-induced transitions in biological populations.

Using a logistic model with discrete harvest events, I obtained the stationary distribution

as a function of increasing harvest variability in the form of white shot noise, or harvests

at random times and intensities. A noise-induced transition was defined as a qualitative

difference between the stochastic stationary distribution and the deterministic equilibrium

(Horsthemke & Lefever, 2006). Given the qualitative nature of defining the transition, I

focused on parameter conditions that led to a critical transition from persistence to extinction

or vice versa under stochastic but not fixed harvesting conditions. The parameter conditions

bracketing the mismatched critical transition will be used to inform the experimental design

of the bench experiments in the next chapter.

4.2 Methods

The density dependent growth of Saccharomyces cerevisiae populations were characterized

by a logistic model (4.1). The population size (N) was rescaled by carrying capacity (K)

so the population size (N ′ = N/K) is bounded between zero and one (4.1). For simplicity,

I have dropped the prime notation going forward but always mean the population size
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as a proportion of carrying capacity. After rescaling, the only density dependent growth

parameter is the intrinsic rate of increase (r).

dN

dt
= rN(K −N) (4.1a)

dN

dt

1

K
= r

N

K
(
K

K
− N

K
) (4.1b)

dN ′

dt
= rN ′(1−N ′) (4.1c)

4.2.1 Model Parameterization

Model parameterization was based on S. cerevisiae (strain BY4741 SUC2:YFP ; Gore et al.,

2009). This strain was used because because populations have a strong Allee effect when

grown with sucrose as carbon source in well mixed broth Dai et al. (2012). An Allee effect,

positive density dependence, increases the range of population sizes that result in extinction,

increasing experimental tractability. However, the presence of an Allee effect when grown on

agar as opposed to broth had not previously demonstrated. The per capita growth rate and

Allee effect strength on an agar matrix were quantified to parameterize a dynamical model.

In two parameterization experiments, initial populations were seeded with a known number

of cells by individually sorting cells onto agar media with either a control carbon, glucose,

or the Allee effect treatment carbon, sucrose, via flow cytometery.

The growth rate was estimated by seeding 8 populations with 5 viable cells each into the

wells of a µ-Slide (Ibidi cat. no 80826) filled with the agar medium. Starting at 15 hours of

growth, 2 populations were destructively sampled by flooding the well with broth media and

mixing by pipette to suspend all cells in the colony. Complete colony suspension was verified

through microscopy before collecting samples to be counted using a hemocytometer. This

process was repeated at 20, 22.5, and 23.75 hours. The geometrically decreasing sampling

schedule was based on previous observations of the exponential growth period. Growth rate
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(r) was calculated using an exponential growth formula, r = ln(Nt/N0)/t, where N0 and Nt

is the population size at time zero and t, respectively.

The strength of an Allee effect when grown on an agar matrix was estimated by fitting a

Weibull function to the probability of establishment as a function of initial population sizes

(Kaul et al., 2016). This relationship changes shape from an inverse exponential curve to

sigmoidal in the presence of a strong Allee effect. A Weibull function (y = 1 − exp(−x/λ)k)

can take on both shapes. The function is sigmoidal when the shape parameter, k, is greater

than one and the scale parameter, λ, is the inflection point of the sigmoid. A strong Allee

effect is present if k ≥ 1. The parameter λ is the critical population density needed to escape

the effect. The probability of establishment was measured by seeding 20 populations with

one to five cells and then geometrically increasing from 8 to 128 cells onto agar media-filled

Petri dishes. This process was repeated for media with sucrose and glucose, where glucose

is a negative control for the Allee effect. Populations were visually scored (0/1) after 23.75

hours of growth. The Weibull function was fit to the raw binary data, not the average of

the 20 binary outcomes per inoculum size.

All simulations used an intrinsic rate of increase of 0.36 hr−1, and lacked an Allee effect.

4.2.2 Model Simulation and Analysis

The presence of a noise-induced transition was detected by a comparison of three proportional

harvest regimes: mean field constant harvest, fixed discrete harvest, and stochastic discrete

harvest. The three way comparison is needed to determine the effect of noise within the

harvest process (fixed vs. stochastic discrete harvest) rather than the effect of a discrete

harvest process (mean field constant harvest vs. discrete harvest). These three harvest

regimes were added to non-dimensional logistic models (4.2).
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dN

dt
= rN(1−N)− hN (4.2a)

dN

dt
= rN(1−N)− αλN (4.2b)

dN

dt
= rN(1−N)− ξwsnN (4.2c)

The mean field harvest regime consists of a single parameter representing a constant

harvest rate (h, 4.2a). The discrete harvest regimes are characterized by two parameters;

one representing the harvest frequency (λ) and the other representing the proportion of the

population removed during the harvest (α). In the case of the fixed discrete harvest, these

parameter values were held constant during a model simulation (4.2b). The stochastic dis-

crete harvest regime follows white shot noise, ξwsn, which was created by drawing events

from a compound Poisson distribution (〈ξwsn〉 = λα) where the expected interarrival time is

an exponential distribution (T ∼ Exp(1/λ); 4.2c). For each harvest event, the proportional

harvest was drawn from a truncated exponential distribution (H ∼ Exp(α)). The com-

pound Poisson process allows for easy comparison between the fixed and stochastic discrete

harvesting process since they have the same expected value of αλ

The harvest regimes were further modified to accommodate bench experimental re-

straints. Saccharomyces cerevisiae population harvest events and transfer of cells to a fresh

agar media matrix occurred at the same time, and required a minimum proportional harvest

of 0.5. With this modification, the mean and variance of the proportional harvest random

variable α changes (E[α] = (0.5+α∗0.5); V [α] = 0.25α2) such that it no longer has an expo-

nential distribution. Previous published steady state analytical solutions are not applicable

since they assume an exponential distribution. For this reason, only numerical solutions were

explored.

In the case of the continuous harvest rate, h is modified to (0.5 + h ∗ 0.5).

We studied the model over a range of initial conditions and harvest rates by varying N0,

94



h, α, and λ from zero to one. In the case of the stochastic harvest regime, 100 populations

for each parameter combination were simulated. All simulations ran for ∼600 generations

under ideal conditions (500 hours). The solutions to the models were calculated in ‘R‘ using

the ‘lsoda‘ function in the deSolve package, which automatically switches between stiff and

non-stiff methods (Soetaert et al., 2010). Discrete harvests were incorporated through the

‘events‘ argument (See Appendix A for code).

The mean field constant harvest and the fixed discrete harvest models have equilibrium

point values while the stochastic discrete harvest model has a stationary distribution of

probable population sizes. For this work, I will be treating the mode(s) of the stationary

distribution as analogous to the equilibrium point values of the deterministic models. The

stationary distribution was calculated by converting the trajectories of population sizes post

burn-in into a histogram with a bin size of 0.01. The bin with the highest frequency is the

mode. The stationary distribution is considered bimodal if the second highest frequency bin

is more than 0.05 away from the mode. The equilibrium point values for the deterministic

models were calculated by averaging the final population size across all initial conditions for

a given harvest parameter set. Extinction was defined as N < 10−6 or approximately 1 cell

assuming a carrying capacity of 107 cells. A phase transition can be detected by looking

for harvest parameter space were the stationary distribution mode and point equilibrium

values qualitatively differ. To this end, heatmaps of mode(s) or point values over the harvest

parameter space were created. They were then compared to identify any regions where one

model transitioned from persistence to extinction, while the other model did not.

4.3 Results

The intrinsic per capita growth rate (r) was estimated to be 0.360 ± 0.021 hr−1 which is

similar to previously measured values in well mixed broth by Dai et al. (2012). An Allee

effect was detected when populations were grown with a sucrose carbon source (k̂ > 1; Fig.
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4.1). The estimated critical density, or the scale parameter, is just over one cell. Despite

detecting a strong Allee effect, biologically, the populations grown under a sucrose carbon

condition are unlikely to experience substantial positive density dependence. These results

lead to the removal of positive density dependence from model simulations used to select

treatments. In the case of the glucose media, we fail to reject the null hypothesis of no

Allee effect due to the confidence interval for the shape parameter including values above

and below the threshold of k ≥ 1.

Population persistence in the continuous harvest and fixed discrete harvest models occurs

while harvesting (h, or α × λ) is less than the intrinsic rate of increase (r). The critical

harvesting threshold is clearly defined in the numeric solutions (Fig. 4.3A). As the number

of harvested individuals decreases, the population is able to persist under more frequent

harvesting. However, no population is able to persist when the interarrival time of harvests

is 60% of the intrinsic rate of increase (Fig. 4.2).

Persistence in the noisy harvest model differed qualitative and quantitatively from the

noise-free harvest model. Rather than an abrupt change in the stable equilibrium (first

order discontinuity), the population mode gradually declines to extirpation as the harvesting

frequency increases (Fig. 4.3B). Interestingly, the noisy harvest model indicates population

persistence at a larger range of harvesting conditions than the noise-free harvest model . The

divergence in the stability landscape between the fixed and noisy harvest models demonstrate

an example of noise-induced persistence.

The noise-induced persistence is also reflected in the probability of extinction. Popula-

tions subject to subcritical noise-free harvests persist indefinitely. At the critical harvesting

threshold, the probability of extinction jumps to unity. In the case of populations subject

to noisy harvests, the probability of extinction gradually increases (Fig. 4.4B)
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4.4 Discussion

I simulated the growth of S. cerevisiae on agar when harvested at a continuous constant

rate, fixed discrete events, and stochastic discrete events. The models with continuous

and fixed discrete harvests did not differ dynamically from each other, but the dynamics

of the stochastically harvested populations did differ from the other two harvest regimes.

Simulated populations with stochastic harvesting were able to persist at an increased harvest

intensity (as measured by both α and λ) when compared to the fixed harvesting regime. This

is a theoretical demonstration of variability in the harvesting process causing population

persistence despite an unsustainable mean harvesting rate, also known as a noise-induced

persistence.

This work suggests that another layer of model complexity could be needed to fully cap-

ture harvested fisheries dynamics. Harvests often remove the largest and oldest individuals

from the population (Kuparinen & Merilä, 2007; Lewin et al., 2006). Exploited fish popu-

lations experiencing this selective pressure shift to a ‘fast’ life history leading to increased

growth rates (Uusi-Heikkilä et al., 2015; Enberg et al., 2012; Matsumura et al., 2011). There

is potential for these observed shifts to interact with NIS in interesting ways. First, exploited

fish populations that have a ‘fast’ life history related to increased growth rate are hypoth-

esized to be viable and highly productive because of this life history shift (Zimmermann &

Jørgensen, 2015). When this phenomenon simultaneously occurs with a transitioned stabil-

ity landscape, there could be a multiplicative effect on sustainable harvest rates compared to

when only one phenomenon is present. Alternatively, NIS could be mistaken as an increased

growth rate if only deterministic processes are considered. A NIS in a stochastic model and

a deterministic model with increased growth rate would have similar dynamical properties-

an increase in the maximum sustainable yield. The second area of exploration is when the

harvesting pressure is released. Fishing-induced evolution, as opposed to a phenotypic shift,

is most likely species and stock dependant (Darimont et al., 2009). When the harvesting

97



pressure is released, one might expect the return time of the population to pre-harvesting

characteristics to be faster under phenotypic, instead of genotypic, changes. The destabi-

lizing effect of a rapidly decreasing growth rate due to phenotypic adaptations, rather than

genotypic evolution, could be offset by the legacy of a larger stable population size given

NIS.

Storage effect theory focuses on understanding species coexistence as a response to envi-

ronmental stochasticity (Chesson, 2000). For example, climatic variability allows for plants

to maintain higher growth rates leading to coexistence (Adler et al., 2006). Coexistence

time in two species storage effect models have a non-monotonic relationship such that co-

existence time increases with environmental stochasticity to some intermediate maximum

before declining (Adler & Drake, 2008). This intermediate unimodal relationship between

environmental stochasticity and maximum stable number of species maps onto the work pre-

sented here, replacing species with individuals. Given these similarities, we should look to

the storage effect literature when choosing the next experimental noise-induced transition.

The Weibull function fit to the probability of population establishment grown under

sucrose sugar carbon conditions was sigmoidal (k > 1). This sigmoidal relationship would

be evidence for an Allee effect. However, the inflection point of the sigmoid λ, or the

critical density, is near one cell. The estimated near zero critical densities indicate that

an Allee effect is not a driving force in the population dynamics when grown on agar and

is orders of magnitude less than previous work in broth cultures (Dai et al., 2012). The

mechanism of the Allee effect can explain the difference in the positive density dependence

importance between broth and agar cultures. Sucrose, a disaccharide, must first be cleaved

into monosaccharides before moving from the periplasmic space into the cytoplasm (Carlson

& Botstein, 1982; Dickinson & Schweizer, 2004). Gore et al. (2009) reported that when this

strain of S. cerevisiae is grown in broth culture a majority of the monosaccharides diffuse

out of the periplasm space before the cell can import the sugar. At low cell densities cleaving

disaccharides is energetically costly given the inefficient capture process. As the cell density
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increases, the extracellular monosaccharide concentration increases, offsetting the cost of

inefficient capture and allowing the population to escape the Allee effect. It is reasonable to

expect the capture process to be more efficient on an agar substrate than in a well mixed

broth because the diffusion of the newly cleaved glucose away from the cell is much slower

on agar than in broth.

Noise within the discrete harvesting process increases the population’s tolerance for har-

vesting. As a point of reference, in the fixed harvesting model the harvest parameters are

also bifurcation parameters and can push the system through a fold catastrophe at the crit-

ical point of the harvesting rate equal to the intrinsic rate of increase (αλ = r). In the

stochastic harvesting model the probability distribution function, the inverse of the system’s

quasi-potential, maintains a non-zero mode at mean harvesting rates above the growth rate.

The region of parameters in which the deterministic harvesting model predicts population

persistence is a subset of the persistence parameter region of the stochastic harvesting model.

Specifically, the stochastic harvesting model predicts population persistence at higher pro-

portional harvesting rates given the same frequency, and higher harvesting frequencies given

the same proportional harvest rate. The expanded harvest parameter space for population

persistence in the stochastic model as compared to the deterministic model is indicative of

a noise-induced transition. In this case, noise within the harvest process acts as a stabi-

lizing effect leading to noise-induced persistence. This work contradicts the common view

that environmental variability is a destabilizing force, and puts forth predictions to test the

plausibility of noise-induced persistence within a microcosm.
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4.5 Figures

Figure 4.1: An Allee effect was detected by fitting establishment vs. inoculum size. The
mean of the binary outcomes by inoculum size are plotted with open circles. A sigmoidal
fitted line (k ≥ 1) indicates an Allee effect in sucrose (blue line). No conclusions of the
absence of presence of an Allee effect can be made about populations grown in glucose
(black line). The critical densities of cells needed to overcome the Allee effect (λ) when
grown in sucrose is near one cell. The point estimate of λ is plotted with a closed circle. The
parameter estimates are printed with their 95% confidence interval.
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Figure 4.2: Example of simulated populations and corresponding probabilistic distribution
of population size. The top row are examples of simulated population with the same mean
proportional harvest (α = 0.8) and decreasing interarrival time from left to right. Simulations
were initialized with a range of population densities, and were used to calculate the steady
state of the stochastic model shown in the bottom row after removing a 24 hour burn-in
period.
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Figure 4.3: Simulated final population size under fixed and stochastic harvest regimes. The
deterministic equilibrium (A) was calculated by averaging the final population size starting
from different initial conditions. The most probable population size under stochastic har-
vesting (B) was based on the mode(s) of the stationary distribution. Regions with a mode of
0.5 should be interpreted as bimodal with peaks near carrying capacity (1) and extinction.
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Figure 4.4: Impact of harvesting frequency on final population size at a proportional harvest
of α = 0.8. (A) The equilibrium value of the deterministic (w/o noise; N) and stochastic
(w/noise;•) harvest models. The bimodal region for the stochastic model ranges between
a harvest frequency 0.25 and 0.4 λ/r. The probability of extinction (B) calculated as the
proportion of simulations ending in extinction for the deterministic (w/o noise; N) and
stochastic (w/noise;•) harvest models. Noise-induced persistence ranges from 0.5 to 0.8 λ/r
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4.6 Appendix A: R Code

The functions used to simulate populations are listed below. The harvesting treatments

were created and saved prior to running population simulations. The last two functions,

OdeHarvestSim and ParaHarvestLogSim, are the parallel version of the previous functions.

• ScaleLogGrowth

• HarvestingSeries
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• OdeHarvestSimAndSoln

• OdeHarvestSim

• ParaHarvestLogSim

library(deSolve)

library(foreach)

library(dplyr)

library(truncdist)

# Logistic growth ODE

ScaleLogGrowth <- function(t, y, params) {

# Computes the rate of change of the variable y over time

#

# Args:

# t: vector of time points in the integration

# y: vector of variables in the differential equation

# params: vector of parameter values

#

# Returns:

# The rate of change of the variable y.

N<-y #create local variable N

with(as.list(c(params)), {

dN <- r*N*(1-N)

res <- c(dN)

list(res)

}

)
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}

#Simulate Harvest Time Series

HarvestingSeries = function(lam , #lambda vector

alp , #alpha vector

explength = 10, #length of experiment in same

units of r (hours)

events = TRUE , # return in format for ODE

events

noreps = 2 # number of replicate series for

each alpha X lambda

){

#make combination of a parameter values

al <- data.frame(cbind(lambda=rep(lam , each= length(alp)), alpha =

alp , treatment = c(1:( length(lam)*length(alp)))))

alplam <- data.frame(apply(al , 2, rep , each = noreps))

alplam <- alplam %>% mutate(rep=rep (1: noreps , length=nrow(alplam)),

simNo = c(1: nrow(alplam)))

foreach(i = 1:nrow(alplam), .combine =’rbind’) %do% {

treatset <- alplam[i,]

# interarrival times

waitingtime <- NULL

while(sum(waitingtime) < explength){

waitingtime <- c(waitingtime , rexp(1, rate = alplam$lambda[i]))

}

#pull heights for each event from truncated exponential fnc

between (0,1)

height <- data.frame(height= rtrunc(n=length(waitingtime),a=0,b

=1,spec="exp", rate = 1/alplam$alpha[i]))

# assemble event times and intensity

harvesting <- as.data.frame(cbind(waitingtime , height))
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if(events == TRUE) {

harvesting <- harvesting %>%

mutate(contTime = cumsum(waitingtime)) %>%

mutate(height) %>%

mutate(event = seq(1,length(contTime), by=1)) %>%

filter(contTime < explength) %>%

mutate(var = "N", time=contTime , value = (1-height), method="

mult",alpha=treatset$alpha , lambda =treatset$lambda ,

treatment = treatset$treatment , rep =treatset$rep , simno =

i) %>%

select(var ,time ,value ,method , treatment ,alpha , lambda , rep ,

simno)

} else {

harvesting <- harvesting %>%

mutate(contTime = cumsum(waitingtime)) %>%

mutate(height) %>%

mutate(event = seq(1,length(contTime), by=1), treatment =

treatset$treatment , alpha=treatset$alpha , lambda =treatset$

lambda , rep =treatset$rep , simno = i) %>%

filter(contTime < explength)

}

return(harvesting)

}

}

#simulate noise and OSE solution

OdeHarvestSimAndSoln = function(lambda , alpha , length , params=c(r=0.36) ,

Ninitial=c(N=0.5) , plotit = TRUE){

#create noise

simulatedNoise <- HarvestingSeries(lam=lambda ,alp = alpha , explength =
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length)

#create events df

sN <-simulatedNoise %>%

mutate(var= "N", time=contTime , value = (1-height), method="mult") %>%

select(var ,time ,value ,method)

# obs times for lsoda including event times

times <- sort(c(sN$time , seq(0,length ,1/60)))

outTemp <- as.data.frame(lsoda(Ninitial , times , ScaleLogGrowth , params ,

events = list(data = sN)))

if(plotit == TRUE) {plot(outTemp , ylim=c(0,1))}

return(list(outTemp ,simulatedNoise))

}

## Parallel scripts

#simulate OSE solution given event df, eventsdf is one parameter

combination treatment , with max(simno) replicates

OdeHarvestSim = function(params=c(r=0.36) , Nstart=c(N=0.5) , explength ,

eventsdf , resolution){

# when interarrival time is very small the times values become too close

to start integration despite using unique () [issue with floating

point ]. So I round the event times to 7 significant digits. The

number of significant digits was based on the number of digits

displayed in the console , not any analytical reason.

require(dplyr)

require(deSolve)

merge.by.time <- function(a, b) {

merge(a, b, by="time")

}
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results <- foreach(i=unique(eventsdf$simno), .combine = ’merge.by.time’

) %do% {

#eventsdf is output of HarvestingSeries which includes treatment

and rep columns that need to be removed

eventnames <- eventsdf %>% filter(simno == i)

event <- eventnames %>%

mutate(time = signif(time , digits =7)) %>%

select(c(var , time , value , method))

# obs times for lsoda including event times

times <- unique(sort(c(event$time , seq(0,explength ,resolution)))

)

outTemp <- as.data.frame(lsoda(Nstart , times , ScaleLogGrowth ,

params , events = list(data = event)))

#standardize time

out <- outTemp[outTemp$time %in% seq(0,explength , resolution),]

#rename N so has unique name when parallelized

names(out)[2] <- paste("T",max(eventnames$treatment),"r",max(

eventnames$rep),"N",Nstart ,"_sim",max(eventnames$simno), sep=

"")

return(out)

}

return(results)

}

#Function to simulate logistic growth with compound Poisson harvest in

parallel

ParaHarvestLogSim=function(alleventsdf , #output of HarvestingSeries

function

N0.seq = c(N=0.5), #initial condition

parameters=c(r=0.360) , #ODE

maxtime = 100, #max length of experiment in same
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units of r (hours); same value used in noise

sim

cores=2, #number of cores to use in parallel

res = (5/60), #time interval to return in hours

folder = ’’ #where to save simulations

) {

require(dplyr)

require(doParallel)

require(foreach)

merge.by.time <- function(a, b) {

merge(a, b, by="time")

}

#

# make cluster

cl <- makeCluster(cores , outfile=paste(folder ,"Log.txt"))

registerDoParallel(cl)

#results <-

foreach(i = unique(alleventsdf$treatment),.export = c("OdeHarvestSim","

ScaleLogGrowth","merge.by.time"), .packages = c("foreach", "dplyr", "

deSolve")) %dopar% { #default returns each iteration as an entry in a

list

results <- foreach(j = 1: length(N0.seq), .combine = ’merge.by.time’) %

do% { #add back in when want to start from different initial

conditions.

OdeHarvestSim(

Nstart = c(N=N0.seq[j]),

params=parameters ,
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eventsdf = alleventsdf %>% filter(treatment == i),

explength=maxtime ,

resolution = res)

}

saveRDS(results , file = paste(folder ,"T",i,".RDS",sep=""))

}

stopCluster(cl)

#return(results)

}

R session information.

sessionInfo ()

R version 4.0.4 (2021-02-15)

Platform: x86_64-apple -darwin17.0 (64-bit)

Running under: macOS Catalina 10.15.7

Matrix products: default

BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/

Frameworks/vecLib.framework/Versions/A/libBLAS.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/

libRlapack.dylib

locale:

[1] en_US.UTF -8/en_US.UTF -8/en_US.UTF -8/C/en_US.UTF -8/en_US.UTF -8

attached base packages:

[1] parallel stats4 stats graphics grDevices utils datasets

[8] methods base

other attached packages:
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[1] doParallel_1.0.16 iterators_1.0.13 truncdist_1.0-2 evd_2.3-3

[5] dplyr_1.0.5 foreach_1.5.1 deSolve_1.28

loaded via a namespace (and not attached):

[1] Rcpp_1.0.6 pillar_1.5.1 compiler_4.0.4 plyr_1.8.6

[5] bitops_1.0-6 tools_4.0.4 digest_0.6.27 evaluate_0.1

4

[9] lifecycle_1.0.0 tibble_3.1.0 pkgconfig_2.0.3 rlang_0.4.10

[13] yaml_2.2.1 xfun_0.22 stringr_1.4.0 knitr_1.31

[17] generics_0.1.0 vctrs_0.3.8 gtools_3.8.2 caTools_1.18

.1

[21] tidyselect_1.1.0 glue_1.4.2 R6_2.5.0 fansi_0.4.2

[25] rmarkdown_2.7 purrr_0.3.4 reshape2_1.4.4 magrittr_2.0

.1

[29] gplots_3.1.1 codetools_0.2-18 ellipsis_0.3.2 htmltools_0.

5.1.1

[33] utf8_1.2.1 KernSmooth_2.23-18 stringi_1.5.3 crayon_1.4.1
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Experimental demonstration of harvest

noise-induced transition

5.1 Introduction

Finding sustainable harvesting practices is a driving application for population ecology.

Overexploitation can lead to population collapse or anthropogenic extinction, and sustain-

able harvesting practices are one solution to this. An illustration of this is the extinction of

the passenger pigeon of North America over less than 100 years of intense hunting (Brooks,

1955). Modern commercialized harvesting still struggles with overexploitation as demon-

strated by the 1990s collapse of the Atlantic ground fisheries spanning from New England to

Newfoundland and Labrador, which is just one of the estimated 366 harvest related fisheries

collapses from 1955 to 2005 (Hutchings & Myers, 2011; Mullon et al., 2005). These collapsed

fisheries represent roughly one fourth of global fisheries, and can take decades to recover if

at all (Mullon et al., 2005).

Before collapse, the harvest targets for these fisheries were based on the theoretical con-

cept of the maximum sustainable yield (MSY), or harvesting only enough individuals from

the population to limit negative density dependent feedback and maintain the population’s

maximum growth rate (May et al., 1978; Roughgarden & Smith, 1996). There are many

potential reasons why MSY failed to maintain viable populations, including that harvest-
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ing itself magnifies variance in the population size and increases the chance of extinction

(Beddington & May, 1977; May et al., 1978; Anderson et al., 2008). However, harvesting

does not always lead to reduced population stability or size. In discrete population models,

harvesting can increase population stability or size by reducing the growth rate below the

bifurcation point on the logistic map, or reducing overcompensatory dynamics (May, 1976;

Jiménez López & Liz, 2021; Seno, 2008). To date, there has been little research into processes

that could lead to similar results in continuous time models.

Most harvesting theory to date has assumed a constant stability landscape. Stability

and equilibria can be visualized by plotting the potential function, known in ecology as a

ball-in-cup or ball-and-valley model (as reviewed by Nolting & Abbott, 2016). Within this

model, the stable equilibria are at the bottom of valleys, while the unstable equilibria are

the inflection points on the peaks. The system, or ball, follows gravity to the closest valley.

Changes in the system state are either due to a parameter change that shifts the valley

accessible by the ball, or perturbations pushing the ball into another valley (Beisner et al.,

2003). For example, harvesting-related population collapse can act as a perturbation by

pushing the ball into another valley near extinction, while in other systems a change in the

harvesting rate parameter can cause the stability to switch such that peaks become valleys

and vice versa. However, the theory of noise-induced transitions (NIT) provides an alterna-

tive mechanism for changes in equilibria. The NIT framework acknowledges that variability

within the system can lead to qualitative changes in the stability landscape (Horsthemke

& Lefever, 2006). Stability in deterministic and stochastic systems can be written in an

expression. In the case of a deterministic system, linear stability analysis will result in point

equilibria or limit cycles. However, stochastic systems by nature will never settle to a single

point equilibria, but rather must be expressed in probabilistic terms. Equilibria in stochastic

systems are defined by a stationary probability distribution (SPD) which can be found by

solving the Fokker-Planck equation of the SDE (Horsthemke & Lefever, 2006). A transition

occurs when the SPD goes through a qualitative change. This can be detected by tracking a
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single metric, the SPD extrema. The expression for the SPD extrema consists of two terms.

The first term is the deterministic equilibria, while the second term is multiplied by the noise

intensity, meaning that as noise approaches zero the SPD extrema approach the determin-

istic equilibria. This is a key property that allows experimental detection of NITs, and is

justification for treating the SPD extrema as equivalent to the deterministic equilibrium.

Noise-induced transitions are further categorized by the outcome. Proposed classifi-

cations include noise-induced extinction (NIE), noise-induced recovery (NIR), and noise-

induced stability (NIS) (Ridolfi et al., 2011; Bashkirtseva & Ryashko, 2018; Meng et al.,

2020a; Meyer & Shnerb, 2018). NIE follows ecologists’ general dogmatic understanding of

noise as a destabilizing force on system stability (Dennis et al., 1991; Tuljapurkar & Orzack,

1980; Lewontin & Cohen, 1969) . There are many examples of noise-induced recovery or

stability in community ecology, even if using a noise-induced framework is uncommon. Ex-

ceptions to the competitive exclusion principles like the paradox of the plankton, or more

general competitor co-existence can be explained by variability in an environmental condi-

tion (Gause, 2003; D’Odorico et al., 2005; Benincà et al., 2008). Within mutualistic plant-

pollinator networks, restoring degraded networks with species approaching near zero abun-

dances is extremely difficult due to the hysteresis loop created by a saddle-node bifurcation

at the critical mutualistic interaction strength value (Meng et al., 2020b). However, these

networks can be restored by increasing variability in species abundance and bypassing the

hysteresis properties of the network (Meng et al., 2020a). In the case of intertidal species

assemblages in the Mediterranean, increases in the variance of stress due to air exposure

time offset the negative impacts of sole increases in mean exposure time (Benedetti-Cecchi

et al., 2006). All of these examples are of communities, but is NIS possible in a single species

system?

Harvesting noise-induced transition is an alternate explanation for the mismatch between

MSY theory and application and has yet to be empirically explored. D’Odorico et al. (2006)

has theoretically shown variability in the harvesting rate led to extirpation despite having a
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sustainable mean harvesting rate.

To investigate this idea, I conducted experiments using populations of Saccharomyces

cerevisiae (strain BY4741 SUC2:YFP). However, computer simulations parameterized for S.

cerevisiae have shown variable harvesting to act as a stabilizing force (See Ch. 4). Here,

I report on an empirical study designed to detect a harvesting noise-induced transition in

experimental populations of S. cerevisiae. Harvesting noise was introduced into the micro-

cosms by discrete proportional harvesting events of randomly drawn times and proportions,

or white shot noise. The comparison of these populations to populations subject to a con-

stant discrete proportional harvesting rate was used to demonstrate the causal link between

harvesting noise and extinction. This study shows that a harvesting process with otherwise

unsustainable mean harvesting rates can allow population persistence when the harvesting

is characterized by stochastic noise.

5.2 Methods

The possibility of a harvest noise-induced transition was examined using spatially structured

microcosms of Saccharomyces cerevisiae (strain BY4741 SUC2:YFP; Gore et al., 2009).

White shot noise within the discrete harvest process was introduced in the harvest frequency

(λ) and the proportion of the population removed at a harvest(α; Ridolfi et al., 2011).

Populations were subjected to either a fixed or stochastic harvest regime along a 4-point

harvest frequency (λ) gradient at a single proportional harvest (α = 0.8) as informed by the

system model (Ch 4). Unique stochastic harvest series were created by drawing the time

between harvests from an exponential distribution (T ∼ Exp(1/λ)). For each stochastic

harvest event, the proportional harvest was drawn from an exponential distribution with

the upper bound truncated to one (H ∼ Exp(α)). In the case of the fixed harvest regimes,

which act as a control, the harvest frequency and proportion harvested was set to the mean

value of the stochastic harvest regime.
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5.2.1 Culture & Harvesting Methods

Populations were grown on yeast synthetic media with complete supplement, 2% sucrose,

and 2% agar in 100mm Petri dishes, and incubated at 30◦C in a humidified chamber. The

experiment was executed in replicate blocks of 12 populations. Each block contained 2

replicates, and a control fixed discrete harvest of the four λ (λ/r = 0.12,0.28,0.44,0.60) and

α (α = 0.8) treatments. All populations were started by plating 200µL of an overnight

broth culture diluted to an OD600 of 0.03 (≈ 500cells/µL) with fresh media. At a harvest

event, the Petri dish was flooded with 1mL of sugar free media broth and cells were manually

resuspended with a plate spreader. The suspended cells were transferred, and diluted to a

total volume of 500 µL according to the proportional harvest treatment. Populations were

censused at this point by a replicate spot plate assay using aliquots of 3 µL. The remaining

volume of the newly diluted cells was then plated on pre-warmed agar plates. Once the

plates were completely dry, they were sealed with parafilm and returned to the incubator.

The extinction detection limit was set at 0.3 cells µL−1 and was defined by no growth in

the spot plate assay within 48 hours. The difference between the cell suspension volume

(1mL) and the final dilution volume (0.5mL) allowed for some liquid to absorb into the agar

without compromising the harvest treatment. This difference also means that populations

were diluted at least 1:2 at every harvest event. Populations were maintained until extinction

or 144 hours.

5.2.2 Data Analysis

The spot plate assay was used to score populations as present (0) or extinct (1) at each

harvesting event. This binary outcome was used to fit a general linear model with a binomial

family. The effect of the noisy harvest regime was tested using an ANOVA (type I sum of

squares). A pairwise test for significance was done using a two sided Fisher’s exact test given

the small sample size.
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5.3 Results

We found that noise within the harvest process increased the range of viable harvest frequen-

cies (Fig. 5.1). The mean binomial outcome by treatment did not differ between the control

and treatment harvest regime for three of the harvest frequency treatments. However, at

harvest frequency 0.44, the control harvest regime was significantly more likely to go extinct

when compared to the noisy harvest treatment (Fisher’s; p-value = 0.001). Additionally, we

found qualitative agreement between the model predictions and experimental results. Two

contaminated populations within the same experimental block were removed. The contam-

inant was easily identifiable by color and mobility. The removals reduced the total number

of harvest regime treatment replicates to 13 for harvest frequencies of 0.28, and 0.44. The

control populations were not effected.

5.4 Discussion

This study provides the first experimental demonstration of noise-induced persistence in a

biological system. These findings are contrary to the paradigm of noise as a destabilizing

force. In the case of this system, the mean harvesting frequency could be increased by ≈ 16%

(from 28% to 44% of r) without increasing the probability of extinction. The increased range

in sustainable harvesting frequency could be substantial enough to meaningfully change

the total harvested individuals over a period of time. The D’Odorico et al. (2006) model

characterized tree-grass dynamics in savannas. In savannas, fire can push the system to

one of two states, tree or grass dominated, depending on frequency and intensity. If fire

is modeled as a stochastic process, the system develops an intermediate state of tree-grass

coexistence in a subset of harvesting by fire parameters, while in an other parameter space

bistability between the tree and grass dominated states arise. These new stability patterns

are unique to the stochastic model, when compared to the deterministic equivalent, which has
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a single stable state at a proportion of the carry capacity dictated by the harvest frequency

and intensity.

Given these previous findings, we expected our model to predict regions of harvest param-

eters that led to bistability, and regions where the preferential state lies between extinction

and carrying capacity (D’Odorico et al., 2006; Ridolfi et al., 2011). This was the case in

our model with the standard harvest process, but not in the model including the harvesting

modifications needed to accommodate experimental logistics. Essentially, the modified har-

vesting protocol almost doubled the mean (2α) and reduced the variance by 75% (0.25α2)

of the harvest intensity, α parameter. After the harvesting modifications were incorporated

into simulations, the regions of bistability and suppressed carrying capacity in the harvest-

ing parameter space disappeared. Instead, the region of harvesting parameters that led to a

non-zero preferred population size increased. The difference in outcomes of the standard and

modified harvesting regime indicate the importance of the noise distribution as related to the

transition. While the modified harvest regime may be unlikely in practice, this theoretical

analysis created predictions that can now be experimentally tested in S. cerevisiae popula-

tions. The phenomenon of noise-induced persistence is not unique to our study system, and

has been observed in theoretical models of tumor cell growth and mutual interaction net-

works (Meng et al., 2020b; Zeng & Wang, 2010; Yang et al., 2014). Outside of the biological

literature, this increased stability has arisen in many models, and an experimental electrical

system (Dayan et al., 1992; Mantegna & Spagnolo, 1996; Fiasconaro et al., 2005).

While the generality of noise-induced persistence within biological systems must be es-

tablished by future research, this experimental demonstration has provided clear support

that noise can act as a stabilizing force allowing populations to persist despite unsustainable

mean conditions. The possibility of noise-induced transitions stresses the need to move from

a deterministic to stochastic paradigm for population management. This result requires

ecologists to re-examine the assumption that extirpation of a managed population was due

to overexploitation, and has the potential to alter management practices.
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5.5 Figures

Figure 5.1: The probability of extinction for the noisy and fixed harvest regimes is plotted
as a function of harvest frequency. The point estimates are from model simulations (x), and
the experimental mean (◦) of the binary outcome of each population for the control (n=7)
and treatment (n=14) populations and the binomial confidence interval which was calculated
using the exact method. An ANOVA of a generalized linear model using a binomial family
indicated an effect of the harvest regime and frequency (λ/r). Significant difference between
the control and harvest regimes is indicated with an asterisk (∗; p-value = 0.001).
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Jiménez López, V. & Liz, E. (2021). Destabilization and chaos induced by harvesting:

Insights from one-dimensional discrete-time models. Journal of Mathematical Biology, 82,

3.

Lewontin, R. C. & Cohen, D. (1969). On Population Growth in a Randomly Varying Envi-

ronment. Proceedings of the National Academy of Sciences, 62, 1056–1060.

Mantegna, R. N. & Spagnolo, B. (1996). Noise Enhanced Stability in an Unstable System.

Physical Review Letters, 76, 563–566.

125



May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature,

261, 459–467.

May, R. M., Beddington, J. R., Horwood, J. W. & Shepherd, J. G. (1978). Exploiting natural

populations in an uncertain world. Mathematical Biosciences, 42, 219–252.

Meng, Y., Jiang, J., Grebogi, C. & Lai, Y.-C. (2020a). Noise-enabled species recovery in the

aftermath of a tipping point. Physical Review E, 101, 012206.

Meng, Y., Lai, Y.-C. & Grebogi, C. (2020b). Tipping point and noise-induced transients in

ecological networks. Journal of The Royal Society Interface, 17, 20200645.

Meyer, I. & Shnerb, N. M. (2018). Noise-induced stabilization and fixation in fluctuating

environment. Scientific Reports, 8, 9726.
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Conclusion

Ecologists have long been interested in understanding population dynamics, especially catas-

trophic changes (Lewontin & Cohen, 1969; May, 2001; Scheffer, 2020). These catastrophic

changes, or disproportionately large state shifts in response to a changing kinetic parameter

or perturbation, are often explained using an alternative stable states framework (Nolting

& Abbott, 2016). Returning to the ball-in-valley model, there are two paths to these large

shifts. Either the system moves into another valley due to an external push, or the val-

ley itself moves due to a change in a kinetic parameter. However, May (1973) proposed a

third path to a substantial change in the populations’ stable states. This third path, noise-

induced transitions, takes into account the stochasticity found in the natural world. When

this noise is incorporated into population models, equilibria can move similar to a kinetic

parameter change or new equilibria can arise and/or disappear. This work experimentally

demonstrates two sub-types of NITs in biological systems; noise-induced extinctions and

noise-induced persistence. Noise-induced extinctions fall within ecologists’ dogmatic un-

derstanding of environmental stochasticity (Lewontin & Cohen, 1969; Dennis et al., 1991;

Tuljapurkar & Orzack, 1980). However, noise-induced persistence within a single population

challenges our understanding of environmental noise and its impact on systems. Depending

on the prevalence of NITs in biological systems, this could be a shaping force in the natural

world that has been ignored until now.

The possibility of a noise-induced extinction was explored using Aphanizomenon flos-
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aqua algal chemostats. Environmental noise was introduced by continuously varying the

incident light which is akin to the random normal carrying capacity example presented by

May (1973). The constant incident light parameter was replaced with a random normal

variable in a mechanistic algal growth model originally published by Huisman & Weissing

(1994). Simulated populations with sufficiently large variance in light conditions went extinct

despite an ideal mean light condition. This model prediction was used to guide the chemostat

experimental design. Unfortunately, the experimental set up proved to be too unpredictable

to identify where the stability transition takes place along a noise gradient, just that it exists.

This experimental system and contrived source of environmental variability is useful for

model-based reasoning and reasoning by analogy to natural systems (Drake & Kramer, 2012).

The combined theoretical and empirical approach used for this work could be especially useful

when estimating the indirect anthropogenic effect of increased environmental stochasticity

due to climate change (Thornton et al., 2014).

Noise-induced persistence was demonstrated in populations of Saccharomyces cerevisiae

subject to variable discrete harvesting events (strain BY4741 SUC2:YFP ; Gore et al., 2009).

White shot harvesting events were drawn from a Poisson process (T ∼ Exp(1/λ), and the

proportion of the population removed at a harvest event was drawn from a truncated expo-

nential distribution with an expected value of α. Previous theoretical studies of stochastic

harvesting predicted a transition to extinction rather than persistence (Ridolfi et al., 2011).

The difference between past studies and the one presented here is caused by harvesting mod-

ifications required to accommodate bench limitations. These modifications reduced variance

in the proportional harvest variable by 75% creating a condensed distribution when com-

pared to the original exponential distribution. The transect of harvest frequencies used in the

bench experiments were based on model predictions of the transition to persistence thresh-

old. The transition to persistence was captured in the experimental data, where populations

harvested at a frequency of half the growth rate λ/r = 0.44 under a white shot harvest regime

were significantly less likely to go extinct when compared to fixed harvest populations. This
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work suggests the need for noise-induced transitions to be incorporated into harvest theory,

especially as applied to fisheries, given humans’ direct control of harvesting practices (An-

derson et al., 2008; Jonzén et al., 2002; Braumann, 1999; Parkinson et al., 2004; Fukasawa

et al., 2020).

This dissertation first presents the implications of destabilizing effects of environmental

noise as expected under ecological dogma of stochasticity. Then, I present the surprising

result of noise-induced persistence in stochastically harvested populations. These are just

two vignettes of the possible nonlinear dynamics and environmental stochasticity observed in

natural populations. By building a concept map of the noise-induced outcomes of different

combinations of nonlinear dynamics and types of environmental noise, we can develop a

heuristic understanding of how and when a stochastic rather than deterministic model is

a more appropriate description of the natural world. With this understanding in hand,

we can start to build a more nuanced NIT framework that incorporates other stability

related phenomena like fishing induced evolution (Uusi-Heikkilä et al., 2015). Over the last

century, community ecologist have sought to develop a holistic understanding of stability in

a changing world (Chesson, 2000). It is time for population ecologists to follow by moving

from a deterministic representation of the world to one which incorporates multiple sources

of stochasticity and thinks of stability in quasi-stationary terms.
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