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Abstract

Security and forensic analysis is a well-established technique to reconstruct an attack. It provides
insights from the symptom to the origin of the attack. It also helps to understand damage from attacks,
recover the system and prevent similar attacks in the future. However, it is typically infeasible to directly
apply existing security and forensic analysis tools to mobile or IoT environments. Mobile devices have
di�erent structure of execution environments from desktops or servers, and IoT devices comprise diverse
hardware and software platforms and have restricted computing resources. Fast growing malicious con-
tent on mobile and IoT environments urges the need for e�ective security and forensic analysis on these
platforms.

In this dissertation, we propose security and forensics analysis techniques for mobile and IoT envi-
ronments. We make four contributions as follows. Our �rst contribution is DroidForensics, a multi-layer
forensic logging technique for Android. It captures di�erent levels of information from high-level ap-
plication semantics to low-level system events, and inter-process communication via Android’s binder
protocol. We show that DroidForensics e�ectively and e�ciently collects essential logs to reconstruct
attacks from real-world malwares. Second, we design an Android helper application for PushAdMiner.
It enables PushAdMiner to harvest Web Push Noti�cations (WPN) from Android Chromium, and to
monitor their corresponding landing pages. We use PushAdMiner to automatically collect and analyze
21,541 WPN messages across thousands of di�erent websites. Among these, PushAdMiner identi�ed 572
WPN ad campaigns, for a total of 5,143 WPN-based ads, of which 51% are malicious. Third, we propose
MQTTprov, a data provenance and forensic log collection technique for MQTT protocol. MQTTprov
�lls the gap of lacking in-depth study and solution for forensic logging in IoT environment. We show
the MQTTprov’s e�ectiveness of reconstructing real-world attacks. Fourth, we propose an attack model
named ChatterHub, a novel approach accurately identi�es smart-home devices’ activities with only en-
crypted tra�c in the home network. Using ChatterHub, an adversary can identify smart-home devices’
speci�c activities without prior knowledge of the target home (e.g., list of deployed devices). We further
demonstrate that ChatterHub successfully recognizes privacy-sensitive activities, including open/close of
a smart door lock and turn on/o� of smart LED.



Index words: Cyber Forensic Analysis, Web Push Noti�cation, Smart-home Security, Android,
Internet of Things, Data Provenance
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Chapter 1

Introduction

With the rapid growth of mobile and Internet of Things (IoT) devices, sensitive data is increasingly gen-
erated and stored in mobile and IoT devices to bring convenience to people’s lives. However, at the same
time, such devices and private data become attractive targets for adversaries. Recent study [1] reported
that more than 3 million Android malicious applications have been released in 2020. The malicious appli-
cations steal personal information from end users, send text messages unknowingly to trigger deductions,
and exploit root privileges to control the system, causing massive harm to the users [2]. A smart home �lled
with IoT devices could be exposed to more than 12,000 attacks in a single week [3], leading to not only
privacy breach, but also �nancial loss or being used as a botnet to launch Distributed Denial of Service
(DDoS) attacks [3].

E�ective security and forensic analysis methods to these attacks in mobile and IoT environments have
become increasingly crucial to allow researchers can detect, understand, and prevent such an attack in
the future. For example, when a symptom of an attack is detected in a mobile device, forensic analysis
allows the user to analyze forensic logs to reconstruct the attack to �nd out its origin. Understanding the
damage from the attack is also essential because it helps to recover the system when acknowledging what
data has been breached or what system objects have been compromised. Furthermore, understanding the
entrance and attack vector is crucial to detect and prevent future attacks. Forensic logging is widely used
technique for traditional desktop and server environments to capture behaviors of the system execution
and their relations. For instance, audit logging techniques [4] are widely used for cyber attack forensics.
They record system properties such as users, processes, �les or network sockets and their relations such
as a process receives data from network socket, a user log-in to the system or a system �le is replaced by
a process. It can be used for backward and forward tracking [5, 6] to locate the origin of an attack and
to identify the damage to the system. Recent studies [6, 7, 8] show that forensic logging is an e�ective
technique for cyber attack forensics in desktop or server environments.

However, existing security and forensic analysis tools cannot be directly applied to mobile and IoT
devices. Mobile operating system is structurally di�erent compared to desktop or server operating system.
For example, Android applications run in the virtual machine named Android Runtime (ART), to provide
a layer of isolation between each application. Traditional system call logging is too low-level to capture rich
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semantics of application behaviors. Additionally, IoT devices bring unique challenges for security and
forensic analysis approaches. First, IoT environments comprise diverse hardware and software platforms,
thus there is no one solution to �t all IoT devices. Second, IoT devices typically have restricted resources
such as computing power or memory. Therefore traditional security or forensic analysis techniques are
infeasible in IoT environments.

In this dissertation, to mitigate the challenges which hinder the security and forensic analysis for mo-
bile and IoT environments, we focus on developing selective logging techniques to identify and automat-
ically collect important events from the mobile and IoT environments during runtime, and performing
security and forensic analysis. Our techniques point out that collecting selective of events is su�cient
enough to accurately reconstruct the attack. Real-world examples alongside with crafted never-seen-before
attacks are used to illustrate and to evaluate our contributions. We also present an attack that could be
applied to breach user’s privacy in a smart-home environment.

1.1 Research Challenges

In this section, we discuss challenges uniquely for mobile and IoT environments.

1.1.1 Semantic-Rich Forensic Logs for Android

There are two major hindrances to use traditional system call logging in Android. First, because of the
extra layer of ART, system calls might be too low-level to capture the rich semantics of application be-
haviors. Second, Android has unique inter-process communication (IPC) protocol, called binder and
it is di�cult to accurately capture IPC from the system calls. For example, if the Android application
steals a contact list from the device and sends it to SMS message, system calls cannot capture the critical
behaviors such as reading contact information and sending SMS message to the attacker’s number. Because
the Android application cannot directly access contact or SMS, but it uses binder call to interact with
Android service providers such as ContentProvider or SMSManager to access contact or SMS.

CopperDroid [9] and DroidScope [10] have proposed techniques to analyze the behaviors of Android
malware. CopperDroid developed system-call based analysis techniques for Android attack reconstruc-
tion. DroidScope [10] is the Android malware analysis engine that provides uni�ed view of hardware,
kernel and Dalvik virtual machine information. However both are built on top of emulated environments
(e.g., QEMU [11]) and it generally incurs nontrivial runtime and space overhead for resource-constrained
mobile devices.

1.1.2 Automated Collection for WPNs in Android

Along with the rapid growth of online advertising, ad networks and ad publishers are constantly trying
to pursue new strategies to maximize their revenues. They start to leverage the web push technology
enabled by modern web browsers, especially for mobile web browsers. In 2020, roughly 80% of web
push noti�cation subscriptions are in mobile [12]. Meanwhile, malvertising (i.e., to deliver malicious ads)
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has been abused when it comes to mobile as well. Those malvertising can disguise themselves as fake
missed call noti�cations, fake amber alerts, “spoofed” Gmail or WhatsApp noti�cations, etc. Therefore,
a tool is needed to automatically harvest and analyze malicious web push noti�cations (WPNs) on mobile
environment and its landing page.

However, we identify three major challenges of applying PushAdMiner onto Android. First, the
mechanism of how WPNs are displayed on a mobile OS is fundamentally di�erent than desktop envi-
ronment. Unlike on desktop devices, in which browser displays WPN messages, on Android device it
is the Android OS that displays a WPN as a system noti�cation. Generating clicks from instrumented
Chromium would not work, as the Chromium runs in an isolated Android Runtime, which does not have
the access to interact with system noti�cations. Second, assistant is needed to send seed website URLs to
Chromium to start collecting WPN messages. Third, other than PushAdMiner collecting events happen
inside Chromium, visual recording is also needed for accurate cluster of ad campaigns and further analysis.

1.1.3 Data Provenance and Forensics for MQTT

We identify three fundamental challenges for enabling data provenance and forensics for MQTT. First, to
generate provenance data for diverse devices that use various hardware (e.g., CPUs) and software (e.g., OS,
�rmware), the approached approach must be hardware and software agnostic. Second, modi�cation on
end devices is di�cult to achieve in practice. For instance, some devices may not be physically accessible
and some devices may use proprietary software which does not allow any modi�cation. The proposed
approach should be able to derive data provenance from such devices. Third, end devices are often less
powerful hence it is di�cult to expect they have su�cient processing power to generate provenance data
and storage space to store. Previous studies [13, 14] tries to improve MQTT data provenance using MQTT-
Plan, EP-Plan and PROV-O. Its goal is to trace whether a message was forwarded to an unauthorised
client, according to prede�ned “plan”. However, their approach only captures a provenance event when
the broker re-publishes (a.k.a., forwards) a message. Therefore any unauthorized publishing event without
any subscriber is missed (e.g., DoS attack using CONNECT packets).

1.2 Thesis Statement

While most traditional security or forensic analysis techniques are infeasible for mobile and IoT devices,
this dissertation proposes forensic logging techniques targeting mobile and IoT environments to enable
e�ective security and forensic analysis. This dissertation shows that the proposed techniques can e�ectively
help users reconstruct cyber-attacks and prevent similar future attacks.

1.3 Contributions

This dissertation addresses the challenges discussed in the previous section. The main contributions of
this dissertation can be summarized as follow.
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1. We propose DroidForensics for investigating malicious Android applications in mobile environ-
ment. Our goal is to provide the user with detailed information about attack behaviors that can
enable accurate post-mortem investigation of attacks from Android malicious applications. Droid-
Forensics consists of three logging modules. API logger captures Android API calls that contain
high-level semantics of an application. Binder logger records interactions between applications to
identify causal relations between processes, and system call logger e�ciently monitors low-level
system events. We also provide the user interface that the user can compose SQL-like queries to
inspect an attack. Our experiments show that DroidForensics has low runtime overhead (2.9% on
average) and low space overhead (105∼ 169 MByte during 24 hours) on real Android devices. It is
e�ective in the reconstruction of real-world Android attacks we have studied.

2. We propose PushAdMiner and an Android helper application to achieve the automated informa-
tion collection for Android Chromium web browser. An Android helper application is designed
to empower PushAdMiner to forensic log collection by automatically clicking on the noti�cations,
in addition to screenshot and screen recording. By performing analysis on collected information,
we are able to collect a total of 21,541 push noti�cation messages, in which 9,100 noti�cations are
for the mobile environment. Among those WPN, we collect 12,262 valid landing pages and 2,692
of them are on mobile. Combined with the WPNs collected from the desktop, PushAdMiner
identi�ed 572 ad campaigns and a total of 5,143 WPN ads related to these campaigns. Moreover,
PushAdMiner identi�ed 51% of all WPN ads as malicious. Speci�cally, PushAdMiner found 318
(out of 572) campaigned to be malicious; in aggregate, these malicious campaigns included 2,615
WPN ads.

3. We present MQTTprov to �ll the gap of lacking in-depth study and solutions for forensic analysis
in IoT environment. Most of the IoT messaging protocols are in publish/subscribe model [15, 16],
meaning that there is a central server taking charge of dispatching messages to corresponding clients,
among which, MQTT is the most popular massaging protocols [15]. MQTTprov is designed to
enable data provenance on MQTT network. We evaluate our tool against real world attack scenarios
and prove that our tool is capable of reconstructing all those attacks.

4. We design an attack for the smart-home using limited information obtainable. This novel approach
accurately identi�es smart-home devices’ activities with minimal monitoring of encrypted tra�c
in the home network. ChatterHub targets devices that can only connect to the Internet through
a centralized smart-home hub (e.g., Samsung SmartThings) using Zigbee or Z-wave. Speci�cally,
ChatterHub passively eavesdrops on encrypted network tra�c from the hub and leverages ma-
chine learning techniques to classify events and states of smart-home devices. Using ChatterHub,
an adversary can identify smart-home devices’ speci�c activities without prior knowledge of the
target smart home (e.g., list of deployed devices, types of communication protocols). We evaluate
the accuracy and e�ciency of ChatterHub in three real-world smart-home environments, and the
evaluation results show that an attacker can successfully disclose smart-home devices’ behaviors
with over 88% F1 score. We further demonstrate that ChatterHub successfully recognizes privacy-
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sensitive activities, including open and close of a smart door lock and turn on and o� of smart
LED.

1.4 Outlines

This dissertation presents security and forensic analysis techniques for mobile and IoT environments.
The rest of this dissertation is organized as follows.

• Chapter 2 presents a multi-layered forensic log collection system for Android operating system,
called DroidForensics, and its ability to provide semantically rich attack traces. We presents details
of our design and evaluation results of DroidForensics in this chapter. We also designed an An-
droid helper application for PushAdMiner to enable automated log collection in Android, and the
measurements from PushAdMiner.

• Chapter 3 demonstrates that even in an environment like IoT with very limited places to monitor,
it is still possible to reconstruct most of the attacks in real life. We use real-world attack scenarios to
evaluate MQTTprov. We also propose an attack to demonstrate privacy invasion in a smart-home
environment called ChatterHub.

• Chapter 4 discusses the limitation of our proposed techniques.

• Chapter 5 reviews and discusses related literature.

• Chapter 6 concludes this dissertation.
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Chapter 2

Effective Forensic Logging for
Mobile Environment

Being the most popular mobile operating system, Android dominated the market with a close to 73% share
in June 2021 [17]. The large mass of Android application economy brings a great pro�t for developers,
but at the same time, it draws the the interest from malicious contents. Malicious applications �nd their
way to bypass the censorship from app stores, meanwhile malicious websites leverage the relatively new
web push noti�cation from mobile browser to deliver social engineered noti�cations like fake missed calls
luring the user to click on them.

In this chapter, we present DroidForensics in Section 2.1 to demonstrate its capability to reconstruct
the attacks from malicious application; we present PushAdMiner for mobile environment in Section 2.2,
to empower automatic forensic log collection in Android Chromium web browser.

2.1 DroidForensics: Accurate Reconstruction of Android Attacks

via Multi-layer Forensic Logging

In this section, we develop a multi-layer forensic logging technique for Android, called DroidForensics.
DroidForensics captures important Android events from three layers; Android API, Binder and system
calls. Our API logger can capture high-level semantics of application, Binder logger accurately captures
interactions between applications, and system call logger records low-level events such as system calls. In
addition, DroidForensics provides easy-to-use, SQL-like user interface that the user can compose queries
to inspect an attack. DroidForensics generates a causal graph to answer the query and the user can it-
eratively re�ne queries based on the previous graph. We do not require an emulated environment and
DroidForensics is designed for real devices. In summary, this section makes the following contributions:

• We design and implement a multi-layer forensic logging system for Android. Our system consists
of three modules to capture di�erent levels of information from high-level application semantics
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to low-level system events. We also accurately capture inter process communication via Android’s
binder protocol.

• We develop a light-weight system call logging technique for Android. Existing Android audit
system [18] causes up to 46% overhead in Nexus 6 that would be too expensive to be active during
normal execution. Our runtime overhead on Nexus 6 is only less than 4.05%. We can also reduce
the space consumption substantially.

• We develop an easy-to-use user interface to aid the attack investigation. The attack reconstruction
is carried out by writing SQL-like queries. Our pre-process automatically converts the user query
to SQL-queries, and the post-processor generates causal graphs.

• We evaluate the e�ciency, e�ectiveness and compatibility of DroidForensics. The results conducted
on widely used Android benchmarks show that our runtime overhead is only about 2.9% on average
and 6.16% in the worst case. We present that 31 android malwares are e�ectively resolved by querying
various levels of information. The compatibility results produced by Android Compatibility Suite
(CTS) show that DroidForensics maintains the same compatibility-level comparing with original
Android.

The rest of this section is organized as follows. Section 2.1.1 introduces the overview of DroidForensics
and motivating example using Android malware called AVPass. Section 2.1.2 discusses our design and
implementation details. In Section 3.2.3.3, we evaluate DroidForensics for e�ciency, e�ectiveness and
compatibility.

2.1.1 System Overview and Motivating Example

In this section, we present an overview of DroidForensics and we use a real-world Android malware,
AVPass [19], to motivate our work.

A high-level overview of DroidForensics is depicted in Figure 2.1. It has three logging modules, namely
API logger, Binder logger and System call logger. API logger captures important Android APIs such
as accessing database, controlling sensitive devices (e.g., a camera, GPS or microphone). Binder logger
monitors interactions between processes via IPC or RPC, record their information such as process id
for the caller (or the client) and the callee (or the server), and a message shared between them. Finally
system call logger records forensic-related system calls such as calls that a�ect other processes (e.g., fork,
kill) or other system object (e.g., read, write, recv, send). To record a global order of these events from
di�erent layers, API and Binder loggers forward their events to system call logger and system call logger
stores them with global timestamps. The dotted line in Figure 2.1 shows the �ow of collected forensic logs.
DroidForensics periodically transfers those forensic data to an external server through wi� and three layers
of logs are encoded uniformly into a relational database. Finally the user can compose SQL-like queries to
investigate an attack. DroidForensics converts the user query to SQL-queries and also generates a causal
graph using the output from forensicDB. The user can observe malicious behaviors from di�erent layers
in an uni�ed causal graph, and re�ne queries for the further investigation.
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Figure 2.1: High level overview of DroidForensics

Attack Description Suppose John carries an Android smart phone, and falls victim to a social engineer-
ing malware download attack by clicking on a link in an advertisement page. The malware, AVPass [19],
silently installed in John’s device. The malware deletes an icon and an widget preview to hide from the
user, then steals sensitive information such as contacts, SMS messages from the victim device. Finally, the
malware stores sensitive data into the local SQLite database for ex�ltration.

Forensic Analysis John accidentally detects that a suspicious process, com.lge.clock with pid 3052,
is running in the background. He wants to identify what this process has done in his device. However,
the malware’s activities happened a while ago, and the inspection of the malware process or the device
states does not provide a clear evidence of the attack. He then tries to reconstruct the process behavior
using our technique. DroidForensics successfully captured the behaviors of the malware in three layers,
Android API, binder, and system calls. John composes the �rst query to �nd out the events invoked by
the process 3052:

$ SELECT * FROM SYSCALL,BINDER,API WHERE pid=3052;

DroidForensics’s pre-processor converts the user-query into SQL queries. John’s �rst query is con-
verted to SQL union query to retrieve the output from multiple sources. Our post-processor generates a
causal graph from the output of the query. The blue dotted box in Figure 2.2 shows an (simpli�ed) output
from John’s �rst query. The graph shows that the suspicious process read four �les through system calls,
namely com.lge.clock.xml, config.txt, res.db-journal and res.db. From the read events
to res.db-journal and res.db, John understands that process 3052 accesses a local database, but he
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3052
com.lge.clock

2515
droid.launcher3
Launcher-loader

/data/data/
com.android.launcher3/

databases/
widgetpreviews.db

/data/data/
com.android.launcher3/
databases/app_icons.db

Binder
STime: 2016-09-08 17:51:06.21
ETime: 2016-09-08 17:51:06:21

SQLite:  DELETE FROM 
shortcut_and_widget_previews 

WHERE packageName = com.lge.clock 
AND profileId = 0

SQLite:SELECT profileId, packageName, 
lastUpdated, version 

FROM shortcut_and_widget_previews

SQLite:  DELETE FROM 
icons WHERE 

componentName LIKE 
com.lge.clock AND profileId = 0

2179
com.android.phone

/data/data/
com.android.providers
.telephony/databases/

mmssms.db

SQLite:  DELETE FROM 
directories WHERE 

packageName=com.lge.clock

SQLite:SELECT _id, address, body, 
date, type FROM sms_restricted 

ORDER BY date DESC

Binder
STime:2016-09-08 17:53:07.13
ETime:2016-09-08 17:53:08:18

1913
com.android.provider

/data/data/
com.android.providers.co

ntacts/databases/
contacts2.db

Binder
STime:2016-09-08 18:04:51.76
ETime:2016-09-08 18:07:56:45

SQLite:
SELECT _id, number, dura�on, 
date, type FROM calls WHERE 

(((type != 4)) AND 
((phone_account_hidden = 0))) 

ORDER BY date DESC

/data/user/0/
com.lge.clock/files/

app03/res.db

SYS:pread, 
pwrite

/data/user/0/
com.lge.clock/
shared_prefs/

com.lge.clock.xml

SYS:read

/data/user/0/
com.lge.clock/
files/app04/

config.txt

SYS:read

SQLite: CREATETABLE if not exists( t_up_list, 
t_contacts, t_sms, t_calllog, t_record_call, 
t_record_bg, t_loca�on, t_applist, t_album)
SQLite: UPDATE t_up_list SET state=0
SQLite: INSERT INTO t_contacts VALUES ( đ.)

SQLite: INSERT INTO t_sms VALUES ( đ)

SQLite: ...

/data/user/0/
com.android.providers
.telephony/databases/

mmssms.db-journal

SYS:open, pread

/data/user/0/
com.lge.clock/files/

app03/res.db-journal

SYS:openat,
pread, pwrite

Query #1: SELECT * FROM SYSCALL,BINDER,API WHERE pid=3052;

Query #4: SELECT * FROM SYSCALL,BINDER,API 
WHERE pid=2515 

and STime >=  `2016 -09-08 17:51:06.21' 
and ETime <= `2016 -09-08 17:51:06:21';

Query #3: SELECT * FROM SYSCALL,BINDER,API 
WHERE pid=2179 

and STime >= \\ `2016 -09-08 17:53:07.13' 
and ETime <= `2016 -09-08 17:53:08:18';

Query #2: SELECT * FROM 
SYSCALL,BINDER,API WHERE 

pid=1913 and STime >= \\ `2016 -
09-08 18:04:51.76' and ETime <= 

`2016-09-08 18:07:56:45';

Figure 2.2: Generated causal graph from the user queries.

wants more speci�c information such as an exact query that 3052 used. Fortunately, DroidForensics’s API
logger captures SQLite API invoked by process 3052 and shows the query as well as the target database
in the graph. There were multiple SQLite queries from the malicious process (bottom right corner in
Figure 2.2). It creates table, updates table state, and inserts data into various tables.

The graph also shows multiple binder transactions to three di�erent servers, pid 2515, 2179 and 1913.
Now John wants to further understand what have happened in those servers. Each binder event has a start
time (STime) and an end time (ETime) of each binder transaction. They show the time stamps when
the binder sends a request to the server process and receives a reply. For example, process 3052 invoked
the binder call to the server 2151, and the binder driver sends this request to process 2151 at 2016-09-08
17:51:06.21, and the binder driver received the replay from 2151 at 2016-09-08 17:51:06:21. We assume that
all server behaviors between two time stamps are causally related to the client. We discuss details of binder
events in the section 2.1.2.2. John composes following three queries to further investigate behaviors from
the server processes:

$ SELECT * FROM SYSCALL,BINDER,API WHERE pid=1913
and STime >= ‘2016-09-08 18:04:51.76’ and ETime <= ‘2016-09-08 18:07:56:45’;

$ SELECT * FROM SYSCALL,BINDER,API WHERE pid=2179
and STime >= ‘2016-09-08 17:53:07.13’ and ETime <= ‘2016-09-08 17:53:08:18’;

$ SELECT * FROM SYSCALL,BINDER,API WHERE pid=2515
and STime >= ‘2016-09-08 17:51:06.21’ and ETime <= ‘2016-09-08 17:51:06:21’;

Figure 2.2 shows a generated graph from the queries. The output from each query is merged into the
previous graph so that John can see the full graph. It shows that process 1913 retrieves contact lists, 2179
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reads SMS messages from the phone, and 2515 deletes the malware icon and widget preview to hide itself
from the user. Now John fully understands the attack �ow. The malware steals private information and
stores it into a local database (com.lge.clock \files\app93\resdb), and also the malware deletes the icon and
preview.

Existing Techniques Traditional system call logging [4, 20] does not show interactions between the
malware process and service providers through binder protocols. For example, John only knows that the
malware accesses the local database �le, but system call logs do not show binder transactions or SQLite
queries. Therefore, he will miss most attack behaviors.

CopperDroid [9] developed a technique to capture binder IPC from ioctl system calls, but it may
hurt the runtime performance due to heavy logging (it needs to pull out the user memory used by ioctl)
and analysis requirements. Furthermore, it cannot capture the high-level API behaviors such as SQLite
queries. More importantly, accessing SQLite does not always invoke system calls. Because it is common
for SQLite to cache a whole table into memory, and accessing memory-loaded table does not need a system
call. For example, process 1913 and 2515 in Figure 2.2 do not show any system call because target tables are
already loaded in the memory. System call logs will completely miss those behaviors.

DroidScope [10] is a malware analysis engine that provides an uni�ed view of malware behaviors.
Similiar to our approach DroidScope monitors multiple aspects of malware executions. However, Droid-
Scope was designed for the Dalvik virtual machine. Dalvik environment is not available anymore on
Android-6.0 and newer versions, so it makes DroidScope’s analysis engine for Dalvik bytecode infeasi-
ble. Furthermore, both DroidScope and CopperDroid require emulated environments (e.g., QEMU) to
monitor and analyze the process execution that generally incurs high overhead.

Taint tracking techniques [21, 22, 23, 24] might be able to detect what information got stolen, but
cannot show how the attack unfolded. Furthermore, taint tracking generally requires instruction-level
monitoring to propagate taint tags that causes high overhead.

2.1.2 System Details

Before we introduce the details of our implementation, we will brie�y discuss an overview of Android
framework. Android is a Linux-based Operating System for mobile devices and tablet computers. Even
though Linux kernel is the core part of Android, there are important di�erences in application execution
models.

First, Android does not allow to use traditional System V based IPC or RPC protocols, but Android
applications need to use binder, a custom implementation of IPC/RPC protocol. Binder communication
is an important source to capture causal relations between processes.

Second, Android provides various Android-speci�c APIs such as framework APIs, system APIs, and
resource APIs. The API usage often represents high-level program semantics.
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Most Android applications are written in Java, but Android also allows developers to write code in
native components (C or C++) to enhance the performance. Native components can invoke methods in
Java libraries and also directly call lower-level instructions such as system calls.

2.1.2.1 Android API Logging

API logger captures application’s activities at the API level to reason about how it interacts with the
Android runtime framework. It can also capture an interaction between native components and Android
APIs. We directly instrument Android source code to capture important APIs with their arguments and
return values. In particular, we identify the set of Android APIs that potentially induce causal relations
with system objects such as the device resources or private data. We instrument 21 Android APIs and they
mainly fall into three categories:

• Framwork APIs: We capture APIs that can handle Android framework resources. For instance,
SMSManager APIs can send and receive SMS messages, TelephonyManager APIs can call or receive
calls and also get device’s IMEI number. PackageManager APIs allow to install or uninstall APK
packages and also scan installed application lists.

• System APIs: We monitor APIs that can access camera, GPS, and microphone de�ned in Camera,
Location and MediaRecorder classes, respectively.

• Resource APIs: We log APIs that can access device contents such as a local storage or a database.
For instance, we capture SQLite database APIs and content provider APIs.

Our instrumented code snippets collect API information and send it to system call logger where we
assign each event a global timestamps to show the happens-before relations between di�erent logs. We
store API information into heap memory, and we use openat() system call to deliver the data to system
call layer. openat has three arguments, (int fd, char* path, int oflag) and we use fd as an
indicator of log type. For example we use -255 for API and -256 for Binder. path points to the process
heap memory where we store API information. Note that we can send an arbitrary length of data through
the memory. openat with a negative fd simply returns an error from the kernel and does not cause any
side-e�ect only except Linux errno [25]. When a system call fails, the kernel sets an errno to indicate a
reason of the error. We save the current errno before openat and restore it after the system call to avoid a
side e�ect from errno.

Alternative approach We studied an alternative approach that can reduce the manual instrumentation.
The idea started from an observation that most API calls from Android applications invoke DoCall(),
Invoke() or Execute() methods de�ned in Android runtime class. Then they search the destination
API address and jump to the target API. If the call arrives at DoCall(), Invoke() or Execute(), the
target API name and their arguments can be retrieved from ShadowFrame data structure. Our idea is to
instrument only those three methods to capture API calls and their arguments. We can monitor all API
calls go through those methods and we can detect APIs we are interested (e.g., SQLite query) by simple
string comparison.
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Figure 2.3: An overview of binder protocol.

However, it has a limitation. We cannot guarantee that all APIs are going through runtime methods.
For instance, if Android compiler (dex2oat) optimization applies method inlining or direct o�set calling,
the application can directly jump to the target API without passing through aforementioned runtime
methods. Native components are another problem. It can directly call Android APIs and runtime meth-
ods cannot observe them either. This approach has advantage as the user can easily con�gure API list to
monitor and minimize Android modi�cation, but we decide not to use it due to above limitations.

Another approach we considered is APK rewriting. It can directly instrument arbitrary codes in APK
�le, but this approach has limitations. APK rewriting or static instrumentation is known to be vulnerable
to the code obfuscation, and it cannot instrument native code. Furthermore, Android applications can
load an additional code at runtime, called dynamic loading code. Android attacks techniques often use
dynamic loading code [26, 27, 28, 29] to avoid o�ine analysis systems, but APK rewriting technique
cannot handle dynamically loaded codes.

2.1.2.2 Binder Logging

Another challenge to build an e�ective forensic analysis system for Android is it’s unique Inter-Process
Communication (IPC) mechanism. Android applications are not allowed to use traditional System V
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based IPC or RPC protocols, but required to use Android binder, a custom implementation of the
OpenBinder protocol [30]. Android applications use binder protocols to invoke methods of remote
objects (e.g., services or activities) to interact with other applications. For instance, in order to send
SMS message, Android applications need to invoke remote procedure, sendTextMessage provided by
com.android.sms process (i.e., SMSManager). Similarly, Android applications use binder to access
photos, contacts, map or other data stored in Android’s main storage. In fact, all 31 Android malwares
we have inspected use binder calls to steal information or to send unauthorized text message. The user
application also can be a service provider. For instance, Facebook and Twitter provide sign-in services that
enable people to log into the app with Facebook or Twitter accounts.

Consequently, IPCs or RPCs are important sources for forensic analysis but existing Linux-based
logging techniques cannot e�ectively capture them. We need to understand semantics of binder protocol
(e.g., client’s and server’s process ids, invoked remote method and a data object that is transferred between
the client and the server) and capture them.

Figure 2.3 shows a simpli�ed data �ow in the binder protocol. To provide a service to other pro-
cesses, the server �rst registers a service into ServiceManager, a special binder object that is used as a
registry and lookup service for other binder objects. Once the service is registered, client processes can
�nd and interact with it through binder protocol. The client (or caller) process X �rst interacts with
ServiceManager to �nd the remote method name and invokes the remote method. The binder pro-
tocol sends BC_TRANSACTION message to Binder driver. It is delivered to Binder driver with multiple
ioctl system calls. Then the Binder driver lookups a server process Y who can provide the service to
the client X, and sends BR_TRANSACTION message to process Y. When the process Y �nishes, it sends
BC_REPLY message to the Binder driver and the driver forwards it to process X via BR_REPLY.

We log BR_TRANSACTION and BC_REPLY messages along with the information of the client (process
X) and the server (process Y). We assume that all server’s behaviors between BR_TRANSACTION and
BC_REPLY are causally related to the client process. If the server concurrently receives requests from
multiple clients, our conservative assumption may introduce false positives, but we will not miss any
information. In practice, we do not observe any false dependences in our experiments.

In some cases, BR_TRANSACTION or BC_REPLY contains a message shared between the client and
server that can be informative for the forensic analysis (e.g., SMS message, a recipient’s number, IMEI).
Figure 2.3 also presents a data structure that BR_TRANSACTION and BC_REPLY use. “void *bu�er” con-
tains a shared memory address that can be accessed by both the client and server. We log the �rst 128
bytes of the bu�er if it can be a useful information for forensic analysis. We log the bu�er that goes to
SMSManager or sent from TelephonyManager because they possibly contain outgoing SMS message or
devices’s IMEI number.

Alternative Approaches In API-layer, it is possible to capture intent calls which initiate binder
protocols. However it has following limitations. Intent declares a recipient by an action string or a
component name. At the run-time, we can specify the recipient process, but that information might not
be available in post-mortem forensic analysis. Note that arbitrary applications can register the service,
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and service name alone is not enough information to understand the behaviors. Furthermore, native
component can use binder protocol through binder library without using intent API.

CopperDroid [9] proposed a technique that analyzes the semantics of binder via ioctl system call.
However, CopperDroid is build on top of QEMU and it requires the out-of-the-box analysis to under-
stand a payload of eachioctl calls. Unfortunately, their technique could be too heavy to be implemented
in a real device.

Accordingly, we decide to monitor IPC/RPC in the binder library (libbinder.so) where we can
collect all information.

2.1.2.3 System call Logging

In the previous sections, we discussed Android API and binder logging techniques to monitor high-level
application behaviors and interactions between applications or services. However, they are not enough to
fully capture application behaviors. For instance, Android applications can contain native components
written in C/C++. Native components can directly invoke lower-level instruction such as system calls
that API logger can not observe. Malicious apps frequently hide their activities in native code [31, 32,
33, 34] to evade the Java-code analysis techniques [35, 36, 37, 38, 39, 40]. Recent study [32] shows that
37% of Android applications (446k out of 1.2 million Android apps) potentially use native components.
Therefore we develop system call logger that can capture system calls from native components.

System call logging is a popular technique in traditional desktop or server forensics. For instance,
Linux Audit [4] is a default package in most Linux distributions, and DTrace [41] is shipped with FreeBSD
operating system. Linux Audit is also available in Android [18], however, it causes too much run-time over-
head (up to 38%) and space consumption to use in practice (e.g., always-on forensic logging) in resource-
constrained mobile devices. To address this problem, we have developed a light-weight system call logging
module for Android. We borrow an idea from state-of-the-art Linux system call logging techniques,
ProTracer [7] and Sysdig [20]. Thankfully, Sysdig is an open-source project under GNU General Pub-
lic Licenses (free to share and change the code), and we reuse part of their code to build our logger for
Android. Our system call logger causes only 1.99%∼ 4.56% run-time overhead in Nexus 6 smartphone.
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Figure 2.4: System call logging overview.
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Table 2.1: Overhead of system call logging: Linux Audit and DroidForensics’ system call logger.

Benchmark
Runtime Overhead Space Consumption

Linux DroidForensics DroidForensics Linux DroidForensics DroidForensics
Audit [18] without comp. with comp. Audit [18] without comp. with comp.

PCMark-work 15.31% 0.26% 1.99% 166MB 110MB 16MB
Android- TabletMark-web/email 22.61% 1.44% 3.57% 590MB 402MB 61MB
6.0.1_r42 TabletMark-photo/video 37.38% 1.41% 2.12% 612MB 509MB 64MB

3DMark 18.98% 3.12% 3.75% 56MB 44MB 7.3MB
PCMark-work 18.34% 1.84% 2.32% 150MB 101MB 14MB

Android- TabletMark-web/email 24.19% 3.77% 4.14% 612MB 421MB 67MB
5.1.0_r3 TabletMark-photo/video 38.73% 2.21% 3.41% 661MB 469MB 69MB

3DMark 19.15% 3.19% 4.05% 59MB 46MB 8.1MB
Average 24.34% 2.16% 3.17% 363MB 263MB 38.3MB
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Similar to ProTracer [7] and Sysdig [20], our system consists of two parts, a kernel module and a
user-space daemon process. Figure 2.4 shows the architecture of our system. The kernel module leverages
tracepoints [42] to capture the entry and exit of each system call (e.g,. sysenter and sysexit). At
runtime, the kernel module collects system call information and stores it into a kernel ring bu�er. To
avoid race conditions, we generate a separate ring bu�er for each CPU cores. The user-space daemon reads
from ring bu�ers, compresses them and sends to the local �le or an outer server through the network.
We only capture forensic-related system calls such as calls that a�ect other processes (e.g., fork, kill) or
other system objects (e.g., read, write, recv, send). We record 52 out of 328 system calls. Our selection
of system calls are similar to previous Linux-based forensic logging techniques [7, 6]. API and binder
logs delivered via openat() system call are handled here. They are further processed to retrieve API and
binder information in the server when we inject logs into a relational database.

If the kernel module generates data faster than the user-level daemon can consume, we might lose data.
To prevent the loss of information in the ring bu�er, we make sure that the ring bu�er has enough space
to store the current system call. When we intercept the entry of a system call, we check the remaining
space of the ring bu�er. If the ring bu�er is full, the kernel module suspends the execution of the system
call and allows the user-space daemon to consume the ring bu�er. We allocate each ring bu�er with 16
MBytes, for example, Nexus 6 needs four ring bu�ers and Nexus 9 has two, one for each CPU-core. In
our experiments with I/O intensive workloads and Android benchmark applications, ring bu�ers hardly
become full. The user-space daemon is multi-threaded process that e�ciently consumes ring bu�ers. It
compresses the data using zlib before writing to the storage, then periodically sends the compressed log
to a prede�ned server via ssh protocol. In our current setup, we send the log every 10 minutes if wi� is
available.

Table 2.1 shows a runtime and space overhead of Linux audit and DroidForensics’s system call logger.
In this experiments, we use popular Android benchmark applications, namely PCMark [43], Tablet-
Mark [44], and 3DMark [45]. These benchmarks have been used by IT magazines and developers to
compare performances between di�erent devices and Android versions.

PCMark-work benchmark simulates basic o�ce work tasks such as web-browsing, video editing, writ-
ing, photo editing and parsing data. PCMark-storage accesses various types of �les located in internal
storage, external storage and local database. TabletMark simulates web-browsing, email accessing, and
watching and editing photos and videos. 3DMark uses OpenGL ES benchmarks to measure CPU and
GPU performance. Each benchmark execution takes 20 to 60 min.

The third column shows runtime overhead of Linux audit system. It goes up to 38%. The forth and
�fth columns show overhead from our technique while we turn-o� the compression, and turn-on the com-
pression, respectively. DroidForensics with the compression is a little slower than without the compres-
sion, but it still shows much lower overhead (3.17% on average and 4.14% in the worst case) than Linux audit.
The last three columns show space consumption of system call logs generated by Audit, DroidForensics
without the compression, and DroidForensics with the compression, respectively. DroidForensics with
the compression shows much smaller log size than other two cases (9.5 times smaller than Audit and 6.9
times smaller than without the compression). We can observe similar results from Nexus 9 tablet (details
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Figure 2.5: Database schema for log properties

are elided). We argue that 3% to 4% of runtime overhead from DroidForensics with the compression is
acceptable in practice. All other experiments in this section are conducted with the compression turned
on.

2.1.2.4 User Interface

DroidForensics uses MYSQL database as a back-end storage and we provide a declarative interface based
on SQL-like language to the user. Various levels of logs are encoded into SQL database and the user can
compose one or more queries on relations to reconstruct Android attacks. We de�ned a set of relations
that describe aspects of Android API, binder and system calls. Figure 2.5 presents the detailed schemas.
Pid and Uid shows the process id and the user id of the process, and Time means the timestamp of the
event. Binder event shows a causal relation between the client and the server processes. It has Spid and Suid
�elds for the server’s process id and user id. Stime and Etime are timestamps for BR_TRANSACTION and
BC_REPLY event respectively. We assume that the server’s events happens between Stime and Etime are
causally related to the client process (details are discussed in the section 2.1.2.2). If additional information
is available (e.g., SMS body or a recipient’s address), we store them in MSG �eld.

API event presents the interaction between Android app and underlying Android Framework. We
use Name and ARG �elds to represent the API name and their important arguments (e.g., SQLite query).

System call event shows the interaction between the process and Android kernel. We use Num for
system call number and Target for the target system object. We additionally de�ne TargetType �eld to
show the type of the object such as �le, socket, or process. It is useful to understand low-level process
behaviors such as process X reads �le A, process Y send a packet to IP 1.2.3.4 or process X kills process Y.

Figure 2.6 shows how DroidForensics’ user interface works. DroidForensics accepts SQL-like query
from the user and our pre-processor converts it into SQL queries. Our post-processor generates a causal
graph from the query results and the user can iteratively compose queries based on generated causal graphs.
Our post-processor can merge the new results into the previous graph so that the user can inspect the
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Figure 2.6: The user inferface of DroidForensics.

attack with an uni�ed graph. We demonstrated how the user can utilize DroidForensics to reconstruct
the Android attack in section 2.1.1.

2.1.3 Evaluation

To establish the practicality of DroidForensics, we measure the runtime and space overhead it incurs for
forensic logging. We also evaluate DroidForensics on 30 real-world and one crafted Android malwares, and
we can easily reconstruct their behaviors. Finally, we use Android Compatibility Test Suite (CTS) on our
modi�ed Android framework and the results show that our modi�cation does not a�ect the compatibility.
The experiments were performed on two devices; Nexus 6 with Snapdragon 805 CPU (Quad-core 2.7
GHz, 32-bit) and 3GByte RAM, and Nexus 9 with Tegra K1 CPU (Dual-core 2300 MHz, 64-bit) and
2GByte RAM. We use Android-6.0.1_r42 for Nexus 6 and 6.0.1_r46 for Nexus 9.

2.1.3.1 Logging Overhead

Runtime Overhead: In this experiment, we examine the runtime overhead incurred by DroidForensics.
Overhead was measured by widely used Android benchmark programs including PCMark for Android [43],
3DMark [45], Antutu [46], DiscoMark [47], and TabletMark [44].

PCMark simulates basic o�ce work tasks such as web-browsing, video editing, writing, photo editing
and parsing data. 3DMark uses OpenGL ES benchmarks to measure CPU and GPU performance. Antutu
measures performance of the device in multiple aspects. For instance, 3D-test evaluates the performance
of 3D rendering, UX examines the performance of multi-tasking and application executions, CPU and
Ram tests use CPU-intensive and memory workloads to measure the device performance. DiscoMark
developed at ETH and it opens and closes installed applications multiple times to measure the application’s
launch time. TabletMark simulates web-browsing, email accessing, and watching and editing photos and
videos. Each benchmark execution takes 10 to 60 minutes and we run each benchmark 5 times and report
the average.

Figure 2.7 shows the runtime overhead. The graph shows separate results from each test and overall
bar represents a �nal score reported from each benchmark suite. Web-browsing benchmark in PCMark
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Figure 2.8: Accumulated log size from the one-day execution.

shows the highest overhead, which is 6.16% slower than original Android without DroidForensics. Overall
results show that DroidForensics only causes negligible runtime overhead (2.58% on average).
Space Overhead: Figure 2.8 presents the forensic log size changes over 24 hours. In this experiment, we
install DroidForensics on Nexus 6 and Nexus 9 devices and ask graduate students to use them for 24 hours.
Both Nexus 6 and Nexus 9 cannot use SMS, phone or LTE because Nexus 9 is a wi�-only model and we
removed a sim card from Nexus 6 for this experiment. The users stayed wi�-available places such as home
and o�ce over 90% of time during this experiments. We installed Chrome web-borwser, Gmail app, and
a few other utility and game applications before the experiment. We also implemented a simple script app
that records the current size of our forensic log when the user clicks a button. We ask each user to click
the button every hour until he goes to bed at midnight. Next morning at 8am, the user clicked the button
again to get the �nal log size. Because we do not have log size data between 12am to 8am, we present an
average rate of log increase during that period. The results show that Nexus 6 log grows at 4.75MB/hour in
a daytime and 3.45MB/hour at night and the log in Nexus 9 grows at an rate of 8.9MB/hour in a daytime
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and 3.2MB/hour at night. Note that DroidForensics can transfer the log to the server (if wi� is available),
but we did not transfer any log in this experiment. If the user can use wi� every one hour, average space
consumption of DroidForensics will be 5.6MB on average and 16.21MB in the worst case. If the user can
send the log every 10 minutes, the device requires only less than 3MB additional storage for the forensic
log. The majority of the logs (97.9%) are system call logs, 1.6% of the logs are generated from Binder, and
0.5% of are from API.

2.1.3.2 E�ectiveness

We collect 30 real-world Android malware samples and evaluate DroidForensics on them. We install
each malware package to Android-6.0.1_r42 on Nexus 6 device. Then we execute a malware while
DroidForensics collects forensic logs. After the execution, we use SQL-like queries to reconstruct behav-
iors of the malware. We start from a query,SELECT * from API,BIN,SYS where pid=malware_pid;,
then we compose additional queries based on the output of the previous query until we �nd all relations
from the malware process. To evaluate the e�ectiveness of DroidForensics, another graduate student
studied each malware with manual approaches such as understanding various analysis reports on the web
and inspecting the malwares using APK analyzer, ADB and log-cat. We compare the analysis outputs’
from DroidForensics and the manual inspection.

Table 2.2 shows the result. The �rst and second columns present malware family and package names.
The last column presents the comparison between DroidForensics and the manual inspection. “Full”
represents DroidForensics can discover all attack behaviors. “Partial” means DroidForensics misses part
of attack behaviors. It happens from two ransomware samples, namely LockScreen and FBI.Locker.
Both show similar behaviors. They �rst lock the device, then send a SMS message in the background
to indicate a succesful infection, and �nally display a ransom message (html page) via Android webview.
DroidForensics successfully captures SMS sending and a ransom message events, but we failed to capture
the behaviors for the device locking. To lock the device, they manipulate event handlers to hinder the user
from doing any activity on the device. For instance, a malware overrides event handlers for all actions to
home button, back button, and power button to completely ignore user actions. Some of touch actions
are ignored as well. Our current implementation does not capture function overriding events. However,
we believe this is not a fundamental limitation of our approach and we plan to support them in near future.
Speci�cally, if the application overrides any handler, we will capture the overriding event and records the
name of old and new event handlers.

The columns from third to �fth represent the type of logs we needed to understand the attack. We
mark (X) if a log is needed in attack reconstruction. For example, com.android.mms20malware deletes
it’s launcher icon, then steals IMEI, IMSI and GPS location. It also collects a list of installed applications.
After that, the malware attempts to send SMS message to a hard-coded number. We can reconstruct
all those behaviors from API and binder logs and we did not need system call logs to understand the
attack. Apparently, the generated graph from our queries (e.g., SELECT * from API,SYS,BIN where
pid=malware;) contains system call edges, but we can fully reconstruct the attack without them. It can
happen mainly because of the following reasons. First, system calls may not be involved in the attack
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Table 2.2: The reconstruction of Android attacks with DroidForensics. Mark (X) means that the log from
that layer is needed to reconstruct an attack. “Full” means DroidForensics discover full attack behaviors,
and “Partial” means DroidForensics misses part of malicious behaviors.

Malware family Package Name Is this log needed? Attack
API Binder Syscall Reconstruction?

Worm.Gazon app.rewards.amazon.com.amazonrewards X X X Full
Android. Smsstealer com.dsifakf.aoakmnq X X X Full
Android.Windseeker com.example.windseeker X X X Full
Android.Tetus com.droidmojo.celebstalker X X X Full
AVPass com.lge.clock X X X Full
unknown com.android.mms20 X X Full
BadNews B ru.blogspot.playsib.savageknife X X X Full
CutTheRope com.atools.cuttherope X X X Full
unknown com.android.systemsecurity X X X Full
LockScreen qqkj.qqmagic X X Partial
AngryBird com.elite X X X Full
HongTouTou com.bytedroid.liveprints X X X Full
AndroidArmour com.armorforandroid.security X X Full
unknown com.andnottech.morningandnight X X Full
Android.FakeToken token.generator X X X Full
FantaSDK com.fanta.services X X Full
Pincer.A com.security.cert X X X Full
unknown com.example.android.service X X X Full
Android.Titan com.Titanium.Gloves X X X Full
Qicsomos A org.projectvoodoo.simplecarrieriqdetector X X Full
Android.Exprespam frhfsd.siksdk.ujdsfjkfsd X X Full
FakeInstragram com.software.application X X X Full
unknown il.co.egv X X X Full
HGSpy com.exp.tele X X Full
FBI.Locker com.android.locker X X Partial
Android.Fakeplay com.googleprojects.mmsp X X X Full
Android.Fakenotify B wap.syst X X Full
Android.Fakeinstaller imauyfxuhxd.qhlsrdb X X Full
Android.Fakedaum com.tmvlove X X X Full
Android.Fakebank B com.example.adt X X X Full
crafted com.nativeCode X Full
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behaviors (e.g., SQLite query to memory-loaded tables). Second, in some cases, we can detect system
call events that contribute the attack, but it can be more clearly explained by the higher-level logs. For
example, mms20 deletes it’s launcher icon to hide from the user. We captured two di�erent events that
show deleting application icon event: 1) an API log shows a SQLite query, DELETE FROM icons WHERE
componentName LIKE com.android.mms20;, 2) a system call log, pwrite app_icons.db shows
a low-level action that modi�ed app_icon.db �le. Obviously, the API log is much clearer and easier to
understand. So we do not mark the system call column for mms20.

The last row (com.nativeCode) is a crafted malware that uses native components to access �les,
establish a connection to C&C server, and send information to the server. As expected, API and Binder
logs are not useful, but we can reconstruct all behaviors from system calls. The results from this experiment
show that all three loggers are essential to reconstruct attacks. All the samples (except the crafted one) we
have used in this study are publicly available on Contagio Mobile [48].
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Table 2.3: Compatibility Tests. “Ori.” shows a number of failed tests with original Android and “Our”
shows a number of failed tests with DroidForensics. Both failed the same set of test cases.

Nexus 6 Nexus 9
Test # of fails # of tests # of fails # of testspakages Ori. Our Ori. Our

Access 7 7 316 7 7 316
Device 4 4 53 4 4 53
Core 0 0 2,917 0 0 2,914

Graphic 0 0 1,393 0 0 1,390
Native 0 0 1,060 0 0 1,060
Media 0 0 1,776 0 0 1,776

Contents 0 0 619 0 0 619
Other 0 0 1,127 0 0 1,127
Total 11 11 9,261 11 11 9,254

2.1.3.3 Compatibility

One may think that DroidForensics can cause compatibility issues because it requires a modi�cation of
Android framework and an additional kernel module. To identify this concern, we evaluate the compat-
ibility of DroidForensics using Android Compatibility Test Suite (CTS) [cts]. We use the CTS-public-
small plan which contains around 9,200 test cases. The summarized results are in Table 2.3. In all tests,
DroidForensics and original Android failed on the same set of test cases. We believe the failed cases are
caused by device environments, for instance both Nexus 6 and 9 do not have external SD card and tests
that try to access the external storage failed. The results show that DroidForensics maintains the same
compatibility-level to compare with original Android.
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2.2 Analyzing Android Web Browser Behavior

In the past few years, the rapid growth of online advertising has fueled the growth of ad-blocking software,
such as new ad-blocking and privacy-oriented browsers (e.g., Brave [49]) or browser extensions (e.g.,
AdBlockPlus [50]). In response, both ad publishers and ad networks are constantly trying to pursue
new strategies to keep up their revenues. To this end, ad networks have started to leverage the Web Push
technology enabled by modern web browsers [51]. Until relatively recently, push noti�cations were mostly
limited to native apps on mobile platforms, and web-based applications were unable to connect to their
users out of active browsing sessions. However, now Web Push allows for web applications to send out
Web Push Noti�cations (WPN) at any time to re-engage their users, even when the browser tab in which
the web application was running is closed (the browser itself needs to be running, but does not need to be
in the foreground for a WPN to be delivered to the user). Furthermore, unlike push noti�cations from
native mobile apps, WPNs allow for noti�cations to be displayed on both desktop and mobile devices.
Thus, they serve as a single tool with support to reach users on multiple platforms.

Although WPNs were initially designed for websites to deliver simple messages (e.g., news, weather
alerts, etc.), they have become an e�ective way to also serve online ads, and can therefore be abused to also
deliver malicious ads. In particular, the use of WPNs for ad delivery has some unique advantages. First,
unlike traditional online ads (banner ads, pop-up ads or pop-under ads), advertisers do not have to wait
for users to reach the web page that publishes the ad. Instead, advertisers can send out noti�cations that
can allure users to their targeted content. Secondly, thanks to years of experience with native mobile app
noti�cations, users have been trained to compulsively interact with push noti�cation messages (at least
on mobile devices). WPN-based ads may also be less prone to ad blindness [52], compared to traditional
web ad delivery mechanisms such as page banners. Furthermore, ad-blocking software are not currently
e�ective at blocking WPN-based ads (see Section 2.2.4.4), in part because browser extensions are not
allowed to interfere with the Service Workers code through which WPNs are delivered [53]. For these
reasons, some ad networks are focusing their business speci�cally around WPN ads (e.g., RichPush [54]).

As WPNs are relatively new, their role in ad delivery has not yet been studied in depth. Furthermore,
it is unclear to what extent WPN ads are being abused for malvertising (i.e., to deliver malicious ads). In
this section, we aim to �ll this gap. Speci�cally, we propose a system called PushAdMiner that is dedicated
to (1) automatically registering for and collecting a large number of web-based push noti�cations from
publisher websites, (2) �nding WPN-based ads among these noti�cations, and (3) discovering malicious
WPN-based ad campaigns. To build PushAdMiner, we signi�cantly extend the Chromium browser
instrumentations developed by [55] and [56], which have been open-sourced by the respective authors.
Speci�cally, neither [55] nor [56] are able to track the activities of Service Workers in detail. Therefore,
we implement our own set of browser instrumentations that allows us to track WPNs in all their aspects,
from registration to noti�cation delivery, on both desktop and mobile devices. We then build a custom
WPN crawler around our instrumented browser to automatically receive, track, and interact with generic
WPNs, including collecting malicious WPN ads and their respective malicious landing pages. Finally,

25



we develop a data mining pipeline to analyze the collected WPNs and discover malicious WPN-based
campaigns.

To the best of our knowledge, ours is the �rst systematic study that focuses on automatically collecting
and analyzing WPN-based ads and on discovering malicious ad campaigns delivered via WPNs. In contrast,
previous work focused on other security-related aspects of Service Workers and Push Noti�cations, such as
building stealthy botnets [53], or social engineering attacks that attempt to force users into subscribing to
push noti�cations [56], but without studying the resulting push messages. Lee at al. [57] study Progressive
Web Apps. They collect Service Worker scripts from top-ranked website homepages and analyze their push
noti�cations. Their work studies potential security vulnerabilities related to Service Workers, App Cache,
and discusses how push noti�cations may be abused to launch phishing attacks, without measuring how
prevalent these attacks are in the wild. Our work is di�erent, in that we aim to automatically collect and
analyze WPN-based ads, to discover WPN ad campaigns, and to measure the prevalence of malicious
WPN-based ad campaigns in the wild.

In summary, we make the following contributions:
• We present PushAdMiner, a system that enables the automated collection and analysis of online

ads delivered via web push noti�cations (WPNs) on both desktop and mobile devices.

• To track WPNs, we extend a Chromium-based instrumented browser developed in [55, 56] to allow
for a detailed analysis of Service Workers, which are at the basis of WPN deliveries. Furthermore,
we build a custom WPN crawler around our instrumented browser to collect and automatically
interact with WPNs.

• Using PushAdMiner, we collected and analyzed 21,541 WPN messages by visiting thousands of
di�erent websites. Among these, our system identi�ed 572 WPN ad campaigns, for a total of 5,143
WPN-based ads that were pushed by a variety of ad networks. Furthermore, we found that 51%
of all WPN ads we collected are malicious, and that traditional ad-blockers and URL �lters were
mostly unable to block them, thus leaving a signi�cant abuse vector unchecked.

2.2.1 Motivating Example and Background

1) Visits 
https://aurolog.ru

2) Allows 
Notification

3) Continues browsing 
other websites

4) Gets Notification from 
aurolog.ru

5) Clicks the Notification 6) Redirected to tech scam page

Figure 2.9: Example of malicious advertisement served through web push noti�cations
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In this section, we provide an example of WPN-based malicious ad, and then brie�y explain the
concepts and technologies behind web noti�cation services.

2.2.1.1 Motivating Example

Figure 2.9 provides an example of malicious WPN-based ad. During the preliminary stages of our research,
we stumbled upon a website on aurolog[.]ru. When visiting the main page, the site requested permis-
sion to send us noti�cations. We granted permission by pressing the Allow button on the browser dialog
box, and subsequently received a WPN ad with the following alert message: “Your payment info has been
leaked” (see Figure 2.9). After clicking on the noti�cation, we were redirected to a tech support scam [58].
To our surprise, the landing URL was neither blocklisted by Google Safe Browsing[59] nor detected as
malicious by any of the web page scanners on Virus Total[60]. This example con�rmed our suspicion that
WPNs may be abused for malvertising, and sparked our investigation to determine whether such cases of
malicious WPN-based ads could be automatically collected and analyzed.

2.2.1.2 Technical Background

Recent changes in HTML5 have introduced new web features, such as Service Workers[61], Push Notifi-
cations[62] and AppCache[63]. Websites that adopt these technologies are called Progressive Web Apps
(PWAs). Throughout this section, we refer to push noti�cations sent by PWAs using a browser as Web
Push Noti�cations (WPN), to distinguish them from push noti�cations sent by native apps on mobile
devices, and refer to Service Workers as SWs for brevity.

Service Workers and Push Noti�cations A Service Worker (SW) is an event-driven script executed
by the browser in the background, separately from the main browser thread and independently of the web
application from which it was initially registered and that it controls. In practice, a SW comes in the form
of a JavaScript �le that is registered against the origin and path of the web page to which it is associated
(only HTTPS origins are allowed to register a SW). In e�ect, SW can be viewed as “a programmable
network proxy that lets you control how network requests from your page are handled”[64].

Service Worker can use the Push API[65] to receive messages from a server, even while the associated
web application is not running. It is worth noting that a single web app is allowed to register multiple
SWs. Service Workers can also use the Notifications API[62] to display system noti�cations to the user. A
prerequisite is that the web application must �rst request permission to display noti�cations to the user
(only allowed for HTTPS origins). If the user accepts (i.e., clicks on “Allow” instead of “Block” on the noti-
�cation request popup) to receive noti�cations from the web application’s origin, this permission persists
across browser restarts, and until the user explicitly revokes the permission via browser settings/prefer-
ences (notice that non-expert users may �nd it di�cult to understand, �nd, and disable noti�cations in
the browser’s settings).

Web noti�cation messages have a number of customizable parameters, such as title, body, target URL,
icon image, display image and action buttons. The user can interact with a noti�cation by either clicking
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Figure 2.10: PushAdMiner System Overview

on it, closing it or performing any custom actions displayed in the noti�cation message. SW can listen to
such user events and take action according to the input. This includes loading target URL on a separate
tab, following a user’s click on the noti�cation box.

Firebase Cloud Messaging (FCM) FCM is a cross-platform messaging solution for Push Noti�cations.
It can serve as a central authority that mediates the communication between the ad server and the Service
Worker. Upon initial registration, FCM creates a unique registration ID per user and per Service Worker,
which is sent along with an endpoint URL [66] to the ad server. For further details, refer to FCM’s online
documentation [67].

2.2.2 System Overview

In this section, we provide an overview of how PushAdMiner works, leaving a detailed description of
the main system’s components to Sections 2.2.3. A high-level representation of the system is provided in
Figure 2.10.

PushAdMiner consists of three main components: (i) an instrumented browser to collect �ne-grained
information about SWs and WPNs; (ii) a custom crawler that automatically visits sites and interacts with
the browser, including granting noti�cation permissions and interacting with WPNs (Section 2.2.3); and
(iii) a data analysis component aimed at identifying WPN-based ad campaigns and labeling likely malicious
ones.

While a number of browser automation and crawling systems have been proposed, including Sele-
nium [68], Puppeteer [69], and others [55, 56, 70], currently they do not fully support the automatic user
interactions with WPNs and collection of all details about SWs needed for our study. We therefore built
an instrumented browser based on Google Chromium, by signi�cantly extending existing open-source
Chromium instrumentations [55, 56]. In addition, we leveraged Puppeteer [69] for browser automation
and event logging, and wrote custom scripts to record SW registrations and network requests. Figure 2.10
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presents an overview of how PushAdMiner collects information about WPNs, and how the browser logs
are analyzed to identify ad campaigns in general and discover malicious ones among them. First, we dis-
cover a set of URLs that may send push noti�cations with the help of an ad network and �lter those that
actually request for noti�cation permission (see Section 2.2.4.1 for details). For the web pages that ask for
noti�cation permissions, we log details about the responsible SW code, automatically grant permission
(via browser code instrumentation), and then collect the noti�cations that are later pushed to our instru-
mented browser. When a noti�cation is displayed by the browser, we record �ne grained details about the
noti�cation message itself (including message text and icons), automatically simulate a user click on the
noti�cation box (via browser code instrumentation), and track all events resulting from the click. If the
click results in a new page being open, we record detailed information about the related network requests,
including all browser redirections, as well as detailed logs and a screenshot of each new page the browser
visits, including the landing page (i.e., the �nal web page reached due to the click).

Finally, we extract relevant information from the detailed logs of our instrumented browser, and apply
a clustering strategy to �nd noti�cations that are similar to each other, which allows us to identify WPN-
based ad campaigns. We then leverage URL blocklists to �nd WPN ad campaigns that are likely malicious
(e.g., because one or more landing pages are known to be malicious).

Note that in this section we do not focus on building a malicious WPN ad campaign detector, such as
using statistical features or machine learning classi�ers. Rather, our focus is on discovering, collecting, and
analyzing WPN ad campaigns in general, and on measuring the prevalence of both benign and malicious
campaigns. As we will show in Section 2.2.4, URL blocklists tend to miss a signi�cant number of malicious
URLs that we determine to be related to malicious ad campaigns. The analysis we present in this section
could therefore be used as a starting point for developing an automated malicious WPN ad campaign
detector. We leave this latter task to future work. Our code to collect and analyze WPNs is publicly
available in a Github repo1 and a Docker container with the instrumented Chromium is in Docker Hub
2.

Ethical Considerations To track WPN-based ads and label malicious ones, it is necessary to collect
information about the landing page that an ad eventually redirects to. For instance, for most malicious
ads the attack is e�ectively realized only once the user reaches the landing page, especially in case of social
engineering and phishing attacks. As we do not know in advance what landing page will be reached by
clicking on a WPN message, and whether a WPN ad is malicious or not, our system will likely click on
both legitimate and malicious ads. In turn, this may cause legitimate advertisers to incur a small cost for
our clicks, as they will likely have to pay a third-party publishing web page and ad network for their services
(notice that we obviously receive no monetary gain whatsoever during this process). This is common to
other similar studies, such as [56, 71], and we therefore address the ethical considerations for our study
following previous work.

1https://github.com/karthikaS03/PushAdMiner
2https://hub.docker.com/repository/docker/dockerammu/docker_puppeteer_chromium_xvfb
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To make sure we do not have a signi�cant negative impact on legitimate third-parties, we estimated the
cost incurred by these advertisers due to ad clicks performed by our system, and found that our system has
negligible impact on advertisers. Speci�cally, among the WPN ads we identi�ed, we consider legitimate
ads to be those whose landing pages are not labeled as malicious by Virus Total’s URL classi�cation
services. Then, we estimate the cost per landing domain based on the number of ads we clicked on that
lead to a speci�c domain, using the Cost Per Mille (CPM) [72] for push noti�cation ads according to
iZooto [73]. The maximum cost per landing domain throughout our entire study was USD 1.12 (due to
landing on the same domain 444 times), which we calculated using the standard CPM of USD 2.54. On
average, we visited each landing domain 18 times, which corresponds to an average cost of USD 0.04 per
landing domain (i.e., per advertiser). Considering these low values, we believe the impact of our system
on advertisers is not signi�cant, and is on par with previous work [56, 71].

2.2.3 Data Collection Module in Mobile Environment

In this section, we describe in detail how PushAdMiner’s data collection module is implemented, partic-
ularly in Android environment. The work�ow of the data collection module in desktop environment is
shown in Figure 2.11.
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Figure 2.11: Steps involved in Serving Ads via WPNs

Due to some technical di�erences between how WPNs are displayed on a mobile OS, compared to
desktop environments, we had to adapt some of the system components to run speci�cally on Android.

Logging Internal Browser Events We compile our instrumented Chromium browser for Android,
so that we can collect intimate details about internal browser events related to WPNs, including recording
information about the related Service Workers and the rendering of the landing page resulting from
clicking on a WPN. Browser logs are sent via the logcat ADB command to a remote logging machine.
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Interacting with Noti�cations Unlike on desktop devices, in which WPN messages are displayed by
the browser, on Android device it is the Android OS that displays a WPN as a system noti�cation. Also,
unlike on desktop environments, the browser does not need to be activated for a WPN message to be
received, though the browser may be activated after tapping on a noti�cation (e.g., to navigate to the URL
pointed to by the noti�cation). We therefore had to implement a di�erent mechanism to simulate user
interactions with WPNs on Android. Speci�cally, we developed an Android application that leverages
Android’s Accessibility Service. The Accessibility Service is aimed to help people with disabilities in using
the device and apps. It is a long-running privileged system service that helps users process information
from the screen and lets them interact with the content meaningfully in an easy way. Android developers
can leverage the Accessibility Service API and develop apps that are made aware of certain events, such
as TYPE_VIEW_FOCUSED and TYPE_NOTIFICATION_STATE_CHANGED. Furthermore, the accessibility
service API can also be used to initiate user actions such as click, touch and swipe.

We install our app with Accessibility Service permission on an Android physical device, and use it to
interact with every noti�cation event �red. Whenever a new noti�cation pops up, our application will
automatically swipe down the noti�cation bar and click on the noti�cation to complete the action, while
our instrumented Android browser produces detailed logs about the consequences of such interactions
(e.g., loading a new web page).

As an alternative,Android Debug Bridge (ADB) could be leveraged to implement the same browser
automation that we implemented using Accessibility Service. However, in practice, we found that it could
create large tra�c overhead through the USB cable connected with the device. As we already use ADB to
retrieve �ne-grained browsing logs, we decided to avoid further USB overhead. Therefore, we found the
use of the accessibility features to be better in practice for our speci�c application.

2.2.4 Measuring WPN Ads in the Wild

In this section, we report measurements on the usage of WPNs as an ad delivery platform, and provide
insights into the malicious use of WPN ads.

2.2.4.1 Data Collection Setup

We �rst describe PushAdMiner’s setup for harvesting in-the-wild WPN messages for both desktop and
mobile environments. Because our internal browser instrumentations are implemented by extending
the browser code provided by [56], our data collection process leverages Chroumium’s code base version
64.0.3282.204, which we built for both Linux and Android environments.

Collecting WPNs in Mobile Environment During our study, we found that WPN messages sent to
mobile devices tended to be somewhat di�erent that the ones collected by desktop browsers, in that they
were more tailored to mobile users. In particular, malicious mobile WPN messages included fake missed
call noti�cations, fake amber alerts, “spoofed” Gmail or WhatsApp noti�cations, fake FedEx noti�cations,
etc. In addition, we found that these malicious messages were much more likely to appear on real Android
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devices, rather than emulated environments (likely due to some form of emulator detection). Therefore,
to automatically collect mobile WPN messages we instrumented a real mobile device. Speci�cally, we
used a Google Nexus 5 device with 2 GB of RAM and a 1080×1920 pixels display. The Android version
we used was aosp_shamu-userdebug 7.1.1 N6F26Y.

We used a real device for the following reasons. Android emulators are easily detected by ad libraries [74,
75, 76], which may prevent us from harvesting real WPN ads. Also, while desktop Chromium with mobile
view emulation enabled can receive WPN ads, we also observed that some ad networks tend to send mobile-
speci�c WPN ads only to real mobile devices.

As we attempted to scale our PushAdMiner’s mobile WPN crawlers on a real device, we identi�ed two
challenges. First, Docker or other container techniques do not support Android, and therefore we cannot
easily visit multiple URLs in parallel with isolated browsing sessions. Second, we considered to use app
cloning techniques [77] to open multiple browser instances separately in isolated execution environments.
However, the limited computing power of mobile device restricted us to scale up and visit a large number
of URLs simultaneously. Therefore, we decided to open multiple URLs in one chromium app but in
separate tabs.

Table 2.4: Measurement Results of Data analysis Module
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2.2.4.2 WPN Messages Dataset

We start with the 5,849 initial URLs that we collected , over 5,697 distinct second-level domain names.
By clicking on WPN messages issued by these initial URLs, we collect an additional 10,898 URLs across
2,269 distinct second-level domains. When visited, many of these additional URLs presented our browser
with a noti�cation request, which our crawler automatically granted. This brought us to a total of 7,951
URLs that registered a SW with Push permission and were therefore able to push noti�cations to our
instrumented browser instances over time.

During the course of about two months (September and October 2019), we were able to collect a total
of 21,541 push noti�cation messages, including 12,441 noti�cations for the desktop environment and 9,100
for the mobile environment. PushAdMiner interacted with each of these WPN messages. However, not
all automated clicks on noti�cation boxes led to a separate landing page. In addition, some landing pages
appeared to cause a crash in the browser’s tab (but not the browser) in which they rendered, preventing us
from collecting detailed information on those pages (this was likely due to the fact that our instrumented
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Chromium browser is not based on the most recent stable code base). We �ltered out these noti�cations,
leaving us with 12,262 WPN messages (9,570 on desktop and 2,692 on mobile) that when clicked on lead
to a valid landing page. We then used this �nal set of WPN messages for clustering process .

2.2.4.3 Data Analysis Results

Summary of �ndings Table 2.4 summarizes the overall results of our analysis process. From the 12,262
WPN messages mentioned above, PushAdMiner identi�ed 572 WPN ad campaigns and a total of 5,143
WPN ads related to these campaigns. Moreover, PushAdMiner identi�ed 51% of all WPN ads as malicious.
Speci�cally, PushAdMiner found 318 (out of 572) campaigns to be malicious; in aggregate, these malicious
campaigns included 2,615 WPN ads.

This is quite a staggering result, in that it appears that ad networks that provide WPN ad services are
heavily abused to distribute malicious content. Later, in Section 2.2.4.4, we also show that ad blockers
are ine�ective at blocking such ads, which is an additional cause of concern. In the following sections, we
discuss the clustering and labeling results in more detail.

WPN Clusters and Ad Campaigns We cluster the collected WPN messages based on their message
content and landing page information. After clustering 12,262 WPN messages that led to a valid landing
page, we obtained 8,780 WPN clusters, of which 7,731 were singleton clusters containing only one element
(i.e., only one WPN message). Of the remaining non-singleton clusters, 572 were labeled as WPN ad
campaigns . In aggregate, these WPN ad campaigns pushed 3,213 WPN ad messages to our browsers,
during a period of about two months.

Figure 2.12 provides some concrete examples of WPN clusters. In both WPN-C1 and WPN-C2, the
respective WPNs were pushed from multiple sources (i.e., multiple second-level domain names), as also
shown in Figure 2.12. WPN-C3 included 4 identical WPN messages pushed by a single source website,
a bank, alerting users on their loan o�ers. These messages appear to be legitimate, and led back to the
site that pushed them. WPN-C4 is an example of WPN message isolated into a singleton cluster. We label
WPN-C1 and WPN-C2 as WPN ad campaigns, because the WPNs in each of the clusters deliver very similar
(or the same) message promoting very similar products from multiple sources. However, WPN-C3 and
WPN-C4 do not meet the de�nition and are thus not labeled as WPN ad campaign.

Malicious WPN Ad Campaigns We submit landing page URLs related to all WPN messages to
GSB [59] and VT [60]. On our initial scan, less than 1% of the URLs were detected as malicious by
GSB or VT, in aggregate. For instance, initially VT �agged 108 landing page URLs as malicious, of which
88 were related to WPN messages labeled by our system as belonging to ad campaigns. Notice that for
VT we consider a URL as malicious if at least one of the URL detection engine reports it as malicious,
and later manually review all results to �lter out possible false positives. After one month, we submitted
the same set of URLs once again, and we found that 1,388 URLs (11.31%) were detected by VT, though
GSB still only �agged 1% of them.
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[Sample Landing Pages]

[Domains]
surveysandpromotionusa.com
surveysandpromotionusa.com

…
signup.ourdailysweepstakes.com

[URL Paths]
/Flow isPrepop reward subaff1
/Flow isPrepop reward subaff1

…
/Flow isPrepop reward subaff1

[Sample Notifications]

(a) WPN-C1: consists of 40 WPNs

[Sample Landing Pages]

[Domains]
awakenfeedback.com

benehai.com

…
nodilax.com

[URL Paths]
/spin/ caid trsid o tar isp language 

amt cep Iptoken
/jackpot/ caid trsid o tar isp language 

amt cep Iptoken
…

/lucky-number/ caid trsid o tar isp language 
amt cep Iptoken

[Sample Notifications]

(b) WPN-C2: consists of 12 WPNs

[Landing Page]

[Domain]
www.hdfc.com

[URL Path]
/campaign/ web_notifications

utm_source utm_medium

[Notification]

(c) WPN-C3: consists of 4 identical WPNs

[Landing Page]

[Domain]
hobii.com

[URL Path]
/exciting-things/ c847frk-olsens-
efterarsrengoring utm_medium

utm_source

[Notification]

(d) WPN-C4: consists of 1 WPN

…

1 2

40

1
2

…

1 2 12

12

1

2

zip-foreclosures.com

1

2

zip-hudhomes.com

…

zip-hudhomes.com

40

40

www.hdfc.com

hobii.com

awakenfeedback.com

mueanca.com

1

2

12

…

nodilax.com

Figure 2.12: Examples of WPN clusters

PushAdMiner relies on label propagation to label WPN messages and clusters as malicious, based on
results from VT and GSB . To limit the chances of amplifying possible false positives from VT and GSB,
we manually veri�ed all 1,388 URLs to check whether they actually led to malicious content. We were
able to con�rm that 96.8% of them indeed appeared to be malicious. Of the remaining 44 URLs that we
could not con�rm as malicious, 13 were found to belong to popular benign domains such as bing.com,
kbb.com, tophatter.com, etc.; 24 URLs were related to unpopular blog/news sites; 3 led to adult
websites; and 4 led to websites hosting non-English content that we could not verify. Given that these sites
may be benign, since we do not have all the information VT and GSB had to label them as malicious we
take a conservative stance and remove the malicious label from them. Accordingly, we label 1,344 WPNs as
known malicious. Among them, 758 WPNs were part of 572 WPN clusters that we previously classi�ed as
ad campaigns (see Section 2.2.4.3). The remaining 586 WPN messages that led to malicious landing pages
were not immediately found to belong to WPN ad clusters, as they formed separate small clusters. We will
determine whether they are related to WPN campaigns later, in Section 2.2.4.3) after the meta-clustering
step .
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Table 2.5: Measurement Results at Stages of Clustering

# clusters

# ad-related

clusters

# WPN

ads

# known

malicious ads

# additional

malicious ads

After WPN

Clustering

8780 572 3213 758 367

After Meta

Clustering

2046 224 1930 210 1280

Total: 5143 968 1647

By using a “guilty by association” label propagation policy , we label WPN ad campaigns as malicious
if they include at least one known malicious WPN (remember that this policy is justi�ed by the close
similarity in content and landing page URL path between messages in the same cluster). This yielded
152 (out of 572) malicious WPN ad campaigns, which overall included 376 WPN (or more precisely their
landing pages) that GSB or VT missed to detect as malicious. After manually inspecting these 376 WPN
ads, we were able to con�rm that 367 of them are indeed malicious ads that lead to survey scams, phishing
pages, scareware, fake alerts, social media scams, etc. We were not able to con�rm the maliciousness of the
remaining 9 ads (i.e., 2.4%) that led to di�erent pages that welcome/thank the user for subscribing to the
noti�cation all hosted on the same IP address. The take away from the above discussion is that, using our
WPN clustering approach, we were able to increase the number of con�rmed malicious WPN ads from
758 to 1,125 (i.e., 758 plus 367), which represents an increase of about 50% as summarized in Table 2.5, �rst
row.

Referring to the examples provided in Figure 2.12, in cluster WPN-C1, 35 out of the 40 WPNs were
labeled as known malicious WPNs, according to VT. However, PushAdMiner labeled this entire cluster
as malicious. After manually inspecting all 40 messages, we con�rmed that the remaining 5 messages in
the cluster were indeed related to the 35 malicious sweepstakes/survey scam ads.

Finding Suspicious Ads So far, we have leveraged the labels provided by VT and GSB to identify
malicious WPN ads, and label WPN ad campaigns. Unfortunately, both URL blocklists su�er from
signi�cant false negatives, when it comes to detecting malicious landing pages reached from WPN ads. As
an example, consider cluster WPN-C2, which PushAdMiner identi�es as an ad campaign. This cluster con-
tains 12 WPNs; none of which were labeled as known malicious according to VT. However, PushAdMiner
�ags this cluster as suspicious since it contains duplicate ads and via manual inspection we found that the
WPN messages in this cluster display fake PayPal alerts that lead users to survey scam pages; therefore,
we manually label the entire WPN-C2 cluster as malicious. This example demonstrates the gaps left by
current URL blocklisting services, and how ine�ective they could be if they were used to detect and block
malicious ad noti�cations. Below we discuss how we use the meta-clustering approach to automatically
identify and label more of such cases.
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We apply a meta-clustering method to group WPN clusters that may relate to each other, as they share
common landing page domains. To this end, we create a bipartite graph G = (W,D,E), hereW is the
set of all 8,780 WPN clusters we previously obtained, and D is the set of all 2,177 distinct landing page
domains pointed to by WPN ads that we were able to record. By identifying and separating the connected
components in this bipartite graph, we identify 2,046 WPN meta clusters. Of these, 224 contain a mix
of WPN clusters that we previously labeled as ad campaign and other non-campaign WPN clusters. We
then label all WPN messages contained in these 224 ad-related meta-cluster as WPN ads, thus increasing
the number of WPN ads identi�ed so far from 3,213 to 5,143.

(a) Meta Cluster of WPN-C1 WPNAC (b) Meta Cluster of WPN-C2 WPNAC

WPN Ad 
Campaigns

Unlabeled 
Clusters

Landing
Domains

Malicious
Clusters

Malicious
WPN Ad 
Campaigns

Figure 2.13: Graphical Representation Examples of Meta Clusters

Figure 2.13 provides two examples of meta clusters. Figure 2.13a contains as a node cluster WPN-C1
from Figure 2.12, as well as other 6 related WPN ad campaigns that are likely orchestrated by the same
operators. This meta-cluster contains many known malicious WPN ad campaigns and WPN clusters,
and therefore, we label all the WPN clusters in the meta cluster as suspicious. By manual inspection, we
veri�ed that all domains involved in this meta cluster host visually similar malicious pages (e.g., online
survey scam pages).

Figure 2.13b shows another example of meta-cluster, which includes cluster WPN-C2 from Figure 2.12
as a node, along with 30 other related WPN ad clusters. In this meta-cluster, none of the WPN clusters
(i.e., the nodes) were initially labeled as malicious by either VT or GSB. However, we manually inspected
all landing pages pointed to by WPN messages including in the meta cluster, and we were able to con�rm
that these are indeed malicious, in that they display fake PayPal messages and alerts that lead users to survey
scams and likely phishing-related pages.

Next, we consider all yet to be labeled WPN messages in a WPN meta cluster as suspicious if the
meta cluster contains at least one malicious WPN cluster or if it contains duplicate ad domains. Out of
the 572 WPN ad campaigns identi�ed earlier, we found that 255 of them contained duplicate ad domains.
Accordingly, we were able to label a total of 287 out of 2,046 WPN meta clusters as suspicious. Further, we
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identi�ed 166 (out of 572) additional WPN ad campaigns, which were not previously labeled malicious
in the previous step, as suspicious. Overall, this translates into 1,479 suspicious WPN ads, as shown in
Table 2.5. Following our manual veri�cation process, we con�rmed 1,280 (86.5%) of these ads as malicious.
The remaining 199 WPN ads were �agged by PushAdMiner because they were related to duplicate ad
domains. Of these, 166 were alerts related to job postings and led to similar pages on multiple domains
listing the same job; 23 led to multiple sites that hosted content related to the horoscope; 4 led to adult
websites; and 6 were subscription welcome/thank you noti�cations. Notice that while these 199 WPN
messages may be benign, PushAdMiner helped us identify and characterize a large number of additional
WPN ads that are in fact malicious and were not identi�ed by URL blocklists such as VT or GSB. However,
our current system is not designed to be an automatic malicious WPN ad detection system. In our future
work, we plan to leverage the lessons learned from the measurement results obtained in this section to
investigate how malicious WPN messages can be accurately detected and blocked in real time.

Singleton Clusters: Our tight �rst-stage clustering yielded 7,731 singleton clusters. Of these, 6,876
were found to share landing domains with WPNs in non-singleton clusters. After meta clustering, we
were then left with 855 singleton clusters. By manually inspecting a sample of 200 singleton clusters, we
found them to be a mix of simple alerts and spurious suspicious ads. Table 2.6 shows a few example of
the text and domains related to the analyzed singleton clusters.

Table 2.6: Examples of Singleton Clusters

Title Body Domains

(S)-Source (L)-Landing

TechNewsGadget 189 Fortnite Wants To Add Bot
Players

technewsgadget.net (S)(L)

Congrats Walmart User!! (1) Reward Waiting! healthydreamstoday.com (S)
besthealthlife.com (L)

The Mattest Blackest Liner
EVER !!

Our new obsession! hudabeauty.com (S)(L)

Coca Cola is looking for YOU
??

No experience required Train-
ing Provided!

eblog.network (S)(L)

Hire Local Service Professionals
For All Your Needs

vconnect.com is your one stop
destination for local services.

m.vconnect.com (S)(L)

FOX NEWS Lose 45lbs In 4 Weeks! No Exer-
cise!

nodilax.com (S) women-
lifestyledaily.com (L)

Additional recent measurements: To measure the prevalence of WPN ads at a later point in time,
compared to our initial measurements, we collected an additional and more recent batch of data for 5 days
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between April 4th, 2020 and April 9th, 2020. We revisited 300 websites randomly chosen from our previ-
ous datasets, 35 of which sent us 305 noti�cations over 5 days. Of these 305 noti�cations, PushAdMiner
labeled 198 WPN ads and �agged 48 of them as malicious, which we also veri�ed via manual analysis. After
checking the corresponding landing page URLs on VirusTotal, only 15 of them were �agged as malicious,
con�rming again that WPN-based threats often remain undetected by current defenses.

2.2.4.4 Push Ad Networks and Blocking

Figure 2.14 shows the distribution of WPN ads, including malicious ones, per ad network. As it can be
seen, many of the ad networks we considered in our measurements are abused to distribute malicious
WPN ads.

OneSignal

Ad-Maven
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PushEngage
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Figure 2.14: Distribution of WPNs w.r.t. Ad Networks

We also investigated whether ad blocker extensions used by desktop browsers may be e�ective against
WPN ads. For instance, we checked the URLs of SW scripts against the Easylist �lter rules[78] used
by most popular ad blockers. Furthermore, we installed two highly popular ad blocker extensions in
our Chromium browser and checked its blocking capability. As shown in Table 2.7, both ad blocking
mechanisms couldn’t block the requests issued by the installed SW that were related to WPN ads, even
though Easylist was able to �lter a small number (less than 2%) of such network requests. This shows that
existing methods were not su�cient to mitigate WPN-based ads, including malicious ones.

While working on this study, a new feature was introduced in Chrome [79] in February, 2020 to
prevent the abuse of WPNs. This feature focuses on blocking noti�cation permission prompts from
websites that have a low noti�cations opt-in rate. To test the e�ect of this feature on our dataset, we
used the latest Chrome version (Chrome 80) to revisit 300 randomly chosen websites that had previously
requested noti�cations. Since our Chromium code instrumentations could not be easily ported to this
latest version of the browser, we performed detailed manual analysis. We found that all of the websites
we visited were still able to request noti�cation permissions without getting blocked. It is possible that
this new Chrome feature will be able to block abusive WPNs in the future, after more training data is
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collected. However, it is unclear whether and to what extent it will be e�ective in blocking WPN-based
malicious ads.

Table 2.7: Results on Existing Ad Blockers

No. of Blocked URLs

Service

Worker

Scripts

Service

Worker Re-

quests

Easylist Blocklist 0 out of 1187 132 out of 8031
AdBlockPlus 0 out of 884 0 out of 7276
AdGuard 0 out of 895 0 out of 7520
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Chapter 3

Security and Forensic Analysis
for Internet of Things (IoT)

With more than 10 billion active IoT devices in 2021 [80], personal information is increasingly used to
provide convenience. However, a large number of privacy related attacks are crafted [80] as well. To address
these scary invasions of privacy, we present MQTTprov for MQTT network in Section 3.1, providing the
ability to collect provenance and forensic logs from such IoT network. We also propose an attack called
ChatterHub in Section 3.2, proving that smart-home environment is easy to breach privacy even with
encrypted network tra�c.

3.1 MQTT Data Provenance

3.1.1 Background and Motivating Example

In this section, we brie�y explain the concepts behind MQTT protocol and then present a realistic moti-
vating example.

3.1.1.1 Technical Background

Broker A broker, also referred as MQTT server, is a program or device that acts as an intermediary
between clients. A broker handles things like accepting network connections from clients, accepting
messages from clients and forwarding those messages to clients with subscriptions, managing subscribing
and unsubscribing requests from clients, etc. The diagram of a MQTT network is present in Figure 3.1.
MQTT natively decouples the publishers and subscribers. As a result, the subscribers can not �gure out
where the messages are coming from.

Client A client is a program or device that uses MQTT protocol to connect to a MQTT broker. A
client can both subscribe to and publish to one or more topics. To make it easier to demonstrate in this
work, we call a client that publishes messages a publisher, and a client that receives messages a subscriber.
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Topics and QoS MQTT messages are published into a hierarchy of topics that are addressed as UTF-8
strings, and when a client is connected to the broker, it can choose to subscribe to certain topics. Levels
in the topic hierarchy are divided by forward slash characters (“/”). A wildcard in topic enables the client
to subscribe to multiple topics simultaneously. A wildcard can only be used to subscribe to topics, not to
push a message. There are single-level wildcard (+) and multi-level wildcard (#). If there’s no restriction
on the broker’s rule, a client can subscribe to whatever topics it desires. With the help of wildcard “#”,
a client can listen to all the topics without knowing the exact topic strings. Subscribing to “#” equals to
listening to all the topics that are passed through the broker. Each connection between clients and broker
can specify a Quality of Service (QoS): at most once (QoS 0), at least once (QoS 1), and exactly once (QoS
2).

Figure 3.1: A diagram of MQTT protocol model

Dummy Subscriber listens to “#” The dummy subscriber is a naive way to monitor MQTT tra�c.
The administrator could use a dummy subscriber only subscribe to topic “#” to fetch all the messages
going through the broker. In this monitoring method, the dummy subscriber is only able to act like a
normal user, and is only able to fetch topics and messages from the publisher. It is impossible for the
dummy subscriber to know who-else receives the topics and messages. At the same time, because of the
decoupling nature of MQTT, it is impossible for the dummy subscriber to know the authentication of
the message origin.

Verbose Log from Vanilla Broker If verbose output of a vanilla MQTT broker (for example, Mosquitto
1) is enabled, following information could be gathered: client ID, IP address, and Topic. The format and
content of verbose log could be di�erent based on various of implementation of the broker. In this work,
we use the verbose log from Mosquitto, which is the larges open-source broker.

3.1.1.2 Motivating Example

As shown in Figure 3.2, Alice has a home full of devices broadcasting status using MQTT protocol, for ex-
ample, a door lock broadcasting lock/unlock events to the topic “/Alice/home/frontdoor/doorlock
/status”. This broadcasting service provides convenience to Alice, because Alice could use a light con-
troller set to listen on “/Alice/home/frontdoor/doorlock/status” and to perform automatons
like “If the door is unlocked, turn on the light of the porch”. Additionally, Alice could use a central controller

1https://mosquitto.org/
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Figure 3.2: Attack scenario of attacker getting access to con�dential information by subscribing to wildcard
topic “#”
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who listens to all the broadcast topics and conducts more complicated routines like “If the motion sensor
detects something is moving and Alice’s phone’s GPS location is not in the house, send a notification to Alice’s
phone”.

An eavesdropper Eve hacked into Alice’s WiFi network and got access into an outdated light controller.
Eve added a new subscription to the outdated light controller using the controller’s client ID, and let it
subscribe to topic “#”. Eve was able to get updates like door lock status, as shown in Figure 3.2. Combined
with other possible device information (lights or motion sensors), Eve drew the conclusions like “Alice
is not at home and door is unlocked” or “Alice is sleeping and garage door is unlock”. This attack scenario
happens in real life [81, 82].

Eve noticed that Alice has a topic named “/Alice/home/frontdoor/doorlock/command” and
the contents are “unlock” or “lock”. Eve was able to apply a spoo�ng attack when Alice was not home.
Eve used the outdated light controller to publish to that topic with the content “unlock” and successfully
unlocked the front door, even the command is not from legitimate door lock controller.

Eve later entered Alice’s house. To prevent Alice from aggressively checking the door lock status,
Eve launched a tempering data attack. Now that Eve is physically inside the house, accessing the broker
would be much easier in this case. Eve modi�ed the cache inside the broker so that any content related to
topic “/Alice/home/frontdoor/doorlock/command” would return “locked”.

In order to prevent Alice’s phone from passively receiving updates from the central controller, Eve
used a device connecting to the broker with the same device ID as the central controller’s, to perform a
client takeover. Because the TCP connection between it and the broker was closed due to Eve’s takeover,
periodically the original central controller would try to reconnect. To prevent the original central controller
from receiving any broadcast messages, Eve repeatedly perform takeover in a fast rate. This attack happens
in real life as well [82]. After leaving the Alice’s house, Eve unsubscribed to the topic “#” on the light
controller and stop clients takeover on central controller.

After �guring out these had been a theft, Alice was trying to �gure out four major questions:

1 How did the thief know Alice was not home?

2 How did the thief get in?

3 Why the door lock showed “locked” when Alice checked the door lock status?

4 Why hadn’t the phone received any noti�cation from the central controller?

The information that can be gathered by di�erent mechanisms are shown in Table 3.1.
For Alice’s question 1 , from the vanilla verbose log, Alice could gather limited information. She

noticed that the light controller client ID subscribed to topic “#” and received a lot of messages, including
lights or motion sensors. However, because vanilla verbose log cannot provide the content, only knowing
the topic is not su�cient to let Alice know the reason why the attacker knew she was not home. For
example, the motion sensor always publishes to topic “/Alice/home/livingroom/motion/status
with or without any detected movement, but the contents are di�erent [83, 84]. This insu�cient of
evidence also applies to MQTT-Plan as well, as MQTT-Plan does not record message content. From the
dummy subscriber mentioned above, Alice knows all the topics and contents that were exposed to the
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attacker. Alice may �gure out that Eve was using the motion sensor alongside with lights status to make
the decision to rob the house at that time. However, Alice cannot �gure out which subscriber gets those
messages and therefore couldn’t pinpoint which device was defected. With MQTTprov, Alice could know
the subscriber ID (i.e., light controller), publisher IDs (i.e., all sensors), topics and contents. At this time,
Alice could �nally make the conclusion that the light controller received both statuses including motion
sensor and lights, and this is how the attacker knew Alice was not at home.

For Alice’s question 2 , from the dummy subscriber, Alice could �gure out there was a command
“unlock” sent to topic “/Alice/home/frontdoor/doorlock/command”. However, she is not able
to know whether this command is accidentally sent from her phone or the attacker, because dummy
subscriber does not provide publisher ID. With vanilla verbose log and MQTT-Plan, Alice knows one
light controller sent some messages to “/Alice/home/frontdoor/doorlock/command”. From both
techniques, they are capable of fetching [topic, publisher ID] and [topic, subscriber ID] pairs. However,
because of the message decoupling from MQTT nature, they both are not e�ective to provide the evidence
of [publisher ID, topic, subscriber ID] for each message. In other words, it is needed to “couple“ the
decoupled publishers’ and subscribers’ messages. Moreover, without actual message content, this is not
a persuasive evidence either. All the aforementioned criteria would be exposed with MQTTprov. See
Section 3.1.2.2 for detailed discussion about re-coupling.

For Alice’s question 3 , the following requirements need to be met: 1) Alice needs both the contents
sent to the broker and sent from the broker. 2) She needs to �nd a way mapping the contents so that every
subscriber could �nd the source of the content. Dummy subscriber, vanilla verbose log and MQTT-Plan
could not provide these features at all. MQTTprov is capable of doing such and comparing the mapped
messages to notify any data tempering.

For Alice’s question 4 , with vanilla verbose log and MQTT-Plan, Alice is only able to know that the
broker has forwarded the messages to her phone’s client ID, and there are two devices (the attacker and
Alice’s actual phone) using her phone’s client ID at the same time trying to connect to the broker. But
because of the client takeover, they were both disconnecting and reconnecting while the other one was
connected to the broker. From this, Alice could draw the conclusion that the other device was probably
used by the attacker and this might be the reason the messages weren’t received by her phone. However,
she is not able to �gure out what contents are sent to the attacker. With dummy subscriber or MQTTprov,
Alice could extract all the messages that were meant to be sent to her phone’s client ID. And then she
could subtract the actual messages received by phone, from the messages that were meant to receive, to get
the messages forwarded to the attacker. Noted that the contents are recorded in bytes in both mechanisms,
a parser is needed to acquire the actual payload. This takeover attack will be discussed in detail in Section
3.1.3.1.
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Table 3.1: The evidences needed to reconstruct each attack scenario, and the capability of each tool acquiring them

Alice’s Questions 1 2 3 4

Topic Content Sub ID Topic Content Pub ID Sub ID

Content

into

Broker

Content

out from

Broker

Compare

Both

Content

Topic Content

Dummy Sub listens to “#” X X X X X X
Vanilla verbose log X X X X X X

MQTT-Plan X X X X X X
MQTTprov X X X X X X X X X X X X

1 : How did the thief know Alice was not home? 2 : How did the thief get in? 3 : Why the door lock showed “locked” when Alice checked the door lock status? 4 : Why hadn’t the phone received any
noti�cation from the central controller?
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3.1.2 System Details

MQTTprov uses two layers to gather di�erent information, making up the �aws of existing provenance
techniques. A high-level overview of MQTTprov is depicted in Figure 3.3. It has two modules: network
logger and library logger. Network logger captures the raw network tra�c passing through MQTT broker,
no matter it is sent or received by the broker, alongside with necessary information like IP address, port,
client ID, etc. Library logger provides a higher level semantics for the network packages. Through library
logger, it is able to retrieve the data provenance from messages. In other words, library logger is able to
make causality connections between publishers and subscribers, which can be used later for detecting data
tempering.

3.1.2.1 Implementing Broker or Client

We identify three fundamental drawbacks in providing data provenance in MQTT clients. First, to gen-
erate provenance data for diverse devices that use various hardware (e.g., CPUs) and software (e.g., OS,
�rmware), the proposed approach must be hardware and software agnostic. Second, modi�cation on
end devices is di�cult to achieve in practice. For instance, some devices may not be physically accessible
and some devices may use proprietary software which does not allow any modi�cation. The proposed
approach should be able to derive data provenance from such devices. Third, end devices are often less
powerful hence it is di�cult to expect they having su�cient processing power to generate provenance
data and properly store it. Therefore implementing MQTT clients is very di�cult and impractical. For-
tunately, because MQTT is a centralized protocol, every network tra�c is routed through MQTT broker.
Therefore, implementing a MQTT broker would be the best place to monitor the tra�c.

For the MQTT broker, there are many open-sourced and close-sourced MQTT implementations,
with di�erent programming languages used2. We choose Mosquitto because Mosquitto is the most pop-
ular MQTT broker [85]. It is an open-sourced broker maintained by Eclipse.

3.1.2.2 Mosquitto Implementation

Broker is the central server through which all the network tra�c passes. As shown in Figure 3.3, network
layer receives the network packages from system call read and forwards them to library layer, in which
they get parsed with context. When handling broadcasting messages, library layer checks the context and
forge message payload if previously received topic has any subscriber. Library layer then forwards the
package to network layer and use the system call write.

Network We hook read and write system calls in lib/netmosq.c to monitor raw network tra�c.
This implementation method should be equivalent to monitoring network tra�c in any place between
the broker and clients. And these places are the actual system calls that are made by receiving/sending
network data. By hooking these system calls, we could monitor the whole network tra�c with minimum
intrusion in the source code.

2https://github.com/hobbyquaker/awesome-mqtt
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Figure 3.3: High level overview of MQTTprov

Mosquitto Lib Monitoring network tra�c only is enough to get all the information de�ned in MQTT
protocol. However, this information alone cannot �ll the needs of mapping the messages to its source.
To achieve this, we hooked packet__write and packet__read in lib/packet_mosq.c. In these
methods, we could use the self-incrementing index to map source and destination.

Mapping source and destination The most important aspect of pub/sub model is the decoupling
of the publisher of the message from the recipient (subscriber) [86]. That is, the subscriber does not
know who the publisher is, and the publisher does not know whom the message is sent to. However in
terms of data provenance, we need to re-couple the payloads to make a connection between publisher
and subscriber. According to the implementation choice of Mosquitto, it uses a self-incrementing index
to keep track of the messages that pass through library layer. Every message sent out by the publisher is
assigned a unique index in its session lifetime.

3.1.2.3 MQTTcuties

In order to test if MQTTprov is capable of reconstructing the attack scenarios described in the motivating
example in Section 3.1.1.2, and in other real life attack scenarios in Section 3.1.3, we need to create speci�c
behavior patterns of clients to mimic the attack. For example, for evaluating the client takeover, one client
must be connected to the broker �rst as “ClientID”, and the simulated attacker client will then connect
to the broker using “ClientID” as well. Current MQTT simulators [87, 88, 89] are only trying to create
massive MQTT networks and stress test the broker. However, the customization of complex real life
device behavior patterns is not available. Therefore we created our own MQTT client simulator, called
MQTTcuties.
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MQTTcuties is able to generate massive simulated clients to do de�ned behaviors. MQTTcuties is used
in generate attack scenarios in Section 3.1.3. Individual clients can be de�ned the topics they interact with,
their publishing behaviors, their subscription behaviors, and their generic timing. Clients can interact
with the broker either through a low-level byte-level interface or a standard plain text format; this gives the
clients more �exibility to launch attacks against the broker. A client’s behavior is set through a minimal
con�guration �le we call a recipe. Recipes contain the remote broker’s information as well as the topics
client will subscribe to and the publishing behaviors of the client. To create uniqueness and �exibility
across clients, randomization, and adaptive activity timings have been designed into them.

These recipes are then read by the simulator where they will be given life. These clients will run on a
resource sharing parallel model, where every set of clients will share one I/O stream, and there are many I/O
stream available for scalability. The shared stream enables the maximization of resource utilization, while
parallel streams will allow minimal wait times for clients. Each client can have any number of subscribers
and publishers. publishers can be selected from one the following options :

3.1.3 Evaluation

In this section, we will discuss each attack that can be applied to MQTT, as shown in Table 3.2.

3.1.3.1 Denial of Service (DoS) Attacks

Persistence Session There’s a subtle way to overload the broker by asking for persistent session every
time using unique client ID [90]. Broker will �rst try to keep all information about all messages, including
subscriptions, currently in-�ight messages and retained messages in memory. If the persistent condition is
met (for example, save on every N seconds or N events), broker will save these messages to a local database.
Note that a client can subscribe to ANY topic even if this topic is not used by any publisher. Attacker
could subscribe to a huge number of nonexistent topics with persistent sessions using a huge number of
unique client ID. Because of the de�nition of persistent session, the broker stores the session inde�nitely
until next purging. That leaves a loophole for the attacker to �ll the memory or disk and shutdown the
broker, even with a slow attacking rate.

From network and library logs, we could extract connection/disconnection information with all the
subscriptions. The pattern we are looking for is the pattern of large number of subscriptions linked to a
large number of unique client ID. All other works cannot detect this attack because they are not logging
this information.
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Table 3.2: Di�erent attacks that can accrue to the MQTT

Attack Vulnerabilities Dummy Sub Verbose Log MQTT-Plan[13, 14] MQTTprov Description

DoS

Persistence Session [90] X
Creating large amount of garbage persis-
tent sessions

Client Takeover [82] X
Client takeover bombing to prevent legiti-
mate client from connecting

Invalid Unicode[91, 92] X
Broadcasting invalidly encoded topic
strings to all other clients

CONNECT Packets [93] X X X
Sending multiple CONNECT packets to
create half-opened sessions

Payload [94] X Spamming large size of payload
QoS [93, 90] X X Leveraging QoS≥1

Identity Spoo�ng Publisher Identi�er type 2) type 2) X
Publishing MQTT messages using 1) non-
existing or 2) existing client identi�er

Subscriber Identi�er X X X Subscribing to unauthorized topics

Information disclosure Unsecured Broker X partial X
Accessing the broker server and reveals con-
�dential information

Elevation of Privilege Wildcard Topics [81, 82] partial partial X
Subscribing to “#” topic will reveal con�-
dential data

Tempering Data Unencrypted Data X X Altering the data cached in broker
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Client Takeover Bombing Similar to Section 3.1.3.2, the attacker can also pretend to be other sub-
scribers. If the attacker managed to connect to the broker using the same victim client ID repeatedly, it
leads to Denial of Service (DoS) attack for the victim client. This could happen because client takeover
is a essential feature supported by MQTT protocol [95] . There are two main reasons for this. The �rst
reason is the presence of half-open connection. Once the client gets disconnected because of any reason
(for instance, network issue), the connection between client and broker are now half-opened. In this case,
client needs to reconnect to broker using the same client ID, and broker could close previous connection
and re-connect with this client. The second reason is client upgrade. If a client needs a hard upgrade, the
new client needs to connection to broker with same client ID as the old client, and broker should close
the connection with old client and establish a new one with new client. However, client takeover can be
used to launch DoS attacks on clients, as well as bu�er over�ow attacks across networks and devices [96].

This scenario can be detected by MQTTprov. If there is a client takeover, the log would show that
broker closes the old client and establish a new connection with new client using the same client ID but
di�erent IP addresses (sockets).

Invalid Unicode Maggi et al. [91] pointed out a way to perform a DoS attack with invalid Unicode
(U+0001..U+001F control characters; U+007F..U+009F control characters) (CVE-2017-7653) [92]. If the
broker doesn’t checks for disallowed UTF-8 code points in topic strings while other clients do, a malicious
client would exploit this discrepancy and disconnect other clients by sending invalidly encoded strings in
topic. This attack could be extracted from the network log since the log has all the binary data passing
through the broker. Therefore any invalid Unicode is captured. Verbose log from vanilla broker and
MQTT-Plan only records after the strings are decoded. Therefore they cannot present the actual invalidly
encoded strings.

CONNECT packets If a client tries to connect to the broker and terminate the connection ungrace-
fully (meaning the client ends the connection directly on its side without sending a DISCONNECT
packet), the broker will maintain the half-open connection for a certain amount of time specifying by the
broker’s con�guration. After this amount of time, broker will try to send a PING packet to the client,
and terminate the connection on broker’s side if PING is not answered. However, during the time of
existing half-open connection, attacker could send multiple CONNECT packets using unique client IDs
to a point the broker can’t accept more connection requests [93]. CONNECT packets are recorded by
verbose log, MQTT-Plan and MQTTprov.

Payload Attacker can exhaust the resource of the broker by dispatching multiple message accompanied
by a large size of payload. CVE-2017-7651 [94] is an example of these attack. This attack is omitted by
verbose log and MQTT-Plan as they don’t record payload information. MQTTprov, however, logs the
payload in binary to accommodate the situation that the payload is not a string.
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Quality of Service (QoS) Because high QoS (QoS≥1) messages required additional steps to ensure
message delivery, it requires more resources than a message with QoS=0. Attacker can send a large volume
of messages with high QoS to exhaust the resources of the broker [93, 90]. This attack is not detectable
by dummy subscriber and MQTT-Plan because QoS information is not recorded. Noted that MQTT-
Plan omits control packets like PUBACK, PUBREC (Publish received - QoS 2 delivery part 1), PUBREL
(Publish release - QoS 2 delivery part 2), and PUBCOMP (Publish complete - QoS 2 delivery part 3),
therefore MQTT-Plan is not able to identify the QoS of the message. Verbose log, however, prints out
those control packets. Similarly, MQTTprov logs all the packets, hence being able to reconstruct high
QoS attack.

3.1.3.2 Identity Spoo�ng

Publisher Identi�er There are two types of publisher identity spoo�ng: Type 1) attacker publishes to
any topic using arbitrary client ID (even it doesn’t exist in the MQTT network) as if the attacker is part
of the MQTT network; Type 2) attacker pretends to be other legitimate publishers using their client ID.

• Type 1) Attacker Publishing to Any Topic: Because the publisher is anonymous to the sub-
scribers as described in Section 3.1.2.2, anyone with the permission (or in other words, not restricted
by the broker’s rule) can publish to any topic.

As we demonstrated the attack scenario in Section 3.1.1.2, the attacker Eve opened the door with arbi-
trary client ID and published “open” to topic “/Alice/home/frontdoor/doorlock/command”.
Because of the MQTT nature of anonymity, the door lock does not know who is the sender of the
command.

From MQTTprov, we could see there’s a known door lock controller client ID publishing to
“/Alice/home/frontdoor/doorlock/command” and other client IDs publishing to the same
topic as well. The other client IDs could be the attacker’s client IDs. Dummy subscriber, however,
is at the same level with the door lock. Therefore it does not know the publisher of the command.
This type of attack could be detected by verbose log and MQTT-Plan. Because they have the records
of topic and publisher, both works is capable of telling unauthorized client ID publishing to any
topic.

• Type 2) Attacker Pretending to Be Other Publisher: The only �eld that are used to identify
a client is through either 1) client ID, 2) username-password combination, or 3) X509 client certi�-
cates [97, 98]. The third way is the most secured. But in reality, it is very hard to manage client
certi�cates on a broker with large scale of devices. Especially, a report from Shodan [99] states
that there are more than 49,000 MQTT miscon�gured servers visible on the internet, including
over 32,000 servers with no password protection. Notably, the transaction of username-password
authentication is in plain texted, meaning any node in-between is able to intercept the packet and
exposes username-password combination [100].
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Once the attacker knows the client ID or username-password combination of a victim client, the
attacker can claim itself to be that client using the same client ID or username-password combina-
tion. Even with X506 client certi�cates authentication method, as long as the attacker is able to
acquire the certi�cates, it can pretend to be that client as well.

In Alice’s case scenario, her door lock controller is using client ID “frontdoor_doorlock_controller”.
The attacker Eve can establish a new connection to the broker with the same client ID “front-
door_doorlock_controller”, and send out commands like “unlock”. Note that this attack funda-
mentally di�erent with “Attacker Publishing to Any Topic” mentioned above. “Attacker Publishing
to Any Topic” attack does not need to know any existing client identity, while this attack does. In
the case of broker only connecting to a prede�ned list of client IDs, the attacker can still perform
this attack while the other attack won’t succeed.

This problem is very hard to detect on the broker side. The reason is that with the same authentica-
tion identity, the only noticeable di�erence is the IP addresses or port numbers are di�erent between
the attacker and victim. However, as described in Section 3.1.3.1, client takeover it permitted and
necessary. The attack procedure will look like this from MQTTprov logs:

1. Victim maintains a connection with broker using IP address 1.1.1.1 and broker is using port
7777;

2. Attacker establish a TCP connection to the broker using IP address 2.2.2.2 and the broker is
using port 8888;

3. Attacker initializes the MQTT protocol with CONNECT control packet using same authen-
tication identity of the victim;

4. Broker disconnects older connection (victim) from port 7777;

5. If the victim �gures out it has been disconnected (thorough PING packet) and it tries to
reconnect, it has to re-initate the TCP connection �rst. In this case, victim �rst connects to
broker using IP address 1.1.1.1 and broker is using socket 9999 (possibly still be 7777 because
it may be vacant).

Verbose log, MQTT-Plan and MQTTprov are all managed to provide this behavior pattern.

Subscriber Identi�er Because subscriber client ID is captured in verbose log, MQTT-Plan and MQTTprov,
any subscription to unauthorized topics is exposed using these techniques.

3.1.3.3 Information disclosure

Unsecured Broker A broker server may have security vulnerabilities that enable the attacker to access
the broker server. In this case, assurance of the records for every messages that are sent to the broker
is crucial, even if that message has no subscriber. This is crucial because in this attack, the attacker is
interacting with the server itself. Memory, network tra�c and kernel are presumably exposed to the
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attacker. Therefore, we have to ensure that not only the tra�c sent out by the broker, but also the tra�c
sent to the broker are all recorded. MQTT-Plan only captures the tra�c when there is a re-publish, hence
it misses the case that a message has no subscribers. Verbose log is able to record incoming messages, but
it only keeps the topic in the log. Because dummy subscriber listens to all the topics, it equals monitoring
all the incoming messages for the broker. MQTTprov is capable of reconstructing this attack through
network layer logger.

3.1.3.4 Elevation of privilege

Wildcard Topics This type of attack is described in motivating example in Section 3.1.1.2.

3.1.3.5 Tempering data

Unencrypted Data This type of attack is described in motivating example in Section 3.1.1.2.
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3.2 ChatterHub: Privacy Invasion via Smart Home Hub

The blooming of the Internet of Things (IoT) promotes massive smart-home devices to become connected
to the Internet, with an estimate of 10 smart devices per home on average in 2020 [101]. We expect the
number of installed smart-home devices to reach 75 billion by 2025. Smart-home devices promise to make
the user’s daily life more convenient. According to a recent study [102], the main reason for smart device
purchase is convenience, as users can easily control and monitor smart-home devices over the Internet.
Most smart-home devices can be accessed via smart apps on smartphones or smart-home platforms. e.g.,
“Front door unlocked at 13:52 by code A”, “Motion detected in living room at 17:03 ”.

However, this convenience comes at a cost. For example, an adversary with access to smart-home
devices’ state information (such as what is triggered or used and when), could acquire sensitive information
about the users and their activities. These device states often contain the users’ activities in their living
space, and the adversary can exploit it to commit further o�enses, such as burglary and aggravated robbery.
Indeed, cybercriminals are increasingly targeting smart-home devices [103]. Recent studies [104, 105]
demonstrated privacy invasion problems present in smart-home devices. For example, Peek-a-Boo [104]
showed that attackers could identify smart-home devices’ states and actions by passively listening to the
wireless around a smart-home. Apthorpe et al. [105] showed an Internet Service Provider (ISP) could learn
privacy-sensitive information from smart-home devices by analyzing tra�c.

This work presents a novel method to attack smart-homes, called ChatterHub, enabling an adversary
to infer smart home events and user activities by sni�ng encrypted network tra�c to/from a target home,
even though devices are hidden behind a smart-hub (e.g., Samsung SmartThings [106]) and do not directly
connect to the Internet. ChatterHub requires neither physical proximity to the target home nor prior
knowledge of its setup (e.g., list or topology of smart-home devices), making attacks on smart-homes more
feasible.

The intuition behind designing ChatterHub is that users’ activity routine in a smart home can trigger
smart devices, manifesting as distinct patterns in the network tra�c, albeit encrypted, and hence the users’
activities and smart devices’ events are discoverable and learnable. To infer smart-home devices’ events,
ChatterHub employs a classi�cation model trained with tra�c patterns of popular smart-home devices
and hubs. The adversary can further train ChatterHub with their own devices by providing network
packet traces and event logs to the training platform. ChatterHub automatically partitions the network
trace with our novel segmentation algorithms and feeds the segmented traces (with event labels parsed
from the event logs) into machine learning models to detect smart home devices’ events. This way, the
attacker can infer the occupancy pattern of the home by analyzing the event timing and patterns.

We have evaluated the accuracy and e�ectiveness of ChatterHub on real-world testbed environments
with Samsung SmartThings hub and 14 smart-home devices. The results show ChatterHub can success-
fully discover the capabilities and events of the devices, e.g., lock, switch, or motion based on their encrypted
tra�c, and reveal users’ daily routines by tracking devices’ activity, including changes in lock’s state, smart
LED’s state (i.e., on→o�, o�→on), and multi-purpose sensor’s states (i.e., detecting motion on doors or
windows).
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Figure 3.4: A high level overview of ChatterHub

In summary, this section makes the following contributions:

1. We explore a new adversarial approach against smart-home devices hidden behind a smart-hub, which
could leak critical user’s privacy, including households’ daily routine.

2. We design a classi�cation model that can accurately identify the events and usage patterns of various
smart-home devices from encrypted network tra�c.

3. We evaluate ChatterHub in three real smart-home environments. The evaluation results show that
ChatterHub can successfully recognize smart-home devices’ events with 88% F1 score on average.

4. We show that a combination of packet padding and random sequence injection techniques can mitigate
threats from ChatterHub at an average cost of 9.2MB tra�c per day.

5. All the data sets, source code, and classi�cation models used in this work are publicly available to the
community3.

3.2.1 Adversary Model, Assumption, and Goal

We assume that an attacker only passively sni�s encrypted network packets from/to the target home. In
this work, we consider three potential points at which the attacker can eavesdrop on network tra�c. First,
the attacker can gain access to the tra�c from a compromised router. Second, the attacker can eavesdrop
on network tra�c from the home router’s uplink tra�c. Third, the attacker can be the one who can
monitor the network tra�c of the target home, Considering these scenarios, encryption remains the only
form of protection for users’ data. Nonetheless, our adversary model is a passive attacker who collects
encrypted network tra�c (e.g., TLS/SSL). The attacker can only observe the size of each incoming and
outgoing packet, the source and destination IPs, and timestamps. In addition, the attacker does not rely
on decoding or interpreting the information inside tra�c packets.

We also assume the attacker has access to a trained model or can collect his data from a hub and desired
devices to train a model. However, the attacker does not require prior knowledge of a targeted smart-home
topology or devices deployed.

3https://github.com/karthikaS03/ChatterHub
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The Goal of the Adversary Once the network packet traces from the target home are obtained, the
adversary proceeds to leverage a classi�cation model, provided by ChatterHub or trained on the attacker’s
own hub and devices. By doing so, the adversary can understand the pattern of network tra�c generated
by the smart-home devices of interest. We consider that the attacker can achieve the following goals (but
not limited to):

• Scout Attack: The attacker targets a range of IP addresses to �nd vulnerable home routers, similar to
Mirai attack [107]. After gaining access to the routers, the attacker analyzes tra�c either in the routers or
through a virtual redirection to a sni�er installed device. Understanding smart-home devices’ behaviors
will allow the attacker to �nd vulnerable targets for a further o�ensive campaign, such as burglary.

• Targeted Attack: The attacker �rst gains access to network sni�ng tools [108] and sni�s the outgoing
tra�c. After enough scouting, the attacker can understand the smart-home devices’ behaviors, identify
household activities patterns, and use the patterns for physical assault.

• ISP-level Tracking: Internet providers such as ISPs and VPNs who has complete access to users’ tra�c
can learn the patterns of the households’ daily life. Such information can be used for targeted advertising
based on user behaviors or other activities, potentially violating users’ privacy [73].

Target Devices In general, two types of smart-home devices are available on the market; 1) WiFi or
Ethernet-enabled devices and 2) devices equipped with home automation network modules i.e., Zigbee,
Z-wave, or Bluetooth Low Energy (BLE). The �rst type of device can directly connect to the access point.
On the other hand, devices in the second category cannot connect to the Internet directly, so they require
a smart-home hub to manage communications among devices. Additionally, since the second type of
devices is hidden behind the hub, they are considered to be more secure against remote attackers [109].
A large body of work [105, 110, 111, 112] studied security and privacy of the �rst type of devices, while the
security of home automation network devices (the second type of devices) has gained little attention. This
work focuses on the second type for their high market share and diversity [113, 114].

3.2.2 System Design

Minimally intrusive monitoring is the most important goal of ChatterHub as the adversary only requires
access to the network tra�c from/to home. Obtaining access at this level is ascertained to be relatively
simpler compared to using eavesdropping devices that have to be placed near the target devices [115, 116,
105].

Fig. 3.4 illustrates an overview and the control �ow of ChatterHub. In ChatterHub’s training, all
the communication from the devices are transmitted through the hub. We collect these communication
packets through 1) accessing the cloud backend logs and 2) monitoring the network tra�c. Network tra�c
will be passed to a segmentation module, which separates network traces into sequences associated with
events.
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3.2.2.1 Training Data Collection

We �rst collect network packets to/from our smart-home setup and smart-devices’ event logs, then label
them for model training. In this work, we used 15 di�erent devices with 12 unique capabilities as described
in Table 3.3 (list of devices), and Table 3.4 (capabilities) shows events associated with each capability. In
our dataset, an event is represented as the combination of a capability and its event (e.g., switch-on, lock-
unlocked). We used the following setups for model training.

1. Single device: We connect a single device to the hub and observe the network tra�c generated. This
is to understand the unique tra�c patterns generated by each device.

2. Multiple devices: We connect multiple devices to the hub and monitor tra�c concurrently generated
by all devices; we use this data to train our model with a more realistic setup. For example, we observed
packets (generated by multiple device events) often overlapped each other. We connect not only smart-
home devices to the hub, but also other home appliances (e.g., computers, tablets, smartphones) to
the router to create more realistic tra�c.

3. Only the hub: We also observe the network tra�c from an isolated hub’s (with no other devices
attached) operations to understand the hub’s behaviors (e.g., �rmware update).

We connect Wireshark installed on a laptop to Samsung SmartThings hub through a bridged net-
work to monitor the network tra�c. We obtain event labels from the logs delivered through the hub.
Samsung SmartThings hub stores event logs (e.g., all events and commands sent to/by smart-home de-
vices along with timestamps). We collect the logs regularly by using “Simple Event Logger” [117] provided
by the manufacturer. We have collected over 200,000 network packets from the smart-hub with over
60,000 event logs and use them for training the classi�cation model in ChatterHub.

3.2.2.2 Trace Segmentation, Labeling, and Feature Extraction

We �rst design a method to �lter out network packets that are not related to the SmartThings hub (i.e.,
packets generated by PCs or tablets), and then we perform packet segmentation.

Packet Segmentation When the hub is registering, it connects to an authentication server (Auth-
Server) in the cloud. The hub exchanges authentication keys with Auth-Server, and receives an IP address
of a communication server (Comm-Server) in the cloud. The hub is then connected to Comm-Server for
further communications and operations. This communication channel between the hub and Comm-
Server remains established, and hub relays the information through this channel. Suppose the devices
communicate with Comm-Server directly via Wi-Fi. In that case, tra�c is segmented based on each ses-
sion, and each device’s tra�c can be separated based on their unique destination and source IP addresses.
However, the challenge we encounter is that all communications go through the hub, and there is a lack of
discerning parameters. Thus, it is not possible to partition packets based on the network �ow information.
Also, the communication interval in the sequence of packets between two events is relatively large com-
pared to the interval between packets sent for a single event. Thus, we apply a segmentation method to
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Table 3.3: List of devices and capabilities. Communication is shown by (n) for Zigbee and (N) for Z-Wave.
Capability references correspond to Table 3.4

Type Device Device Name Cap.

Sens.

Multi
Sensors

Centralite Micro Door Sensor (n) 9, B, 6
Smartthings Multipurpose Sensor (n) B, A, 6
Samsung Multipurpose Sensor (n) B, A, 6

7
Sensors

Iris Smart 7 Sensor (n) C, 6, 7
Centralite 7 Sensor (n) C, 6, 7

3
Sensors

Centralite 3 Sensor (n) 3, 6, C
Samsung 3 Sensor (n) 3, 6, C

Act.

Smart
Lights

SYLVANIA Smart 10Y A19 TW (n) 4, 5, 8
SYLVANIA Smart + Adjust. (n) 4, 5, 8
Sengled Element Plus (n) 4, 5, 8

Smart
Plugs

Centralite Smart Outlet (n) 4
Sylvania SMART+ Smart Plug (n) 4

2s Kwikset 10-1 Deadbolt (N) 2, C
Switches OSRAM LIGHTIFY Dimming 4(n) 1

Hub Hub Samsung SmartThings Hub (n,N) ping

Table 3.4: Event types for Capabilities

Capabilities # Events Commands

button (1) 410 push, held
lock (2) 584 lock, unlock
motion (3) 406 inactive, active
switch (4) 1562 on, off
switchLevel (5) 3181 change
temperature (6) 790 change
water (7) 117 dry, wet
colorTemperature (8) 853 change

activity (9) 31 online, offline,
hub disconnection

status (A) 572 open, close
contact (B) 708 open, close
battery (C) 16 change
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Figure 3.5: Fixed Segmentation vs. Changepoint Segmentation

divide the network traces into small bursts of packets. To segment the network �ows into separate bursts,
we try to leverage approaches from previous studies [118, 115] that use a �xed threshold of 4.5 seconds to
segment network packets into multiple bursts. Previous works show that 4.5 seconds is enough for the
communication between a client and server to complete packets exchange. However, we observed that
the time gap between packet exchange for a single event could last longer than 4.5 seconds. Fig. 3.5 shows
a case where a �xed-threshold approach fails to separate the level change event from other events. Also,
events of the hub (e.g., ping, status) can occur along with other device events within an interval of shorter
than 4.5 seconds. As such, the segmentation based on a �xed threshold often fails to correctly segment the
device events from other packets (e.g., ping and status). Therefore, we develop a dynamic segmentation
technique using change point detection [119] to segment these packets into bursts correctly.

Dynamic Change Point Detection (CPD) A change point is a temporal point when the statistical
properties of its previous and subsequent time points are di�erent. In our smart-home setup, the network
packets for a single event are issued in short intervals compared to the intervals between two distinct events.
Therefore, a change point will be when a sequence of packets for a single event starts or ends. Since our
logs are collected over a long time, multiple change points need to be identi�ed to segment all events.
CPD is an approach to �nd abrupt changes in time-series [119]. CPD can also be used for estimating the
temporal point when the statistical properties of a sequence change [120]. ChatterHub employs PELT
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(Pruned Exact Linear Time ) [120] because it is computationally e�cient and outperforms other exact
CPD search methods [121]. We present detailed evaluation results of Dynamic CPD and �xed threshold
segmentation algorithms on our dataset in Section 3.2.3.1.

Labeling After we segment the packets from network traces into di�erent bursts, we obtain event labels
from the hub’s logs. We use timestamps to align the labels and the segmented trace. However, we observe
that slight time di�erences between generation of event log and packet capture can occur. Hence, we allow
for±5-the second di�erence between the two; then, we map the event to a speci�c burst of packets. We
also observe special cases where a single user activity enables multiple events in a device. For example, a
“switch on” user event from the app triggers two events (switch-on and level-change). Therefore, a single
burst of packets could be mapped to multiple events. We also observe that a number of segments are not
associated with any labels (i.e., no logs from the hub and Comm-Server) so that we label them as unknown.
To characterize the unknown packets, we further analyzed the source code of device handlers [122] and
found that the handler generates the event logs, and some of the handlers do not emit any logs. We found
that most of the missing events are less important for the user (e.g., device refresh, device ping).

Feature Extraction For feature extraction, we begin by forming a signature via fetching the frame
length of multiple packets in each segment. We then use this signature as the feature for our classi�er.

These signatures show a signi�cant amount of collision across di�erent classes. These collisions are
the result of events happening in small intervals or events that some happen together, e.g., when a user
opens a door, both contact-open and status-open events occur concurrently.

3.2.2.3 Classi�cation Models

We train classi�cation models using extracted network features to classify smart home network tra�c
into smart home devices’ capabilities and events. Given the dynamic nature of the data, we consider the
following machine learning models: 1) Random Forest, 2) OneVsRest classi�er, and 3) seq2seq.

Random Forest (RF) Model RF constructs an ensemble of decision trees by taking a random subset
of the features to decide a node split in building each tree. We only use RF as a baseline to identify better
algorithms because RF largely depends on the training data’s completeness.

OneVsRest Classi�er A key characteristic of our data is that a single tra�c segment may contain the
data related to multiple capabilities that usually occur together or were subsequently activated. Therefore,
we need a multi-class classi�er that can identify all the classes in segmented tra�c. As a result, we follow the
one-vs-rest strategy that uses a classi�er for each class �tted against all other classes. This method ensures that
each classi�er is independently optimized to identify features for the corresponding class. As this entails
a large number of classi�ers, we use XGBoost (Extreme Gradient Boosting) . XGBoost is an ensemble
that applies Gradient boosting on decision trees to boost the performance of the various models [123, 124,
125]. In this project, we use the XGBClassifier of XGBoost library [126] with its default parameters.
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We use CountVectorizer as vectorizer, with ngram range from 1 to 4 so that the relationship between
the packets in the sequence is maintained. The output of the vectorizer is directly fed into the XGBoost
model.

seq2seq Model Sequence-to-sequence (seq2seq) model solves sequential problems. The input to
seq2seq is a series of data units, and the output is also a sequence of data units [127]. seq2seq model
is applied to address various problems in multiple disciplines. Speci�cally, seq2seq caught our attention
because of its application in natural language translation, for which the input is usually a sentence and the
output is a sentence in a di�erent language. In our model, we have a sequence of package lengths, and the
output is a sequence of events. We use sequences of capabilities and events as labels. It is worth noting that
seq2seq is a model to translate natural languages, so the order of the sequence will a�ect the result. We
maintain the original order from ground truth, even if one label appears multiple times. The seq2seq
framework contains two main components: an encoder and a decoder. The encoder reads the input, and
the decoder translates the encoder’s output to a �nal sequence of outputs [127].

3.2.3 Evaluation Results

We evaluate ChatterHub with real-world smart-home environments. In the smart-home setup, we deploy
a set of smart-home devices and other Internet-connected devices (e.g., laptops, smartphones), and then
we connect them to the hub.

3.2.3.1 Network Trace Segmentation

We perform trace segmentation on the captured tra�c to partition the overall tra�c �ow between the hub
and cloud servers (e.g., Comm-Server) into a set of small bursts, which map to speci�c commands. There-
fore, ChatterHub �rst needs to identify the IP address of the target hub, and then it performs network
trace segmentation, which will generate a set of proper packets related to a speci�c command/event from
the devices at a time. An accurate segmentation will ensure that each packet burst contains a negligible
amount of noise packets. Note that noise or noisy packets indicate unknown packets or packets for the
hub’s status report. The hub randomly sends these packets to the cloud servers.

Identifying the IP address of the Hub We monitor all network tra�c from and to the target home
router and identify the hub’s IP using the pattern signature of “hub’s ping” events. While the hub keeps
changing the IP address of Comm-server from time to time (usually over days), we can successfully identify
the IP address of Comm-Servers. Then, we can extract necessary tra�c between the hub and Comm-Server
(excluding the tra�c from other devices in the home).

Network Trace Segmentation As we discussed in Section 3.2.2.2, we develop a PELT-based Dynamic
Change Point Detection (CPD) algorithm to segment the network tra�c.
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Figure 3.6: Performance Evaluation of various Segmentation Methods. (FT-4.5: Fixed Threshold with 4.5
seconds, L2-5: L2 Cost Penalty-5, L2-10: L2 Cost Penalty-10, RBF-0.1: RBF Cost Penalty - 0.1, RBF-0.2:
RBF Cost Penalty - 0.2)

The PELT algorithm can be used with di�erent cost functions, and it takes the output of the cost
function as a penalty value, which a�ects the segmentation results. We compare the two most dominant
cost functions, least squared deviation (L2) and kernalized mean change with radial basis function (RBF)
kernel by running their output through our baseline model. Fig. 3.6 shows the results of classi�cation for
di�erent parameters. We use PELT (RBF cost function and penalty value of 0.2), which achieved the best
F1 and precision.

3.2.3.2 Evaluation in Smart-home Environments

To evaluate ChatterHub in the real world, we set up three smart-home environments at three homes along
with other devices and record the network tra�c from their home router for a total of 10 days.

We train the classi�cation models with data collected from the lab setting (explained in Section 3.2.2.1)
plus the data obtained from one of three home con�gurations. We then test the model on data from two
remaining smart homes not used for training.

After the model training, we conduct two experiments; 1) an attacker tries to infer the capabilities of
devices, and 2) an attacker tries to detect speci�c events of those capabilities. For example, the attacker
will be made aware of “switch” being present and used in the �rst experiment’s target home. The attacker
will then infer if a “switch on” or “switch o�” has happened in the second experiment.

It is worth noting that when we test the classi�cation models, we add more sensors and devices (e.g.,
water sensor), which do not exist in the training dataset, to two test smart-homes to test the scenario where
the attacker does not have a list of installed devices in the target home.

Classi�cation Accuracy We generate the ground truth for two di�erent sets of labels (capabilities and
events) so that we can train our classi�cation models on both data sets to classify capabilities and events
separately. Table 3.5 reports the classi�cation accuracy (recall, and F1-score) of events from each device,
such as switch-on, switch-o�, motion-active and motion-inactive. If some devices in the target home
have not been used in the model training, ChatterHub categorizes the events and capabilities belonging

62



Table 3.5: Classi�cation results for capabilities and events

Capabilities

Random Forest seq2seq XGBoost

R. F1 R. F1 R. F1

button-held 0.00 0.00 0.00 0.00 0.27 0.18
button-pushed 0.00 0.00 0.61 0.57 0.98 0.73

colorTemperature 0.23 0.37 0.17 0.27 1.00 0.96
contact-closed 0.25 0.32 0.29 0.30 0.40 0.44
contact-open 0.37 0.45 0.50 0.47 0.47 0.54
switchLevel 0.87 0.42 0.63 0.33 0.89 0.55
lock-locked 0.71 0.50 0.77 0.46 0.77 0.53

lock-unlocked 0.12 0.17 0.06 0.10 0.77 0.68
motion-active 0.08 0.12 0.10 0.13 0.48 0.17

motion-inactive 0.28 0.23 0.30 0.25 0.62 0.36
ping-ping 0.96 0.98 0.96 0.98 1.00 0.99

status-closed 0.49 0.57 0.50 0.52 0.69 0.80
status-open 0.60 0.63 0.80 0.66 0.77 0.74
switch-o� 0.58 0.71 0.55 0.52 0.71 0.80
switch-on 0.13 0.17 0.29 0.18 0.32 0.38

temperature 0.63 0.25 0.07 0.10 0.77 0.37
unknown 0.59 0.73 0.94 0.92 0.95 0.90

F1 Known Average 0.83 0.72 0.78 0.81 0.92 0.76
F1 Average 0.69 0.73 0.88 0.88 0.93 0.82
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to this device as unknown. This is also observed from our results in the case of water capability, as shown
in Table 3.6; where “0” for water sensor activities means water sensor was not used while training.

Overall, our classi�ers generate multi-label outputs, indicating that a single segment of tra�c pack-
ets can be classi�ed into more than one class. Thus, our models identify multiple activities happening
concurrently without an explicit time gap in the transmission of the network packets. The classi�cation
results reported in Table 3.5 are the accuracy of each class. To decide the models’ overall performance,
we calculate the micro average score for F1 and recall (µAvg) [128], which takes into consideration the
imbalanced class sizes. µAvg calculates a F1-score across di�erent classes by adding up their respective
confusion quadrants. This shows how a multi-class model considers the whole class list to reduce bias
towards their underlying class distribution. The average of F1-score is calculated by 2×

∑
tpi

2×
∑

tpi+
∑

fpi+
∑

fni

, where tp, tn, fp, fn indicate true positive, true negative, false positive, and false negative, respectively.
fpi denotes the number of false positives for the ith class. We report this result as Average in Table 3.5.
However, since the focus of our system is to detect known device activities, we calculate theµAvg for only
the known classes and exclude unknown classes from the computation. The average results are reported
as known-average.

Among three classi�cation models, RF (the baseline model) shows the lowest recall, and precision 3.5.
Overall, seq2seq gives us the highest F1-score (0.81) for known-average, compared to the XGBoost
model’s F1 result of 0.76. Although the XGBoost model has a higher individual F1-score for some of
the capabilities and events, the average F1-score is lower because of higher false positive cases resulting
in lower precision score. On the other hand, seq2seq shows higher precision results, indicating that
seq2seq’s accurate performance for identifying the events of devices. Based on this observation, this
limitation of seq2seq in identifying some activities is in overlapped packet sequences. But XGBoost
is more resilient to such noise in the data [129]. Hence, it shows higher accuracy in the presence of
overlapped of packets. However, XGBoost’s misclassi�cation is a result of signature con�icts between
multiple activities from a same device.

E�ect of Training Data Size As this attack relies on the model to accurately classify tra�c, we further
analyze the impact of training data size on a �xed set of test data classi�cation accuracy. Fig. 3.7 shows
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Table 3.6: Classi�cation results w/ and w/o a speci�c (Lock) device in di�erent home setups. (R: Recall,
P: Precision)

Case #1 : Home w/ Lock Case #2 : Home w/o Lock

Capability OneVsRest – XGBoost
R P F1 R P F1

Contact 0.88 0.35 0.50 0.78 0.45 0.57
Lock 0.94 1.00 0.97 - - -
Switch 0.76 0.94 0.84 0.61 0.85 0.71
Unknown 0.99 0.99 0.99 0.99 0.98 0.99
Average 0.90 0.82 0.83 0.80 0.76 0.75

how XGBoostF1-score changes as the size of training data grows. The results show the accuracy increases
with the size of training data. And, decent accuracy is possible with fewer training data.

3.2.3.3 In-Depth Analysis of Smart-Home Results

Our threat model is based on attackers’ capabilities to monitor network tra�c in a smart home to infer
the smart home devices’ activities and the user’s behavior. Therefore, while our e�orts are to create a
model that works best in all scenarios, we demonstrate our model is useful for attackers to identify private
information about the user and her home correctly. In this section, we explain such cases in detail.

Target Classi�cation Model for Speci�c Devices We discuss how an attacker can use a speci�c model
to obtain more accurate information on a targeted device from its capabilities. In this case, we train
our XGBoost model only to detect three capabilities (contact, lock, and switch). To this end, we use a
single trained XGBoost model and design two di�erent evaluation test sets with intentionally deploying
di�erent devices (e.g., lock). In the �rst case setup (case #1), we create a smart-home testbed with all devices,
including lock and water. In the second case (case #2), we create another smart-home testbed with all
devices, including water except the lock. As shown in Table 3.6, in case #1, our model was able to detect lock
with a precision of “1.00” indicating the model has no false-positives. Moreover, even if our model was
trained on signatures of lock, in case #2 (the testbed without lock device), no lock capability was detected.
Therefore, our model is highly accurate in detecting the presence of the devices.

Identifying Recurring Patterns Fig. 3.9 shows the activities of a smart lock at various times of day.
We measured the device’s activities for 5 consecutive days. The results show that at 11:00 and at 23:00, the
lock had the events on multiple days at the same time. Based on this observation, the attacker can infer
the homeowner’s daily schedule. Hence, with further analysis of such patterns, the classi�cation results
could reveal information on the smart-home devices and the users.
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Another example is the switch-on/o� events reported in Table 3.5. F1-scores of these events by XG-
Boost are 0.38 (switch on) and 0.80 (switch-o�). Although F1-scores are less than 0.8, ChatterHub can
still identify user actions with light switches (e.g., user turning lights on/o�). Fig. 3.8 shows ChatterHub
correctly identi�es 20 out of 25 events. ChatterHub only has three misclassi�cations (i.e., event on recog-
nized as o�, and vice versa) and two false detections (i.e., non-switch events recognized as switch events
but part of the switch device itself). Further, the patterns of on/o� events provide more con�dence in the
actual presence of a smart light in the home.
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Chapter 4

Limitations

In this chapter, we examine the limitations of proposed techniques. We �rst discuss the limitations of
proposed forensic analysis techniques for Android, DroidForensics and PushAdMiner, in Section 4.1. In
Section 4.2, we examine the limitations of proposed techniques for IoT environment.

4.1 Forensic Analysis in Mobile Environment

While DroidForensics and PushAdMiner enables semantically rich provenance trace for forensic analysis
in Android, they have limitations as well.

First, a kernel-level attacks could disable DroidForensics. Although we periodically (e.g., every 10
minutes) transfer the log to the outer server, the attacker can tamper with logs remained in the device. We
believe this is an on-going research area [130, 131] that is orthogonal to the main focus of DroidForensics.

Second, DroidForensics uses openat() system calls to transfer API and binder logs (see the sec-
tion 2.1.2.1). If a malicious application invokes openat() to trick DroidForensics, it can introduce bogus
causal relations (e.g., bogus binder edges in the output graph), and it will make the investigation di�cult.
However, it only introduces false positives but cannot hide true positives (i.e., malicious behaviors). We
also plan to mitigate this problem as following. openat() has three arguments and we use the �rst ar-
gument as an indicator of log type. For example, we are using -255 for API log and -256 for binder log.
However, we can use the �rst argument as well as the third argument as a secret session keys between
higher-level loggers and system call logger. We plan to build a simple module that randomly assigns the
key at boot-up time to mitigate the vulnerability.

Third, our binder logger intercepts IPC/RPC in the native binder library, libbinder.so. Both Java and
native codes use this library to invoke binder calls. However, native components can directly invokeioctl
system calls to send binder message to the binder driver in the kernel. We never observe that in practice, but
it is theoretically possible. Our binder logger cannot capture them. To address this limitaion, we can port
the binder logger to the binder driver in kernel-space, then we can capture all binder communications.

Fifthly, DroidForensics requires manual instrumentation to Android API functions. This limitation
could be mitigate by developing more automated techniques to determine instrumentation points includ-
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ing important call-back functions and handlers. For example, we can leverage DroidAPIMiner [132] to
automatically identify instrumentation locations from important Android APIs, call-backs, and event
handlers.

Finally, at the time when we started building our system, Puppeteer [69] did not appear to support
Android Chromium automation. Only recently there have been online posts in which Puppeteer users
describe how they have been able to “hack” their con�gurations to remotely control an Android browser.
We therefore built our own browser automation framework that works via the Android Debug Bridge
(ADB). The capabilities of our ADB-based automation framework are limited, but su�cient for enabling
data collection for PushAdMiner.

4.2 IoT Security and Forensic Analysis

Because of the limited resourced obtainable in IoT environment, our approaches have their limitations.
First, a kernel-level attack could disable MQTTprov. The attacker has the capability to tamper our

log, or even disable the logging if the kernel is compromised.
Second, because MQTTprov records the payload of each message, the runtime overhead and space

overhead are high. However, research has the option to omit payload with the trade-o� of losing the
evidence to reconstruct certain attacks (e.g., wildcard topic subscription attack). The runtime overhead is
caused by accessing user space memory multiple times. If we are permitted to modify the server kernel other
than just MQTT broker, memory access could be faster. A ring-bu�er can be introduced for enabling
asynchronous writes for the logs to reduce the runtime overhead as well. Space overhead can be reduced
by periodically compressing the generated log.

Finally, as we discussed in Section 3.2.2.1, the overlapping of packet sequences is one of the major
challenges to accurate classi�cation in ChatterHub. Suppose the target home has a larger number of smart-
home devices than our experiment setup. In that case, there will be more chances for overlapping of packet
sequences, implying that ChatterHub’s classi�cation results can be less accurate. However, our setup
conservatively constitutes realistic smart-home setups as we deploy many devices (14+) that repeatedly
generate network tra�c, so we believe there will be minimal impact on the classi�cation accuracy with
more devices. Another potential limitation is when the target home has multiple devices of the same
type, ChatterHub cannot tell which one contributes to the detected capability. For example, if the target
home has two identical smart lock devices installed on two separate doors, the attacker would be able to
recognize all the lock activities but cannot distinguish one lock from the other.
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Chapter 5

Related Work

5.1 Forensic Logging

Tracking system-level dependence is a popular technique for attack analysis in desktop and server environ-
ments [5, 133, 134, 135, 136, 137, 138, 139]. They record system events (e.g., system calls) during the execution
and interpret them to analyze causal dependences between system subjects (e.g., process) and system
objects (e.g., network socket or �le) to reconstruct an attack. Recently, BEEP [6], ProTracer [7] and Win-
Log [140] propose techniques that pro-actively analyze and instrument application binaries to improve an
accuracy of attack reconstruction. They focus on logging system-level event in desktop or server systems,
however, it is not e�ective in Android framework due to it’s unique execution environment, Android
Runtime (ART), and binder IPC protocol. However, our approach DroidForensics enables logging in
multi-layer to capture accurate information from di�erent layers, and we provide easy-to-use user interface
to query them.

LogGC [141] proposes a garbage collection techniques for forensic logs. It removes redundant or
unnecessary events from the log (e.g., accessing temporary �les). In the future, we plan to develop a
similar technique for Android to fundamentally reduce the size of log.

Recently, Android attack reconstruction techniques have been proposed. CopperDroid [9] proposes
system-call logging and analysis technique for Android attack reconstruction. CopperDroid is a VMI-
based approach and it is built on top of QEMU [11]. It provide a smart way to analyze ioctl system call
to understand semantics of binder protocol, but it requires bu�er contents of each ioctl and it might
causes too much runtime and space overhead for real devices. Furthermore, it could miss important events
that can be observed only in higher-layer (e.g., API). For example, if an application invokes a SQLite query
to a table loaded in the memory, the query does not cause any system calls.

DroidScope [10] is a QEMU-based malware analysis engine that provides the uni�ed view of hardware,
kernel and Android virtual machine (Dalvik). Unfortunately, DroidScope’s analysis engine for Dalvik
bytecode is infeasible for recent Android ART environments. Furthermore, both DroidScope and Cop-
perDroid were build on top of QEMU [11] emulator and it generally incurs high overhead. DroidForensics
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supports ART environments, and is not rely on QEMU or other emulated environments but directly
works on real devices.

Quire [142] monitors Android binder calls to detect confused deputy problem. It track privileges
across inter-process boundaries. Grover et al. [143] propose an application-level technique to monitor user
activities such as application install and removal, web browser history, calendar, call log or contact lists.

5.2 Android Taint Tracking

Dynamic taint tracking and information �ow analysis techniques for Android [21, 22, 23, 24] have been
proposed to detect information leak or privilege escalation attacks. Their approaches �rst assign tags
to provenance sources (e.g., private data objects) and propagates the tags at each instruction through
dependencies captured during the system execution. They can detect provenance tags that reaches a sink
node (e.g., outgoing network socket, SMS message send) that indicate the leakage of private information.
Taint tracking techniques usually require instruction-level monitoring that causes high run-time overhead
and often requires emulator-based instrumentation platform such as QEMU [11]. Taint tracking only
shows the �ow of the data (what-provenance), but forensic analysis including DroidForensics captures
both what- and how-provenance. Our system is designed for forensic logging, and comparing with taint
tracking techniques, our solution directly works on real Android devices and has less runtime overhead.

5.3 Other Android Analysis Techniques

Static Analysis techniques [37, 38, 144, 22, 145] can be used to understand the behaviors of Android
applications. They use APK or Java code analyzer to detect potentially malicious behaviors from Android
source code. These static techniques are complementary to DroidForensics. For example, we can use
static analysis results as a hint and enhance runtime forensic logging for potentially malicious code region.

Android memory forensics techniques [146, 147, 148] reconstruct the application or device states
from a smartphone’s memory image. Their goal is to recover the current (when the memory was dumped)
state of the device to allow the user to acquire important evidences such as photo, application UIs, or
authentication credentials. DroidForensics complements these techniques by logging runtime behaviors
of application to reconstruct the execution.

Recording-and-replay based attack forensics are very useful because the user can replay the malicious
execution as many time as he wants. Recently, record-and-replay techniques for Android applications
have been studied in the software engineering community to aid in application debugging [149, 150, 151,
152]. RERAN [149] and Mosaic [150] use Android SDK’s getevent tool to capture low-level event streams
including graphical user interface (GUI) gestures (e.g., swipe, zoom, pinch, multi-touch) and sensor
events. However, they are not able to replay inputs from other devices such as GPS, microphone or
network. Furthermore, they are not able to record-and-replay sophisticated activities [153, 154, 155, 156], as
they only record stream inputs. VALERA [151] statically instruments APK �les to capture Android API
calls. It leverages a bytecode rewriting tool to record and replay API calls. However, VALERA does not
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support native code execution [31, 32, 33, 34] and dynamic code loading [26, 27, 28, 29]. Mobiplay [152]
is a client-server based recording and replay system. Android applications run on a Mobiplay server that
emulates the exact same environment as the mobile phone, and the server transfers a GUI display to the
mobile device that the user interacts with.

5.4 Data Provenance for IoT

Data provenance for IoT systems has been a research topic for many years. It is also discussed in �le
system [157], database [158, 159] and sensor networks [160]. Markovic et al. [161] proposes EP-Plan, a
vocabulary for linking the di�erent levels of granularity of a plan with their respective provenance traces
in general IoT environment. In the research of data provenance for MQTT, Markovic et al. [13, 14] tries to
improve MQTT data provenance using MQTT-Plan, EP-Plan and PROV-O. Its goal is to trace whether
a message was forwarded to an unauthorised client, according to prede�ned “plan”. However, it can’t
handle most of the attack scenarios described in Section 3.1.3. Notably, their approach only captures a
provenance event when the broker re-publishes (a.k.a., forwards) a message. Therefore any unauthorized
publishing event without any subscriber is missed (e.g., DoS attack using CONNECT packets). On
contrary, our approach MQTTprov is able to reconstruct these attacks.

Colombo et al. [162] tried to enforce access control on MQTT brokers. It can specify rules regulating
the rights to receive/publish messages on speci�c topics. It may help preventing some attacks beforehand.
However, in the scenario of client takeover bombing, it cannot stop the attacker from receiving the mes-
sages instead of legitimate subscriber, as they are using the same client ID. MQTTprov is able to extract
the attack pattern.

Andy et al. [100], Potrino et al. [93] and Hintaw et al. [163] present attack scenarios over MQTT
protocol and solutions to mitigate these attacks. However, it is generally hard to safeguard the system
from future attacks. MQTTprov provides such capability to reconstruct an attack when it indeed happens.

5.5 WiFi Enabled IoT Devices

Most of the research studies that follow �ngerprinting smart-home devices from network tra�c focus on
independent devices that directly connect to WiFi [164, 165, 166, 167, 168, 169] unlike our setup where
devices are connected to a central device (hub). These studies also requires tapping to the local network
for information on individual devices [170, 171] unlike our threat model where the network tapping can
be acquired remotely.

Pingpong [172] proposes packet-level network tra�c analysis to identify activities of smart-home
devices. Similar to ChatterHub, Pingpong analyzes packet-level tra�c to create unique signatures for
smart home devices’ activities. However, they only study WiFi-connected devices, but our focus is smart-
home devices hidden behind the hub, increasing the complexity of network tra�c. We observe that many
security-critical devices (e.g., smart lock, motion sensor, smart switch) are hidden behind the hub to be
more secure.

71



5.6 Insider Analysis

HoMonit [115] is a smart-home monitoring system that identi�es misbehaving smart apps. By using
this system, encrypted network tra�c between the hub and smart-home devices has been analyzed to
�ngerprint each device. However, it requires tapping into the network between the hub and the devices,
which is not piratical in real life scenario. Similarly, Peek-a-Boo [104] focuses on capturing the tra�c
between devices and a hub. Notably, ChatterHub focuses on the communication between a hub and the
cloud servers (e.g., Auth-Server and Comm-Server). Due to hub devices’ inter-operability, �ngerprinting
devices by analyzing the hub and server communications becomes complicated and di�cult, compared
to the encrypted tra�c analysis done on HoMonit. Also, Zhou et al. [173] investigated potential security
�aws in communications between the smart-home devices and the cloud servers, but ChatterHub does
not focus on identifying smart-home devices’ activities inferred from encrypted tra�c.

5.7 Smart-home Applications

A number of studies focus on the security analysis and improvement for smart-home applications [174,
175, 176, 114, 177, 178, 179] where they discovered security vulnerabilities, i.e., private data leakage, privilege
abuse, and malicious activities. Other studies focus on the analysis of information �ow among smart
apps, cloud backend, and IoT devices to discover vulnerabilities in the chain of information transfer [180,
110, 181, 182]. While existing solutions mainly focus on preventing the leak of sensitive data from the
context of smart apps, cloud blackened, and/or the smart-home platform, ChatterHub demonstrates that
an adversary can still infer activities and states of smart-home devices by eavesdropping on encrypted
network tra�c.

72



Chapter 6

Conclusion

The increasing number of mobile and smart devices o�ers new cyber channels for attackers, and thus, it is
imperative for us to conduct e�ective security and forensics analysis on these smart devices for hardening
the platforms and preventing future attacks. In this dissertation, we focus on developing techniques to
identifying and automatically collecting logs that are essential to reconstruct the attack, from the mobile
and IoT environments during runtime, and perform security and forensic analysis. We also present an
attack that could be used to breach user’s privacy in a smart-home environment.

We present DroidForensics, a multi-layer forensic logging technique for Android. DroidForensics
captures important Android events from Android API, Binder and system calls layers. API logger collects
information about Android API calls that contain high-level semantics of an application. Binder logger
captures inter-process communications that represent causal relations between processes, and system call
logger e�ciently monitors low-level system events. We also develop an easy-to-use interface for Android
attack investigation. The user can compose SQL-like queries to inspect an attack and DroidForensics
provides causal graphs to the user. The user can iteratively re�ne queries based on previous results. Our
experiments have shown that DroidForensics has low runtime overhead (2.9% on avg.) and low space over-
head (up to 168 MByte during 24 hours) on Nexus 6 and Nexus 9 devices. We evaluate DroidForensics
with 30 real-world Android malwares and the results show that DroidForensics is e�ective in reconstruc-
tion of Android attacks. Our compatibility tests present that DroidForensics maintains the same level
of compatibility as original Android. Our techniques point out that collecting selective of events is suf-
�cient enough to accurately reconstruct the attack. We use real-world examples alongside with crafted
never-seen-before attacks to illustrate and evaluate out contributions.

To help harvesting logs from Android Chromium web browser, we propose PushAdMiner and an
Android helper application. We have studied how web push noti�cations (WPNs) are being used to
deliver ads, and measured how many of these ads are used for malicious purposes. PushAdMiner, both on
desktop and mobile environments, allowed us to automatically collect and analyze 21,541 WPN messages
across thousands of di�erent websites. Among these, our system identi�ed 572 WPN ad campaigns, for a
total of 5,143 WPN-based ads, of which 51% are malicious. We also found that traditional ad-blockers and
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malicious URL �lters are remarkably ine�ective against WPN-based malicious ads, leaving a signi�cant
abuse vector unchecked.

We present MQTTprov, a multi-layered and automated provenance trace collection tool for IoT envi-
ronment, speci�cally, MQTT network. We prove that even in an environment like IoT with very limited
places to monitor, it is still possible to reconstruct most of the attacks in real life. We evaluate MQTTprov’s
capability of reconstructing real world attacks with real-world attack scenarios. We thoroughly compare
our work with existing techniques.

We propose ChatterHub, a novel attack method that can correctly identify smart-home devices’ ca-
pabilities with passive sni�ng of encrypted home network tra�c. With ChatterHub, an attacker does
not need any prior knowledge of the target home. Our evaluation results from three realistic smart-home
environments show that the attacker can successfully recognize smart-home devices’ capabilities from the
encrypted network tra�c. This, in turn, leads the attacker to discover device behaviors, such as door being
locked or motion in the room. Such information can be used to reveal a household’s daily routine.
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