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ABSTRACT 

 Combustion sources, including anthropogenic (e.g. vehicles) and natural (e.g. 

wildland fires) sources are major emitters of carbonaceous aerosol (CA) into the 

atmosphere. CA, which includes organic aerosol (OA) and black carbon (BC), has a 

significant effect on the Earth’s radiative balance. BC is a strong absorber of solar 

radiation and exhibits a global warming effect. On the other hand, OA is mixture of 

organic components with variable optical properties. Some OA components only scatter 

solar radiation and have a strong cooling effect, while others (brown carbon, BrC) also 

absorb solar radiation and can have a net cooling or warming effect. This PhD 

dissertation focuses on improving the understanding of the climate and public health 

impacts of combustion CAs. The Weather Research and Forecasting model with 

chemistry (WRF-Chem) is used as a regional climate model. The month of August 2015 

featured extensive wildfires in the Northwestern U.S., with the majority of CA, including 

BrC, over the U.S. dominated by emissions from these wildfires. We performed parallel 

simulations that (1) did not account for BrC absorption, (2) accounted for BrC 

absorption, and (3) accounted for BrC absorption as well as its decay due to 



photobleaching. A set of optical properties, namely the aerosol absorption optical depth 

(AAOD) and absorption Ångström exponent (AAE) is used to constrain the model output 

against observations. We found that accounting for BrC absorption and photobleaching 

resulted in the best agreement with observations. We also focused on CA emissions from 

gasoline vehicles. Gasoline direct injection (GDI) engines emit higher levels of BC 

compared to traditional port fuel injection (PFI) engines. Here, we performed simulations 

to estimate the aerosol-induced public health and direct radiative effects of shifting the 

U.S. fleet from PFI to GDI technology. The results show that the total annual deaths in 

the U.S. attributed to particulate gasoline-vehicle emissions would increase from 855 to 

1599 due to shifting from PFI to GDI. Furthermore, the increase in BC associated with 

the shift would lead to an annual average positive radiative effect over the U.S. of +0.075 

W/m2, with values as large as +0.45 W/m2 over urban regions. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Background 

 Aerosols, also referred to as particulate matter (PM), have significant effects on 

public health and the climate system. Of special importance is PM with sizes smaller than 

2.5 micrometers (PM2.5) due to its ability to penetrate into the lower respiratory tract 

upon inhalation2. Ambient PM2.5 is associated with high rates of mortality due to adverse 

health effects (e.g. cardiopulmonary disease and lung cancer)3. Fann et al.3 estimated 

130,000 premature death in the U.S. in 2005 was due to exposure to PM2.5. There is 

evidence that among PM2.5 components, carbonaceous aerosols (CA), emitted from 

combustion processes including both anthropogenic (e.g. vehicles, industry, domestic 

heating and cooking) and natural (e.g. wildland fires) sources4, are among the most toxic. 

CA is comprised of black carbon (BC) and organic aerosol (OA), which is also referred 

to organic carbon (OC) when only accounting for the carbon content of the aerosol. A 

study by Janssen et al.5 suggested that CA, especially BC, is a better indicator for 

investigating aerosols health risks than PM2.5. They found that 0.55 µg/m3 decrease in BC 

exposure results in 3.6 months increase in the life expectancy per person while 1.0 µg/m3 

decrease in PM2.5 exposure results in 21 days increase in the life expectancy 5. Turner et 

al.6 found that annual anthropogenic BC-induced mortality rate in 2007, ranges from 

8,400 to 16,000 in the U.S.6.  
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CA, including OA and BC, has a significant effect on the Earth’s radiative balance by 

scattering and absorbing the solar radiation7. BC is a strong absorber of solar radiation 

with a global warming effect potentially second only to carbon dioxide8,9. On the other 

hand, some OA components are purely scattering10 and have a cooling effect, while other 

components, referred to as brown carbon (BrC), also contribute to absorption of solar 

radiation11 alongside BC.  

 

1.2. Emissions from Biomass Burning 

 Emissions from wildland fires are associated with significant impacts on public 

health12–14 and the climate15,16. On the other hand, wildland fires they play an essential 

ecological role that benefits natural resources and promotes ecosystem health and 

resilience17,18. This tradeoff renders planning for the management and mitigation of 

wildland fires a major challenge18, especially due to the chaotic nature of open fires 

which makes model predictions of their public-health and climate impacts highly 

uncertain12,15,19. Wildland fires encompass wildfires, which are usually ignited 

unintentionally, and prescribed fires18. On average in the U.S., prescribed fires (mostly in 

the Southeastern U.S.) and wildfires (mostly in the Western U.S.) cover similar burned 

areas annually of ~3 million ha each, though Western wildfires exhibit significant year-

to-year variability12 and have been increasing in intensity due to increase in global 

temperatures and drought episodes20. With the continued decrease in anthropogenic 

emissions driven by emission standards and regulation21, the fraction of air pollutants 

attributed to wildland fires has been steadily increasing and is projected to continue to do 

so in the future22.  



 

3 

Wildland fires are major emitters of CA, including OA and BC. Numerous laboratory 

studies23–25 and field measurements26–28 have shown that OA from wildland fires is light-

absorbing, and is categorized as BrC29–31. BrC is comprised of various species with a 

wide range of light-absorption properties, usually quantified using the imaginary part of 

the refractive index (k). On average, BrC emitted from biomass burning (including 

wildland fires) exhibits mid-visible k values that are one to two orders of magnitude 

smaller than k of BC31. However, BrC emissions are usually one to two orders of 

magnitude larger than BC32, thus atmospheric BrC absorption is potentially equally 

important to BC. Furthermore, BrC exhibits absorption spectra that are largely skewed 

toward shorter visible and UV wavelengths, which can have important implications for 

photochemistry33,34. 

Representing BrC absorption in chemical transport models is challenging. Reported 

estimates of the global direct radiative effect (DRE) of BrC absorption range between 

+0.03 W/m2 and +0.57 W/m2 33,35. This large range partly reflects the aforementioned 

large variation in BrC light-absorption properties, where different modeling studies have 

used different kBrC values. To account for variability in kBrC, experimental studies have 

developed parametrizations that correlated kBrC in biomass-burning emissions with the 

BC-to-BrC ratio (BC/BrC) in the emissions11,23,36. Specifically, as BC/BrC increases, BrC 

becomes more absorbing (i.e. kBrC increases). The underlying reasoning is that a fraction 

of BrC is formed through the same route as BC, and as the combustion conditions 

become more conducive for BC formation, the light-absorption properties of the emitted 

BrC converge to those of BC37. 
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Further complicating the representation of BrC in chemical transport models is that BrC 

absorption decays upon aging in the atmosphere. This process, referred to as 

photobleaching, involves the destruction of BrC chromophores due to either direct 

photolysis or photochemically induced reactions with OH26,38–41. Atmospheric 

observations of the evolution of wildfire plumes have shown that BrC absorption decays 

with e-folding timescales on the order of 1 day29,42. Wang et al.43  implemented a 

photobleaching scheme in a chemical transport model and found that the global BrC 

absorption DRE dropped from +0.1 W/m2 to 0.048 W/m2 when they incorporated the 

effect of photobleaching. Similarly, Brown et al.44 reported a global BrC absorption DRE 

of +0.13 W/m2 and 0.06 W/m2 with and without photobleaching, respectively. While the 

importance of light absorption by biomass-burning BrC has been established in 

experimental studies and atmospheric observations, the extent to which accounting for 

BrC absorption improves model performance is less clear. 

1.3. Emissions from Gasoline Direct Injection (GDI) Vehicles 

 In 2012, the U.S. Environmental Protection Agency (EPA) and National Highway 

Traffic Safety Administration (NHTSA) put together coordinated programs with new 

standards for enhancing fuel economy and reducing CO2 emissions of on-road vehicles45. 

In response, the average real-world fuel economy of light-duty vehicles in the United 

States increased from 20 miles per gallon for model year 2005 to 24.9 miles per gallon 

for model year 2017 and the average CO2 emissions decreased from 447 g/mile to 357 

g/mile46. Among the most prominent technologies adopted by car manufacturers to 

achieve these fuel-economy and CO2 emissions goals is the gasoline direct injection 

(GDI) engine. Consequently, the market share of GDI-equipped vehicles increased from 
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2.3% in model year 2008 to 51% in model year 201846,47. EPA predicts a continued 

proliferation of GDI engines over the next decade, with a projected 93% of the United 

States fleet to be equipped with GDI engines by 202545. 

Unlike the conventional port fuel injection (PFI) engines which mix fuel and air prior to 

injection into the engine cylinders, the GDI technology involves spraying the fuel directly 

into the cylinders, allowing for higher compression ratios48. As a result, GDI engines 

achieve higher combustion efficiencies compared to their PFI counterparts, leading to the 

enhanced fuel economy and consequently, reduced CO2 emissions. However, similar to 

diesel engines, the direct injection of fuel in GDI engines creates fuel-rich pockets near 

the injection zone. The combustion conditions in these pockets are conducive to 

formation of carbonaceous PM, especially BC49,50. Consequently, GDI engines emit 

larger amounts of BC compared to PFI engines, as has been confirmed by several 

laboratory studies. Using a chassis dynamometer, Saliba et al.51 measured emissions from 

82 light-duty vehicles (67 PFI, 15 GDI) with emission certification standards ranging 

from Tier 1 to SULEV (super ultra-low emission vehicle). They found that while BC 

emissions varied widely across vehicles, GDI vehicles emitted consistently higher levels 

of BC than PFI vehicles within each tier. Saliba et al.51 reported that on average, ULEV 

and SULEV (super / ultra-low emission vehicle) vehicles equipped with GDI engines 

emitted four-times more BC than PFI vehicles.  Similar results were also reported by 

smaller scale chassis-dynamometer studies, yet with varying levels of enhancements, 

ranging between 3 and 50, in BC emissions of GDI relative to PFI vehicles52–59. 

The evidence from these experimental studies indicates that the increase in BC emissions 

from GDI vehicles relative to PFI vehicles can offset the environmental and social 
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benefits associated with their improved fuel economy and reduced CO2 emissions. This 

offset can occur on two levels. First, the increase in BC emissions directly impacts public 

health by contributing to an increase in ambient PM levels, thus imposing a social cost 

due to the known adverse health effects associated with PM3,60,61. Even though BC 

emissions from gasoline vehicles contribute a small fraction of atmospheric PM, they are 

concentrated in regions with high population densities, thus magnifying their effect6. 

Second, BC is a strong absorber of solar radiation with a global-warming effect second 

only to CO2
8,9,62. Therefore, the increase in BC emissions can counterbalance the climate 

benefits of the reduction in CO2 emissions. While previous studies have reported net 

global climate benefits (i.e. global cooling) associated with shifting from PFI to GDI 

technologies51,63, the net climate trade-off can be different on the regional scale, 

especially in regions with high vehicle densities. Due to the shorter lifetime of BC 

relative to CO2 (days versus centuries64), its warming effect is spatially localized and 

concentrated as opposed to CO2 which has a globally uniform warming effect. 

1.4. Objectives and Chapter Organization 

 This dissertation has two main objectives aimed at improving the understanding 

of the climate and public health impacts of combustion CAs over the U.S.. The first 

objective involves incorporating the effect of light-absorbing OA (BrC) emitted from 

wildland fires in the Weather Research and Forecasting model coupled with Chemistry 

(WRF-Chem)65. Also using WRF-Chem as a modeling framework, the second objective 

is to estimate the aerosol-induced public health and direct radiative effects of shifting the 

U.S. gasoline light-duty vehicles fleet from PFI to GDI technology. 
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The dissertation is organized as follows: Chapter 2 presents a review of the 

implementation of BrC absorption in global climate models and highlights the associated 

challenges and uncertainties. Chapter 3 presents our approach of using parallel WRF-

Chem simulations along with observational constraints to test the performance of BrC 

absorption parameterizations in a regional model over the U.S.. Chapter 4 presents our 

study in which we incorporated CA emission measurements from GDI vehicles into 

WRF-Chem in order to compare the air quality and climate impacts of emissions from 

GDI vehicles to traditional PFI vehicles. Chapter 5 presents concluding remarks from the 

two studies. 
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CHAPTER 2 

REVIEW OF THE REPRESENTATION OF BROWN CARBON ABSORPTION IN 

CLIMATE MODELS 

 There are major uncertainties associated with the CA climate effects. The global 

average total radiative forcing (direct and indirect) of BC reported in the literature ranges 

over an order of magnitude, from +0.17 to +2.1 W/m2 with a mean value of 1.1 W/m2 8. 

Generally, models underestimate the absorption by aerosols. The ratio of model to 

observed aerosol absorption optical depth (AAOD) at 550 nm, varies regionally and 

ranges between 0.4 in higher latitudes of North America to 0.7 in Asia and South 

America66. One of the potential reasons for the uncertainties is that solar radiation 

absorption by OA is often not accounted for in climate calculations. Many climate 

models define OA as an only scattering component67. Some models use constant values 

for absorption (the wavelength-dependent imaginary part of refractive index, k)35,68,69 to 

account for the BrC effect, while laboratory and atmospheric measurements indicate a 

three-order of magnitude variability in k values11,70–73. Recent studies have attempted to 

derive parameterizations for improving OA absorption representation. Saleh et al.11 

performed laboratory biomass-burning experiments and identified a correlation between 

the effective OA (BrC) absorption and the BC-to-OA ratio of the emissions. Since then, 

the BC-to-OA ratio has been confirmed to be a good predictor of carbonaceous aerosol 

light-absorption properties25,36. In another study, aerosols single scattering albedo (SSA) 

was parameterized as a linear function of elemental to organic carbon ratio25. 
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Furthermore, Cheng et al.74 parameterized mass absorption cross-section (MAC), that is 

normalized absorption cross-section by absorbing component mass, and absorption 

Ångström exponent (AAE), that is absorption wavelength dependence, as a function of 

BC-to-OA ratio, based on controlled combustion experiments. 

There has been attempts to apply such parameterizations in climate calculations. Saleh et 

al.75 applied BrC absorption parameterization11 to GEOS-Chem model simulations. They 

found that BrC absorption impact on global average DRE is +0.22 W/m2 and +0.12 

W/m2, when aerosols are mixed externally and internally, respectively. In another 

study43, two different BrC absorption parameterizations are used for primary and 

secondary OA separately. Furthermore, they accounted for the decay in BrC absorption 

(photobleaching) in the model by parameterizing photochemical aging of biomass-

burning BrC. They compared model results with aircraft measurements over the U.S. and 

showed that most accurate model results are achieved when both BrC absorption and 

photobleaching effects are accounted for in the model. Also, they found that the mean 

global DRE for year 2014 is +0.048 W/m2 that is about 30% of BC DRE43. In a more 

recent study76, Community Earth System Model (CESM) with a modified version of 

Community Atmosphere Model (CAM) was used to simulate BrC effect on climate in 

year 2010. They found that global average BrC DRE is +0.1 W/m2 that is around 25% of 

BC DRE. However, the results also show that in some tropical regions, BrC DRE is 

higher than BC DRE. 

Brown et al.44 used CESM coupled with a modified CAM to calculate the BrC climate 

effects in the year 2003 to 2011. The results show that nine-year global average DRE of 

BrC is +0.13 W/m2. They also found that implementing the BrC absorption 
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parameterization, described by Saleh et al.11, resulted in an increase in AAE from model 

output and, therefore, a better agreement with Aerosol Robotic Network77 (AERONET) 

observations. However, accounting for BrC absorption in CAM led to underestimating 

SSA compared to AERONET observations44. Hammer et al.33 calculated ultraviolet 

aerosol index (UVAI) using GEOS-Chem model and, also, retrieved UVAI from Ozone 

Monitoring Instrument (OMI) satellite data. Comparing satellite-retrieved and model-

simulated UVAI, they found that the model has a large negative bias (-0.32 to -0.97) over 

biomass-burning regions such as South America and West Africa. However, accounting 

for BrC absorption in the model reduced this bias significantly. They also calculated 

annual mean all-sky DRE of BrC to be +0.03 W/m2. June et al.78 also used GEOS-Chem 

model to evaluate BrC absorption effect in the U.S. compared with Interagency 

Monitoring of Protected Visual Environments (IMPROVE) observations. They found that 

simulated AAOD agrees with those from IMPROVE observations within a factor of 2 

when accounting for photobleaching effect. However, this factor is larger than 4 when 

ignoring photobleaching effect in the model. They also, calculated the global BrC DRE 

for 2016 to be +0.04 W/m2 78. In a more recent study, Brown et al.19 employed 12 

observational datasets and nine global chemical transport models to evaluate biomass-

burning aerosols absorptivity in the models. They found that many models overestimate 

absorption by biomass-burning aerosols and, therefore, underestimate SSA compared to 

observations over biomass-burning regions. They also reported that accounting for BrC 

absorption in the models exacerbated this underestimation19. 

Overall, global climate-modeling studies show high uncertainties in the direct radiative 

effect of BrC absorption, with values ranging between +0.03 W/m2 and +0.57 W/m2 31. 
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Furthermore, there are conflicting results on whether including BrC absorption improves 

or worsens the comparison between models and observations over regions dominated by 

biomass burning emissions. In Chapter 3, we present a detailed investigation of 

representing BrC absorption in a regional climate model. The grid resolution in the 

regional model (12 km in our study) is finer than the global models (usually ranges from 

one to a few latitude/longitude degrees33,43,44,75). This higher grid resolution provides a 

more precise model-observation comparison since a model output parameter in each grid 

cell is averaged over a smaller area compared with a global model. There has been 

attempts for high resolution global modeling but high computational cost is one of the 

main disadvantages79–81. Therefore, a regional climate model allows for a better testing 

platform of BrC parameterizations. We chose a simulation period (August 2015) during 

which OA over the Western U.S. was dominated by high levels of BrC emitted from 

wildfires. 
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OBSERVATIONALLY CONSTRAINED REPRESENTATION OF BROWN CARBON 

EMISSIONS FROM WILDFIRES IN A CHEMICAL TRANSPORT MODEL1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 Neyestani, S.E. and Saleh, R. 2021. To be submitted to Environmental Science & Technology. 
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Abstract 

 The month of August 2015 featured extensive wildfires in the Northwestern U.S. 

and no significant fires in Alaska and Canada. With the majority of carbonaceous 

aerosols (CA), including black carbon (BC) and brown carbon (BrC), over the U.S. 

dominated by emissions from these wildfires, this month presented a unique opportunity 

for testing wildfire BrC representation in the Weather Research and Forecasting model 

with chemistry (WRF-Chem). We performed parallel simulations that (1) did not account 

for BrC absorption, (2) accounted for BrC absorption, and (3) accounted for BrC 

absorption as well as its decay due to photobleaching. We used a comprehensive set of 

extensive and pseudo-intensive optical properties, namely the aerosol optical depth 

(AOD), aerosol absorption optical depth (AAOD), absorption Ångström exponent 

(AAE), and single scattering albedo (SSA) to constrain the model output against 

observations from the  Aerosol Robotic Network (AERONET). We found that accounting 

for BrC absoroption and photobleaching resulted in the best agreement with observations 

in terms of aerosol absorption (AAOD and AAE). However, the model severely 

underestimated AOD and SSA compared to observations. We attributed this discrepancy 

to missing scatering due to missing secondary organic aerosol (SOA) formation from 

wildfire emissions in the model. To test this hypothesis, we applied a zeroth-order 

representation of wildfire SOA, which significantly improved the AOD and SSA model-

observation comparison. Our findings indicate that BrC absorption, the decay of its 

absorption due to photobleaching, as well as SOA formation should be accounted for in 

chemical transport models in order to accurately represent CA emissions from wildfires. 
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3.1. Introduction 

 Emissions from wildland fires are associated with significant impacts on public 

health12–14 and the climate15,16. On the other hand, they play an essential ecological role 

that benefits natural resources and promotes ecosystem health and resilience17,18. This 

tradeoff renders planning for the management and mitigation of wildland fires a major 

challenge18, especially due to the chaotic nature of open fires which makes model 

predictions of their public-health and climate impacts highly uncertain12,15,19. Wildland 

fires encompass wildfires, which are usually ignited unintentionally, and prescribed 

fires18. On average in the U.S., prescribed fires (mostly in the Southeastern U.S.) and 

wildfires (mostly in the Western U.S.) cover similar burned areas annually of ~3 million 

ha each, though Western wildfires exhibit significant year-to-year variability12 and have 

been increasing in intensity due to increase in global temperatures and drought 

episodes20. With the continued decrease in anthropogenic emissions driven by emission 

standards and regulation21, the fraction of air pollutants attributed to wildland fires has 

been steadily increasing and is projected to continue to do so in the future22. 

 Wildland fires are major emitters of carbonaceous aerosol (CA), including organic 

aerosol (OA) and black carbon (BC). Numerous laboratory studies23–25 and field 

measurements26–28 have shown that OA from wildland fires is light-absorbing, and is 

categorized as brown carbon (BrC)29–31. BC is a strong absorber of solar radiation with a 

positive radiative forcing that is globally second only to carbon dioxide8,9. BrC is 

comprised of various species with a wide range of light-absorption properties, usually 

quantified using the imaginary part of the refractive index (k). On average, BrC emitted 

from biomass burning (including wildland fires) exhibits mid-visible k values that are one 
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to two orders of magnitude smaller than k of BC31. However, BrC emissions are usually 

one to two orders of magnitude larger than BC32, thus atmospheric BrC absorption is 

potentially equally important to BC. Furthermore, BrC exhibits absorption spectra that 

are largely skewed toward shorter visible and UV wavelengths, which can have important 

implications for photochemistry33,34. 

Representing BrC absorption in chemical transport models is challenging. Reported 

estimates of the global direct radiative effect (DRE) of BrC absorption range between 

+0.03 W/m2 and +0.57 W/m2 33,35. This large range partly reflects the aforementioned 

large variation in BrC light-absorption properties, where different modeling studies have 

used different kBrC values. To account for variability in kBrC, experimental studies have 

developed parametrizations that correlated kBrC in biomass-burning emissions with the 

BC-to-BrC ratio (BC/BrC) in the emissions11,23,36. Specifically, as BC/BrC increases, BrC 

becomes more absorbing (i.e. kBrC increases). The underlying reasoning is that a fraction 

of BrC is formed through the same route as BC, and as the combustion conditions 

become more conducive for BC formation, the light-absorption properties of the emitted 

BrC converge to those of BC37. 

Further complicating the representation of BrC in chemical transport models is that BrC 

absorption decays upon aging in the atmosphere. This process, referred to as 

photobleaching, involves the destruction of BrC chromophores due to either direct 

photolysis or photochemically induced reactions with OH26,38–41. Atmospheric 

observations of the evolution of wildfire plumes have shown that BrC absorption decays 

with e-folding timescales on the order of 1 day29,42. Wang et al.43  implemented a 

photobleaching scheme in a chemical transport model and found that the global BrC 
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absorption DRE dropped from +0.1 W/m2 to 0.048 W/m2 when they incorporated the 

effect of photobleaching. Similarly, Brown et al.44 reported a global BrC absorption DRE 

of +0.13 W/m2 and 0.06 W/m2 with and without photobleaching, respectively. 

While the importance of light absorption by biomass-burning BrC has been established in 

experimental studies and atmospheric observations, the extent to which accounting for 

BrC absorption improves model performance is less clear. on one hand, several 

investigations have reported that accounting for BrC absorption resulted in better 

agreement between models and observations. Hammer et al.33 compared ultraviolet 

aerosol index (UVAI) values retrieved from Ozone Monitoring Instrument (OMI) data 

and those simulated by a global climate model and found that ignoring BrC absorption in 

the model caused a negative bias in UVAI over biomass-burning regions33. Wang et al.43 

used aircraft measurements over the U.S. to constrain model-simulated BrC absorption. 

They found that best model-measurement agreement was achieved by accounting for 

both BrC absorption and photobleaching. Similarly, June et al.78 found that ignoring 

photobleaching in a global chemical transport model led to overestimating absorption 

aerosol optical depth (AAOD) compared to Interagency Monitoring of Protected Visual 

Environments (IMPROVE) observations. On the other hand, Brown et al.44 found that 

even though implementing BrC absorption in a global chemical transport model led to 

better agreement between model AAE over biomass-burning regions and those retrieved 

from Aerosol Robotic Network (AERONET) observations, the model underestimated 

single scattering albedos (SSA) over biomass-burning regions compared to AERONET. 

This finding was confirmed by a more comprehensive follow-up study which reported 

that all of 9 global models underestimated SSA over biomass-burning regions compared 
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to measurements from 12 observational data sets19. Indeed, that study reported that 

accounting for BrC absorption exacerbated the underestimation of SSA.  

Here, we present a detailed investigation of the extent to which representing absorption 

by BrC from wildfire emissions in a chemical transport model improves the comparison 

with remote-sensing observations. Using the Weather Research and Forecasting model 

with chemistry (WRF-Chem)82, we performed simulations for the month of August 2015 

over the U.S. where we treated OA emissions from wildfires as (1) non-absorbing, (2) 

absorbing (i.e. BrC), and (3) BrC with evolving light-absorption properties due to 

photobleaching. We then applied a comprehensive set of constraints retrieved from 

AERONET observations to assess the model performance for each treatment. The 

constraints included both extensive (AOD and AAOD) and pseudo-intensive (AAE and 

SSA) optical properties. 

3.2. Experimental Design 

 The goal of this study is to assess the importance of accounting for the absorption 

of BrC in wildfire CA emissions for accurately representing their interaction with solar 

radiation. To that end, we performed a series of WRF-Chem simulations over the U.S. for 

the month of August 2015. We chose this month because it featured extensive wildfire 

events in the Northwestern U.S., while no major fires were recorded in Alaska and 

Canada. Therefore, this simulation period presents a unique test case with high levels of 

wildfire CA emissions within the simulation domain and minimal transport from outside 

the domain boundaries. Over the month of August 2015, approximately 93% of the CA 

emissions were from biomass burning (7% were from anthropogenic sources), 92% of 

which were from the Northwestern wildfires. The impact of the CA emissions from the 
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high wildfire activity is depicted in Figure 3.1a, where the modeled monthly average 

wildfire CA column burden exceeded 50 mg/m2 over the Northwestern U.S.. Figure 3.1b 

shows the fraction of CA column burden over the U.S. attributed to the wildfire 

emissions. CA from wildfire emissions dominated the CA column burden over the 

majority of the U.S. regions. The contribution of the Northwestern wildfires to CA is the 

lowest in the Eastern U.S. due to both the long transport distance as well as the relatively 

high levels of anthropogenic CA emissions and biogenic secondary organic aerosol 

(SOA) formation over that region.  

 

Figure 3.1. (a) Column burden of carbonaceous aerosol attributed to biomass-burning 

emissions averaged over the month of August 2015. As evident in the spatial distribution, 

emissions from Northwestern wildfires constitute the majority of biomass-burning 

emissions in the simulation period. Black dots show the locations of AERONET stations 

used in the model-observation comparisons. (b) The fraction of carbonaceous-aerosol 

column burden attributed to biomass-burning (wildfire) emissions. 

In order to assess the impact of representing BrC in wildfire emissions on CA optical 

properties, we performed 4 parallel simulations: 
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1. Base: We treated all OA emissions, including biomass-burning OA, as non-

absorbing. This is the default setting in WRF-Chem. 

2. BrC: We treated biomass-burning OA emissions as BrC based on the 

parameterization of Saleh et al.11, as further elaborated below. Since more than 

90% of biomass-burning OA emissions are attributed to Northwestern wildfires in 

this simulation period, biomass-burning BrC is effectively wildfire BrC. We note 

that anthropogenic OA emissions as well as SOA from all precursors (biogenic, 

anthropogenic, and biomass burning) were treated as non-absorbing. 

3. BrC+bleaching: We accounted for decay in BrC absorption due to photobleaching 

based on the parameterization of Wang et al.43, as further elaborated below.  

4. BrC+bleaching+SOA: We incorporated a zeroth-order representation of SOA 

formation from the oxidation of vapors in wildfire emissions. 

 

3.3. Model Description 

 We employed WRF-Chem82 version 3.8. We set a single domain encompassing 

the contiguous U.S. with a horizontal resolution of 12 km (396 × 246 grid cells) and 30 

pressure-based vertical layers extending up to 50 hPa. The model time step was 60 

seconds and the output was saved as 3-hour averages. A 10-day spin-up time was added 

at the start of the simulation period. The initial and boundary conditions were processed 

for meteorology calculations using the National Center for Environmental Prediction 

(NCEP) final reanalysis data with a horizontal resolution of 1° × 1° and temporal 

resolution of 6 hours83. We also implemented the reanalysis data to apply Four-
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Dimensional Data Assimilation (FDDA) nudging84 to the wind and temperature 

components in the simulations. 

We obtained both anthropogenic and biomass-burning emissions data from the EPA 

National Emission Inventory (NEI)85. In addition to satellite fire detection, wildland-fire 

emissions in NEI are obtained from fire information databases reported by national, 

regional, state, local, and tribal agencies86. We preprocessed the NEI emissions for use in 

WRF-Chem using the Sparse Matrix Operator Kernel Emission (SMOKE)87 model 

version 3.6.5 and converted the SMOKE hourly emission output into WRF-Chem 

compatible input files using EPA_ANTHRO_EMIS code developed by NCAR88. For 

computational efficiency, a simplified plume rise method89 was applied to the fire 

emission sources before using as input in WRF-Chem.  

Gas-phase chemistry was processed using the Model for Ozone and Related Chemical 

Tracers (MOZART)90. Model of Emissions of Gases and Aerosols from Nature 

(MEGAN) version 2 91 was used to calculate biogenic emissions online with 

meteorology. The Model for Simulating Aerosol Interactions and Chemistry 

(MOSAIC)92, which includes major aerosol species such as BC, organic carbon (OC), 

sulfate, nitrate, and ammonium, were selected for simulating aerosol microphysics. 

Within MOSAIC, gas-particle partitioning of semi-volatile organic species and inorganic 

aerosol thermodynamics are simulated based on the volatility basis set framework93 and 

the multi-component equilibrium solver over aerosols94, respectively. Also, we 

represented SOA formation in the model using a simplified parameterization described 

by Hodzic and Jimenez95, where a precursor organic gas is oxidized to form SOA. The 
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emission rate of the precursor organic gas is proportional to CO emission rate that is 

based on SOA-to-CO concentration ratio from observations95. 

WRF-Chem employs Mie theory to perform aerosol optical calculations (scattering 

coefficients and absorption coefficients) using MOSAIC size distributions and the 

complex refractive indices associated with each MOSAIC chemical constituent67. We 

used the model default complex refractive indices except for wildfire BrC, which was 

parameterized as described in the next section. We employed an external mixing 

assumption for BC, and all the other aerosol components were treated as well-mixed 

within each size bin. We note that WRF-Chem does not provide this mixing state as an 

option. Therefore, we defined new (duplicate) size bins for BC particles which were only 

employed for optical calculations in the optical module and thus did not affect the aerosol 

microphysical and chemical processes in the chemical transport module. 

3.4. Brown Carbon Parameterization 

 In its default configuration, WRF-Chem treats OA from all sources, including 

wildfires, as non-absorbing by assigning an OA imaginary part of a refractive index (kOA) 

of zero. In simulations 2, 3, and 4 (described above), we accounted for absorption by 

biomass-burning (mostly wildfire) OA, i.e. we treated wildfire OA as BrC. We applied 

the parameterization of Saleh et al.11, which calculates kBrC of biomass-burning emissions 

as a function of the BC-to-BrC ratio (BC/BrC) in the emissions: 

kBrC,550 = 0.016 × log(BC/BrC)+0.03925 (3.1) 

 

w=
0.2081

BC/BrC +0.0699
 (3.2) 
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Where kBrC,550 is kBrC at 550 nm and w is the wavelength dependence. kBrC at other 

wavelengths is calculated as: 

 

kBrC,λ = kBrC,550× (
550

λ
)

w

 (3.3) 

 

According to this parameterization, kBrC,550 increases while w decreases with increasing 

BC/BrC, signifying that the BrC absorption becomes stronger but has a flatter 

wavelength dependence. The inverse relationship between kBrC,550 and w has been 

observed in several studies23,36,96. It is noteworthy that BC has w = 0 in the visible 

spectrum. 

We note that in Equations 3.1 and 3.2, BC refers to biomass-burning BC and BrC refers 

to biomass-burning OA. Therefore, in order to implement the parameterization 

(Equations 3.1 and 3.2) in WRF-Chem, we defined new species to separate the OA 

emissions into anthropogenic OA and biomass-burning OA (BrC) and the BC emissions 

into anthropogenic BC and biomass-burning BC.  

In simulations 3 and 4 (described above), we accounted for the decay in BrC absorption 

upon aging in the atmosphere due to photobleaching26,38–41 based on the parameterization 

of Wang et al. 43. That study assumed that BrC absorption decreased following a first-

order dynamic response with a time constant (i.e. lifetime) of approximately 1 day29,42 at 

an OH concentration of 5x105 molecules/cm3. Therefore, kBrC at each time step can be 

calculated as: 

kBrC,t+Δt = kBrC,t exp(-
[OH] Δt

5×10
5
) (3.4) 
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Where ∆t is model time step in days and [OH] is OH concentration in molecules/cm3. 

Following Wang et al.43, we did not allow kBrC to drop below 1/4 of the original value (at 

t = 0), which is consistent with atmospheric observations that the decay in absorption 

associated with photobleaching plateaus at a certain threshold29,42. 

Figure A1a in the appendix A shows the spatial distribution of [OH] predicted by WRF-

Chem for the month of August 2015, averaged over the first 8 layers of the model (where 

BrC effect is important). The corresponding BrC absorption half-lives, estimated from 

Equation 3.4, are shown in Figure A1b. The domain-average BrC absorption half-life was 

0.52 days, which is consistent with the global-average half-life of 0.59 days reported by 

Brown et al.44. 

3.5. Observational Constraints 

 In order to assess the optical treatments of BrC, we compared the model output 

with observations from the  AERONET observations77. Figure 3.1 shows the locations of 

AERONET stations (black dots) used in this study. 

The model-observation comparisons included both extensive optical properties, namely 

the aerosol absorption optical depth (AAOD, Figure 3.2) and aerosol optical depth (AOD, 

Figure 3.3), as well as pseudo-intensive optical properties, namely the absorption 

Ångström exponent (AAE, Figure 3.4) and the single scattering albedo (SSA, Figure 3.5). 

We note that even though AAE and SSA do not depend on aerosol concentration, they 

are not fundamental intensive optical properties (like for example, the complex refractive 

index) as they depend on particle size and mixing state of the aerosol. 
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AERONET inversion products use an inversion algorithm described in Dubovik & 

King97 where radiative transfer forward modeling is coupled with statistical estimation 

and priori constraints to optimize the inversion method. AERONET inversion products 

have two quality assurance levels98. The first level (1.5) includes thresholds on azimuth 

and scattering angles while the second level (2.0) applies an extra set of criteria (e.g. 

omitting data points with AODs smaller than 0.4). For this study, we used level 1.5 

AERONET inversion data to retain a large number of data points for comparison with the 

model results. 

AERONET observations are reported at 440 nm, 675 nm, 870 nm, and 1020 nm. For the 

AAOD, AOD, and SSA comparisons, we focus on the observations at 440 nm, where 

BrC absorption is the strongest. Comparisons at 675 nm are shown in Figures A2-A5 in 

the ESI.  

We calculated AAE from AERONET AAOD at 440 nm and 675 nm as: 

 

AAE = 

log (
AAOD440

AAOD675
)

log (
675
440

)
 

 

(3.5) 

WRF-Chem optical properties are calculated at 300 nm, 400 nm, 600 nm, and 999 nm). 

Therefore, we converted WRF-Chem AAOD, AOD, and SSA values to 440 nm for 

comparison with AERONET observations. First, we calculated AAE and the extinction 

Ångström exponent (EAE) from WRF-Chem AAOD and AOD at 400 nm and 600 nm as: 

 



 

25 

AAE = 

log (
AAOD400

AAOD600
)

log (
600
400

)
 (3.6) 

 

EAE = 

log (
AOD400

AOD600
)

log (
600
400

)
 (3.7) 

 

Then, we calculated AAOD and AOD at 440 nm as: 

 

AAOD440 = AAOD400× (
400

440
)

AAE

 (3.8) 

 

AOD440 = AOD400× (
400

440
)

EAE

 (3.9) 

 

3.6. Model-Observation Comparison 

3.6.1. The Base Simulation 

 As shown in Figure 3.2a, the slope of the linear fit to model AAOD versus 

AERONET AAOD at 440 nm is 0.49 for the Base simulation. This underestimation of 

aerosol absorption at 440 nm by approximately a factor of 2 on average is an indication 

of missing BrC absorption in the Base simulation. The effect of missing BrC absorption 

in the model is more evident in the AAE comparison (Figure 3.4a). AERONET AAE 

values range between 0.8 and 1.4, which is consistent with variable contributions of BC 

and BrC to absorption, where smaller AAE values indicate BC-dominated absorption and 

larger AAE values indicate and increased contribution to absorption by BrC. On the other 
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hand, the model AAE values exhibit a narrow range between 0.6 and 0.7 and no 

correlation with AERONET AAE because absorption is the Base simulation is solely 

dictated by BC. 

 

Figure 3.2. Comparison between monthly average AAOD at 440 nm for August 2015 

obtained from AERONET observations and WRF-Chem output with four different model 

treatments of wildfire carbonaceous aerosol emissions. 

The slope of model AOD versus AERONET AOD is 0.31 (Figure 3.3a), which is smaller 

than the slope of the AAOD comparison. This indicates that in addition to the 

underestimation in aerosol absorption in the model, there is a more significant 

underestimation in scattering. As expected, because scattering is more underestimated on 

average than absorption in the model, a substantial fraction of model SSA values are 

smaller than AERONET SSA (Figure 3.5a). The model SSA values are generally 

clustered in two groups, one in good agreement with AERONET and one lower than 

AERONET. This clustering can be understood by examining the spatial distribution of 

model and AERONET SSA in Figure 3.6. The model SSA values are smallest in the 

Northwest, and increase toward the South and East, with the largest values along the 

Eastern region. The AERONET observations are mostly clustered in the Western region 

(where model SSA is smallest) and the Eastern region (where model SSA is the largest 

and closest to AERONET SSA), thus creating the two clusters in Figure 3.5a. More 
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importantly, comparing the spatial distributions of SSA (Figure 3.6) and wildfire CA 

column burden (Figure 3.1b) clearly indicates that the underestimation in model SSA (i.e. 

underestimation in aerosol scattering) is associated with the treatment of wildfire CA in 

the model. The missing wildfire CA scattering is further explored later in this section. 

 

Figure 3.3. Comparison between monthly average AOD at 440 nm for August 2015 

obtained from AERONET observations and WRF-Chem output with four different model 

treatments of wildfire carbonaceous aerosol emissions. 

3.6.2. Effect of Incorporating Carbon Absorption 

 Model AAOD values in the BrC simulation are significantly larger than in the 

Base simulation. As shown in Figure 3.2b, the slope of model AAOD versus AERONET 

AAOD for the BrC simulation is 1.23. The BrC simulation exhibits an improved model-

observation AAOD comparison compared to the Base simulation (slope = 0.49; Figure 

3.2a), though incorporating BrC absorption leads to overestimating AAOD, on average. 

This is further evidenced in the AAE comparison. As shown in Figure 3.4b, model AAE 

in the BrC simulation is better correlated with AERONET AAE compared to the Base 

simulation. However, almost all model AAE values are larger than AERONET AAE 

values. Overall, even though representing BrC based on the parameterization of Saleh et 

al.11 leads to overestimating aerosol absorption, it presents an improvement in the 
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prediction of aerosol absorption compared to the Base simulation, where BrC is 

neglected. 

 

Figure 3.4. Comparison between monthly average AAE for August 2015 obtained from 

AERONET observations and WRF-Chem output with four different model treatments of 

wildfire carbonaceous aerosol emissions. 

BrC absorption has a negligible effect on aerosol scattering and only affects the 

absorption component of aerosol extinction. Consequently, incorporating BrC absorption 

has only a small effect on the AOD model-observation comparison, as evident in 

comparing Figure 3.3a and Figure 3.3b. Because BrC absorption causes a substantial 

increase in absorption and negligible effect on scattering, this is reflected in a substantial 

decrease in SSA in the BrC simulation compared to the Base simulation. As shown in 

Figure 3.5b, incorporating BrC absorption widens the gap between the two clusters 

described above and substantially worsens the SSA model-observation comparison. 

As expected, accounting for the decay in BrC absorption due to photobleaching 

(BrC+bleaching simulation) leads to a reduction in both AAOD and AAE compared to 

the BrC simulation. As shown in Figure 3.2c and Figure 3.4c, the AAOD and AAE in the 

BrC+bleaching simulation exhibit a very good agreement with AERONET observations. 

However, similar to the Base and BrC simulation, the BrC+bleaching simulation severely 

underestimates aerosol scattering as evident in the model-observation AOD comparison 
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(Figure 3.3c). Because incorporating photobleaching reduces BrC absorption, the SSA 

values in the BrC+bleaching simulation (Figure 3.5c) are larger than in the BrC 

simulation (Figure 3.5b) resulting in a slight improvement in the SSA model-observation 

comparison. However, SSA model-observation comparison in the BrC+bleaching 

simulation is still worse than the Base simulation (Figure 3.5a). 

To recap, neglecting BrC absorption (Base simulation) results in a significant 

underestimation of aerosol absorption as evidenced in the model-observation AAOD and 

AAE comparisons. Accounting for BrC absorption (BrC simulation) leads to 

overestimating AAOD and AAE, but results in a better comparison with observation. The 

best agreement in AAOD and AAE with observations is achieved when accounting for 

both BrC absorption and photobleaching (BrC+bleaching simulation). On the hand, all 

simulations severely underestimate scattering compared to observations, as evident in the 

AOD comparisons. We note that the better model-observation agreement of SSA in the 

Base simulation compared to the BrC and BrC+bleaching simulations is rather 

serendipitous; it is due to the fact that the Base simulation underestimates both absorption 

and scattering. 

 

Figure 3.5. Comparison between monthly average SSA at 440 nm for August 2015 

obtained from AERONET observations and WRF-Chem output with four different model 

treatments of wildfire carbonaceous aerosol emissions. 
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3.6.3. The Missing Scattering 

 The model-observation comparisons employed in this study (Figure 3.2, 3.3, 3.4, 

and 3.5) include both absorption and scattering, as well as extensive and pseudo-intensive 

properties. This comprehensive set of constraints enables dissecting the missing 

scattering problem described in the previous sub-section. For instance, the 

underestimation of AOD cannot be explained by an underestimation in wildfire CA 

emissions. Reconciling model and AERONET AODs would require increasing CA 

emissions by a factor of ~3 (Figure 3.3), which would lead to overestimating AAOD 

(Figure 3.2). The underestimation of AOD cannot be explained by wrong BC/BrC or BrC 

optical properties either. Increasing the amount of BrC (or making BrC more absorbing 

and/or scattering) to reconcile the model and AERONET AOD would lead to either 

overestimating AAE, or AAOD, or both. 

A plausible explanation that satisfies the observational constraints is that the model 

misses SOA formation from wildfire emissions. Laboratory experiments99–102 and field 

measurements103–105 have reported SOA formation from the oxidation of vapor precursors 

in wildfire emissions, though to highly variable extents. We performed a simulation 

(BrC+bleaching+SOA) that involves a zeroth-order representation of wildfire SOA in 

addition to representing BrC and photobleaching. We treated SOA formation as direct 

emissions from wildfires alongside BrC (i.e. primary organic aerosol; POA) and BC. We 

assumed equal amounts of SOA and POA, which is within the range of values reported in 

the literature102. For simplicity, we treated wildfire SOA as non-absorbing. Figure 3.7a 

shows monthly average SOA column burdens over the model domain from the Base 

simulation. The relatively high levels of SOA over the Eastern U.S. are due to biogenic 
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volatile organic compounds (VOCs) emissions, which are efficient SOA precursors. On 

the other hand, SOA formation from VOCs and other precursors (intermediate volatility 

and semi-volatile organic compounds)106 in wildfire emissions is missing in the model as 

evidenced by the low SOA levels in the  Northwest. Incorporating BrC leads to a slight 

decrease in SOA concentrations (Figure 3.6b and 6c) because BrC light absorption 

reduces the surface temperature slightly, which leads to a reduction in emission rates of 

biogenic VOCs91. Representing wildfire SOA in the model (BrC+bleaching+SOA 

simulation) increases SOA column burden by about two orders of magnitudes over the 

wildfire regions in the Northwest (Figure 3.7d). 

 

Figure 3.6. The SSA at 440 nm averaged over the month of August 2015 from WRF-

Chem output with four different model treatments of wildfire carbonaceous aerosol 

emissions. The color dots show the locations and SSA values of AERONET stations used 

in the model-observation comparisons. 

Relative to the BrC+bleaching simulation, accounting for SOA formation in the 

BrC+bleaching+SOA simulation has a small effect on AAOD as shown in Figure 3.2c 

and 2d (slope of AAOD comparison increases from 1.05 to 1.15) and AAE (Figure 3.4c 

and 4d). However, accounting for SOA formation has a significant effect on AOD as 

shown in Figure 3.3c and 3d (slope of AOD comparison increases from 0.35 to 0.60), 

thus largely reconciling the model SSA and AERONET SSA (Figure 3.5d). Brown et 
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al.19 performed a comprehensive SSA comparison between 9 global chemical transport / 

Earth system models and 12 observational data sets over globally distributed regions 

dominated by biomass-burning emissions. That study found that all models 

underestimated SSA compared to observations. Since those models did not include SOA 

formation from biomass-burning emissions19, it is plausible that the underestimated 

scattering due to the missing SOA at least partly explains the inconsistency between the 

models and the observations. 

The results obtained from the model-observation comparison performed in this study 

indicate that SOA formation from precursors in wildfire emissions is important and 

should be accounted for in chemical transport models. This SOA has implications not 

only to the radiative balance in the atmosphere, but, perhaps to a larger extent, to air 

quality (public health). Neglecting wildfire SOA can lead to severely underestimating 

aerosol surface concentrations, thus exposure, in regions impacted by wildfire emissions. 

 

Figure 3.7. Column burden of SOA averaged over the month of August 2015 from WRF-

Chem output with four different model treatments of wildfire carbonaceous aerosol 

emissions. 

3.7. Conclusions 

 In this study, we employed a comprehensive set of optical properties retrieved 

from AERONET observations as complementary constraints for testing the 
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representation of wildfire BrC in WRF-Chem. Specifically, the combination of AAOD 

(an extensive aerosol light-absorption property) and AAE (a pseudo-intensive light-

absorption property that describes the wavelength dependence of absorption) 

comparisons showed that BrC absorption should be accounted for in order to reconcile 

model and observed absorption. One could match model and observed AAOD at a certain 

wavelength by scaling wildfire BC emissions, but that would lead to disagreement at 

other wavelengths if BrC absorption was ignored. Overall, the best model-observation 

agreement in terms of aerosol absorption was achieved by representing wildfire BrC 

absorption using the parameterization of Saleh et al.11 and its decay by photobleaching 

using the parameterization of Wang et al.43. However, in order to also reconcile model 

and observed AOD and SSA, we found that the model should account for relatively high 

levels of wildfire SOA (similar levels to wildfire POA). Neglecting wildfire SOA results 

in severely underestimating aerosol scattering. This finding indicates that modeling 

frameworks that do not account for wildfire SOA underestimate exposure to aerosols in 

regions impacted by wildfire emissions. 
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CHAPTER 4 

DIRECT RADIATIVE EFFECT AND PUBLIC HEALTH IMPLICATIONS OF 

AEROSOL EMISSIONS ASSOCIATED WITH SHIFTING TO GASOLINE DIRECT-

INJECTION (GDI) TECHNOLOGIES IN LIGHT-DUTY VEHICLES IN THE UNITED 

STATES1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 Neyestani, S.E. et al. 2020. Environmental Science and Technology. 54:687-696 

 Reprinted here with permission of the publisher. 
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Abstract 

 Due to their enhanced fuel economy, the market share of gasoline direct-injection 

(GDI) vehicles has increased significantly over the past decade. However, GDI engines 

emit higher levels of black carbon (BC) aerosols compared to the traditional port-fuel 

injection (PFI) engines. Here, we performed coupled chemical-transport and radiative-

transfer simulations to estimate the aerosol-induced public-health and direct radiative 

effects of shifting the U.S. fleet from PFI to GDI technology. By comparing simulations 

with current emission profiles and emission profiles modified to reflect a shift from PFI 

to GDI, we calculated the change in aerosol (mostly BC) concentrations associated with 

the fleet change. Standard concentration-response calculations indicated that the total 

annual deaths in the U.S. attributed to particulate gasoline-vehicle emissions would 

increase from 855 to 1599 due to shifting from PFI to GDI. Furthermore, the increase in 

BC associated with the shift would lead to an annual-average positive radiative effect 

over the U.S. of approximately +0.075 W/m2, with values as large as +0.45 W/m2 over 

urban regions. On the other hand, the reduction in CO2 emissions associated with the 

enhanced fuel economy of GDI vehicles would yield a globally uniform negative 

radiative effect, estimated to be -0.013 W/m2 over a 20-year time horizon. Therefore, the 

climate burden of the increase in BC emissions dominates over the U.S., especially over 

source regions. 

 

4.1. Introduction 

 In 2012, the U.S. Environmental Protection Agency (EPA) and National Highway 

Traffic Safety Administration (NHTSA) put together coordinated programs with new 
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standards for enhancing fuel economy and reducing CO2 emissions of on-road vehicles45. 

In response, the average real-world fuel economy of new light-duty vehicles sold in the 

United States increased from 20 miles per gallon for model year 2005 to 24.9 miles per 

gallon for model year 2017 and the average CO2 emissions decreased from 447 g/mile to 

357 g/mile46. Among the most prominent technologies adopted by car manufacturers to 

achieve these fuel-economy and CO2 emissions goals is the gasoline direct injection (GDI) 

engine. Consequently, the market share of GDI-equipped vehicles increased from 2.3% in 

model year 2008 to 51% in model year 201846,47. EPA predicts a continued proliferation of 

GDI engines over the next decade, with a projected 93% of the United States fleet to be 

equipped with GDI engines by 202545. 

Unlike the conventional port fuel injection (PFI) engines which mix fuel and air prior to 

injection into the engine cylinders, the GDI technology involves spraying the fuel directly 

into the cylinders, allowing for higher compression ratios48. As a result, GDI engines 

achieve higher combustion efficiencies compared to their PFI counterparts, leading to the 

enhanced fuel economy and consequently, reduced CO2 emissions by up to 14%107. 

However, similar to diesel engines, the direct injection of fuel in GDI engines creates fuel-

rich pockets near the injection zone, and the combustion conditions in these pockets are 

conducive to formation of carbonaceous particulate matter (PM), especially black carbon 

(BC)49,50. Consequently, GDI engines emit larger amounts of BC compared to PFI engines, 

as has been confirmed by several laboratory studies. Using a chassis dynamometer, Saliba 

et al.51 measured emissions from 82 light-duty vehicles (67 PFI, 15 GDI) with emission 

certification standards ranging from Tier 1 to SULEV (super ultra-low emission vehicle). 

That study found that while BC emissions varied widely across vehicles, GDI vehicles 
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emitted consistently higher levels of BC than PFI vehicles within each tier. Saliba et al.51 

reported that on average, ULEV and SULEV (super / ultra-low emission vehicle) vehicles 

equipped with GDI engines emitted approximately four-times more BC than PFI vehicles 

and similar levels of organic carbon (OC). Enhancement in BC emissions of GDI relative 

to PFI vehicles was also reported by smaller scale chassis-dynamometer studies52–59, yet 

with varying levels of enhancements, ranging between 3 and 50. 

The significant increase in BC emissions in GDI vehicles relative to PFI vehicles can offset 

the social benefits associated with their improved fuel economy and reduced CO2 

emissions. This offset can occur via two processes. First, the increase in BC emissions 

directly impacts public health by contributing to an increase in ambient PM2.5 (particulate 

matter with diameters  smaller than 2.5 µm) levels, thus imposing a social cost due to the 

known adverse health effects associated with PM2.5
3,60,61. Even though BC emissions from 

gasoline vehicles contribute a small fraction of atmospheric PM2.5, they are concentrated 

in regions with high population densities, thus magnifying their effect6. Second, BC is a 

strong absorber of solar radiation with a global-warming effect second only to CO2
8,9,62. 

Therefore, the increase in BC emissions can counterbalance the climate benefits of the 

reduction in CO2 emissions. Previous studies reported net global-mean climate benefits 

(i.e. net global-mean negative radiative effect) associated with shifting from PFI to GDI 

technologies using the global-warming potential (GWP) framework51,63. GWP compares 

the total energy absorbed by a pollutant (in this case BC) versus CO2 over a certain time 

horizon, and is, by definition, on a global scale. However, the net climate trade-off can be 

different on the regional scale, especially in regions with high vehicle densities. Due to the 

shorter lifetime of BC relative to CO2 (days versus centuries64), its radiative effect is 
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spatially localized and concentrated as opposed to CO2 which has a globally uniform 

radiative effect108. 

In this paper, we explore the public-health and climate impacts of a large-scale shift in 

vehicle engine technology from PFI to GDI in the United States. We used a regional 

coupled chemical-transport / radiative-transfer model to estimate spatially resolved 

changes in aerosol (mainly BC) concentrations and the associated direct radiative effect 

(DRE). We also applied standard concentration-response calculations to predict spatially 

resolved premature mortality rates induced by the increased aerosol (PM2.5) exposure. 

4.2. Methods 

4.2.1. Model Description 

 We used the Weather Research and Forecasting model with chemistry (WRF-

Chem)82  version 3.8, which performs coupled meteorology, chemical-transport and 

radiative-transfer calculations. WRF-Chem was configured with a single domain covering 

the contiguous U.S. (approximately 25.1˚ to 52.8˚ N and -123.9˚ to -70.1˚ W), a horizontal 

resolution of 12 km (400 × 260 horizontal grid cells) , and 30 vertical layers extending up 

to 20 km above the surface. The temporal resolution for integrating the governing equations 

(i.e., model timestep) was 60 seconds and output was saved as 3 hourly averages. 

Meteorological initial and boundary conditions were obtained from the National Center for 

Environmental Prediction (NCEP) final reanalysis data with horizontal resolution of 1° × 

1° and temporal resolution of 6 hours83. We also used the reanalysis data to apply Four-

Dimensional Data Assimilation (FDDA) nudging84 to the wind components in the 

simulations to improve model validation against observations and comparison between 

different simulations. 
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We obtained anthropogenic emissions data from the EPA National Emission Inventory 

2011 (NEI-2011)85 and preprocessed it for use in WRF-Chem using the Sparse Matrix 

Operator Kernel Emission (SMOKE)87 model version 3.6.5. Finally, we converted the 

SMOKE output into a format (NetCDF) readable by WRF-Chem using a FORTRAN code 

developed by NCAR88. Gas-phase chemistry was simulated using the Model for Ozone and 

Related Chemical Tracers (MOZART)90, which includes 85 species, 39 photolysis 

reactions, and 157 chemical reactions90. Aerosol microphysics was simulated using the 

Model for Simulating Aerosol Interactions and Chemistry (MOSAIC)92, which explicitly 

tracks major aerosol species such as BC, organic carbon (OC), sulfate, nitrate, and 

ammonium in eight size bins. MOSAIC simulates gas-particle partitioning of semi-volatile 

organic species based on the volatility basis set framework93 and inorganic aerosol 

thermodynamics based on the multi-component equilibrium solver over aerosols94. The 

formation of secondary organic aerosols (SOA) was simulated using the parameterization 

described in Hodzic & Jimenez95. 

WRF-Chem simulates the direct radiative effect of aerosols, online, using the Rapid 

Radiative Transfer Model - Global (RRTMG) scheme109. The extensive aerosol optical 

properties (scattering coefficients, absorption coefficients, and asymmetry parameters) 

required for the radiative-transfer calculations were calculated based on MOSAIC size 

distributions and the complex refractive indices associated with each MOSAIC chemical 

constituent67. This step requires assumptions on mixing state and morphology, for which 

WRF-Chem provides various options. For mixing state, we used the internal mixing option 

where the species were internally mixed within each MOSAIC size bin, which is the most 

realistic assumption based on atmospheric measurements110. We also used the spherical 
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core-shell morphology option, with BC residing in the core and the other components 

forming a well-mixed shell75,111,112, in order to apply the core-shell Mie theory optical 

model113. We did not account for light-absorbing organic aerosols (brown carbon, BrC) in 

these simulations. A summary of other models and configurations used in the simulations 

is given in Table B1 in appendix B. 

4.2.2. Experimental Design 

 We performed numerical experiments to estimate the public-health and direct 

radiative effects associated with the change in carbonaceous aerosol (BC and OA) 

concentrations due to shifting the U.S. gasoline vehicle fleet from PFI to GDI. To establish 

a baseline for these estimates, we also quantified the effects of the aerosol emissions from 

the gasoline fleet prior to shifting to GDI. We conducted three parallel WRF-Chem 

experiments with different aerosol emission factors from gasoline vehicles. In the first 

experiment, we set the gasoline-vehicle aerosol emissions to zero. This experiment, 

referred to as “no-gasoline,” served as a control for the other two experiments. The 

gasoline-vehicle aerosol emissions in the second experiment were obtained from the NEI-

2011 emission inventory85. Since the NEI-2011 emission inventory was based on 

laboratory measurements of PFI vehicles114, the difference between this experiment, 

referred to as “PFI,” and the “no-gasoline” experiment represents the baseline effect of 

gasoline vehicles prior to shifting to GDI. In the third experiment, referred to as “GDI,” we 

modified the NEI-2011 gasoline-vehicle aerosol emission factors assuming that the entire 

U.S. fleet was shifted from PFI to GDI. Therefore, the difference between the “GDI” and 

“PFI” experiments is not meant to capture the gradual shift from PFI to GDI technologies, 

but rather represents an upper-bound estimate that anticipates the endpoint of the rapid 
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proliferation of GDI vehicles46,47. The effect of shifting from PFI to GDI, i.e. the difference 

between the “GDI” and “PFI” experiments, is represented as PFI → GDI. 

We calculated the gasoline-vehicle aerosol emission factors in the “GDI” experiment based 

on the laboratory study of Saliba et al.51, which reported tailpipe emission factors of various 

gaseous and aerosol species from a comprehensive test fleet. In our calculations, we used 

the data from the study’s ULEV and SULEV vehicles, 20 of which had PFI engines (17 

ULEV and 3 SULEV) and 13 had GDI engines (5 ULEV and 8 SULEV). We modified the 

NEI-2011 emission factors of BC and OC in the “GDI” experiment as: 

EF"GDI"=S×EFNEI-2011 (4.1) 

Where EFGDI and EFNEI-2011 are the emission factors in the “GDI” experiment and NEI-

2011 inventory, respectively, and S = EFGDI / EFPFI is a scaling factor (4.22 for BC and 

0.92 for OC) calculated as the ratio of the median GDI and PFI emissions reported in 

Saliba et al.51. Modifying the emission factors in this fashion captures the impacts of 

changes in engine technology while ensuring consistent miles driven across the 

simulations. 

 It is important to note that vehicle-to-vehicle variability as well as differences in 

measurement techniques and conditions lead to a large variability in reported aerosol 

emission factors, even for vehicles with the same engine technology and emission 

standards51,53,115. Therefore, the emission factors from a single study are unlikely to 

capture the average behavior of the U.S. fleet represented in the NEI inventory. The 

advantage of our scaling approach is that it does not require the PFI emission 

measurements in Saliba et al.51 to be consistent with the NEI inventory, but rather that the 

scaling factor in equation (4.1) applies universally. This is justified because the PFI and 
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GDI emissions in Saliba et al.51 were measured from a comprehensive test fleet (20 PFI 

and 13 GDI) using the same instruments and under the same conditions, thus eliminating 

measurement inconsistencies. Furthermore, the BC scaling factor (4.22) we calculated 

from Saliba et al.51 is consistent with BC scaling factor (approximately 4.5) we calculated 

from the data reported in Zimmerman et al.107. That study compiled a comprehensive set 

of BC emission factors from various studies that measured BC emissions from PFI and/or 

GDI vehicles. The agreement between the BC scaling factors calculated from the Saliba 

et al. and Zimmerman et al. data provides further confidence in our choice of BC scaling 

factor. 

We executed the numerical experiments for 2 one-month simulation periods for the 

months of January and July of the year 2011 to capture seasonal variability. Each 

simulation started from identical initial conditions, with the first 10 days excluded from 

the analysis as spin-up time. Imposing consistent lateral boundary conditions and nudging 

the wind fields within the domain constrained difference in internal variability between 

the simulations, such that the differences in aerosol concentrations could be mostly 

attributed to emissions. 

4.3. Results and Discussion 

4.3.1. Model Validation 

 To validate the model output, we compared the monthly average BC, OA, and 

PM2.5 surface concentrations from the “PFI” experiments (i.e. using standard NEI-2011 

emissions) with observations obtained from the Chemical Speciation Network (CSN)116 

and the Interagency Monitoring of Protected Visual Environments (IMPROVE)116 network 

(Figure 4.1). CSN consists of 51 stations around the U.S., mostly in urban areas, and 
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IMROVE consists of 110 stations that measure mostly background concentrations. 

Following Boylan and Russell1 and Tessum et al.117, we assessed the model performance 

using three performance metrics: normalized mean error (NME), mean fractional error 

(MFE), and root-mean-square error (RMSE) (see appendix B). As shown in appendix B 

Figure B1, the model achieves the performance goals (defined by Boylan and Russell1  as 

the performance the model should strive to achieve) for BC and OA for both the January 

and July simulations. For PM2.5, the model achieves the performance criteria (defined by 

Boylan and Russell1 as the performance necessary for regulatory purposes) for all model-

observation comparisons except for the July IMPROVE comparison. We note that the error 

in the modeled PM2.5 in July is partly due to the high dust levels in the summer118, which 

are not captured well by the model. However, since this study focuses on the effects of 

aerosol emissions from vehicles (BC and OA), the error in PM2.5 concentrations associated 

with underestimating dust concentrations has minimal effect on the analysis presented in 

the subsequent sections. 

We also used the same performance metrics (NME, MFE, and RMSE) to assess the model 

performance in predicting meteorological parameters (surface temperatures, incoming 

solar radiation fluxes, and horizontal wind speed) compared to observations from the Clean 

Air Status and Trends Network (CASTNET)119 measurements (Figure B2). Numerical 

values of the performance metrics for all meteorological parameters and particulate 

pollutants are given in appendix B Table B2. 
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Figure 4.1. Comparison between monthly average BC, OA, and PM2.5 surface 

concentrations (µg/m3) predicted by the model and obtained from IMPROVE (blue) and 

CSN (red) observational data for 2011. (a) BC, January. (b) BC, July. (c) OA, January. (d) 

OA, July. (e) PM2.5, January. (f) PM2.5, July. 
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4.3.2. The effect of Shifting from PFI to GDI on Aerosol Concentrations 

 We estimated the monthly (January and July) average BC, OA, and PM2.5 surface 

concentrations attributed to the 2011 U.S. gasoline (PFI) fleet emissions as the difference 

between surface concentrations in the “PFI” and “no-gasoline” experiments. Similarly, 

we estimated the BC, OA, and PM2.5 surface concentrations attributed to gasoline 

vehicles after shifting to GDI as the difference between surface concentrations in the 

“GDI” and “no-gasoline” experiments. Finally, we obtained the effect of shifting from 

PFI to GDI on the surface concentrations as the difference between surface 

concentrations in the “GDI” and “PFI” experiments. The results are shown in Figure 4.2 

(BC), Figure 4.3 (OA), and Figure 4.4 (PM2.5). 

Comparing Figure 4.2b and 2f reveals that the contribution of gasoline vehicles to BC 

surface concentrations is stronger in January than in July. This is in part due to the fact 

that aerosol (BC and OA) emission factors from transportation sources exhibit an inverse 

relation with temperature114, leading to higher emissions in the winter. As expected, 

shifting from PFI to GDI results in a substantial increase in BC surface concentrations in 

both January (Figure 4.2c and 4.2d) and July (Figure 4.2g and 4.2h) due to the factor of 

4.22 increase in BC emission factors (section 4.2.2).  

Similar to BC, the OA surface concentrations attributed to gasoline vehicles in January 

are larger than in July (Figure 4.3b and 4.3f). And as expected, shifting from PFI to GDI 

results in a small decrease in OA surface concentrations in January (Figure 4.3c and 4.3d) 

due to the factor of 0.92 decrease in OA emission factors (section 2.2). Interestingly, the 

contribution of gasoline vehicles to OA surface concentrations in July is predicted to be 

negative in certain regions (Figure 4.3f and 4.3g). This is associated with the high levels 



 

46 

of biogenic emissions and consequently SOA formation in the summer, especially over 

the Eastern U.S.120. Specifically, due to the feedback between radiative transfer, 

meteorology, and chemistry in WRF-Chem, aerosols affect the downward solar radiation 

and surface temperatures, which in turn affect the biogenic emission factors. Therefore, 

the differences in vehicle aerosol emissions between the “no-gasoline,” “PFI,” and “GDI” 

experiments induce differences in the biogenic emissions in the three experiments, 

leading to differences in SOA formation, and consequently OA surface concentrations 

(see Figure B3). 

As shown in Figure 4.4, the change in January PM2.5 surface concentrations due to 

shifting from PFI to GDI is dominated by the relatively large increase in BC surface 

concentrations. On the other hand, the change in July PM2.5 surface concentrations due to 

shifting from PFI to GDI is less substantial. It is positive over regions where the increase 

in BC is dominant, and negative over some regions with high SOA concentrations, which 

are most sensitive to the decrease in biogenic emissions, as described in the previous 

paragraph. 
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Figure 4.2. Monthly average BC surface concentrations in January (top panels) and July 

(bottom panels) 2011. Panels (a) and (e), obtained from the “PFI” experiments, 

correspond to the total BC concentrations. Panels (b) and (f), obtained as the difference 

between the “PFI” and “no-gasoline” experiments, correspond to the contribution of the 

2011 gasoline fleet (PFI) to BC. Panels (c) and (g), obtained as the difference between 

the “GDI” and “no-gasoline” experiments, correspond to the contribution of gasoline 

vehicles to BC after shifting to GDI. Panels (d) and (h), obtained as the difference 

between the “GDI” and “PFI” experiments, correspond to the effect of shifting from PFI 

to GDI on BC. 
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Figure 4.3. Monthly average OA surface concentrations in January (top panels) and July 

(bottom panels) 2011. Panels (a) and (e), obtained from the “PFI” experiments, correspond 

to the total OA concentrations. Panels (b) and (f), obtained as the difference between the 

“PFI” and “no-gasoline” experiments, correspond to the contribution of the 2011 gasoline 

fleet (PFI) to OA. Panels (c) and (g), obtained as the difference between the “GDI” and 

“no-gasoline” experiments, correspond to the contribution of gasoline vehicles to OA after 

shifting to GDI. Panels (d) and (h), obtained as the difference between the “GDI” and “PFI” 

experiments, correspond to the effect of shifting from PFI to GDI on OA. 
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Figure 4.4. Monthly average PM2.5 surface concentrations in January (top panels) and 

July (bottom panels) 2011. Panels (a) and (e), obtained from the “PFI” experiments, 

correspond to the total PM2.5 concentrations. Panels (b) and (f), obtained as the difference 

between the “PFI” and “no-gasoline” experiments, correspond to the contribution of the 

2011 gasoline fleet (PFI) to PM2.5. Panels (c) and (g), obtained as the difference between 

the “GDI” and “no-gasoline” experiments, correspond to the contribution of gasoline 

vehicles to PM2.5 after shifting to GDI. Panels (d) and (h), obtained as the difference 

between the “GDI” and “PFI” experiments, correspond to the effect of shifting from PFI 

to GDI on PM2.5. 

 

4.3.3. Public-Health Impacts of Shifting from PFI to GDI 

 We quantified the public-health impacts of the increase in PM2.5 concentrations 

associated with shifting from PFI to GDI in terms of the increase in PM2.5-related 

mortality rates compared to the baseline PM2.5-related mortality rates attributed to 

gasoline vehicles. Due to the absence of reliable epidemiological data on species-specific 

health effects61,121, these calculations followed the EPA methodology of assigning the 
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same health effects to all PM2.5 species122. We calculated spatially resolved attributable 

fractions (AF), defined as the ratio of PM2.5-related mortality to total all-cause 

mortality123: 

AF=1-exp(-βC) (4.2) 

The derivation of equation (4.2) is given in the appendix B. β (m3/µg) is the concentration-

response factor, calculated from epidemiological data as 0.005827 124 and C is the modeled 

yearly average – assumed to be the average of January and July experiments –  PM2.5 

surface concentrations (µg/m3) attributed to gasoline vehicle emissions. To validate the 

assumption that the average of January and July PM2.5 concentrations are representative of 

the annual averages, we investigated the applicability of this assumption to 

CSN/IMPROVE observations. We compared the annual average PM2.5 concentrations to 

the January/July averages from observations at each CSN/IMPROVE location. As shown 

in Figure B4, the median, 25th percentile, and 75% percentile of the relative differences for 

CSN and IMPROVE are 27.3%, 1.4%, and 36.2%, respectively and -1.3%, -13.3%, and 

20.5%, respectively. Since our analysis focuses on the public-health impacts of vehicle 

PM2.5 emissions, which are mostly carbonaceous (BC and OA), we also performed similar 

comparison but for the BC + OA fraction of PM2.5. Figure B5 shows the relative difference 

in BC + OA concentrations between annual and January/July averages at each 

CSN/IMPROVE location. The median, 25th percentile, and 75% percentile of the relative 

differences for CSN are 11.1%, -2.9%, and 21.7%, respectively and for IMPROVE are 

3.9%, -13.0%, and 18.8%, respectively, thus supporting our use of January/July averages 

to represent annual averages. 

Figure 4.5a shows yearly county-averaged AF associated with annual baseline gasoline-

vehicle emissions in 2011. As expected, the fraction of premature mortality attributed to 
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gasoline-vehicle PM2.5 emissions is greatest in counties with high population / vehicle 

densities. As shown in Figure 4.5b and 4.5c, shifting the U.S. gasoline fleet from PFI to 

GDI is predicted to almost double the number of premature deaths attributed to gasoline-

vehicle PM2.5. Using county-resolved annual premature mortality (Y) data from the Center 

for Disease Control and Prevention (CDC) (http://wonder.cdc.gov/ucd-icd10.html, 

accessed on 06/07/2019), we calculated the total premature deaths associated with PM2.5 

emitted by gasoline vehicles in the U.S. as: 

M=∑ (AF×Y) (4.3) 

Our calculations suggest that in 2011, 855 premature deaths were associated with PM2.5 

vehicle emissions. This is in good agreement with the findings of Turner et al. (2015)6, 

who estimated that in 2008, 600 premature deaths were attributed to gasoline-emitted BC. 

Our calculations indicate that shifting to GDI results in a total 1599 premature deaths 

attributed to gasoline-emitted PM2.5, an increase of 744 deaths over PFI. 

 

 

 

http://wonder.cdc.gov/ucd-icd10.html
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Figure 4.5. Annual average attributable fraction (AF) associated with PM2.5 emitted by 

gasoline vehicles. The color scale represents the number of PM2.5-induced deaths per 

10,000 all-cause premature deaths. (a) AF associated with baseline gasoline emissions in 

2011 (PFI), calculated based on PM2.5 concentrations obtained as the difference between 

the “PFI” and “no-gasoline” experiments. (b) AF associated with gasoline emissions after 

shifting to GDI, calculated based on PM2.5 concentrations obtained as the difference 

between the “GDI” and “no-gasoline” experiments. (c) The effect of shifting from PFI to 

GDI on AF, calculated as the difference between (b) and (a). 

Using the EPA recommended mean value of statistical life (VSL) of $8 million125, the 

annual social cost of premature deaths attributed to gasoline-vehicle PM2.5 emissions is 

estimated at $6.84 billion in 2011. Shifting from PFI to GDI would increase the annual 

social cost by $5.95 billion to a total of $12.79 billion. While these calculations involve 

assumptions on several levels (a complete shift from PFI to GDI, uniformity of the PM2.5 

concentration-response function, in addition to assumptions embedded in any attempt to 

monetize a social cost), they indicate that the public-health impacts of shifting the U.S. 

gasoline fleet to GDI technology imposes a non-negligible social cost. This cost should 

be weighed against the social benefits associated with the enhanced fuel economy and 

reduction in CO2 emissions. Furthermore, it is important to note that our calculations 
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represent 12 km × 12 km grid averages and do not capture the acute exposure to high 

levels of PM2.5 that affects communities in close proximity to major roadways126,127. An 

increase in vehicle PM2.5 emissions disproportionately affects these, usually 

vulnerable126, communities. 

4.3.4. Direct Radiative Effect of Shifting from PFI to GDI 

 We calculated the monthly average (January and July 2011) direct radiative effect 

(DRE) of carbonaceous aerosols emitted by gasoline vehicles as: 

DRE=↑f
0
-↑f

aerosol
 (4.4) 

Where ↑f0 is the net upward shortwave flux at the top of the atmosphere without gasoline-

emitted carbonaceous aerosols, obtained from the “no-gasoline” experiment, and ↑faerosol is 

the upward flux with the gasoline-emitted carbonaceous aerosols, obtained from either the 

“PFI” or “GDI” experiments. We note that the DRE defined in equation (4.4) is not species-

specific as is often the case in aerosol DRE calculations (e.g. DRE of BC), but is source-

specific as it corresponds to the DRE of carbonaceous aerosols (BC and OA) emitted by 

gasoline vehicles. To stress this distinction, we use the notation DREPFI and DREGDI. We 

also define the DRE associated with shifting from PFI to GDI as: 

DREPFI→GDI=DREGDI-DREPFI (4.5) 

Figure 4.6 shows the monthly average (January and July 2011) DREPFI, DREGDI, and 

DREPFI→GDI. Due to the feedback between radiation, chemical-transport, and meteorology 

in WRF-Chem, the difference in emissions, and consequently radiative balance, between 

the “no-gasoline,” “PFI,” and “GDI” experiments resulted is slight differences in 

meteorological conditions and SOA formation rates. This was manifested as noise in DRE 

over the highly resolved 12 km × 12 km WRF-Chem grid. The DRE values in Figure 4.6 
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represent spatial averages over U.S. climate divisions128. Due to the competing warming 

effect of BC and cooling effect of OA, the January DREPFI values range from slightly 

negative to slightly positive, with the exception of some Midwestern and Northeastern 

regions (Figure 4.6a). The magnitude of the July DREPFI values (Figure 4.6d) are smaller 

than January, which is in-line with the lower BC concentrations attributed to gasoline-

vehicle emissions in July (see Figure 4.2), but could also be partly associated with 

differences in geophysical factors that affect the atmospheric radiative balance. Overall, 

the carbonaceous aerosol emissions by the (PFI) 2011 gasoline fleet exhibit an almost 

neutral direct radiative effect over the U.S., with spatially averaged DREPFI values of 

+0.031 and +0.015 W/m2 in January and July, respectively. The significant increase in BC 

emissions associated with shifting to GDI results in a positive DREGDI and DREPFI→GDI, as 

shown in Figure 4.6b, 4.6c, 4.6e, and 4.6f. As expected, the direct radiative effect is most 

prominent over regions with high vehicle densities in the Eastern U.S. and to a lesser extent 

over California. Furthermore, in the Northeastern U.S., the direct radiative effect in January 

(DREGDI→PFI up to +0.84 W/m2) is significantly stronger than in July (DREGDI→PFI up to 

+0.18 W/m2). As discussed above, this could be in part attributed to the fact that the aerosol 

emission factors of gasoline vehicles increase with decreasing temperature114. Therefore, 

the increase in BC emissions is more significant during the winter, leading to larger 

DREPFI→GDI values. This effect is most prominent in the Northeastern U.S. as it experiences 

the coldest winters among the U.S. regions. Another contributor to the large January 

DREPFI→GDI over the Northeastern U.S. is the high surface albedo due to snow 

accumulation in the winter (see Figure B6). 
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Figure 4.6. Monthly average direct radiative effect (DRE) of carbonaceous aerosols 

emitted by gasoline vehicles for January (top panels) and July (bottom panels) 2011. The 

left panels (a and d) correspond to DREPFI, the DRE associated with the 2011 gasoline 

fleet (PFI), obtained as the difference in radiative balance between the “PFI” and “no-

gasoline” simulations. The middle panels (b and e) correspond to DREGDI, the DRE 

associated with the gasoline vehicles after shifting to GDI, obtained as the difference in 

radiative balance between the “PFI” and “no-gasoline” simulations. The right panels (c 

and f) correspond to DREPFI→GDI, the DRE associated with shifting from PFI to GDI, 

calculated as the difference between the middle and left panels (equation 4.5). 

4.3.5. Climate Trade-off of Shifting from PFI to GDI 

 When discussing the climate implications of shifting the U.S. gasoline fleet from 

PFI to GDI technology, it is important to present the discussion within the context of 

relevant spatial and temporal scales. For instance, the mean DREPFI→GDI over the whole 

U.S. is modest (+0.10 W/m2 for January and +0.05 W/m2 for July), and the global-mean 
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DREPFI→GDI is expected to be even smaller. However, due to the short atmospheric lifetime 

of aerosols (days64), the local DREPFI→GDI exhibits large values over source regions, as 

evident in Figure 4.6. On the other hand, the atmospheric lifetime of CO2 is up to 200 

years129, resulting in a large-capacitance system that exhibits well-mixed behavior and, 

consequently, a globally uniform CO2 radiative effect130. Therefore, even over regions with 

high vehicle emissions (e.g. the Northeastern U.S.), the local radiative effect associated 

with the reduction in CO2 due to shifting from PFI to GDI (RECO2,PFI→GDI) is similar in 

magnitude to the global-mean RECO2,PFI→GDI, which is expected to be relatively small (see 

below). On the other hand, DREPFI→GDI over these source regions is much larger in 

magnitude than the global-mean DREPFI→GDI, and is expected to be much stronger than 

RECO2,PFI→GDI. Furthermore, the atmospheric concentrations of BC, thus its direct radiative 

effect, relaxes to a new steady state on a timescale of days in response to a change in 

emission profiles. Therefore, the BC-induced climate burden (warming) due to shifting 

from PFI to GDI is realized over much shorter timescales than the climate benefit (cooling) 

of the reduction in CO2. 

We compared DREPFI→GDI calculated in section 3.4 to first-order estimates of RECO2,PFI→GDI 

assuming globally well-mixed CO2 and therefore, globally uniform RECO2,PFI→GDI (see 

appendix B for calculation details). Therefore, the RECO2,PFI→GDI obtained from this 

calculation is assumed to be equal to the local RECO2,PFI→GDI over a certain region and can 

be compared with the DREPFI→GDI over the same region to obtain the net local radiative 

effect associated with the trade-off between the increase in BC emissions and decrease in 

CO2 emissions. To estimate the decrease in CO2 concentrations, we considered an extreme 

upper-bound scenario corresponding to 1) a complete shift of the global gasoline fleet from 
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PFI to GDI and 2) a 15% reduction in gasoline-vehicle CO2 emissions due to the shift, 

which is the high end of the estimates in Zimmerman et al.63. We then calculated the yearly 

average RECO2,PFI→GDI after the shift (Figure B7). Even with these extreme estimates in 

CO2 reduction, RECO2,PFI→GDI is only -0.013 W/m2 after 20 years. The reason is that 

gasoline vehicles contribute approximately 7% of the global CO2 emissions131, and 

therefore, a global shift from PFI to GDI corresponds to only 1% reduction in global CO2 

emissions. The yearly average DREPFI→GDI over the U.S., taken as the average of the 

January and July experiments in section 3.3, is +0.075 W/m2, more than a factor of 5 larger 

than RECO2,PFI→GDI. The difference is even larger over climate divisions with high vehicle 

densities in the Northeast and the Midwest (Figure 4.5), where the yearly average 

DREPFI→GDI is as high as +0.45 W/m2. 

The seeming inconsistency between our findings and those of previous studies that reported 

net climate benefits (i.e. negative net radiative effect) of shifting from PFI to GDI using 

the global warming potential (GWP) framework51,63 is due to the difference in spatial scales 

considered in the analyses. The GWP framework provides a simplified global-mean 

comparison of the energy absorbed by a pollutant (in this case BC) versus CO2 over a 

certain time horizon, and therefore does not provide information on the local/regional 

trade-off of shifting from PFI to GDI. On the other hand, our analysis utilizes a regional 

modeling framework that resolves these localized effects. Furthermore, the GWP analysis 

only provides information on whether the net effect is negative or positive51,63, but does 

not provide quantitative estimates of the magnitude of the net radiative effect (i.e. in W/m2). 

As described above, a high-end estimate of RECO2,PFI→GDI is only -0.013 W/m2 over a 20-

year time horizon. Therefore, even if we ignore the global-mean DREPFI→GDI, the net 
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global-mean radiative effect of shifting from PFI to GDI and the associated climate benefits 

(e.g. the effect on global-mean temperatures) are expected to be minimal. 

4.3.6. Implications 

 The calculations and discussion in section 3.4 and 3.5 illustrate the importance of 

the spatial scales considered for quantifying the climate trade-off associated with the 

emerging GDI technology due to the difference in spatial scales at which BC (aerosols) 

and CO2 (well-mixed green-house gases) exert their influence108. A shift from PFI to GDI 

is expected to yield net global-mean climate benefits (e.g. a decrease in global-mean 

temperature). However, the magnitude of this effect (i.e. in W/m2) is expected to be 

rather small because gasoline vehicles contribute only 7% of the global CO2 emissions131. 

Therefore, the reduction in gasoline-vehicle CO2 emissions due to shifting from PFI to 

GDI has a minimal effect on atmospheric CO2 concentrations. On the other hand, the 

increase in BC emissions imposes localized acute impacts both on public health (Figure 

4.5) and direct radiative effect (Figure 4.6). While a quantitative economic analysis that 

weighs the social costs associated with these impacts against the benefits associated with 

the reduction in CO2 emissions132 is beyond the scope of this work, our results provide 

strong evidence that such analysis is necessary for developing robust policy vis-à-vis the 

position of GDI in the landscape of future vehicle technologies. We note that the results 

obtained in this study do not account for the potential of incorporating gasoline 

particulate filters (GPFs) for reducing BC emissions from GDI vehicles. GPFs impose a 

penalty on fuel economy and are subject to technical challenges that need to be resolved 

before reliable practical implementation107. Our results suggest that the development and 



 

59 

implementation of GPFs is crucial for GDI engines to be a viable solution for enhanced 

fuel economy without compromising air quality. 
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CHAPTER 5 

CONCLUSIONS, FUTURE WORK, AND LIMITATIONS 

 We used WRF-Chem as a regional climate model and observational datasets to 

improve the representation of CA’s concentrations, optical properties, radiative effects, 

and public health effects in the U.S.. More specifically, the two main objectives of this 

dissertation are to: (1) account for the light absorption of BrC emitted from biomass 

burning (wildfires) in WRF-Chem model and quantify its effect on aerosol optical 

properties, and (2) estimate the public health and direct radiative effect of the change in 

CA emissions associated with shifting the U.S. gasoline light-duty vehicles fleet from PFI 

to GDI engines. 

For the first objective, we employed a comprehensive set of optical properties retrieved 

from AERONET observations as complementary constraints for testing the 

representation of wildfire BrC in WRF-Chem. Specifically, the combination of AAOD 

(an extensive aerosol light-absorption property) and AAE (a pseudo-intensive light-

absorption property that describes the wavelength dependence of absorption) 

comparisons showed that BrC absorption should be accounted for in order to reconcile 

model and observed absorption. One could match model and observed AAOD at a certain 

wavelength by scaling wildfire BC emissions, but that would lead to disagreement at 

other wavelengths if BrC absorption was ignored. Overall, the best model-observation 

agreement in terms of aerosol absorption was achieved by representing wildfire BrC 

absorption using the parameterization of Saleh et al.11 and its decay by photobleaching 
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using the parameterization of Wang et al.43. However, in order to also reconcile model 

and observed AOD and SSA, we found that the model should account for relatively high 

levels of wildfire SOA (similar levels to wildfire POA). Neglecting wildfire SOA results 

in severely underestimating aerosol scattering. This finding indicates that modeling 

frameworks that do not account for wildfire SOA underestimate exposure to aerosols in 

regions impacted by wildfire emissions. For future work, the simulations can be 

improved in several ways. In this study, for simplicity, we used a zeroth-order 

approximation in the model to represent SOA formation from wildfire emissions, where 

SOA was emitted directly with POA. The SOA formation can be parameterized in the 

model to reflect time-dependent conversion of VOCs to SOA that depend on atmospheric 

age and oxidant (e.g. OH) concentrations. Furthermore, one limitation in implementing 

BrC light absorption parameterization in the model is that wildfire BC-to-OA ratio in the 

emission inventory used in this study is only based on the fuel (land-cover) type32,133. 

However, wildfire BC-to-OA ratio also depends on combustion conditions11,23. There are 

no modeling frameworks that account for this dependence, but future work in our group 

aims to exploit satellite observations to categorize wildfires based on their intensities and 

utilize this information to represent the dependence of BC-to-OA ratio on combustion 

conditions. Finally, the simulations in this study focused only on the month of August 

2015, which was used as a natural experiment to constraint the effect of BrC in wildfire 

emissions. In order to assess the effect of wildfire emissions on radiative transfer and air 

quality, future work will involve running the model for an extended simulation period 

(e.g. one year) instead of one-month period, which provides enough results to estimate 
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annual radiative effect of BrC light absorption as well as the surface concentrations of 

wildfire CA and their health effects. 

For the second objective, we modified BC and OA emissions from gasoline light-duty 

vehicles in the emission inventory based on measurement studies to investigate the 

public-health and direct radiative effect of shifting from PFI to GDI engines. The results 

show that the premature deaths associated with BC and OA (i.e. PM2.5) vehicle emissions 

and, therefore, the social cost, would be doubled after shifting the gasoline vehicles fleet 

to GDI technology. It is important to note that the public health cost of shifting to GDI 

engines varies significantly over the U.S., with very strong public health effect in urban 

regions with high vehicle density and negligible effect over less populated regions. The 

(relatively fine) 12 km grid resolution used in this study captures the contrast between 

urban and rural areas. However, we expect that there are large variations in PM2.5 levels 

near major roadways that occur at sub-km length scales and thus are not captured in our 

simulations. The high levels of PM2.5 mostly impact near-roadway, usually low-income, 

communities. The simulated DRE also shows that switching gasoline vehicles from PFI 

to GDI engines leads to a warming effect over the U.S., especially during cold months of 

the year and over regions with high vehicle density. On the other hand, this shift has a 

global evenly distributed climate benefit (cooling effect) due to the decrease in CO2 

emissions from GDI engines. Our study suggests that, at regional scale, the warming 

effect associated with increase in BC emission from GDI engines is stronger than the 

cooling effect due to reduction in CO2. It is important to note that in this study we 

assumed a complete instantaneous switch of the U.S. gasoline light-duty vehicles fleet 
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from PFI to GDI engines. In future works, we can construct different scenarios that 

involve a more realistic gradual shift from PFI to GDI. 
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APPENDIX A 

SUPPORTING INFORMATION FOR CHAPTER 3 

 

 

Figure A1. (a) OH concentration averaged over the month of August 2015 and averaged 

over first 8 vertical layers. (b) BrC absorption half-life averaged over the month of 

August 2015 and averaged over first 8 vertical layers. 

 

Figure A2. Comparison between monthly average AAOD at 675 nm for August 2015 

obtained from AERONET observations and WRF-Chem output with four different model 

treatments of wildfire carbonaceous aerosol emissions. 
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Figure A3. Comparison between monthly average AOD at 675 nm for August 2015 

obtained from AERONET observations and WRF-Chem output with four different model 

treatments of wildfire carbonaceous aerosol emissions. 

 

Figure A4. Comparison between monthly average SSA at 675 nm for August 2015 

obtained from AERONET observations and WRF-Chem output with four different model 

treatments of wildfire carbonaceous aerosol emissions. 
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APPENDIX B 

SUPPORTING INFORMATION FOR CHAPTER 4 

 

B.1. Performance Metrics Calculations 

 Following Boylan and Russell1 and Tessum et al.117, we assessed the model 

performance using three performance metrics: normalized mean error (NME), mean 

fractional error (MFE), and root-mean-square error (RMSE): 

NME=
∑ |Mi-Oi|

n
i=1

∑ Oi
n
i=1

 (B1) 

 

MFE=
1

n
∑

2×|Mi-Oi|

(Mi+Oi)

n

i=1

×100 (B2) 

 

RMSE=√
∑ (Mi − Oi)2
n
i=1

n
 (B3) 

Where n is number of stations, Mi denotes time-averaged model concentration at station i, 

and Oi denotes time-averaged observed concentration at station i. 

 

B.2. Derivation of Attributable Fraction (AF) 

 Epidemiological data show that premature mortality rates exhibit a log-linear 

relation with PM2.5 concentrations. The concentration-response factor is defined as the 

slope of this relation: 
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β=
∆lnM

∆C
 (B4) 

Where M represents the premature mortality rate and C represents the PM2.5 

concentrations. 

Equation (B4) can be written for any two M values, M1 and M2: 

M2

M1

=RR=exp(β×∆C) (B5) 

Where RR is the relative risk associated with increasing the PM2.5 concentration by ∆C. 

Krewski et al.124 reported 6% increase in premature mortality (i.e. RR = 1.06) for ∆C = 10 

ug/m3. The concentration response factor can therefore be calculated as β = ln(1.06) / 10 

= 0.005827. 

The attributable fraction, the ratio of premature deaths due to increasing PM2.5 

concentration by ∆C to total all-cause premature deaths, is defined as: 

AF=
(M2-M1)

M2

=1-
(M1)

M2

=1-exp(-β×∆C) (B6) 

 

B.3. Calculations Used in Climate-Tradeoff Analysis 

 We calculated the yearly average radiative effect associated with the reduction in 

CO2 emissions due to shifting the global gasoline-vehicle fleet from PFI to GDI using the 

simplified approximation134: 

RECO2,PFI→GDI=5.35×ln (
CGDI

CPFI

) (B7) 



 

89 

Where CPFI is the yearly average global CO2 concentration assuming current emission 

profiles and CGDI is the concentration assuming a complete instantaneous global shift from 

PFI to GDI. 

At year zero, CPFI and CGDI are set to the current level of 400 PPM135 (~0.73 g/m3). Then 

for each year, the concentrations are calculated as: 

C(i)=
[E+C(i-1)×V]

V
 (B8) 

Where C(i) and C(i-1) are the yearly average CO2 concentrations in the current year and 

previous year, respectively. E is the yearly global CO2 emission rate, estimated at 33,333 

metric tons / year136  for the baseline (PFI) scenario. For the GDI scenario, E is estimated 

based on a 15% reduction in gasoline-vehicle CO2 emissions63. Since gasoline vehicles 

contribute approximately 7% of global CO2 emissions131 , E for the GDI scenario is 

estimated at 32,983 metric tons / year. V ≈ 3.2 x 1018 m3 is the volume of the 

troposphere137. We note that while a CO2 loss rate should be included in equation (B8), 

the loss rate cancels out in the ratio CGDI / CPFI in equation (B7) and can therefore be 

ignored. 
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B.4. Figures 

 

Figure B.1. Comparison of calculated BC (red), OA (green), and PM2.5 (purple) MFEs 

with suggested accuracy levels by Boylan & Russell1. Circles show calculated MFE 

based on IMPROVE and triangles show calculated MFE based on CSN network. Filled 

circles/triangles demonstrate January-averaged, and no-fills are July-averaged. 
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Figure B.2. Comparison between monthly average surface temperature (K), incoming 

solar radiation flux (W/m2), and wind speed (m/s) predicted by the model and obtained 

from CASTNET observational data for 2011. (a) temperature, January. (b) temperature, 

July. (c) solar radiation, January. (d) solar radiation, July. (e) wind speed, January. (f) 

wind speed, July. 
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Figure B.3. The Monthly average isoprene emission (top panels), α-Pinene emission 

(middle panels), and SOA surface concentrations (bottom panels) in July 2011. Panels 

(a), (e), and (i), obtained from the “PFI” experiments, correspond to the total biogenic 

emissions and SOA concentrations. Panels (b), (f), and (j), obtained as the difference 

between the “PFI” and “no-gasoline” experiments, correspond to the contribution of the 

2011 gasoline fleet (PFI) to the biogenic emissions and SOA concentrations. Panels (c), 

(g), and (k), obtained as the difference between the “GDI” and “no-gasoline” 

experiments, correspond to the contribution of gasoline vehicles to the biogenic 

emissions and SOA concentrations after shifting to GDI. Panels (d), (h), and (l), obtained 

as the difference between the “GDI” and “PFI” experiments, correspond to the effect of 

shifting from PFI to GDI on the biogenic emissions and SOA concentrations. 
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Figure B.4. The relative difference between January/July and annual average PM2.5 

concentration, based on a) CSN and b) IMPROVE observations. 
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Figure B.5. The relative difference between January/July and annual average 

carbonaceous (BC + OA) aerosols concentration, based on a) CSN and b) IMPROVE 

observations. 
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Figure B.6. Monthly average surface albedo in a) January and b) July, 2011. 

 

Figure B.7. Yearly average climate benefits quantified as the radiative effect of the 

reduction in CO2 emissions associated with a global shift from PFI to GDI. 
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B.5. Tables 

Table B.1. Models and configurations used in WRF-Chem simulations. 

Process Model / Configuration 

Planetary boundary layer Yonsei University method138 

Land surface model NOAH surface model139 

Surface layer National Center for Atmospheric Research (NCAR) / 

Penn State Mesoscale Model (MM5)140 

Microphysics Lin141 

Cumulus parameterization Kain-Fritsh142 

Meteorological 

boundary/initial conditions 

and data assimilation 

National Center for Environmental Prediction (NCEP) 

final reanalysis data83 

Biomass-burning emissions Fire Inventory from NCAR (FINN)133 

Bio-emissions Model of Emissions of Gases and Aerosols from Nature 

(MEGAN)91 

Gas-phase chemistry Model for Ozone and Related Chemical Tracers 

(MOZART)90  

Aerosol process Model for Simulating Aerosol Interactions and 

Chemistry (MOSAIC)92 
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Table B.2. Calculated performance metrics (NME, MFE, and RMSE) for monthly-

averaged model results. 

Month Parameter Observation NME (%) MFE (%) RMSE 

Jan. 

BC 
IMPROVE 43.4 32.9 0.16 

CSN 42.8 28.5 0.40 

OA 
IMPROVE 68.9 39.5 1.41 

CSN 47.7 30.0 1.74 

PM2.5 
IMPROVE 48.8 44.3 2.96 

CSN 47.4 36.2 7.83 

Temperature 
CASTNET 0.8 0.5 2.58 

Solar radiation 
CASTNET 21.7 18.0 22.06 

Wind speed 
CASTNET 54.5 36.4 1.73 

July 

BC 
IMPROVE 34.1 22.7 0.12 

CSN 30.3 20.8 0.25 

OA 
IMPROVE 47.6 28.3 1.36 

CSN 38.1 24.3 1.18 

PM2.5 
IMPROVE 60.4 63.0 4.43 

CSN 51.2 43.0 6.79 

Temperature 
CASTNET 0.4 0.3 2.58 

Solar radiation 
CASTNET 11.3 7.3 36.18 

Wind speed 
CASTNET 49.7 39.0 1.12 

 


