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Abstract

Understanding job arrival rates is critical for predicting future workloads to provision cloud resources

for reducing cloud costs and meeting the applications’ performance goals. However, developing an ac-

curate model to forecast job arrival rates is non-trivial due to the dynamic nature of workloads. The

current state-of-the-art LSTM model uses recurrences for predictions, causing increased complexity and

degraded computational e�ciency. Therefore, to address this problem, this work presents a novel time-

series forecasting model called WGAN-gp Transformer, inspired by the Transformer network and im-

proved Wasserstein-GANs. The proposed method adopts a Transformer network as a generator and

a multi-layer perceptron as a critic. The extensive evaluations show WGAN-gp Transformer achieves

5× faster inference time with up to 5.1% higher prediction accuracy than the state-of-the-art technique.

We then apply our model to auto-scaling mechanisms on cloud platforms and show that the WGAN-

gp-Transformer-based auto-scaling mechanism outperforms LSTM-based auto-scaling by reducing VM

over-provisioning and under-provisioning by at least 1.92% and 2.56% respectively.

Index words: Cloud Workload prediction, Wasserstein Generative Adversarial Networks, Time

Series Forecasting
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Chapter 1

Introduction

Resource provisioning and auto-scaling of cloud resources are essential operations to optimize cloud costs

and the performance of cloud applications [1–4]. Auto-scaling dynamically performs scale-out and scale-in

operations as application workloads �uctuate. e.g., change in user requests to cloud applications. The scale-

out operation increases the number of VMs (Virtual Machines) for the cloud application as the workload

increases, and the cloud application leverages enough amount of VMs and satis�es its performance goal.

i.e., SLOs (Service Level Objectives), QoS (Quality of Services), job deadline, and applications’ response

time. On the other hand, the scale-in operations automatically downsize the number of provisioned

VMs by terminating idle VMs when the workload decreases and help the cloud application to minimize

the cloud cost. While auto-scaling o�ers bene�ts to cloud applications, the typical limitations of auto-

scaling are delays in resource provisioning, e.g., VM startup delay and termination delay, due to its reactive

nature [5, 6], hence o�ering suboptimal cloud resource management.

To address the reactive nature of auto-scaling, predictive auto-scaling approaches have been deeply

investigated [6–19]. Predictive auto-scaling mechanisms commonly have two components, which are

workload predictor and auto-scaling module. In particular, the workload predictor is used to forecasts the

future workload changes to cloud applications, and an essential step for designing the workload predic-

tor is to understand job arrival rates1 to cloud applications. For designing workload predictors, diverse
1In this thesis, workloads, user requests, and job arrival rates are interchangeably used.
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Figure 1.1: Google Cluster Trace (30 minutes interval) [23]

mechanisms have been leveraged, including statistical time-series methods [7, 8, 12], traditional machine

learning [6, 9, 13], ensemble learning [10, 11, 14, 18], and deep learning [15–17, 19]. The state-of-the-art

approach to predict cloud workloads is to employ a combination of LSTM (Long Short-Term Memory)

and Bayesian optimization [19], speci�cally leveraging the power of LSTM to understand job arrival rate

information for longer periods of time using recurrences [20]. However, these recurrences resulted in

increasing complexity and poor computational e�ciency over time as input sequences grows longer. Ad-

ditionally, while LSTM is capable of detecting long-term seasonality in the cloud workloads, the majority

of real-world cloud workloads have random and dynamic burstiness [21] as shown in the trace of Google

Cluster Data [22] (Figure 1.1). These sudden spikes in Google Cluster trace show unprecedented changes

in cloud workloads over time. Therefore, there is an urgent need to develop a novel cloud workload

predictor with high accuracy and low computational overhead for predictive auto-scaling.

This thesis presents a novel time-series forecasting model for cloud resource provisioning, called

WGAN-gp (Wasserstein Generative Adversarial Network with gradient penalty) Transformer. The pro-
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posed WGAN-gp Transformer is inspired by Transformer networks [24] and improved WGAN (Wasser-

stein Generative Adversarial Networks) [25]. Our proposed method adopts a Transformer network as

the generator and a multi-layer perceptron network as a critic to improve the overall forecasting perfor-

mance. WGAN-gp Transformer also employs MADGRAD (Momentumized, Adaptive, Dual Averaged

Gradient Method for Stochastic Optimization) as the model optimizer for both, generator and critic.

MADGRAD is designed using dual averaging formulation of AdaGrad [26], adapted for deep learning

settings. The motivation to use MADGRAD is to achieve better convergence compared to widely adopted

Adam optimizer. Also it is signi�cantly faster at earlier iterations and also achieves lower prediction error

compared to Adam [27].

The comprehensive evaluation with representative cloud workload datasets shows that WGAN-gp Trans-

former consistently performs better, yielding lower prediction errors. The performance of WGAN-gp Trans-

former is compared against state-of-the-art LoadDynamics model [19]. The evaluation results with 15

workload con�gurations from seven representative cloud datasets show that WGAN-gp Transformer

achieves up to 5.1% lower prediction error and 5× faster prediction time compared to the state-of-the-art

LoadDyanmics model for dynamic cloud workload prediction. The auto-scaling evaluation are performed

with Azure 2019 and Facebook dataset. Evaluation results show that WGAN-gp Transformer performs

signi�cantly better to reduce the under-provisioning for Facebook dataset by 27.95%. For Azure 2019

dataset, the over-provisioning and under-provisioning is reduced by 1.92% and 2.56% respectively.

As a result, this thesis has the following research contributions:

1. Proposed a novel forecasting model for diverse cloud workload, inspired by Wasserstein Generative

Adversarial Network improving transformer networks for time series prediction.

2. Improved accuracy compared to state of the art model for predicting cloud workloads. The results

are evaluated by comparing test errors with other prediction models.

3. Reduced on average inference time by 5 times compared to state of the art.

4. Improvement in auto-scaling performance by reduced over-provisioning and under-provisioning.
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The rest of this thesis is organized as follows: Chapter 2 discusses existing approaches to predicting

cloud workloads and highlights adversarial methods for time series forecasting in previous work. Chapter

3 describes the preliminaries and background of our approach design. Chapter 4 discusses Wasserstein

GANs, their advanced setup and discusses WGAN-gp Transformer in detail. Chapter 5 describes the

performance evaluation of WGAN-gp Transformer with seven representative cloud workload datasets.

Finally, Chapter 6 concludes this thesis by summarizing our analysis, research contribution, and vision

of future work.
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Chapter 2

Related Work

The critical challenge of e�ective auto-scaling in the cloud can be addressed job arrival rate or user rate

level. Many studies have analyzed user request rates in the form of time series data to make a prediction. [1,

2, 18]. Various time series models like Weighted Moving Average [4, 28–31], Autoregressive models (AR)

[32–34] and its variations (ARMA, ARIMA) [8, 35–37] have been applied to cloud workload forecast-

ing. Statistical approaches were able to model time series, which show a cyclic trend or seasonal pattern.

However, a single statistical model-based approaches appeared to conduct sub-optimal predictions for

cloud workloads as they are continuously and dynamically changing over time. Also, same model proved

e�ective on one type of workload does not guarantee to perform optimally on other unknown workload

patterns [6]. Besides, Machine Learning (ML) models, e.g., Linear Regression [2, 21, 38, 39], Support

Vector Machine [9], Random Forest [13], and Gradient Boosting [13], were also employed to improve

forecasting quality achieved using statistical models.

For cloud workloads, no single best predictor based on statistical models or ML models proved ef-

fective for most cloud workloads. Multi-predictor based approaches subdue these limitations [10, 11, 14,

40–43]. Especially, Kim et al. [14] proposed CloudInsight, a machine learning paradigm called ensemble

learning, which selects the best predictor to forecast user requests in cloud workloads from a group of ML

models - Random Forest, ARIMA, and Support Vector Machine. The choice of models in the ensemble

settings is subjective and can be changed to other combinations of statistical or ML models. CloudInsight
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signi�cantly improved forecasting accuracy over using one single predictor approach. However, a draw-

back of this approach is to train multiple predictors in parallel to select top predictors, which presents

needless overhead in computation and increases inference time.

The applications of neural networks in time series forecasting provide improved accuracy across mul-

tiple domains. Neural networks learn to encode relevant historical information from time series data

into intermediate feature representation to make a �nal forecast with series of non-linear neural network

layers [44]. Various encoder architectures of neural networks learn to capture this relevant temporal in-

formation using recurrences or convolutions when adapted to time series datasets. For cloud workloads,

LSTM [20] and its variations are studied to forecast the resource demands or user requests. [15–17, 19,

45–47]. Jayakumar et al. [19] proposed LoadDynamics, a self-optimized generic workload prediction

framework for cloud workloads. In LoadDynamics, the self-optimization is performed using Bayesian

Optimization, which readily optimizes LSTM hyperparameters for di�erent types of workloads. Load-

Dynamics conducted comprehensive evaluations with di�erent cloud workloads, from Google, Azure

(2018), and web applications, to forecast job arrival rates. The brute-force approach of LoadDynamics is

considered as the baseline in this work. However, LSTM intrinsically depends on capturing long/short

dependencies using recurrences. As the input sequence length grows, it increases the complexity of process-

ing such longer input sequences. Also, LSTMs are prone to over�tting, which leads to poor performance

of the model.

An e�cient alternative and improvement on recurrences or convolutions is the introduction of at-

tention mechanism in Transformer networks, adapted from NLP literature [24]. For time series data,

attention layers in the Transformer network allow the model to focus on temporal information in a par-

allel manner anywhere in the input sequence [44]. Neo Wu et al. [48] employed a Transformer network

to forecast time series data. Variation of Transformer network are also applied to problem of time series

forecasting by introducing sparse self-attention, convolutional self-attention [49, 50]. To improve over

the performance of vanilla version of Transformer, Sifan Wu et al. [50] proposed Adversarial Sparse

Transformer (AST), based on GANs. AST uses sparse attention mechanism to improve the prediction

performance at sequence level by employing sparse transformer as generator and multi-layer perceptron as
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discriminator. Even though AST signi�cantly improved forecasting performance for time series, however,

for dynamic cloud workloads, AST has limitations for losing information in long-term forecasting due

to the sparse point-wise connections with assumed di�culty to train GANs.

On the other hand, to e�ectively predict job arrival rates by capturing long term information from the

time series data, our method, WGAN-gp Transformer, proposes to train the Transformer network using

improved WGAN-gp algorithm [51]. In chapter 5, the evaluations are performed on 15 workload con�g-

urations of cloud workloads from Google, Azure, Facebook, Alibaba, and Wikipedia. The evaluations

results show that WGAN-gp Transformer outperforms state-of-the-art workload predictor.

The next chapter introduces the basic concepts to build a foundation understanding of the Wasserstein

Generative Adversarial networks [25].

7



Chapter 3

Background

This chapters provides some background on time series, general explanation of components of our pro-

posed time series forecasting model designed for cloud workloads. We begin by de�ning di�erent ele-

mentary distances and divergences between two probability distributions, Pr and Pg in X , a compact

metric space. We discuss GANs and their limitations. We later introduce WGANs and elaborate how they

improve the stability of learning where GANs have proved to fall short due their discussed shortcomings.

In our proposed approach, Transformer Network introduced in [24] is used generator and a multi-layer

perceptron network as critic.

Time series

A univariate time series is de�ned as a sequence of measurements for a same variable collected over time.

Let {xi,1:tn}Si=1 is univariate time series S, where xi,1:tn = [xi,1, xi,2, ..., xi,tn ] and xi,t ∈ R is the value

of time series i at time t. In this work, we study a univariate time series data of job arrival rates (JARs) or

user requests rate collected at regular time intervals from variety of cloud workloads.

Probability Distance Metrics

Probability Distance Metrics are classi�ed into two classes - F-divergences (F-Div) and Integral Probability

Metrics (IPM) [52]. F-divergences calculates distance using division operation of probability distribu-
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tion (Pr / Pg). IPM determines distance using calculating di�erence between probabilities (Pr − Pg).

Kullback-Leibler (KL) divergence and Jensen-Shannon (JS) divergence probability distance metrics belong

to F-Div class. Earth-Mover (EM) distance or Wasserstein-1 distance belong to IPM class. There are other

probability distance metrics, however we will discuss these three probability distance metrics in this chap-

ter. Let Pr and Pg be two distributions inX , a compact metric space. We de�ne elementary distances and

divergences as follows:

The Kullback-Leibler (KL) divergence is de�ned as :

KL(Pr||Pg) =
∫
log

(
Pr(x)
Pg(x)

)
Pr(x)dx (3.1)

The Jensen-Shannon (JS) divergence probability distance metric is de�ned as :

JS(Pr,Pg) = KL(Pr||Pm) +KL(Pg||Pm) (3.2)

where, Pm is the average of two probability distribution Pr and Pg.

The Earth-Mover (EM) distance or Wasserstein-1 distance is informally termed as the minimum cost

of transporting mass to transform distribution Pg to Pr [51]. EM or Wasserstein-1 distance is de�ned as :

W (Pr,Pg) = inf
γ∈
∏

(Pr,Pg)

E(x,y) γ [||x− y||] (3.3)

where,
∏
(Pr,Pg) is set of all joint distributions γ(x, y) whose marginals are respectively Pr and Pg.

γ(x, y) indicates "mass" needed to transport from x to y in order to transform probability distribution

Pr to Pg. The Wasserstein-1 distance is optimal "cost" of this transport operation.

The use of these di�erent classes of the probability distance metrics addresses the variations of GAN

algorithms [25].
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Generative Adversarial Networks

Generative Adversarial Networks [53] are adversarial nets framework, which trains two models simulta-

neously - a generative model G and a discriminative model D. This training strategy is a min-max game

between two competing networks. The model G implicitly de�nes a generator probability distribution

Pg as the distribution of samples G(z) obtained when z ∼ pz (the input z to the generator is sampled

from some simple noise distribution - a uniform distribution or spherical Gaussian distribution), on the

other hand, the model D is trained to estimate the probability of identifying that from which distribution

the sample belong. D(x) in equation 3.4 represents the discriminator probability that x belongs to data

rather than Pg. In this adversarial modelling framework, model G and model D participates in min-max

game. Thus the value function V (D,G) is de�ned as :

min
G

max
D

V (D,G) = Ex∼Pr [logD(x)] + Ez∼Pg [log(1−D(x̃))] (3.4)

where Pr is the data distribution and Pg is the model distribution implicitly de�ned by x̃ =G(z).

The minimization of value function 3.4 is achieved by minimizing the Jensen-Shannon divergence

(equation 3.2) between Pr and Pg [53]. However, this leads to vanishing gradient problem as the discrim-

inator saturates. Even though Goodfellow et al. [53] discussed about maximizing Ez∼Pg [log(D(x̃)] by

using updated version of loss function to mitigate the vanishing gradient problem, a good discriminator

can still aggravate this issue [54].

Wasserstein GAN

An alternative training method of GAN was proposed in Arjovsky et al. [25]. The divergences minimized

in a typical GAN are not continuous to the generator’s parameter. Thus a di�erent probability distance

metric Wasserstein-1 distance was proposed in Wasserstein GANs. The discriminator is referred as critic

in the literature. Since the critic is not trained to classify it does not do much on its own. The EM

10



or Wasserstein-1 distance is continuous and di�erentiable which implies that the critic can be trained

optimally. In WGAN, the role of critic is to learn to update the weights to �nd function that maximizes

the Wasserstein distance between between Pr and Pg. This eliminates the problem with using JS distance,

as the JS saturates locally showing vanishing gradients.

The WGAN value function using Kantorovich-Rubinstein [55] duality can be de�ned as :

min
G

max
D∈D

Ex∼Pr [D(x)]− Ex̃∼Pg [D(x̃)] (3.5)

whereD is the set of 1-Lipschitz functions, Pr represents data distribution and Pg is the model distribu-

tion implicitly de�ned by x̃ =G(z), z ∼ p(z).

Equation 3.5 is minimized with respect to generator parameters θg which minimizesW (Pr,Pg). This

results in generator which is better optimized compared to its GAN counterpart [25]. Empirical evalua-

tions in Arjovsky et al. [25] show that WGANs have proved to be more robust than GANs. Also WGANs

are able to learn the distribution without the problem of mode collapse which is evident in case of GANs.

In order to enforce the Lipschitz constraint on critic, weight clipping is performed within a compact space

of [−c, c]. The set of Lipschitz functions are subset of k-Lipschitz functions for some k which depends

on c and the critic architecture. Weight clipping is introduced to enforce Lipschitz constraint will not

allow the critic to saturate and force to converge in linear function [25]. WGAN optimization process

should be balanced to avoid vanishing gradients or exploding gradients problem, with careful tuning of

the clipping threshold c.

However, Gulrajani et al. [51] discussed the drawbacks of using weight clipping to enforce Lipschitz

constraint to address training challenges for critic and evident vanishing gradient problem on selecting

improper value of clipping parameter c. In the next chapter, we discuss improved training of WGANs

with gradient penalty eliminating need of weight clipping [51].

11



Chapter 4

Wasserstein Adversarial

(WGAN-gp) Transformer

As discussed in the Introduction, cloud workloads have a collectively cyclic and bursty combination

of job arrival rate, subject to randomness or change over time. For such cloud workloads, this work

proposes a novel model for time series forecasting - WGAN-gp Transformer. The proposed model is

designed on the foundation of Transformer and Wasserstein Generative Adversarial Network. In this

chapter, we explain Wasserstein GAN with gradient penalty (WGAN-gp), an improved training algorithm

for Wasserstein GANs proposed in Gulrajani et al. [51]. In WGAN-gp Transformer, the generator is

Transformer Network, and critic is a three-layer multi-layer perceptron. The attention mechanism in the

Transformer network is crucial for learning long-term dependencies in the cloud workload time-series data.

We explain the attention mechanism and encoder-decoder architecture of the Transformer network, which

builds the core of the WGAN-gp Transformer’s generator. We brie�y discuss the recently proposed new

optimizer; a Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

(MADGRAD) [27] method to perform hyperparameter optimization before we introduce our proposed

model - Wasserstein Adversarial Transformer (WGAN-gp Transformer).

12



4.1 Wasserstein GAN-gp

While GANs (discussed in section 3) are robust generative networks, GANs can su�er from training

instabilities [54]. This issue can be addressed by introducing WGANs, which provide an alternate method

of GAN training using weight clipping. However, the weight clipping c is crucial hyperparameter which

signi�cantly a�ects the WGAN training. Irregular value surfaces are generated due to hard clipping of

the magnitude of each weight. Empirical evaluations shown in Gulrajani et al. [51] using other weight

constraints like L2 norm clipping, weight normalization leads to similar problems. Soft constraints like

L1 and L2 weight decay also lead to the same problem. Thus an alternative way to enforce the Lipschitz

constraint was proposed in Gulrajani et al. [51]. Instead of weight clipping (hard weight clipping or soft

weight clipping), Gulrajani et al. [51] proposed to penalize gradients for both real and generated data by

improving the objective function equation 3.5 with an additional gradient penalty term.

4.1.1 Gradient Penalty

A di�erentiable function f ∗ is 1-Lipschitz if and only if it has gradient norm of 1 almost everywhere.

In addition to the original critic loss, gradient penalty term is added (equation 3.5) for a �xed gradient

penalty coe�cient λ. The gradient penalty coe�cient λ a�ects the magnitude of penalty term. The value

of the coe�cient is set to λ = 10, which is default value suggested in WGAN-gp algorithm. Thus, the

gradient norm of the critic’s output is directly constrained to be 1 for its respective input [51]. Thus the

new objective is :

L = Ex̃∼Pg [D(x̃)]− Ex∼Pr [D(x)]︸ ︷︷ ︸
Original critic loss

+λEx̂∼Px̂
[(||∇x̂Dw(x̂)||2 − 1)2]︸ ︷︷ ︸

Gradient penalty

(4.1)

We have used a one-sided penalty in our proposed approach. That is, the gradient norm is encouraged

to stay below 1. The alternative technique to enforce the Lipschitz constraint has proven to improve

13



training speed and quality. Furthermore, as discussed in Gulrajani et al. [51], adding the penalty term

invalidates the need to have batch normalization since the norm of the critic’s gradient is penalized con-

cerning each input independently. Instead, layer normalization is recommended as a replacement for

batch normalization.

4.1.2 Improved training of WGANs with gradient penalty (WGAN-gp)

For training of Wasserstein GAN with gradient penalty (WGAN-gp), default values are set forncritic = 5,

λ = 10. To train both generator and critic Adam optimizer parameters are set as β1 = 0 and β2 = 0.9

with learning rate α = 0.0001. ncritic = 5 value is set as default suggested in WGAN-gp algorithm [51],

which implies there will be �ve iterations of the critic per generator iteration. Below is the algorithm for

WGAN-gp :

Algorithm 1: Wasserstein GAN with gradient penalty proposed in Gulrajani et al. [51]
Require: λ, the gradient penalty coefficient.m, the batch size.

ncritic,the number of iterations of the critic per
generator iteration.

Require: initial critic parameters w0, initial generator
parameters θ0.

while θ has not converged do
for t = 1, ...., ncritic do

for i = 1, ....,m do
Sample real data x ∼ Pr, a latent variable z ∼ p(z), a
random number ε ∼ U [0, 1].
x̃← Gθ(z)
x̂← εx+ (1− ε)x̃
L(i) ← Dw(x̃)−Dw(x) + λ(||∇x̂Dw(x̂)||2 − 1)2

end
w ← Adam(∇w

1
m

∑m
i=1 L

(i), w, α, β1, β2)
end
Sample a batch of latent variables {z(i)}mi=1 ∼ p(z)
θ ← Adam(∇θ

1
m

∑m
i=1−Dw(Gθ(z)), θ, α, β1, β2)

end
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4.2 Transformer Network

In this section, we discuss the vanilla version of Transformer proposed in Vaswani et al. [24], which is type

of encoder-decoder architecture. Transformer network architecture is based purely on attention mecha-

nisms, eliminating the need for recurrences or convolutions. Unlike recurrences [56] or convolution [57],

Transformer processes the entire sequence at the same time. Before any processing is done, the input

sequences are translated into high dimensional vector of dimension dmodel.

4.2.1 Attention Mechanism

Attention mechanism in the Encoder-decoder architecture of Transformer facilitates capturing long-term

dependencies in time-series in tasks like time-series forecasting. Attentions mechanism can be described

as quantifying the similarity of entire sequence of lengthN to kth term. The attention function allows

to map a query and a set of key-value pairs 1 to compute an output (illustrated in Figure 4.1). The output

is computed by taking a weighted sum of values; these weights represent relative representation of how

similar the kth term is to ith term, with respect to all of the otherN terms in the sequence.

Figure 4.1: Sequence of lengthN representing ith and kth term

Figure 4.2 illustrates the attention mechanism. First we take inner product between query xk and

entire sequence x1,2,...,i,...,N and N ∈ R is length of sequence 2. The inner products can be negative

or positive. Thus, exponentiate these inner products to make them positive. This gives us the relative

representation rk→1,2,..,i,..,N which corresponds to similarity between terms. To get the attention score

x̃k, the weighted sum of values, with rk→1,2,..,i,..,N corresponding to weighted sum.
1Here query, key, values, and output are all vectors
2Here time t is not considered for ease of understanding. Thus, here sequence can be assumed as sequence of numbers.
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Figure 4.2: Attention Mechanism

Scaled Dot-Product Attention

In Vaswani et al. [24], the attention function on a set of queries is computed simultaneously, represented

as matrixQ. Similar to matrixQ, keys and values are represented as matrixK and matrix V , respectively.

Dot-product attention is comparatively faster and space-e�cient than Additive attention discussed in

Vaswani et al. [24]. In this thesis, we have used a scaled dot-product attention mechanism. Thus, the

attention function on matricesQ, V, andK is computed as :

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (4.2)

where dk is dimension of queries and keys.

16



Multi-head attention

Multi-head attention can be de�ned as a function computing several single attention functions on linearly

projected query, key, and value3 h times with di�erent, learned projections of dk, dk and dv. dk represents

dimensions of query and key. dv represents dimension of value. Individual attention functions are com-

puted in parallel, yielding dv dimension output values. These output values are then concatenated to

resulting �nal output value as depicted in Figure 4.3. Multi-head attention function [24] can be written

as :

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O (4.3)

headi = Attention(QWQ
i , KW

K
i , V W

V
i ) (4.4)

where the projections are parameter matricesWQ
i ∈ Rdmodel×dk ,WK

i ∈ Rdmodel×dk ,W V
i ∈ Rdmodel×dv

andWO
i ∈ Rhdv×dmodel .

In this thesis, we have employed h and dmodel as hyperparameters4 which we discuss in later Chapters.

Figure 4.3: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention [24]
3query, key, and value are ofdmodel dimensions. The resulting query, key, and value matrices will be of dimensiondmodel×

dk, dmodel × dk and dmodel × dv
4h notation in this work is also refereed as nhead which represents multiple attention heads.
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4.2.2 Positional Encoding

Temporal (positional) information needs to be explicitly embedded in input sequences since the Trans-

former does not have implicit mechanisms like recurrences or convolutions; Transformer networks are

order-agnostic [24][58]. Positional embedding is mixture of sine or cosine functions. Similar to Vaswani

et al. [24], this work implements sine and cosine functions of di�erent frequencies represented in below

equations :

PE(pos,2i) = sin

(
pos

10000

(
2i

dmodel

)
)

(4.5)

PE(pos,2i+1) = cos

(
pos

10000

(
2i

dmodel

)
)

(4.6)

where pos is the position and i is the dimension of the sequence.

4.2.3 Transformer Encoder-Decoder Architecture for WGAN-gp generator

Figure 4.4 illuminates the encoder decoder architecture of the Transformer, adapted from Vaswani et al.

[24]. Encoder and Decoder both consists ofN identical layers, respectively. The number of layers/depth

for encoder or decoder can be adjusted as per the task at hand. The role of the encoder is to map attention-

based representation of input vectors to latent vectors. This latent vector is input to decoder which serves

as a memory from the input sequence. Decoder have similar architecture like Encoder with additional

masking mechanism which prevents Decoder from learning future information.

Encoder

The encoder consists ofN identical layers. Each layer has two sub layers - a multi-head attention layer and a

point-wise fully connected layer. The point-wise fully connected layer applies two linear transformations

with a ReLU activation in between.
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FFN(x) = max(0, xW1 + b1)W2 + b2 (4.7)

Each sub-layer uses a residual connection [59] with layer normalization. It is computed asLayerNorm(x+

SubLayer(x)), where x is input to the layer.

Decoder

The decoder also consists ofN identical layers with similar architecture to the encoder with an additional

Masked Multi-Head Attention layer. Masked Multi-Head Attention layer is added to prevent the decoder

from attending to future information. This implies that for a prediction task, predicted output at posi-

tion ti can depend on known outputs t1,2,...,ti−1
. The multi-head attention layer in decoder computes

attention on output from encoder stack as keys and values and its preceding sub-layer Masked Multi-Head

Attention layer as query. Similar to the encoder, each sub-layer uses a residual connection [59] with layer

normalization.

Architecture of Wasserstein Adversarial Transformer

WGAN-gp Transformer generator (illustrated in Figure 4.4) is design to have one layer of encoder and

subsequent one layer of decoder. For cloud workload forecasting, experiments show that architecture

design with one encoder layer and one decoder layer for generator yields optimal results. To embed the

positional information in input, positional encoding explained in section 4.2.2 is performed on input

x0:tk , where x is value from time step 0...k, k ∈ R . Similarly, positional encoding is performed on input

to decoder. Input to decoder is xtk , which is last time step value of the input sequence to encoder. The

objective of this model is to predict job arrival rate value at next time step k + 1 from input sequence of

k time steps.
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Feed Forward

Add & Norm

Decoder

ỹtk+1

Figure 4.4: generator and critic in WGAN-gp Transformer model

4.3 Wasserstein Adversarial Transformer model

Building on the foundation of WGANs and Transformer Network, this work proposes Wasserstein Ad-

versarial Transformer (WGAN-gp Transformer) network to tackle the problem of cloud workload fore-

casting. Time series forecasting models are designed to optimize speci�c objective alone, such as mean

absolute error or quantile loss function. Initially, Transformer network is trained to optimize the mean

absolute error loss function. However, the Transformer network alone fails to map the dynamic nature

of the cloud workload forecast to provide accurate predictions. This thesis proposes a Wasserstein Adver-

sarial Transformer network with gradient penalty for cloud workload prediction to improve prediction

accuracy. In order to do so, we have used a critic D, attached on top of the Transformer generator. In the

original work Gulrajani et al. [51] proposed Algorithm 1.

The generator is based on the encoder-decoder architecture of the vanilla version of the Transformer

network and three fully connected linear layers with as critic. The encoder encodes the input sequence
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vector [X1:k] to latent vector [X̃1:k]. This latent vector [X̃1:k] serves as memory to the decoder to generate

prediction for next time step k + 1, from the encoded input sequence. Adversarially, the Transformer

network, as a generator G, attempts to minimize the mean absolute error (LMAE) between prediction

sequence and ground truth and Wasserstein loss for the generator in WGAN-gp algorithm [51]. In order

to train the generator, below is the updated loss function:

min
G

Ey∼Pr(y|x)[(|G(x)− y|)]− Ex̃∼Pg [D(x̃)] (4.8)

where Pg is generator distribution, Pr is real data distribution, y is ground truth output for input x to

generator.

The critic is a network of three fully connected linear layers with LeakyReLU [60] as activation func-

tion [50][61]. LeakyReLU controls the angle of negative slope to allow neuron to �re again in case of

small gradient �ow. Thus for critic architecture, LeakyReLU is computed by f(x) = max(αx, x), for

α = 0.2. In the WGAN-gp algorithm, the critic’s objective function is same as equation 4.1.

Algorithm 2: Wasserstein GAN with gradient penalty for cloud workload forecasting.
Require: λ, the gradient penalty coefficient.m, the batch size.

ncritic,the number of iterations of the critic per
generator iteration.mMADGRAD, momentum value.

Require: initial critic parameters w0, initial generator
parameters θ0.

while θ has not converged do
for t = 1, ...., ncritic do

for i = 1, ....,m do
Sample real data x ∼ Pr, a latent variable z ∼ p(z), a
random number ε ∼ U [0, 1].
x̃← Gθ(z)
x̂← εx+ (1− ε)x̃
L(i) ← Dw(x̃)−Dw(x) + λ(||∇x̂Dw(x̂)||2 − 1)2

end
w ← MADGRAD(∇w

1
m

∑m
i=1 L

(i), w, α,mMADGRAD)
end
Sample a batch of latent variables {z(i)}mi=1 ∼ p(z)
θ ← MADGRAD(∇θ

1
m

∑m
i=1 LMAE −Dw(Gθ(z)), θ, α,mMADGRAD)

end
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Model Optimizer

Adam optimization method [62] is widely used and heavily adopted for deep learning optimization, espe-

cially for training GANs. The task of optimizer is to perform optimization by gradient step for network

parameters. In the original proposed WGAN-gp algorithm [51], Adam optimizer is used to train both

generator and critic. However, the Adam optimization method often converges to bad local minima for

some major tasks discussed in Wilson et al. [63], highlighting the weak ability of adaptive methods gen-

eralizing poorly. With a goal of designing a general-purpose deep learning optimizer, Defazio et al. [27]

proposed aMomentumized,Adaptive,Dual averagedGRADient (MADGRAD) Method for Stochastic

Optimization [26]. MADGRAD is optimization method which computes adaptive learning rate for

each parameter. MADGRAD is based upon the dual averaging formulation of AdaGrad. This work

use MADGRAD to optimize generator and critic in the proposed Wasserstein Adversarial Transformer

model (WGAN-gp Transformer).

Adversarial Training

The critic is updated �rst and then generator is updated learning from critic. Algorithm 2 illustrates

training algorithm of the proposed model. The generator is trained with updated loss function introduced

in equation 4.8. Instead of Adam optimizer, we have proposed to use MADGRAD optimizer which

showcase e�ective results for training WGAN-gp Transformer model. For training of Wasserstein GAN

with gradient penalty (WGAN-gp), default values are set forncritic = 5,λ = 10, learning rateα = 0.001,

and MADGRAD optimizer parametersm = 0.9 and default weight decay as zero. Refer algorithm 2 for

WGAN-gp Transformer for cloud workload forecasting.

Grid search is performed for the searhing the optimal hyperparameters for training WGAN-gp Trans-

former. The model size dmodel unit used for training generator is same number of input features in critic

Linear layers. For the generator, below are the hyperparameters:

• dmodel - the model size; positional encoding size.

• nhead - the number of heads in multi-head attention layer in encoder and decoder.
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• m - batch size

• n - the length of the input sequence

The proposed model will be evaluated on various cloud workloads data sets to predict job arrival rate

at the next time step. WGAN-gp Transformer shows optimal results for next time step prediction we will

discuss the evaluation results in the next Chapter.
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Chapter 5

Experiments

This Chapter details about the experimental evaluation of WGAN-gp Transformer. The evaluations

focus on measuring the accuracy and computational overhead of the WGAN-gp Transformer compared

to baseline LoadDynamics, which is based on LSTM [19]. This work shows a comprehensive experimental

evaluation of WGAN-gp Transformer across many real-world cloud workload data sets from Google,

Facebook, Wiki, Azure, and Alibaba.

5.1 Experimental Setup

Real-world cloud workloads are represented as time series data exhibit correlated workload patterns [40].

Datasets evaluated in this work are univariate time series representing job arrival rates, which is de�ned

as the number of jobs arrived at a speci�ed time unit to cloud systems. In this section, we brie�y discuss

individual datasets and evaluation metrics for the conducted experiments. For comparison, we have used

LSTM-based DynaLoad [19] as our baseline.

Cloud Workload Datasets

Cloud workloads collected from di�erent categories are used to evaluated WGAN-gp Transformer. Wikipedia

datatset [64] is web application trace. Wikipedia trace shows a strong seasonal pattern sampled at time

intervals of 10 mins and 30 mins. Facebook workload [65] is data center workload that shows dynamic
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spikes and high �uctuations in the job arrival rate. The Facebook dataset is a smaller dataset with a work-

load trace accounting for a 24-hour period. Thus, Facebook workload trace is evaluated at 5 and 10 mins

intervals (shown in Figure 5.1). In addition to workload traces evaluated in Jayakumar et al. [19], we have

added three new datasets in the evaluation - public cloud workload from Azure released in 20191, Azure

Functions trace2 [66], and Alibaba 2018 cluster trace3. Alibaba 2018 dataset contains eight day long cluster

trace, and evaluated time intervals are 5mins and10mins. Azure public cloud dataset and Azure functions

trace, released in 2019, both are 30 days long traces and evaluated at 30 mins and 60 mins time interval.
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Figure 5.1: Facebook Trace (10 minutes interval)
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Figure 5.2: Azure Public Cloud 2018 Trace (60 minutes interval)

Di�erent time granularity may exhibit subtle variations in the time series patterns. Thus, each dataset

is evaluated at various time intervals to gauge the proposed WGAN-gp Transformer’s performance. The

time intervals at which individual dataset is studied is illustrated in Table 5.1. The e�ect of various time
1https://github.com/Azure/AzurePublicDataset
2https://github.com/Azure/AzurePublicDataset/blob/master/

AzureFunctionsDataset2019.md
3https://github.com/alibaba/clusterdata
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intervals for respective workload is discussed in next section. For the rest of this thesis, we follow similar

annotation like Jayakumar et al. [19], to de�ne workload configuration as a workload with a speci�c time

interval.

Table 5.1: Cloud Workload Datasets for evaluated time intervals
Workload Time intervals (inmins) Type of Dataset

Facebook (FB)
5, 10

Data Center
Alibaba 2018 Data Center
Google (GL)

10, 30
Data Center

Wiki (wiki) Web
Azure 2017 VM workload 10, 30, 60 Public Cloud
Azure 2019 VM workload

30, 60
Public Cloud

Azure Functions 2019 Public Cloud
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Figure 5.3: Alibaba 2018 Trace (10 minutes interval)

Evaluation metric

We have used Mean Absolute Percentage Error as evaluation metric to assess the proposed method against

baseline. Mean Absolute Percentage Error is calculated as,

MAPE = 100 ∗
(
1

n

) n∑
i=1

∣∣∣∣ ỹi − yiyi

∣∣∣∣ (5.1)

where n is the total number of data points, ỹi represent predicted value at time step i and yi represents

actual value at time step i.
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Figure 5.4: Azure Public Cloud 2019 Trace (30 minutes interval)
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Figure 5.5: Azure Functions 2019 Trace (60 minutes interval)

Baseline

To measure the performance of WGAN-gp Transformer, we compare proposed model on the discussed

seven datasets (shown in Table 5.1) with baseline model, i.e, LoadDynamics (LSTM) [19](shown in Ta-

ble 5.3), which is state-of-the-art recurrence based time series forecasting model. LoadDynamics employs

LSTM model to automatically optimize LSTM for individual workload using Bayesian Optimization. As

our baseline, we use the brute force approach of the LoadDynamics which performs hyperparamter search

for LSTM in prede�ned hyperparameter search space. For LoadDynamics, the accuracy of the model is

determined by hyperparameter values of LSTM model such as number of LSTM layers, the memory cell

C size, and the history length (input sequence length n). For baseline, we have established same setup

described for evaluating LoadDynamics [19], in addition to new cloud workloads to be evaluated. The
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Figure 5.6: Wikipedia Trace (30 minutes interval)

hyperparameter search space for baseline LSTM model is illustrated in Table 5.2. The training and infer-

ence is performed on same machine as we evaluate WGAN-gp Transformer and are �ne-tuned on a single

GPU.

Table 5.2: Hyperparameter search space baseline model LSTM [19]
Workload History Length n batch sizem LSTM Layers C size

Facebook (FB) [3− 46] [16− 256]

[1− 5]

[1− 50]
Azure Functions 2019 [7− 108] [16− 512]

[1− 100]

Google (GL) [28− 676]

[16− 1024]
Azure 2017 VM workload [14− 682]
Wiki (wiki) [12− 274]
Alibaba 2018 [20− 324]
Azure 2019 VM workload [14− 230]

Implementation

WGAN-gp Transformer is implemented in PyTorch4 and Scikit-learn5. The baseline model and WGAN-

gp Transformer are trained and evaluated on a machine with a single GPU (NVIDIA GeForce RTX 2080

Ti 6). The con�guration of WGAN-gp Transformer is shown in Table 5.4. The Transformer network

alone is trained on "mean absolute error" as the loss function. In WGAN-gp Transformer, we improve
4https://pytorch.org/docs/stable/index.html
5https://scikit-learn.org/
6https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-ti/
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Table 5.3: Evaluated time series forecasting models
Prediction Model Description

LSTM (Baseline)
The LSTM [20] model leverages recurrences to
map an input sequence to an output observation
at next time step.

Transformer Encoder-Decoder

Transformer network is encoder-decoder archi-
tecture which employs attention mechanism.
The encoder encodes the input sequence to gen-
erate dmodel dimension latent vector. This latent
vector serves as memory to decoder to generate
an output observation at next time step.

WGAN-gp Transformer (Proposed model)

The proposed model WGAN-gp Transformer is
based on Wasserstein GAN and Transformer net-
work. WGAN-gp Transformer improves upon
the prediction done by Transformer Encoder-
Decoder model, since Transformer Encoder-
Decoder alone is unable to learn the complexities
of cloud workloads.

upon Transformer network ability by applying improved WGAN algorithm with gradient penalty [51].

To train generator and critic in WGAN-gp Transformer, we use MADGRAD Optimization method [27].

The MADGRAD optimizer is used with default values (m = 0.9momentum value,weight_decay = 0,

eps = 1 − e6). The learning rate is α = 0.001. WGAN-gp Transformer is trained for 1000 epochs,

which is proved to be su�cient across all cloud workload datasets to achieve convergence.

For an entire JAR sequence of cloud workload dataset, the sequence is divided into a training set of

60%, 20% for cross-validation, and the last 20% is tested to evaluate the trained model accuracy, similar

to baseline [19]. To prepare the data for input to WGAN-gp Transformer, we apply the sliding window

approach to divide the data into sequences of length n. The parameter history length n for comparison

is based on baseline method [19]. The model is trained to predict JAR at the next time step; thus, the

sliding window moves with a stride of one time step to acquire the input sequences. Hyperparameters for
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WGAN-gp Transformer are history length n, batch sizem, the model size dmodel for both generator and

critic, and the number attention heads nhead (illustrated in Table 5.4).

Table 5.4: Hyperparameter search space for generator in WGAN-gp Transformer
Workload History Length n batch sizem dmodel nhead

Facebook (FB) [3− 46] [16− 256]

[8, 16, 32, 64, 128, 512] [4, 8]

Azure Functions 2019 [7− 108] [16− 512]
Google (GL) [28− 676]

[16− 1024]
Azure 2017 VM workload [14− 682]
Wiki (wiki) [12− 274]
Alibaba 2018 [20− 324]
Azure 2019 VM workload [14− 230]

Table 5.5: Results for evaluated models for cloud workloads; Metric : MAPE; WGAN-gp: Wasserstein
Generative Adversarial Network with gradient penalty [51]

Workload LSTM Transformer
WGAN-gp
Transformer
with ADAM

WGAN-gp Trans-
former with MAD-
GRAD

GL-10m 11.49 17.13 14.03 10.58
GL-30m 9.12 11.50 10.24 8.34
Azure-2017-VM-10m 42.63 43.63 41.58 41.32
Azure-2017-VM-30m 29.35 40.64 36.59 27.48
Azure-2017-VM-60 16.11 20.26 16.54 12.77
FB-5m 47.20 64.85 59.49 42.11
FB-10m 43.68 82.35 48.51 39.31
Wiki-10m 1.17 1.38 1.21 1.34
Wiki-30m 1.75 4.54 3.11 3.43
Azure-2019-VM-30m 19.74 19.40 16.43 15.19
Azure-2019-VM-60m 13.5 14.46 11.17 10.82
Azure-Func-2019-30m 1.63 7.42 6.74 3.05
Azure-Func-2019-60m 2.06 2.32 2.31 1.85
Alibaba-2018-5m 17.95 17.42 17.32 15.76
Alibaba-2018-10m 16.90 25.55 15.08 14.67
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5.2 WGAN-gp Transformer Evaluation

Table 5.5 illustrates the prediction error for the proposed WGAN-gp Transformer and baseline method

LSTM on evaluated workload con�gurations (shown in Table 5.1). These forecast prediction errors are

calculated for the test set. Reported prediction errors imply the variation in forecasting performance when

datasets are sampled at various time intervals. For larger time intervals, majority of evaluated workloads

provide comparatively accurate results for WGAN-gp Transformer and LSTM. However, for datasets in-

dicating seasonal pattern like Wikipedia and Azure Functions Datasets (shown in Figure 5.5, 5.6), smaller

sample rate show low prediction error providing higher accuracy. Overall, WGAN-gp Transformer pro-

vide up to 5.1% lower MAPE, compared to LSTM.

WGAN-gp Transformer functions on attention mechanism to extract information from input se-

quence for prediction task unlike LSTM, which uses recurrences. For training each workload con�gura-

tion, a small sample rate provides more time intervals, increasing the dataset size to be evaluated. Larger

dataset tend to need more training time with WGAN-gp Transformer compared to LSTM. For instance,

Facebook is fairly small dataset accounting for 24-hour period trace. Facebook 10 minutes workload con-

�guration takes 4.75 hours to �nd the optimal set of hyperparameters from the de�ned set (illustrated

in Table 5.4). On the contrary, LSTM takes 1.78 hours to train entire workload con�guration (shown in

Table 5.2). Especially for Facebook-10m, once found optimal set of hyperparameters WGAN-gp Trans-

former takes 2ms for inference, which 10 times faster than LSTM making an inference in 23ms. Table 5.6

illuminates the time inference di�erence between LSTM and WGAN-gp Transformer7. The inference

time is calculated for the entire test dataset for respective workload con�guration. On average, LSTM infer-

ence time is 25.57ms and WGAN-gp Transformer makes an inference in 4.85ms. The evaluation results

show that WGAN-gp Transformer is 5 times faster than state-of-the-art LSTM to make an inference.

Figure 5.8 illuminates that WGAN-gp Transformer performs consistently better to provide more ac-

curate predictions for evaluated cloud workloads, except for Wikipedia and Azure Functions 2019 Dataset

(30 mins interval). Even though WGAN-gp Transformer achieves lower prediction error for Wikipedia
7average inference time is calculated for all workload con�gurations for respective datasets evaluated in this work.
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Table 5.6: Inference time comparison for cloud workloads
Workload LSTM WGAN-gp Transformer

Google 27ms 11ms
Facebook 23ms 2ms
Wiki 21ms 5ms
Azure 2018 26ms 5ms
Azure 2019 28ms 4ms
Azure Functions 2019 19ms 4ms
Alibaba 2018 29ms 3ms

and Azure Functions 2019 Dataset, LSTM report lower prediction error 0.17%, 1.68%, and 0.9% for

Wiki-10m, Wiki-30m, and Azure-Func-2019-60m workload con�gurations respectively.

Detailed evaluation of WGAN-gp Transformer model

To study the implication of individual element of WGAN-gp Transformer we evaluated vanilla version of

Transformer network [24] and WGAN-gp Transformer with Adam optimizer [51] for 15 workload con�g-

urations. The evaluation results are illustrated in Table 5.9. WGAN-gp Transformer has consistently per-

formed better than Transformer and WGAN-gp Transformer when optimized with Adam optimizer [62].

For some workload con�gurations WGAN-gp Transformer optimized with Adam and WGAN-gp Trans-

former performance error di�erence up to 9.2%. However, in case of Wiki-30m, WGAN-gp Transformer

with Adam performed comparatively better than WGAN-gp Transformer by 0.32%, but still performed

poor compared to LSTM by 1.36%.

WGAN-gp Transformer Evaluation with Auto-scaling

WGAN-gp Transformer is applied to an auto-scaling policy that managed the VMs executing in the

Google cloud, to gauge the performance and resource e�ciency. The evaluations are done on subset of

workload to compare the performance of state-of-the-art LSTM and WGAN-gp Transformer. Figure 5.7

illustrates the process to evaluate auto-scaling. The workload predictor result for the predicted time

interval is provided to job scheduler. Assume for next time interval ith, Pi jobs are predicted at (i− 1)th

32



Figure 5.7: Auto-scaling mechanism

interval representing number of Virtual Machines (VM)s to be created in advance. One VM per predicted

job Pi is allocated. Assume Ti is the actual number of jobs arriving at time interval. If (Ti > Pi), then it

results in under-provisioning and to accommodate extra demand of the jobs more VMs will be allocated.

In this case, additional time will be needed to �nish the jobs due the VM startup time. On contrary, if

(Ti < Pi), this results in over-provisioning and incur extra unnecessary cost with the VMs running idle.

Google Cloud’s e2-medium VM instances are used for this auto-scaling evaluation. Facebook and

Azure 2019 workloads are evaluated for compare auto-scaling performance. To evaluate Facebook work-

load con�guration, Cloud Suite’s Data Analytics benchmark is used which consists of running a Naive

Bayes classi�er on a Wikimedia dataset. This benchmark addresses analyzing large amounts of machine

learning tasks in datacenters using MapReduce framework [67–69]. For Facebook dataset (shown in

Table 5.8), evaluation results show signi�cant reduction in under-provisioning by 27.95%. However,

WGAN-gp Transformer over-provisions with over 5.8% more than LSTM. Cloud Suite’s In-Memory

Analytics benchmark is used to evaluate Azure 2019 workload con�guration as the jobs to execute, simulat-

ing a system service machine-learning training and inference requests. In-Memory Analytics benchmark

uses Apache Spark and execute collaborative �ltering algorithm in-memory on dataset of user-movie rat-

ings [68–71]. JARs are scaled down by 100 times to reduce the number of VMs created to be less than

50, only for Azure workload. The scale down of JARs does not a�ect the prediction accuracy for the
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evaluated prediction techniques. For Azure 2019 dataset, Table 5.7 illustrates that the under-provisioning

and over-provisioning is reduced by 2.56% and 1.92%.

Table 5.7: Performance evaluation, VM under-provisioning rates and over-provisioning rates for Azure
2019 dataset

System under-provisioning rate(%) over-provisioning rate(%)
LSTM 9.63 8.60
WGAN-gp Transformer 7.07 6.68

Table 5.8: Performance evaluation, VM under-provisioning rates and over-provisioning rates for Facebook
dataset

System under-provisioning rate(%) over-provisioning rate(%)
LSTM 40.22 10.33
WGAN-gp Transformer 12.27 16.13
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Figure 5.8: Prediction test error comparison with baseline
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Chapter 6

Conclusion

Accurately forecasting user request rates (e.g., job arrival rates) bene�ts optimizing cloud operating costs

and guaranteeing application performance goals through proactive cloud autos-caling. To addresses the

problem of job arrival prediction for dynamic cloud workloads, this thesis proposed a novel time series

forecasting method, called WGAN-gp Transformer, based on Transformer network and Wasserstein

Generative Adversarial networks. When trained with an improved Wasserstein Generative Network al-

gorithm, the Transformer network optimally models dynamic patterns in cloud workload data. The

proposed method was evaluated on 15 diverse real-world workload con�gurations and achieved a lower

prediction error rate up to 5.1%. Evaluation results indicate that attention-based models are better at

capturing relevant information from sequences of varying lengths to make a prediction. Furthermore,

WGAN-gp Transformer signi�cantly reduced inference time by 5 times compared to the state-of-the-

art LSTM-based model. Auto-scaling evaluations also showed that the over-provisioning and under-

provisioning rates with WGAN-gp Transformer were reduced by 2.56% and 1.92% for Facebook and

Azure 2019 workloads, respectively. By mitigating the limitations of existing predictors for cloud work-

loads, this work would bene�t cloud applications to satisfy their performance goals with more accurate

predictive auto-scaling.
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