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ABSTRACT 

Renal cell carcinoma (RCC) is one of the deadliest urogenital cancers today. Detecting and 

staging renal cell carcinoma involves expensive imaging tests and biopsy, which is invasive 

and can be riddled with sampling errors. Alternative, non-invasive, cost-effective 

diagnostic methods will significantly reduce the burden of RCC in the world. Given that 

metabolic rewiring is required for the onset and progression of RCC, and the proximity of 

urine with the kidney, I set out to discover a urinary metabolic biomarker for RCC using 

advances in machine learning. Metabolomics is the study of small molecules in biological 

samples – and as the apogee of the omics trilogy, it is the closest to an organism phenotype. 

In this dissertation, liquid chromatography-mass spectrometry (LC-MS) and nuclear 

magnetic spectroscopy (NMR) were used for untargeted metabolite profiling for broad 

analyte coverage. I employed the use of machine learning to mine the metabolomics data 

generated. Machine learning (ML) is a type of artificial intelligence that entails 

computational techniques for learning patterns in a complex dataset. I conducted three 

categories of ML tasks in the dissertation – binary classification, regression, and ML model 

interpretations. All data modalities are tabular. Using untargeted metabolomics and ML, I 



  

utilized human urine samples to discriminate between healthy controls and RCC to identify 

biomarkers that can be used for RCC detection. In addition, I predicted RCC primary tumor 

sizes using selected urinary metabolites, as well as the discrimination of early-stage RCC 

from advanced-stage RCC. Furthermore, I introduced a state-of-the-art interpretable 

machine learning (IML) technique called Shapley Additive Explanations (SHAP). SHAP 

was used to interpret ML models’ predictions for publicly available clinical metabolomics 

dataset – and also to interpret a ML model prediction for RCC detection.    These studies 

led to the accurate detection and staging of RCC in the study cohort and the identification 

of some novel metabolic markers. In addition, the ML methods presented in the thesis can 

be used to advance biomarker discoveries in other omics fields.  
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 Renal Cell Carcinoma 

Renal cell carcinoma (RCC) is a group of cancers that originate from renal tubular 

epithelial cells, and it makes up to 90% of kidney cancer diagnoses1-2. RCC is one of the 

top ten most common cancers in the world1, with major histological subtypes including 

clear cell RCC (ccRCC), papillary RCC (pRCC), and chromophobe RCC (chRCC). ccRCC 

is the most prevalent RCC subtype, with about 75% in metastatic presentations 3. The organ 

primarily affected, the kidney, are two bean-shaped organs about 4-5 inches long. The 

kidney’s function is to maintain the homeostatic balance of solutes in the body, and it filters 

out waste products from the blood that – in turn – get converted into urine. Blood with 

waste comes into the kidney through the renal artery, filtered blood leaves via the renal 

vein, while urine leaves the kidney through the ureter into the bladder (Figure 1-1). A 

nephron is the functional unit of the kidney composing of the glomerulus, which filters the 

blood, and the renal tubules, which engage in the reabsorption and secretion of substances. 

The secreted substances include wastes and water, which is urine. 
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Figure 1-1. The Kidney: Showing the Movement of Biofluids In and Out of the Organ.  

 

1.1.1 Epidemiology and Risk Factors 

About 2% of all cancer diagnoses originate from the kidney2. Every year, ~300,000 

kidney cancer cases are reported, with about 145,000 deaths. In the United States, 13,780 

people are estimated to die from kidney cancer in 2021, with a projected 76,080 diagnoses4. 

According to the NCI Surveillance, Epidemiology, and End Results (SEER) database, 

kidney cancer occurrence has increased in the developed world over the past several 

decades, with incidence rates doubling in the United States since 19755. In addition, a 

female is diagnosed for every two males diagnosis, and the lifetime risk of men and women 

developing kidney cancer is about 2% and 1%, respectively5. According to the American 

Cancer Society, the average age at the time of diagnosis is 64 years6. The chances of 

developing kidney cancer increase as we age, and diagnosis at a younger age (less than 45 

years old) might indicate a hereditary kidney cancer syndrome7. Localized kidney cancer 
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has a 5-year relative survival rate of 93%, a 70% rate for regional RCC, and a 13% rate for 

distant RCC. Localized means no sign of tumor spread beyond the kidney, regional means 

that cancer has spread beyond the kidney to nearby structures, while distant implies that 

cancer has spread to distant organs of the body8. In aggregate, there is a 75% 5-year survival 

rate of RCC patients in the United States8.  

As indicated above, age and sex are two of the unmodifiable risks factor for RCC, 

with older people and men more likely to have the disease. In the United States, SEER age-

adjusted incidence rates between 2000-2018 also indicate that RCC rates are lowest 

amongst Asian/Pacific Islanders and highest amongst American Indian/Alaska natives5. 

Apart from the unmodifiable risk factors, there are also modifiable risk factors for RCC, 

including smoking, obesity, diet, alcohol intake, and hypertension. As is the case with lung 

and bladder cancer, smoking is one of the most significant modifiable risk factors for RCC. 

Tobacco smoke consists of several compounds, many of which are carcinogenic, such as 

Polycyclic aromatic hydrocarbons (PAHs) and Tobacco-specific nitrosamines (TSNAs)9. 

As these compounds are filtered through the kidney, the compounds get metabolized and 

lead to inflammation and DNA damage, paving the way for carcinogenesis2. In a 

retrospective study including 845 eligible patients with advanced RCC, former smokers 

had a 1.6-fold increased odds of advanced RCC, while current smokers have a 1.5-fold 

increased odd10. In a meta-analysis of 24 studies of the effect of cigarette smoking in renal 

cell carcinoma occurrence, the relative risk (RR) of RCC for smokers to non-smokers was 

1.38, and increased pack sizes smoked per day increases the RR of RCC11. In addition, 

smoke cessation for greater than ten years reduces the RR compared to the cohort with 

smoke cessation between 1-10 years11.  
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Obesity is a risk factor for many cancer types, such as colorectal cancer and breast 

cancer, including RCC. For example, Insulin and insulin-like growth factors (IGF) levels 

have been indicated to influence cancer risk and cancer prognosis 12. In addition, positive 

associations have been reported between adipocytes cytokines, leptin and adiponectin, and 

the risk of RCC13. A case-control study from Italy that studied the effect of lifetime physical 

activity and risk of renal cell cancer concludes that 9% of RCC cases in Italy could be 

avoided by increasing physical activities14. For the effects of diet, a case-cohort study has 

shown that cruciferous vegetable consumption decreases RCC risk15. In contrast, studies 

on the effect of meat consumption on RCC have been contradictory16-17. A meta-analysis 

of 23 studies indicates a positive association between processed and red meat consumption 

and RCC risk16, while other studies suggest no such risk17. Also, moderate alcohol 

consumption has been shown to reduce RCC risk18. Genetic factors also influence RCC 

risk, with alterations in at least 11 genes been identified. These genes include VHL, TCS2, 

TSC1, SDHD, SDHC, SDHB, PTEN, MET, FH, FLCN, BAP119.  Familial history of RCC 

increases the risk of developing the disease by two-fold20. 
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Figure 1-2. Summary of Incidence and Risk Factors of RCC.  

Kidney cancer is responsible for 3% of all adult malignancies in females and 5% of all 

adult malignancies in males. In females, kidney cancer is the 5th most prevalent cancer type 

and the 7th most prevalent cancer type in males4.  

 

1.1.2 Pathophysiology and Mechanisms 

von Hippel-Lindau (VHL) tumor suppressor gene is the most altered gene in clear 

cell renal cell carcinoma (ccRCC)21-22. Mutations include indels, point mutations, 3p25 

loss, and epigenetic modification such as promoter methylation23-24. The VHL gene codes 
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for the VHL protein, a substrate for an E3 ligase complex, which binds hypoxia-inducible 

factors (HIFs) for proteasome-mediated degradation1. As such, loss of the VHL gene leads 

to HIF accumulation. Under normoxemia and in the presence of VHL protein (pVHL), 

proline residues on HIF 1-alpha (HIF1A) and HIF 2-alpha (HIF2A) are hydroxylated, and 

they bind pVHL where they get targeted for polyubiquitination and in turn proteasome 

degradation. On the other hand, in the absence of pVHL, HIFA dimerizes with HIF beta 

(HIFB) to form a complex and migrate into the nucleus, where it acts as a transcription 

factor to upregulate proangiogenic genes. These genes include vascular endothelial growth 

factor (VEGF)23,  platelet-derived growth factor-beta (PDGFB), and transforming growth 

factor-alpha (TGFA)25, in addition to upregulation of erythropoietin and extracellular 

matrix – laying the stage for tumorigenesis. However, studies in mice and humans indicate 

that VHL loss is not a sole requirement to induce RCC26-27. 

In that vein, genomic sequencing studies have implicated more gene alterations in 

ccRCC apart from VHL, and they include tumor suppressor genes protein polybromo-1 

(PBRM1), BRCA1-associated protein 1 (BAP1), and SET domain-containing protein 2 

(SETD2). They encode chromatin and histone regulating proteins, and they are located at 

3p2121, 28-30. While there are no predictive genetic biomarkers for ccRCC, some clinical 

correlations in genetic mutations with ccRCC have been reported. For example, VHL 

mutation is considered the founding process for ccRCC and does not have any strong 

relationships with clinical outcomes. On the other hand, mutations in PBRM1, BAP1, and 

SETD2 have been linked to disease progression and have associations with aggressive 

clinical phenotypes31-33.  
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Importantly, renal cell carcinoma is driven by metabolic alterations, like other 

cancers34. For example, in ccRCC, the consequence of the pseudohypoxia induced by the 

inactivation of VHL implies significant metabolic reprogramming to accommodate cellular 

proliferation35. Increased glucose metabolism and reductive carboxylation had been 

reported in ccRCC36. Increased glucose metabolism is a hallmark of tumors, and reductive 

carboxylation allows for tumor growth by using citrate for fatty acid synthesis37. In 

addition, pentose phosphate metabolism is upregulated in ccRCC to support nucleotide 

biosynthesis via the synthesis of ribose sugars21, 36.  

 

 

Figure 1-3. von Hippel-Lindau (VHL) Tumor Suppressor Gene and Hypoxia-

inducible Factors in Clear Cell Renal Cell Carcinoma 
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1.1.3 Urine Metabolomics of RCC  

Several studies have been undertaken to identify urine biomarkers in RCC. In Table 

1-1, some of the notable urine metabolomics studies that compare RCC to controls are 

highlighted, indicating the study sample size, the race or location of sample collection, the 

analytical platform used for measurements, and the biomarker identified.  

 

Table 1-1. Some Notable Urine-based Metabolomics Studies Comparing RCC to 

Controls 

Study  Sample 

Size 

Race/Loca

tion of 

Sample 

Collection 

Platform Biomarker  

(Increase in 

RCC) 

Biomarker  

(Decrease in 

RCC) 

Kind et 

al. 

200738  

6C, 6N Tennessee, 

US 

HILIC-LC-

MS, GC-

TOF-MS, 

RP-

UHPLC-

MS 

No compound 

identification 

No compound 

identification 

Kim et 

al. 

200939 

11C*, 

15N 

Texas, US 

California, 

US 

HILIC LC-

MS 

No compound 

identification 

 

Kim et 

al. 

201140 

29C, 

33N 

California, 

US 

UHPLC-

MS, GC-

MS 

Quinolinate, 

alpha-

ketoglutarate 

Gentisate 

Monteir

o, M. et 

al. 

201641 

42C, 

49N  

Portugal NMR 2-ketoglutarate, N-

methyl-2-

pyridone-5-

carboxamide, bile 

acids, galactose, 

pyruvate, 

succinate, and 

valine 

4-

hydroxyhippurate, 

4-

hydroxyphenylace

tate, acetone, 

GAA, glycine, 

hippurate, 

malonate, 

phenylacetylgluta

mine, tartrate, 

trigonelline 
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Ragone 

et al. 

201642  

40C*, 

29N  

Italy NMR  Creatine, alanine, 

lactate, and 

pyruvate 

Hippurate, citrate, 

and betaine 

Monteir

o, M. et 

al. 

201743 

30C, 

37N 

Portugal GC-MS 2-oxopropanal 2,5,8-trimethyl-

1,2,3,4- 

tetrahydronaphthal

ene-1-ol 

Niziol et 

al. 

201844 

7C*, 

15N 

Poland LC-HRMS Hydroxybutyrylcar

nitine, 

decanoylcarnitine, 

propanoylcarnitine

, carnitine, 

dodecanoylcarnitin

e, and 

norepinephrine 

sulfate. 

riboflavin, 

acetylaspartylgluta

mate 

Liu et 

al. 

201945 

100C, 

129N 

China (all 

Chinese 

subjects) 

LC-MS N-

Jasmonoyltyrosine

, Androstenedione, 

Dopamine 4-

sulfate, 3-

Methylazelaic 

acid, 7alpha-

hydroxy-3-

oxochol-4-en-24-

oic acid, 

Lithocholyltaurine, 

11-Dodecenoic 

acid 

Tetrahydroaldoste

rone-3-

glucuronide, 

Cortolone-3-

glucuronide 

Wang et 

al. 

201946 

117 

C**, 

98N 

China UPLC-MS  α-CEHC, 

flunisolide, 

glycerol 

tripropanoate 

β-cortolone, 

deoxyinosine, 

11b,17a,21-

trihydroxypregnen

olone 

Zhang 

et al. 

202047 

39C, 

68N  

China LC-MS  Aminoadipic acid, 

2-(formamido)-

N1-(5-phosphod-

ribosyl) 

acetamidine and 

alpha-N-

phenylacetyl-l-

glutamine 

C* = clear cell renal cell carcinoma. C = renal cell carcinoma, N=healthy controls, C** = 

53 bladder cancer patients and 64 RCC. HILIC-LC-MS: Hydrophilic Interaction 
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Chromatography Liquid Chromatography Mass Spectrometry, GC-TOF-MS: Gas 

Chromatography Time-Of-Flight Mass Spectrometry, RP-UHPLC-MS: Reverse Phase 

Ultra High-Performance Liquid Chromatography Mass Spectrometry, LC-HRMS: Liquid 

Chromatography-High Resolution Mass Spectrometry, VOC: Volatile organic compounds. 

 

Studies comparing benign renal tumors and RCC were not included in this review. In 

Monteiro, M. et al. 2016, hypoxanthine and isoleucine are potentially confounded41. In 

Monteiro, M. et al. 2017, the biomarkers were selected from the 21 initial VOCs, using 

two independent small sample sets43. In Niziol et al. 2018, the biomarkers in urine were 

also present in the tissue44. In Wang et al. 201946, bladder cancer patients are confounders; 

the biomarkers identified were validated in an external cohort consisting of 30 RCC and 

44 controls; and in addition, only early-stage RCC patients (T1 and T2 stages) were 

considered.   

1.2 Metabolomics for Biomarker Discovery 

Metabolomics is a field of study that investigates metabolites profile within 

biological samples48. It measures the small-molecule compounds, both endogenous and 

exogenous molecules, which are substrates, intermediates, and products of cellular 

processes, collectively called the metabolome49. As such, metabolomics studies the 

biological phenotype of an organism (i.e., the metabolome), with imprints of genetics and 

the environment. Metabolomics experiments often proceed with two main experimental 

methodologies: untargeted metabolomics and targeted metabolomics50. In the former, 

experiments are carried out to measure thousands of metabolic features without explicit 

hypotheses; in contrast, in the latter, only ‘targeted’ metabolites or groups of metabolites 
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are measured to test a specific hypothesis. A biomarker is a biological feature used to track 

the presence, absence, or progression of a diseased or physiological condition of an 

organism. Therefore, biomarker discoveries in metabolomics are mostly achieved via 

untargeted (or global) metabolomics.  This is accomplished via comparing the metabolic 

profile of healthy (or control) samples with diseased samples to identify discriminative 

metabolites (i.e., the biomarkers).  

Metabolomics experiments are often carried out by mass spectrometry (MS) and/or 

nuclear magnetic resonance (NMR), as they are used to characterize the molecular 

composition of a sample51. NMR leverages atomic nuclei’s magnetic property to 

characterize the molecular composition of samples. In MS, samples are ionized, and the 

ions are separated, and the mass-to-charge ratio is detected and measured to elucidate 

molecular compounds. MS has higher sensitivity compared to NMR52. As such, MS affords 

a much more extensive metabolite coverage than NMR. Liquid chromatography (LC) and 

gas chromatography (GC) are used for complex mixture separation before detection with 

MS. In that vein, in MS experiments, more complicated sample preparation is required, 

while minimal sample preparation is needed for NMR. This makes NMR desirable for large 

sample size studies, as the time of sample preparation is lower compared to MS. Another 

advantageous quality of NMR is that, because samples are not ionized for detection, 

recovery of samples after data acquisition is possible. In addition, NMR has high 

reproducibility. It is important to note that data collection is just the first step in 

metabolomics, as it involves chemistry (metabolite identification), statistics, and machine 

learning 53-54. In the following sections, NMR will be discussed further, especially in the 



 

12 

context of urine metabolomics. In addition, applications of machine learning techniques 

for data mining are discussed.     

1.2.1 Nuclear Magnetic Resonance Spectroscopy (NMR) 

Nuclei such as 1H, 13C, 15N, and 31P possess nuclear spins of ½, and NMR takes 

advantage of this property to interrogate the chemical environment of the nuclei, and hence 

the molecular composition of samples. In the absence of a magnetic field, they are 

randomly oriented; however, when an external magnetic field is applied, they become 

parallel to the applied magnetic field, either aligned with or opposed. This creates a spin 

configuration: the spin-aligned state is the lower energy state, and the spin-opposed state 

is the higher energy state.  

The distribution of the nuclei between different energy states in thermal equilibrium 

is given by Boltzmann distribution: 

 𝑁𝛽

𝑁𝛼
= 𝑒−∆𝐸/𝑘𝐵𝑇 

(1.1) 

Where 𝑁𝛽 and 𝑁𝛼 represents the number of nuclei in the upper energy and lower energy 

states respectively.  ∆𝐸 is the energy difference between the upper and lower energy states, 

𝑘𝐵 is the Boltzmann constant, and 𝑇 is the absolute temperature in Kelvin. In proton and 

other nuclides,  ∆𝐸 is very small compared to the  𝑘𝐵𝑇, which is the average energy of the 

thermal motions, as such the populations at the two energy states are almost equal with 

only a small excess number of spins aligned (lower state) – which is in the region of parts 

per million (ppm). 

In NMR, in order to extract information about the nuclei, an electromagnetic field 

is used to flip this spin state (spin-flip). The energy difference between the spin states (∆𝐸) 

equals the energy required for the spin-flip, which corresponds to the radio frequency range 
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of the electromagnetic spectrum (also called resonance frequency). The resonance 

frequency of a particular nucleus is, in turn, dependent on the magnetic field strength at the 

nucleus.     

In brief, when NMR samples are placed in the magnetic field, the active nuclei will 

precess at a particular resonance frequency. The resonance frequency is measured in the 

time domain as free induction decays (FIDs), and FIDs are converted to the frequency 

domain via Fourier transformation (FT), resulting in the NMR spectrum (Figure 1-4). As 

such, the signal in the NMR spectrum is the resonance, and the frequency of the resonance 

is the chemical shift. The chemical shift of a resonance is defined in reference to the 

resonance of a reference compound, and it is independent of spectrometer frequency. The 

formula for computing chemical shift 𝛿 is shown below:  

𝛿 =  
𝑠𝑖𝑔𝑛𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 − 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑚𝑒𝑡𝑒𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
× 106 

Because of the natural abundance of hydrogen (99.97%), 1H NMR is the most common 

type of NMR spectroscopy. Sample preparation for biofluids such as urine for proton NMR 

experiments involves the addition of 1) a deuterated solvent such as deuterium oxide 

(D2O), which ensures the stability of the magnetic field for quality data output, 2) a 

reference compound standard, as described above and 3) a buffer (saline or phosphate) that 

controls pH differences between samples.  Henceforth, 1H NMR will be simply referred to 

as NMR. 
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Figure 1-4. A Sample 1D 1H NMR Spectra.  

These data are used in chapter 3. Numbers indicate identified metabolites. 

 

1.2.1.1 Experimental Design 

In the study carried out for this thesis, urine samples were stored at -800 C – as is 

the recommendation for other biofluids used in metabolic profiling – to prevent metabolic 

alterations 55-56. After sample collection, experiments were carefully designed to detect any 

confounding variables such as instrumental or sample preparation bias. The methodology 

used for untargeted NMR metabolomics experimental design will be summarized (also see 

Figure 1-5). The first important concept is sample randomization, as all samples in the 

study are randomized to correct any bias that might emanate from sample preparation and 

NMR data collection. In addition, multiple experimental controls are deployed for the 
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study. First are the NMR buffer blanks, which help detect any carry-over of biofluids from 

one sample to the next during high-throughput NMR measurements. In addition, it is used 

to confirm that there are no contaminations during sample preparation.   

The NMR buffer blank constitutes high-performance liquid chromatography 

(HPLC) grade water, saline/phosphate buffer, and deuterated solvent. The buffer blank 

should consist of 5% of the total samples in the study and should be arranged as such: for 

each NMR racks, one buffer blank is placed at the beginning, middle, and at the end of 

each rack (a rack is the equivalent of one run), while the rest are randomized with the study 

samples. Furthermore, there is a need for external pooled controls that helps to check for 

the stability of NMR instrumentations throughout the measurement period. Five percent of 

the total samples in the study representing external pooled controls is also recommended. 

To that end, one external control sample is placed at the beginning of a run after an NMR 

buffer blank, and at the end of the run, just before the NMR buffer blank; while other 

external pooled controls were randomized with the study samples. After NMR data 

collections and data processing, the external pooled controls are supposed to cluster tightly 

together in a principal component analysis (PCA) plot, as shown in Figure 1-6.  Finally, 

the internal pooled controls are included. It consists of all experimental samples in the 

study; as such, two-dimensional (2D) NMR measurements are collected on these samples 

as they aid metabolite identification, which will be discussed in detail in later sections.  
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Figure 1-5. An Illustrated Experimental Design for NMR Metabolomics.  

 

Figure 1-6. A Sample PCA Score Plot Shows the Clustering of the External Pooled 

Controls.  
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This indicates the reliability of the NMR instrumentation over the measurement time. In 

red are the external pooled controls, while in green are the experimental samples.  

 

1.2.1.2 NMR Spectra and Data Processing 

After NMR data collection, spectral processing, and data post-processing are 

conducted before NMR metabolite identification can proceed. The first step is phase 

correction which involves mixing the real and the imaginary components of the spectrum 

to get a pure absorptive signal. An unphased spectrum will have peaks pointing upwards 

and downwards, with broad tails while a phased spectrum will have narrow, symmetrical 

peaks pointing upwards. The next step is chemical shift referencing, which is important for 

metabolite ID, spectra alignment, and other downstream analysis57-58. Chemical shift 

referencing entails adjusting the chemical shift axis to a reference compound, for example, 

adjusting 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) to the 0 ppm mark. After 

chemical shift referencing comes the baseline correction, which involves making regions 

with no signals flat with zero intensity. The process is trivial for the NMR spectrum with 

a few peaks; however, it is not with a spectrum with thousands of peaks, as is the case with 

urine. Correcting the baseline involves a semi-automated step where baselines are 

identified manually, and NMR programs complete the baseline correction steps. This 

correction is essential for spectral alignment and accurate peak integrations. The sub-

spectral selection follows, with unwanted spectral regions removed for the NMR spectra. 

Typically, this includes the ends of the spectra (less than -0.50 ppm, greater than 10.0 ppm) 

and water regions (between ~4.50 to 4.9 ppm).  Afterward, spectral alignment is conducted. 

Spectral alignment involves adjusting peaks so that peaks that belong to the same 
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compound align on the spectra. Chemical shift misalignments occur because of non-

systematic misalignment sources such as temperature changes, intermolecular interactions, 

instrumental factors, and systematic sources which are of biological origins, such as sample 

pH.59-60 In response to this challenge, computational methods are employed to align the 

spectra, some of which include: correlation optimized warping (COW)61, interval 

correlated optimized shifting (icoshift)62, and fuzzy warping60. Next, aligned spectra are 

normalized. Unlike biofluids like serum and plasma, urine is not under tight physiological 

control. Therefore, metabolite concentration variations exist between urine samples63-64 

due to differences in water intake and other physiological reasons. Hence, a sample-to-

sample normalization operation is required. Normalization methods often used in NMR 

metabolomics include total integral intensity65, histogram matching (HM)66, and 

probabilistic quotient normalization (PQN)67. PQN involves scaling the NMR spectra 

using a ‘probable dilution factor.’ The process consists of selecting a reference spectrum 

(usually the median spectrum), calculating the quotients of the variables of a test spectrum 

using the reference, and computing the median of the quotients. The median of the quotient 

is, in turn, used to scale the test spectrum. Finally, before multivariate statistical analysis, 

scaling is carried out to make metabolites comparable. Computational methods used 

include range scaling, Pareto scaling, level scaling, and autoscaling68-69. 

 

1.2.1.3 Metabolite Identification 

Given the high natural abundance of 1H, as indicated above, 1D 1H NMR 

metabolomics gives rise to hundreds of peaks with a considerable amount of overlap in 

complex mixtures like urine. This makes metabolite identification for NMR-based urine 
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metabolomics a very challenging step. As such, metabolite identification is usually directed 

towards statistical differences between peaks emanating from, for example, diseased 

samples compared to the metabolite profile of healthy controls, rather identifying all 

metabolites. Many strategies, techniques, and methods are employed to assist in metabolite 

identification. These include the use of Statistical Total Correlation Spectroscopy 

(STOCSY)70, commercial packages such as Assure NMR (Bruker), open-source software 

such as COLMARm71, two-dimensional (2D) NMR experiments, and confirmation with 

chemical standards. This section will discuss the identification of ‘known unknowns’ that 

is unknown metabolites in a sample that had been previously identified, and not ‘unknown 

unknowns,’ which are unknown metabolites that had not been previously identified72.   

STOCSY leverages the fact that NMR can have multiple resonances that 

correspond to the same metabolite70. Therefore, resonances from the same metabolite will 

have the same relative intensities to each other, independent of metabolite concentrations. 

In brief, STOCSY involves the selection of a driver peak and correlates it with all the peaks 

in the NMR spectra across the entire study. The highly correlated peak clusters are 

metabolite candidates present in the complex mixture. In addition, software programs such 

as  AssureNMR (Bruker) and open-access databases such as Human Metabolome Database 

(HMDB)73 and BioMagResBank (BMRB)74 can be used to identify the metabolites from 

the chemical shift assignments from 1H NMR experiments, selected by a chemist or from 

STOCSY analyses. 

While 1D 1H NMR gives chemical information like the chemical shift, and multiplicity, 

and the shape of resonances, for greater confidence in metabolite identification, two-

dimensional (2D) NMR experiments are conducted. 2D NMR data gives two-dimensional 



 

20 

chemical information that helps to resolve the data and tackle 1D 1H NMR overlap issues. 

Some of the homonuclear and heteronuclear 2D experiments typically carried out include 

1H−1H J-resolved (J-Res)75-76, 1H−13C Heteronuclear Single- Quantum Coherence 

(HSQC)77, 1H−1H Total Correlation Spectroscopy (TOCSY)77-78 and a combination of the 

last two, 1H-13C heteronuclear single quantum correlation-total correlation spectroscopy 

(HSQC-TOCSY). J-coupling values can be derived from J-Res in addition to the 

multiplicity of signals. HSQC, on the other hand, gives the correlation of directly coupled 

hydrogen and carbon atoms in the complex mixture. In contrast, TOCSY provides the 

correlations between all protons in a given spin system. While 2D NMR data can be 

invaluable, the experiments can take several hours to complete; on the other hand, 1H NMR 

experiments are completed in minutes. Therefore, 2D experiments are typically conducted 

on internal pooled controls, as described under the experiment design section; and 

databases like COLMARm (http://spin.ccic.ohio-state.edu/index.php/colmarm/index) web 

server71 allows for the semi-automated query of 1H−13C HSQC, HSQC-TOCSY, and 

TOCSY. For conclusive evidence for metabolite identification, chemical standards of the 

metabolite are spiked into the complex mixtures. However, this is not feasible for all 

metabolites in a complex mixture but only for metabolites of the highest import. In the 

Edison Laboratory, we therefore assign a confidence score to identified metabolites, based 

on the strength of evidence available. The scores are defined as follows: (1) putatively 

characterized compound classes or annotated compounds, (2) matches from 1D NMR to 

literature and/or 1D BBiorefcode compound (AssureNMR) or other database libraries such 

as BMRB and HMDB (3) matched to HSQC, (4) matched to HSQC and validated by 
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HSQC–TOCSY (COLMARm), and (5) validated by spiking the authentic compound into 

the sample. 

1.3 Machine Learning 

Given the rise of high throughput omics technologies over the past couple of 

decades, data mining had become inevitable in fields such as metabolomics, especially in 

untargeted metabolomics, as is the case in this thesis. Tom Mitchell gave a widely accepted 

definition of machine learning (ML) given as such: “A computer program is said to learn 

from experience E with respect to some class of tasks T and performance measure P, if its 

performance at task T, as measured by P, improves with experience E.” 79  In a 

metabolomics context, the experience E is the metabolomics data, task T could be the 

classification of samples to either disease group or control group, while performance 

measure P could be the accuracy of the classification task. In essence, ML entails finding 

predictive patterns in datasets, be it text, images, or tables. Our focus will be on tabular 

datasets in this study, as the abundance of metabolites are presented in tables.     

 

1.3.1 Machine Learning Systems 

One approach for classifying machine learning systems is whether they are under 

human supervision or not. To this end, we have methods like supervised learning, semi-

supervised learning, unsupervised learning, and reinforcement learning. Supervised and 

unsupervised learning are carried out in this thesis; therefore, introductory comments will 

be limited to these topics. Supervised learning entails training ML models with labeled 

data, and it includes classification and regression tasks. Classification tasks involve training 

and predicting with discrete labels as in binary classification (two groups) and multi-class 
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classification (> two groups). On the other hand, regression tasks use continuous labels 

(numeric data) for training and predictions. For example, in the studies presented in this 

thesis, classification tasks were carried out to detect RCC and for RCC stage stratification. 

At the same time, regression tasks were conducted for RCC tumor size predictions. In all 

cases, urinary metabolites are the predictor variables.  

 Unsupervised learning applications are more prevalent in biology research, and it 

involves ‘training’ with unlabeled data, with the analogy that a ML system tries to learn 

without a teacher. Unsupervised learning techniques can be further classified into 

clustering and dimensionality reduction techniques. Clustering aims to detect the similarity 

between groups, and it involves methods like k-Means, and hierarchical cluster analysis 

(HCA). On the other hand, dimensionality reduction reduces the dimension of the dataset 

and projects it on a 2D or 3D dimensional space, all the while reducing information loss in 

the process. Principle component analysis (PCA) belongs to this class of ML systems.  See 

Figure 1-7 for ML systems and methods used in the thesis. ML explanations refer to the 

interpretation of the cause of the predictive output of ML models. This topic is discussed 

in some detail in session 1.3.3. 
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Figure 1-7. Machine Learning Systems and Techniques Used in the Thesis.  

Table 1-2. The Basis of Supervised and Unsupervised Learning Techniques Used in 

the Study. 

Algorithms Basis 

Support vector 

machines80 

(SVM) 

- It fits the largest possible margin between classes while 

limiting margin violations 

- Learns linear and non-linear relationship in datasets  

- Linear SVM separate linearly separable classes with a 

hyperplane  

- Kernelized SVM is used for linear inseparable datasets such 

as polynomial kernel and Gaussian Radial Basis Function 

(RBF) Kernel. 

SVM 

Regressor81  

- An extension of SVM for regression tasks 
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(SVR) - It fits instances within a margin, closer to the hyperplane, 

while limiting margin violations. 

Random Forests 

(RF) 

- An ensemble of decision trees82  

- Models are typically trained via the bagging method83 

- Can learn complex relationships in datasets 

Adaptive 

Boosting84  

(AdaBoost) 

- It belongs to the family of boosting algorithms, where weak 

learners are transformed into strong learners by 

sequentially training predictors. 

- The base learner is typically a decision tree but could be 

any algorithm such as SVM.  

- AdaBoost assigns higher weights to misclassified instances 

in the previous predictor so that the next predictor focuses 

more on incorrectly classified instances.  

Extreme 

Gradient 

Boosting85 

(XGBoost) 

- An advanced gradient boosting algorithm. 

- It transforms weak learners into strong learners via the 

summation of decision tree residuals. 

Logistic 

Regression 

- A regression algorithm used for classification tasks. 

- Maps regression output to probabilities via a sigmoid 

function. 

k-Nearest 

Neighbors  

(k-NN) 

- An instance-based learning algorithm. 

- Induction bias: Closer instances belong to the same class as 

defined by k- nearest neighbors. 
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Partial Least 

Square 

Discriminant 

Analysis 

(PLS-DA) 

- PLS-DA is a supervised algorithm extension of PLS 

regression, and it is used widely in metabolomics.  

- It projects high dimensional datasets into a lower 

dimension space and maximizes the covariance between 

the independent and response variables86. 

Ridge 

regression 

- A regularized form of linear regression 

Elastic net 

regression 

- Linearly combines the regularized form ridge and lasso 

regression 

Hierarchical 

clustering 

analysis (HCA) 

- A cluster analysis algorithm 

- Clusters instances based on data similarities using varied 

metric and linkage criteria. 

Principal 

component 

analysis (PCA) 

- Reduces the dimensions of a high-dimensional dataset 

while preserving the maximum variance in the dataset.  

 

1.3.2 Resampling Methods and Performance Metrics 

Resampling methods in machine learning involve sampling instances to assess the 

quality of models. These methods include the validation set method, k-fold cross-validation 

method, and leave one out cross-validation method (LOOCV). The validation set method 

involves randomly distributing samples into a training set and a test or validation set. A 

training set is used to train the model, while the test set assesses the model’s performance. 

In the k-fold cross-validation method, the samples are divided into training set and test set 
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k-times, such that each sample is used for both training and testing. k-fold cross-validation 

is usually employed when the sample size is small. Finally, LOOCV is a special case of 

the k-fold cross-validation method where k = 1. In this formulation, the test set is restricted 

to only one sample for each round of testing.   

Assessing the quality of ML models depends on the task at hand. For classification 

tasks, accuracy, sensitivity, specificity, and area under the receiver operating characteristic 

curve (AUC ROC) are popular choices. Accuracy is simply the percentage of the correctly 

predicted class. Sensitivity is the percentage of correctly predicted positive cases, and 

specificity is the percentage of correctly predicted negative cases. For biomedical 

applications, healthy controls are often encoded as negative cases, and diseased samples 

are encoded as positive cases. The ROC curve plots the true positive rate against the false-

positive rate, showing the performance of a model at different classification thresholds. 

AUC, in turn, measures the area covered by the entire ROC curve; as such, it gives an 

aggregated predictive power of a model under all classification thresholds possibilities. For 

regression tasks, residual plots are used to access the quality of models. It plots residuals 

(𝑦 −  �̂�) against the predicted numeric value (�̂�) (Figure 1-8), giving a visual guide for 

accessing regression models. A regression metric is the coefficient of determination, 𝑅2 

described mathematically below:  

𝑅2 = 1 − 
∑(𝑦𝑖 − �̂�𝑖)

∑(𝑦𝑖 − �̅�𝑖)
 

Where 𝑖 is the index for a sample, 𝑦 is the ground truth, �̂� is the predicted value, and �̅� is 

the mean ground truth. In brief, 𝑅2 is the proportion of the variance in the prediction 

accounted for by the predictors, 𝑋.   
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Figure 1-8. A Sample Residual Plot. 

This result is presented and discussed in chapter 3 of the thesis with regard tumor size 

predictions.  

 

1.3.3 Machine Learning Explanations 

The goal of machine learning models is to unearth patterns buried within datasets. As ML 

models had become increasingly successful at such pattern recognitions, the result led to 

more complex models. A bane of this increased complexity of models is that these models 

are typically impervious to interpretations. As such, there exist an accuracy interpretability 

trade-off trend in machine learning: the more accurate a ML model is, the less interpretable 

it is likely to be. (Figure 1-9). These opaque models are called ‘black box’ models. As a 

result, in recent years, there has been increased progress in the field of explainable artificial 

intelligence (XAI)/ interpretable machine learning (IML)87-88. 
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Figure 1-9. The Accuracy Interpretability Trade-off of Machine Learning Models.  

More complex models tend to be more accurate and less interpretable89.   

 

  IML methods are classified based on several criteria90. One criterion is whether the 

interpretation is accomplished using the same ML model for prediction (intrinsic 

interpretations) versus if interpretations are carried out after model building (post-hoc 

interpretations). A post-hoc method will be desirable as it allows for the flexibility of ML 

choice for model building, as they tend to be model agnostic methods. Another criterion is 

the results of the explanations. For example, some IML methods provide feature summary 

statistics such as feature importance scores. This is the case of variable importance of 

projection (VIP) score as in PLS-DA91 and Gini index in random forests92. Another type 

of explanation result comes in the form of feature summary visualization, as is the case in 

partial dependence plots (PDP)93 and individual conditional expectation (ICE) plots94. 

Another criterion for classification is the scope of explanations. This could range from a 
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method that can explain entire model behavior (global explanations) to individual 

predictions (local explanations). 

As an addition to the classification above, there are important properties of 

interpretation methods that require some highlight. This includes 1) the algorithmic 

complexity of explanation methods, 2) the fidelity of the method, that is the accuracy of 

the explanations, 3) the representativeness of explanations, that is the scope of 

explanations, 4) translucency of method: the extent to which an IML methods looks inside 

the ML model to explain model behavior, 5) portability: the scope of the ML method it can 

interpret, and 6) human comprehensibility of explanation results.  

Unlike some other fields of studies/applications where accuracy is the sole goal, 

interpreting machine learning models is paramount in biology. In metabolomics, 

interpretations are primarily achieved via PLS-DA Variable Importance on Projection 

(VIP) scores91, 95. PLS-DA is a linear-based model whose linear assumptions permit model 

interpretation, making it an intrinsic interpretation method. However, scientists can be 

needlessly restricted to PLS-DA in the event that it’s predictive accuracy is inferior to other 

machine learning models. Therefore, a post-hoc/model agnostic interpretable method for 

explaining metabolomics ML models might be desirable. Such post-hoc IML methods 

include Local Interpretable Model-agnostic Explanations (LIME)96, which can explain 

individual instances; permutation feature importance, which gives global explanations – 

explains the entire model behavior97-98; Partial Dependence Plot (PDP), which computes 

and visualizes the impact of one or two features on prediction outcome93; SHapley Additive 

exPlanations (SHAP) gives both local and global explanations99-100; and several other 

methods87. 
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1.4 Scope of Thesis 

In this thesis, I hypothesized that the metabolic reprogramming that supports RCC35 

would allow for the identification of metabolite biomarkers in human urine. To improve 

upon previously published studies, 1) a large cohort (105 RCC patients and 179 controls) 

– compared to many published studies in the field – was selected for the study. 2) While 

many studies use either Liquid Chromatography−Mass Spectrometry (LC−MS) or Nuclear 

Magnetic Resonance (NMR) for metabolite profiling, both LC-MS and NMR were used in 

this thesis to ensure a broad analyte coverage. 3) Rather than relying on machine learning 

software for chemists that are often very restrictive, custom machine learning algorithms 

were built using Python programming language to explore the benefits of several induction 

biases that various ML models afford. 4) Given the mounting evidence of the potential role 

of the exposome – the totality of environmental exposures of an individual in a lifetime – 

in cancer101-102, biomarkers were not restricted to endogenous metabolites, as is usually the 

case in many biomarker studies.  

In Chapter 2, a RCC detection study was conducted by comparing RCC patients 

with healthy controls. This chapter is a research paper accepted for publication in the 

Journal of Proteome Research titled “machine learning-enabled renal cell carcinoma 

status prediction using multiplatform urine-based metabolomics.” In chapter 3, the 

metabolomics data of the RCC cohort was used to identify metabolites associated with 

RCC progression. This task was accomplished by 1) predicting the primary tumor size of 

RCC and 2) discrimination of early RCC (stage I and II) from advanced RCC (stage III 

and IV). The chapter is a manuscript written for submission to the journal Cancers and 
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tentatively titled “Urine-Based Metabolomics and Machine Learning Reveals Metabolites 

Associated with Renal Cell Carcinoma Progression.”  

In chapter 4, machine learning interpretations were tackled. PLS-DA VIP score is 

the contemporary IML method in metabolomics, with the downside that ML choices are 

often restricted to PLS-DA and explanations are not local. I introduced Shapley values in 

game theory and Shapley Additive Explanations (SHAP) – the adaptation of Shapley 

values in IML. Random forest (RF) and extreme gradient boosting (XGBoost) were used 

to predict binary classes in previously published clinical metabolomics datasets.  Tree-

based SHAP (Tree SHAP) explained the machine learning predictions, and its utility was 

validated. In addition, given the large sample size of the RCC detection study, random 

forest model was built using the selected biomarker panel in chapter 2, and its prediction 

is explained with Tree SHAP. This chapter is primarily based on a manuscript that had 

been submitted to the journal Metabolites, and it has been titled “Digging Deep: Applying 

Tree-based Shapley Additive Explanations to Metabolomics Datasets.” 

In chapter 5, I concluded the thesis by summarizing the contribution of my studies 

to the field and offered insights as to the path required to building on my findings and 

ultimately making urine testing for RCC available in the clinic. 
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CHAPTER 2 

MACHINE LEARNING-ENABLED RENAL CELL CARCINOMA STATUS 

PREDICTION USING MULTI-PLATFORM URINE-BASED METABOLOMICS1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 Olatomiwa O. Bifarin, David A. Gaul, Samyukta Sah, Rebecca S. Arnold, Kenneth Ogan, Viraj A. 

Master, David L. Roberts, Sharon H. Bergquist, John A. Petros, Facundo M. Fernández, and 

Arthur S. Edison. J. Proteome Res. 2021, 20, 7, 3629–3641. Reprinted here with permission of 

publisher. 
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2.1 Abstract 

Renal cell carcinoma (RCC) is diagnosed through expensive cross-sectional imaging, 

frequently followed by renal mass biopsy, which is not only invasive but also prone to 

sampling errors. Hence, there is a critical need for a non-invasive diagnostic assay. RCC 

exhibits altered cellular metabolism combined with the close proximity of the tumor(s) to 

the urine in the kidney, suggesting urine metabolomic profiling is an excellent choice for 

assay development. Here, we acquired liquid chromatography-mass spectrometry (LC-

MS) and nuclear magnetic resonance (NMR) data followed by the use of machine learning 

(ML) to discover candidate metabolomic panels for RCC. The study cohort consisted of 

105 RCC patients and 179 controls separated into two sub-cohorts: the model cohort and 

the test cohort. Univariate, wrapper, and embedded methods were used to select 

discriminatory features using the model cohort. Three ML techniques, each with different 

induction biases, were used for training and hyperparameter tuning. Assessment of RCC 

status prediction was evaluated using the test cohort with the selected biomarkers and the 
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optimally-tuned ML algorithms. A seven-metabolite panel predicted RCC in the test cohort 

with 88% accuracy, 94% sensitivity, and 85% specificity, and an AUC of 0.98. 

Metabolomics Workbench Study IDs: ST001705 and ST001706.   

2.2 Introduction 

In the United States, kidney cancer is one of the most lethal urinary cancers. In 2021, an 

estimated 76,080 patients will be diagnosed, with a death toll of 13,780.1 Approximately 

90% of kidney and renal pelvis cancers are renal cell carcinomas (RCC). RCC lacks 

specific symptoms in the early stages, and the latest statistics indicate that over 50% of 

patients are diagnosed incidentally.2-3 Diagnosis is typically performed via expensive 

imaging tests4-5 and biopsies, the latter being highly invasive and prone to sampling errors.2, 

6-7 Current treatments and early diagnosis, when tumors are localized, results in a 92.6% 5-

year survival, while late diagnosis results in the decrease of 5-year survival to 13.0%.2 An 

improved, non-invasive and cost-effective diagnostic test is urgently needed to diagnose 

RCC earlier in the course of the disease.  

As early as in the middle ages, physical properties including taste, smell and color 

of urine were used to diagnose disease, and these properties are influenced by urine 

metabolites.8 Today, analytical chemistry platforms such as nuclear magnetic resonance 

(NMR) spectroscopy and liquid chromatography mass spectrometry (LC-MS) can 

determine the chemical composition of urine in an high throughput fashion for biomarker 

discovery and diagnostics.9-10 The metabolome closeness to the phenotype of biological 

systems supports its utility to investigate the biology of cancer, which is considered by 

many to effectively be a metabolic disease.11-12 Close proximity of RCC tumor(s) to the 
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urine suggests metabolomic alterations may be ideally detected in this non-invasively 

collected biofluid. 

The high-throughput nature of metabolomics experiments and the broad analyte 

coverage by both NMR and LC-MS often results in enormous datasets that frequently 

require machine learning approaches to investigate biological alterations.13 Machine 

learning is a branch of artificial intelligence that uses algorithms to uncover patterns in 

complex data without explicit programming.14 These models allow for the prediction of 

output(s) based on a set of inputs, such as the prediction of RCC status using a panel of 

metabolite abundances selected from the urine feature dataset. 

Several previous studies have investigated urine metabolome changes associated 

with RCC.15-30 Kim et al. found 4-hydroxybenzoate, quinolinate, and gentisate to be 

differentially expressed at a false discovery rate of 0.28 between RCC (n=29) and controls 

(n=33) using ultra high-performance liquid chromatography–mass spectrometry (UHPLC-

MS) and gas chromatography–mass spectrometry (GC-MS).23 Monteiro et al. reported a 

32-metabolite resonance signature from NMR urine metabolomics that discriminated RCC 

patients (n=42) from controls (n=49) using unsupervised learning.20 Urinary volatile 

metabolic profiling using GC-MS led to the discovery of a panel of 21 volatile organic 

compounds correlated with RCC when 30 RCC patients were compared to 37 controls, 

with 2,5,8-trimethyl-1,2,3,4 tetrahydronaphthalene-1-ol and 2-oxopropanal subsequently 

validated as potential RCC biomarkers in a small independent sample set.21 In 2019, Liu et 

al. used LC-MS to identify androstenedione, 7-alpha-hydroxy-3-oxochol-4-en-24-oic acid 

and lithocholyltaurine to be the most significantly altered metabolites between RCC 

(n=100) and controls (n=129).22 In 2020, Zhang et al. identified aminoadipic acid, 2-
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(formamido)-N1-(5-phospho-d-ribosyl) acetamidine and alpha-N-phenylacetyl-l-

glutamine to be predictive of RCC in a cohort of 68 healthy controls, and 39 RCC patients 

using LC-MS.15 Unfortunately, none of these highlighted studies made their data widely 

available, complicating progress in the field.  

To improve our understanding of metabolome alterations associated with RCC and 

to build on prior research conducted in the field, we here report on a multiplatform (NMR 

+ Hydrophilic Interaction Liquid Chromatography (HILIC) LC-MS) metabolomics study 

on a patient cohort of larger size than most previously-published studies (healthy control = 

179, RCC patients = 105). The use of custom-built machine learning models enabled to 

investigate algorithms with different inductive biases, and hyperparameter tuning. In 

addition, the dataset was not filtered to retain only endogenous metabolites, therefore 

allowing for the inclusion of xenobiotics and exposure metabolites such as 2-

mercaptobenzothiazole and dibutylamine in the discriminatory panel. We have shown that 

seven MS-derived metabolites, which discriminated RCC patients from healthy controls 

with 88% accuracy in the test cohort, could be identified. In addition, four NMR-derived 

diagnostic markers discriminated RCC patients from healthy controls with an accuracy of 

78%. These results underlie the promise of RCC detection using urine metabolomics, 

providing additional evidence for metabolic perturbations in RCC.  

2.3 Materials and Methods 

2.3.1 Chemicals 

Optima (ThermoFisher Scientific) LC-MS grade water and acetonitrile were used to 

prepare all mobile phase components. Ammonium acetate (Sigma, molecular biology 

grade) and ammonium hydroxide 28-30% solution (Fisher Chemical) were used as 
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additives for mobile phases. For NMR samples, D2O and 4,4-dimethyl-4-silapentane-1-

sulfonic acid (DSS) were obtained from Cambridge Isotope Laboratories (Andover, MA, 

USA). 

 

2.3.2 Urine Collection 

Patients at Emory University Hospital with a solid renal mass with potential for RCC, and 

subsequently confirmed to be RCC following surgery were identified prospectively. 

Healthy controls were identified during an annual physical exam. All patients provided 

informed consent (Emory University approvals IRB00058903, IRB00054812, 

IRB00085068, and IRB00055316). Urine was collected at either a clinic appointment or at 

time of surgery in a urine collection cup and placed on ice. Urine was mixed by turning the 

cup upside down 5 times and 15 mL were transferred to a sterile tube followed by 

centrifugation at 1800 g for 20 min at 4 °C. Ten mL of the supernatant were transferred to 

a clean, sterile tube, and one tablet of Complete Protease Inhibitor Cocktail (Sigma, St. 

Louis) was added to the tube. The tube was placed on ice for 10 min with periodic vortex 

mixing to dissolve the tablet. This urine was then transferred into 5 X 1.5 mL aliquots and 

stored at -80 °C.  

 

2.3.3 Hydrophilic Interaction Liquid Chromatography High Resolution Mass 

Spectrometry 

Urine samples were thawed on ice, and proteins were precipitated with addition of 

methanol in a 5:1 volume ratio to 50 µL of urine. Samples were vortex-mixed for 30 s and, 

after centrifugation at 21,100 x g for 5 min, the supernatant was transferred to a snap-on 
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cap LC vial and stored at 4 °C until analysis. A sample preparation blank was analyzed 

jointly with the samples, and a pooled sample was created for use as quality control and to 

correct for instrument drift. Samples were analyzed in randomized order, and the pooled 

sample was included in approximately every tenth injection over the course of the batch. 

Compounds were separated using an Ultimate3000 (ThermoFisher Scientific), 

fitted with a Waters Acquity UPLC BEH HILIC column (2.1 x 75 mm, 1.7 µm particle 

size). The compounds were eluted with the following gradient: 95:5 10 mM ammonium 

acetate with ~0.014% ammonium hydroxide: acetonitrile (mobile phase A) and acetonitrile 

with ~0.014% ammonium hydroxide (mobile phase B) using the following gradient 

program: 0 min 5% A; 3 min 63% A; 7 min 63% A; 7.1 min 5% A; 9.9 min 5%. The flow 

rate was set at 0.30 mL min-1 for 0-7.1 min; increased to 0.5 mL min-1 from 7.1-7,2 min; 

7.2-9.5 min at 0.5 mL min-1; and decreased to 0.30 mL min-1 from 9.5 – 10.0 min. The 

column temperature was set to 50 °C, and the injection volume was 2 µL. A high-resolution 

accurate mass Q Exactive HF mass spectrometry system (ThermoFisher Scientific) was 

used for all measurements. The heated electrospray ionization (HESI) source was operated 

at a capillary temperature of 275 ⁰C, a spray voltage of 3.5 kV, and sheath, auxiliary, and 

sweep gas flow rates of 48, 11, and 2 arbitrary units, respectively. MS data were acquired 

in the 70-1050 m/z range in both positive and negative ionization modes. MS/MS 

experiments were performed by acquiring mass spectra in a data-dependent acquisition 

fashion. Survey MS were collected with a resolution setting of 120,000 and the top 10 dd-

MS2 were collected at a resolution of 30,000 and an isolation window of 0.4 m/z. Stepped 

normalized collision energies of 10, 30, and 50 fragmented selected precursor ions in the 
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HCD cell prior to combining all ions for Orbitrap analysis. Dynamic exclusion was set at 

10 s and ions with charges greater than 2 were omitted. 

Data acquisition and processing were carried out using Xcalibur V4.0 (ThermoFisher 

Scientific) and Compound Discoverer V3.0 (ThermoFisher Scientific), respectively. 

Pooled QC injections were used to adjust for instrument drift using a LOESS algorithm. 

Background peaks were filtered from the dataset when signals were less than 5x of 

corresponding features in sample blank injections. A feature was filtered if it was present 

in less than 50% of the QC sample injections or if a relative standard deviation was 

observed greater than 30% in the QC injections. 

Once a panel of discriminant features was selected, additional experiments were 

conducted with an Orbitrap ID-X Tribrid mass spectrometer (ThermoFisher Scientific) 

using data dependent acquisition methods to collect MS2 data for features that were missed 

during the original DDA data collection. For these experiments, a Waters Acquity UPLC 

BEH amide column (2.1 x 150mm, 1.7 µm particle size) was used with the following 

mobile phases: 80:20 10 mM ammonium formate with 0.1% formic acid: acetonitrile 

(mobile phase A) and acetonitrile with 0.1% formic acid (mobile phase B). The gradient 

used was as follows: 0 min 5% A; 0.5 min 5% A; 8 min 60% A; 9.4 min 60% A; 11 min 

5% A. The flow rate was set to 0.40 mL min-1, the column temperature was set to 40 °C, 

and the injection volume was 2 µL. Tandem MS spectra were collected for an inclusion list 

of precursors if they were above an intensity threshold of 6.0E3, using an isolation window 

of 0.8 m/z. Survey mass spectra were collected with a resolution of 60,000. Stepped 

normalized collision energies of 15, 30, and 45 fragmented the precursors in the HCD cell, 
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followed by Orbitrap analysis at a resolution of 30,000. Precursor ions were also 

sequentially fragmented with a CID collision energy of 45, and analyzed in the ion trap. 

Data processing was performed with Compound Discoverer v3.0 (ThermoFisher 

Scientific), which included elemental formula prediction based on exact masses and 

isotope patterns. When elemental formula prediction was not achieved in the automated 

fashion via Compound Discoverer, the feature was manually analyzed using Xcalibur v3.0 

to assign elemental formula. Tentative annotations were assigned based on searches against 

literature and metabolomic databases, such as the Human Metabolome Database (HMDB), 

Metlin, mzCloud, and MassBank. Elemental formulas and exact masses with a mass error 

of 10mDa were used in this case. Fragmentation patterns were also analyzed and matched 

against tandem MS databases such as mzCloud and locally-built mzVault libraries in order 

to assign annotations. 

 

2.3.4 Nuclear Magnetic Resonance Spectroscopy 

Urine samples were thawed in a 4 ºC cold room followed by centrifugation at 20,200 

relative centrifugal force (rcf) for 20 min at 4 ºC to remove any precipitated materials. A 

sample preparation robot (SamplePro, Bruker Biospin, Rheinstetten Germany) was used to 

dispense 60 µL of NMR buffer into 5 mm SampleJet NMR tubes (Bruker Biospin, 

Billerica, MA, USA), followed by the transfer of 540 µL of urine sample and sample 

mixing. The NMR buffer used was 1.5 M KH2PO4/K2HPO4 buffer with a pH of 7.0 in D2O, 

containing 0.11 mM of 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS). DSS is used as 

a chemical shift reference (0.0 ppm). Quality assurance and quality control for this study 

is described in appendix A section A-1. NMR spectra were acquired using an Avance III 
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HD 600 MHz Bruker NMR spectrometer with a Bruker SampleJet cooled to 5.6 ºC. The 

following NMR experiments were conducted: one-dimensional nuclear Overhauser effect 

pulse sequence with pre-saturation of water resonance (NOESYPR1D), two-dimensional 

(2D) 1H-13C heteronuclear single quantum correlation (HSQC) and HSQC–TOCSY 

(HSQC–total correlation spectroscopy). For 1D 1H NMR metabolomics spectra, phase and 

baseline correction, and referencing were carried out with Bruker’s TopSpin software. 

Referencing to DSS was confirmed using the Edison laboratory in-house MATLAB scripts 

(https://github.com/artedison/Edison_Lab_Shared_Metabolomics_UGA). In addition, the 

ends of NMR spectra (less than -0.50 ppm, greater than 10.0 ppm) and water regions 

(between 4.89 ppm and 4.68 ppm) were removed from all samples. Urine NMR spectra 

were aligned using constrained correlation optimized warping (CCOW),31 and normalized 

using probabilistic quotient normalization (PQN).32 NMRPipe was used to pre-process the 

2D NMR Data (HSQC, and HSQC-TOCSY).33 Metabolites were identified using the 

AssureNMR software (Bruker Biospin, USA) with BBiorefcode metabolite database and 

COLMARm.34 Metabolites were assigned a confidence score from 1 to 5, with 5 as the 

highest confidence score. The scores were defined as follows: (1) putatively characterized 

compound classes or annotated compounds, (2) matches from 1D NMR to literature and/or 

1D BBiorefcode compound (AssureNMR) or other database libraries such as BMRB35 and 

HMDB,36 (3) matched to HSQC, (4) matched to HSQC and validated by HSQC–TOCSY 

(COLMARm), and (5) validated by spiking the authentic compound into the sample. Fifty 

metabolomic features in the aligned and normalized 1D 1H NMR spectra were quantified 

by taking spectral areas for integration, and combined with MS features for downstream 

analysis (See Appendix A; Section A-1 and scheme A-1 for NMR peak picking and 

https://github.com/artedison/Edison_Lab_Shared_Metabolomics_UGA
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integration details). Of the 50 metabolomic features quantified via NMR, thirty metabolites 

were identified with some metabolites having multiple resonances quantified, in addition 

to 11 unknown resonances.   

 

2.3.5 Sample Cohort Selection 

Propensity score matching37 was used to reduce the sample selection bias effect while 

balancing potential confounders amongst control and RCC patient groups. The covariates 

considered included: age, gender, BMI, race, and smoking history. The propensity score 

was computed via a logistic regression model using the default parameters of the Scikit-

learn38 linear model module in Python. A one-to-one propensity score matching with the 

caliper method, which allowed for a maximum distance of 1e-5 between the propensity 

scores of matched pairs, resulted in the selection of 31 control subjects and 31 subjects 

with RCC to form the model cohort. 

 

2.3.6 Feature Selection for RCC Prediction 

Features were selected using the 62-model cohort. The normalized abundances of the 50 

metabolomic features that were quantified by NMR and the 7,097 normalized MS features 

were merged into one feature table in Python. The combined feature table was subjected to 

both filtering and wrapper feature selection methods.39-40 The features were filtered via the 

following sequential criteria: 1) features with greater than 1-fold difference between the 

two groups were retained; 2) features with a q-value lower than 0.05 were retained (q-value 

is defined as the p-value obtained from a student t-test followed by Benjamini-Hochberg 

false discovery rate correction41); and 3) one of two highly correlated features were 
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removed, with a Pearson correlation coefficient cut-off of 0.8. The resulting features were 

auto-scaled prior further feature selection. A recursive feature elimination method under 

stratified five-fold cross validation conditions was implemented using random forests (RF-

RFECV). The Scikit-learn38 default hyperparameters were used with the number of 

estimators set to 100 decision trees. In addition, a PLS regression method was applied on 

the same reduced feature set using the default PLS regression method in the cross-

decomposition module in Scikit-learn. For each method, features were ranked based on 

importance for discriminating RCC patients from healthy controls. The Gini index was 

used in RF-RFECV, while variable importance in projection (VIP) scores were used in 

PLS regression. Finally, a voting-based system for potential biomarkers was used; the 

overlapping features among the top features from each method were selected as the final 

potential biomarkers. Variants of this method were used for selecting only upregulated 

biomarkers and NMR biomarkers in the study. 

 

2.3.7 Machine Learning (ML) Methods for RCC Prediction 

Random forest (RF), k-nearest neighbors (k-NN), linear kernel support vector machine 

(SVM-Lin) and radial basis kernel support vector machines (SVM-RBF) were used for 

predictions. Optimized hyperparameters for each ML method used the model cohort and 

the selected metabolite panel. A linear search for a single hyperparameter or a grid search 

for two (or more) hyperparameters were used under five-fold cross validation conditions. 

These tuned ML models were used to predict RCC status in the test cohort. 
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Random Forest 

Random forests are a collection of decision trees built using bootstrapped training samples, 

where decision trees are constructed using a random subset of metabolomic features as 

candidates for node splitting. The decision tree is an inverted tree starting with the root 

node at the top of the tree, followed by internal nodes, and finally leaf nodes. The root node 

and internal nodes are assigned specific metabolomic features, while the leaf nodes indicate 

the final prediction.  

k-Nearest Neighbor 

k-NN classifiers are an instance-based learning algorithm that classifies samples via the 

vote of the majority of a k (to be defined) closest neighbors. Distance measures considered 

for determining nearest neighbors during hyperparameter tuning include Euclidean (E) and 

Manhattan (M) distances. 

 

𝐸 =  √∑(𝑥𝑖 − 𝑦𝑖)2

𝑘

𝑖=1

 

 

(2.1) 

 

 
𝑀 =  ∑ |𝑥𝑖 − 𝑦𝑖|

𝑘

𝑖=1

 
 

(2.2) 

Linear Kernel Support Vector Machine 

For binary classification, the goal of SVM-Lin is to generate a separating hyperplane that 

separates the classes in a j-dimensional space, where j is the number of features. Given n 

numbers of training samples 𝑥1, . . . 𝑥𝑛 ∈ 𝑅𝑗 with class membership of 𝑦1, . . . , 𝑦𝑛 ∈ (−1, 1) 

where −1 represents controls and 1 represents RCC, the function of the separating 

hyperplane, defined here as the RCC metabolic score, is given by the following: 
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 RCC metabolic score = 𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗
𝑗
𝑗=1  (2.3) 

   
Where 𝛽0 and 𝛽𝑗  are the bias and the weight parameters respectively, determined during 

training. The class membership of a new observation was defined by the sign of the RCC 

metabolic score (negative for control and positive for RCC). The function 𝛽0 + 𝛽𝑥′  = 0 

is the separating hyperplane that maximized the margin between the two classes, while the 

margin is defined as the following:  

 𝛽0 + 𝛽𝑥′  ≥ 1, 𝑐 = +1 (2.4) 

 

 𝛽0 + 𝛽𝑥′  ≤ −1, 𝑐 = −1 
 

(2.5) 

The only hyperparameter to be tuned in the SVM-Lin is the non-negative regularization 

parameter cost (C) which allows for the flexibility of misclassification by the hyperplane 

margin. C in SVM controls the bias-variance tradeoff associated with statistical learning 

algorithms. 

Radial Basis Function Kernel Support Vector Machine 

The RBF kernel is a kernel method that projects data in a higher dimensional space for the 

purpose of a linear separation, which is equivalent to a non-linear decision boundary in the 

original feature space. SVM-RBF is defined by the following function:  

 𝐾(𝑥𝑖𝑥𝑖′) = 𝑒𝑥𝑝 (−𝛾 ∑ ( 𝑥𝑖𝑗 − 𝑥𝑖′𝑗)2𝑗
𝑗=1 ) 

 

(2.6) 

Where 𝑥𝑖 are training data, 𝑥𝑖′ are test data, and 𝛾, gamma is a positive tuning parameter. 

𝛾 and C are the hyperparameters considered for tuning. 

See Appendix A; Section A-2 for model evaluation metrics. 
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2.3.8 Unsupervised Learning Methods 

Hierarchical clustering analysis was conducted on 435 metabolic features, which were the 

top differential metabolites between RCC and controls, with greater than one-fold change 

and q value lower than 0.05. Of the 435 features, 433 were from LC-MS and 2 features 

were from NMR. The cluster map function in Seaborn was used.42 The linkage method for 

calculating clusters was weighted, while the distance metric was Euclidean. All features 

were autoscaled prior to analysis. 

 

2.3.9 Data Availability and Implementation Environment  

NMR data analysis was carried out using the Edison’s Lab in-house MATLAB scripts 

(https://github.com/artedison/Edison_Lab_Shared_Metabolomics_UGA,  

Matlab R2017b, The Mathworks, Inc.). Post metabolic features normalization 

computations were carried out in the Python 3.7.0 programming language using the 

following packages: Pandas for data handling,43 Matplotlib/Seaborn for data 

visualization,44 Numpy and Scipy for numerical computations,45-46 Statsmodel for 

statistical computations,47 and Sci-kit learn for machine learning.38 A Jupyter notebook was 

used as the integrated development environment (IDE).48 All Jupyter notebooks used in 

this study can be found here: https://github.com/artedison/RCC_MLprediction. The 

datasets collected in this work are available through the NIH Metabolomics Workbench49 

with the project ID of PR001091, and study IDs ST001705 and ST001706. The data set 

can be accessed via  http://dx.doi.org/10.21228/M8P97V.  

 

https://github.com/artedison/Edison_Lab_Shared_Metabolomics_UGA
https://github.com/artedison/RCC_MLprediction
http://dx.doi.org/10.21228/M8P97V
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2.4 Results  

2.4.1 Patient Selection 

NMR measurements were conducted on 179 controls and 105 renal cell carcinoma (RCC) 

patient urine samples, while LC-MS measurements were conducted on 178 controls and 

102 RCC patient urine samples. The subset of controls (n=174) and RCC (n=82) samples 

that was analyzed by both methods was selected for further investigation. While all control 

urine samples were collected in the clinic, RCC patient urine samples were collected both 

in the clinic and in the operating room. Pre-operative procedures added cofounders to the 

samples collected in the operating room, and were therefore not ideal for use in feature 

selection due to the potential for introducing bias in the RCC group. However, these 

operating room samples still had utility as part of the test cohort and were retained. The 

strategy for grouping of the samples into either model or test cohorts is presented in Figure 

2-1. In the model cohort used for training purposes, 31 RCC urine samples collected in the 

clinic were matched via one-to-one propensity score matching (PSM)37 to 31 control urine 

samples. PSM seeks to balance the population characteristics of the case vs. control 

samples in terms of characteristics such as age, BMI and smoking history, and is essential 

to obtain unbiased machine learning results and robust biomarker panels. In general, the 

model cohort consists of samples collected in the clinic. As such, features were selected, 

and models were trained solely using clinic samples. This addresses any sample collection 

bias concerns, as model training was not carried out using the test cohort. Moreover, all 

discriminating features identified in the study were statistically insignificant (independent 

t-Test, BH-FDR q ≥0.05) when RCC samples collected in the clinic vs. those collected in 

the operating room were compared (Appendix A; Figure A-1). 
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Figure 2-1. Flow Chart for Patient Selection.  

Samples for which NMR and MS measurements were collected (1). A total of 284 samples, 

with 174 control individuals and 82 RCC patients have their urine samples analyzed by 

both NMR and LC-MS methods (2). RCC samples collected in the clinic are selected for 

the model cohort (3a), while the operating room RCC samples are selected for the test 

cohort (3b). The model cohort was selected via propensity score matching from those 

samples collected in the clinic (31 RCC samples: 31 control samples) (4). The test cohort 

contained 51 RCC samples collected in the operating room and 143 controls collected in 

the clinic (5). 

 

Figure 2-2a and Appendix A; Table A-1 shows the comparative statistics of the pre-PSM 

and post-PSM model cohorts. Adjusted co-variates included gender, age, BMI, race, and 

smoking history. Following PSM, the cohorts were gender matched (17 males, 14 females), 

and had statistically-insignificant differences in age (p-value=0.64) and BMI (p-
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value=0.06). Smoking history and race statistics also improved considerably when 

compared to the pre-matched cohort. In addition, all RCC stages were represented in the 

model cohort, early stage RCC (Stage I and II) represented 55% of the cohort, while late 

stage RCC (Stage III and IV) represented 45% (Figure 2-2b, Appendix A; Table A-2). 

The second sub-cohort in the study, the test cohort, was constructed from the remainder of 

the samples following removal of the model cohort. It was composed of 143 controls and 

51 RCC patients (Figure 2-2c and Appendix A; Table A-3.) The imbalance of gender, 

age, BMI, and smoking history in the test cohort made it a good candidate for a challenging 

test of the utility of the metabolic panel selected by modeling the PSM-adjusted model 

cohort. 

 

 

Figure 2-2. Study Cohort Characteristics  
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(a) Model cohort characteristics (gender, smoking history, race, age, BMI in no particular 

order) are shown before and after propensity matching. p-values were calculated for 

unequal and equal sample sizes using Welch and Student t-tests, respectively. (b) 

Additional model cohort RCC characteristics (metastasis, nuclear grade, stage, and RCC 

subtype) show the majority of the group was early stage RCC and pure clear cell subtype. 

There was one nuclear grade datum unreported, and two cancer stages that were not 

reported due to inconclusive TNM staging information. (c) Test cohort characteristics show 

differences useful in testing the feature panels selected using the model cohort. All p-values 

were calculated using the Welch t-test (unequal sample size). Three samples had 

unreported nuclear grades and ten samples did not have RCC staging due to inconclusive 

TNM staging. Abbreviations. AA: African American; BMI: Body Mass Index; RCC: Renal 

Cell Carcinoma; C.C. Papillary: Clear cell papillary 

 

2.4.2 Metabolomics Analysis and Machine Learning Pipeline 

After NMR data collection, ends of spectra and water regions were removed. Several 

alignment methods were attempted with CCOW31 giving the most reliable alignment, 

followed by data normalization. A total of fifty metabolic features were quantitated with 

NMR and 30 metabolites confirmed with 1H NMR, and/or HSQC and HSQC-TOCSY as 

described in Materials and Methods (Appendix A; Table A-4 and Figure 2-3a). A total 

of 7,097 features were detected with LC-MS (4623 from positive mode and 2474 from 

negative mode), as described under Materials and Methods (Figure 2-3b and c). 
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Figure 2-3. Raw Data for Various Metabolomics Platforms.  

(a) Average 600MHz 1H 1D NOESY-PR NMR spectra of all urine samples tested in the 

study. 1) Acetate 2) dimethylamine (DMA) 3) taurine 4) bile acid (tentative assignment) 

5) lactate 6) alpha-hydroxyisobutyrate (HIBA) 7) alanine 8) acetyl phosphate  9) acetone  
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10) acetoacetate 11) succinate 12) pyruvate 13) citrate 14) methylguanidine 15) N,N 

dimethylglycine (DMG) 16) creatine 17) creatinine 18) creatine phosphate 19) cis-

aconitate 20) dimethylsulfone (DMS) 21) ethanolamine 22) choline 23) betaine 24) syllo-

inositol 25) trigonellinamide 26) 4-hydroxyphenylacetate (4-HPA) 27) glycine 28) 

mannitol 29) guadinoacetate 30) glycolate 31) hippurate 32) tatrate 33) allantoin 34) cis-

aconitate 35) urea 36) fumarate 37) indoxyl sulfate 38) trigonelline 39) hypoxanthine 40) 

formate 41) 3-hydroxyisovaleric acid 42) 4-aminohippuric acid 43) 4-hydroxyhippuric 

acid 44) valine (b) HILIC LC-MS positive ion mode data, displaying all samples. (c) 

HILIC LC-MS negative ion mode data, displaying all samples. 

 

All 7,147 metabolomic features from both platforms were merged and data analysis 

proceeded according to the ML pipeline shown in Figure 2-4. The dataset was filtered to 

include 435 features with greater than one-fold change between RCC and controls, and a 

Student’s t-test with Benjamini-Hochberg false discovery rate correction (q<0.05) 

performed. Figure 2-5 shows the hierarchical clustering of the 435 features selected in this 

analysis. To minimize the effect of feature multicollinearity, one out of a pair of highly 

correlated features (Pearson correlation, r > 0.8) was retained resulting in 128 features for 

further analysis. The top 20 features with PLS-DA ranked by VIP scores, and the top 20 

features with RF-RFECV ranked by Gini Index were selected from this set of 128 features. 

Ten features were present on both feature lists selected by PLS-DA and RF-RFECV, 

leading to the 10-metabolite panel. (Appendix A; Table A-5 and Figure A-2). This voting 

strategy was used to minimize bias from using only one machine learning algorithm for 

feature selection. Also, as a way of comparison with a more conventional workflow that 
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relies less on machine learning, features with the top ten highest q-values from the 

univariate analysis were selected, and a classification task was performed for the model 

cohort with logistic regression using the Metaboanalyst 5.0 biomarker analysis platform. 

Classification results showed an AUC of 0.86 and an accuracy of 83.3% (Appendix A; 

Figure A-3). These were lower performance scores compared to the ten features selected 

via the voting-based feature selection methods and employed in the k-NN classifier (0.96 

AUC and 95% accuracy) for the model cohort (Appendix A; Table A-7). As such, we 

proceeded with the vote-based ML-derived features. 

For predicting RCC status, four machine learning (ML) algorithms were used: 

random forest (RF), k-nearest neighbor (k-NN), support vector machine with radial basis 

function (SVM-RBF) and the linear kernel support vector machine (SVM-Lin). Selected 

hyperparameters were tuned using the 62-model cohort under 5-fold cross validation 

conditions (Appendix A; Table A-6). The tuned ML models were then used to predict 

RCC status in the test cohort. Overall, k-NN gave the best prediction with an AUC of 0.96, 

87% accuracy, 83% specificity, and a sensitivity of 96% (Appendix A; Table A-7).  
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Figure 2-4. Machine Learning Pipeline for RCC Detection Biomarker.  

Using the model cohort, a hybrid method of feature selection resulted in a panel of ten 

metabolites. Hyperparameters for four different machine learning models were tuned using 

the model cohort and the 10-metabolite panel. The RCC status of the test cohort was 

predicted with four models. PLS: partial least squares; RF- RFECV: random forest 

recursive feature elimination – cross validation; FDR-BH: false discovery rate Benjamini 

Hochberg procedure; k-NN: k-nearest neighbors; and SVM: support vector machines (Lin: 

linear, RBF: radial basis function). 
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Figure 2-5. Hierarchical Clustering of Top Differential Metabolites. 

435 metabolomic features with q values < 0.05 and > 1-fold change in the model cohort. 

z-Scores are represented as shown in the color bar. Yellow represents higher abundances 

in RCC, while dark blue represents higher abundances in the controls. See Appendix A; 

Table A-15 for details of metabolomic features. 
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Eight of the 10 selected markers were in lower relative abundance in RCC samples 

(Appendix A; Figure A-2) vs. control samples, so we identified another panel containing 

features with higher relative abundance in the RCC patients’ urine versus control urine, as 

measuring increased abundance upon appearance of disease is favored in clinical practice. 

Figure A-4 describes the machine learning pipeline for upregulated metabolic features in 

RCC which resulted in a five-metabolite panel (Appendix A; Table A-8 and Figure A-

5). Again, selected hyperparameters were tuned using the 62-model cohort under 5-fold 

cross validation conditions (Appendix A; Table A-9). The tuned ML models were then 

used to predict RCC status in the test cohort. It was found that k-NN yielded the best 

prediction of the test cohort with an AUC of 0.92, an accuracy of 81%, sensitivity of 86%, 

and specificity of 79% (Appendix A; Table A-10), which was a slightly lower 

performance than for the 10-metabolite panel (Appendix A; Table A-7). 

High resolution MS and tandem MS experiments were performed for metabolite 

annotation. Through standard procedures such as analyzing exact masses, isotopic relative 

ion abundances and fragmentation patterns, five metabolites in the ten-metabolite panel 

(Appendix A; Table A-5) and four of the five in the upregulated metabolite panel 

(Appendix A; Table A-8) were annotated. A third metabolite panel was formed to include 

only annotated features from the first two panels. Table 2-1 and Figure 2-6 shows the 

results using this last panel, namely a 7-metabolite panel for RCC which included 2-

phenylacetamide, Lys-Ile (or Lys-leu), dibutylamine, hippuric acid, mannitol hippurate, 2-

mercaptobenzothiazole, and N-acetyl-glucosaminic acid (Appendix A; Table A-11). ML 

hyperparameters were tuned using the 62-model cohort as described above (Appendix A; 

Table A-12). ML models were used to predict RCC status in the test cohort with the most 
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accurate model being linear SVM with an AUC of 0.98, accuracy of 88%, sensitivity of 

94%, and a specificity of 85% (Table 2-2). 

 

Figure 2-6. Relative Abundances for the 7 Metabolite-panel for RCC Detection.  

(a) In the model cohort. After selecting features with greater than one-fold changes between 

controls and RCC groups, q-values were computed by taking the FDR correction 

(Benjamini-Hochberg) after an independent t-test. (∗ 𝑞 ≤ 0.05,∗∗ 𝑞 ≤ 0.01,∗∗∗ 𝑞 ≤

0.001) (b) Relative abundances in the test cohort, p-values from the Welch t-test were 

reported (unequal sample size). ( ∗ 𝑝 ≤ 0.05,∗∗ 𝑝 ≤ 0.01,∗∗∗ 𝑝 ≤ 0.001). Raw data were 

transformed via autoscaling for visualization. 

 

Table 2-1. Compound Annotation and Identification for the 7-Metabolite Panel for 

RCC Detection. 

ID no. 

Retenti

on 

Time 

(min) 

m/z 
Adduct 

Type 

Mass 

error 

(ppm) 

Elemental 

Formula 
Name 

Theoreti

cal 

Experimenta

l 

720 5.68 
136.0757 

 

136.0755 

 
[M+H]+ -1.47 

C8H9NO 

 

2-

Phenylacetami

de 
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1481 8.83 
260.1969 

 
260.1969 [M+H]+ 0.00 

C12H25N3

O3 

 

Lys-Ile or Lys-

leu 

 

2102 4.39 
130.1590 

 
130.1591 [M+H]+ 0.77 

C8H19N 

 

Dibutylamine 

(alkyl chain 

branching not 

determined, 

isomers 

possible) 

 

3804 2.59 202.0475 202.0478 [M+Na]+ 1.48 

C9H9NO3

Na 

 

Hippuric acid 

6262 2.67 

376.1249

, 

358.1143 

376.1246, 

358.1147 

[M+H2O-

H]- 

[M-H] 

-0.68 
C15H21NO

9 

Hippurate-

mannitol 

derivative 

6578 1.09 
165.9790 

 
165.9784 [M-H]- -3.61 

C7H5NS2 

 

2-

Mercaptobenz

othiazole 

 

6594 6.89 
236.0776 

 
236.0777 [M+H]+ 0.42 

C8H15NO7 

 

N-acetyl-

glucosaminic 

acid 

 

 

Table 2-2. Machine Learning Performance for the 7-Metabolite Biomarker Panel 

for RCC Detection.  

Algorithm RF K-NN SVM-RBF Linear SVM 

 

AUC 

0.96 +/- 0.04 

(0.99) 

0.96 +/- 0.05 

(0.94) 

0.97 +/- 0.04 

(0.94) 

0.97 +/- 0.04 

(0.98) 

 

 

Accuracy 

0.9 +/- 0.06 

(87%) 

0.92 +/- 0.07 

(80%) 

0.88 +/- 0.09 

(78%) 

0.87 +/- 0.1 

(88%) 

 

 

Sensitivity 

0.87 +/- 0.12 

(100%) 

0.83 +/- 0.15 

(92%) 

0.8 +/- 0.19 

(90%) 

0.77 +/- 0.23 

(94%) 

 

 

Specificity 

0.93 +/- 0.08 

(83%) 

1.0 +/- 0.0 

(76%) 

0.97 +/- 0.07 

(73%) 

0.97 +/- 0.07 

(85%) 
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When combined with the 7097 LC-MS features, the 50 NMR features were not selected by 

machine learning procedures in any of the final panels. This is likely caused by the over-

representation of MS features in the final feature list. To further investigate the utility of 

NMR features, the dataset was filtered with Student’s t-test with Benjamini-Hochberg false 

discovery rate correction (q<0.05). Following that, metabolomic features representing the 

same metabolites were removed via a Pearson’s correlation cut-off of 0.80 to retain only 

one feature representing a metabolite (Appendix A; Figure A-6). This gave rise to a four-

metabolite panel consisting of hippurate, trigonellinamide, lactate, and mannitol 

(Appendix A; Figure A-7). As with other panels, selected hyperparameters were tuned 

using the 62-model cohort under 5-fold cross validation conditions (Appendix A; Table 

A-13). The tuned ML models were then used to predict RCC status in the test cohort. SVM-

RBF yielded the best prediction in the test cohort with an AUC of 0.89, an accuracy of 

78%, 86% sensitivity, and a specificity of 76% (Appendix A; Table A-14). 

2.5 Discussion 

Machine learning enabled the accurate selection of metabolite markers that accurately 

distinguished urine samples from RCC patients to those from controls following propensity 

score matching of the cohorts. Because different machine learning techniques are driven 

by different induction biases, we used a variety of feature selection strategies to better 

down-select biomarkers. As initial feature filters, univariate statistical methods such as t-

tests, fold changes, and Pearson’s correlations were used for down-sizing the metabolic 

feature set. The last few steps of the machine learning pipeline were based on two ML 

methods with differing inductive biases. PLS-DA assumes linear statistical relationships50 

while random forests can model more complex relationships in the dataset.51 This step was 
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followed by voting for the top ranking overlapping metabolic features from the different 

methods tested. For the classification tasks, hyperparameter tuning of machine learning 

algorithms was carried out, culminating in excellent predictions of the test cohorts. These 

data analysis pipelines resulted in a ten-metabolite panel, a five-metabolite panel including 

only metabolites upregulated in RCC, and a four-metabolite marker containing only 

metabolites detected by NMR. The seven-identified metabolites biomarker proposals in the 

study gave an accuracy of 88% and an AUC of 0.98. This is likely a conservative 

assessment of the robustness of the biomarker given the small size of the training dataset 

vs. a relatively large test cohort, given the constraint of patient selection. In general, many 

of the markers identified in these panels were novel, but a handful had already been 

reported in the literature, validating the approach used in this study. 

Examination of the biological role of the metabolites in the various panels 

constructed led to new insights into potential origins and mechanisms of disease 

progression in RCC. The metabolite 2-phenylacetamide decreased in RCC urine samples, 

indicating a downregulation of phenylalanine metabolism. Indeed, downregulation of 

phenylalanine metabolism has been reported in RCC cancer cells,52 while RCC urine 

metabolomics studies have also reported the downregulation of metabolites in the 

phenylalanine pathway such as 4-hydroxyphenylacetate and phenylacetyl-L-glutamine.15, 

20  

The dipeptide lysyl-isoleucine/lysyl-leucine (Lys-Ile/Lys-leu) was observed to be 

increased in RCC urine samples. Upregulation of other types of dipeptides has been linked 

to RCC.22, 53 For example, in a paired normal/clear cell renal cell carcinoma tissue 

metabolomics study by Hakimi and co-workers, numerous dipeptides were detected as 
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being upregulated in RCC.53 In addition, dipeptides such as aspartyl-phenylalanine and 

glutamyl-threonine have been reported to be upregulated in a urine RCC metabolomics 

study.22 Increased dipeptide abundances are typically associated with the increased protein 

degradation/reutilization processes in tumors.53  

Reduced levels of hippuric acid and feature C15H21NO9, likely a hippurate and 

mannitol derivative, in RCC patient urine was in line with the disrupted renal function that 

arises as a result of a disease, which may lead to the disruption of hippurate elimination or 

production.54 Hippurate is formed via the conjugation of glycine and benzoic acid, which 

takes place in the kidney, and this metabolite has been reported to have a strong association 

with diet and the gut microbiota.54 Reduced levels of hippurate in RCC patient urine were 

also reported in studies with smaller cohorts.20, 28 In addition, reduced level of hippurate 

have been reported in several RCC-predisposing conditions such as obesity55-56 and high 

blood pressure.57  

N-acetyl-D-glucosaminic acid, an acylaminosugar, was elevated in RCC in our 

study. Increased glucose uptake might be driving the elevation of the acylaminosugar via 

the hexosamine biosynthetic pathway (HBP). This increased HBP flux has been implicated 

in many cancer types58-62 as this pathway plays a central role in DNA repair, cellular 

signaling, and metastasis.63  

In addition to endogenous metabolites, two exogenous metabolites were also 

selected as markers, 2-mercaptobenzothiazole (2-MBT) and dibutylamine. 2-MBT was 

found at higher levels in RCC patients’ urine. 2-MBT is used in acceleration of 

vulcanization, as such it can be found in car tires. Other commodities that might contain 2-

MBT include cables, rubber gloves, shoes, rubber bands and toys.64-65 Humans are exposed 
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to 2-MBT via inhalation, dermal or oral intake, and the compound has been detected in 

human urine.64-65 It has been identified as a marker for traffic intensity because of the tire 

tread wear linked to car usage, and calls were made for the revision of the risk assessment 

to 2-MBT.66 The International Agency for Research has classified it as ‘probably 

carcinogenic to humans’,66 while it has also been linked to an increase in the bladder cancer 

risk.65  

Higher levels of dibutylamine (DBA) were also present in RCC patient urine. 

Dibutylamine is a precursor to N-nitrosodibutylamine (NDBA), a nitrosamine.67 

Nitrosamines are environmental carcinogens that can produce tumors in many organs in 

the body,68 NBDA being one of the most potent bladder cancer carcinogens.69 Increased 

human urinary excretion of nitrosamines, including NBDA, has also been associated with 

esophageal cancer.70-71 Sources of amines and nitrosamines include drinking water67 and 

meat products.72-73  

Hippuric acid, lactate, trigonellinamide, and mannitol were selected as markers in 

the NMR-only panel. Hippuric acid was also selected in the 10-metabolite panel, making 

the selection in the NMR-only panel unsurprising. The reduction in abundance of 

trigonellinamide (1-methylnicotinamide) in RCC patient urine could be indicative of a 

dysregulated nicotinate and nicotinamide metabolism,74 particularly considering that our 

study also identified reduced level of trigonelline, a metabolite that showed a similar trend 

in a separate NMR study.20 Increased levels of lactate might reflect the activation of 

oncogenic aerobic glycolysis, the Warburg effect, which is a hallmark of cancerous cells.75 

In addition, upregulation of lactate dehydrogenase A levels has been reported in RCC cells 

and tissues.76 Decreased mannitol excretion in RCC patients might be caused by 
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dysregulations in energy metabolism, with this trend being reported in a separate urine 

metabolomics study.29 

2.6 Conclusions 

We have shown the potential utility of a urine assay in the clinical setting for RCC 

detection. This study, like others of its kind, has the limitation of numerous potential 

confounders that could impact biomarker discovery results. While randomized control 

trials (RCTs) are gold standards for epidemiology research, observational studies remain 

inescapable for studies like this, as randomizing the intervention (RCC) is impossible. As 

such, to argue for the reduction in selection bias, we adjusted for five potential confounders 

in the study: age, BMI, gender, smoking history, and race. Of these, four adjustments were 

largely successful. Going forward, a much larger cohort, representing the diversity of race 

and geographical locations would be required for the validation of our biomarker proposals. 
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CHAPTER 3 

URINE-BASED METABOLOMICS AND MACHINE LEARNING REVEALS 

METABOLITES ASSOCIATED WITH RENAL CELL CARCINOMA 

PROGRESSION2 
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3.1 Simple Summary  

Every year, hundreds of thousands of cases of renal carcinoma (RCC) are reported 

worldwide. Accurate staging of the disease is important for treatment and prognosis 

purposes; however, contemporary methods such as computerized tomography (CT) and 

biopsies are expensive and prone to sampling errors, respectively. As such, a non-invasive 

diagnostic assay for staging would be beneficial. This study aims to investigate urine 

metabolites as potential biomarkers to stage RCC. In the study, we identified a panel of 

such urine metabolites with machine learning techniques. 

3.2 Abstract 

Urine metabolomics profiling is an excellent non-invasive tool for staging RCC, in addition 

to providing metabolic insights into the disease progression. In this study, we utilized liquid 

chromatography-mass spectrometry (LC-MS), nuclear magnetic resonance (NMR), and 

machine learning (ML) for the discovery of urine metabolites associated with RCC 

progression. Two machine learning problems were posed in the study: RCC tumor size 

prediction with regression analysis and binary classification into early RCC (stage I and II) 

and advanced RCC stages (stage III and IV). 82 RCC patients with tumor size and 
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metabolomic measurements were used for the regression task, and 70 RCC patients with 

complete tumor-nodes-metastasis (TNM) staging information were used for the 

classification tasks under ten-fold cross-validation conditions. A voting ensemble 

regression model consisting of elastic net, ridge, and support vector regressor predicted 

tumor size of RCC with a 𝑅2 value of 0.58. A voting classifier model consisting of random 

forest, support vector machines, logistic regression, and adaptive boosting gave an AUC 

of 0.96 and an accuracy of 87%. Some identified metabolites associated with renal cell 

carcinoma progression include 4-guanidinobutanoic acid, 7-aminomethyl-7-carbaguanine, 

3-hydroxyanthranilic acid, lysylglycine, glycine, citrate, and pyruvate. Overall, we 

identified urine metabolites associated with renal cell carcinoma progression, espousing 

the promise of a urine-based metabolomic assay for staging the disease.      

3.3 Introduction 

Kidney cancer is one of the deadliest urinary cancers, with an advanced stage (stage III and 

IV) 5-year survival rate of 12%1. In the United States, 76,080 patients are projected to be 

diagnosed with the disease in 2021, with an estimated death toll of 13,7802. Renal cell 

carcinomas constitute approximately 90% of kidney and renal pelvis cancers. Because 

RCC prognosis and treatment depend on accurate staging, innovations in clinical staging 

are warranted. Accurate staging is currently carried out via computerized tomography (CT) 

scans and biopsy, which are expensive and highly invasive, respectively3. Non-invasive 

staging assays using urine samples, therefore, have the potential of being highly beneficial. 

In chapter 2, machine learning and multiplatform metabolomics was applied to detect RCC 

in urine samples. This current study investigates the discrimination of early and advanced 
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RCC stages using the RCC cohort datasets from our previous RCC detection metabolomics 

study. 

Metabolic reprogramming in cancer contributes to cancer progression4-6. As such, 

changes in metabolite profiles in biofluids such as urine could enable RCC stage 

stratification and monitoring. Given the proximity of the kidney and urine, the case for a 

urine-based surveillance method for RCC is further strengthened. Mass spectrometry (MS) 

and Nuclear Magnetic Resonance (NMR) spectroscopy are two popular platforms for 

metabolomics profiling. In this study, both platforms were combined for maximum 

coverage. Omics research has been one of the hallmarks of biology research in the 21st 

century, marked by the rapid growth in the interrogation of large datasets by modern 

statistical techniques such as machine learning. The metabolomics literature has reflected 

this technological revolution7-9. Machine learning (ML) is a subfield of artificial 

intelligence that involves computer learning of patterns buried in data without being 

explicitly programmed to do so10. This characteristic makes machine learning a powerful 

tool for biomarker discoveries8, 11. 

While many studies have focused on RCC detection urine biomarkers, only a 

handful of studies have investigated biomarkers for RCC staging. In 2020, Liu and co-

workers presented a metabolic panel for discriminating early RCC and late RCC, using 

liquid chromatography (LC)-MS. In their study, early RCC consisted of primary tumor 

stages 1 and 2 (pT1 and pT2), while advanced RCC consisted of primary tumor stages 3 

and 4 (pT3 and pT4). The discriminant metabolic panel consisted of thymidine, cholic acid 

glucuronide, alanyl-proline, isoleucyl-hydroxyproline, and myristic acid (a fatty acid)12. In 

addition, Falegan et al. showed the potential for discrimination between pT1 and pT3 tumor 
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stages using gas chromatography (GC)-MS of serum samples coupled to Partial Least 

Squares-Discriminant Analysis (PLS-DA) modeling but did not identify the chemical 

structure of the metabolites responsible for such separation13. Furthermore, Manzi and co-

workers reported a 26-lipid panel that discriminates early clear cell RCC from late-stage 

clear cell RCC in human serum samples14.  

Given the success of detecting RCC in urine in chapter 2 (AUC of 0.98 and 

accuracy of 88%), and because of the limited study on RCC metabolomics stage 

stratification, we used the data from that study to apply machine learning methods for RCC 

stage stratification. The original study focused on discriminating RCC from healthy 

controls. In this study, comprehensive tumor, nodes, and metastases (TNM) staging were 

carried out considering 1) the size of the primary tumor, 2) presence or absence of 

metastasis in the regional lymph nodes, and 3) the presence or absence of distant 

metastasis. NMR and LC-MS were used for non-targeted metabolic profiling, and ML was 

used for selecting the best set of metabolites and discrimination of early and advanced 

RCC. In addition, the size of tumors was predicted using ML through preselected urinary 

metabolites. In short, we provide evidence that a patient’s urine metabolic profile can be 

used for monitoring RCC progression. 

3.4 Materials and Methods 

RCC patients were identified at Emory University Hospital. Urine samples were collected 

and stored at -80 °C, and hydrophilic interaction liquid chromatography high-resolution 

mass spectrometry and nuclear magnetic spectroscopy experiments were conducted for 

metabolic profiling in our published study on RCC detection. Tandem MS was performed 

for the identification of discriminant features, while NMR experiments carried out 
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included: one-dimensional nuclear Overhauser effect pulse sequence with pre-saturation 

of water resonance (NOESYPR1D), two-dimensional (2D) 1H-13C heteronuclear single 

quantum correlation (HSQC), and HSQC–TOCSY (HSQC–total correlation 

spectroscopy). NMR metabolomic features/metabolites are reported with resonances 

signatures and confidence scores in Appendix B; Table B-1. For LC-MS, seven thousand 

ninety-seven spectral features resulted from the analysis, with 4623 from positive mode 

and 2474 from negative mode. See chapter 2 for more complete experimental details. 

Subsequent machine learning analyses were carried out on the set of combined LC-MS and 

NMR metabolomic features.  

 

3.4.1 Tumor Size Predictions 

Maximum tumor width was used as a proxy for tumor size. Out of the 82 patients in the 

study with NMR and MS metabolomics measurements, only two had missing tumor size. 

These missing data were replaced with mean imputations. Pearson’s correlations between 

metabolites and tumor size were used for metabolomic feature selection, with a cut-off 

value of 0.55. Elastic net, support vector, ridge, and voting ensemble regression models 

were used in tumor size predictions. The default parameters in the Scikit-learn library15 in 

Python were used for modeling, and 80% and 20% of the data were used for training and 

testing purposes, respectively. 

Ridge regression is a regularized linear model with the goal of minimizing the 

following objective function during training:  

 𝑅(𝜷,  𝜆) = ‖𝒀 − 𝑿𝜷‖2
2 + 𝜆‖𝜷‖2

2
 (3.1) 



 

94 

Where 𝜷 = (𝛽1 … ,  𝛽𝑝)′ is a vector of slope regression coefficients, ‖⋅‖2 is the 𝐿2 norm, 

and 𝜆 is a tuning parameter that denotes the regularization strength. 𝜆 was set at 1.0.  

Elastic net regression combines the l2 regularization of linear model (ridge regression), and 

l1 regularization of linear model (lasso regression). The objective function is as follow: 

 
𝐸(𝜷, 𝜆, 𝛼) =

1

2𝑛
‖𝒀 − 𝑿𝜷‖2

2 + 𝛼𝜆‖𝜷‖1 +
1

2
𝜆(1 − 𝛼)‖𝜷‖2

2
 

(3.2) 

Where 𝜷 = (𝛽1 … ,  𝛽𝑝)′ is a vector of slope regression coefficients, ‖⋅‖2 is the 𝐿2 norm, 

‖⋅‖1 is the 𝐿1 norm, 𝜆 is a tuning parameter as described above, and 𝛼 is the mixing 

parameter between ridge and lasso regression. 𝜆 and 𝛼 were set to 1.0 and 0.5, respectively.  

Support Vector Regressor (SVR) is a nonparametric technique as it relies on kernel 

functions. The objective function of SVR, as opposed to ordinary least square methods, 

involves minimizing the l2 norm of the coefficient vector (
1

2
‖𝜷‖2), and not the squared 

error term. The objective function is as follows:  

 1

2
‖𝜷‖2 + 𝐶 ∑ |𝜉𝑖|

𝑛

𝑖=1

 
 

(3.3a) 

With the following constraint: 

 |𝑦𝑖 − 𝛽𝑖𝑥𝑖| ≤ 𝜀 + |𝜉𝑖| 
 

(3.3b) 

Where 𝜷 is the coefficient vector, 𝜀 is the maximum error – which defines the margin of 

error acceptable to the model. Additional errors beyond 𝜀 are the slack parameters 𝜉. 𝐶 is 

a regularization parameter that accommodates or penalizes 𝜉. In short, the objective 

function will be minimized with the constraint that the absolute difference between tumor 

sizes and predicted tumor sizes must be less or equal to the maximum error and absolute 
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slack parameters for samples during training. 𝐶 and 𝜀 were set to 1.0 and 0.1, respectively. 

The radial basis function was the kernel used.  

The voting ensemble regressor is an ensemble of the three regression models above. 

The base regressors were fit to the dataset, and the average of the output of the individual 

predictions for each base regressor was computed. All models were evaluated using the 

coefficient of determination (𝑅2), which describes the proportion of variance for the tumor 

size explained by the urine metabolites predictors. The formula is given below:  

 
𝑅2 = 1 − 

∑(𝑦𝑖 − �̂�𝑖)
2

∑(𝑦𝑖 − �̅�)2
 

(3.4) 

Where 𝑦𝑖 is the RCC tumor size of patient i, �̂�𝑖 is the predicted RCC tumor size of patient 

i, and �̅� is the mean RCC tumor size of all patients.  

 

3.4.2. Feature Selection for the RCC Stage Stratification  

The normalized abundances of 50 metabolomic features quantified with NMR and > 7000 

features from LC-MS were combined into one feature table in Python. Features for RCC 

stratification were retained through the following sequential steps: 1) 1-fold change 

between the two groups. 2) Student T-test with a p-value < 0.05, 3) One of two positively 

highly correlated features were retained (Pearson correlation > 0.8). Before further feature 

selection, all features were auto-scaled. Partial least square discriminant analysis (PLS-

DA) was carried out, and the variable importance in projection (VIP) scores were used to 

select top-ranked features. Similarly, random forest recursive feature elimination (RF-

RFE) was conducted, and its Gini Index was used to select top-ranked features. 

Overlapping features from the top 35 ranked features were selected as a metabolite panel 

for this study. 
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3.4.3 Machine Learning-enabled RCC Stage Stratification 

RCC stage stratification was done by predicting early RCC (stage I and II) and advanced 

RCC (stage III and IV) with random forest, support vector machine, logistic regression, 

adaptive boosting, and a voting ensemble classifier. The default parameters in the Scikit-

learn library15 in Python were used for modeling. For training and testing purposes, a 10-

fold cross-validation method was applied. 

Random forest classification is a collection of decision tree estimators that are 

constructed with bootstrapped training samples. A decision tree is an inverted tree with a 

root node, an internal node, and a leaf node. The root and internal nodes are assigned 

metabolomic features that drive the decisions, while the leaf nodes give the final prediction 

of either early or advanced RCC. One hundred trees were used in the forest, and the quality 

of the split was measured by Gini impurity16.   

In support vector machines, the algorithm's goal is to discover a separating 

hyperplane, in this case, for a binary classification problem. The decision function takes 

the following form:  

 RCC score =  𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗
𝑗
𝑗=1  (3.5) 

𝛽0 and 𝛽𝑗  are the bias and the weight parameters, respectively, of the model. The index i 

indicates the sample, and j represents the metabolomic features. The RCC score determines 

the class membership. In this formulation, a negative score indicates early RCC, while a 

positive score indicates advanced RCC, as the separating hyperplane takes the form 𝛽0 +

𝛽𝑥′  = 0. A radial basis function (RBF) kernel was used, and the regulation parameter C 

was set at 1.0.  
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Logistic regression is an extension of linear regression where predictions are 

mapped to a class membership via the sigmoid function. The objective function is:  

 (�̂�, 𝑦) =  −[𝑦 𝑙𝑜𝑔 �̂� + (1 − 𝑦)𝑙𝑜𝑔 (1 − �̂�)] (3.6) 

Where y indicates actual tumor size, and �̂� the predicted tumor size.  

Adaptive boosting (AdaBoost) is an ensemble of decision tree classifiers. AdaBoost 

involves the sequential boosting of its base classifier by ascribing larger weights to 

misclassified samples to induce the corrections of misclassifications in subsequent decision 

trees classifier. A linear combination of all base classifiers results in the final decision 

function. The learning rate was set to 1.0, while the number of decision trees was set to 50. 

The voting classifier is an ensemble of the four classifiers above. Soft voting was used, 

where the average probability outputs of the base learners are the voting classifier’s final 

output. 

Binary classifiers were evaluated using the area under the curve (AUC), accuracy, 

sensitivity, and specificity. AUC is the area under the curve of a receiver operating 

characteristics (ROC) curve. The ROC curve plots the true positive rate against the false-

positive rate, displaying the model's performance at all classification thresholds. As such, 

this makes AUC the most desirable metric for binary classification with an unbalanced 

dataset. AUC was used to select the best models in the study.   

Accuracy is calculated as the percentage of all correctly-predicted RCC stage samples. 

 Accuracy =  (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) (3.7) 

Sensitivity is the percentage of correctly predicted advanced RCC patients out of the total 

advanced RCC samples. 

 Sensitivity =   𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (3.8) 
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Specificity is the percentage of correctly predicted early-stage RCC patients out of the total 

early RCC samples. 

 Specificity =   𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) (3.9) 

Early RCC is denoted as a negative sample and advanced RCC as a positive sample in this 

setting. FP is false positive, FN is false negative, TP is true positive, and TN is true 

negative. 

 

3.4.4 Implementation Environment and Computational Libraries 

Edison Lab’s in-house MATLAB Metabolomics Toolbox 

(https://github.com/artedison/Edison_Lab_Shared_Metabolomics_UGA, Matlab R2017b, 

The Mathworks, Inc.) was used for NMR data analysis. Combination of LC-MS and NMR 

metabolomic features and subsequent computational analysis was carried out using the 

Python 3.7.0 programming language. Pandas 1.0.5 was used for data handling and 

manipulations17. Matplotlib 3.3.0 and Seaborn 0.10.1 was used in data visualization18. 

NumPy 1.19.1 and SciPy 1.5.1 were used for numerical computing19-20. Statsmodel 0.11.1 

was the statistical package used21. Sci-kit learn 0.23.2, and Yellowbrick 1.3.post1 was used 

for machine learning15, and the integrated development environment used was Jupyter 

notebook22. All Jupyter notebooks used in the study can be found on GitHub 

(https://github.com/artedison/RCC-staging). 

3.5 Results 

3.5.1 Patient Cohort Characteristics 

The TNM staging protocol used for tumor stratification is shown in Figure 3-13. T 

indicates the size and extent of the primary tumor, N indicates the presence or absence of 

htts://github.com/artedison/Edison_Lab_Shared_Metabolomics_UGA
https://github.com/artedison/RCC-staging


 

99 

metastasis in the regional lymph nodes, and M indicates the presence or absence of distant 

metastasis. Stage I and II are classified as early RCC, with the tumor confined to the kidney, 

while Stage III and IV are classified as advanced RCC, with the tumor spreading from the 

kidney. Out of the 82 urine samples with metabolomics measurements, twelve samples 

with inconclusive TNM staging were removed from the RCC stratification modeling. 

However, all samples were used for the tumor size predictions (Appendix B; Table B-2). 

 

 

Figure 3-1. Classification of Early-stage and Advanced-stage RCC.  

Abbreviations: T, primary tumor; T1, the tumor is 7 cm or less in its greatest dimension 

and limited to the kidney; T2, the tumor is greater than 7 cm in its greatest dimension but 

limited to the kidney; T3, the tumor extends into major veins or perinephric tissues but not 

into the ipsilateral adrenal gland and not beyond Gerota fascia; T4, tumor invades beyond 

Gerota fascia (including contiguous extension into the ipsilateral adrenal gland); N, 

regional lymph nodes; NX, regional lymph nodes cannot be assessed; N0, no regional 
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lymph node metastasis; N1, metastasis in regional lymph node(s); M, distant metastasis; 

M0, no distant metastasis; M1, distant metastasis3. 

 

The relevant clinical and demographics information for the studied cohort are 

shown in Table 3-1. We used 41 and 29 urine samples for early and advanced stage RCC, 

respectively, with no statistical significant difference between the groups concerning BMI 

(p=0.63, Student’s T-Test) and age (p=0.14, Student’s T-Test) (Appendix B; Figure B-1 

d & e). The predominant race in both early RCC (n=26, 63.4%) and advanced RCC (n=21, 

72.4%) was Caucasian, with a greater proportion of subjects who never smoked in both 

early RCC (n=24, 58.5%) and advanced RCC (n=19, 65.5%). The proportion of female 

patients in early RCC was 53.7% (n=21), and 31.1% (n=9) in advanced RCC. To test 

whether these covariates were potential confounders in the study, principal component 

analysis (PCA) was applied using the final 24-metabolite proposed in the study as features. 

PCA score plots showed no clustering based on any of the previously named variables. 

(Appendix B; Figure B-1 a-c).   

 

Table 3-1. Patient Cohort Characteristics for RCC Staging  

Characteristic Early RCC Advanced RCC 

No of Urine Samples 41 29 

Mean Age  SD 60.1  13.3 61.6  13.2 a 

Mean BMI SD 29.9  5.2 27.9  6.2 b 

Race    

Caucasian 26 (63.4%) 21 (72.4%) 

Black/African American 14 (34.1%) 5 (17.2%) 

American-Indian/Alaskan- 

Native 
1 (2.4%) 1 (3.4%) 

Mixed - 1 (3.4%) 

Unknown/Missing - 1 (3.4%) 

Smoker   
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Never 24 (58.5%) 19 (65.5%) 

Former/Current 17 (41.5%) 10 (34.5%) 

Gender   

Male 19 (46.3%) 20 (68.9%) 

Female 22 (53.7%) 9 (31.1%) 

Histological Subtypes   

Pure Clear Cell 23 (56.1%) 26 (89.6%) 

Papillary 9 (21.9%) 1 (3.4%) 

Clear Cell Papillary 4 (9.8%) - 

Chromophobe 4 (9.8%) - 

Unclassified 1 (2.4%) 2 (6.9%) 

Nuclear Grade   

1 - - 

2 21 (51.2%) 3 (10.3%) 

3 17 (41.5%) 10 (34.5%) 

4 3 (7.3%) 16 (55.2%) 

RCC Stage   

I 33 (80.5%) - 

II 8 (19.5%) - 

III - 15 (51.7%) 

IV - 14 (48.3%) 

p-values were calculated using the Student T-test. aAge p-value = 0.63, b BMI p-value = 

0.14. Twelve samples with missing TNM staging information were excluded. 

 

3.5.2 Predicting RCC Tumor Size with Urine Metabolites 

An important characteristic of cancer is the primary tumor size, which is the original or 

first tumor. As such, we investigated the associations between RCC tumor sizes and urine 

metabolites. To do this, Pearson correlations were computed between the two variables. 

Eighty-two samples with associated tumor size were used for the analysis, with Appendix 

B; Table B-2 describing the clinical and demographic characteristics of this cohort. Figure 

3-2a shows correlation plots of the four metabolites with the highest associations with 

tumor size in the study (r > 0.55) after removing inconsistent features. Three of the four 

metabolites were identified and they included, cytosine dimer (r=0.58, p=9.8 × 10−8), 

dihydrouridine (r=0.56, p=3.8 ×  10−8), and asparaginyl-hydroxyproline (r=0.57, 
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p=1.8 ×  10−8) (Table 3-2). Given this positive association of urine metabolites with RCC 

tumor size, we predicted tumor size using these metabolites with elastic net regressor, 

support vector regressor, ridge regressor, and a voting ensemble regressor combining all 

three previous regression models. The models were trained on 80% of the data, while the 

test set consisted of 20% of the data. The best prediction was modeled using the vote 

regressor with a test set R2 value of 0.58 (Figure 3-2b & c). The results for other models 

such as the elastic net regressor (train R2=0.46, test set R2= 0.56), support vector regressor 

(train R2=0.23, test set R2= 0.51), and ridge regressor model (train R2=0.46, test set R2= 

0.56), are shown in Appendix B; Figure B-2. 

 

 

Figure 3-2. Correlation Between Tumor Size and Urine Metabolites, and Tumor 

Size Predictions.  
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a) Metabolites with the highest correlation with maximum tumor width. Pearson 

correlation coefficient and p-values for testing non-correlation are provided. The threshold 

for the correlation coefficient was r > 0.55. b) Residual plots c) prediction error plot. 

 

Table 3-2. Compound Annotation and Identification for the Metabolites with the 

Highest Correlation (r >0.55) with Tumor Size of RCC Patients. 

ID no. 

Retent

ion 

Time 

(min) 

m/z 

Adduct 

Type 

Mass 

error 

(ppm) 

Elemental 

Formula 

Metabolite 

Identity 

Confi

dence 

Level 

The

oreti

cal 

Experim

ental 

2745 1.87 
223.

0938 
223.0936 [M+H]+ -0.64 C8 H10 N6 O2 cytosine dimer 2 

3163 3.53 
279.

1187 
279.1194 [M+H]+ 2.54 C10 H18 N2 O7 -- 4 

5362 3.46 
245.

0774 
245.0775 [M-H]- 0.61 C9 H14 N2 O6 dihydrouridine 2 

6681 2.80 
244.

0933 
244.0934 [M-H]- 0.31 C9 H15 N3 O5 

hydroxyprolyl-

asparagine/ 

asparaginylhydroxy

proline 

2 

 

3.5.3 Machine Learning Discriminates Early Stage RCC and Advanced Stage RCC 

NMR and LC-MS metabolic features were combined into a single feature table, and 16 

discriminating metabolites were selected using multiple methods. The chart in Appendix 

B; Figure B-3 describes this machine learning pipeline. First, two filter-based approaches 

were used for feature selection: 1) metabolic features with greater than 1-fold difference 

between the early and advanced RCC, followed by 2) a Student t-Test between the two 

groups (cut off value, p < 0.05). This resulted in 171 LC-MS metabolic features (Appendix 

B; Table B-3). Two, a Pearson correlation-based method was used to remove potentially 

redundant features that might degrade machine learning predictions: for two highly 

correlated features, one feature was dropped (cut-off value, r > 0.8). This leaves 99 
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metabolic features remaining in the feature table. Finally, embedded feature selection 

techniques were layered inside a voting-based system for the final biomarker selection. A 

partial least squares regression technique was used to rank feature importance via its 

Variable Importance in Projection (VIP) scores, and the top metabolic 35 features were 

selected. In addition, a random forest recursive feature elimination technique was used to 

rank feature importance via its Gini index, and the top 35 features were also selected. As a 

voting system, features that appear on both lists were selected after the removal of 

inconsistent features. This led to selecting a 16 urine metabolites panel for RCC stage 

stratification (Table 3-3). The identified metabolites include 4-guanidinobutanoic acid, 7-

aminomethyl-7-carbaguanine, N-alpha-N-alpha-dimethyl-L-histidine, diethyl-2-methyl-3-

oxosuccinate, 3-hydroxyanthranilic acid, apo-[3-methylcrotonoyl-CoA:carbon-dioxide 

ligase (ADP-forming)], lys-gly/gly-lys, and succinic anhydride. All the markers were 

detected by LC-MS. Random forest (RF), adaptive boosting (AdaBoost), support vector 

machine with radial basis function kernel (SVM-RBF), logistic regression, and a voting 

ensemble combining all four methods were used for stratification under ten-fold cross-

validation conditions. Appendix B; Figure B-4 shows the ML predictions for RCC staging 

using this panel. The voting ensemble models gave the best predictions, with an AUC of 

0.95, accuracy of 86%, sensitivity of 80%, and specificity of 91%. 

 

Table 3-3. Compound Annotation and Identification of the 16-Metabolite Panel for 

RCC Staging. 

ID 

Retention 

Time 

(min) 

Theoretical 

m/z 

Experimental 

m/z 

Adduct 

Type 

Mass 

Error 

(ppm) 

Elemental 

formula 

Metabolite 

Identity 

Confidence 

Score 

1372 3.94 146.0924 146.0924 [M+H]+ 0.03 
C5 H11 N3 

O2 

4-

guanidinobutanoic 

acid 

2 
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1904 4.00 180.0879 180.0880 [M+H]+ 0.08 
C7 H9 N5 

O 

7-aminomethyl-7-

carbaguanine 
2 

2122 1.20 184.1081 184.1080 [M+H]+ -0.36 
C8 H13 N3 

O2 

N- _N- dimethyl- 

histidine 
2 

2317 
0.89, 

0.89 

203.0913, 

422.2020 

203.0912, 

422.2023 

[M+H]+, 

[2M+NH4]+1 

-0.44 

0.71 
C9 H14 O5 

diethyl-2-methyl-

3-oxosuccinate 
3 

2465 
0.89, 

0.89 

154.0498 

136.0393 

154.0497, 

136.0392 

[M+H]+, 
[M+H-

H2O]+ 

-0.62 

-0.73 

C7 H7 N 

O3 

3-
hydroxyanthranilic 

acid 

2 

3163 3.53 279.1187 279.1194 [M+H]+ 2.54 
C10 H18 N2 

O7 
-- 4 

3766 3.63 174.1237 174.1238 [M+H]+ 0.37 
C7 H15 N3 

O2 

apo-[3-
methylcrotonoyl-

CoA:carbon-

dioxide ligase 

(ADP-forming)] 

2 

4116 3.79 119.0577 119.0580 [M+H]+ 4.51 
C4 H8 N 

O3 
-- 4 

5045 3.49 218.0129 218.0123 [M-H]- -3.50 
C7 H9 N 

O5 S 
-- 4 

5420 3.38 205.0526 205.0535 [M-H]- 4.32 
C4 H12 N6 

P2 
-- 4 

5437 0.76 123.0114 123.0108 [M-H]- -4.47 C9 H2 N -- 4 

5713 1.23 305.0990 305.0989 [M-H]- -0.58 
C11 H18 N2 

O8 
-- 4 

5737 3.99 202.1197 202.1190 [M-H]- -3.58 
C8 H17 N3 

O3 
lys-gly/ gly-lys 2 

5985 0.94 99.0087 99.0088 [M-H]- 
0.21 

 
C4 H4 O3 succinic anhydride  2 

6687 0.86 369.0517 369.0502 [M-H]- -4.30 
C6 H14 N10 

O5 S2 
-- 4 

m/z = mass-to-charge ratio, min = minutes, ppm = part per million. Metabolite 

identification level was assigned based on the following criteria: 1) exact mass, isotopic 

pattern, retention time, and MS/MS spectrum of standard matched to the feature. 2) exact 

mass, isotopic pattern, and MS/MS spectrum matched with literature spectra or 

fragmentation ions observed are consistent with the proposed structure. 3) tentative ID 

assignment based on elemental formula match with literature. 4) unknowns. 

 

To further improve prediction scores, we included metabolites selected for tumor 

size predictions that were missing in the 16-metabolite panel. These include cytosine 

dimer, dihydrouridine, and hydroxyprolyl-asparagine (Table 3-2). In addition, because 

NMR metabolomic features were not selected in the metabolite-panel, perhaps due to the 

over-abundance of MS features, we included NMR metabolomic features with a p-value 
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less than 0.05 (Student’s t-Test) in the panel. These metabolites included citrate, glycine, 

choline, acetone, and pyruvate (Table 3-4). 

 

Table 3-4. Compound Annotation and Identification for the NMR Metabolites with 

a p-Value of Less Than 0.05, for RCC Staging. 

Metabolite/

Features 

1H 

(ppm) 

13C 

(ppm) 

Peak 

patterns 

Confidence 

Score 

Fold 

Change 

p-value 

acetone 2.23 32.40 (s) 3 0.49 0.029 

pyruvate 2.41 - (s) 2 0.31 0.028 

citrate 2.53 48.52 (d) 3 -0.54 0.003 

choline 3.19 56.69 (s) 3 0.22 0.026 

glycine 3.56 44.18 (s) 3 -0.66 0.032 

s=singlet, d=doublet. Fold change (FC) was calculated as the base 2 logarithm of the mean 

integral ratios between advanced RCC and early RCC samples. Positive FC values indicate 

increased abundance in advanced RCC, while negative values indicate higher abundance 

in early RCC. p-values were Student’s t-Test. Confidence score: (1) putatively 

characterized compound classes, or annotated compounds, (2) matches from 1D NMR to 

literature and/or 1D BBiorefcode compound (AssureNMR) or other database libraries such 

as Biological Magnetic Resonance Bank (BMRB) and Human Metabolome Database 

(HMDB) (3) matched to Heteronuclear Single Quantum Coherence (HSQC). 

 

These operations gave rise to the final 24-metabolite panel. Normalized relative 

abundances for this panel are shown in Figure 3-3. As above, random forest, AdaBoost, 
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SVM-RBF, logistic regression, and a voting ensemble combining all four methods were 

used for stratification under ten-fold cross-validation conditions. Figure 3-4 shows the ML 

predictions of RCC staging using the 24-metabolite panel. The voting ensemble classifier 

gave the best predictions with an AUC of 0.96, a slightly higher classification score than 

the 16-metabolite panel. Other prediction scores include 87% accuracy, 80% sensitivity, 

and specificity of 93%. 

 

Figure 3-3. Box Plots Showing the Auto-scaled Normalized Relative Abundance of 24 

Metabolite-panel that Distinguish Early-stage RCC from Advanced-stage RCC.  
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The mean, upper quartile, lower quartile, minimum, and maximum values are shown. All 

metabolites have p-values < 0.05 (Student t-test). 

 

Figure 3-4. Machine Learning Discriminates Between Early-stage RCC and Late-

stage RCC.  

Machine learning predictions by random forest, AdaBoost, support vector machine radial 

basis function (SVM-RBF), logistic regression (LR), and voting ensembles using the 24-

metabolite panel. (a) The area under the ROC curve (b) Accuracy (c) Sensitivity (d) 

Specificity. 

3.6 Discussion 

Monitoring tumor progression via systemic metabolite profiles in biofluids in the clinic 

presents a great opportunity. One characteristic of tumor progression is metabolic 
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rewiring23. Comparison of normal and tumor tissues has revealed dysregulation in the 

nucleotide biosynthesis, oxidative phosphorylation, glycolysis, and pentose phosphate 

pathway, amongst others23. Results in this study reinforce those findings, promising the 

capability to monitor RCC progression via urine-based metabolomics. We used LC-MS 

and NMR for metabolic profiling and machine learning for mining the dataset to identify 

the most discriminating metabolic features between early-stage and advanced-stage RCC. 

Twenty-four metabolites detected by both NMR and LC-MS were used for RCC staging 

classifications. 

Evidence of upregulated nucleotide metabolism was observed in the metabolite-

panel, with an increase in the abundances of cytosine dimer, 7-aminomethyl-7-

carbaguanine, and dihydrouridine (DHU) in advanced stage RCC urine samples. Increased 

nucleotide metabolism is a hallmark of tumorigenesis, as it directly supports uncontrolled 

cell growth24 via the pentose phosphate pathway25. This explains the predictive power of 

urinary cytosine dimer and DHU for RCC tumor size. Cytosine is present in both DNA and 

RNA, while DHU is found in tRNA as a nucleoside. Together, these metabolites could be 

indicative of nucleotide degradation in RCC26. An additional pyrimidine metabolite in the 

panel, 7-aminomethyl-7-carbaguanine, is one of the precursors for the synthesis of 

queuosine, a modified analogue of guanosine found in the first anticodon loop of tRNAs 

for histidine, aspartic acid, asparagine, and tyrosine27. This modification of tRNAs has been 

reported to promote cell proliferation in cancer in mouse models28. In addition, queuine 

tRNA-ribosyltransferase (QTRT1), the enzyme that catalyzes the hypermodification of 

queuosine using 7-aminomethyl-7-carbaguanine, is highly expressed in lung 

adenocarcinoma (LUAD)29. It has been identified as a risk factor for the progression of 
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LUAD29. In addition, this trend has been reported in other human malignant tumors30-31, 

and breast cancer cell lines32.  

The relative abundance of 3-hydroxyanthranilic acid was increased in advanced 

RCC patients’ urine samples. 3-Hydroxyanthranilic acid is an intermediate of tryptophan 

metabolism, a metabolic pathway that had been implicated in a recent urine metabolomics 

RCC study12. In that study, N-formylkynurenine, a metabolite upstream of 

hydroxyanthranilic acid, was selected as a putative marker that discriminated malignant 

RCC tumors from the healthy cohort and benign RCC tumors. In fact, studies from as early 

as 1975 have reported higher levels of 3-hydroxyanthranilic acid in untreated bladder and 

kidney carcinoma patients33. Indeed, 3-hydroxyanthranilic acid has been shown to promote 

tumor immune evasion34-36. Two dipeptides, hydroxyprolyl-asparagine, and lysyl-glycine 

had elevated levels in advanced RCC urine samples in our study. Numerous dipeptides had 

been reported to increase at advanced RCC stages (III and IV) in a paired clear cell renal 

cell carcinoma (ccRCC)/normal tissue study37. The presence of these increased dipeptide 

levels might be indicative of various protein degradation and reutilization processes38-39. In 

addition, in a urine metabolomics study, the dipeptides alanyl-proline and isoleucyl-

hydroxyproline were seen as being elevated in RCC pT3 and pT4 stages12. Lower levels of 

guanidinobutanoic acid, a gamma-amino acid and uremia toxin, was found in the advanced 

stages of RCC. This might be due to the progressive retention of the metabolite that is 

otherwise excreted normally in healthy kidneys40. Apo-[3-methylcrotonoyl-CoA:carbon-

dioxide ligase (ADP-forming)] is involved in the biotin metabolism pathway, indicating a 

possible alteration in biotin metabolism in advanced RCC. Likewise, diethyl-2-methyl-3-

oxosuccinate and N,N-dimethyl-histidine might indicate alterations in succinate and 



 

111 

histidine metabolism, respectively; while succinic anhydride is likely an exogenous 

metabolite that is used in food additives41. Succinic anhydride is a Class 3 carcinogen, 

according to the WHO International Agency for Research on Cancer (IARC).  

NMR-derived metabolites in the panel included citrate, glycine, choline, acetone, 

and pyruvate. Reduced levels of citrate and increased levels of pyruvate suggest a 

dysregulated aerobic glycolytic pathway in RCC42. This dysregulation is required to keep 

up with the cell proliferation that characterizes tumors, and the differences in the 

abundance of metabolites of this pathway between early and advanced RCC, are expected 

as the tumor progresses. Abundance of citrate has been reported to decrease in urine 

metabolomics studies comparing healthy controls or benign RCC tumors with malignant 

RCC tumors43-44. Citrate has been linked to drive increased fatty acid synthesis in tumors45, 

and the overexpression of ATP citrate lyase has been reported as RCC progresses46. ATP 

citrate lyase links carbohydrate metabolism to fatty acid biosynthesis via the conversion of 

citrate to acetyl-CoA. In addition, elevated pyruvate levels, another evidence of 

dysregulated glucose metabolism, were reported in a urine metabolomics study that 

compared benign RCC tumors with malignant RCC44. The lower levels of glycine 

abundance in advanced RCC urine samples is in agreement with the role of glycine in rapid 

cancer cell proliferation47-50. In a study that used mass spectrometry to measure the 

consumption and release of metabolites in media of NCI-60 cancer cell lines, glycine 

consumption and the expression of mitochondrial glycine biosynthetic pathway correlated 

with proliferation of the cancer cell lines47. This is because glycine can contribute to both 

purine and pyrimidine biosynthesis48-49, playing a pivotal role in sustaining cancer cell 

growth50. Indeed, urinary glycine has been shown to decrease in response to RCC cancer 



 

112 

development when benign tumors are compared to malignant tumors13. The higher relative 

abundance of choline in advanced RCC might be due to increased levels of choline-

containing compounds that have been reported in tumors51. These compounds are a major 

component of cell membranes required for cell proliferation51. Magnetic resonance 

spectroscopic imaging has been used to show that total choline is associated with the 

aggressiveness of breast cancer52 and prostate cancer53. In addition, it had also been used 

in the detection and grading of brain tumors54-55. The increased levels of acetone in 

advanced RCC in the panel can be explained in the light of the increase in the level of 

ketone bodies associated with some cancers56. And indeed, an increase in the level of 

acetoacetate, another ketone, detected and quantified with NMR, is reported in our study. 

A higher abundance of ketone bodies might be due to the Warburg effect, which leads to 

an accumulation of Acetyl-CoA, and in turn, increased production of ketone bodies56. In 

an in vitro metabolomics study, ketones were found to increase significantly in the 

exometabolome of RCC cells compared to a non-tumor cell line57. 

Overall, our study reveals metabolites associated with RCC progression, with a 

panel of metabolites discriminating between early RCC and advanced RCC with high 

accuracy. While our results demonstrate the potential of a urine metabolomic approach to 

identify biomarkers for RCC stage stratification, further validation of the results, especially 

in larger and independent cohorts, is necessary.  
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4.1 Abstract  

Partial least square discriminant analysis (PLS-DA) and its variants are used widely in 

metabolomics, primarily due to the model’s interpretability with the Variable Influence in 

Projection (VIP) scores. As such, unexplainable (black box) models with potentially higher 

accuracy are used less in metabolomics studies. Shapley Additive explanations (SHAP), a 

machine learning method grounded in a game theory, can explain ML models with local 

explanations of individual samples. This study shows that metabolomics scientists can use 

Tree SHAP as a model machine learning interpretable algorithm using tree-based models. 

The tree-based algorithm used includes random forests and extreme gradient boosting 

(XGBoost). Machine learning experiments (binary classification) were conducted with 

four published metabolomics datasets using the python programming language. It was 

observed that PLS-DA is less accurate than tree-based models as a classification algorithm 

after feature size reduction. The tree-based model was explained with Tree SHAP using 

plots like the summary plot for global explanations, waterfall plot for local explanations, 

and dependence plots for feature effects. Thus, metabolomics scientists should not be 

restricted to PLS-DA solely due to model interpretability. 

4.2 Introduction 

Metabolomics aims to report a global snapshot of a biological system’s metabolic status.1 

The adequate tools to answer this question give rise to large datasets inherently. Therefore, 

the need to engage in classical and modern statistics, with machine learning being an 
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example of the latter. Classical statistics aim to draw inferences about the population from 

a sample, while machine learning (ML) finds a generalizable predictive pattern in a dataset 

without explicit instructions.2-3 ML is used in experimental metabolomics workflows to 

find predictive patterns in data, for example, for biomarker discoveries.4-5 However, the 

interpretation of these predictive models has mainly been limited to the use of partial least 

squares discriminant analysis (PLS-DA) in metabolomics.6-7  

PLS-DA, also known as a projection on latent structures, combines features from 

principal component analysis (PCA) and multiple linear regression.8 It extracts latent 

variables, the best predictors, from the independent variables and project results to a lower-

dimensional space, as in PCA. PLS has been the standard multivariate analysis algorithm 

used in metabolomics for two main reasons. One, given the structure of the metabolomics 

dataset, a large number of features vs. smaller sample sizes, latent variables’ projection 

onto a smaller dimensional space allows for its utility as a feature selection algorithm. Two, 

the linear regression structure inherent with the algorithm makes for an interpretability 

method, the variable importance in projection (VIP) scores.9 As such, PLS-DA is an 

interpretable ML algorithm that models the linear latent covariance with the feature’s 

matrix (𝑿) and the response matrix (𝒀). Despite the popularity of PLS-DA in 

metabolomics, the linear relationship assumption and the global interpretability it affords 

are apparent limitations.  

Some of the best-performing machine learning methods are notoriously black box 

models10-11 i.e., models that are not interpretable. Linear models like linear regression and 

PLS-DA are interpretable because of their linear assumptions. In general, intrinsically 

interpretable models are so because of their simple structures, lending themselves to 



 

124 

features such as the weights in linear models and the learned tree structure in decision trees. 

However, biological data can have non-linear relationships,12 which might require models 

to learn more complex relationships in such datasets for best performance. One approach 

to explain complex, black-box models is to apply interpretation methods after machine 

learning modeling. These methods are called post-hoc explainable artificial intelligence 

(XAI) methods, and they tend to be model agnostic.13  

Additionally, despite the interpretability property of intrinsically interpretable 

models, they are usually limited to global explanations – explaining the entire model 

behavior, rather than local explanations that explain individual predictions. In general, a 

ML interpretable method with local and global interpretations (high representativeness) is 

indeed desirable. Other desirable properties of explanation methods include high 

expressive power (the language of expression), low algorithmic complexity, and high 

fidelity (the accuracy of the interpretation).14 There are several XAI method like partial 

dependence plot (PDP),15 individual conditional expectation (ICE),16 accumulated local 

effects (ALE),17 permutation feature importance,18-19 and local interpretable model-

agnostic explanations (LIME).20 However, only SHapley Additive exPlanations (SHAP) 

gives a solution that satisfies the quality of high representativeness, fidelity, and high 

expressive power.21-22 Thus, it was the method of choice in the study. The method has been 

empirically verified,23 and it has been applied to many fields of study, including 

medicine,23-24 cheminformatics,25-26 and ecology.27    

In this chapter, 1) Shapley values and SHAP for tree-based models (TreeSHAP) were 

introduced, 2) the classification performance of PLS-DA and tree-based models (random 

forest and XGBoost) were compared using four clinical metabolomics data sets, and 
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finally, 3) the most accurate tree ensemble model was explained with the aid of Tree 

SHAP.22 

4.3 Results 

4.3.1 Shapley Additive Explanations 

4.3.1.1 Shapley Values 

In a standard metabolomics experimental workflow,28 after metabolic measurements and 

appropriate spectral and data processing, the resultant data matrix can be used for modeling 

using machine learning (Figure 4-1a). Shapley Additive exPlanations (SHAP) allows for 

the local interpretations of predictions by showing each metabolomic feature importance 

score for each sample. Additionally, SHAP is used to derive an accurate global 

interpretation of the model, giving rise to its high representativeness as a post-hoc ML 

interpretability method (Figure 4-1b). SHAP is based primarily on Shapley values, a 

cooperative game theory method.21 Developed by Lloyd Shapley, it is a fair and 

axiomatically unique method of attributing rewards from a cooperative game.29 Where a 

game is a machine learning model, each metabolomic feature values are players in a game, 

and the predicted class membership of the sample is the outcome of the game; Shapley 

value gives a unique solution to fairly attribute the contributions of each player to the 

outcome of the game. The Shapley value defines the feature importance of feature value 𝑖 

in the equation below and Figure 4-1c:  

∅𝑖(𝑣𝑎𝑙) =
1

𝑁!
∑ |𝑆|! (|𝑁| − |𝑆| − 1)! [𝑣𝑎𝑙(𝑆 ∪ {𝑥𝑖}) − 𝑣𝑎𝑙(𝑆)]

𝑆⊆{𝑥1,…,𝑥𝑁}\{𝑥𝑖}
 

(4.1) 

Where 𝑆 is a subset of features in the model, 𝑣𝑎𝑙(𝑆) corresponds to the model output for 

𝑆, 𝑁 is the total number of features, and 𝑥 is the feature values for the sample to be 
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explained, that is 𝑥 ≜ {𝑥1, … , 𝑥𝑁} ∈ ℝ𝑁. In brief, the marginal contribution of 𝑥𝑖 is given 

by 𝑣𝑎𝑙(𝑆 ∪ {𝑥𝑖}) − 𝑣𝑎𝑙(𝑆). Weights are assigned to these marginal contributions by the 

different ways the sub-set could be formed before the addition of 𝑥𝑖: |𝑆|! and after the 

addition of 𝑥𝑖: (|𝑁| − |𝑆| − 1)!. The summation over all the possible sets 𝑆 is conducted, 

followed by the average 
1

𝑁!
.  

 

Figure 4-1. Metabolomics Workflow and SHAP Methodology. 

 a) A metabolomics workflow that culminates with model training for predictive or 

regression purposes. b) SHAP allows for local and global interpretations of model 
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predictions. Explanations are made locally, and because of the additivity property of 

Shapley values, the methods allow for global interpretations. c) A sample calculation of 

Shapley values of a feature 𝑥𝑖. 

 

The Shapley value is a unique solution because it satisfies the axioms of symmetry 

(or consistency), dummy (or null effect), and additivity (or local accuracy) 29. Symmetry 

implies that if the marginal contribution of the metabolomic feature values 𝑥𝑧 and 𝑥𝑘 is the 

same, the Shapley value attributed to each feature value will also be the same.  

 𝑣𝑎𝑙(𝑆 ∪ {𝑥𝑧}) − 𝑣𝑎𝑙(𝑆) 
= 𝑣𝑎𝑙(𝑆 ∪ {𝑥𝑘}) − 𝑣𝑎𝑙(𝑆) ∀ 𝑆 ⊆ {𝑥1, … , 𝑥𝑁}\{𝑥𝑧 , 𝑥𝑘} 

⟹ ∅𝑧(𝑣𝑎𝑙) = ∅𝑘(𝑣𝑎𝑙) 

(4.2) 

Dummy implies that if a feature value 𝑥𝑧 do not impact a model, the Shapley value 

attributed will be zero. 

 𝑣𝑎𝑙(𝑆 ∪ {𝑥𝑧}) − 𝑣𝑎𝑙(𝑆) = 0 ∀ 𝑆 ⊆ {𝑥1, … , 𝑥𝑁} ⟹ ∅𝑘(𝑣𝑎𝑙) = 0 (4.3) 

Finally, local accuracy means that the summation of the Shapley values of all feature values 

in the model equals the model output. As such, the total contributions of all feature values 

will equal the impact of all feature values on the model output minus the impact with no 

feature value, mathematically expressed below:  

 ∑ ∅𝑖(𝑣𝑎𝑙)

𝑖∈𝑁

= 𝑣𝑎𝑙(𝑁) − 𝑣𝑎𝑙({}) (4.4) 

 

4.3.1.2 Tree SHAP 

The choice of tree-based SHAP ML interpretations for this study was based on the 

relatively low computational complexity of computing Shapley values and the exact 



 

128 

Shapley value that result from the computation.22 However, other methods for 

approximately Shapley values for non-tree-based methods exist,21 making it a model 

agnostic ML interpretability method. Two problems emanate from the computation of 

naïve Shapley values, namely, 1) handling of missing features when computing marginal 

contributions and 2) exponential computational time and algorithmic complexity. First, 

when computing Shapley values for a feature value, the absence of the feature must be 

defined while computing the marginal contributions. This is not straightforward in machine 

learning as opposed to game theory. The problem has been addressed in kernel SHAP21 by 

simulating missing features via random sampling by replacing the missing value with a 

fixed value. This invariably creates a sampling-based estimation variance problem; on the 

other hand, kernel SHAP can be applied to any ML model. In Tree SHAP, exact Shapley 

values are calculated by ignoring the decision paths of the missing features in the tree, 

getting rid of sampling-based estimation variance in the process. Second, because Tree 

SHAP computes Shapley values by keeping track of tree transversals to prevent 

repetition22, it gives rise to an efficient algorithm by reducing algorithmic complexity from 

exponential time (𝑂(𝑇𝐿2𝑁)) to polynomial time (𝑂(𝑇𝐿𝐷2)). Where 𝑇 is the number of 

trees, 𝐿 is the maximum number of leaves in any tree, 𝑁 is the number of features, and 𝐷 

is the maximum tree depth. 

 

4.3.2. Machine Learning Pipeline and Performance 

ML models were built using four metabolomics datasets, as summarized in Table 4-1 (See 

materials and methods for details). All problems were binary classification problems, and 
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since the goal of the study is to show the utility of SHAP, a simplified machine learning 

workflow was used (Figure 4-2).  

 

Table 4-1. Metabolomics Datasets Used in the Interpretable Machine Learning Study. 

Dataset MTBLS404 MTBLS547 ST000369 MTBLS161 

Analytical 

platform 
LC-MS LC-MS GC-MS NMR 

Sample Type Urine Caecal Serum Serum 

Sample Size 184 97 80 59 

Subject of 

classification 
Gender High-fat diet Adenocarcinoma 

Chronic 

fatigue 

syndrome 

Classes 

(size) 

 

Male/Female 

(101/83) 

Case/Control  

(46/51) 

Case/Control 

(49/31) 

Case/Control 

(34/25) 

Metabolomic 

feature number 
184 42 69 29 

Publication 
Thevenot et 

al. 201530 

Zheng et al.   

201731 

Fahrmann et al. 

201532 

Armstrong et 

al. 201533 
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Figure 4- 2. Machine Learning Pipeline for Machine Learning Explanations.  

PLS-DA: Partial Least Square Discriminant Analysis; XGBoost: Extreme Gradient 

Boosting; VIP: Variable Importance in Projection. 

 

The selected metabolomic datasets were prepared for classification tasks via a log 

transformation followed by autoscaling. Samples were split into train and test set with 5/6 

and 1/6 of the sample size respectively in each set, and PLS-DA algorithm was used to 

select the best-performing 20 features via its VIP score. Afterward, the selected features 

were used to build machine learning models using PLS-DA, random forest, and XGBoost. 
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Appropriate hyperparameters were tuned (See materials and methods and Table 4-3), and 

the best tree-based classifier was used for shapley additive explanations. The machine 

learning performance results of both the baseline and tuned ML method are presented in 

Table 4-2. Random forests gave the best predictive scores on all the datasets (test set) with 

an AUC of 0.90 for MTBLS404, 0.88 for MTBLS547, 0.74 for ST000369, and 0.67 for 

MTBLS161. An XGBoost model performed as well as random forests on the MTBLS547 

dataset with an AUC of 0.88, while PLS-DA was as predictive as random forests on the 

MTBLS161 dataset with an AUC of 0.67. As such, the MTBLS404 dataset will be used to 

illustrate the utility of SHAP in this study because it has the highest AUC score. The 

MTBLS404 dataset is from a urine metabolomics study that investigated human adult urine 

for variations in age, BMI, and gender.30 In this analysis, the dataset has been used for 

gender classifications. 

 

Table 4-2. Machine Learning Performance for the Interpretable Machine Learning 

Study.  

Model MTBLS404 MTBLS547 ST000369 MTBLS161 

PLS-DA 

Baseline 

0.85±0.08 

(0.80) 

0.83±0.14 

(0.82) 

0.80±0.16 

(0.69) 

0.83±0.16 

(0.67) 

PLS-DA 

Tuned 

0.85±0.08 

(0.80) 

0.87±0.14 

(0.82) 

0.80±0.16 

(0.69) 

0.81±0.16 

(0.67) 

RF 

Baseline 

0.93±0.06 

(0.87) 

0.94±0.09 

(0.82) 

0.91±0.08 

(0.63) 

0.91±0.17 

(0.67) 

RF 

Tuned 

0.93±0.06 

(0.90) 

0.92±0.08 

(0.88) 

0.92±0.08 

(0.74) 

0.91±0.17 

(0.67) 

XGB 

Baseline 

0.90±0.08 

(0.77) 

0.93±0.09 

(0.88) 

0.79±0.19 

(0.69) 

0.83±0.17 

(0.62) 

XGB 

Tuned 

0.93±0.06 

(0.84) 

0.95±0.08 

(0.82) 

0.84±0.22 

(0.69) 

0.87±0.16 

(0.62) 
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Baseline models use the default hyperparameters in the sci-kit learn library for the python 

programming language. The tuned models underwent hyperparameter tuning as described 

in the materials and methods. Predictive scores are the Area Under the Receiver Operating 

Characteristic Curve (ROC AUC). The training score reports the mean±standard deviation 

of ROC AUC under 10-fold cross-validation conditions. The test set performance scores 

are reported in brackets below the train set scores, and the highest test set scores for each 

dataset are shown in bold texts and underlined. PLS-DA: Partial Least Squares-

Discriminant Analysis; RF: Random Forests; XGB: Extreme Gradient Boosting. 

 

4.3.3 Model Interpretations with SHAP 

SHAP explanations were computed for the test set of the MTBLS404 dataset trained using 

random forest with an AUC of 0.90, and these explanations are presented in this section. 

The PLS-DA VIP score plot, a global interpretation of the PLS-DA model, is shown in 

Figure 4-3a. Likewise, Figure 4-3b shows the SHAP bar plot, displaying the mean of the 

absolute SHAP values (mean[|SHAP value|]), that is, the average impact of the feature on 

the model output magnitude. Testosterone glucuronide and p-anisic acid have the same 

feature importance rank on both plots. In addition, the Pearson correlation coefficient of 

the VIP score and the mean[|SHAP value|] is 0.84 (Figure 4-3c), indicating high 

explanation similarities. On the other hand, the Pearson correlation coefficient of Gini 

importance, and mean[|SHAP value|] is 0.99 (Figure 4-3d), confirming the fidelity of Tree 

SHAP in computing the feature importance. Gini importance is an intrinsic global 

interpretation of random forests; therefore, it gives the metabolomic feature importance 

attribute for the ML algorithm. Finally, to confirm that SHAP identified features that are 



 

133 

important for the predictive accuracy of the model, features were eliminated in the order 

of feature ranking, first, one at a time (Figure 4-3e) then, four features at a time (Figure 

4-3f). Afterward, the random forest model was used to predict the test set using the reduced 

feature sets. When features are removed one at a time, in general, there was a downward 

trend of AUC, while the intervening undulating trend might be partly due to the closeness 

of SHAP values of some of the metabolomic features. However, an uninterrupted 

downward trend is reported when features are removed in fours. 
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Figure 4-3. Global Feature Importance and Feature Importance Correlations.  

a) PLS-DA VIP score plot. b) SHAP bar plot. c) Scatterplot of the VIP score and the 

mean(|SHAP value|) with a Pearson’s correlation coefficient of 0.84. d) Scatterplot of the 

Gini importance score and the mean(|SHAP value|) with a Pearson’s correlation coefficient 

of 0.99. e) AUC of the test set after the removal of the top rank features sequentially as 
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ranked by the mean absolute SHAP values. f) AUC of the test set after the removal of the 

top 4, 8, 12, and 16 features as ranked by the mean absolute SHAP values. 

 

In addition, because of the local representativeness property of SHAP, it can give 

both the global importance score and an explanation of individual predictions in the SHAP 

summary plot (also called the beeswarm plot), enabling a richer visual summarization, as 

shown in Figure 4-4a. In the plot, metabolomic features are arranged in a descending order 

based on relative importance ∑ |∅𝑖
(𝑗)

|𝑁
𝑗=1 , where ∅𝑖 is the Shapley value of feature 𝑖, 𝑗 is a 

sample, and 𝑁 is the total number of samples. Each dot in the summary plot represents a 

sample plotted against its impact on the model output ∅𝑖
(𝑗)

. The color of each sample 

represents the relative abundance of the metabolites, ranging from low (blue) to high (red). 

Figure 4-4b displays the most important metabolite in the panel – testosterone glucuronide. 

High feature values of the metabolite tend to have positive SHAP values, which drives the 

model to predict males; on the other hand, low feature values of testosterone glucuronide 

tend to have negative SHAP values, which drives the model to predict the female class. p-

anisic acid has an opposite trend, as shown in Figure 4-4c. 
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Figure 4-4. SHAP Summary Plot for Explaining the Gender Classification.  

a) SHAP summary plot. b) Illustration with testosterone glucuronide. c) Illustration with 

p-Anisic acid. 

 

Unsupervised clustering techniques are widely used in metabolomics studies to 

identify groups of classes that cluster together. Because such analyses rely on raw data, 

which are only processed by a simple standardization process, it is impossible to cluster 

samples based on a prediction outcome. On the other hand, SHAP values can be used to 

generate supervised clustering, where samples are clustered based on the same prediction 

outcome. For example, in the heatmap shown in figure 4-5, the hierarchical supervised 

clustering analysis clustered samples based on the decreasing order of the model output, 

that is, from male to female predictions. The heat map shows that testosterone glucuronide 

has the highest absolute SHAP values associated to each sample in the test set, when 

compared to other metabolomic features.  Hence, justifying why testosterone glucuronide 

is the most important metabolomic feature. 
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Figure 4-5. Supervised Interpretable Hierarchical Clustering of SHAP values for 

Explaining the Gender Classification.  

Samples are displayed on the x-axis, while features are arranged in ascending order of 

importance on the y-axis. f(x) indicates the prediction outcome, with the line plot over the 

dotted line indicating male predictions, while the line plot below the dotted line indicates 

female prediction. The bar plot represents the mean absolute SHAP value, the average 

impact on the model output.   

 

Just like the partial dependence plot (PDP) shows the marginal effect that one or 

two features have on a model output with a line plot,15 SHAP values can be used to create 

a better alternative graph called the SHAP dependence plot. The plot shows how the 

relative abundance of a metabolite changes with the respective impact on the model output 

(Figure 4-6). In addition, dots representing the samples can be colored by the relative 
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abundance of another metabolite to capture the interaction effect if it exists (Figure 4-6b). 

Figure 4-6a displays the relationship between testosterone glucuronide and the SHAP 

values for the metabolite (the impact of the metabolite on model output), while Figure 4-

6b adds 𝛾-glu-leu to the plot by coloring the samples by the relative abundance of 𝛾-glu-

leu. The S-like curve shows that higher feature values of testosterone glucuronide and 𝛾-

glu-leu, tend to lead to a male prediction.   

 

Figure 4-6. SHAP Dependence Plot of Testosterone Glucuronide and 𝜸-glu-leu.  

a) testosterone glucuronide. b) testosterone glucuronide and 𝛾-glu-leu. 

 

Finally, SHAP provides many avenues for local explanations (individual sample 

explanations), such as the waterfall plot and the force plot visualizers. An example of 

waterfall plot and force plot are shown in Figures 4-7a and 4-7b, respectively. In the 

waterfall plot (Figure 4-7a), the x-axis represents the probability of a sample being 

classified as male, while the y-axis shows the metabolomic features and the respective 

feature values for the sample. Waterfall plots begin with the expected value of the model 

output on the x-axis (𝐸[𝑓(𝑋)] = 0.55). The base value, 0.55, is the average prediction 

probability over the test set. The plot displays the impact of the metabolomic features on 
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the model output. The combination of the positive contributions (in red) and the negative 

contributions (in blue) moves the expected value output to the final model output (𝑓(𝑥) =

 0.65). Positive SHAP values increase the probability of the sample being classified as 

male, while negative SHAP values decrease the probability of the sample being classified 

as male. Similarly, the force plot helps visualize each feature’s SHAP values for a given 

sample with an additive force layout (Figure 4-7b).  

 

Figure 4-7. Local Explanations of a Representative Sample Predicted as Male.  

a) Waterfall plot. b) Force plot. 

 

One of the utilities of the SHAP local explanations is the error analysis of individual 

predictions. The confusion matrix of test set predictions is shown in Figure 4-8a, with a 

true negative rate of 38.71%, a false positive rate of 6.45%, a false negative rate of 3.23%, 

and a true positive rate of 51.61%. The waterfall plot of two representative true positive 



 

140 

samples (male samples successfully classified as males) are shown in Figures 4-8b & c 

with a probability output of 0.98 and 0.88, respectively. As in the global explanation, the 

importance rank of testosterone glucuronide, p-anisic acid, 𝛾-Glu-Ile, and 𝛾-Glu-Leu, are 

conserved. However, the only false negative sample (male sample wrongly classified as 

female) in the test cohort can be seen to be missing testosterone glucuronide (Figure 4-

8d), a highly ranked metabolomic feature of importance in the true positives, providing a 

plausible explanation for the model’s wrong classification. In that vein, two representative 

true negative samples (female successfully classified as female) are shown in Figures 4-

8e & f. A low relative abundance of testosterone glucuronide is the most important factor 

driving the samples' classification to the female category.  Likewise, for the two false-

positive samples (female sample wrongly classified as a male sample), one of such samples 

(Figure 4-8g) has a high relative abundance of testosterone glucuronide, contributing to 

the wrong classification. On the other hand, for the second false positive sample (Figure 

4-8h), which has a low relative abundance of the testosterone metabolite, the absolute 

SHAP value was not high enough to drive the classification to the female category below 

the 0.5 probability cut-off (the model output was 0.56). 
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Figure 4-8. SHAP for Error Analysis of the Gender Classification.  

a) Confusion matrix of the test set. b) & c) Waterfall plot of true positive representative 

samples. d) Waterfall plot of the only false negative sample. e) & f) Waterfall plot of the 
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true negative representative samples. g) & h) Waterfall plot of the two false positive 

samples.  

4.4 Discussion 

One underlying hypothesis in this study is that non-linear models could have higher 

predictive power compared to linear models. In our study, after feature selection with PLS-

DA, we compared random forest and xgboost with the most widely used ML algorithm in 

metabolomics (PLS-DA) using publicly available metabolomics datasets to test the 

hypothesis. The hypothesis was confirmed suggesting that tree models should be more 

applied in metabolomics for classification purposes. However, it has been showed that 

PLS-DA outperformed random forest using the same datasets in this study before feature 

selection.34 This might be because tree-based models like random forest perform poorly 

when the fraction of relevant features is small compared to a large number of features for 

a relatively small sample size.35 Furthermore, this paper has shown that there are added 

benefits to use a tree-based model for classification tasks.  

In addition to the compatibility of PLS-DA methods to metabolomics datasets, the 

interpretability of PLS-DA via its VIP score is useful to scientist in the metabolomics field 

for explaining the model.7 As such, PLS-DA is appealing because it is intrinsically 

interpretable. However, over the past several years, there had been great stride of 

achievements in the field of explainable AI, especially on model agnostic methods,36 one 

of such methods is local interpretable model-agnostic explanations (LIME).20 The key idea 

of LIME is that it selects an intrinsically interpretable class of model, and then used that to 

approximate a black box model locally, therefore interpretations are not globally faithful. 

This class of models are called local surrogate models. SHAP unifies LIME and other 
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interpretable machine learning methods with Shapley values to explain both local and 

global properties leveraging on the unique properties of Shapley values.21 This SHAP 

computation is called kernel SHAP, and it is computationally expensive and does not 

calculate exact Shapley values hence the choice of Tree SHAP for the study. On the other 

hand, Tree SHAP calculates exact Shapley values via its conditional expectation method, 

also it is relatively computationally inexpensive in comparison with kernel SHAP.22 

The VIP score and the mean absolute SHAP values (as shown in SHAP bar plot) 

of the MTLB404 dataset indicates a consensus in the top two most important metabolomic 

features – testosterone glucuronide and p-anisic acid. In addition, 𝛾-glu-ile, and 𝛾-glu-leu 

follows in both explanations albeit with different ranks. In general, there is no 

corresponding match between both global explanations. This is expected because the 

models have different predictive performances: PLS-DA with an AUC of 0.80 vs. random 

forest with an AUC of 0.90. However, a high explanation similarity exists with a Pearson’s 

correlation score of 0.84 between VIP score and mean absolute SHAP values of the 

MTLB404 test set. Also, importantly the same predictive performances might not always 

imply the same explanations, due to the Rashomon effect.37 Consistency in explanations 

should only be desirable if the models rely on the same relationships to make predictions. 

Going beyond a bar plot of global importance, the summary plot allows a more detailed 

explanations of the global importance by showing the impact of the abundance levels of 

metabolites on the model output. In addition, the supervised interpretable hierarchical 

clustering analysis clustered the model output, allowing for the isolation of testosterone 

glucuronide as an important marker for the male gender. Which is indeed correct as the 

metabolite is an endogenous, urinary metabolite of testosterone, the principal male sex 
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hormone.38 In the original study that investigated the impact of age, body mass index, and 

gender on human urinary metabolome, testosterone glucuronide was identified to be 

strongly associated with the male sex.30 This observation is further corroborated in this 

study via the error analysis enabled by the SHAP local interpretation plots, with the only 

false negative sample (male classified wrongly as female) in the test set conspicuously 

missing testosterone glucuronide as an important feature responsible for the wrong female 

classification. In addition, testosterone glucuronide was also implicated in the false positive 

samples.              

As shown in this study, SHAP is a desirable post-hoc interpretability method that 

will enhance the interpretations of metabolomics data analysis, given its local and global 

interpretations, high expressive power, and high fidelity.14 While SHAP explains 

predictions, it is important to note that explanation does not imply causation. This is a 

general limitation of models and data.  

4.5 Materials and Methods 

4.5.1 Metabolomics Datasets 

All the datasets used in this study were deposited on Metabolomics Workbench 

(www.metabolomicsworkbench.org)39 and Metabolights (www.ebi.ac.uk/metabolights) 40-

41 repositories. MTBLS161, MTBLS404, and MTBLS547 datasets are from Metabolomics 

Workbench, while ST000369 is from Metabolights. Mendez et al 2019 has used these 

datasets in a computational metabolomics study, where generalized predictive ability of 

machine learning algorithms was compared.34 The datasets had been converted to tiny data 

format in the study for ease of computational analysis. As shown in Table 4-1, biofluids 

used in the study selected include urine, caecal, and serum. The sample size ranges from 
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59 to 84, and the metabolic features range from 29 to 184. All machine learning problems 

are binary classification, and the subject of classification include gender classification 

(male vs. female),30 impact of high fat diet (case vs. control),31 adenocarcinoma (case vs. 

control),32 and chronic fatigue syndrome (case vs. control).33  

 

4.5.2 Machine Learning Models  

Partial least squares (PLS) regression models a linear covariance between the feature 

matrix 𝑿 and the response matrix 𝒀. The goal of the algorithm is to predict dependent 

variables using predictors, and it does so by projecting the data points into a lower 

dimensional space such that the covariance between response groups are maximized. The 

projection can be represented mathematically as a PLS coefficient value vector (𝐵𝑃𝐿𝑆) 

where predictions are made by �̂� = 𝑋𝐵𝑃𝐿𝑆. Which is, in essence, a multiple linear 

regression equation. PLS discriminant analysis (PLS-DA) is the PLS method for binary 

classification, where �̂� < 0.5 is attributed to a negative classification and �̂� > 0.5 is a 

positive classification. 

Decision trees (DT) are the base learner for tree-based machine learning algorithms. 

DTs are inverted trees with the root node at the top, the leaves at the bottom, and the internal 

nodes in between. Root and internal nodes are assigned metabolomic features used for 

splitting, while the leaves at the end of the tree signify the final predictions. In brief, 

decision trees split data into branches until the algorithm attain the highest accuracy. This 

property of DT makes it particularly prone to overfitting, and one of the robust solutions 

to this problem is the aggregation of decision trees into ensembles such as random forests 

and extreme gradient boosting (XGBoost).  
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Random forest is a bootstrap aggregation (bagging) of decision trees. Each decision 

trees make its predictions, and the result of the forest of decision trees are made using the 

majority rules. In the end, bootstrapping increases diversity, while aggregation reduces 

variance. Despite the strength of random forests, they could be limited by individual trees. 

If all the trees in the forest make the same mistake, the random forest, in turn, makes that 

mistake. However, boosting improves on this limitation by making the trees learn from the 

mistake of the preceding trees; it is this class of tree-based models XG-Boost belongs.   

XGBoost is an advanced variant of gradient boosting that transforms weak learners 

into strong ones via the summation of trees’ residuals. XGBoost is designed primarily for 

speed with its speed-enhancing capabilities like approximate and sparsity-aware split-

finding, block compression and sharding, parallel computing, and cache-aware 

computing.42 Also, there can be accuracy gains to using it over gradient boosting and 

random forests because of the inclusion of regularization in the loss function.42 The 

regularization parameters help to penalize complexity and prevent overfitting.  

 

4.5.3 Hyperparameter Fine-Tuning  

To attempt to improve predictive performance and find a balance between bias and 

variance, hyper-parameter fine-tuning was carried out. As opposed to parameters learned 

by the machine learning algorithm, hyper-parameters are set by the user. A linear search 

for a single hyperparameter or a grid search for two or greater hyperparameters was carried 

out under 10-fold cross-validation conditions. In PLS-DA, a linear search was conducted 

for the number of latent variables (n_components), the only hyperparameter. For random 

forest, hyperparameters considered for tuning include the number of trees in the forest 
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(n_estimators), the maximum length of trees (max_depth), the maximum number of 

features to choose from when making a split (max_features), the number of samples 

required before the split can occur (min_samples_split), and the minimum number of 

samples required for a node to be a leaf (min_samples_leaf). For XGBoost, hyperparameter 

considered include maximum depth of tree (max_depth), that is the number of branches a 

tree has; learning rate (learning_rate), which limits overfitting by reducing the weight 

ascribed to each tree to a given percentage; number of boosted trees in the model 

(n_estimators); subsample, which limits the percentage of training samples for each 

boosting round, and the minimum sum of weight required for a node to split into a child 

(min_child_weight).  

 

Table 4-3. Hyperparameters Tuned for PLS-DA, Random Forest, and XGBoost for 

the Interpretable Machine Learning Study. 

Technique Parameter Search Space 

PLS-DA n_components [1, 2, 3, 4, 5, 6] 

Random Forest 

 

 

n_estimators [50, 100, 150, 200] 

max_depth [10, 20, 30] 

max_features [‘auto’, ‘sqrt’, ‘log2’] 

min_samples_split [2, 4, 6, 8] 

min_samples_leaf [1, 2, 3, 4, 5] 

XGBoost 

 

 

 

subsample 
[0.5, 0.6, 0.7, 0.8, 0.9, 

1.0] 

min_child_weight [1, 2, 3, 4, 5] 

learning_rate [0.1, 0.2, 0.3, 0.4, 0.5] 

max_depth [1, 2, 3, 4, 5, None] 

n_estimators [2, 25, 50, 75, 100] 
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4.5.4 Computational Libraries 

Programming was carried out using the Python 3.7.0 programming language. SHAP 0.39.0 

library was used for SHAP explanations.21, 23-24 Pandas 1.1.5 was used for data handling.43 

Matplotlib 3.3.4 and Seaborn 0.11.1 was used for data visualization.44-45 Numpy 1.19.2 was 

used for numerical computation and Sci-kit learn 0.24.2 was used for machine learning. 

Jupyter notebook was used as the integrated development environment (IDE).  

4.6 Explaining ML predictions for RCC Detection Study 

In Chapter 2, a seven-biomarker panel for RCC detection was presented. A new random 

forest model was trained in this session, and the predictions were explained using Tree 

SHAP. In the RCC detection study presented in chapter 2, the small size of the training 

dataset (healthy controls=31, RCC=31) vs. a relatively large test cohort (healthy 

controls=143, RCC=51) was used because of the patient selection constraint. This data 

distribution is not optimal for machine learning experiments, given the property that a 

machine learning model should learn more with experience (i.e., more data). Therefore, the 

performance scores are likely to be conservative.  

However, since we have shown that the urine collection location does not affect the 

robustness of the selected markers, the following ML strategy was deployed: 1) The model 

and the test cohort were merged into a single data frame.  2) Samples were randomly split 

into 80% training set (n=204) and 20% hold-out test set (n=52). 3) Random forests 

hyperparameters were tuned using a grid search (See Table 4-4 for hyperparameters 

tuned), and models were trained under stratified 5-fold cross-validation conditions. 4) 

Classification was carried out on the test set. 5) Tree SHAP was used to explain the model 

predictions using the test set.  
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Table 4-4. Initial Distribution and Optimized Random Forest Hyperparameters for 

the RCC Detection Explanation Study 

Parameters Initial distribution Optimized 

Max_depth 10, 20, 30 10 

Max_features 'auto', 'sqrt', 'log2' ‘auto’ 

Min_samples_leaf 1, 2, 3, 4, 5 1 

Min_samples_split 2, 4, 6, 8 2 

N_estimators 50, 100, 150, 200 100 

 

Table 4-5. Random Forests Performance Scores for the RCC Detection Explanation 

Study.  

AUC 0.98±0.02 (0.95) 

Accuracy 0.96±0.02 (0.92) 

Sensitivity 0.89±0.08 (0.83) 

Specificity  0.99±0.01 (0.97) 

Training scores are presented as mean±standard deviation, while the hold-out test set 

scores are shown in brackets. 

Figure 4-9 shows the barplot (a), summary plot (b), and the supervised hierarchical 

clustering of the explanatory SHAP values. The global importance plots show that the 

dipeptide lys-ile/lys-leu as the most important metabolite driving the differences between 

RCC and healthy control groups. In addition, the supervised clustering indicates that – 

more often than not – an RCC prediction is associated with positive SHAP values of lys-

ile/lys-leu (high relative abundance of lys-ile/lys-leu) and vice versa. 
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Figure 4-9. Global Explanations of Metabolomic-based RCC detection using SHAP. 

 

Figure 4-10 displays the confusion matrix of the test set predictions with a true negative 

rate of 63.46%, a false positive rate of 1.92%, a false negative rate of 5.77%, and a true 

positive rate of 28.85%. To investigate the basis of the false-negative errors – the largest 

class of error in the model, the local explanation of representative true positive samples 

was compared to the false-negative samples (Figure 4-11).  
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Figure 4-10. Confusion Matrix for the Random Forest Prediction on the Test Set for 

the RCC Detection Dataset.  

 

 The waterfall plots support the lys-ile/lys-leu importance hypothesis. The true 

positive samples (correctly predicted RCC samples) have lys-ile/lys-leu as the most 

important metabolite for successful predictions – increasing the probability of an RCC 

prediction. This is not the case for all false-negative samples (wrongly predicted RCC).   
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Figure 4-11. Error Analysis with SHAP for RCC detection.  

Waterfall plots of true positive samples vs. false negative samples.  

 

Supplementary Materials:  All Jupyter notebooks used in this study can be found here: 

https://github.com/artedison/shap-metabolomics 
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CHAPTER 5 

CONCLUSION AND FUTURE DIRECTIONS 

 

Urine has played a sustained role in human medicine since the ancient world. The 

physicians from Babylon and Sumeria were reported to have recorded the assessment of 

urine on clay tablets1. The middle ages saw the introduction of the Matula – a vessel made 

of light, thin glass that allows physicians to get a better view of the properties of urine, 

such as clarity and color, to aid diagnosis2-3. In the renaissance period, urinalysis became 

popular and imbued with optimism that the diagnostic fluid could not keep up with – as 

physicians were convinced that seeing the patient is superfluous and all ailments can be 

solved by observing the urine4. This later led to the implosion of uroscopy5.  

Today, analytical tools like LC-MS and NMR allow for identifying metabolites for 

disease biomarker discovery. In this dissertation, both analytical tools were employed for 

urine metabolite profiling. I successfully showed that it is possible to detect and stage renal 

cell carcinoma with urinary metabolites. This was achieved by incorporating advances in 

machine learning and data science to mine the datasets generated by the metabolomics 

platforms. Some of the metabolic pathways that are thought to be impacted based on the 

altered metabolites include hexosamine biosynthetic pathway, phenylalanine metabolism, 

nucleotide metabolism, aerobic glycolysis, tryptophan metabolism, and biotin metabolism. 

In addition, chemical exposome – the totality of chemical exposure to an individual – was 

retained in the biomarker studies. Furthermore, a recent advancement in explainable AI 
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method – Shapley additive explanations – was applied, first to a published metabolomics 

dataset for gender discrimination for validation purposes, and then to explain the 

predictions of the RCC detection using the seven biomarkers discovered.  

5.1 Detecting Renal Cell Carcinoma via Urinary Metabolites 

After conducting metabolic profiling with NMR and MS, I applied a compendium 

of machine learning techniques to narrow down thousands of metabolomic features 

detected by LC-MS and NMR. These methods rely on different inductive biases allowing 

for varied decision functions, and a voting methodology was employed to select the top, 

overlapping metabolites as biomarkers. The selected biomarker panel was then used for the 

classification task of discriminating RCC from healthy controls. Again, here using ML 

algorithms that afford different induction biases. For example, k-NN classifier relies on the 

decision functions that neighboring samples belong to the same class, while the SVM 

algorithm argues that binary classes are separable by a hyperplane.  

A ten-metabolite panel and a five-metabolite panel (consisting of only upregulated 

metabolites in RCC) were presented in the study. However, only seven metabolites were 

identified, leading to the seven-metabolite panel presented in the study. Apart from 

hippurate6-7, all of the metabolites in the panel are presented as a urinary metabolomic 

biomarker for RCC detection for the first time. However, some of the biomarkers identified 

have had other metabolites in the same metabolic pathway reported, such as alpha-N-

phenylacetyl-L-glutamine6, 8 and 4-hydroxyphenylacetate6 in the phenylalanine metabolic 

pathway. In addition, aspartyl-phenylalanine and glutamyl-threonine have been reported 

for dipeptide metabolism in RCC urine metabolomics9. N-acetyl-D-glucosaminic acid, 

another metabolite in the panel, has been identified to play a central role in tumorigenesis, 
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not limited to RCC10. In addition, two exposure metabolites were selected as markers – 2-

mercaptobenzothiazole and dibutylamine – suggesting a potential role of the exogenous 

metabolites in renal cancer development.   

5.2 Staging Renal Cell Carcinoma via Urinary Metabolites 

For the first time, I showed that it is possible to predict the primary tumor size of 

RCC using urinary metabolites with a 𝑅2 score of 0.58. Metabolites used for the prediction 

include cytosine dimer, dihydrouridine, asparaginyl-hydroxyproline, and an unidentified 

metabolite. Predictions were conducted using a voting ensemble regressor consisting of 

elastic net, ridge, and support vector regressors. In addition, using similar machine learning 

strategies as in chapter 2, a 16-metabolite panel was initially selected to discriminate 

between early RCC and advanced RCC. However, the performance scores were slightly 

improved via the addition of the metabolites selected for RCC tumor prediction and NMR-

derived metabolites with p<0.05 (Student t-test).  This gave rise to the 24-metabolite RCC 

staging panel presented in chapter 3. Of the 24-metabolite panel, 16 metabolites were 

identified, and they suggest alterations in metabolic pathways like nucleotide metabolism, 

fatty acid metabolism, and protein degradation and re-utilization. These pathways have 

been reported to be altered in tissue-based metabolomics studies in RCC progression11.  

The voting ensemble learning technique was used for both the regression and 

classification tasks in chapter 3. The voting classifier works by aggregating the predictions 

of its base learners, which sometimes results in a superior prediction, as was the case in the 

RCC staging and primary tumor predictions. This success is because of the independence 

of the base learners. Independent learners are more likely to make different mistakes, 

compensating for each other in an ensemble, and the independence is derived from 
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different induction biases. The best improvement from using a voting ensemble in the study 

is reported in the discrimination of early RCC from advanced RCC, where AUC values 

include:  random forests = 0.89, AdaBoost = 0.92, SVM-RBF=0.90, and logistic 

regression=0.94. The voting classifier ensemble gave an AUC of 0.96.  

5.3 Explaining Metabolomics Machine Learning Models with SHAP 

In chapter 4, a state-of-the-art explainable AI method – Shapley additive 

explanations – was applied for machine learning prediction interpretations. The 

metabolomics field utilizes PLS-DA for ML interpretability with the limitation of its 

restrictions to global explanations. SHAP, on the other hand, has high representativeness 

of explanations. I applied Tree SHAP to publicly available metabolomics datasets, 

specifically explaining a machine learning model used in gender predictions. The pre-

eminent role of testosterone glucuronide was discovered through a series of explanation 

methodologies such as the summary plot (or bee swarm plot), waterfall plot, force plots, 

and supervised hierarchical clustering with SHAP values. This gave validation for the 

applicability of Tree SHAP, as testosterone glucuronide is a metabolite of the most 

important male sex hormone – testosterone. 

Furthermore, the RCC detection dataset was trained on random forests and 

explained using Tree SHAP. Lysyl-isoleucine was identified as the most important 

metabolite with global interpretations. In addition, the comparison of the local 

interpretations of the true positive samples (correctly classified RCC) and false-negative 

samples (RCC classified as healthy controls) indicates the importance of lysyl-isoleucine 

for accurately predicting RCC. In conclusion, SHAP can be used to investigate the 

metabolic uniqueness of RCC subtypes – if there exist any. This will require a much larger 
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datasets that are equally representative of the various RCC subtypes, sufficient for the ML 

algorithms to extract useful patterns.  

5.4 Four Concluding Thoughts 

The importance of the exposome: We live in an increasingly industrial world that 

invents faster than it can feasibly assess risks associated with such inventions. The 

implications for such behavior have been increasingly evident. For example, phthalates – 

a group of compounds used to make plastic more durable – have been reported to reduce 

testosterone biosynthesis in males12. In fact, of the several thousands of chemicals 

registered for commercial use in the US, less than 1% of them are tested for toxicity13. 

Therefore, biomarker studies of the kind presented in this thesis provide the opportunity to 

identify exposure metabolites associated with disease conditions. 2-mercaptobenzothiazole 

and dibutylamine are selected as markers for RCC, while succinic anhydride was selected 

in RCC staging. This is the first time these associations were discovered. Further studies 

are required to show the constitutive presence of the compounds in RCC urine samples – 

as exposure markers for RCC – and, importantly, their potential roles in the development 

of renal cell cancer, if there are any.  

 Causal inference and biomarker discovery: There are unlimited potential 

confounders that can impact the validity of any biomarker discovery study. This is because 

biomarker discoveries, such as those conducted in this thesis, are based on observational 

studies. However, causal claims are only permissible under well-conducted randomized 

controlled trials. And yet, randomizing RCC is impossible (and unethical). In this study, I 

have taken approaches such as propensity score matching to limit selection bias – as such, 

causal claims cannot be made, only provisional causality. To this end, massive, 
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independent studies with diversity in race and geographical locations are required to 

validate biomarkers, which will implicitly answer the causality question. 

  Specificity of urine metabolomic markers: Biomarkers such as lactate and 

hippurate selected in the RCC metabolic panel are by no means exclusive to RCC. This, at 

a cursory look, connotes a negative result. However, this need not be the case because 

overlapping urine tumor markers in several cancer types can potentially screen for the onset 

of tumorigeneses in patients. Afterward, further tests can be conducted to identify the 

specific organ affected based on the patients' clinical history. What is being proposed here 

is a universal cancer screening14, and such urine markers do not exist today. It is through 

the analysis of several specific cancer types in comparison with healthy controls can this 

be identified.  In addition, large comparative studies of biomarkers of different cancer types 

are essential to identify the uniqueness of markers — for example, renal carcinoma vs. 

bladder cancer. 

 Predictive results for RCC detection and staging: There are currently no urine RCC 

metabolomic markers in use in the clinic, nor are there any RCC tumor markers15.  As such, 

there is no urine metabolomic marker standard for comparison. For the RCC detection 

study, a sensitivity of 94% and specificity of 85% were reported, and for RCC staging, 

sensitivity = 80% and specificity = 93%. These are promising predictive scores that can be 

used for screening and monitoring the progression of RCC, pending validation of markers 

in more diverse populations, as described above. As a manner of comparison, one of the 

promising urine tumor marker panels currently in development is the UROSEEK. The 

UROSEEK detects alterations in 11 genes in bladder and upper tract urothelial cancers. It 
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has reported having a specificity of 99.5% and sensitivity of 83% in one of its latest 

studies16. 
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APPENDIX A 

SUPPLEMENTARY MATERIAL FOR CHAPTER 2 

  

Section A-1. NMR quality assurance and quality control and Spectral Binning 

All study cohort urine samples were randomized prior to running NMR experiments. 

Twelve NMR buffer blanks, 3 per run, were added to ensure there is no carry-over of 

samples between urine samples. One buffer blank was added at the beginning, middle, and 

end of each run. Thirty-two external controls (Nicotine, Ethanol & Drug Free Human 

Urine, Female; Golden West Diagnostics, LLC), 8 in each of the four NMR racks (run) 

used, were added to the study to ascertain the reliability of the sample acquisition process 

particularly for comparing across runs. One external control was added after the first blank 

at the beginning the run, and one before the last blank at the end of the run, while the 

remaining six external controls were randomized with the study's urine samples. The 

external pooled controls served its purpose as the controls were clustered tightly together 

on a PCA plot (data not shown). Also, 27 µL were taken out of each study urine sample 

for two internal pooled controls. 1D 1H NMR experiment was conducted on all samples, 

while HSQC was carried out on one internal pooled control sample, and HSQC-TOCSY 

was carried out on the other. The NMR data for the internal pooled samples were used for 

metabolite annotation using AssureNMR and COLMARm1 as described in the manuscript. 

Fifty metabolomic features in the aligned and normalized 1D 1H NMR spectra were 

manually binned and quantified by taking spectral areas for integration in regions without 
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overlap, and combined with MS features for downstream analysis. A manual binning 

workflow in the Edison laboratory in-house metabolomics toolbox MATLAB scripts was 

used for binning 

(https://github.com/artedison/Edison_Lab_Shared_Metabolomics_UGA).  

Scheme A-1 shows the steps involved in this process: aligned normalized NMR spectra 

were initialized, the functions manual_feature_selection1.m and selectROIsFromFigure.m 

allowed us to manually select multiple regions in the displayed spectra, where a rectangle 

is drawn around the region of interest (ROI) for binning in an interactive fashion. The 

highlighROIs.m function highlights the ppm regions provided in ROI, and the binned, 

highlighted NMR spectra figure is saved. Finally, ppm boundaries are exported, and 

IntegralPeak_roi.m function was used to integrate metabolomic features in the binned 

spectra. 

Scheme A-1. NMR Peak Picking Methods 

 

https://github.com/artedison/Edison_Lab_Shared_Metabolomics_UGA
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Section A-2. Model evaluation metrics  

The following metrics were used for model evaluation, where TP is true positive, TN is 

true negative, FP is false positive, and FN is false negative: 

Accuracy measures the percentage of all correctly predicted samples. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Sensitivity (or recall) measures the percentage of correctly predicted RCC patients out of 

the total RCC samples. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity measures the percentage of correctly predicted controls out of the total control 

samples. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
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Figure A-1. Relative Quantification of all Discriminating Metabolomic Features 

Identified in the Study, for RCC Samples Collected in the Clinic vs. Operating Room.  

q-values were computed by taking the FDR correction (Benjamini-Hochberg) after an 

independent t-test. All features were statistically insignificant. Raw data were transformed 

via autoscaling for visualization. 
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Figure A-2. Relative Quantification of the 10 Metabolite Panel for RCC Detection. 

(a) in the model cohort. After selecting features with greater than a one-fold change 

between control and RCC groups, q-values were computed by taking the FDR correction 

(Benjamini-Hochberg) after an independent t-test. (∗ 𝑞 ≤ 0.05, ∗∗ 𝑞 ≤ 0.01, ∗∗∗ 𝑞 ≤

0.001). (b) Test cohort, p-values from the Welch t-test were reported (unequal sample 

size). ( ∗ 𝑝 ≤ 0.05, ∗∗ 𝑝 ≤ 0.01, ∗∗∗ 𝑝 ≤ 0.001). Raw data were transformed via 

autoscaling for visualization 
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Figure A-3. Selection of Metabolomic Features with q-values and Classifying with 

Logistic Regression using the Metaboanalyst 5.0 Biomarker Analysis Platform.  

(a) Metabolomic features with the top ten highest q-values from univariate analysis. (b) 

ROC-AUC (c) Predictive accuracy. Analysis was carried out using the model cohort. 
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Figure A-4. Machine Learning Pipeline Focused on Upregulated Features in RCC vs. 

Controls.  

PLS: partial least squares, RF- RFECV: random forest recursive feature elimination – 

cross validation, FDR-BH: false discovery rate Benjamini-Hochberg procedure, k-NN: k-

nearest neighbors. 
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Figure A-5. Relative Abundances for the Panel of Upregulated Metabolites in RCC.  

(a) Model cohort. q-values were computed by taking the FDR correction (Benjamini-

Hochberg) after an independent t-test. (∗ 𝑞 ≤ 0.05, ∗∗ 𝑞 ≤ 0.01, ∗∗∗ 𝑞 ≤ 0.001). (b) In 

the test cohort, p-values from the Welch t-test were reported (unequal sample size). ( ∗ 𝑝 ≤

0.05, ∗∗ 𝑝 ≤ 0.01, ∗∗∗ 𝑝 ≤ 0.001). Raw data were transformed via autoscaling for 

visualization 
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Figure A-6. Machine Learning Pipeline Focused Only on NMR features for RCC 

Detection.  

Using the model cohort, all NMR features were subjected to feature selection strategies 

culminating in four selected metabolites (hippurate, trigonellinamide, lactate, and 

mannitol). Hyperparameters for four different machine learning models were tuned using 

the model cohort and the 4-metabolite panel. Final predictions were made using the test 

cohort under cross-validated conditions. PLS: partial least squares, RF- RFECV: random 

forest recursive feature elimination – cross validation, FDR-BH: false discovery rate 
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Benjamini-Hochberg procedure, k-NN: k-nearest neighbors, SVM: support vector 

machines (Lin: linear, RBF: radial basis function). 

 

Figure A-7. Relative Quantification of Features in the NMR RCC Metabolic Panel.  

(a) Model cohort. q-values were computed by taking the FDR correction (Benjamini-

Hochberg) after an independent t-test. (∗ 𝑞 ≤ 0.05, ∗∗ 𝑞 ≤ 0.01, ∗∗∗ 𝑞 ≤ 0.001). (b) In 

the test cohort, p-values from the Welch t-test were reported (unequal sample size). (n.s. 

not significant ∗ 𝑝 ≤ 0.05, ∗∗ 𝑝 ≤ 0.01, ∗∗∗ 𝑝 ≤ 0.001). Raw data were transformed via 

autoscaling for visualization. 
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Figure A-8. MS/MS Annotation of 2-mercaptobenzothiazole and Dibutylamine/ N-

butylisobutylamine/Disobutylamine.  

a) Experimental spectra of 2-mercaptobenzothiazole b) MS/MS of spectrum of 2-

mercaptobenzothiazole from mzCloud database. c) Annotated MS/MS spectrum of feature 

identified as dibutylamine/n-butylisobutylamine/disobutylamine. Annotations are obtained 

from in silico fragmentation in Compound Discoverer (Thermo Fisher).   
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Table A-1. Propensity Score Matching and Model Cohort Characteristics for the 

RCC Detection Study.  

 Pre-match Groups Post-match Groups 

Characteristic Controls RCC 
p-

Value 
Controls RCC 

p-

Value 

No of Urine 

Samples 
174 31  31 31  

Mean Age± SD 54.4±10.3 
59.5±12.

4 
0.03 58.0±13.0 59.5±12.1 0.64 

BMI 27.3±4.5 29.1±5.8 0.11 26.5±4.9 29.1±5.8 0.06 

Race       

Caucasian 
162 

(93.1%) 

21 

(67.7%) 
 25 (80.6%) 21 (67.7%)  

Black/African 

American 
5 (4.0%) 9 (29.0%)  3 (9.7%) 9 (29.0%)  

Others 7 (2.8%) 1 (3.2%)  3 (9.7%) 1 (3.2%)  

Smoker       

Never 
131 

(75.3%) 

19 

(61.3%) 
 17 (54.8%) 19 (61.3%)  

Former/Current 43 (24.7%) 
12 

(38.7%) 
 14 (45.2%) 12 (38.7%)  

Gender       

Male 
145 

(83.3%) 

14 

(45.2%) 
 14 (45.2%) 14 (45.2%)  

Female 29 (16.6%) 
17 

(54.8%) 
 17 (54.8%) 17 (54.8%)  

p-Values were calculated using Welch and Student t-test, for unequal and equal sample 

sizes, respectively. Race: unknown/missing (6), mixed (1), and Asian (1) were all classified 

as others (8); Smoker: former (46) and current (9) were all classified as former/current (55). 

RCC: Renal Cell Carcinoma.  
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Table A-2. RCC Patients’ Cohort Characteristics of the Model Cohort for the RCC 

Detection Study. 

Characteristic Frequency Percentage 

Metastasis 

Yes 7 22.6% 

No 24 77.4% 

Histological Subtypes 

Pure Clear Cell 23 71% 

Papillary 3 9.7% 

Chromophobe 2 6.5% 

Clear Cell Papillary 2 6.5% 

Unclassified 2 6.5% 
a Nuclear Grade 

1 0 0% 

2 10 33.3% 

3 8 26.7% 

4 12 40% 

T-Stage 

T1a 11 35.4% 

T1b 5 16.1% 

T2a 2 6.4% 

T2b 1 3.2% 

T3a 11 35.4% 

T4 1 3.2% 

M-Stage 

M0 24 77.4% 

M1 7 22.6% 

N-Stage 

N0 25 80.6% 

N1 4 12.9% 

NX 2 6.5% 
b RCC Stage 

I 13 44.8% 

II 3 10.3% 

III 6 20.7% 

IV 7 24.1% 
a One nuclear grade missing. b Two individuals cancer stages are not reported due to 

inconclusive TNM staging. 
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Table A-3. Test Cohort Characteristics for the RCC Detection Study.   

Characteristic Controls RCC p-Value 

No. of Urine Samples 143 51  

Mean Age ± SD 53.6 ± 9.5 61.7 ± 13.7 0.0002 

BMI 27.5 ± 4.4 29.1 ± 5.6 0.03 

Race     

Caucasian 136(95.1%) 35(70.0%)  

Black/African American 5(3.4%) 11(22.0%)  

Others 2(1.4%) 4(8.0%)  

Smoker    

Never 113 (79%) 32 (62.7%)  

Former/Current 30 (21%) 19 (37.3%)  

Gender    

Male 131 (91.6%) 31 (62.0%)  

Female 12 (8.4%) 19 (38.0%)  

Histological Subtypes    

Pure Clear Cell  35 (68.6%)  

Papillary  7 (13.7%)  

Clear Cell Papillary  4 (7.8%)  

Chromophobe  3 (5.9%)  

Unclassified  2 (3.9%)  

Metastasis    

No  41 (80.4%)  

Yes  10 (19.6%)  
a Nuclear Grade    

1  0 (0%)  

2  20 (41.7%)  

3  21 (43.8%)  

4  7 (14.6%)  
b RCC Stage    

I  20 (48.8%)  

II  5 (12.2%)  

III  9 (22.0%)  

IV  7 (17.1%)  

p-Values were calculated using the Welch t-test. a For nuclear grades, three samples were 

missing. b Ten samples have missing RCC staging because of inconclusive TNM staging. 
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Table A-4. Quantified NMR Features. ppm Values, Confidence Score, Fold 

Changes, and q-values. 

Metabolite/Features 
1H 

(ppm) 

13C 

(ppm) 

Peak 

patterns 

Confidence 

Score 

Fold 

Change 

q-

value 

unknown 1 0.15 - (s) - 0.01 0.957 

unknown 2 0.36 - (m) - 0.42 0.050 
∙**bile acid 1 0.53 - (s) 1 0.32 0.119 
∙**bile acid 2 0.56 - (s) 1 0.12 0.560 

3-hydroxyisovaleric 

acid 
1.26 30.84 (s) 3 0.07 0.704 

lactate 1.31 22.97 (d) 4 0.34 0.003 

unknown 3 1.85 - (s) - 0.59 0.560 

acetate 1.90 26.04 (s) 3 0.57 0.196 

acetone 2.23 32.40 (s) 3 -0.12 0.196 

unknown 4 2.26 - (s) - -0.06 0.704 

acetoacetate 2.27 32.19 (s) 3 -0.07 0.634 

unknown 5 2.33 - (s) - -0.03 0.860 
∙∙pyruvate 2.41 - (s) 2 0.05 0.560 

citrate 2.53 48.52 (d) 3 -0.05 0.811 

dimethylamine (DMA) 2.71 37.5 (s) 3 0.22 0.119 

unknown 6 2.77 - (s) - 0.05 0.827 

methylguanidine 2.82 30.21 (s) 3 0.16 0.256 

unknown 7 3.08 - (t) - -0.34 0.126 

choline 3.19 56.69 (s) 3 -0.06 0.686 
ascyllo-inositol 3.35 76.4 (s) 3 -1.14 0.002 

taurine 3.42 38.07 (t) 4 -0.03 0.811 

acetoacetate 3.44 56.22 (s) 3 0.23 0.368 

4-

hydroxyphenylacetate 

(4-HPA) 

3.44 46.34 (s) 4 0.23 0.368 

glycine 3.56 44.18 (s) 3 0.48 0.368 

mannitol 3.86 65.94 (d) 4 -0.78 0.012 

mannitol 3.88 65.94 (d) 4 -0.68 0.022 

creatine 3.92 - (s) 3 0.07 0.811 
aglycolate 3.94 64.32 (s) 3 0.07 0.663 

hippurate 3.96 46.46 (d) 4 -0.68 0.004 

4-hydroxyhippuric acid 3.96 46.58 (d) 3 -0.68 0.004 
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tartrate 4.34 76.55 (s) 3 0.13 0.728 

unknown 8 6.07 - (s) - 0.09 0.415 

unknown 9 6.18 - (s) - 0.59 0.267 

fumarate 6.52 - (s) 2 0.17 0.560 

4-

hydroxyphenylacetate 

(4-HPA) 

7.13 133.15 (d) 4 0.83 0.168 

hippurate 7.55 131.50 (t) 4 -0.98 0.002 

hippurate 7.65 134.92 (m) 4 -0.96 0.002 
a4-aminohippuric acid 7.67 133.02 (d) 3 -1.64 0.002 

indoxyl sulfate (IS) 7.70 127.07 (d) 3 0.18 0.492 

hippurate 7.83 129.85 (dd) 4 -0.91 0.003 

hypoxanthine 8.18 148.27 (s) 3 0.21 0.811 

hypoxanthine 8.20 144.75 (s) 3 0.86 0.368 

formate 8.45 173.71 (s) 3 0.22 0.488 

unknown 10 8.77 - (d) - 0.19 0.791 

trigonelline 8.83 147.46 (t) 3 -0.2 0.686 

trigonellinamide 8.89 - (d) 2 -0.49 0.002 

trigonellinamide 8.97 - (d) 2 -0.49 0.002 

trigonelline 9.11 148.50 (s) 3 -0.33 0.524 

trigonellinamide 9.27 - (s) 2 -0.51 0.009 

unknown 11 9.36 - (s) - -0.14 0.686 
a Quantification may be unreliable because of spectral overlaps. Tentative assignment 

(Monteiro et al 2016) s=singlet, d=doublet, dd=doublet of doublet, m=multiplet. Fold 

change (FC) was calculated as the base 2 logarithm of the average integral ratios between 

RCC and controls samples. Positive FC values indicate increased abundance in RCC, while 

negative values indicate higher abundance in control samples. q-values were computed by 

taking the FDR correction (Benjamini-Hochberg) after an independent t-test. 
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Table A-5. Chemical Information for the 10-Metabolite Panel for RCC Detection. 

ID 

no. 

Retention 

Time (min) 

m/z 
Adduct 

Type 

Mass 

error 

(ppm) 

Element

al 

Formula 

Metabolite 

Identity 
Theoretical 

Experimen

tal 

720 5.68 
136.0757 

 

136.0755 

 
[M+H]+ -1.47 

C8H9NO 

 

2-

phenylacet

amide 

 

1481 8.83 
260.1969 

 
260.1969 [M+H]+ 0.00 

C12H25N3

O3 

 

Lys-Ile 

 

2102 4.39 
130.1590 

 
130.1591 [M+H]+ 0.77 

C8H19N 

 

dibutylami

ne, N-

butylisobut

ylamine, 

diisobutyla

mine 

(isomer) 

 

3141 2.27 343.1135 343.1134 [M+H]+ -0.20 

C14H18N2

O8 

 

-- 

3675 1.18 -- 87.0641 [M+H]+ -- -- -- 

3804 2.59 202.0474 202.0478 [M+H]+ 1.70 

C4H12NO

6P 

 

hippuric 

acid 

3872 4.05 973.6038 973.6027 
[M+2H]2

+ 
-1.13 

C100H158

N19O20 
-- 

4080 0.82 406.0597 406.0594 [M+H]+ -0.78 
C10H21N3

O8P2S 
 

6261 2.59 314.1248 314.1244 [M-H]- -1.27 

C9H18N9

O2P 

 

-- 

6262 2.67 
376.1249, 

358.1143 

376.1246, 

358.1147 

[M+H2O

-H]- 

[M-H] 

-0.68 
C15H21N

O9 

hippurate-

mannitol 

derivative 
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Table A-6. Machine Learning Hyperparameters used for Binary Classification using 

the MS-based 10-Metabolite Panel for RCC Detection. 

Parameters Initial distribution Optimized 

Random Forest   

Max_depth 10, 20, 30 10 

Max_features 'auto', 'sqrt', 'log2' ‘auto’ 

Min_samples_leaf 1, 2, 3, 4, 5 1 

Min_samples_split 2, 4, 6, 8 2 

N_estimators 50, 100, 150, 200 100 

SVM-RBF   

C 0.1, 1, 10, 100 10 

gamma 0.01, 0.03, 0.1, 0.3, 1.0 0.1 

Lin-SVM   

C 0.001, 0.01, 0.1, 1, 5, 10 0.1 

k-NN   

Number of neighbors 2 - 30 4 

Distance Measure Manhattan, Euclidean Manhattan 

 

Table A-7. Machine Learning Performance using the MS-based 10-Metabolite Panel 

for RCC Detection. 

Algorithm RF K-NN SVM-RBF Linear SVM 

 

AUC 

 

1.0 +/- 0.0 

(0.95) 

 

0.96 +/- 0.04 

(0.96) 

 

0.99 +/- 0.01 

(0.94) 

 

1.0 +/- 0.0 

(0.97) 

Accuracy 
0.95 +/- 0.04 

(80%) 

0.95 +/- 0.07 

(87%) 

0.93 +/- 0.06 

(82%) 

0.95 +/- 0.07 

(81%) 

Sensitivity 
0.94 +/- 0.08 

(100%) 

0.93 +/- 0.13 

(96%) 

0.93 +/- 0.08 

(84%) 

0.97 +/- 0.07 

(100%) 

Specificity 
0.97 +/- 0.07 

(73%) 

0.97 +/- 0.07 

(83%) 

0.93 +/- 0.08 

(81%) 

0.93 +/- 0.13 

(75%) 
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Table A-8. Compound Annotation and Identification for the Panel of Five Metabolites 

Upregulated in RCC for RCC Detection. 

ID 

no. 

Retenti

on 

Time 

(min) 

m/z Add

uct 

Typ

e 

Mass 

error 

(ppm) 

Element

al 

Formula 

Metabolite 

Identity 
Theoreti

cal 

Experimen

tal 

1481 8.83 
260.1969 

 
260.1969 

[M+

H]+ 
0.00 

C12H25N3

O3 

 

Lys-Ile 

 

2102 4.39 
130.1590 

 
130.1591 

[M+

H]+ 
0.77 

C8H19N 

 

dibutylami

ne, N-

butylisobut

ylamine, 

diisobutyla

mine 

(isomer) 

 

6578 1.09 
165.9790 

 
165.9784 

[M-

H]- 
-3.61 

C7H5NS2 

 

2-

mercaptob

enzothiazol

e 

 

6594 6.89 
236.0776 

 
236.0777 

[M+

H]+ 
0.42 

C8H15NO

7 

 

N-acetyl-

glucosamin

ic acid 

 

5698 3.38 630.1909 630.1895 
[M-

H]- 
-2.64 

C24H43N

O12P2S 
-- 
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Table A-9. Hyperparameters Tuned for Machine Learning Methods used for Binary 

Classification for the Upregulated RCC Biomarkers in the RCC Detection Study. 

Parameters Initial distribution Optimized 

Random Forest   

Max_depth 10, 20, 30 10 

Max_features 'auto', 'sqrt', 'log2' ‘auto’ 

Min_samples_leaf 1, 2, 3, 4, 5 1 

Min_samples_split 2, 4, 6, 8 2 

N_estimators 50, 100, 150, 200 150 

SVM-RBF   

C 0.1, 1, 10, 100 10 

gamma 0.01, 0.03, 0.1, 0.3, 1.0 0.3 

Lin-SVM   

C 0.001, 0.01, 0.1, 1, 5, 10 10 

k-NN   

Number of neighbors 2 - 30 11 

Distance Measure Manhattan, Euclidean Euclidean 

 

Table A-10. Machine Learning Performance using the Upregulated RCC Biomarkers 

in the RCC Detection Study. 

Algorithm RF K-NN SVM-RBF Linear SVM 

AUC 
0.95 +/- 0.06 

(0.97) 

0.92 +/- 0.1 

(0.92) 

0.9 +/- 0.08 

(0.80) 

0.9 +/- 0.08 

(0.91) 

Accuracy 
0.87 +/- 0.04 

(70%) 

0.77 +/- 0.14 

(81%) 

0.89 +/- 0.1 

(61%) 

0.82 +/- 0.07 

(71%) 

Sensitivity 
0.87 +/- 0.12 

(98%) 

0.7 +/- 0.27 

(86%) 

0.87 +/- 0.16 

(96%) 

0.8 +/- 0.12 

(94%) 

Specificity 
0.87 +/- 0.12 

(59%) 

0.83 +/- 0.18 

(79%) 

0.9 +/- 0.13 

(49%) 

0.83 +/- 0.11 

(62%) 
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Table A-11. Detailed MS/MS Information for the 7-Metabolite Panel that 

Distinguishes RCC from Control Samples.   

Feature 

ID no. 

CE 

(eV), 

Mode 

Fragment ion m/z 

Metabolite 

identificati

on level 

Match 

details 

Metabolite 

Name 

720 
10,30,

45 (+) 

136.0755, 119.0489, 

118.0648, 107.0490, 

91.0541, 95.0602, 

101.2184, 87.466, 70.9133, 

65.0383 

2 

Fragmentati

on 

consistent 

with 

spectrum 

(HMDB) 

2-

phenylaceta

mide 

1481 
10,30,

45 (+) 

260.1977, 171.1495, 

144.1021, 100.0757, 

84.0808, 72.0444, 65.8753, 

54.7500 

2 

Fragmentati

on 

consistent 

with 

structure 

lys-ile or lys-

leu 

 

2102 
10,30,

45 (+) 

130.1592, 84.0445, 

74.0965, 57.0700 
2 

Fragmentati

on 

consistent 

with 

structure 

dibutylamine 

(alkyl chain 

branching 

not 

determined) 

 

3804 --- 

180.0880, 105.0339, 

162.0771, 95.0497, 

53.0395, 

110.0345,120.0812, 

138.0556 

2 

Fragmentati

on 

consistent 

with 

spectrum 

(m/z cloud) 

 

hippuric acid 

 

6262 
10,30,

45 (-) 

342.2521, 310.2751, 

280.0701, 194.0449, 

181.0375, 150.0594, 

148.0392, 138.0297, 

121.0285, 124.0061, 

113.0230, 93.0332, 

85.0281, 89.0240, 71.0134, 

73.0290 

2 

Fragmentati

on 

consistent 

with 

spectrum 

(m/z cloud) 

hippurate-

mannitol 

derivative 

 

 

6578 

10,30,

45 (-) 

 

165.9784, 134.0065, 

122.01241, 117.9193, 

102.0344, 79.9570, 

66.0093, 57.9752 

2 

Fragmentati

on 

consistent 

with 

spectrum 

(m/z cloud) 

2-

mercaptoben

zothiazole 
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6594 

10,30,

45 (+) 

236.0773, 230.1947, 

208.9668, 149.0452, 

131.0346, 119.0349, 

113.0241, 104.0350, 

98.9556, 89.0240, 86.0244, 

85.0291, 71.0134, 59.0134, 

2 

Fragmentati

on 

consistent 

with 

structure 

N-acetyl-

glucosaminic 

acid 

 

The m/z of fragment ions were obtained from DDA experiments. The corresponding 

collision energy (CE) is also listed in the table. Selected precursor ions are underlined. 

Fragment ions that matched to literature spectra or were consistent with potential structures 

are in bold. Metabolite identification level was assigned based on the following criteria: 1) 

exact mass, isotopic pattern, retention time, and MS/MS spectrum of standard matched to 

the feature. 2) exact mass, isotopic pattern, and MS/MS spectrum matched with literature 

spectra or fragmentation ions observed are consistent with the proposed structure. 3) 

tentative ID assignment based on elemental formula matches with literature. 4) unknowns. 

 

Table A-12. Machine Learning Hyperparameters Tuned for Binary Classification 

using the 7-Metabolite Panel for RCC Detection. 

Parameters Initial distribution Optimized 

Random Forest   

Max_depth 10, 20, 30 10 

Max_features 'auto', 'sqrt', 'log2' ‘auto’ 

Min_samples_leaf 1, 2, 3, 4, 5 5 

Min_samples_split 2, 4, 6, 8 2 

N_estimators 50, 100, 150, 200 50 

SVM-RBF   

C 0.1, 1, 10, 100 1 

gamma 0.01, 0.03, 0.1, 0.3, 1.0 0.03 

Lin-SVM   

C 0.001, 0.01, 0.1, 1, 5, 10 0.1 

k-NN   

Number of neighbors 2 - 30 7 

Distance Measure Manhattan, Euclidean Manhattan 
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Table A-13. Machine Learning Hyperparameters Tuned for Binary Classification 

using NMR-derived Metabolites for RCC Detection. 

Parameters Initial distribution Optimized 

Random Forest   

Max_depth 10, 20, 30 10 

Max_features 'auto', 'sqrt', 'log2' ‘auto’ 

Min_samples_leaf 1, 2, 3, 4, 5 3 

Min_samples_split 2, 4, 6, 8 2 

N_estimators 50, 100, 150, 200 50 

SVM-RBF   

C 0.1, 1, 10, 100 10 

gamma 0.01, 0.03, 0.1, 0.3, 1.0 0.3 

Lin-SVM   

C 0.001, 0.01, 0.1, 1, 5, 10 1 

k-NN   

Number of neighbors 2 - 30 5 

Distance Measure Manhattan, Euclidean Manhattan 

 

Table A-14. Machine Learning Performance using NMR-derived Metabolites for 

RCC Detection. 

 

Algorithm 
RF K-NN SVM-RBF Linear SVM 

 

AUC 

0.95 +/- 0.03 

(0.89) 

0.94 +/- 0.05 

(0.88) 

0.94 +/- 0.06 

(0.89) 

0.89 +/- 0.08 

(0.87) 

 

Accuracy 

0.84 +/- 0.05 

(0.76) 

0.87 +/- 0.1 

(0.77) 

0.86 +/- 0.06 

(0.78) 

0.81 +/- 0.08 

(0.74) 

 

Sensitivity 

0.81 +/- 0.12 

(0.86) 

0.87 +/- 0.06 

(0.84) 

0.9 +/- 0.08 

(0.86) 

0.83 +/- 0.11 

(0.84) 

 

Specificity 

0.87 +/- 0.19 

(0.72) 

0.87 +/- 0.19 

(0.75) 

0.81 +/- 0.12 

(0.76) 

0.77 +/- 0.23 

(0.71) 
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Table A-15. Metabolomic Features with q-values < 0.05 and > 1-Fold Change in the 

Model Cohort for the RCC Detection Study.  

(Fold change (FC) was calculated as the base 2 logarithm of the average intensity ratios 

between RCC and controls samples). Positive FC values indicate increased abundance in 

RCC, while negative values indicate higher abundance in control samples. q-values were 

computed by taking the FDR correction (Benjamini-Hochberg) after an independent t-test. 

433 features from LC-MS are included in the table, and 2 features from NMR (scyllo-

Inositol and aminohippurate) are in Table A-4. 

ID Metabolite ID Mode RT [min] FC FDR p-

value 

1 1 positive 2.317 -1.4885 0.045959 

9 5-acetylamino-6-amino-3-methyluracil positive 1.901 -1.22771 0.008743 

95 3-(1H-1,2,4-Triazol-3-yl)alanine positive 1.898 -1.23304 0.005531 

147 147 positive 2.58 -1.20166 0.007443 

163 venlafaxine positive 2.654 -1.27957 0.018961 

170 170 positive 2.313 -1.56798 0.017014 

173 173 positive 2.605 -1.23927 0.004285 

245 245 positive 4 -2.33614 0.00089 

250 250 positive 2.581 -2.11065 0.009913 

260 leupeptin positive 3.989 -2.30823 0.000917 

278 278 positive 3.057 -1.65576 0.002262 

293 293 positive 2.617 -1.64467 0.020423 

312 312 positive 4.523 1.113604 0.022578 

314 314 positive 2.592 -2.15533 0.012163 

332 N-(3-amino-4-methyl-5-

nitrophenyl)acetamide 

positive 1.591 -2.21385 0.035889 

347 6-methylquinoline positive 2.322 -1.64636 0.008933 

363 363 positive 1.903 -1.38184 0.003166 

429 429 positive 4.525 1.279205 0.018937 

435 paraxanthine positive 1.12 -1.17746 0.006372 

474 474 positive 1.917 -1.29632 0.009562 

479 phenylacetaldehyde positive 2.404 -1.95368 0.011539 

523 523 positive 2.183 -1.06828 0.017172 

562 6-methylquinoline positive 2.594 -1.95682 0.010866 

595 595 positive 2.67 -2.75395 0.0418 

610 610 positive 2.952 -1.95838 0.005316 

640 1_5-anhydro-mannitol positive 1.895 -1.22667 0.00129 
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643 643 positive 2.869 -2.0903 0.03379 

666 666 positive 2.961 -1.67651 0.009093 

672 moxaverine positive 2.66 -1.15696 0.039852 

688 688 positive 4.009 1.099602 0.023352 

712 3-dehydrocarnitine positive 1.449 -1.19664 0.02724 

720 2-phenylacetamide positive 2.562 -1.06888 0.000386 

726 726 positive 6.009 1.043296 0.04006 

790 2-acetolactate positive 1.914 -1.03801 0.001699 

798 indole;1-benzazole positive 2.653 -1.46462 0.000526 

800 800 positive 4.125 3.41514 0.033921 

819 4-dehydropantoate positive 1.896 -1.19163 0.00116 

825 3-methyldioxyindole positive 1.942 -1.20393 0.002882 

880 880 positive 4.528 1.182288 0.032715 

900 900 positive 4.532 1.172157 0.02614 

926 926 positive 2.25 -1.29961 0.015545 

954 954 positive 4.019 -2.6166 0.000917 

958 958 positive 0.579 -2.49872 0.032106 

960 960 positive 0.58 -2.4511 0.034206 

995 995 positive 0.882 -1.5801 0.035476 

1035 zeatin positive 3.628 1.022119 0.039696 

1047 1047 positive 2.631 -2.17057 0.012641 

1066 1066 positive 2.591 -2.28759 0.005362 

1098 4-imidazolone-5-propanoate positive 3.729 -1.0197 0.027361 

1153 1153 positive 4.533 1.222509 0.017014 

1163 1163 positive 2.45 -1.39804 0.00089 

1214 1214 positive 1.242 -1.57143 0.020423 

1261 1261 positive 1.855 1.046534 0.04275 

1262 1262 positive 1.9 -1.49775 0.003903 

1307 1307 positive 1.147 -5.46823 0.001452 

1356 delta-guanidinovalericacid positive 3.929 -1.93217 0.043481 

1365 1365 positive 4.524 1.098536 0.009093 

1391 N- glucosylarylamine positive 3.97 1.803794 0.04275 

1481 lys-Ile positive 6.29 1.447371 0.001342 

1550 1550 positive 2.611 -2.04338 0.012124 

1566 1566 positive 3.909 -1.29952 0.035716 

1579 1579 positive 5.937 1.358104 0.041545 

1587 1587 positive 4.509 1.376935 0.024 

1662 1662 positive 2.502 2.944322 0.047485 

1673 1673 positive 0.804 -3.74992 0.001296 

1676 1676 positive 2.648 -1.80767 0.01703 

1689 1689 positive 4.715 4.292918 0.017731 
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1691 1691 positive 3.418 -1.91163 0.040973 

1701 4-(2-

aminoethyl)benzenesulfonylfluoride 

positive 1.807 -1.93725 0.000526 

1723 1723 positive 2.574 -1.7161 0.00597 

1741 PEG monolaurate n5 positive 3.738 -2.74589 0.001453 

1760 4-(2-

aminoethyl)benzenesulfonylfluoride 

positive 1.704 -2.14754 0.000826 

1771 1771 positive 3.001 1.262088 0.030398 

1776 N-acetylleucylleucine positive 2.587 -1.89519 0.021927 

1820 1820 positive 1.953 -2.10726 0.004044 

1839 2_3-diaminopropionicacid positive 2.6 -2.15507 0.008703 

1858 1858 positive 3.883 -3.72213 0.006498 

1861 1861 positive 4.81 -2.79138 0.019817 

1870 1870 positive 3.824 -3.63177 0.010482 

1880 1880 positive 4.528 1.332245 0.017731 

1931 anisole positive 2.618 -1.12591 0.009093 

1942 1942 positive 3.603 -1.29462 0.049502 

1961 1961 positive 2.434 -1.87936 0.000515 

1969 1969 positive 2.583 -1.36431 0.009913 

1991 1991 positive 3.247 -3.24599 0.015568 

2005 2005 positive 4.876 -2.9057 0.016077 

2056 2056 positive 2.649 -1.55177 0.008562 

2082 2082 positive 2.594 -1.30732 0.008588 

2102 dibutylamine, N-butylisobutylamine, 

diisobutylamine (isomer) 

positive 3.449 1.567367 7.87E-05 

2138 2138 positive 1.12 -1.15134 0.014564 

2158 2158 positive 4.528 1.256293 0.021194 

2196 2196 positive 0.814 -2.89012 0.00089 

2207 2207 positive 1.097 -3.82236 0.003166 

2218 2218 positive 2.432 -1.70991 0.000586 

2230 2230 positive 2.59 -2.19533 0.006379 

2239 2239 positive 1.101 -3.85416 0.002882 

2240 2240 positive 2.886 1.631405 0.00451 

2241 2241 positive 4.838 -1.06192 0.015545 

2242 2242 positive 2.587 -2.31188 0.006372 

2259 2259 positive 3.706 -2.85038 0.032369 

2267 beta-Ionone positive 2.371 -2.11197 0.011891 

2306 2306 positive 2.623 -1.92523 0.009819 

2320 2320 positive 0.866 -2.38259 0.000912 

2321 2321 positive 1.138 -3.78215 0.001432 

2348 2348 positive 3.89 -1.05941 0.02614 

2353 leucinamide positive 1.118 -3.10452 0.003468 

2359 2359 positive 6.637 1.794645 0.023123 
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2385 2385 positive 4.513 1.09136 0.01182 

2403 2403 positive 4.53 1.352297 0.012999 

2418 2418 positive 4.477 -3.95489 0.027524 

2426 2426 positive 2.851 1.572021 0.035289 

2448 2448 positive 4.712 6.772872 0.024075 

2455 2455 positive 1.14 -1.32081 0.00129 

2462 2462 positive 4.536 1.262401 0.005734 

2476 2476 positive 4.534 1.481945 0.027785 

2496 2496 positive 2.581 -2.27665 0.004492 

2499 2499 positive 4.508 1.286938 0.027563 

2524 2524 positive 1.299 1.044756 0.048626 

2540 2540 positive 4.732 7.106785 0.020956 

2568 2568 positive 3.711 -1.24199 0.013193 

2571 2571 positive 3.122 -1.9284 0.035889 

2577 pipecolicacid positive 1.457 -1.52805 0.013548 

2601 2601 positive 2.658 -2.07536 0.009562 

2621 2621 positive 3.989 -2.63727 0.001453 

2625 2625 positive 1.869 -1.023 0.022102 

2652 2652 positive 4.544 1.009831 0.04275 

2653 2653 positive 2.602 -1.53429 0.016708 

2668 cyclo(leucylprolyl) positive 1.067 -1.04975 0.048489 

2702 2702 positive 4.518 1.167157 0.018248 

2709 N-acetyl- glucosaminate positive 3.857 1.090917 0.037911 

2731 2731 positive 4.714 4.920091 0.007029 

2732 2732 positive 4.653 4.191832 0.017527 

2749 2_3-dimethylmalate positive 2.894 1.338155 0.043239 

2803 2803 positive 4.539 1.220539 0.005355 

2804 2804 positive 1 -3.42199 0.009073 

2809 2809 positive 3.775 -1.14183 0.016836 

2815 2815 positive 4.557 1.935817 0.047151 

2821 2821 positive 4.504 1.247197 0.033979 

2829 2829 positive 0.823 -1.68661 0.001711 

2840 2840 positive 3.317 -2.53883 0.005362 

2850 2850 positive 3.157 -2.40116 0.001896 

2852 2852 positive 4.529 1.310407 0.021409 

2853 2853 positive 0.923 -3.21639 0.003894 

2860 2860 positive 4.531 1.181536 0.030398 

2905 2905 positive 2.579 -1.84755 0.013293 

2914 2914 positive 5.316 -3.13431 0.00451 

2924 2924 positive 4.727 5.847712 0.023309 

2926 2926 positive 4.809 -2.25885 0.018961 
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2932 2932 positive 2.649 -1.82929 0.018961 

2971 2971 positive 4.531 1.228874 0.013964 

2973 2973 positive 2.385 -1.31894 0.004285 

2986 2986 positive 0.904 -2.80027 0.023728 

2992 2992 positive 3.323 -4.44632 0.014442 

3025 3025 positive 4.7 3.344933 0.032349 

3033 3033 positive 4.52 1.085292 0.013193 

3035 3035 positive 4.53 1.226327 0.022578 

3043 3043 positive 4.532 1.480025 0.016585 

3074 3074 positive 4.539 1.62393 0.017014 

3082 3082 positive 1.951 -1.10581 0.004436 

3116 3-hydroxyaminophenol positive 1.107 1.515954 0.040104 

3127 3127 positive 1.232 -1.43787 0.02724 

3141 3141 positive 1.133 -2.42642 0.001216 

3148 3148 positive 0.812 -3.09632 0.000826 

3154 3154 positive 3.884 -2.69949 0.000828 

3159 3159 positive 1.095 -1.68751 0.011539 

3160 3160 positive 0.927 -1.16062 0.008933 

3169 2-hydroxyphenethylamine positive 4.094 2.210126 0.042089 

3171 3171 positive 1.131 -3.39246 0.011164 

3175 3175 positive 2.581 -1.89816 0.003896 

3200 3200 positive 3.487 1.035815 0.038541 

3208 3208 positive 1.098 -5.19983 0.00451 

3234 3234 positive 1.147 -2.41971 0.016388 

3260 3260 positive 3.056 1.146707 0.012962 

3262 3262 positive 4.751 3.143639 0.048424 

3283 3283 positive 2.138 -1.42525 0.006117 

3297 3297 positive 4.706 6.646371 0.016585 

3301 3301 positive 4.531 1.001697 0.016003 

3309 3309 positive 0.934 -2.04523 0.003896 

3353 3353 positive 4.509 1.111479 0.043452 

3362 3362 positive 4.073 -5.08514 0.001646 

3370 3370 positive 4.703 6.087944 0.014648 

3371 3371 positive 0.922 -3.51338 0.003894 

3385 3385 positive 3.329 -2.60407 0.008088 

3390 3390 positive 2.633 -1.751 0.006372 

3409 3409 positive 1.857 -1.26767 0.014577 

3415 3415 positive 4.534 1.165491 0.009093 

3427 3427 positive 2.631 -2.44854 0.013293 

3441 2-hydroxyphenethylamine positive 3.894 2.55209 0.033619 

3446 deoxycytidine positive 3.531 1.085392 0.0313 
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3449 3449 positive 1.861 -1.22268 0.008986 

3492 cathinone positive 4.181 1.918288 0.022548 

3514 3514 positive 4.533 1.39721 0.016455 

3517 pyridafenthion positive 0.812 -3.76591 0.00132 

3526 3526 positive 1.914 -1.09411 0.002947 

3528 3528 positive 2.258 -1.87687 0.015545 

3545 3545 positive 0.826 -1.63608 0.00144 

3546 3546 positive 0.827 -1.63797 0.00144 

3552 3552 positive 4.531 1.223489 0.013193 

3558 3558 positive 4.54 1.239042 0.022102 

3564 3564 positive 0.848 2.507408 0.019028 

3582 3582 positive 1.214 -1.5372 0.011539 

3586 3586 positive 4.159 -2.72666 0.014442 

3596 beta-ionone positive 2.632 -1.75123 0.003896 

3613 3613 positive 3.957 -2.40024 0.000586 

3624 3624 positive 1.069 -1.34416 0.021839 

3626 3626 positive 4.523 1.198337 0.01772 

3632 3632 positive 4.555 1.298889 0.013193 

3657 3657 positive 1.293 -1.85846 0.009093 

3675 3675 positive 1.184 -1.08046 0.000262 

3701 3701 positive 0.819 -1.69784 0.00105 

3757 3757 positive 4.003 -2.38649 0.000326 

3763 3763 positive 4.009 -2.27464 0.001528 

3764 3764 positive 3.954 -2.33779 0.00089 

3777 3777 positive 3.639 -2.09303 0.00144 

3791 3791 positive 3.69 -2.04221 0.002947 

3797 3797 positive 3.938 -2.28156 0.001221 

3799 3799 positive 3.621 -2.11755 0.001216 

3804 hippuric acid positive 2.595 -2.02465 0.000526 

3820 3820 positive 3.979 -2.26378 0.000579 

3823 3823 positive 3.924 -2.42884 0.000734 

3829 3829 positive 3.894 -2.35241 0.001496 

3842 3842 positive 3.673 -2.06698 0.001737 

3856 3856 positive 4.016 -2.4126 0.000734 

3863 3863 positive 3.373 -2.05737 0.043366 

3871 3871 positive 1.021 -2.67385 0.002122 

3872 3872 positive 4.049 -2.5791 0.00019 

3873 3873 positive 3.698 -2.19666 0.004044 

3876 3876 positive 3.998 -2.39598 0.000515 

3893 3893 positive 3.727 -2.47178 0.004492 

3905 3905 positive 3.87 -2.37325 0.000826 

3906 3906 positive 3.848 -2.54952 0.003254 
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3907 3907 positive 3.779 -2.70752 0.004285 

3909 3909 positive 3.579 -2.32192 0.00089 

3923 3923 positive 4.016 -3.24391 0.00089 

3925 3925 positive 3.751 -2.62574 0.004245 

3939 3939 positive 3.304 -2.57864 0.028679 

3944 3944 positive 3.035 1.066588 0.048739 

3960 3960 positive 3.996 -2.13732 0.001054 

3963 3963 positive 2.184 1.099552 0.008986 

3968 3968 positive 4.566 -2.64268 0.01657 

3976 3976 positive 4.73 6.193516 0.022548 

3987 3987 positive 3.971 -2.30352 0.000679 

3991 leucinamide positive 1.074 -3.08451 0.002279 

3992 3992 positive 3.954 -2.7693 0.001256 

4001 4001 positive 1.099 -4.10801 0.025007 

4025 4025 positive 3.439 1.279099 0.008317 

4042 4042 positive 3.883 -2.52495 0.000734 

4075 4075 positive 3.416 -2.03456 0.008933 

4080 4080 positive 0.821 -3.4898 0.000515 

4133 4133 positive 4.036 -2.72562 0.004666 

4162 4162 positive 3.455 -2.11785 0.005543 

4179 4179 positive 3.602 -1.00487 0.021297 

4180 4180 positive 3.622 -1.00845 0.018248 

4189 4189 positive 1.281 -1.58871 0.0418 

4195 4195 positive 1.114 -1.26086 0.008469 

4210 4210 positive 3.555 -2.31772 0.001701 

4218 4218 positive 3.48 -2.25802 0.00129 

4250 4250 positive 4.057 -2.558 0.00132 

4258 5-hydroxy-tryptophan positive 3.033 1.202781 0.04448 

4265 4265 positive 4.102 -2.60288 0.00129 

4267 4267 positive 3.758 -1.26957 0.04047 

4278 4278 positive 3.072 1.28831 0.011416 

4279 4279 positive 6.949 2.098916 0.046946 

4281 4281 positive 4.05 -2.76374 0.00089 

4283 4283 positive 4.687 2.857637 0.017731 

4288 4288 positive 4.612 1.304232 0.030454 

4303 4303 positive 2.623 -1.02546 0.00597 

4318 4318 positive 4.037 -2.72294 0.00073 

4323 4323 positive 4.122 -2.34523 0.001873 

4328 4328 positive 3.96 -2.35681 0.002367 

4340 4340 positive 5.076 -1.9714 0.02593 

4352 leucinamide positive 0.919 -2.16241 0.00132 
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4355 4355 positive 4.057 -2.73285 0.00129 

4367 pregabalin positive 1.06 -2.97568 0.001496 

4370 4370 positive 4.113 -2.29843 0.002367 

4381 4381 positive 4.646 1.122786 0.030398 

4382 4382 positive 4.541 -3.18497 0.004544 

4384 4384 positive 4.073 -2.25311 0.001565 

4392 4392 positive 3.941 -2.10559 0.000734 

4401 4401 positive 4.039 -2.69474 0.000481 

4408 1-aAmino-1-deoxy-scyllo-inositol positive 3.867 -1.12923 0.011113 

4413 4413 positive 4.052 -2.37203 0.001699 

4428 4428 positive 4.057 -2.22436 0.002596 

4444 4444 positive 3.998 -2.43206 0.000912 

4447 4447 positive 4.061 -2.50909 0.000579 

4490 4490 positive 3.94 -2.3298 0.001721 

4553 4553 positive 3.85 -2.1915 0.002694 

4587 4587 positive 4.035 -2.55891 0.002251 

4616 4616 positive 0.847 1.303658 0.008088 

4632 1,7-dimethyluric acid negative 2.337 -1.11272 0.013263 

4659 hippuric acid negative 2.622 -1.12485 0.003896 

4670 cinnamoylglycine negative 2.651 -1.55137 0.012441 

4672 cinnamoylglycine negative 2.616 -1.814 0.017993 

4673 7-methylxanthine negative 1.221 -1.13939 0.009031 

4685 hippuric acid negative 4.039 1.414079 0.032791 

4704 2-furoylglycine negative 2.58 1.951921 0.04693 

4706 2-furoylglycine negative 2.512 2.68069 0.030454 

4719 1-methyluric acid negative 2.545 -1.157 0.011539 

4739 5-hydroxyindole negative 2.626 -1.0839 0.004436 

4740 5-hydroxyindole negative 2.581 -1.15681 0.005204 

4766 theophylline negative 1.432 -2.1935 0.001975 

4775 4775 negative 0.869 -2.28845 0.027288 

4791 4791 negative 4.511 1.244399 0.016348 

4801 4801 negative 4.554 1.085615 0.016222 

4844 4844 negative 3.257 2.311035 0.036851 

4870 3-[-5-oxo-7-oxabicyclo[4.1.0]hept-2-

yl]-alanine 

negative 3.24 -1.41362 0.015568 

4953 7,8-dihydro-8-oxoguanine negative 1.198 -1.23311 0.008986 

4958 4958 negative 3.679 -1.25361 0.048489 

5010 5010 negative 4.637 2.953354 0.003254 

5029 5029 negative 4.152 -2.73447 0.008511 

5038 5038 negative 2.632 2.080506 0.037266 

5065 5065 negative 0.855 -1.47704 0.003254 

5077 5077 negative 1.965 1.045916 0.012965 
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5083 5083 negative 2.564 1.75927 0.04448 

5106 5106 negative 3.534 1.315406 0.025624 

5110 1-O-[5-(3,4-dihydroxyphenyl)-4-

hydroxypentanoyl]-beta-

glucopyranuronic acid 

negative 3.5 -1.96301 0.0151 

5129 5129 negative 2.64 -1.94809 0.00129 

5133 5133 negative 3.707 -2.21718 0.032369 

5137 5137 negative 2.517 -1.15218 0.023309 

5153 5153 negative 1.421 -1.48097 0.007752 

5216 5216 negative 0.863 -1.85939 0.005858 

5239 5239 negative 3.529 -1.09635 0.043366 

5241 butopyronoxyl negative 0.908 1.206619 0.038863 

5248 5248 negative 4.531 1.057774 0.012999 

5285 5285 negative 4.644 3.023183 0.009913 

5310 5310 negative 0.87 2.988694 0.017548 

5341 5341 negative 0.706 -1.09358 0.03992 

5352 5352 negative 2.355 -1.00687 0.04099 

5358 5358 negative 3.897 1.636177 0.021839 

5379 5379 negative 0.863 -1.86478 0.009093 

5381 5381 negative 3.395 1.698478 0.004044 

5383 5383 negative 4.067 -2.62497 0.000385 

5393 5393 negative 0.862 -1.87627 0.006038 

5423 5423 negative 3.745 -1.83453 0.030529 

5463 N-acetyl-methionine negative 3.758 -1.85466 0.033538 

5470 sulfurol acetate negative 3.902 -2.52855 0.034206 

5482 5482 negative 0.858 -1.17721 0.034734 

5507 5507 negative 3.132 -1.06713 0.01418 

5514 5514 negative 2.517 -1.48437 0.004245 

5553 5553 negative 2.562 -1.25185 0.03108 

5576 5576 negative 0.728 -1.56108 0.008088 

5604 5604 negative 3.891 -3.78571 0.003896 

5612 5612 negative 3.805 -1.02889 0.043481 

5647 5647 negative 3.993 -2.70499 0.000679 

5648 5648 negative 3.966 -2.75565 0.006117 

5683 5683 negative 4.089 -3.72301 0.001247 

5698 5698 negative 3.381 1.402511 0.011539 

5712 5712 negative 4.376 -1.96165 0.029132 

5724 5724 negative 4.531 1.170521 0.015527 

5728 5728 negative 2.931 -1.11438 0.039852 

5737 gly-Lys negative 3.995 1.486072 0.017371 

5770 5770 negative 0.855 -1.45399 0.00451 

5796 pidotimod negative 2.951 1.72657 0.040795 
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5799 5799 negative 4 -2.4648 0.038921 

5818 5818 negative 0.948 1.355602 0.048525 

5820 5820 negative 4.663 1.182431 0.020072 

5849 5849 negative 0.708 -1.10963 0.039503 

5868 5868 negative 4.66 1.321084 0.010661 

5887 5887 negative 4.532 -1.65544 0.001001 

5899 5899 negative 3.5 1.151716 0.032924 

5911 5911 negative 3.966 -2.51989 0.001092 

5925 5925 negative 2.671 -1.32396 0.006117 

5931 5931 negative 2.571 -1.02026 0.010661 

5941 5941 negative 1.148 1.901496 0.032924 

5942 5942 negative 2.631 -1.18178 0.002324 

5994 5994 negative 2.625 -1.08762 0.00451 

6001 6001 negative 2.782 -1.94029 0.006743 

6007 6007 negative 0.678 -1.21015 0.041623 

6014 N-acetyl-tyrosine negative 2.632 -1.5866 0.009093 

6021 6021 negative 0.708 -1.36188 0.003896 

6057 6057 negative 0.947 1.642112 0.031478 

6094 5-acetylamino-6-formylamino-3-

methyluracil 

negative 0.727 -1.59148 0.004603 

6095 chiro-inositol negative 1.118 -1.37163 0.00129 

6101 6101 negative 4.052 -1.52997 0.045816 

6111 6111 negative 2.577 2.205537 0.04782 

6148 6148 negative 2.587 1.33016 0.028806 

6161 6161 negative 0.711 -1.44766 0.005882 

6190 6190 negative 2.594 -1.31465 0.027361 

6212 glaucarubin negative 3.361 -2.88626 0.025629 

6233 6233 negative 1.515 -1.15693 0.015545 

6236 6236 negative 0.625 1.384644 0.025156 

6261 6261 negative 2.591 -1.8809 0.000368 

6262 hippurate-mannitol derivative negative 2.667 -1.80394 0.000515 

6267 6267 negative 2.581 2.159467 0.032369 

6276 6276 negative 2.636 -1.65054 0.000481 

6286 2_5_6-trihydroxy-5_6-

dihydroquinoline 

negative 2.622 -1.30303 0.005058 

6314 6314 negative 2.625 -1.08453 0.004492 

6322 6322 negative 2.623 -1.04139 0.00451 

6325 6325 negative 2.64 -1.97981 0.001564 

6327 6327 negative 2.637 -1.5487 0.028679 

6337 6337 negative 0.862 -1.69061 0.002457 

6348 6348 negative 2.993 -2.21045 0.017548 

6349 6349 negative 0.93 -1.14826 0.021927 

6361 6361 negative 2.619 -1.1059 0.001844 
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6375 6375 negative 2.775 -1.81499 0.009031 

6385 6385 negative 2.655 -1.00016 0.008703 

6389 6389 negative 2.516 -1.13448 0.011046 

6390 6390 negative 2.627 -1.00038 0.004603 

6392 6392 negative 0.75 -1.01094 0.012242 

6396 6396 negative 0.884 -1.32351 0.027563 

6406 6406 negative 0.903 -2.03474 0.04006 

6425 leupeptin negative 4.004 -2.47724 0.00119 

6447 6447 negative 2.421 3.406793 0.024455 

6496 6496 negative 1.25 -1.16132 0.008933 

6504 6504 negative 2.582 2.311681 0.032369 

6508 6508 negative 2.569 -1.00789 0.004285 

6534 6534 negative 3.989 -2.43582 0.001737 

6544 6544 negative 0.719 -1.5791 0.004603 

6545 6545 negative 4.005 -2.41651 0.001342 

6565 6565 negative 2.935 -1.08416 0.041344 

6569 4-[(-2-amino-1-hydroxyethyl]-2-

hydroxyphenyl hydrogen sulfate 

negative 1.181 1.368161 0.047987 

6578 2-mercaptobenzothiazole negative 0.832 2.229249 0.009064 

6594 N-acetyl-glucosaminate negative 3.871 1.156155 0.021542 

6628 6628 negative 2.908 -1.35524 0.022578 

6637 6637 negative 4.866 1.31038 0.01503 

6662 6662 negative 3.528 -2.06367 0.011539 

6668 6668 negative 2.612 -1.00887 0.004285 

6676 6676 negative 3.184 -2.34598 0.002651 

6683 6683 negative 3.025 -2.14478 0.012441 

6687 6687 negative 0.866 -1.68528 0.003166 

6731 6731 negative 0.859 -1.79499 0.002105 

6762 6762 negative 3.751 -2.80798 0.003896 

6802 6802 negative 1.504 -1.71402 0.030398 

6819 6819 negative 1.109 -3.47044 0.008588 

6882 6882 negative 3.692 -3.0581 0.011543 

6885 6885 negative 2.615 -1.03401 0.002324 

6939 6939 negative 2.586 -1.33936 0.043481 

6956 6956 negative 2.715 1.925851 0.017014 

6972 6972 negative 1.112 -3.3917 0.008088 

6990 6990 negative 2.647 -1.67258 0.011539 

6996 6996 negative 2.535 -1.04791 0.021194 

7001 7001 negative 0.869 -1.71768 0.003166 

7087 7087 negative 2.399 -1.19546 0.007612 
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APPENDIX B 

SUPPLEMENTARY MATERIAL FOR CHAPTER 3 

  

 

 

Figure B-1. Potential Confounder Analysis for RCC Stage Stratification.  

PCA was conducted using the 24-metabolite panel as features. PCA shows that collection 

method (a), gender (b), and smoking history (c) are not discriminated by the selected 

biomarker panel. Age (d) and BMI (e) in the cohort are statistically insignificant between 

early and advanced RCC patients (Student’s t-Test) 
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Figure B-2. RCC Primary Tumor Size Predictions.  

(a) Elastic net model residual plot. (b) Elastic net model prediction error plot. (c) Support 

vector regression model residual plot. (d) Support vector regression model prediction error 

plot. (e) Ridge model residual plot. (f) Ridge model prediction error plot.  



 

204 

 

Figure B-3. Machine Learning Pipeline for the Biomarker Selection for RCC Stage 

Stratification.  

All NMR and MS features were subjected to a hybrid method of feature selection resulting 

in a 16-metabolite panel. Machine learning predictions were carried out by four different 

algorithms and a voting ensemble. PLS: partial least squares. RF- RFECV: random forest 

recursive feature elimination – cross validation. SVM-RBF: support vector machines radial 

basis function.  
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Figure B-4. Machine Learning Predictions for the RCC Stage Stratification using the 

16-Metabolic Panel. 

 

Table B-1. NMR Metabolomic Features 

Metabolite 

/Features 

1H 

(ppm) 

13C 

(ppm) 

Peak 

patterns 

Confidence 

Score 

Fold 

Chang

e 

p-value 

unknown 1 0.15 - (s) - 0.13 0.604 

unknown 2 0.36 - (m) - -0.1 0.483 

**bile acid 1 0.53 - (s) 1 -0.11 0.473 

**bile acid 2 0.56 - (s) 1 0.04 0.78 

3-hydroxyisovaleric 

acid 
1.26 30.84 (s) 3 -0.17 0.213 

lactate 1.31 22.97 (d) 4 0.18 0.426 

unknown 3 1.85 - (s) - 0.63 0.277 

acetate 1.90 26.04 (s) 3 -0.22 0.456 

acetone 2.23 32.40 (s) 3 0.49 0.029 
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unknown 4 2.26 - (s) - -0.16 0.202 

acetoacetate 2.27 32.19 (s) 3 0.96 0.056 

unknown 5 2.33 - (s) - -0.03 0.842 

∙∙pyruvate 2.41 - (s) 2 0.31 0.028 

citrate 2.53 48.52 (d) 3 -0.54 0.003 

dimethylamine (DMA) 2.71 37.5 (s) 3 0 0.989 

unknown 6 2.77 - (s) - -0.2 0.141 

methylguanidine 2.82 30.21 (s) 3 -0.9 0.194 

unknown 7 3.08 - (t) - -0.03 0.826 

choline 3.19 56.69 (s) 3 0.22 0.026 

ascyllo-inositol 3.35 76.4 (s) 3 0.05 0.726 

taurine 3.42 38.07 (t) 4 0.28 0.081 

acetoacetate 3.44 56.22 (s) 3 0.6 0.059 

4-

hydroxyphenylacetate 

(4-HPA) 

3.44 46.34 (s) 4 0.6 0.059 

glycine 3.56 44.18 (s) 3 -0.66 0.032 

mannitol 3.86 65.94 (d) 4 0.07 0.74 

mannitol 3.88 65.94 (d) 4 0.05 0.812 

creatine 3.92 - (s) 3 -0.12 0.644 

aglycolate 3.94 64.32 (s) 3 -0.17 0.105 

hippurate 3.96 46.46 (d) 4 -0.23 0.245 

4-hydroxyhippuric 

acid 
3.96 46.58 (d) 3 -0.23 0.245 

tartrate 4.34 76.55 (s) 3 -0.15 0.507 

unknown 8 6.07 - (s) - -0.06 0.424 

unknown 9 6.18 - (s) - -0.27 0.404 

fumarate 6.52 - (s) 2 -0.16 0.256 

4-

hydroxyphenylacetate 

(4-HPA) 

7.13 133.15 (d) 4 -0.14 0.85 

hippurate 7.55 131.50 (t) 4 -0.37 0.275 

hippurate 7.65 134.92 (m) 4 -0.35 0.276 

a4-aminohippuric acid 7.67 133.02 (d) 3 0.09 0.472 

indoxyl sulfate (IS) 7.70 127.07 (d) 3 -0.25 0.245 

hippurate 7.83 129.85 (dd) 4 -0.33 0.335 

hypoxanthine 8.18 148.27 (s) 3 -0.63 0.195 

hypoxanthine 8.20 144.75 (s) 3 -0.1 0.849 

formate 8.45 173.71 (s) 3 0.12 0.528 

unknown 10 8.77 - (d) - 0.61 0.212 

trigonelline 8.83 147.46 (t) 3 -0.14 0.748 

trigonellinamide 8.89 - (d) 2 -0.21 0.118 

trigonellinamide 8.97 - (d) 2 -0.2 0.15 
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trigonelline 9.11 148.50 (s) 3 -0.09 0.849 

trigonellinamide 9.27 - (s) 2 -0.23 0.165 

unknown 11 9.36 - (s) - -0.05 0.819 

aQuantification may be unreliable because of spectral overlaps. Tentative assignment 

(Monteiro et al 2016) s=singlet, d=doublet, dd=doublet of doublet, m=multiplet. Fold 

change (FC) was calculated as the base 2 logarithm of the mean integral ratios between 

advanced RCC and early RCC samples. Positive FC values indicate increased abundance 

in advanced RCC, while negative values indicate higher abundance in early RCC. p-values 

were calculated using the Student T-test, while q-values were computed by taking the FDR 

correction (Benjamini-Hochberg) after a Student T-test. Confidence score: (1) putatively 

characterized compound classes or annotated compounds, (2) matches from 1D NMR to 

literature and/or 1D BBiorefcode compound (AssureNMR) or other database libraries such 

as Biological Magnetic Resonance Bank (BMRB) and Human Metabolome Database 

(HMDB), (3) matched to Heteronuclear Single Quantum Coherence (HSQC), (4) matched 

to HSQC-TOCSY. 

 

Table B-2. RCC Patient Cohort Characteristics for the 82 Subjects used for Tumor 

Size Predictions. 

Characteristic Number 

No of Urine Samples 82 

Mean Age  SD 60.9  13.1 

Mean BMI SD 29.3  5.7 

Race   

Caucasian 56 

Black/African American 20 

American-Indian/Alaskan- 

Native 
1 

Asian 1 

Mixed 1 

Unknown/Missing 3 
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Smoker  

Never 51 

Former/Current 31 

Gender  

Male 45 

Female 36 

Not Reported 1 

Histological Subtypes  

Pure Clear Cell 57 

Papillary 10 

Clear Cell Papillary 6 

Chromophobe 5 

Unclassified 4 

Nuclear Grade  

1 - 

2 30 

3 29 

4 19 

Unclassified 4 

RCC Stage  

I 33 

II 15 

III 14 

IV 8 

Unclassified 12 

 

 

Table B-3. MS Metabolomic Features used in RCC Stage Stratification with p-values 

< 0.05 and > 1-Fold Change. 

ID Metabolite ID Formula Mode RT 

[min] 

FC T-test p-

value 

50 Betaine C5 H11 N O2 positive 3.784 -1.04 0.02 

227 O-desmethyltramadol C15 H23 N O2 positive 3.393 -4.94 0.08 

248 248 
 

positive 5.127 2.31 < 0.001 

368 oxybenzone C14 H12 O3 positive 1.483 -2.85 0.078 

628 capuride C9 H18 N2 O2 positive 1.66 -1.74 0.039 

643 643 C11 H24 N4 O3 P2 S2 positive 2.869 1.08 0.005 

776 776 C8 H24 N7 O8 P positive 1.733 1.12 0.006 

782 782 C17 H31 Br N2 S positive 1.753 1.14 0.004 

877 877 
 

positive 3.671 -5.99 0.069 

919 919 C13 H30 N3 O6 P positive 2.993 1.13 0.017 
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963 5-hydroxy-4-oxo-10-

propyl-6,7,8,9-tetrahydro-

4H-benzo[g]chromene-2-

carboxylic acid 

C17 H18 O5 positive 3.023 -1.02 0.058 

1077 (R)-1-aminopropan-2-ol C3 H9 N O positive 4.526 1.51 0.026 

1125 1125 
 

positive 3.794 -1.16 0.024 

1168 N-acetylneuraminic acid C11 H19 N O9 positive 3.384 1.07 0.001 

1202 1202 C20 H33 N O10 positive 0.898 1.17 0.028 

1279 N,N'-1,6-

hexanediyldiacetamide 

C10 H20 N2 O2 positive 1.392 -1.91 0.02 

1372 4-guanidinobutanoate C5 H11 N3 O2 positive 3.941 -1.12 0.004 

1536 1536 C9 H21 N4 O5 P positive 1.171 -1.81 0.015 

1542 5-acetylamino-6-

formylamino-3-

methyluracil 

C8 H10 N4 O4 positive 1.749 1.36 0.004 

1543 1543 
 

positive 1.751 1.15 0.014 

1635 1635 
 

positive 4.289 1.1 0.004 

1673 1673 C15 H18 N3 O5 P S positive 0.804 1.15 0.017 

1689 1689 C5 H5 N2 O P3 positive 4.715 -1.36 0.042 

1718 1718 C18 H29 N4 O9 P positive 1.696 1.74 0.007 

1723 1723 C6 H14 N6 S positive 2.574 1.07 0.018 

1746 1746 C18 H22 N2 O8 positive 2.607 1.77 0.016 

1805 1805 C9 H28 N9 O3 P positive 3.317 5.02 0.003 

1904 7-aminomethyl-7-

carbaguanine 

C7 H9 N5 O positive 4.004 1.38 0.001 

1918 1918 C17 H33 O13 P positive 1.411 2.06 0.012 

1985 1985 
 

positive 3.312 -3.99 0.086 

2009 chlortoluron C10 H13 Cl N2 O positive 0.929 1.26 0.013 

2069 2069 C21 H34 N3 O7 P positive 3.249 1.14 0.009 

2085 2085 C11 H16 N4 O5 S positive 1.77 -1.07 0.049 

2113 2113 C12 H28 N5 O6 P positive 0.903 1.18 0.027 

2122 Nalpha_Nalpha-dimethyl-

L-histidine 

C8 H13 N3 O2 positive 1.209 1.12 0.001 

2176 5-methyldeoxycytidine C10 H15 N3 O4 positive 0.761 1.14 0.013 

2178 1-isothiocyanatobutane C5 H9 N S positive 1.268 -2.01 0.043 

2230 2230 
 

positive 2.59 1.09 0.016 

2242 2242 
 

positive 2.587 1.07 0.016 

2281 2281 
 

positive 1.302 -1.44 0.054 

2291 2-amino-4-oxo-

1,4,5,6,7,8-hexahydro-6-

pteridinecarboxylic acid 

C7 H9 N5 O3 positive 1.387 1.01 0.013 

2313 2313 C10 H24 N O5 P3 positive 3.342 1.04 0.002 

2317 diethyl2-methyl-3-

oxosuccinate 

C9 H14 O5 positive 0.892 1.51 0.019 

2329 gabapentin C9 H17 N O2 positive 1.078 -1.48 0.05 

2339 2339 C4 H9 N6 O3 P positive 2.073 -1.21 0.071 
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2377 2377 C25 H36 O15 positive 1.722 -1.07 0.049 

2381 coumarin C9 H6 O2 positive 1.184 -2.21 0.061 

2417 2417 C11 H21 N2 O12 P3 

S2 

positive 4.637 -1.17 0.053 

2440 2440 C10 H27 N8 O4 P positive 3.015 1.13 0.011 

2465 3-hydroxyanthranilic acid C7 H7 N O3 positive 0.893 1.41 0.005 

2532 2532 C9 H24 N5 O P positive 1.127 -5.18 0.081 

2553 2553 C14 H29 N2 O3 P positive 3.455 -1.14 0.064 

2558 2558 C9 H18 O P2 S positive 3.255 1.12 0.006 

2583 2583 C10 H15 N8 P positive 1.159 -2.06 0.013 

2601 2601 C4 H10 N O P positive 2.658 1.05 0.028 

2618 cyclamic acid C6 H13 N O3 S positive 4.026 1.43 0.006 

2663 2663 C4 H13 N3 O4 P2 positive 2.667 1.49 0.013 

2738 2738 C13 H27 N2 O3 P S positive 2.209 -1.11 0.072 

2817 2817 C9 H18 N5 O2 P positive 0.59 1.77 0.022 

2877 2877 C23 H25 N8 P S positive 1.613 1.52 0.012 

2905 2905 
 

positive 2.579 1.24 0.006 

2932 2932 
 

positive 2.649 1.24 0.009 

2934 2934 
 

positive 3.808 -1.3 0.001 

3001 3001 C17 H40 N2 O10 P2 positive 0.893 1.39 0.018 

3093 3093 C9 H9 N3 O5 positive 3.208 1.09 0.005 

3109 clavulanic acid C8 H9 N O5 positive 1.103 1.48 0.004 

3149 3149 C18 H36 N5 O9 P S2 positive 1.483 -1.78 0.049 

3163 3163 C5 H15 N10 O2 P positive 3.53 1.53 < 0.001 

3191 3191 C6 H6 Cl2 N8 O17 P2 positive 4.791 -1.96 0.07 

3193 3193 C46 H78 N3 O3 P3 S positive 0.797 1.75 0.017 

3257 3257 
 

positive 3.675 -1.94 0.029 

3262 3262 C10 H14 Cl N2 O16 

P3 S 

positive 4.751 -1.88 0.014 

3297 3297 C11 H6 N8 O6 P2 S2 positive 4.706 -1.28 0.056 

3306 3306 C12 H26 N7 O10 P positive 2.694 1.3 0.011 

3370 3370 C8 H13 N8 O11 P3 S2 positive 4.703 -1.23 0.062 

3405 3405 C8 H13 N5 O5 positive 1.132 -1.29 0.016 

3498 3498 C12 H16 N2 O2 P2 positive 0.762 -1.26 0.07 

3574 3574 C6 H14 N7 O2 P S positive 0.721 -1.34 0.048 

3597 3597 
 

positive 3.235 1.61 0.014 

3602 4-ethylguaiacol C9 H12 O2 positive 0.886 1.01 0.022 

3719 3719 C18 H31 N7 O2 P2 S positive 2.498 1.04 0.022 

3746 momilactoneA C20 H26 O3 positive 0.915 1.13 0.01 

3766 apo-[3-methylcrotonoyl-

CoA:carbon-dioxide 

ligase (ADP-forming)] 

C7 H15 N3 O2 positive 3.633 1.04 0.001 

3857 3857 C11 H22 N7 O6 P positive 1.855 1.07 0.014 
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3934 8-azabicyclo[3.2.1]octan-

3-ol 

C7 H13 N O positive 4.194 1.45 0.023 

3943 2-amino-6-[(2,5-

dihydroxy-2-oxido-1,3,2-

dioxaphosphinan-4-

yl)(hydroxy)methyl]-

4a,5,8,8a-tetrahydro-

4(3H)-pteridinone 

C10 H16 N5 O7 P positive 0.91 1.57 0.008 

4050 4050 C4 H11 N8 O8 P3 S3 positive 4.72 -1.18 0.061 

4090 4090 C5 H14 N5 O4 P3 positive 1.138 -1.8 0.035 

4097 4097 
 

positive 3.107 1.55 0.018 

4116 4116 
 

positive 3.799 -1.24 0.001 

4120 4120 C14 H30 N6 O2 P2 positive 1.041 -1.19 0.076 

4127 Dyphylline C10 H14 N4 O4 positive 3.812 -1.49 0.064 

4145 N_N-dihydroxy-L-

tyrosine 

C9 H11 N O5 positive 3.529 -2.45 0.007 

4259 4259 C17 H27 N6 O16 P3 

S4 

positive 4.622 -1.11 0.01 

4287 4287 C35 H54 N8 O18 positive 3.594 1.14 0.02 

4291 4291 
 

positive 4.027 1.29 0.006 

4391 4391 C H N9 positive 3.806 -1.49 0.002 

4393 4393 C8 H19 N6 O4 P positive 3.243 1.53 0.012 

4460 4460 C13 H25 N7 O5 P2 S positive 3.314 -2.92 0.018 

4467 Glycine C2 H5 N O2 positive 3.787 -1.02 0.041 

4569 4569 C5 H15 N2 O3 P positive 4.719 -1.13 0.06 

4702 4-[(2-cyclohex-1-

enylethyl)amino]-4-

oxobut-2-enoic acid 

C12 H17 N O3 negative 2.567 -1.02 0.062 

4836 4836 
 

negative 4.022 -1.07 0.069 

4902 4902 C10 H19 N8 O5 P S negative 0.894 -1.48 0.068 

4938 4938 C6 H10 N9 P S negative 0.934 1.36 0.005 

4947 2-hydroxymethylserine C4 H9 N O4 negative 2.368 -1.22 0.02 

4948 4948 C5 H10 N8 O3 negative 0.692 1.17 0.014 

4992 4992 C47 H68 N10 O14 P2 negative 3.7 1.61 0.01 

5045 5045 C7 H9 N O5 S negative 3.496 1.03 0.002 

5065 5065 C11 H15 Cl N5 O7 P S negative 0.855 1.58 < 0.001 

5087 5087 C3 H10 N3 O6 P negative 3.824 -1.78 0.028 

5127 5127 
 

negative 0.939 1.32 0.008 

5192 5192 C12 H20 N2 O5 negative 3.256 1.36 0.007 

5206 5206 C36 H65 N2 O16 P3 negative 3.608 1.15 0.022 

5226 5226 C4 H5 N3 O5 negative 0.931 1.17 0.023 

5249 5249 C10 H13 N5 O5 S2 negative 3.525 1.51 0.002 

5255 5255 C7 H7 N5 O5 negative 3.202 -1.9 0.005 

5379 5379 C12 H14 N O3 P S negative 0.863 1.15 0.001 

5406 5406 C12 H24 O6 P2 S negative 3.191 1.43 0.026 
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5408 1-(beta-D-ribofuranosyl)-

1,2-dihydropyrimidine 

C9 H14 N2 O4 negative 3.076 1.17 < 0.001 

5409 5409 C17 H34 Cl2 N5 O5 P 

S3 

negative 0.867 1.28 0.003 

5417 5417 C4 H11 O P3 negative 3.362 -1.11 0.047 

5420 5420 C4 H12 N6 P2 negative 3.38 1.73 0.003 

5437 5437 
 

negative 0.764 2.18 < 0.001 

5448 5448 C11 H21 N O13 S negative 3.497 1.09 0.001 

5481 5481 
 

negative 3.515 1.34 0.002 

5482 5482 C23 H29 N O9 P2 S2 negative 0.858 1.7 0.001 

5485 5485 C13 H22 N2 O5 S negative 3.497 -1.3 0.047 

5511 5511 C6 H16 N5 P3 negative 3.507 1.33 0.005 

5518 (1R_2S)-1-

hydroxypropane-1_2_3-

tricarboxylate 

C6 H8 O7 negative 3.819 -2.08 0.034 

5546 5546 
 

negative 3.828 -2.13 0.033 

5580 5580 C8 H12 N6 O P2 S2 negative 3.386 -2.83 0.067 

5626 5626 
 

negative 3.433 1.13 0.009 

5636 5636 C6 H20 N6 O9 P2 negative 0.946 -1.66 0.045 

5666 5666 C7 H12 N3 P3 S2 negative 0.848 -3.21 0.072 

5680 5680 C9 H20 N3 O10 P negative 3.981 1.06 0.012 

5713 5713 C11 H18 N2 O8 negative 1.236 1.02 0.016 

5729 5729 C6 H21 N6 O18 P S negative 3.824 -1.7 0.017 

5737 gly-Lys C8 H17 N3 O3 negative 3.995 1.14 0.001 

5785 5785 C15 H34 N6 O7 P2 negative 3.42 1.61 0.013 

5813 5813 C9 H8 N O2 P negative 0.927 1.17 0.008 

5825 5825 C4 H9 N7 O6 P2 negative 3.83 -1.49 0.019 

5871 5871 C6 H10 N9 O13 P3 negative 3.835 -1.28 0.027 

5876 5876 C6 H6 Cl N5 negative 0.642 1.24 0.004 

5898 5898 C13 H27 N8 O P3 negative 4.243 1.52 0.005 

5912 5912 C11 H17 N O5 negative 3.464 1.21 0.008 

5985 succinic anhydride  
 

negative 0.944 1.53 0.006 

6069 6069 
 

negative 2.05 -1.24 0.019 

6089 tribenuron-methyl [ANSI] C15 H17 N5 O6 S negative 0.862 -1.83 0.063 

6124 6124 
 

negative 0.931 1.07 0.019 

6256 metsulfuron-methyl C14 H15 N5 O6 S negative 0.889 -1.77 0.034 

6337 6337 C10 H12 N9 O3 P S negative 0.862 1.34 < 0.001 

6351 6351 
 

negative 0.934 1.12 0.02 

6396 6396 C11 H18 N3 O7 P S negative 0.884 1.3 < 0.001 

6428 6428 
 

negative 3.812 -1.2 0.011 

6458 6458 
 

negative 0.93 1.06 0.028 

6466 ecgoninemethylester C10 H17 N O3 negative 2.657 -1.06 0.077 

6683 6683 C11 H9 N O S negative 3.025 -1.1 0.027 
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6687 6687 C6 H14 N10 O5 S2 negative 0.866 1.33 < 0.001 

6694 6694 C2 H5 N9 O16 negative 3.827 -1.3 0.019 

6719 6719 C10 H17 N7 P2 S negative 2.713 1.44 0.025 

6731 6731 
 

negative 0.859 1.1 0.004 

6738 6738 
 

negative 0.926 1.17 0.007 

6787 6787 
 

negative 0.939 1.07 0.01 

6835 6835 C9 H15 N O5 S negative 3.522 1.08 0.004 

6912 6912 
 

negative 3.817 -1.63 < 0.001 

6933 6933 C4 H2 N8 O2 negative 3.794 -1.17 0.038 

6952 6952 C15 H26 N9 O3 P negative 3.694 -5.43 0.073 

6980 6980 C10 H21 N8 O6 P S negative 0.884 -1.54 0.057 

6994 6994 C22 H33 N O9 negative 3.668 -7.01 0.073 

7001 7001 C11 H15 N7 O2 P2 S negative 0.869 1.35 < 0.001 
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