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Abstract

Canopy imaging is a noninvasive form of crop monitoring used to measure the growth of

plants in horticultural studies. This imaging technique utilizes cameras and image processing

to capture plant canopies and separate them from their background. Most canopy imaging

systems use RGB cameras and separate the plants based on green pigments. This technique

works well most of the time, but separation of plants becomes difficult for species that have

non-green leaves. This work describes the design and development of a canopy imaging device

that utilizes chlorophyll fluorescence: light emitted by plant chlorophyll as a response to

receiving light energy. Chlorophyll fluorescence is easy to image and occurs so long as plants

contain chlorophyll, independent of coloration. In order to develop a device that improves

upon current technologies, emphasis was placed on adding useful features to it, including

on-device image processing and pipeline automation, while also reducing total cost.
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CIFS, Automation, Cost reduction, Device prototyping, Horticulture
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Chapter 1

Introduction

This thesis presents an exposition on the research and development of a canopy imaging

device which uses chlorophyll fluorescence, made for the monitoring of plant growth and

health. Because typical RGB canopy imaging experiences issues with non-uniform color dis-

tribution of some plants, the approach of imaging chlorophyll fluorescence, light emitted

by all plants during photosynthesis, was applied to the core of this device’s development.

In order to make the canopy imaging device more accessible and practical for scaling up

within plant growth systems, a goal to minimize costs for production of this device was also

added since general equipment costs for chlorophyll fluorescence imaging remains expen-

sive, ranging in the hundreds of dollars per camera and thousands of dollars per system.

Finally, an objective of maximizing flexibility for system settings was included to increase

the practicality of using this device further, especially because many horticultural growth

systems differ in environmental conditions and so require different parametric changes to the

imaging device. In fulfilling all the mentioned goals and objectives, a canopy imaging device

was created that, while requiring more time investment to use and being less accurate than

its expensive counterparts, is able to monitor the growth and health of all fluorescing plants

regardless of coloration as well as allow for easy customization and scaling up of growth

systems at a low cost.
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Chapter 2

Background

2.1 Chlorophyll Fluorescence

Chlorophyll fluorescence imaging is a more recently implemented technique used to monitor

the growth and health of plants in agriculture [6,14]. It has become increasingly common in

plant physiology studies as it provides a noninvasive and valuable method of measuring the

efficiency of plant chlorophyll and, in turn, plant health and growth.

As light energy is absorbed by plant chlorophyll, it has three possible pathways. The

light energy may either drive photosynthesis in the plant, be dissipated as heat, or be re-

emitted as light [9]. This re-emission of light is what we call chlorophyll fluorescence. Because

these pathways work in competition, chlorophyll fluorescence can be used to determine the

efficiency of photosynthesis which relates to the plant’s health and growth. This fluorescence

is emitted at a wavelength starting from approximately 660 nm (Fig. 2.1) which is in the

far-red region of the light spectrum and can be easily measured if the surrounding light

sources emit a negligible amount of far red or near-infrared (NIR) light, allowing for clear

separation. For this purpose, specific LEDs tend to be chosen as primary excitation sources

for chlorophyll fluorescence studies.

A phenomenon called fluorescence quenching is one major drawback for the quantita-

tive measurement of chlorophyll fluorescence (yet not so much for more qualitative measure-

ments). When chlorophyll is initially exposed to light, its fluorescence response will spike and

peak for about one second. Afterward, the response decreases significantly over the course

of several minutes (Fig. 2.2) [13]. This phenomenon poses a problem because it is caused by

two main physiological processes, ’photochemical’ and ’non-photochemical’ quenching, whose
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contributions must be differentiated from one another to get usable quantitative information

from chlorophyll fluorescence measurements [16].

One practical method of circumventing this problem was termed the ’light doubling’

technique [2, 18], which approximately removes the photochemical quenching contribution.

In this technique, the light source used to excite the chlorophyll and initiate the fluorescence

response would be pulsed at a high intensity for a brief duration. If the excitation pulse is

short enough, then no non-photochemical quenching nor changes to photosynthesis would

occur either. This allows for relative measurements of chlorophyll fluorescence to be obtained,

which can be used to calculate quantitative properties of photosystem II (PSII) [16], a pro-

tein complex in the chloroplast responsible for catalyzing the initial steps of photosynthesis.

Fortunately, since the premise of canopy imaging is only concerned with the ability to distin-

guish leaf areas from non-leaf areas, quantitative measurements of PSII are not needed, and

fluorescence quenching would not be an issue for the purposes of this thesis. Nonetheless, this

is useful information to keep in mind should implementation of quantum yield measurements

become desired in the future.

The typical instruments for measuring chlorophyll fluorescence are fluorometers which

can detect the intensity of emitted fluorescence from plants or other substances. Some flu-

orometers are modulated, a method of rapidly pulsing the measurement light, which allows

them to be used even with background lighting [18]. The major downside to using fluorom-

eters for measuring chlorophyll fluorescence is that neither plant size/area nor fluorescence

mapping can be imaged which both provide useful information on the plants. For example,

fluorescence images of leaves have shown that photosynthetic performance can be highly het-

erogeneous across the leaves. As such, cameras have become more commonly used in taking

chlorophyll fluorescence images [1].

Because the aim of my chlorophyll fluorescence imaging device is to analyze canopy size,

using a camera instead of a fluorometer is a necessity. As mentioned before, canopy imaging

only requires qualitative measurements of chlorophyll fluorescence, so the ’light doubling’
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Figure 2.1: The approximate chlorophyll fluorescence spectrum of plants. It peaks strongly
at 682 nm and once again at 740 nm. Adapted from Krause [15].

Figure 2.2: An example of fluorescence quenching. The fluorescence response of chlorophyll
to light exposure from a dark environment is seen here. Adapted from Krause [15].
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technique will not be implemented in this version of the imaging device. However, future

improvements could certainly focus on making use of the technique to provide more options

for measuring chlorophyll fluorescence. The method for capturing chlorophyll fluorescence

with a camera involves using an excitation light to trigger the plant’s fluorescence response. A

blue LED is usually used as the excitation light because they have a near optimum excitation

wavelength as well as a smaller far-red tail than white LEDs. Then, an image is taken of the

plant through an IR cut-on filter so that most unwanted visible light, specifically the strong

blue light, would not be picked up by the camera and only the chlorophyll fluorescence is

imaged.

2.2 Canopy Imaging

Canopy imaging is a form of noninvasive crop monitoring that uses a camera to take images

of the crops from directly above. Currently, the most common form of canopy imaging

uses RGB setups which capture all visible light. For instance, Bumgarner [3] performed a

study where RGB canopy imaging was used to supplement other more direct forms of crop

measurement on lettuce. In this study, the images taken of the lettuce were analyzed using a

software called WinCAM 2009 Regular. The process of analyzing images through WinCam

2009 consisted of loading batches of the raw images, having an operator manually select

a set of colors from within the images to designate as background or leaf coverage, and

running the image analysis program through the batch of images, resulting in pixel counts

for the leaf and background of each image. A percentage would be calculated from the pixel

measurements to find the amount of canopy cover compared to the amount of background

in each image. This approach worked well for fully green lettuce plants, but analysis was

much less successful for species such as ’Flagship’ leaf lettuce which has primarily red leaves,

where plants were unable to be separated from the background.

Other image analysis software used for canopy imaging include ImageJ from NIH, which

can perform threshold-based pixel count measurements but normally requires more user
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input for complex images, and specialty-made software such as Easy Leaf Area, developed

by Easlon and Bloom [7]. Easy Leaf Area performs similarly to WinCAM 2009 Regular but

is built off Python with the OpenCV library and also allows for rapid processing of image

batches and customization by users. The program utilizes a red calibration patch of a known

fixed area to calculate leaf areas for images during analysis. This calibration patch requires

that the operator place the patch in a similar area and height relative to the plants, in

order to avoid problems from image distance and lens distortion. Similar to WinCam 2009,

a batch of images is loaded into Easy Leaf Area, 8-bit values [0-255] are selected as minimal

green and red thresholds, and the program is run over the image batch, resulting in leaf

area measurements. Using the minimal 8-bit values, Easy Leaf Area is able to distinguish

the background, the leaf coverage, and the red calibration patch. Unfortunately, Easlon does

note that while the program is able to accept more selection criteria for non-green plants,

adjusting the software for such purposes would require greater Python knowledge. Also, issues

could emerge in calibration due to adjusting settings for red-pigmented leaves. Otherwise,

analysis of mixed colored plants was not mentioned.

Due to the shortcomings of RGB image analysis for canopy imaging, other forms of plant

monitoring are being incorporated into canopy imaging and developed, hence the purpose of

this paper. Previously mentioned, light energy that is absorbed by plant chlorophyll can also

be dissipated as heat, in competition to photosynthesis and chlorophyll fluorescence. Using

the heat given off by light exposed plants, Osroosh [17] developed a low-cost mixed thermal-

RGB imager, similar in principle to the canopy imaging system developed in this thesis. The

system that Osroosh made included a micro-controller (the Raspberry Pi), a RGB camera

board, and a thermal imager among other components. It allowed for measurement of the

average temperature of leaves as well as canopy size, and the total costs ranged between

approximately three and four hundred dollars. Osroosh combined RGB and thermal imaging

by using the captured thermal image as a mask for the RGB images, separating the plants

from the background based on the resulting combination. While this approach was successful
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for larger canopy sizes, there were significant measurements errors with small canopies due

to imperfect alignment of the images [17]. Fortunately, the size of canopies would not be a

specific issue for chlorophyll fluorescence imaging as there is no need for the alignment of

multiple image sources.

In explaining the concept of canopy imaging, it is important to discuss the relationship

between the pixels of captured images and the projected area, or the actual size of the plants

that are imaged. Specifically, the geometric relationship can be described as ray geometry

(Fig. 2.3). Due to factors including the distance between the camera and the plants, the

camera’s field of view, any barrel distortion, and the angle of the camera’s axis, the conversion

from pixels to units of area is specific to each imaging setup. Therefore, calibration should

be performed in order to obtain true area measurements. As seen with Easy Leaf Area,

calibration can be done by imaging a specific object, such as a ruler or colored patch, with

known measurements to calculate the conversion. This method becomes more difficult at the

edges of images if there is significant barrel distortion of the camera or if the camera has

a wide-angled lens. This places emphasis on using cameras with negligible barrel distortion

and a narrower field of view.
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Figure 2.3: Ray geometry is the geometric relationship that best describes how pixels of
images taken by a camera can be related to actual area measurements. Here, a is the distance
between the camera sensor and the lens while b is the distance between the lens and the
imaged object. Assuming that a ≪ b, x = b

a
∗ p, where x is a true area measurement and p

is the pixel size. Additionally, factors such as lens distortion and field of view will alter the
relationship between x and p as pixels move further from the center of the sensor.
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Chapter 3

Problem Analysis and Objectives

3.1 Shortcomings with RGB Canopy Imaging

When performing canopy imaging, an image is taken by a camera and processed through

a program, such as the aforementioned WinCam 2009 and Easy Leaf Area, to separate the

plants from any background. RGB cameras are currently the most commonly used device

for this application and work well for most plants since the majority of them are completely

green, which is easily distinguished from dark backgrounds. However, as noted before, when

imaging plants with non-uniform color distribution, the image processing encounters prob-

lems with separation of the plants. This is because colors such as dark red, which naturally

occurs on a variety of plants and crops such as lettuce, is difficult to distinguish from dirt and

other background substrate. Some recently developed programs have been able to process

these images more reliably, however as RGB images can vary greatly between setups and

plants, using these programs correctly would require more experience with them as well as

greater user input. For example, the program Easy Leaf Area stated that analysis of non-

green plants could be performed but would require some alteration of the program’s Python

code rather than simple adjustments to the minimal green and red thresholds.

3.2 Fluorescence Imaging Costs

As mentioned previously, the two main devices for imaging chlorophyll fluorescence are flu-

orometers and cameras. While fluorometers are readily available for commercial purchase

and use, the cheaper point fluorometer variants that run in the range of hundreds of dollars

9



only allow for single wavelength analysis while the more useful bench top fluorometers that

provide spectra analysis cost upwards of tens of thousands of dollars, keeping in mind that

fluorometers do not capture whole plants or leaves.

On the other hand, chlorophyll fluorescence imaging systems that use cameras are scarcely

available commercially, and the purchasable systems are specially made and cost much more

than most fluorometers. This leads scientific researchers to build their own systems from

components bought separately, whose total costs typically range in the upper hundreds to

thousands of dollars. The majority of these costs come from the camera, filter, and lens.

For example, the FLIR brand of cameras is commonly deployed in custom setups involving

fluorescence imaging as well as thermal imaging [8, 11, 12], which cost approximately three

hundred dollars each. Combined with a suitable lens and filter, the costs get bumped up

another several hundred dollars.

3.3 Inconveniences of Scaling Up

Most chlorophyll fluorescence imaging systems, both custom-made and commercially bought,

are large, stationary setups that require the users to place their plants inside the systems.

This method works fine for most scientific studies as plants are normally grown in trays of

pots that can be moved readily. Even so, the need to continuously move plants in order to

take canopy images becomes problematic as studies and processes are scaled up, for example,

from five trays of plants to dozens. Furthermore, in situations where crops are planted in the

field and cannot be moved, these setups are entirely impossible to use.

3.4 Overall Design Goals

Based on the problems that have been presented, there were three main goals for the develop-

ment of this imaging system: 1) make plant separation easier using chlorophyll fluorescence,

2) reduce the total costs to a commercially affordable price, and 3) design the system to
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be mobile and easy to deploy. Additionally, automation of the canopy imaging process was

considered a bonus objective for better user experience.

In order to avoid the problem with plant separation that RGB imaging encounters, the

system was designed based off of using chlorophyll fluorescence which can be imaged and

processed the same way regardless of plant color. This meant that the components needed

for this imaging system included a preferably monochrome camera, a filter, and an excitation

light. I will discuss more about why the camera needs to be monochrome later.

A design approach similar to that of Osroosh [17] was implemented to reduce costs as well

as allow for the system to have versatility with its placement. To clarify, the device would

be designed with the capability to be mounted and used in pre-existing growth systems,

without the need to build any independent enclosures. The use of a micro-controller such as

the Raspberry Pi allowed for several key benefits. Those are that the system could operate

while being mobile so long as it is powered, with the potential of using batteries instead of

wired power supplies, as well as that the micro-controller was able to support a variety of

suitable cameras at a low cost. As far as ease of use goes, that came down to how easily the

system could be made to set up, which was quite simple it turned out through the use of

backing up OS images/files and readily downloadable scripts.
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Chapter 4

Materials

4.1 The Raspberry Pi

The Raspberry Pi is a relatively cheap brand of micro-computer, commonly used in custom-

made electronic devices. The micro-computer provides plenty of uses that made development

of this canopy imaging system much easier. On its own, this machine is essentially a small

computer, similar in performance to a 5-year-old vintage laptop, able to install and run

programs such as ImageJ among many others. Additionally, the Raspberry Pi provides elec-

trical signal pins and native camera support, allowing for easy image capture and triggering

of excitation light for the plants.

In choosing which model of Raspberry Pi would be used in the imaging device, some key

features were prioritized. Of course, native camera support was necessary, but in order to

make the device as mobile and easy to deploy as possible, the ability to connect to wireless

networks as well as compatibility with more recent cameras were also used as determining

factors. With regard to on-board memory, the imaging system did not require much, so I

decided on 2 GB as the difference in cost for upgrade from 1 GB to 2 GB was negligible.

2 GB provides more than enough memory to run the operating system, ImageJ, and any

image processing. With ImageJ running, the Raspberry Pi showed a memory usage of under

300 MB, with approximately an additional two bytes of RAM per byte of image size opened.

Tacking on additional programs such as SAMBA or Xvfb, which will both be covered later, 2

GB was plenty of memory, and any further upgrade was unnecessary. Ultimately, the newer

Raspberry Pi 4 Model B was chosen as it should be compatible with all cameras adapted

12



for the Raspberry Pi as well as able to connect to wireless networks without any additional

hardware.

4.2 Cameras

When choosing an appropriate camera for the canopy imaging system, several key features

were tested to decide which one was the most fitting. These key features were: 1) sensitivity

to IR spectra, 2) monochrome image capture, 3) a global shutter, 4) high image resolution,

and finally, 5) low cost.

The first condition, IR sensitivity, came from the fact that chlorophyll fluorescence is

emitted in the far-red to IR part of the light spectrum. If a camera lacked IR sensitivity, the

images it captured would show little chlorophyll fluorescence, and the plants would be much

more difficult to distinguish from its background. Unfortunately, most commercial cameras,

including those designed to be compatible with the Raspberry Pi, contained a built-in IR

filter. This is because most cameras utilize silicon sensors which are sensitive to wavelengths

far past the visible light spectrum (Fig. 4.1). These wavelengths are undesirable for most

forms of imaging, and IR filters are the best solution to removing them. Removal of these

filters is possible, but the process would more than likely damage the camera, especially for

smaller ones, and make them unusable.

As mentioned before, a monochrome camera is highly preferable when imaging chlorophyll

fluorescence, although not entirely required. This is because of a drop in resolution and

performance with RGB cameras due to the use of Bayer filters. A Bayer filter is placed in

front of a camera’s sensor and is a grid pattern of red, green, and blue pixels (Fig. 4.2). Bayer

filters provide RGB cameras with the information needed to generate colored images, but

in order to get their final images, the cameras must interpolate the grid-based information

which causes these cameras to perform more slowly and often results in poorer image quality.

Since chlorophyll fluorescence imaging is only concerned with the intensity of captured light,
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Figure 4.1: The spectral response of silicon approximately ranges from 350 nm to 1100 nm
which extends well into the IR spectrum. Wavelengths past the visible light spectrum tend
to be undesirable as images may capture reflective light that cannot be seen by the human
eye. IR filters can be used to account for these wavelengths. Adapted from Chander [4].

being chlorophyll fluorescence, monochrome cameras can be used for better performance and

resolution.

In quantifying how high of a resolution would be suitable for canopy imaging, reference

must be made back to the discussion on the relationship between pixels and projected area

of plant canopies (Section 2.2), as a higher resolution would provide more pixels per image

which allows for more precise measurements of area to be calculated. An exact pixel count

requirement may be difficult to quantify, but the idea is that a greater resolution would

result in higher precision of the calculated projected area. Otherwise, cameras normally

come with either rolling shutters or global shutters. Rolling shutters capture images by

scanning across the pixels of their sensors in a wave-like pattern which means parts of

each image are exposed at different times. Meanwhile, global shutters expose their pixels
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Figure 4.2: An example of the color grid pattern of a Bayer filter. Due to the distribution
of red, green, and blue pixels, only half of a RGB camera’s resolution can be used for
interpolation of green information while only 1/4 of the resolution can be used for blue and
red.

simultaneously, so images will be completely synced. Because of this, global shutters are

preferred for chlorophyll fluorescence imaging due to the use of pulsed-LED exposure which

would cause rolling shutters to potentially capture unusable images. While canopy imaging

does not pulse LED lights to capture chlorophyll fluorescence, it does not hurt to include a

camera with a global shutter, especially this device may be used to obtain quantitative data

in the future.

Since the decision was made to base this imaging system off of the Raspberry Pi, possible

camera choices were already narrowed down to compatible ones which typically cost under

$50 USD; a detailed overview of costs can be found in Section 4.5. Additionally, Raspberry Pi

compatible cameras readily come with relatively high resolutions, typically 1280x720, as well

as a global shutter. This allowed me to focus camera testing on the remaining two criteria,

IR sensitivity and monochrome capture.

In order to test the selection of possible cameras, a testing setup was built from ThorLabs

optical rails, a large aluminum heat-sink plate, strong LED modules (100A series, Satistronix,
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Shenzen, China) for excitation, custom relays and computer case fans. A custom power supply

to provide 36V, 12V, and 5V outputs was also made by modifying an existing 36V power

supply and connecting a custom-made buck-mode switching converter. To test the cameras,

each one was mounted onto the aluminum plate with a pothos plant placed underneath.

The custom power supply was turned on to power both the fans and LED relays. Finally,

a simple script was run on the Raspberry Pi to trigger image capture of the testing camera

and to turn on the excitation lights during said image capture.

Figure 4.3: The testing setup used for all the cameras and filters. A black tarp would be used
to cover the setup during testing to block out any ambient light.

Based on the criteria set earlier, two main candidates were found, Raspberry Pi’s NoIR

Camera v2 and ArduCam’s MIPI Camera series. The first three cameras to be bought and

tested were Raspberry Pi’s NoIR Camera v2, ArduCam’s UC-580 Rev.B, and ArduCam’s

UC-545 Rev.C. The ArduCam UC-580 Rev.B was pruchased accidentally despite having a

built-in IR filter, but its test images were a good example of what happens to chlorophyll
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fluorescence images when the IR light region is cut. The test images from each of the cameras

can be seen in Figure 4.4. In the sample test images, the Pi NoIR Camera v2’s image appeared

red because it was not monochrome and chlorophyll fluorescence only registers in the red

channel. Notably, the Pi NoIR Camera v2 was the only native Raspberry Pi camera found

to have no built-in IR filter. The fact that it was a native camera allowed for easier use since

no additional files or programs needed to be installed for it, so this camera mainly served

as a backup plan in the case that a suitable third-party monochrome camera could not be

found. Most notably, the ArduCam UC-580 Rev.B produced a grainy, lower contrast image

because of its IR filter which blocked a large portion of any chlorophyll fluorescence. The

ArduCam UC-545 Rev.C did fit all the criteria and captured decent images of chlorophyll

fluorescence. Its main downside, however, was its low resolution, maxing out at 640x480.

After testing the first three cameras, two more ArduCam series cameras were bought, the

UC-599 and UC-599 Rev.B. The only difference between these two cameras were the lenses

installed on them. The UC-599 had a 130-degree lens while the UC-599 Rev.B had a low-

distortion 70-degree lens. Both cameras were monochrome and IR sensitive with a maximum

resolution of 1280x800. Based on their test images (Fig. 4.5), both cameras provided images

with similar resolutions, but the UC-599 Rev.B’s image was more zoomed in due to its

narrower lens. Additionally, the UC-599 Rev.B showed more of the plant’s details because

of this narrow focus. In the end, the choice of camera was between these two new ArduCam

models. Because it had a low distortion lens, the UC-599 Rev.B was chosen as the most

suitable candidate for the imaging device.

4.3 Filters

Chlorophyll fluorescence is emitted between approximately 660 nm and 780 nm, with the

majority of it occurring in the lower half. During camera testing, a large custom-made band-

pass filter from Omega Optical, Inc was used with a transmission range of 660 nm to 740 nm.
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Figure 4.4: Sample images from the initial set of camera tests for the: A) Pi NoIR Camera
v2, B) ArduCam UC-580 Rev.B, and C) ArduCam UC-545 Rev.C. All of these images were
taken under the same lighting conditions.
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Figure 4.5: Sample images from the second set of camera tests for the: A) ArduCam UC-599
and B) ArduCam UC-599 Rev.B. Images were taken under the same lighting conditions
between these two cameras and the initial batch of tested cameras.

This filter worked perfectly for testing, but its large size and high cost made it impossible

to use for the imaging device.

With regard to size, a filter with a diameter of at least 25 mm was needed to fully cover the

lens of the UC-599 Rev.B. Larger sizes would work just as well for covering the camera, but

making the device as compact as possible would allow it to be more mobile and easier to use.

Additionally, filters become much more costly the larger they are. At first, smaller band-pass

filters with similar transmission ranges as the large, custom filter were investigated. However,

band-pass filters are costly even with a small diameter such as 25 mm, costing as much as

two hundred dollars each, so I opted to use long-pass filters instead. Long-pass filters are

suitable for chlorophyll fluorescence imaging because there are no significant emissions at the

longer wavelengths, past the far-red and NIR regions that chlorophyll fluorescence occupies.

Four long-pass filters were obtained from Edmund Optics as well as third-party sellers on

eBay. The two long-pass filters obtained from Edmund Optics were an optical cast plastic
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filter and a colored glass filter. The plastic filter was extremely cheap and had a cut-on

wavelength of about 670 nm. Its only downside was having roughly 5 percent transmission

in the 500 nm range, which is green light in the visible light spectrum. This could pose

problems for images taken in the presence of background light, but since canopy imaging of

chlorophyll fluorescence is performed in the dark with a sole excitation light that is normally

blue, this plastic filter would be fine for the device’s needs.

On the other hand, the glass long-pass filter from Edmund Optics had a cut-on wavelength

of 685 nm and costed roughly four times as much as the plastic filter, which was still relatively

cheap compared to any previously mentioned band-pass filters. This glass filter had no other

downsides beyond the higher cost, so it would be suitable for use with some ambient light.

Both of these Edmund Optics filters were tested in the same camera testing setup over a

range of gain and exposure settings using the UC-599 Rev.B camera.

As for the long-pass filters from eBay, there were two cheap gelatin filters, the Wratten 70

and Wratten 89B. These gel filters could not be found from typical online vendors, so third-

party sellers from eBay were the only option. The main benefits to these Wratten gelatin

filters were that they can be cut to fit and that they were about as cheap as the Edmund

Optics plastic filter. The Wratten 70 was a long-pass filter meant for infrared photography,

having a cut-on wavelength of 650 nm, while the Wratten 89B had a cut-on wavelength of

690 nm for very deep red photography. Both gelatin filters were tested in the same way as the

Edmund Optics filters, over the same range of settings and with the UC-599 Rev.B camera.

In selecting these long-pass filters, two main aspects were focused on: the cut-on wave-

length and the cost. For the purpose of chlorophyll fluorescence imaging, a long-pass filter

would be suitable so long as its cut-on wavelength is no less than about 650 nm. Lower cut-on

wavelengths would allow greater bleed-through of unwanted light, making it more difficult

to separate plants from their background. Meanwhile, the cost of the filter contributed to

the total costs of the imaging device, so a lower cost was preferred.
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Figure 4.6: Sample images from the filter tests for the: A) Edmund Optics Cast Plastic Filter,
B) Edmund Optics Colored Glass Filter, C) Wratten 70 Gelatin Filter, and D) Wratten 89B
Gelatin Filter. All images were taken using the ArduCam UC-599 Rev.B camera. Slight dif-
ferences in gain and exposure settings were used in these sample images as each filter had
a different transmission of chlorophyll fluorescence. Filters with high transmittance showed
better detail at lower gain and exposure settings while those with lower transmittance per-
formed better with more gain and exposure.
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Looking at the test images for each of these four filters (Fig. 4.6), they all performed well

and relatively equally. The Edmund Optics glass filter produced images with noticeably less

blur, but that came at a higher price. Taking into account both cost and availability, I ended

up choosing the Edmund Optics optical cast plastic filter for this canopy imaging device.

The cost of the glass filter was too much for the little improvement it provided while the

gelatin filters could not be reliably sourced. However, as mentioned before, the plastic filter

could have some problems with background light, making it unsuitable for more quantitative

uses of chlorophyll fluorescence. If this device were to be upgraded in the future to include

more of those features, switching to the Edmund Optics glass filter would be a reasonable

upgrade.

4.4 3d-printed Parts

The final piece of hardware necessary for the canopy imaging device was the device’s enclo-

sure. Due to having multiple electronic parts and for convenience, the enclosure was 3D-

printed from custom-made models. In designing the device’s enclosure, emphasis was placed

on being able to mount each of the electronic parts and completely blocking unwanted light

from entering the camera, especially through seams or cracks, with the exception of through

the long-pass filter. To prevent any internally reflected light from entering the camera lens,

a matte chalkboard paint was sprayed onto the inner walls of the device that surround the

camera. Additionally, a mounting plate was necessary to allow for mounting the device wher-

ever needed. In total, the imaging device contains a Raspberry Pi, a separate camera board,

and a filter. Connected to the Raspberry Pi were a power cable and two wires attached to

digital output pins as well as the camera’s ribbon cable. The wires were used to trigger a

relay for turning on excitation lights.

After several iterations of 3D-printing and making small adjustments, I ended up with

four separate parts: a mounting plate, a Raspberry Pi enclosure and camera mount, a camera

cover, and a filter holder. The part that served as both a Raspberry Pi enclosure and a camera

22



mount was the most complex in shape and was the most difficult to print, messing up during

printing most often due to being the tallest part and having issues with the printer itself,

either the unwinding of filament or improper attachment to the print bed. Once the issues

with the printer were addressed, printing the parts became easy and reliable. Overall, the

majority of changes done to the design of the parts were to fix hole sizes for screws and to

make the parts as compact as possible. In order to mount the entire device, chains or wire

may be threaded through the large holes on the mounting plate and tied to an overhang. A

diagram of how all the parts were assembled for the imaging device can be seen in Figure

4.7, and images of the fully assembled device are provided by Figure 4.8. Otherwise, all the

files for the parts can be found in the GitHub link located in Section 4.5.

4.5 Costs and Sourcing

Tables 4.1, 4.2, and 4.3 contain lists of all the components that were tested for the canopy

imaging device along with a complete cost breakdown of the device. The listed costs do

not take into account any taxes or other fees associated with purchase nor the cost of

lighting components because the imaging device made use of excitation light provided at

the imaging site. Nonetheless, lighting components including LEDs and relays could be

roughly estimated to cost under $50 USD. For the 3D-printed parts that cannot be com-

mercially purchased, STL files can be found on the public GitHub page for this project

(https://github.com/tmp52468/Haidekker-Lab/). The STL files were made specifically for

the Artillery Sidewinder X1 3D printer, so adjustments may be needed for other printers.

Additionally, a complete parts list with URL links for purchase as well as further instructions

can also be found on the GitHub link.
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Figure 4.7: An assembly diagram of the imaging device including positions for its 3D-printed
parts and the electronics, being the Raspberry Pi, camera, and filter.
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Figure 4.8: Images of the imaging device after being fully printed and assembled with its
electronics.
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Table 4.1: The costs and other details for each potential camera that was tested.

Camera Vendor Cost (USD) Notes

ArduCam UC-580 Rev.B Uctronics 29.99 Not IR Sensitive
ArduCam UC-545 Rev.C Uctronics 25.99 Low Resolution
Pi NoIR Camera V2 Adafruit 29.95 Not Monochrome
ArduCam UC-599 Uctronics 41.99 Wide-Angle Lens

ArduCam UC-599 Rev.B Uctronics 41.99 Low Distortion Lens

Table 4.2: The costs and notes for each of the tested filters.

Filter Cost (USD) Notes

Omega Optical Band-pass Filter 220.00 Very Expensive
Edmund Optics Plastic Long-pass Filter 12.50 Transmits Green Light
Edmund Optics Glass Long-pass Filter 49.00 Slightly Expensive

Wratten 70 Gelatin Filter Sheet 92.00 Makes 4 filters; Poor Sourcing
Wratten 89B Gelatin Filter Sheet 65.00 Makes 4 filters; Poor Sourcing

Table 4.3: The total costs of the imaging device without consideration of taxes or shipping
and handling, as of March 2021. Some prices are rough estimates as many alternatives and/or
bundles can be found for those items or materials.

Part Cost (USD)

Raspberry Pi 4 B 2GB 35.00
32GB microSD card 5.00

Raspberry Pi power supply 7.95
ArduCam UC-599 Rev.B 41.99

Edmund Optics Plastic Long-pass Filter 12.50
PLA 3d-Printing Plastic 10.00
Misc. (Wires, Screws, etc.) 10.00

Total Cost 122.44
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Chapter 5

Software

5.1 Raspberry Pi Image Capture

Before testing the potential cameras, two scripts were written for image capture. One script

(Appendix A) was written for the RPi NoIR Camera v2 while the other (Appendix B) was

made for all the ArduCam cameras. In essence, both scripts did the same four processes: 1)

initialize the camera, 2) tune the camera settings, 3) turn on the pins corresponding to the

excitation lights, and 4) take an image of the chlorophyll fluorescence. Additionally, both

scripts were written in Python.

In the first script (Appendix A), the PiCamera package1 was imported (line 5) in order

to recognize and control the RPi NoIR Camera v2 for testing. Otherwise, the Raspberry

Pi’s GPIO and time packages were also imported. The GPIO package gives access to the

Raspberry Pi’s signal pins which allows for switching on of the excitation lights, connected to

the RPi’s pins through electric wires. GPIO stands for ”general purpose input/output” and

refers to the settings of the digital pins on the Raspberry Pi. Meanwhile, the time package

was used to pause the script during execution if necessary.

After importing the packages, references and objects were initialized in the script. Ini-

tially, the cameras were also tested for quantitative measurements of chlorophyll fluorescence,

so a pin was designated for the background light (line 8-9). However, as the project focused

more on canopy imaging, background light removal became no longer necessary nor wanted,

so lines pertaining to imaging with background light were commented out. Aside from the

1PiCamera can easily be installed onto the Raspberry Pi using apt, the system’s package
manager.
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background light, the excitation light was also assigned to a pin (line 10-11). Finally, a camera

object was initialized with the PiCamera package (line 13). In initializing the camera object,

the resolution and frame rate were also set. These settings can be changed depending on the

camera and needs of the system, but since chlorophyll fluorescence imaging only requires a

single frame, the frame rate setting did not matter.

Once all the necessary references and objects had been set, the script then adjusted

the camera’s other settings. In this case, the ISO, or ’sensitivity’, and shutter speed were

adjusted (line 17-20). In the PiCamera package, ISO functions similarly to gain, and using

the shutter speed parameter is another way of adjusting exposure time, since there is not a

parameter for exposure time itself. Additionally, the auto exposure and auto white balance of

the camera were also turned off (line 21-24). This was necessary for chlorophyll fluorescence

imaging since leaving these functions on could greatly alter images of the same setup from

one another, especially in low light conditions. Alteration of the images could lead to poor

threshold processing and near impossible plant separation.

Next, the excitation light pin was set to digital high (line 32), switching on a relay for

the strong blue excitation light. As mentioned before, an excitation light is used to get a

fluorescence response from the plants to be imaged. Following this, a frame was captured

as the raw chlorophyll fluorescence image to be processed (line 34). Finally, the pin was set

back to digital low, and all the pins were reset in the GPIO (line 36-38). The amount of time

that the blue excitation light remained on was approximately the same as the shutter speed

that was set for the camera as the digital pin was set to high just before image capture and

to low immediately after.

5.2 ArduCam Image Capture

Similar to the Pi NoIR Camera’s testing script, the ArduCam image capture script (Appendix

B) performed the same key processes. The cameras tested from ArduCam all used an interface

known as MIPI, which is a widely used camera interface known for its ease of use and support
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of high-performance applications. This script was adapted from one of ArduCam’s sample

preview scripts and was also the final one used in the canopy imaging device. The main

difference between this script and the Pi NoIR’s script was the use of ArduCam’s unique

package2, as well as the V4L2 package3. Fortunately, all of ArduCam’s MIPI cameras could

be used with this single script without any changes.

As with the Pi NoIR’s script, the necessary packages were imported first (line 1-4),

and a pin was set for the excitation light (line 9-10). Following this, the camera object

was established with ArduCam’s MIPI Camera package (line 28-30). In this program, the

resolution of the camera was not set because each of the potential cameras were already

defaulted to their maximum resolution. Additionally, since this script was adapted from a

sample preview script, the function for previewing image capture (line 35) was used during

testing and did get commented out for the final imaging script.

A function for adjusting the camera settings using the V4L2 package was defined before

the main portion of the script (line 12-22). Here, the settings controlled were exposure and

gain. In general, gain and exposure were set as low as possible while maintaining distinction

between the plants and background. Same as before, the camera’s auto exposure function was

also turned off (line 19). After initialization of the camera object, this adjustment function

was called (line 36). Next, the excitation pin was turned on (line 47), and a frame was

captured by the camera in the ’jpeg’ format. This frame was then saved to a file (line 52-53)

to be processed later. Afterward, the excitation light pin was turned off and reset while the

camera object was closed (line 61-66).

5.3 ImageJ Macro Command

ImageJ was chosen to be the imaging device’s processing program because it is the most

commonly used image processing program for canopy and chlorophyll fluorescence imaging

2Instructions for installing ArduCam’s package can be found on their official website.
3The V4L2 package can be installed using apt, similar to PiCamera.
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[5, 10, 19]. It has command line execution, which is necessary for the automation of this

system, and is also easy to install onto the Raspberry Pi because there is an official package

for it. In fact, ImageJ can be run headless without a login through terminal commands which

is what allows its automation. Otherwise, ImageJ contains all the basic functions that this

system needed for chlorophyll fluorescence imaging, and its steps are outlined in Appendix D.

Briefly, the functions were: 1) load an image file, 2) convert to 16-bit format, 3) remove noise

through ”despeckle”, 4) convert to binary through ”Intermodes” thresholding, 5) remove

noise once again by ”despeckle”, and 6) measure number of white pixels. In the event that

some processing methods need to be added to the imaging system and aren’t available in

ImageJ, the image processing program can be replaced by a custom processing script using

open source libraries such as OpenCV.

From the command line, the Raspberry Pi version of ImageJ was able to run an ImageJ

macro to process any available image using its batch or headless macro mode. Using these

modes and a macro script helped to keep all processing steps consistent between images

as well as improved efficiency when processing many images. One important note about

the Raspberry Pi’s official version of ImageJ is that it cannot run its headless mode without

detecting a connection to a display, such as a computer monitor. This meant that the program

could not run without having a connection to one of its HDMI ports and was a problem

mainly for automation of the Raspberry Pi. An easy solution that was found for this issue

was to implement Xvfb4, otherwise known as the X virtual frame buffer. This program

created a virtual graphical interface which the Raspberry Pi recognized as a display and

used in the place of a physical HDMI connection. Installation of Xvfb is similar to that of

ImageJ as it has its own official package. To use the virtual frame buffer, a simple shell script

was made to run upon each booting of the Raspberry Pi by adding execution of the script

inside the rc.local file. The contents of the Xvfb shell script are seen below:

1 sudo Xvfb :1 -screen 0 1024x768x24 </dev/null &

4Both ImageJ and Xvfb can be installed to the Raspberry Pi using apt as well.
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2 export DISPLAY=":1"

In order to run the batch or macro mode of ImageJ, a macro script must be made.

Fortunately, macro scripts can be recorded by running ImageJ and selecting to record a macro

which then creates the script off of functions run from the user interface. It is important to

record the macro from the version of ImageJ that will be running it as the ImageJ macro

language differs slightly between the original ImageJ, the one that was installed to the

Raspberry Pi, and ImageJ2, which is the newer version. The macro script used for this

imaging device (Appendix C) was recorded on the Raspberry Pi itself.

When executing the ImageJ macro mode from the command line, a string of arguments

was added. The macro first parsed this argument string (line 1), which contained two argu-

ments, and set them in an array. The macro command can take any number of arguments

so long as they are contained within a single string for the command line execution and

can be parsed inside the macro script. After reading the argument string, the script then

converted the image into a 16-bit format (line 3) which was necessary for the threshold func-

tion. It then ran the ”despeckle” tool which removed some noise from the image, performed

an automatic threshold function, and ran the ”despeckle” tool once again (lines 4-11). The

automatic threshold function in this macro script used the ”Intermodes” setting which was

found to perform the best when testing all the options over a set of canopy images. Most

notably, the ”Intermodes” setting distinguished smaller plants much better than other pop-

ular options such as Otsu’s method (Fig. 5.1). As described on ImageJ’s official website, the

”Intermodes” threshold assumes a bimodal histogram which is repeatedly smoothed until

there are only two local maxima. The threshold is then calculated as the average of those

two maxima.

Once the image had been run through the ”despeckle” tool a second time, it had been

completely processed and was saved to a file, labeled by the first argument given (line 14).

Next, the script used the second argument to discern if multiple plants were imaged and

needed to be separately analyzed or if all the imaged plants should be analyzed together, to
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Figure 5.1: Sample images from the threshold methods test. The plants were imaged with
a labeling stick for size comparison in the same imaging setup. Between all of the auto-
thresholding methods provided by ImageJ, Intermodes performed the best between all sample
images.
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get the total canopy size. For the needs of this imaging device, the ”single” option was mainly

used. However, some testing on the possibility of separately analyzing multiple plants was

done in case future implementation of this is desired. If the second argument of the command

line execution was for ”multiple” plants, then the script would use the ”Analyze Particles”

function to measure each blot of separated plant and then export a spreadsheet of the plant

measurements as well as a secondary processed image with the outlines of each plant (lines 16-

23). It is important to note that the multiple-plant analysis option is not fully developed and

is picky in that the imaged plants must be adequately separated and consistent in shape.

Otherwise, if the ”single” option was inputted for the second argument, then the script

selected the separated plants, which turned white from the automated threshold function,

and measured the total canopy size, saving the results to a spreadsheet file (lines 24-29).

After processing and measuring the image, the program finally closed out all of the

windows and shut down (lines 31-42). This portion of the script may seem exaggerated,

but it is to make sure that all of ImageJ has finished and is ready for its next macro when

executed. The largest benefits to using ImageJ were not only that it practically had every

image processing function that would be needed but also that its macro scripts could be easily

customized to perform any processing functions that would be performed on it normally.

5.4 Rclone Cloud Transfer

From the Raspberry Pi, there are four possible methods of extracting the chlorophyll flu-

orescence images and analysis results. The first and most obvious is to manually log into

the Raspberry Pi and copy the files onto a connected USB. This method is the least con-

venient since the canopy imaging device would have to be unmounted from its setup and

disassembled in order to access directly. The other obvious method is to connect remotely via

a secure shell (ssh) into the Raspberry Pi from another system on the same wireless network

and download the files. This would be possible to automate, but there are two easier methods
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that could be used. When automating the imaging system’s operations, two methods were

implemented for file transfer: 1) cloud storage transfer and 2) SMB file sharing.

The program used in implementing cloud storage transfer for the Raspberry Pi was

Rclone, a command line program written and maintained by Nick Craig-Wood to allow inter-

action of the Raspberry Pi with many various cloud storage services such as OneDrive, Google

Drive, and Dropbox. The particular service used for this imaging device was OneDrive, but

any of the supported cloud services may be substituted into the automated pipeline. To

install Rclone, an installation shell script can be downloaded and run through the command

line5. When setting up Rclone on the Raspberry Pi, a new connection must be configured for

each cloud service account to be used. The new connection will ask for which cloud service

it should link with and then ask for login information of the specific account. After logging

into the cloud service, the connection should be completed. Using Rclone is very simple

once the connection or connections have been made, and only one command line function

is needed for syncing with the cloud service. The ”sync” command takes two arguments, an

input directory and an output directory. Essentially, the command will copy and delete files

so that the output directory contains exactly the same files as the input directory. This is an

important detail of the Rclone command as files may be lost if the input directory does not

contain everything that is desired. To avoid this potential problem, the automated pipeline

(Appendix D) imported the OneDrive directory at the start of the pipeline and exported the

local directory at the end, once all the image capture and processing have been completed.

5.5 SMB File Sharing

The second file transfer method used in automating the canopy imaging pipeline was SMB,

which stands for ”server message block”6. SMB is a Microsoft client-server protocol that

allows for users, including the imaging device’s Raspberry Pi, to create, open, and edit files

5Instructions are available on the Rclone Project’s official website.
6SMB comes already installed on the latest version of Raspbian, the Raspberry Pi’s OS
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on a remote host located within the same local network. By setting up a file server with SMB,

a directory on the server can be made available for other systems on the same network, such

as a Raspberry Pi, to connect directly to. Once a file server was set up, the imaging device

could mount, or connect, one of its local directories to the shared directory of the server.

In order to ensure that this local directory was automatically mounted when the imaging

system was powered on, the Raspberry Pi was set to wait for network connection on boot,

and the specific SMB connection command was added to the Raspberry Pi’s fstab file which

handles the mounting of system files. Once the Raspberry Pi’s local directory was mounted,

all files from the server should appear in it, and any changes made to that directory will

directly affect the server’s files. This meant that the imaging system’s automated canopy

imaging pipeline can simply move the desired files into its mounted local directory for file

transfer. The largest downside to implementing SMB file sharing was having to set up a

shared directory. This did not have to be done on a dedicated file server, but the process

required some expertise. Aside from setting up the SMB file sharing itself, the Raspberry Pi

was readily compatible with the SMB protocol, so connecting to the shared directory was

simple and only required one command, which asked for info such as the shared directory’s

name and IP address along with user login information.

5.6 Automation of Imaging Pipeline

While the canopy imaging system can be run solely with the image capture script and ImageJ

macro script, using command line functions, this can become tedious with the amount of

functions needed for each image capture and processing performed. Therefore, a pipeline

was made to simplify the process, using a shell script (Appendix D). The shell script used

Bash, a Unix shell and command language, to run through all the commands written in it.

In essence, this shell script was just a list of all the command line functions that should be

run for chlorophyll fluorescence imaging of the plant canopy. Two major benefits to using a

shell script were that variables such as path names could be declared and that the steps or
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commands can be modified easily. Running the shell script was as simple as entering it into

the command line with Bash or by making the Bash file executable.

First, the shell script declared all the variables it will use, mostly path strings for the

directories (lines 3-11). These variables can be changed depending on each user’s needs for

the system. The RCLONE and SAMBA variables should correspond to the local directories

made on the Raspberry Pi for syncing with the online cloud storage and mounting to the

SMB shared folder. The ONEDRIVE variable corresponds to the connection made on the

Rclone program and is able to direct to any folder located on the OneDrive account. Finally,

the TYPE variable is used to determine what type of image processing is done in the ImageJ

part of the pipeline. This should either be ”single” or ”multiple”, based on the ImageJ macro

script that was made. Otherwise, the NAME variable can be changed to fit and differentiate

the imaging system, and the DATE variable can be left as is. Both of these variables were

used in the ImageJ macro script to name the processed files, avoiding naming conflicts which

would cause deletion of previous files.

After variable declaration, the shell script then synced the local Rclone directory with the

online storage space (line 14). Next, it ran the ArduCam image capture script with Python

to get the raw image of the plant canopy (line 19) and moved it into the image processing

folder (line 24). Following this, the script set the DISPLAY variable of the environment to

that of the virtual graphical interface, created by Xvfb (line 27). This was necessary since

the default DISPLAY variable was set to that of the physical HMDI port, and leaving it

as is would cause the ImageJ macro function to fail without being connected to a monitor.

The ImageJ macro function was called next with several options for amount of allocated

memory, the source image file, the macro script file, and a string of macro arguments (line

28). After the ImageJ function was completed, the original raw image file was renamed to

match those of the processed images, and all the files were either copied or moved into the

file transfer folders, using the SAMBA and RCLONE variables previously declared (lines

33-35). Finally, the OneDrive cloud directory was synced with the local Rclone directory
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once again to obtain the new files. A diagram of how the imaging devices, file server, and

cloud storage would be connected can be seen in Figure 5.2.

Figure 5.2: A visualization of the potential connection network of the imaging devices with
a file server and/or cloud storage service. All image acquisition and analysis was performed
on the devices while the resulting files were transferred through the wireless network to the
file server and internet connection to cloud storage.

As mentioned before, this shell script can be easily customized. For example, if a system

were to not use Rclone, all lines that pertain to it could be commented out or removed

without affecting the rest of the script. Also, any of the variables can be adjusted to fit

how the system was set up. When manually testing this shell script, one main issue was

encountered with ImageJ. Seemingly randomly, the pipeline would stall during the ImageJ

macro, precisely when the image was run through the threshold function. Even after greatly

increasing the allocated memory and remaking the macro script, this problem did not get
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resolved. The conclusion as to why this issue occurred was due to the plugin that ImageJ uses

for its threshold function. Unfortunately, further inspection of the plugin was not possible,

so a work-around was used to accommodate the problem. As this problem only happened

occasionally and didn’t affect the imaging system beyond stalling the pipeline, the best

method of dealing with it was found to be canceling the operation and running the pipeline

again. For manual use, this process was simple enough, and for automation, the script was

just scheduled to run multiple times. The resulting files would be the same regardless of how

many times the script was run, as long as the scheduled times were close enough.

After creating the shell script pipeline, automating the canopy imaging process was

simple. Unix systems such as the Raspberry Pi contain a program called crontab. crontab is

a command scheduler that will automatically run commands given to it at a specified time

and date. Options for scheduling commands in crontab are almost limitless. Commands can

be scheduled to run at set intervals of time or at a specific time, or even on specific days of

the week. By adding the command for running the shell script to crontab and specifying the

times and days to run it, the Raspberry Pi will attempt to run the command whenever the

specified time arrives as long as it is powered on. One important detail that may become

relevant is that crontab will base its operations on the Raspberry Pi’s time. Additionally,

Raspberry Pi’s lose their time setting upon powering down. Therefore, if the Raspberry Pi

is not connected to the internet, its time may deviate from real time, and the crontab com-

mands may not run as desired. This was best resolved by occasionally setting the Raspberry

Pi’s time through SSH using the ”date -s” command.

5.7 Data Flow

From the automated imaging devices, images and measurements were received. After each

time the canopy imaging pipeline was run, a raw image, an automatically processed image,

and a canopy size measurement were transferred in the form of two jpeg files and a csv file.

Using the pixel count measurement in the csv file, either percent growth or canopy area can
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be calculated. To calculate the percent growth, the pixel count was simply devided by the

final pixel count from the same image set and converted to a percentage. Meanwhile, canopy

area was calculated by multiplying the pixel count measurement by a conversion ratio found

through calibration.
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Chapter 6

Experiment 1: High Light vs Low Light using Default Settings

6.1 Overview

In testing my imaging device, experiments were designed to evaluate how accurately these

device could measure canopy size compared to a control canopy imaging device that has

been used for studies previously. The experiments were performed over several weeks for the

automated imaging to take place during an entire growth period for a set of plants. At the

end of the growth period, images taken by the automated imaging device and the control

device were compared based on their canopy size measurements.

Referring back to Section 2.2, a calibration had to be done in order to calculate true area

measurements from images taken by the cameras during canopy imaging. For the control

imaging system, a single image was taken of a ruler which was used to approximate the

length of each side of a pixel and calculate the conversion ratio from an amount of pixels

to square millimeters. The calibration image was taken under the same conditions as during

the experiments, so accounting for the effect of distance on conversion was not necessary as

this one calibration image would give a close approximation. Ultimately, the conversion ratio

was found to be 0.539 mm2 per pixel for the control system. As for my automated imaging

devices, several images of a grid, consisting of 5 x 5 cm squares, were taken at various

distances, from 30 cm to 60 cm. These images were taken by the camera, an ArduCam

UC-599 Rev.B. Using ImageJ, the calibration images were measured for various distances

and used to find the relationship between camera distance and pixel-to-area conversion ratio

(Fig. 6.1). By using the relationship equation found, the specific conversion ratio for any
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setup with my imaging device can be calculated based on the distance from the cameras to

the plant canopies.

Figure 6.1: The power equation, y = 115.6
1000000

x2, best describes the relationship between pixel-
to-area conversion and camera distance for the new imaging system’s camera, the ArduCam
UC-599 Rev.B. This equation can be used to find an approximation of the conversion ratio
for any setup that uses this camera.

To give perspective on the contribution of camera angle to the accuracy of canopy

imaging, a second calibration image of the grid was taken by the ArduCam UC-599 Rev.B

at 45 cm distance with a 6 degree angle shift from perfect alignment (Fig. 6.2). Performing

the same analysis through ImageJ as with the previous images yielded an approximate ratio

of 20.3 pixels to cm on the far left side of the grid and an approximate ratio of 18.2 pixels

to cm on the far right. A difference of 2.1 pixels to cm demonstrates how a slight angle of

the camera’s orientation can greatly alter the size of images at a distance of only 45 cm.

Because there are many factors involved with the measurement of plant canopy area, there

is also a large region of error. These factors include not only the ones mentioned in Section
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Figure 6.2: An oblique image of the calibration grid taken by an ArduCam UC-599 Rev.B.
An angle of 6 degrees was used for taking the image. Analysis found approximate ratios of
20.3 pixels to cm on the far left vertical line of the grid and 18.2 pixels to cm on the far right
line.

2.2, concerning the relationship between image pixels and projected area, but also the fact

that the distance between the camera and canopies continuously changes during the growth

period as well as how different leaves of a canopy will differ in height, causing taller ones to

take up more pixels than others. Taking this large region of error into account, a relatively

high goal precision of 15 percent was used when comparing the true area measurements

calculated from my imaging devices to those from the control system.

6.2 Setup

To test the functionality and accuracy of this canopy imaging device, two devices were set

up inside a horticultural growth chamber to monitor the growth of plants over an entire

growth cycle. For this experiment, ”little gem” lettuce was the plant of choice due to the

height restrictions within the growth chamber. Since the height of each growth bed within
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the chamber is rather low at approximately 19 in or 48 cm, a smaller species of plant was

needed so that the plants would not exceed the viewing range of the mounted cameras

too quickly. All plants were grown in individual pots, placed on trays of six. Each camera

device was responsible for routinely imaging and measuring the growth of its own tray of

plants. Between the two setups, one set of plants was grown in low lighting conditions, at a

photosynthetic photon flux density of approximately 70 µmol/m2/s provided by white LEDs,

while the other was grown in high light, at about 170 µmol/m2/s. To give perspective on

the intensity of light, a well-lit office would contain approximately 10 µmol/m2/s while full

sunlight at noon during summer achieves approximately 2000 µmol/m2/s. Both sets of plants

had 20-hour photo-periods per day. Imaging would be timed for the few hours that the grow

lights turned off. Otherwise, every other environment condition within the growth chamber

was kept equal and as constant as possible. The temperature was kept at an average of 23.3

◦C, and the average CO2 level was kept to roughly 700 ppm.

As the control, a custom-made fluorescence imaging system, utilizing a digital monochrome

camera (CM3-U3-31S4M-CS, Teledyne FLIR LLC), was used to capture canopy images of

both sets of plants to be compared to the images taken from my imaging devices. This

FLIR imaging system has been used for previous studies and can only be used manually,

so there were fewer images taken with it over the duration of the experiment. Additionally,

since different cameras have different resolutions along with the fact that each setup has

differing heights, the exact amount of pixels measured through processing will differ between

the camera systems, so either a calibration must be done for each system to estimate the

true area measurements found or a relative comparison between the percentage of growth

captured can be performed. For this study, both methods were used, and the true area

calculations were utilized in finding the deviations between the systems’ data.

When setting up the imaging devices, the camera settings were left to their defaults,

which were the best settings found for the plastic filter when performing the filter tests.

These settings were: gain set to 1, and exposure set to 2500. Neither of these settings have
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units because of ArduCam’s custom library. Due to the limitations of the internet service

at the university, the imaging devices could not be connected to the internet directly, but

they were connected to a wireless network set up with the file server that was built for

this purpose. This meant that the Rclone functionality of the imaging devices was removed,

and only the SMB file sharing was used. Therefore, the canopy imaging devices would just

transfer its files to the file server each time it performed the automated imaging pipeline.

Otherwise, the file server was able to be connected to the internet through an ethernet cable

which allowed users to SSH into the server to then download all the image files received

from the devices themselves. To adjust the systems for any deviations in time, the following

command was entered into each system’s command line periodically through SSH in order

to re-calibrate the correct time and date.

sudo date -s "DD MTH YYYY HH:MM:SS"

6.3 Results

Over the 22-day growth period, canopy images were taken of the plants daily by the new

imaging systems that were mounted above the growth beds. Any images taken before day 6

of the experiment showed no useful information, either because the plants had not sprouted

yet or due to having too many plants. In images where the seeds had not sprouted yet,

poor automated image processing occurred due to having very little contrast (Fig. 6.3). This

meant that the new imaging devices provided inaccurate measurements before any of the

plants sprouted. Several seeds were planted in each pot at the start of the experiment, so

most pots had several seedlings after the first few days. On day 5, all extra seedlings were

removed from the pots, resulting in only one in each. From then forth, the plants were not

altered in any way beyond being moved into and out of the control imaging system for

imaging.

During the course of this experiment, there was one incident where connection between

an imaging system and the file server was lost. From day 8 to day 13, no new images were
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Figure 6.3: An example of how automatically processed images end up when contrast is low
in the original image. The object in the bottom right of the image is a normal plant label
stick.

being sent from the imaging system of the high-light growth bed. After finding this issue, an

attempt to SSH into the device from the file server was performed, and it was discovered that

the imaging system was not connected to the wireless network. The system was manually

restarted by unplugging and re-plugging its power supply which allowed it to reconnect to the

network. Once the system reconnected to the network, the missing images were automatically

transferred to the file server. This meant that the system was still running its imaging pipeline

during the period of disconnection, but the files just could not be transferred. From this point

on, the system worked as usual for the remainder of the experiment.

As mentioned before, the growth beds had fairly low ceilings. This meant that the new

imaging devices were mounted rather close to the plant trays, so the plants grew outside of

the cameras’ viewing ranges toward the end of the growth period. This can be seen in both

high and low light systems (Fig. 6.4 and 6.5) where the outer leaves of the plants get cut

off by the images. Obviously, this leads to some inaccuracy with the measurement of the

plant canopies, but it should not affect any measurements taken during the earlier stages of

growth.
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In addition to the close placement of the imaging devices, the excitation lights needed for

chlorophyll fluorescence imaging were forced to be mounted to the side instead of directly

above the plants. Ideally, the lights would be mounted directly above the plants to evenly

light the canopies, so this placement created an intensity gradient in the images, which can

easily be seen going right to left in the day-22 images of Fig. 6.4 and 6.5. This gradient causes

problems for the automated image processing because poor threshold values become more

likely to be used. Manual processing, on the other hand, would not suffer from this issue.

Also, as the plants grew taller, the ones closer to the excitation lights would block the light

from reaching the further plants, causing more inaccuracy in the imaging. Ultimately, these

experimental constraints caused a small amount of deviation in the canopy size measurements

of the new imaging devices.

During the course of this experiment, images were also taken by the control imaging

system (Fig. 6.6 and 6.7), a large, stationary setup with high-quality parts that costed

over a thousand dollars in total. In these images, the plants were relatively small due to

the distance between them and the camera. In order to use this imaging system, the plants

would be moved into an enclosure and sealed off from outside light before being imaged using

a computer program. Once imaged, the plants would be returned to the growth chamber.

To process these images and obtain canopy size measurements, a reference image processing

script, a custom Python program utilizing the OpenCV library, would be run. This custom

program was created by a previous member of the lab in which the experiment was run, and

it took several inputs including a range of possible threshold values, directory paths, and

an image format. To get useful data, the minimum and maximum threshold values for the

program would be manually adjusted until the program was able to successfully process all

the images in the input directory and output all processed images and histograms as well as

a .csv file containing the desired measurements. Overall, this process was simple and only

took a few minutes to do after downloading and installing the necessary software.
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Figure 6.4: Sample images taken by the new imaging device for the high-light growth bed
on days 6, 15, and 22 of experiment 1. The images were processed using the new device’s
automated image processing pipeline.
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Figure 6.5: Sample images taken by the new imaging device for the low-light growth bed
on days 6, 15, and 22 of experiment 1. The images were processed using the new device’s
automated image processing pipeline.

48



Figure 6.6: Sample images taken by the control imaging device of the high-light plants on
days 6, 13, and 22 of experiment 1. The images were processed manually, using a custom
Python script.

49



Figure 6.7: Sample images taken by the control imaging device of the low-light plants on
days 6, 13, and 22 of experiment 1. The images were processed manually, using a custom
Python script.
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In order to compare the measurements from the new imaging systems to those from

the control imaging system, percentages of canopy size were calculated by dividing the pixel

measurement of each image by that of the final pixel measurement, the largest one, at the end

of the growth period from the corresponding image set. These percentages were calculated

for all measurements found by both the automatically processed images from my new devices

and the manually processed images from the control device. Additionally, the same reference

processing script was used to manually process all raw images taken by the new imaging

devices (which can be seen in Fig. 6.8 and 6.9), and the percentage calculation was done for

those measurements as well. Two graphs were generated for comparing the three different

canopy area percentages based on the two different lighting levels (Fig. 6.11 and 6.10).

On each graph (Fig. 6.11 and 6.10), there are three lines: 1) the canopy area percentages

calculated from the automated pipeline of my imaging systems, 2) the percentages found

from the reference image processing on the raw images taken by my imaging systems, and

finally, 3) the area percentages found from performing the same reference image processing

on the control system images. Noticeably, there is a dip in the canopy area measurement for

images taken by the new systems on day 19 of both graphs. This point corresponds with

when the plants began to grow outside of the field of view of the cameras, causing the small

dip in canopy area measurement.

Looking at Fig. 6.10 for the low-light growth bed, it is seen that the measurements found

by manually processing the images from my imaging system are very close to the control

measurements while the values from the automated pipeline began to drastically deviate

occasionally after 15 days. This points to a problem with the automated image processing

done by the ImageJ macro and was most likely due to a large gradient in the fluorescence

intensity of the images which can cause varying results with how automated thresholding

calculates threshold values. The large gradients were likely a result of the the grown plants

casting shadows on adjacent ones and having the excitation light mounted to the side of the

plants, as mentioned previously. Possible solutions, without physically adjusting the position
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Figure 6.8: A comparison of the automatically and manually processed images based on those
taken of the high-light growth bed on days 6, 15, and 22 of experiment 1.
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Figure 6.9: A comparison of the automatically and manually processed images based on those
taken of the low-light growth bed on days 6, 15, and 22 of experiment 1.
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Figure 6.10: A visual comparison of the percent growth measurements calculated from the
image sets captured for the low-light grown plants.

Figure 6.11: A visual comparison of the percent growth measurements calculated from the
image sets captured for the high-light grown plants.
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of the light, would be to increase gain or exposure with image capture or find a more suitable

automated thresholding algorithm.

Meanwhile, the data from the high-light growth bed in Fig. 6.11 seems rather consistent

between all the measurements. The deviations between the growth percentages found from

my systems and those of the control system are probably due to the constraints of the growth

chamber. Because the growth beds have low tops, the plants were very close to the imaging

systems mounted above them. Coupled with the non-ideal placement of the excitation light,

these constraints would lead to slight inaccuracies with the amount of chlorophyll fluorescence

actually captured.

In order to calculate the true area of the plant canopies imaged, conversion ratios had to

be used. For the control system’s images, the conversion ratio previously found, 0.539 mm2

per pixel, was used to convert the pixel counts into mm2. Then, an equation of best fit was

found for the control area measurements. For my new imaging devices, a conversion ratio was

calculated from the equation found in Figure 6.1 of Section 2.2. While the total height of the

growth beds was about 19 inches, the height of both the plant pots and the imaging devices

shortened the distance between the cameras and plants to roughly 9.5 inches, or 24 cm. Using

the calibration equation, a conversion ratio of 0.06659 mm2 per pixel was calculated. All of

the pixel count measurements were then converted to areas using this ratio, and all the area

measurements were plotted based on experimental lighting conditions, same as before with

the growth percentage measurements.

Looking at the graphs for canopy area (Fig. 6.12 and 6.13), a major trend can be seen

in that the area measured through my new imaging systems deviated more from the control

measurements as the plants grew throughout their growth periods. This was particularly

true for the high-light growth bed which appeared to deviate further from the control mea-

surements. One main reason for this trend is the poor capture of chlorophyll fluorescence

due to inadequate excitation light, causing the measurements to not fully cover the entire

plant canopy. As the canopies grow larger, a greater portion of it cannot be measured by the
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Figure 6.12: A visual comparison of the canopy area measurements calculated from the image
sets captured for the low-light grown plants.

Figure 6.13: A visual comparison of the canopy area measurements calculated from the image
sets captured for the high-light grown plants.
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imaging. An example of poor chlorophyll fluorescence capture can be seen in Figure 6.4 of

the high-light growth bed. Otherwise, the measurement lines resembled those of the growth

percentage graphs (Fig. 6.10 and 6.11) strongly, which makes sense since both percent growth

and area are proportionally related to pixel count.

The percent error for each measurement was found using this equation: E = |100% ·
APi−AFLIR

AFLIR
|, and an average percent error was calculated for each set of measurements. An

average percent error of 61 percent was found for the automated area measurements of the

low-light growth bed along with an average percent error of 52 percent for the reference

processing script measurements. As for the high-light growth bed, the automated area mea-

surements had an average percent error of 64 percent, and its reference script measurements

had an average percent error of 59 percent. All of these percent errors were calculated with

measurements starting from day 5 when the extra seedlings were removed, as the earlier

measurements would have greatly skewed the calculations. Regardless, it is evident from the

area measurements that my imaging devices did not meet the initial goal precision of 15

percent. Since the main issue for the poor canopy imaging seemed to be inadequate chloro-

phyll fluorescence capture, increasing the images’ contrast should be the main priority in

improving the imaging device’s accuracy. This can be done by either increasing the amount

of excitation light or by increasing exposure and gain in the camera’s settings.
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Chapter 7

Experiment 2: High Light vs Low Light using Adjusted Settings

7.1 Setup

Based on the findings of the first experiment, a second experiment was run with some changes

to the settings of the image capture software. The aim of this second experiment was to obtain

better contrast within the images and allow for better chlorophyll fluorescence capture.

To that end, adjusting the physical arrangement of the imaging setups would have been

ideal. However, that was not possible due to the restrictions of the growth beds, so instead,

manual iteration through setting changes was done to find the highest possible values before

overexposure of the raw images. During the testing, gain was found to be extremely sensitive

as increasing it at all without decreasing the exposure led to overexposure of the images

and poor automated processing. This is because gain is based on a logarithmic scale which

means any change to its value would exponentially affect images. The exposure setting, on the

other hand, was much more cooperative, going up to 4000 before any signs of overexposure.

Ultimately, the camera settings for both new imaging systems in the growth chamber were

changed to: gain set to 1, and exposure set to 4000. Compared to the first experiment, only

the exposure was increased, by 1500.

Otherwise, the only other change to this experiment in comparison to the first one was

the lighting cycle for the plants. The daily photo-period for the plants was cut back to 16

hours from the original 20 hours, and the lighting level of the high-light growth bed was

adjusted to 270 µmol/m2/s. The lighting level of the low-light growth bed was left as is, at

70 µmol/m2/s. The other environmental conditions in the growth chamber were kept to an
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average temperature of 23.3 ◦C and average CO2 level of roughly 700 ppm, as was with the

first experiment. ”Little gem” lettuce was used for this experiment as well.

7.2 Results

The plants were grown for a 23-day growth period. Similar to the previous experiment, mul-

tiple seeds were planted into each pot, and the extra seedlings were removed after sprouting,

on day 10. This meant that images before day 11 of the experiment provided inaccurate

measurements.

After initiating the experiment, automated images were received from the new imaging

systems each day. On day 6 of the experiment, the system attached to the high-light growth

bed was found to be unresponsive. This was the same system that disconnected from the

wireless network in the previous experiment. Several attempts to restart the device did not

fix the issue, and it was later found that the electrical outlets for the entire racking system,

on which the high-light growth bed was, had been tripped. This discovery came late into

the experiment, toward the end of the growth period, and required the imaging system to

be unmounted for testing. Because of that, no measurements for the high-light growth bed

could be used.

On the other hand, the low-light growth bed was stationed on a different racking system,

so it was not affected by the power trip. While the growth period of this experiment was

comparable to that of the previous one, a noticeable difference in the size of the plants can

be seen in its images (Fig. 7.1) due to the decrease in photo-period. Note that the light level

of the low-light grow bed was not changed, so these plants received less light compared to

the first experiment. This difference in size is important because it means that the plants did

not grow large enough during the experiment to be cut off by the camera’s viewing range,

which should hopefully lead to better accuracy in the measurements.

In a growth percentage comparison between the different imaging systems and processing

methods (Fig. 7.3) similar to comparisons done for the initial experiment, the same trend
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Figure 7.1: Sample images taken by the new imaging device for the low-light growth bed
on days 11, 17, and 23 of experiment 2. The images were processed using the new device’s
automated image processing pipeline.
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Figure 7.2: Sample images taken by the control imaging device of the low-light plants on
days 11, 17, and 23 of experiment 2. The images were processed manually, using the reference
Python script.
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was observed where manually processed measurements from the new imaging devices were

closer to the control measurements. However, for this sample of data, the automatically

processed measurements for canopy size did not deviate as much from the manually found

measurements of the same images as in the first experiment.

Figure 7.3: A visual comparison of the canopy size measurements calculated from the image
sets captured for the low-light grown plants.

With the exception of day-19 of the growth period, the growth percentage measurements

found through the new imaging device were fairly accurate relative to the measurements from

the control system. The measurements obtained from day-10 were skewed due to having many

sprouted seedlings that needed removal, as mentioned before. There was still some deviation

in the measurements that were the result of setup constraints, and comparing reference

script processing versus automatic processing of the new system’s images showed that the

automated ImageJ processing proved inferior to the custom Python script that was used

manually.
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As with the first experiment, the area was calculated for each of the canopy images, using

the previous conversion ratios of 0.539 mm2 per pixel for the control images and 0.082 mm2

per pixel for my imaging devices. The same method of finding an equation of best fit was

performed for the control system, and the resulting area comparison was graphed in Figure

7.4. Based on the graph, the same main trend was observed of increasing deviation with time,

as the canopies grew larger. It is assumed that the main cause for this trend also remained

the same, being that there was poor image capture of chlorophyll fluorescence. This can be

seen in the example images for my imaging device (Fig. 7.1).

Figure 7.4: A visual comparison of the canopy size measurements calculated from the image
sets captured for the low-light grown plants.

For the automated area measurements, an average percent error of 55 percent was calcu-

lated. Meanwhile, an average percent error of about 49 percent was found for the reference

script area measurements. Like before, only measurements taken after the day the extra

seedlings were removed were used in calculating the average percent errors. Compared to the
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first experiment, my imaging devices performed slightly better with smaller average percent

errors. The better accuracy may be due in part to the plant canopies growing less through

the experiment’s duration as well as the increase in the camera’s exposure setting.
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Chapter 8

Discussion

8.1 Positives Outcomes

Through the design of this canopy imaging system, all of the original goals set for it were

accomplished along with the addition of some other helpful capabilities. By implementing

chlorophyll fluorescence imaging, plant separation through image processing can be done

for all plants regardless of coloration. This means that the canopy of red-leaf plants can

be imaged and measured without running into conflict with any image background. Careful

selection and testing of components allowed for this imaging device to be built for a low cost

of approximately 125 USD (Table 4.3) in comparison to the typical thousand USD or more

that is needed for custom chlorophyll fluorescence imaging setups. Finally, the system was

built to be compact in a way that is easy to mount in most locations which helps with its

versatility. This coupled with the low cost makes the system easy to scale up with.

In addition to fulfilling the intended goals, this imaging device also automates the canopy

imaging process and provides a high level of customization. Due to utilizing a Raspberry Pi,

the device can automate all processes performed by the Raspberry Pi through a program

called Crontab which both reduces the amount of manual labor needed to run studies and

obtains more data for users. Also, since the imaging pipeline uses fully custom scripts, cus-

tomization of the settings and pipeline is easy and readily available. Customization includes

things such as settings for image capture and processing as well as what pipeline processes

are utilized and their ordering. Additionally, hardware parts such as the camera, filter, and

even 3d-printed materials can be changed to suit different setups and needs.
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In review of the experimental results, my new imaging systems performed adequately

in regard to measuring growth percentage but poorly for true area measurements. This

means that while the device is able to capture chlorophyll fluorescence accurately enough

to depict the growth cycle of plants, the setup used in the experiments did not provide

enough chlorophyll fluorescence to fully measure the canopy area. Therefore, the results are

promising for the automated imaging device, but further testing and improvements to the

design will be needed to prove its viability.

8.2 Canopy Area Measurement Error

During the course of the experiments, this canopy imaging device ran into a couple of prob-

lems. The main issue was large percent errors found in the canopy area measurements for

both automated processing and manual processing of its images. While the device was still

able to measure growth percentage, accurate area measurements proved difficult to obtain

since large portions of the plant canopy could not be seen on its images. The main cause

of the large measurement deviations was poor chlorophyll fluorescence capture within the

setups, partially due to the height restrictions of the experiment site. To remedy this problem,

more even excitation light distribution is needed. This can be achieved by either altering the

canopy imaging setup so that more light is present and the canopies are fully lit and/or

improving the imaging device’s design to include its own excitation light such as a LED ring

placed around the camera lens. Additionally, since the distance between the devices’ cameras

and the plants was so small, varying between approximately 7 and 11 inches (18 and 28 cm,

respectively), the innate error caused by the growth of plants had a large impact on the

canopy area measurements. This is to say that canopy imaging setups where the distance

between the plants and imager is short will naturally have greater amounts of error, and

increasing the height of the imaging device within its setup will help decrease the canopy

area deviation too.
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8.3 Image Processing Stalling

A problem encountered during the development of this imaging device was with the ImageJ

macro script. Mentioned before, the canopy imaging pipeline would occasionally stall when

the ImageJ macro attempted to run its autothreshold function. This stalling would occur

randomly without notice, and a week of troubleshooting pointed to a plugin used in ImageJ’s

autothreshold function. Since there was no way to fix the issue at that point, a workaround

was implemented into the device’s automated pipeline which was to run the pipeline multiple

times to increase the chances of obtaining usable images and data. This solution worked but

can become tedious to keep track of and may not be practical in the long run, so resolving

the stalling issue is still a priority. The best solution to remove the pipeline stalling would

be to remove ImageJ itself and replace it with a different image processing program. For

example, the reference image processing script used in the experiments could be automated

for this imaging device. Otherwise, installation of the newer ImageJ2 may help to resolve

this problem. Do note, however, that the Raspberry Pi only officially supports the original

ImageJ, and varying success has been found with compiling the newer ImageJ2 onto the

Raspberry Pi.

8.4 Disconnection and Power Outages

During the first experiment, one of the new imaging systems lost connection to the file server

for about five days. Fortunately, it was able to reconnect after manually restarting, and all

the images taken over those five days were retrieved. During the second experiment, the same

system lost connection about halfway through and would not reconnect even after manually

restarting several times. It was later found that the system lost power due to a power trip

of the electric outlets which the device was connected to. In either case, the connection

issues did not seem to be innately a problem of the imaging device but more so that of the

particular environment. Moving the wireless access point closer or into the same room as
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the devices may resolve any problems with network disconnection while the addition of a

backup battery to the device would prevent any issues that could arise from power outages.

8.5 Device Setup

Finally, because the device heavily focused on using custom programs to perform its software

processes, especially the automation, there was a steep learning curve for setting up the

system as well as utilizing it to suit more specific needs. The process of setting up this

imaging device is straightforward but long and tedious due to the numerous programs it

uses. Fortunately, much of the installation of software can be bypassed through using a

backup image of the Raspberry Pi which can be pre-loaded into a microSD card for the

device. Even so, users still must enter the Raspberry Pi, either directly or through SSH, to

adjust settings such as its network settings, pipeline variables, and automated task schedule.

Otherwise, a clear installation guide of the programs used by the imaging device would aid

in the difficulty of setting up this device.

8.6 Future Improvements

While the imaging system can fulfill its purpose of canopy imaging through chlorophyll fluo-

rescence, emphasis must be placed on resolving its issue with area measurements. Mentioned

earlier, incorporating the excitation lights into the imaging device would solve issues with

insufficient excitation or poor placement of the lighting component. This would require some

re-designing of the 3d-printed parts, but that can easily be done. Otherwise, several improve-

ments can be made to it through future testing and upgrading. These improvements come in

both its hardware and software. In terms of hardware, the most obvious upgrades would be

to the filter and camera quality. As mentioned before, the total costs for the current design

of this imaging device is well below the goal price, so there is plenty of leeway in the budget

for purchasing higher quality hardware if suitable parts are found.
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As for software, the most problematic part of the system is currently ImageJ. As men-

tioned before, the image processing’s stalling is most likely due to a problem with ImageJ’s

plugins, so the best solution for the imaging device would be to replace ImageJ with a dif-

ferent processing component. For this purpose, the reference image processing script could

be automated for the canopy imaging pipeline. While this would require more user input for

customization initially, the imaging pipeline would yield better results without any stalling.

Otherwise, a different custom program that utilizes an algorithm capable of auto-thresholding

could be used for less user input.

To address the possibility of network disconnections, an automated script that is run

server-side could help by detecting when there is a missing connection to the imaging device

from the network and warning the operator of the missing connection. This solution would

not immediately fix the disconnection issue, but it would work toward minimizing any loss

of data should an imaging device lose its connection to the wireless network. As for the

other main issue experienced during the experiments which was loss of power to the imaging

devices, a reasonable solution would be developing a backup battery for the Raspberry Pi so

that the devices could switch to the batteries if their power supplies lose power. If possible,

it would be ideal for the devices to switch back to AC power should it become re-established

and for the backup batteries to recharge at that point too.

If my imaging device were to be developed into a product, several improvements would

be needed including the problem solutions mentioned earlier. Additionally, refining of the

pipeline such as replacing the image processing would improve the device’s reliability. Fur-

thermore, development of a user interface to allow operators to adjust settings and deploy

the device more easily. Finally, streamlining the production of the device enclosure would

reduce costs and allow for better ergonomics. With these improvements, especially the user

interface, expert installation shouldn’t be necessary if a user manual can be provided.
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Chapter 9

Conclusion

In closing, the work of this exposition should be considered a partial success by achieving the

goal of designing and assembling a functional canopy imaging device that utilizes chlorophyll

fluorescence to overcome a major issue with normal RGB canopy imaging yet requires further

testing and improvement to become a viable option in scientific studies and as a commercial

product. Fortunately, due to how modular this imaging device is, improvements and solutions

to issues can be implemented easily. By selectively choosing parts that are low in cost and

testing their functionality, the imaging device was able to be built for much lower than the

original budget estimate of 200 USD while adequately measuring canopy size. Additionally,

the use of a Raspberry Pi 4 as the main controller of the system allowed it not only to

automate the canopy imaging process but also provide a high level of customization.

Besides the issue with area measurements, the imaging device did encounter some prob-

lems with its software. These were mostly contained to the image processing and the wireless

network connection. The imaging pipeline would stall during processing with ImageJ, which

is an issue that cannot be fixed, so replacing ImageJ with custom processing scripts would

be the best option. As for the wireless connection issues, changes to the positioning of the

wireless access point of the file server should solve the remaining problems. Once the prob-

lems are addressed along with the inaccurate area measurements, the imaging device can

move toward more active deployment.
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Appendix A

RPi NoIR Camera Test Script

01 #Fluorescence Imaging for Raspberry Pi Camera

02

03 import RPi.GPIO as GPIO #Import the GPIO library

04 import time #Import the time library

05 from picamera import PiCamera #Import the camera library

06

07 GPIO.setmode(GPIO.BOARD) #Set pin name mode

08 #GPIO.setup(32, GPIO.OUT)

09 #pwmAct = GPIO.PWM(32, 1000) #Set pin 32 to pwm for actinic led

10 GPIO.setup(33, GPIO.OUT)

11 ledEx = 33 #Set pin 33 to pwm for excitation led

12

13 camera = PiCamera(resolution=(1280,720), framerate=30) #Set up the

raspbery pi camera

14

15

16 #Main Program

17 camera.iso = 100 #Set the ISO/sensitivity to desired value. 100 - 800

18 time.sleep(2) #Wait for the automatic gain control to settle

19 #print(camera.exposure_speed)

20 camera.shutter_speed = 10000 #Set the camera shutter speed in microseconds

21 camera.exposure_mode = ’off’ #Set auto exposure to off

22 g = camera.awb_gains

23 camera.awb_mode = ’off’ #Set auto white balance to off

24 camera.awb_gains = g #Restore auto white balance gains

25

26 #dc = 50 #Set the desired duty cycle of pwm pins

27 #pwmAct.start(dc) #Start actinic led at duty cycle

28 #time.sleep(600) #Wait 10 minutes for plant to react

29

30 #camera.capture(’Actinic.jpg’) #Capture actinic image

31

32 GPIO.output(ledEx, GPIO.HIGH) #Start excitation led at duty cycle

33
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34 camera.capture(’Excitation.jpg’) #Capture excitation image

35

36 GPIO.output(ledEx, GPIO.LOW) #Stop excitation led

37 #pwmAct.stop() #Stop actinic led

38 GPIO.cleanup() #Reset pins

39

40 print("DONE") #Signal completion of program
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Appendix B

Final ArduCam Python Image Capture Script

01 import arducam_mipicamera as arducam

02 import v4l2 # sudo pip install v4l2

03 import RPi.GPIO as GPIO

04 import time

05

06 GPIO.setmode(GPIO.BOARD)

07 #GPIO.setup(32, GPIO.OUT)

08 #pwmAct = GPIO.PWM(32, 1000)

09 GPIO.setup(33, GPIO.OUT)

10 pwmEx = 33

11

12 def set_controls(camera):

13 try:

14 print("Setting the Exposure...")

15 camera.set_control(v4l2.V4L2_CID_EXPOSURE, 2500)

16 print("Setting the Gain...")

17 camera.set_control(v4l2.V4L2_CID_GAIN, 3) # Range 0-15

18 print("Disable Auto Exposure...")

19 camera.software_auto_exposure(enable = False)

20

21 except Exception as e:

22 print(e)

23

24 #dc = 50

25

26 if __name__ == "__main__":

27 try:

28 camera = arducam.mipi_camera()

29 print("Open camera...")

30 camera.init_camera()

31 #print("Setting the resolution...")

32 #fmt = camera.set_resolution(1920, 1080)

33 #print("Current resolution is {}".format(fmt))

34 #print("Start preview...")
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35 #camera.start_preview(fullscreen = False, window = (0, 0, 1280, 720))

36 set_controls(camera)

37

38 time.sleep(1)

39

40 #pwmAct.start(dc)

41 #time.sleep(10)

42

43 #frame = camera.capture(encoding = ’jpeg’)

44 #frame.as_array.tofile("actinic.jpg")

45 #set_controls(camera)

46

47 GPIO.output(pwmEx, GPIO.HIGH)

48

49 time.sleep(1)

50

51 #print("Current resolution is {}".format(fmt))

52 frame = camera.capture(encoding = ’jpeg’)

53 frame.as_array.tofile("cf_image.jpg")

54

55 time.sleep(1)

56

57 GPIO.output(pwmEx, GPIO.LOW)

58 #pwmAct.stop()

59

60 #Release memory

61 del frame

62 #print("Stop preview...")

63 #camera.stop_preview()

64 print("Close camera...")

65 camera.close_camera()

66 GPIO.cleanup()

67 print("DONE")

68

69 except Exception as e:

70 print(e)
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Appendix C

ImageJ Macro Script

01 args = split(getArgument()," ");

02 print("Starting processing...");

03 run("16-bit");

04 run("Despeckle");

05 //run("Threshold...");

06 setAutoThreshold("Intermodes dark");

07 call("ij.plugin.frame.ThresholdAdjuster.setMode", "B&W");

08 setOption("BlackBackground", true);

09 run("Convert to Mask");

10 print("Image threshold done...");

11 run("Despeckle");

12

13 print("Saving processed image...");

14 saveAs("Jpeg", args[0] + ".processed.jpg");

15

16 if (args[1] == "multiple") {

17 print("Multiple plants...");

18 //run("Invert");

19 run("Analyze Particles...", "size=200-Infinity circularity=0.00-1.00

show=Outlines display clear");

20 saveAs("Jpeg", args[0] + ".multiple.jpg");

21 close();

22 saveAs("Results", args[0] + ".csv");

23 }

24 if (args[1] == "single") {

25 print("Single plant...");

26 run("Create Selection");

27 run("Measure");

28 saveAs("Results", args[0] + ".csv");

29 }

30

31 if (isOpen("Results")) {

32 selectWindow("Results");

33 run("Close");
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34 }

35 if (isOpen("Log")) {

36 selectWindow("Log");

37 run("Close" );

38 }

39

40 close("*");

41 print("DONE");

42 exit();
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Appendix D

Automated Pipeline Shell Script

01 #!/bin/bash

02

03 # variables

04 RCLONE="/home/pi/rclone" # Local Rclone directory for cloud sync

05 ONEDRIVE="<onedrive_name>:<path/to/onedrive/directory>" # OneDrive directory

on cloud storage space

06 SAMBA="/home/pi/smbshare/<subdirectory>" # Local SambaShare/CIFS directory

07 TYPE="single" # Type of analysis (’single’ or ’multiple’)

08

09 # Set specific system name and current date

10 NAME=<nameofsystem>

11 DATE=$(date +%F)

12

13 # Load in current files from the cloud server

14 rclone sync -v $ONEDRIVE $RCLONE/

15

16 sleep 1s

17

18 # Run the imaging script

19 python /home/pi/MIPI_Camera/RPI/python/cf_capture.py

20

21 sleep 1s

22

23 # Move the new image into the processing folder

24 mv /home/pi/cf_image.jpg /home/pi/CF_Images/cf_image.jpg

25

26 # Process the raw image with the ImageJ macro

27 export DISPLAY=:1

28 imagej -x 1000 -i /home/pi/CF_Images/cf_image.jpg -b /home/pi/CF_Imaging.ijm

"/home/pi/CF_Images/$NAME_$DATE $TYPE"

29

30 sleep 5s

31

32 # Move the processed (and unprocessed) image(s) to the synced folders
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33 mv /home/pi/CF_Images/cf_image.jpg /home/pi/CF_Images/$NAME_$DATE.jpg

34 cp /home/pi/CF_Images/* $SAMBA/

35 mv /home/pi/CF_Images/* $RCLONE/

36

37 sleep 1s

38

39 # Upload the new files back to the cloud server

40 rclone sync -v $RCLONE/ $ONEDRIVE
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