

TOWARDS META-DATA DISCOVERY AND KNOWLEDGE DISCOVERY ON

KNOWLEDGE GRAPHS

by

ABBAS KESHAVARZI

(Under the Direction of Krzysztof J. Kochut)

ABSTRACT

 A knowledge graph (KG) provides a framework for data representation, integration,

analytics by expressing sets of linked descriptions of entities and places data in a context

via semantic metadata, and it helps to enrich the data with computer-processable semantics.

In many domains, the KG aids researchers blend related information to a single source for

effortless and efficient investigations. External resources and datasets, usually Web

documents, are acquired by software programs for the purpose of creating or evolving a

KG create or evolve a KG. New findings lead to changes in the original data sources

relentlessly; therefore, the generated KG should comply with the changes. The introduced

changes can range from individual entities and their relations to more significant changes

in the KG schema. In both cases, the domain expert or KG engineer should employ

mechanisms to track them and take proper actions. The structure and connectivity among

entities in graph-like data make researchers curious about finding new associations by

visualizing or querying the data. With the rise of diverse machine learning techniques, this

process can be more efficient and achievable. Thus, the link prediction task becomes one

of the priorities on KGs, especially in domains such as biology, social networks, and

recommender systems. It generally aims to discover unknown linkage between existing

entities in the KG. Machine learning techniques for link prediction have become popular

solutions for link prediction, especially deep learning (DL) methods. The scalability issue

of these approaches for large graphs calls for an alternative direction. Toward addressing

these issues, this dissertation investigates scalable approaches for evaluating and using KG

for knowledge discovery. First, we present our work, KGdiff, for tracking the evolution of

KGs by discovering meta-data information from KGs and then we introduce

RegPattern2Vec for the link prediction problem and its successful application on a large

biological dataset.

INDEX WORDS: knowledge graph, link prediction, ontology, OWL, machine

learning, random walk, knowledge discovery, meta-data discovery

TOWARDS META-DATA DISCOVERY AND KNOWLEDGE DISCOVERY ON

KNOWLEDGE GRAPHS

by

ABBAS KESHAVARZI

B.S., North Tehran Azad Islamic University, Iran, 2004

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

ATHENS, GEORGIA

2021

© 2021

Abbas Keshavarzi

All Rights Reserved

TOWARDS META-DATA DISCOVERY AND KNOWLEDGE DISCOVERY ON

KNOWLEDGE GRAPHS

by

ABBAS KESHAVARZI

Major Professor: Krzysztof J. Kochut

Committee: Hamid R. Arabnia

Ismailcem B. Arpinar

Electronic Version Approved:

Ron Walcott

Vice Provost for Graduate Education and Dean of the Graduate School

The University of Georgia

August 2021

iv

To my wife and my parents

v

ACKNOWLEDGEMENTS

 I would like to acknowledge my major advisor Prof. Krzysztof J. Kochut who

shed a light on my path with his great guidance and support and motivated me through

my study.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ...v

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

CHAPTER

 1 INTRODUCTION ...1

 2 BACKGROUND ...5

 3 KGdiff: TRACKING THE EVOLUTION OF KNOWLEDGE GRAPHS15

 4 RegPattern2Vec: LINK PREDICTION IN KNOWLEDGE GRAPHS39

 5 PREDICTING PATHWAY ASSOCIATIONS FOR UNDERSTUDIED

DARK KINASES USING A PATTERN-BASED GRAPH EMBEDDING

ON HETEROGENOUS KNOWLEDGE GRAPHS64

 6 CONCLUSIONS AND FUTURE WORK ..86

REFERENCES ..89

vii

LIST OF TABLES

Page

Table 3.1: Results by applying datasets to KGdiff ..34

Table 4.1: Statistics of split of data for different experiments ...55

Table 5.1: Number of associations between different type of nodes70

Table 5.2: The unique number of node types with their average degree in the KG.71

Table 5.3: Overlap association commonly predicted by RegPattern2Vec and node2vec and

the result of enrichment analysis on IDG PPI. ..84

viii

LIST OF FIGURES

Page

Figure 2.1: A graph structure example of RDF ..6

Figure 2.2: An UML diagram showing the extension of semantic for RDF data using RDFS

extension ...7

Figure 2.3: SPARQL query example and the result. a) example SPARQL query b) result of

the query. ..9

Figure 2.4: Size and linkage degree of publicly available knowledge graphs on the web11

Figure 3.1: Screenshot of KGdiff...23

Figure 3. 2 A sample SPARQL query ...26

Figure 3.3: Meta-data UML Class Diagram ..29

Figure 4.1: Illustration of random walks using regular expression50

Figure 4.2: Distribution of relation types in the YAGO39K dataset.56

Figure 4.3: Comparing ROC of RegPattern2Vec with baseline on two datasets59

Figure 4.4: The top 30 most frequent relationship patterns discovered by

RegPattern2Vec for isCitizenOf relation ...61

Figure 4.5: Effect of hyper-parameters ..62

Figure 5.1: Schema of the Knowledge Graph ..72

Figure 5.2: RegPattern2Vec overview. ..73

Figure 5.3: (a) a hypothetical subgraph of KG. (b) The regular pattern (c) the flattened node

of the subgraph. ...75

ix

Figure 5.4: PCA of vector embeddings..76

Figure 5.5: degree versus random walk visits per node ...79

Figure 5.6: Comparing ROC of RegPattern2Vec with baselines, node2vec and metapath2vec

with best metapath ...80

Figure 5.7: Top 50 overlap predictions of RegPattern2Vec and node2vec methods on dark

kinases. ...81

Figure 5.8: Explored patterns contributing to the top 5 predictions by Regular Pattern's

Constrained walks. ..82

1

CHAPTER 1

INTRODUCTION

 Storing and representing the increasing amount of data, produced by millions of

users, introduced great challenges for scientists in different domains. The data should be

stored in a way that it can be queried effortlessly and efficiently to better help experts

discover new knowledge. On the other hand, representation of data based on the desired

task should consider machine-readability or human understandability. The mid-point

would be desirable when representation consider both aspects. Another import

consideration is, as the data might have different forms from text to documents, the

architect of the data store should be flexible enough to contain such a diversity. One of the

most popular solutions is to use knowledge graphs. Knowledge graphs are a way of storing

data in a form of a graph, where entities from different types might have a variety of

relationships with other entities. These knowledge graphs can be encoded in different

forms, which we discuss next.

One of the most popular ways is to use Web Ontology Language1 (OWL) to express

the data and define relations among the entities in a KG. The expressivity of OWL gives is

a huge advantage to explain complex relationships and the light-weighted vocabulary make

it possible to store or even transfer huge amount of data. The more recent choice is to use

graph databases. A graph database, such as Neo4j2, offers major advantages, such as

1 https://www.w3.org/TR/owl-features/
2 https://neo4j.com/

2

performance, flexibility and agility. For graph data, it performs much better than relational

databases and the flexible schema gives users the ability to keep up with new demands in

evolution of the data. As important graph algorithms are often built in some of the graph

databases, such as Neo4j, they became the source of extensive popularity of KGs among

researchers in different domains, such as social networks, biomedicine, health sciences,

and many more.

KGs are usually populated using a variety of external data sources, such as Web

documents, articles, and other diverse datasets. As the data evolve due to advancement of

science or acquiring more data, domain experts need to understand the changes introduced

to the KG, which sometimes cause massive structural changes, like transformation in the

schema of KG. The domain experts and knowledge engineers need to be informed of these

changes and validate their generated KGs. However, manual version comparison is a time-

consuming process and thus impractical.

On the other hand, since these KGs enable their users to identify interesting patterns,

the demand for automated methods has emerged, largely due to the significant size of data.

Tasks such as node clustering, KG completion, node classification, and link prediction are

commonly used within different domains and a variety of approaches to tackle them exist.

Machine learning proved to be a good solution to many of these tasks, as it has been shown

to have successful applications in a variety of tasks such as image and video processing,

natural language processing, text mining, and many others.

One of the interesting tasks on graphs is link prediction where researchers try to infer

previously unknown relationships between entities in data [1]. Link prediction can be

applied in many domains. For example, in social networks, where the goal is to suggest

3

possible friends for a user based on people they know, and in biological networks, where

scientists try to discover relations between two biological entities, based on their relations

with other biological entities. To perform such a task, one should use properties and

existing links in data to locate semantic relationships between entities and use them as

features for machine learning algorithms in order to learn and eventually predict unknown

relationships between entities in the KG.

In this dissertation, we first introduce a framework to track the evolution of a KG,

where it incrementally collects meta-data about instances and also the schema of KGs

encoded in OWL. We evaluate our framework on various KGs and ontologies to show the

advantages of using such a tool. The discovery of the schema and the schema-in-use is

beneficial for any KGs, which might not have a well-defined schema. We explain how the

framework compares a KG to its previous versions and gives a comprehensive report about

its evolution. It highlights the statistics of the data and the main compartment of the KG to

the user.

Then we present our link prediction approach, which samples a large KG and captures

semantic relationships between the entities with minimum prior knowledge and human

involvements. We use well-established benchmarks to evaluate our method and compare

to results of similar graph embedding approaches as our baselines.

Further, we applied our method to a specific biological KG as a case study, where domain

experts and external data sources evaluated the predictions. We created a KG based on

ProKinO project about protein kinases and enriched it with external datasets focusing on

under-studied (dark) protein kinases to predict dark kinase and pathway possible

associations. Although RegPattern2Vec was initially designed to select the informative

4

part of the KG, it also performed better in the case that the relative subgraph is the whole

KG, as shown in Chapter 5.

5

CHAPTER 2

BACKGROUND

In this chapter, we introduce some of the concepts and definitions that have been

used through this work. Then, we move to explain our goals by defining the evolution of

the knowledge graph and the link prediction task.

1.1 Ontologies

According to W3C3 ontologies (vocabularies) are defined as:

“An ontology is a specification of a conceptualization in specific domain.”

The conceptualization is the main component of representing knowledge. It can be seen

as a simplified view of the entities, concepts, and their relations to each other in the domain

of interest. The common ingredients of an ontology are Individuals, Classes, Attributes,

Relations, Restrictions, Axioms, and others. Developing an ontology, enables reusability

of the knowledge and sharing mutual thought among different disciplines, and machines

and humans and give more flexibility to software to adjust to changes in underlying

assumptions in domain knowledge. The two most popular standard languages to encode

these specifications are RDF, RDFS, and OWL. They offer different levels of expressivity,

as needed for the conceptualizations. To get a better understanding of these differences, we

provide the definition of each of them in the following sections.

3

 https://www.w3.org/standards/semanticweb/ontology

6

2.1 Resource Description Framework 4 (RDF)

 The simplest model to exchange data on the web is RDF. It is a graph model that uses

Uniform Resource Identifiers (URI) to identify and distinguish the resources across the

web. In a nutshell, RDF is a triple that consists of a subject, a predicate, and an object.

As shown in Figure 2.1, the example triple can be viewed as a directed edge in a graph

structure, where the head node is the subject, the connection (edge) is the predicate, and

the object is the tail node. In RDF, a subject should be either a URI, or a blank node, a

predicate must be a URI, and an object can be in the form of a URI, literal, or a black node,

which are referred to as RDF terms.

2.2 RDF Schema (RDFS)

RDFS is the vocabulary for RDF data to be modeled. It provides the ability to define

classes, properties and to describe a related group of resources either as a hierarchy or an

association to explain the RDF data. We can summarize RDFS into two groups of

vocabulary terms: RDF classes and RDF properties. As shown in Figure 2.2, RDFS helps

4 https://www.w3.org/TR/rdf11-concepts/

Figure 2. 1. A graph structure example of RDF for triple the (Christopher_Nolan,

birthplace, London)

7

to provide more clear specifications to a document by providing characteristics of different

terms defined in the document.

Figure 2. 2. An UML diagram showing the extension of semantic for RDF data using

RDFS extension.

8

2.3 OWL

Web Ontology Language (OWL) is the extension to RDFS to enable formulating data

expression for classes, properties, individuals, datatypes, and annotations. It has been used

to formally provide the meaning to the Semantic Web [1]. Here is the formal definition of

OWL by W3C5:

“OWL is a computational logic-based language such that knowledge expressed in

OWL can be exploited by computer programs, e.g., to verify the consistency of that

knowledge or to make implicit knowledge explicit.”

2.4 SPARQL

SPARQL is the query language for RDF data. The basic building block of SPARQL

queries is the triple pattern. A triple pattern is similar to an RDF triple, but in place of each

triple element, one can place a variable. A triple pattern is then used to retrieve any

matching number of the RDF data by matching triples in the data set to the triple pattern,

substituting variables in the pattern by entities and properties found in the matched data

triples.

5 https://www.w3.org/OWL/#:~:text=Overview,things%2C%20and%20relations%20between%20things.

9

As illustrated in Figure 2.3, variables can be used in the triple patterns to retrieve the

information needed. There are other query forms available in SPARQL, such as

CONSTRUCT, ASK, and DESCRIBE, as well. The “WHERE” clause is where a triple

pattern should be specified, and it will be used for matching against the RDF data. The

namespace definition and also solution sequence modifiers (such as ORDER BY, LIMIT,

etc.) are optional. The SPARQL syntax is straightforward, and it is the basis for other

standard query syntaxes, as explained later.

2.5 Triple Stores

To store RDF data or triples, we need a data store that has been optimized for storage

and retrieval of triples, and like relational databases, queries are used to store and retrieve

data. Generally, triple stores are built to store and retrieve RDF data via semantic queries.

Figure 2.3. SPARQL query example and the result. a) example SPARQL query b)

result of the query.

10

Some of the popular triple stores are AllegroGraph6, OpenLink Virtuoso7, Jena TDB8,

and the Oracle Graph database9.

Note that, graph databases are more general stores as compared to purpose-built triple

stores, where graph structure with nodes, edges are used to store the data. This might lead

to faster lookups by using index-free adjacency structure. Most of the previously mentioned

data stores are graph databases capable of storing RDF directly. Typically, graph

databases, such Neo4j10, do not accept RDF natively and SPARQL queries need to be

converted to Cypher queries (Neo4j query language), beforehand. Recently, plugins to

load RDF/RDFS into Neo4j became available [2] .

2.6 Knowledge Graphs

From 1972, when the term knowledge graph (KG) was first introduced, researchers

focused on designing semantic networks to capture semantic relationships between entities

in their specific domains and projects such as Wordnet [3] remained active until now. On

the other hand, projects such as DBPedia [4] and Freebase [4] were designed for

unspecialized knowledge in 2007 although they have never considered themselves as KG.

But the term gained popularity in 2012, when Google introduced their Knowledge Graph

11 to incorporate the semantics in search engine, e.g., NELL[2] and YAGO[3]. There are

multiple definitions for knowledge graphs in the literature but here we present the graph-

based definition to better differentiate them from Heterogeneous Information Networks.

6 https://franz.com/
7 https://virtuoso.openlinksw.com/
8 https://jena.apache.org/documentation/tdb/
9 https://www.oracle.com/database/technologies/spatialandgraph.html
10 https://neo4j.com/
11 https://blog.google/products/search/introducing-knowledge-graph-things-not/

11

A knowledge graph (KG) is a directed graph 𝐺: (𝑉, 𝐸) whose nodes 𝑣𝑖 ∈ 𝑉 are entities

and edges 𝑒𝑖 ∈ 𝐸 are relations connecting the entities. For each node in 𝑉, we have a type

mapping function 𝜙 : 𝑉 → 𝑇, where 𝑇 denotes a node type set, and edges have an

associated type mapping function 𝜑 : 𝐸 → 𝑅 where 𝑅 denotes a relation type set. Thus, a

triple (𝑣𝑖, 𝑒, 𝑣𝑗) forms an edge which implies the relation 𝑒 between two nodes 𝑣𝑖and 𝑣𝑗 .

2.7 KG Evolution

A critical consideration for a domain expert or knowledge engineer is how a KG

evolves over time. Since most of the KG population software uses different datasets or

even Web documents to generate/update a KG, it is necessary to validate the resulting

KG before making it available to the users. Even in the most extreme cases, the changes

Figure 2.4. Size and linkage degree of publicly available knowledge graphs on the

Web. [source ISBN:9781643680811]

12

in those datasets may require software to be adjusted or modified, therefore a knowledge

engineer needs to monitor such processes. The basic way is to check the logs of the

software along with running some fixed number of queries to compare their results to the

expected results manually.

On the other hand, domain experts need to be notified of the changes in the reference

data sets when populating a new version. That is because the sciences are evolving each

day, and monitoring these changes helps them to get a better understanding of the data

and even make necessary decisions to utilize the information to their benefit. As

mentioned before, querying the data is time-consuming and usually insufficient when

dealing with large KGs.

Chapter three presents a method to automatically gather meta-information of different

versions of KGs to monitor changes in the numbers of nodes and edges as well as

structural changes and produce comprehensive reports.

2.8 Link Prediction

The link prediction task on a directed/undirected graph is defined as inferring the

subset of missing relations in timet+1 given a snapshot of the graph in timet, where nodes

in the graph represent entities and edges represent relationships between the entities [1].

There are different ways to formulate a link prediction task on a graph, but the most

popular way is to express it as a ranking problem, where a threshold is set on the

likelihood of the presence of edges between each pair of nodes. The most comprehensive

taxonomy of different approaches for link prediction is provided by [5] and improved in

[1], where the authors group the methods into four main categories: similarity-based

13

methods, probabilistic and statistical model, algorithmic methods, and preprocessing

method.

Link prediction has a large number of applications in different domains, such as

predicting protein-protein interactions in biology, social network analysis, entity

resolution [5], and many more. In chapter 5, we present a case study in the biological

domain, where the domain experts are interested in discovering unknown associations

between proteins and pathways in which the proteins participate.

2.9 Knowledge discovery in KGs

As mentioned earlier, there are numerous knowledge graphs in different fields that

contain hidden knowledge to be discovered. One primary way to achieve this is to use link

prediction to propose new associations within the entities in KG. The variety of entities

and edges between them make it hard to realize the schema of the KG. These entities and

relations might come from other resources or even more general-purpose KGs or

ontologies that have been used to populate the new KG and the schema of those resources

might not be known. This makes the link prediction problem even harder and less efficient,

sometimes less accurate.

Furthermore, the newly populated KG version might introduce changes in the

schema and the instances of the data, and this causes the previously successful data mining

methods to perform poorly on the new version of KG. Here is where the KGdiff, our

method to track the evolution of KG comes to play. It discovers the schema and schema

in-use of the KG and gives the better understanding of KG to the engineers and domain

14

experts and help them realize the overall schema and actual relations between different

types of entities in KG to variety of purposes such as link prediction.

The RegPattern2Vec is a powerful tool for large KGs where their schema in-use is

known to experts, and it takes advantage of the known schema to perform faster and more

accurate by selecting the sub-graph from KG that is more informative for such prediction

without expending lots of time tracing the whole KG. RegPattern2Vec has shown its very

good performance on the gold-standard datasets, but we did not stop there. Many other

methods perform well on these datasets but they are not able to perform as well in real-life

tasks. To show that RegPattern2Vec is applicable to real-life datasets, we applied to a

biological KG where it can predict association that are crucial in that domain. We have

shown that some of the predictions have literature support when the associations were not

known in our data and even propose new associations that are promising.

This dissertation proposes a knowledge discovery pipeline for domain experts

where a huge data in a form of a KG is available and discovery of knowledge is desired.

15

CHAPTER 3

KGdiff: TRACKING THE EVOLUTION OF KNOWLEDGE GRAPHS12

12 Abbas Keshavarzi and Krys Kochut. To be submitted to IEEE Transactions on Knowledge and Data

Engineering Journal.

* Presented in 21st IEEE International Conference on Information Reuse and Integration for Data Science

(IRI), 2020.

16

Abstract

A Knowledge Graph (KG) is a machine-readable, labeled graph-like representation

of human knowledge. As the main goal of KG is to represent data by enriching it with

computer-processable semantics, the knowledge graph creation usually involves acquiring

data from external resources and datasets. In many domains, especially in biomedicine, the

data sources continuously evolve, and KG engineers and domain experts must not only

track the changes in KG entities and their interconnections but introduce changes to the

KG schema and the graph population software. We present a framework to track the KG

evolution both in terms of the schema and individuals. KGdiff is a software tool that

incrementally collects the relevant meta-data information from a KG and compares it to a

prior version the KG. The KG is represented in OWL/RDF/RDFS and the meta-data is

collected using domain-independent queries. We evaluate our method on different

RDF/OWL data sets (ontologies).

17

3.1 Introduction

Recently, knowledge graphs have gained considerable interest among researchers.

They play an important role in various software systems, including recommendation

systems, information retrieval, search engines, and many others. Therefore, creating,

managing, and evaluating them is critically important.

A knowledge graph (KG) is a machine-readable, labeled graph-like representation of

human knowledge. This definition is similar to that of ontology, as they share largely the

same terminology and specifications, and they are used interchangeably in the literature.

Often, they both use the Resource Description Framework (RDF) to store, transfer, and

represent data. Broadly speaking, RDF is a set of triples, composed of a subject, predicate,

and object. It offers a very simple, yet powerful way to make data easier to process, transfer

and store by a variety of software systems. RDF Schema (RDFS) and the Web Ontology

Language (OWL) can be used to create a schema for the knowledge graph data. In this

regard, OWL is more expressive, which makes it possible to define many constraints and

restrictions to closely follow the meaning of the KG data. Consequently, RDF/RDFS and

OWL are some of the most popular specifications to represent both ontologies and

knowledge graphs.

Despite the aforementioned similarity between ontologies and knowledge graphs, there

are some fundamental differences between the two. In an ontology, the main focus is on

conceptualizing a given domain as accurately as possible and so the accuracy of the

knowledge modeling is at the forefront. An ontology should faithfully capture all of the

concepts and relationships in a given domain and appropriately represent them in its

18

schema. Often, only a limited number of instances, if any, are included, often as an

illustration.

On the other hand, knowledge graphs, while often including a schema as well, focus

more on the data represented as individuals (graph nodes) and interconnections among

them (graph edges). Usually, a major goal is to represent a large amount of data in a graph

form with an aim to leverage the data in many tasks requiring a semantics-based approach.

As previously mentioned, KG may be used to enhance graph-based search capabilities or

to support the core functions of recommendation systems. A KG can be created using

various resources, ranging from semi-structured to structured data, possibly including

unstructured natural language text. The acquired data is often curated and interconnections

are identified to form a knowledge graph. The resources may be evolving over time and

the KG construction process should be flexible enough to accommodate the changes. Thus,

a framework is needed to track the changes and offer the KG engineers a good grasp of the

accumulated changes in the KG. In this work, we present a framework to track KG

evolution from the perspective of both the schema and the individuals (instances). KGdiff

retrieves meta-data and other important information about the knowledge graph, which can

be analyzed by KG engineers and domain experts. Also, it can be used for comparison to

other (past or future) versions of the same KG. KGdiff uses SPARQL endpoints to execute

a number of SPARQL queries in order to get the necessary meta-data. Therefore, it does

not need to load the whole KG to memory. The queries are independent of the knowledge

graph schema and comprehensive enough to gather all of the necessary information for

tracking KG version evolution.

19

3.2 Related work

Some of the original knowledge graph comparison methods were motivated by the

UNIX diff command, but they have been proven to be unsuitable [6].

[7] is one of the pioneering works for ontology versioning. Although the main purpose

was to match different versions of ontologies together, similarly to version control systems

in software development, the authors managed to use different heuristic matchers to find a

delta of two ontology versions. Another way to tackle the problem was reported in [8],

where the authors convert each version of an ontology to a rooted directed acyclic graph

and compare them to establish differences. Atomic changes such as addition and deletion

were aggregated into more complex changes in [9]. Zeginis et al. [10] tried to find a set of

changes that could transform a previous version of ontology into a newer one. Although

these approaches sounded promising, in reality, their complexity of the types of reports

render them unsuitable for a comprehensive comparison of KGs.

In [11], the authors categorize changes in OWL ontologies as effectual or ineffectual

by applying their approach to 88 versions of the same ontology. The basic change

operations in [12], along with a rule-based approach helped the authors to determine

semantically relevant concepts in different versions. Similarity measures were used in [6]

to detect semantic differences in versions of an OWL ontology along with syntactic

differences using OWL syntax. [13] also used low-level changes and simple changes to

detect more complex ontology changes, but it is not clear if the authors consider changes

of the concepts or not. SPARQL select queries were used to retrieve simple changes from

a Virtuoso server used as an RDF datastore. Some other approaches include [14], and an

online ontology browser with a diff tool called Bubastis [14], which simply tracks the

20

changes in class entities within different versions of the same ontology. However, the

comparison of classes in Bubastis (classes added, removed or changed) is not sufficient to

track the evolution of an complex ontology or a knowledge graph.

In general, tracking changes in a knowledge graph evolution is rooted in area of

network science, where measuring the structural similarity/distance provides a metric to

tackle important challenges in graph analysis, such as graph matching, network comparison

and network and ontology alignment. For example, in [15], the authors investigated

approaches to determine the exact or inexact matches and used global and/or local

measures to determine if the networks are deterministic or random graphs.

Most recently, in [16], the authors studied the evolution of a knowledge hierarchy using

an approximation of Katz similarity measure to capture the concept hierarchy and

relationship importance to track the evolution of a hierarchy in large knowledge graphs. In

another work, researchers attempted to express changes in an ontology due to evolution

based on an ontology log and to determine whether the revalidation of existing alignment

is necessary or not [17].

Recently, graph databases become one of the options for storing Knowledge Graphs.

Often, the evolution of graph data is considered as a tool for tracking the history of data,

such as the recent work on the Neo4j13 database [18]. The similarity of the RDF data to

graph database data models makes it easy to store a KG in any graph database. Neo4j

gained significant popularity because of its compatibility with Java and its ease of use. Its

query language, Cypher, is easy to understand and has a lot in common with other well-

established query languages such as SPARQL and SQL. Having no schema requirement in

13 https://neo4j.com/neo4j-graph-database/

21

Neo4j databases is a plus, especially in the development phase, which imposes no

restriction on structuring the data. However, in the production phase, there is a need for a

schema in order to restrict the structure of the data stored in the database, typically, to avoid

errors. The schema is also helpful in understanding the structure of the graph data when

dealing it for the first time. Recently, some efforts in this regard have been made in the

graph database community, including Data Profiling (using Cypher’s built-in db.schema14

) and Database Analyzer15 . To the best of our knowledge, there are no efforts to analyze

the evolution of a knowledge graph represented in a graph database. This offers an

opportunity for us to expand our approach to graph databases, in the future.

3.3 Motivating Example

The Protein Kinase Ontology (ProKinO) [19], [20] is a Knowledge Graph, encoded in

OWL, containing a large amount of comprehensive data on protein kinases. Protein

kinases play an important role in many different types of cancer and have been a focus of

intensive research. At present, ProKinO has 829 classes, 81 relationships (properties) and

close to two million individuals. Its schema has been jointly developed by kinase scientists

and ontology engineers and the included hierarchy of classes, object and datatype

properties and other constructs define a comprehensive domain of knowledge on protein

kinases. The ProKinO knowledge graph is automatically populated by custom-built

14 https://neo4j.com/blog/data-profiling-holistic-view-neo4j
15 https://medium.com/neo4j/introducing-the-neo4j-database-analyzer-a989b85e4026

22

software and uses a number of external data sources, such as COSMIC [21], UniProt [22],

Reactome [23] and Kinbase. However, much of the data included in ProKinO has been

created at the lab of Dr. Kannan at the University of Georgia.

The hierarchical structure of the ProKinO classes has been designed by kinase

specialists and ontology engineers to closely follow the biologist's view of protein kinases,

their structure and function. The kinase classification into groups, families and subfamilies

has been established by kinase scientists at many institutions. However, classification of

the pseudokinases has been created largely at the University of Georgia [24]. The ProKinO

knowledge graph population software loads the schema and the kinase classification files

and then populates the individuals and links among them using resources mentioned above

to form the whole ProKinO knowledge graph.

The population process is repeated at regular intervals to keep ProKinO up-to-date

(usually bi-monthly) as the data resources release new versions, regularly. Consequently,

these regular updates result in new versions of the ProKinO knowledge graph. Obviously,

as the resources change, the ProKinO versions continually accumulate differences, which

are important both for the knowledge engineers and the domain experts who are the

intended knowledge graph users. Changes in the individuals in various classes and the

numbers of links between those individuals are crucial for the scientists, as they query the

ProKinO data and perform various kinase analysis tasks. With each new version, the

scientists are forced to execute numerous test queries or even manually verify the newly

generated knowledge graph to discover how the new data changed in comparison the

previous ProKinO version.

23

The ontology schema evolves over time, albeit not frequently, and the automatic

knowledge graph population software must be modified, as well. Consequently, the

knowledge graph engineers must evaluate the populated ProKinO Knowledge Graph and

check the new version for accuracy and verify that the population process was completed

correctly. The verification queries check if the numbers of instances in each class follow

the general growth trends and if a change in a specific class or a property causes any issues

for the populated data. These verification steps typically consume a significant amount of

time and resources but are absolutely necessary to maintain high quality of various protein

kinase analysis tasks. KGdiff has been designed as a comprehensive solution for

monitoring the evolution of a Knowledge Graph. To the best of our knowledge, there are

no other software tools available that are capable of monitoring the above concerns. As

shown in Figure 3.1, KGdiff displays information about a single version of a KG and also

the result of comparing two versions of a KG. We will present details about its design,

implementation and capabilities in the following sections.

Figure 3. 1. Screenshot of KGdiff

24

To evaluate KGdiff further, we selected a set of knowledge graphs and ontologies in

different domains. Then, using their different versions, we showed that the KGdiff is able

to track knowledge graph evolution and can provide important information for the

knowledge engineers and domain experts. We will discuss the experiments in the section

on evaluation.

3.4 Difference of Knowledge Graph versions

KGdiff is a software system which identifies and reports changes in an evolving

knowledge graph represented in RDF/RDFS or OWL. KGdiff is capable of identifying

changes both in the KG structure (at the schema level, sometimes referred to as the TBox)

and among the individuals and connections among them included in the graph (sometimes

referred to as the ABox). However, identified changes among the individuals only refer to

their counts, and not the actual individuals. The system provides a summary report in terms

of the statistics about the number of modified and retained classes, object and datatype

properties and other important concepts in a knowledge graph. Subsequently, the user can

evaluate the changes as either expected, e.g., new classes and properties, or any typical

increases in the numbers of class individuals, or unexpected, perhaps due to population

process errors or unintended class or property modifications. The system is divided into

two components: (1) the meta-data acquisition and (2) the graph difference evaluator. We

assume that the knowledge graph is accessible by SPARQL endpoints, one for each KG

version to be compared. At the end, a summary report is presented to the user.

The meta-data acquisition component executes a series of specific SPARQL queries

against the two endpoints to acquire the necessary information for each version of the

RDF/RDFS/OWL knowledge graph. Subsequently, the comprehensive meta-data

25

information about the graphs is stored in a MySQL database. The graph difference

evaluator uses the meta-data information for two versions stored in the database and

computes the differences between the versions. The final summary is prepared and

presented to the use.

As the difference evaluator is focused on the differences between the versions of

knowledge graphs, it does not report the complete meta-data for both versions. However,

as a convenience, the system also allows the user to view the entire meta-data information

identified for one KG version, which shows all graph entities (resources) and their

statistics.

3.4.1 Meta-data discovery

The meta-data for a knowledge graph includes primarily all classes of the resource in

the graph (nodes) and their hierarchical organization, relationships (properties) and their

hierarchical organization, as well as all types of edges (patterns of triples) in the graph. For

OWL-encoded knowledge graphs, it may also include class expressions and restrictions,

as defined in the graph.

A fixed set of SPARQL queries is executed. Due to the space limitations, we are not

showing them here, but an outline of one such query is shown in Figure 3.2. Classes are

retrieved first. For each class in the graph, KGdiff obtains the class’s URI, its labels

(rdfs:label), parent classes (rdfs:subClassOf), if they exist, and the count of its individuals

(instances). Here, we assume that individuals are classified using the rdf:type property.

The number of individuals for a class includes only the direct (immediate) instances. For

example, if class RoseWine has 100 instances, none of them are counted as instances of

26

the parent class Wine (if the Wine class has no direct instances, its number of instances is

set to zero).

Object and datatype properties are discovered next. In RDF/RDFS and OWL they are

first-class objects, and KGdiff collects their labels and parent properties

(rdfs:subPropertyOf). Classes defined as set expressions on other classes are discovered,

as well. OWL restrictions (including value and cardinality) are discovered, too, if present.

After all the classes have been collected, KGdiff retrieves the edge (triple) types. For each

triple, it determines the predicate, which is either an object property or a datatype property.

Furthermore, it obtains the class of the triple’s subject and the class of its object (for object

properties), or the XSD type (for datatype properties). SPARQL queries also establish the

counts of the instances for all triple types. Another important aspect of meta-data discovery

concerns discovery of additional class descriptions16.

16 https://www.w3.org/TR/owl-ref/

Figure 3. 2. A sample SPARQL query

27

3.4.2 Meta-data store

A relational database has been selected to store the retrieved meta-data information

from Knowledge Graphs. Fig. 3.3 illustrates an outline of the database organization as a

UML diagram. There are 19 classes and several associations created to capture all of the

important graph elements. Note that this is only an outline of the meta data organization,

and the actual database schema is considerably more comprehensive. For simplicity, the

diagram does not provide association multiplicities and many other details.

The central classes are Class, ResourceType, and EdgeType. EdgeType represents all

of the types of edges in a given Knowledge Graph and represents the property, the class of

the subject and the class of the object (for object properties). Note that blank nodes (RDF

resources without assigned URIs) can be used as subject or objects in edges. For graphs

represented in OWL, ClassExpression captures classes defined using set expressions,

including owl:unionOf, owl:intersectionOf and owl:complementOf. OWL restrictions are

represented by the Restriction class, which can be either value or cardinality restrictions.

Please note that a Restriction can be a part of a class set expression, as in a “classic”

example of a the RedWine definition as an intersection of the class Wine and all individuals

with the hasColor property restricted to color red17.

3.4.3 Defined schema vs. schema “in-use”

RDF graphs do not have to have a defined schema in RDFS or OWL. In fact, an RDF

knowledge graph may only include resources (individuals) and links among them in the

17 https://www.w3.org/TR/owl-test/misc-000-guide

28

form of triples. First, KGdiff identifies the defined schema by retrieving the explicitly

specified classes (rdfs:Class, owl:Class), properties (rdfs:Property, owl:DatatypeProperty,

owl:ObjectProperty), class expressions, restrictions, and other constructs. In addition,

KGdiff recognizes how object and datatype properties are used in a graph, where the ranges

and domains have not been explicitly specified, effectively recognizing what we call the

schema “in use”.

Consequently, there are two main types of information that KGdiff gathers from an

endpoint. In summary, a graph schema is retrieved by running SPARQL queries to retrieve

all concepts specified as classes, object properties and datatype properties, their domains

and ranges, expressions, restrictions, etc. Second, all edge types (triple types) which are

not explicitly defined in the schema but occur in the graph are recognized and stored as

ObjectEdges and DatatypeEdges, as well (see Figure 3.3 for an example).

The class of individuals participating as subjects (or objects) in any triple can be a

subclass of the actual domain and range defined for the property. This means the class of

the subject and object in an instantiated triple can be different from the domain and range

defined for that property. For example, in the ProKinO ontology, the class Mutation has

been defined as the domain for an object property named locatedIn, while the Motif class

has been defined as the range. The Mutation class has multiple subclasses, including

Insertion, Deletion, etc., and the actual individuals are populated from these classes, not

the Mutation class. So, in this case, EdgTypes can be <Insertion, locatedIn, Motif>,

<Deletion, locatedIn, Motif>, etc., instead of <Mutation, locatedIn, Motif> which was

defined in the schema.

29

F
ig

u
re

 3
.

3
.
M

et
a-

d
at

a
U

M
L

 C
la

ss
 D

ia
g
ra

m

30

Therefore, in evolving KGs, tracking the actual instances of the inferred schema is as

important as the changes in the defined schema. KGdiff is able to retrieve all object and

datatype edge types from an RDF or OWL knowledge graph and compare it to another

version of the graph for verification and to detect any changes for further analysis.

3.4.4 Implementation

KGdiff is an open-source18 web application coded in Java that uses both Apache Jena19

and HTTP REST requests to retrieve a comprehensive knowledge graph meta-data,

accessible from a SPARQL endpoint. It uses a SPARQL endpoint and the target graph

name and executes a number of SPARQL queries against the endpoint to gather various

aspects of the knowledge graph meta-data and store them in the database. Finally, the

complete structure of restrictions and class expressions are identified using a recursive

function and appropriate queries. Note that the restriction and class expressions are defined

using blank nodes which are resources with no URIs and no defined classes. Each

RDF/OWL datastore treats blank nodes differently. Although we gather information about

them in the database, KGdiff does not count them as classes but represents them as a

separate type.

As previously discussed, KGdiff requires Java, Jena, MySQL, Apache Tomcat20 and

can be used from a typical Web browser. Please note that Apache Tomcat can be easily

18 https://github.com/abbask/KGdiff
19 https://jena.apache.org
20 http://tomcat.apache.org

31

replaced by a different Java-based application server. Similarly, another relational

database accessible by JDBC can be used in place of MySQL.

3.5 Evaluation

We selected a number of ontologies and knowledge graphs in the domains of biology,

geography, linguistics, and agriculture. We tested KGdiff using different versions of each

knowledge graph. For some of the graphs, we used the published release notes or other

forms of descriptions to determine what has been changed in comparison to the previous

version. We used them to evaluate our results.

3.5.1 Datasets

We have collected five datasets, which will be discussed in more detail. For ProKinO,

we obtained several versions and compared them with the results reported by KGdiff.

Detailed change logs may not be available for some KGs, as they might be created and

populated automatically by software systems. In such cases, KGdiff may be used to

generate and record change logs for future reference.

The Ontology for Biomedical Investigations (OBI) [25] defines terms and protocols to

describe an investigation in the biomedical domain. We chose OBI due to its size and the

schema complexity. It can be used as a good benchmark to test our method’s performance

and correctness. OBI is a fairly large ontology, with numerous class and property

definitions. Many of them are defined using complex expressions and restrictions using

32

the OWL vocabulary. We used different versions of the OBI graph available on

BioPortal21.

Plant Ontology (PO) links the anatomy of plants to genomic data by defining common

vocabulary for anatomy, morphology, and development of plants. We have used two

versions of PO for our experiment, versions 2015/10/20 and 2019/05/0622.

To evaluate KGdiff further, we selected the GeoNames23 ontology and compared

versions 3.0 and 3.2, using the provided release notes as a reference.

Gold24 is an ontology for descriptive linguistics. It is an effort to systematize the

general knowledge in this field. For the evaluation purposes, we selected three different

versions of this ontology.

The BioPortal uses a tool called Bubastis [14], which provides some brief description

about what classes have been added and removed and the total number of differences

between the current and previous versions of an ontology.

3.5.2 Results

Table 3.1 shows the results of KGdiff for datasets mentioned earlier. The counting for

several aspect of the KG that KGdiff considers are listed for two different version of them.

Along with these counts, KGdiff retrieves and shows separate reports, listing entities,

numbers of instances and their parent(s). The differences are based on the changes in the

entity's name, their parent entities, and their definitions. For this work, we considered

21 https://bioportal.bioontology.org
22 https://www.ebi.ac.uk/ols/ontologies/po
23 http://www.geonames.org/ontology/documentation.html
24 http://linguistics-ontology.org

33

classes, object properties, datatype properties, object edges, datatype edges, restrictions

and class expressions. Others, including class axioms, functional properties and

annotations are left for future work.

It is worth mentioning that an ontology such as OBI has a large number of classes

defined by restrictions on other classes and object properties, and their definitions use blank

nodes to represent them. Blank nodes play a special role of graph nodes and are treated

differently in various RDF datastores. Since they do not have any definitions, they are not

clear to ontology users. Consequently, we decided not to count them in overall statistics in

the current version of KGdiff which is a practice follow by other tools such as Protege25.

Each graph version was retrieved using its own endpoint and the meta-data information

was stored in the database for further comparison. KGdiff has no limitation on the

number of the processed graph versions. All versions are stored independently from the

endpoints can be used offline. For the purpose of the evaluation, we selected only two

versions of each KG to evaluate KGdiff.

25 https://protege.stanford.edu/

34

T
ab

le
 3

.
1
.
R

es
u
lt

s
b
y
 a

p
p
ly

in
g
 d

at
as

et
s

to
 K

G
d
if

f.

35

3.5.3 Results evaluation

In the case of ProKinO, the changes detected by KGdiff were exactly as expected by

the KG engineers. All of the changes in the new version of ProKinO were successfully

identified by KGdiff and the correctness of KG population was verified. Obviously, such

an exact change log is available for a KG population process managed by knowledge

engineers, where some part of the process is semi-automatic. KGdiff is beneficial in

verifying the resulting KG or ontology created by an automatic or semi-automatic

population process. It shows a comparison of meta-data snapshots of the compared

versions.

KGdiff is also very useful when analyzing large RDF and OWL knowledge graphs,

such as OBI, with hundreds or thousands of classes and complex restrictions and class

expressions. In our experiment, the comparison results produced by KGdiff showed the

expected modifications, as compared to what has been provided in the change log. KGdiff

identified many additional changes in class expressions and restrictions, which were

verified by our analysis of the serialized ontology versions.

When a class (or a property) is replaced by a different class (or a property), it will not

be reflected in the changed counts of entities, as previously discussed. For that reason, we

have created an additional KGdiff module handling modifications for each entity types of

concern. For instance, the Gene class in the ProKinO ontology has recently been replaced

by the Protein class (to better model protein motifs and other specific information not

associated with genes). KGdiff, in its classes view notifies he user that the Gene class,

which existed in the previous version, does not exist in the new version of the ontology

36

graph, and that the Protein class did not exist in the previous version but exists in the new

version. KGdiff identified and reported all such changes in ProKinO.

In the GeoName graph dataset, the newly added GeonamesFeature class and the

geonamesID property were correctly identified along with all deleted entities. As

mentioned previously, the changes to the parent properties are also detected by KGdiff.

Table 1 shows the most important aspect of the changes in different versions of this

ontology. Note that, due to the extensive changes in the feature code entity, the vast number

of restrictions introduced in version 3.2, were skipped here due to the size limitations.

The versions of the GOLD ontology show a changing number of classes in versions

2008 (505) and 2009 (506). The class Greater Plural was removed and the classes Thing,

Circumfix were added. Some other classes, such as Closed and Salience Propety were

modified to Close and Salienc eProperty. The other observed changed between these two

versions was that 505 individuals of type Class were removed from the ontology. The other

release that we used was version 2010 (not shown here). We compared it to version 2009

to show the evolution of the ontology. 12 classes were removed namely Version, Proverb,

Predicative, Small Paucal Number, Several Number, ConVerb ,FreeUnit, Morphological

Unit, Inflectional Unit, Recent Tense, FunctionalUnit, DerivationalUnit and 8 new classes

were added, including InflectionalMorpheme, BoundMorpheme, Complement,

Morpheme, ProVerb, Converb, FreeMorpheme, and DerivationalMorpheme. Except for

the ProVerb class that seems to have been just renamed, others seem to have been

added/removed due to the change of concept. This shows that a domain expert can greatly

benefit from this tool to recognize and understand the evolution of the ontology or track its

changes over time.

37

The GOLD ontology does not include any individuals, so the triple types for the two

graph versions in this experiment resulted in empty lists. We observed the growth in the

number of classes from the 2015 to 2019 versions by 1131 classes (not shown here) and in

the number of object properties by 11. The number of restrictions and expressions is also

increased by 1108 and 67 respectively.

It is worth mentioning that the results from the Bubastis difference tool was different

for this ontology. Bubastis reported that there were 329 classes that have been changed and

271 classes have been deleted, which indicates that the number of classes have been

reduced over the period of four years. According to the Ontology Lookup Service, none of

the classes have been deleted in this period of time. It might have occurred due to uses of

external terms and definitions in Plant Ontology or, perhaps, Bubastis just uses the

ontology namespace to find classes and is limited to the internal class definitions and does

not identify all existing classes within the ontology.

3.6 Conclusions and future work

In this work, we presented a software solution, KGdiff, for tracking the evolution of

knowledge graphs and ontologies. KGdiff uses generic SPARQL queries to extract all

concepts and entities from an RDF/OWL graph and stores them in a relational database.

The process of acquisition is a one-time process and the information gathered can be used

to compare a graph version to its future versions as many times as necessary. The report

consists of data about a variety of concepts in the knowledge graph along with the overview

of its schema and schema “in-use”. The simplicity and interpretability of the results relieve

the knowledge engineers of time-consuming manual version comparison. Using examples

of knowledge graphs and sizeable ontologies, we have shown that this work accurately

38

identifies all of the changes in the schema and in the numbers of instances, which is an

important part of the knowledge graph evolution processes.

Currently, KGdiff does not handle all of the OWL constructs. However, it focuses on

the most important aspects of RDF/OWL knowledge graphs to help KG engineers and

domain experts to verify the correctness of the ontology/KG population and to track the

evolution of the graph. In the future, we plan to add the handling of the remaining OWL

constructs, such as Annotations, Class Axioms and some of the property descriptions, such

as owl:sameAs, owl:inverseOf, and others. Also, we plan to provide better visualization to

help the users understand different aspect of the knowledge graph changes and provide

more efficient ways to verify the data.

Another avenue for us is to explore the knowledge graphs that are stored in graph

databases, instead of RDF or OWL, as many knowledge engineers turn to graph databases

for knowledge graph representation. KGdiff can be adapted to identifying changes to KGs

represented in graph databases (SPARQL queries would have to be replaced by suitable

queries in Cypher, GSQL, or other graph database query language). Otherwise, much of

the KGdiff software could be reused.

39

CHAPTER 4

RegPattern2Vec: LINK PREDICTION IN KNOWLEDGE GRAPHS26

26 Abbas Keshavarzi, Natarajan Kannan and Krys Kochut. To be submitted to IEEE Transactions on Pattern

Analysis and Machine Intelligence.

* Presented in 2021 IEEE International IOT, Electronics, and Mechatronics Conference (IEMTRONICS).

40

Abstract

Link prediction is an important task in many domains, including health sciences,

biology, recommender systems, social networks, and many more. It is one of the problems

residing within the intersection of knowledge graphs and machine learning. Link prediction

aims to discover unknown links between entities in a graph using various techniques.

However, due to the size of knowledge graphs today and their complexity, it is a

challenging and time-consuming task. In this work, we present RegPattern2Vec, a method

to effectively sample a large knowledge graph to learn node embeddings, while capturing

the semantic relationships between graph nodes with minimum prior knowledge and

human involvement. Our results show that the link prediction using RegPattern2Vec

outperforms related graph embedding approaches on large-scale and complex knowledge

graphs.

4.1 Introduction

Today, knowledge graphs (KG) are gaining popularity in many domains. KGs can be

stored and represented using standardized vocabularies, including Resource Description

Framework (RDF), Web Ontology Language (OWL), and various graph databases that are

rapidly gaining popularity, nowadays. Today, KGs often are very large and represent vast

amounts of actionable data and researchers and computing practitioners have turned to

graph data mining to leverage the KG data even further.

Recently, machine learning (ML) has been gaining popularity due to numerous

successful applications in many different domains, including graph mining [26], image and

41

video processing [27], [28], text mining [29], reinforcement learning [30], and many others.

It is also applicable to data mining of KGs. Software systems can automatically discover

interesting patterns in KGs, while not being explicitly programmed to achieve that task.

There are various types of learning algorithms, such as supervised and unsupervised

learning, reinforcement learning, and many more. Classification and clustering are some

of the most popular algorithms for machine learning on KGs. Experts take advantage of

different algorithms to create recommendation systems for social media networks,

entertainment libraries, find similarities in bibliographic networks, and many mor e.

KGs in nature are similar to Heterogeneous Information Networks (HIN) [31], where

a variety of node and/or relation types between are used to represent data. This diversity of

types provides benefits for learning, as compared to Homogenous Network, where types

of nodes and relations are uniform. Finding appropriate methods to capture this extra

information and use it in ML algorithms is a significant challenge.

Another major area, in the intersection of machine learning and KGs, is KG completion

and, more specifically, link prediction. This problem has two aspects: predicting the

missing links. KGs are usually populated automatically using variety of internal and

external resources and due to the incompleteness of those resources, there might be some

known links that are missing in populated KG. Here, one task of machine learning methods

is to find those missing links and suggest that there should be connections between them.

As the graph analytics techniques are computationally expensive, especially on large

graphs, researchers often aim to reduce the dimensionality of a graph into a low

dimensional space. Graph embedding aims to preserve the structure of the graph while

representing it as low dimensional vectors [32].

42

Based on [32], there are six different categories to generate vectors from a graph. These

include matrix factorization, deep learning, edge reconstruction-based optimization, graph

kernels, generative models, and hybrid models. In this work, we use a deep learning

approach, in which random walks are used to sample the graph. This approach is based on

a family of models from Natural Language Processing (NLP) called word2vec [33]; we

specifically use the modified version of skip-gram model [34] in producing the vector

embeddings. Skip-gram attempts to find the semantic similarity between words in a context

by learning a meaningful representation for each word used in sentences in a corpus or

documents. The main intuition is that we can discover the meaning of a word by

understanding other words appearing close in a sentence. In the basic word2vec approach,

the algorithm accepts a sentence and considers a window, usually of size 5 to 10, around

the word of interest (center word) and generates training examples for a simple Neural

Network (NN) with one hidden layer. The training examples are pairs of the center word

and each of the words within the window size (context words). Then it trains the Neural

Network to maximize the probability of a context word, given a center word. Then, the

weights in the trained network are used as embeddings for each word in the corpus

dictionary.

In this paper, we adopted this NLP method to our novel graph flattening approach using

regular expressions to produce vector representation for the nodes in the graph. We

formulate the link prediction as classification problem, using a model trained on the vector

embeddings of the pairs of nodes connected by the link of interest. Our method, which we

call RegPattern2Vec, shows high accuracy and discovers interesting possible links between

unlinked nodes in the graph.

43

4.2 Related Work

Past research includes several approaches to capturing the semantic relationship

between graph nodes. Matrix factorization-based methods generate embeddings by

factoring the matrix that represents the relations between nodes [35]. The matrix can be an

adjacency or a Laplacian matrix, among other methods. Another technique that is used to

generate vector embeddings, is Graph Kernels. Graph kernels are a measure of similarity

of pairs of graphs. For example, [36] uses graph kernels for subtrees and similarity of

instances in the original graph by counting common structures. Intuitively, vector

embeddings of nodes with similar structure in a subtree are closer to each other.

Generative models are also popular as a graph representation learning method. The

generative and discriminative models play the minmax game, where the generator

approximates the connectivity of a graph and a discriminator calculates the probability of

edge’s existence. They are used to perform link prediction and node classification [37].

Finally, we discuss two approaches that can be classified as Deep Learning (DL) methods.

DLs using random walks, such as metapath2vec [34], and DLs not relying on random walks

[38] and [39], utilizing other techniques for computing vector embeddings. Whether

employing minimization of Margin-Based Ranking Loss for entities or constructing a

multilayer graph with structural similarity of all nodes in level of hierarchy, their goal is to

translate the graph to a low dimensional space, where it can be used for applications such

as link prediction or node classification. It is worth mentioning that there are other

techniques such as using Convolutional Networks [40] and Autoencoders [41], which we

44

do not discuss in this section because they fall into an entirely different type of methods.

Generally, most GCN approaches suffer from scalability problems when the graph is large

and dense due to the number of parameters and so are impractical to use. Therefore,

different type of approach with a smaller number of parameters and hyperparameters will

be required to large KGs such as approaches to sample the graph and learn representation

in more efficient way, which will be discussed next.

Since in our method we rely on deep learning using random walks, we will focus on

similar approaches in greater detail. As the computation of all possible walks on a graph is

computationally expensive, researchers tend to choose random walks on the graph using

some probability distribution. This would be sufficient for walks on homogenous networks.

However, in heterogeneous networks with multiple types of nodes and edges, we need to

differentiate types of nodes/edges when selecting the next node. Metapath2vec++ [34] is

an approach that considers a fixed path of node types, which is called a meta-path. For

instance, on a DBLP computer science bibliographic dataset [42], the meta-paths APA,

APVPA, and OAPVPAO were chosen, where A represents the author, P paper, O the

organization, and V the venue. These meta-paths are used to bias the random selection of

the next node with the appropriate type in a random walk. Although some results of

automatically discovering meta-paths have been published [43], usually domain experts

are needed to choose the meta-paths of their interest for random walks. A domain expert

should fully understand the KG organization. Although some tools for a KG schema

discovery exist, such as KGdiff [44], due to the complexity of KGs and the hierarchy of

concepts in them, it becomes difficult and time consuming to create appropriate meta-

paths. Their selection should consider several aspects, e.g., the problem we want to solve

45

(node classification, clustering, etc.), either the selected subgraph or the whole KG, and the

meta-path coverage within it (number of nodes that can be reached using meta-paths/meta-

graphs). Although the meta-path approaches on HINs were often used for various tasks,

they are not useful for capturing more complex relations among entities. Each type of node

must be explicitly defined or the meta-path does not capture the variation of attributes

linked to the nodes. [45] proposed meta-graphs, which in a nutshell are meaningful

combinations of meta-paths. For instance, if there are two meta-paths as APA, AVA, a

possible meta-graph would be A-[P/V]-A. The use of meta-graphs as constrained to

random walks was tested in [46], but the choice of meta-graphs where they can improve

the overall model poses another challenge. To overcome these weaknesses, we introduce

RegPattern2Vec, where a regular expression guides the random walks to sample sequences

of nodes in a more efficient way, especially for large KGs. where other methods fail due

to the lack of scalability. The embeddings produced by our representation learning

captures all of the necessary characteristics of each node to be used for high accuracy link

prediction.

4.3 Preliminaries and Problem Definition

In this section, we first introduce some preliminary concepts and then define the

problem of Link prediction on KGs using Random Walks constrained by Regular

Expressions. As of this writing, a single, commonly accepted definition of a knowledge

graph does not exist, yet, and many researchers provide their own definitions. A good

46

analysis is of KG definitions has been presented in [47], [48]. Here, we will use graph-

based definition.

Knowledge graphs. A knowledge graph (KG) is a directed graph 𝒢: (𝒱, ℰ) whose

nodes 𝑣𝑖 ∈ 𝒱 are entities and edges 𝑒𝑖 ∈ ℰ are relations connecting the entities. Edges,

usually referred to as triples of the form (𝑣𝑖, e, 𝑣𝑗), represent some type of semantic

dependence between the connected entities. Nodes have an associated type mapping

function 𝜙 : 𝒱 → 𝒯, where 𝒯 denotes a node type, while edges have an associated type

mapping function 𝜑 : ℰ → ℛ where ℛ denotes a relation type set.

Given a knowledge graph G, an edge with a relation type R connects source nodes of

type S and target nodes of type T defines a meta edge 𝑆
𝑅
→ 𝑇 . A set of all such meta edges

for G is called a schema graph (sometime referred to as meta-template). In fact, schema

graph is a directed graph defined over node types 𝒯, with edges from ℛ, denoted as GS =

(𝒯, ℛ) [49].

Knowledge graphs are often represented as RDF [50] datasets, where nodes (entities)

and relationships are represented using Uniform Resource Identifiers (URI). Nodes and

relationships have assigned types, given as URIs, as well. Furthermore, these types may

form type hierarchies. RDFS [51] is often used to define a schema for an RDF knowledge

graph. Knowledge graphs are closely related to Heterogeneous Information Networks

(HIN). In HINs, object (node) and relationship types both contain more than one element,

that is, there are multiple labels for graph nodes and multiple labels for edges. In case that

type sets are singletons, the Information Network is called a Homogeneous Information

Network (all nodes in the network are of the same type and all edges are of the same type).

47

Despite the obvious similarity of KGs and HINs, there exist important differences

between them. An important distinction is that in HINs, a relation of type R ∈ ℛ uniquely

determines the types of source and target nodes that can be connected by the relation R. In

knowledge graphs, however, a relation of type R may connect nodes of many different

source types and target types. Many other differences KGs and HINs exist, but they are

not important for the research presented in this paper.

It has been shown that the results of various graph-embedding tasks are sensitive to the

selection of a specific meta-paths [52]. In this paper, we propose a method of using regular

expressions as a specification of a wide range of semantic relationships to be incorporated

in random walks.

Regular Patterns on KGs. Let 𝐺 be a knowledge graph, 𝐺 = (𝒱, ℰ), with a node

type mapping function 𝜙 : 𝒱 → 𝒯 and an edge type mapping function 𝜑 : ℰ → ℛ. A

Regular Pattern on 𝐺 is a regular expression (pattern) [49] r formed over either set 𝒯 or ℛ

as the alphabet.

We will not formally define regular expressions, since they are commonly used in

computing, today. Briefly, a regular expression defines a set of strings (sequences, or

words) over an alphabet; it defines a regular set [49]. We assume a standard format of

regular expressions used in many programming languages today, for example in Python

[53]. Here, we will only use a subset of possible regular expression constructs, including

the concatenation, the alternative (|), repetitions of zero or more times (the Kleene star *),

one or more times (+), specified number of times ({n, m} n through m, and {n,} at least n),

and the complement matching [^xy] (any symbol other than x or y). Note that a meta-path,

as defined in the metapath2vec algorithm [34], can be regarded as a regular expression over

48

𝒯 (or ℛ) since it can be regarded as a concatenation of node (or relation) types placed on

the meta-path (again, a relation in HINs uniquely determines the source and target node

types and vice-versa).

As an example, given node types Ti ∈ 𝒯 in a KG, we could formulate a variety regular

patterns over node types, for example, T1 T2 T3, T1 (T2 | T3) T4, (T1 | T2) T3+ T4, any many

others. Similarly, given edge types Ei ∈ ℛ in a KG, we could create regular patterns over

edge types, such as [^R1] R2 R3* R4 or R1 (R2 | R3)* R4. Intuitively, a regular pattern defines

a set of node (or edge) type sequences (a regular set), which we use to bias random walks

on a KG to follow semantically relevant data.

Many knowledge graphs utilize complex hierarchies of node (entity) types such as

Yago[54], DBpedia[55], and NELL[56]. Consequently, defining regular patterns based on

node types is impractical, as they would require costly type inference (node types in actual

sampled walks could be subtypes of those included in the defined regular pattern). Hence,

using regular patterns on edge types may be a better choice.

In this paper, we focus on link prediction and so we rely on a specific general format of

regular patterns for biasing the random walks. Assume that given a KG, we need to predict

an edge (h, r, t), where h, t ∈ 𝒱, r ∈ ℰ, 𝜙(ℎ) = 𝐻, 𝜙(t) = 𝑇, and 𝜑(r) = 𝑅. If the KG has

a simple (non-hierarchical) structure of node types, our expression pattern can be based on

node types and have a general format 𝑯[^𝑻]+ 𝑯 𝑻. However, in a KG with a large node

type hierarchy, we use edge-based patterns with the general format of [^R]{2,} R. That is,

at least 2 edges with relation types different than the one to be predicted followed by the

edge relation type to be predicted.

49

The intuition behind the above regular (expression) pattern formats primarily comes

from the observations of meta-paths and meta-graphs, where the similarity of two nodes is

calculated based on the number of paths between them that follow a specific meta-path [57].

While some works [34], [46], [58] use symmetric meta-paths to calculate similarity between

nodes of the same type, others [59] use more complex meta-paths for a different types of

nodes. RegPattern2Vec follows the latter idea of finding the similarity of nodes with

different types, but meta-paths and meta-graphs must be explicitly designed by domain

experts and each such meta-path needs to be used in a separate experiment. In general,

individual meta-paths cannot capture all possible semantically relevant connections

between the nodes of interest. RegPattern2Vec, due to its use of regular patterns cover a

large set of meta-path-like connections and takes advantage of a multitude of such semantic

connections in one experiment.

We can explain the RegPattern2Vec using a simple example shown in Figure 4.1. The

graph contains 4 different relations: R1, R2 R3, and R4 (red, green, blue and yellow,

respectively). The link that we want to predict is R2. Following the regular pattern,

[^R2]{2,}R2, we have R1, R3, R4 ∈ [^R2]. An example walk following the pattern is 𝑎1

𝑅1
→ 𝑐1

𝑅1
→ 𝑎2

𝑅2
→ 𝑑1. The intuition is that if we found two nodes (a1 and a2) where they link

to another common node (c1), they are semantically related and node a1 might have the

relationship R2 to d1, as well, which is useful for the link prediction task.

50

In the example nodes a1 and a2 have two common nodes b1 and c1 and plus the above

path, 𝑎1
𝑅4
→ 𝑏1

𝑅4
→ 𝑎2

𝑅2
→ 𝑑1 is also allowed based on the regular pattern. It is possible that

the intermediate nodes have a relationship with other nodes, such as nodes c1, c2, and c3.

These links might be considered as loops within the same type of nodes. If the nodes are

the same or different type, a regular pattern can find such path and there is hyperparameter

to control number of such possible loop. If this parameter is 1 the path 𝑎1

𝑅1
→ 𝑐1

𝑅3
→ 𝑐2

𝑅1
→ 𝑎3

𝑅2
→ 𝑑2 is allowed and if it was 2, a walk from node c1 can reach node

c3 and the path 𝑎1
𝑅1
→ 𝑐1

𝑅3
→ 𝑐2

𝑅3
→ 𝑐3

𝑅1
→ 𝑎4

𝑅2
→ 𝑑3 is also permitted. Here, a1 and a2 are

more similar than a1 and a4 but it can be beneficial to capture those paths, as well. By this

logic, a random walk constrained by a regular pattern can reach different paths to capture

more links within the graph, if necessary.

Figure 4. 1. Illustration of random walks using regular expression.

51

4.4 RegPattern2Vec

RegPattern2Vec relies on random walks to produce graph embeddings. Random walks

on knowledge graphs are constrained to those matching a defined regular pattern.

4.4.1 Random Walks

Random walks in RegPattern2Vec are designed to sample an arbitrary number of

walks. Their number can be controlled by parameters, such as “walk length” and “number

of walks” (per starting node). Even though the knowledge graphs we use are defined as

directed graphs, here, we treat them as undirected. We do this to be able to sample paths

from all possible paths according to a defined distribution. Having an undirected

knowledge graph and a regular expression pattern, a random walk can be started from any

instance of the starting edge (or node) type in the pattern.

A regular pattern is converted to an equivalent Deterministic Finite Automaton (DFA)

M [49] with the same input alphabet as the one used in the regular expression pattern

definition. We will not introduce a formal definition of a DFA here but simply state that a

DFA has a finite set of states, an input alphabet, a transition function , a starting state, and

a set of final states. In our case, the state transition function is defined as : Sℛ → 𝑆 (or

: S𝒯 → 𝑆) and specifies state transitions based on edge (or node) types, depending on

the regular pattern expression. We assume that  is a partial function and for some states,

transitions on some relation (or node) types may be undefined. We use the transition

function  of M to define the probabilities of node selections in our random walks.

52

It is obvious that if we repeat the walk from each node, we will discover more paths as

the node might link to multiple nodes, which are allowed based on the regular pattern. We

will call this parameter “number of walks”. We will discuss how to choose the parameter

and analysis of their impacts in the next section. As in each step there might be multiple

choices, randomization will help the random walk to select a next node in each step. In the

scale-free networks, where the degree distribution follows the power law, some nodes,

often referred to as hubs, have high number of incoming/outgoing edges. It seems that such

nodes would dominate the random walks as they have a higher probability of being reached

when the next node selection follows the normal distribution. As the frequency of nodes

appeared in the walk is the key point of representation learning, we bias the walks while

using a regular expression pattern and its equivalent DFA M, using the formula below:

 𝑃(𝑣𝑖+1 | 𝑣𝑖, 𝑀) =

{

1

|𝑁𝑣𝑖+1|

∑
1

|𝑁𝑣|
𝑣∈𝑁

𝑣𝑖

 (𝑣𝑖, 𝑟𝑖 , 𝑣𝑖+1) ∈ ℰ,𝑀 𝑖𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑠𝑖 𝑎𝑛𝑑

 (𝑠𝑖, 𝜑(𝑟
𝑖)) = 𝑠𝑖+1

0 (𝑣𝑖, 𝑟𝑖 , 𝑣𝑖+1) ∈ ℰ, 𝑏𝑢𝑡 (𝑠𝑖, 𝜑(𝑟

𝑖)) 𝑖𝑠 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑

0 (𝑣𝑖, 𝑟𝑖 , 𝑣𝑖+1) ∉ ℰ

Here, |𝑁𝑣| is the of degree of node 𝑣, 𝑣𝑖 indicates the current node and 𝑣𝑖+1 ∈ 𝑁𝑣𝑖 is

the next candidate node, where 𝑁𝑣𝑖 is the entire neighborhood of node 𝑣𝑖. Furthermore, si

is the current state of M, that is, after processing the sequence of edge types 𝜑(𝑟1)… 𝜑(𝑟𝑖),

and M’s transition function from state si on edge type 𝜑(𝑟𝑖) is defined and leads to state si+1. We

can easily create a similar formula using a DFA M with node types, instead of relation types, as shown

in (1). By fine tuning the previously mentioned parameters, this probability distribution will

53

be sufficient to reach as many nodes as possible (of reachable nodes) to be included in

walks, which results in more accurate vector embeddings.

4.4.2 Representation Learning

RegPattern2Vec converts the graph into the sequences of nodes and, from this point,

we treat the nodes as words in sentences, as produced by random walks. These sentences

are used as input to a model, similar to the one used in metapth2vec++ [9], for generating

node embeddings. This model is an improved version of the original skip-gram model, as

it takes into consideration types of edges (nodes). This allows the embeddings to capture

the similarity of edges (nodes) based on their types (often considered as classes) along

with their appearance of closely connected nodes, as required by the pattern.

4.4.3 Link Prediction

RegPattern2Vec formulates Link Prediction in KGs as a classification problem. Each

existing link (or edge) of interest is represented as a vector of real numbers and is treated

as a positive example for training the model. We can combine two vectors using Hadamard

product and used the resulted vector as features for machine learning algorithm with label

as positive. As the negative examples are typically not included in knowledge graphs, we

create combinations of pairs of nodes that are not connected by edges in the graph and use

them as negative examples, which as a common approach in the published research in this

area. RegPattern2Vec uses an element-wise multiplication of vectors as the combination

54

operation, which transforms the pairs of nodes to another space. These examples are used

to train a classification model, such as Logistic Regression, which can be used for link

prediction.

4.5 Experiments

4.5.1 Datasets

In our experiments, we used two popular datasets, YAGO39K [35] and NELL [5].

YAGO39K contains a subset of the YAGO knowledge base [29], which includes data

extracted from Wikipedia, WordNet and GeoNames. This subset contains 123,182 unique

entities (nodes) and 1,084,040 edges, using 37 different relation types. A histogram of

relation type distribution in the YAGO39K dataset is shown in Figure 4.2. NELL is a

knowledge graph mined from millions of web documents and contains 49,869 unique

nodes, 296,013 edges, using 827 relation types. In contrast to the Heterogeneous

Information Networks, both datasets include many edges with the same relation type

connecting nodes with many source types and/or many target node types.

4.5.2 Link Prediction Experiments

Following the work on link prediction on the YAGO dataset [35], we chose three

different relation types namely isLocatedIn, isCitizenOf, and isLeaderOf. Based on the

relation to be predicted, we split the KG data, as reported in Table 4.1. We need to extract

some number of edges from each of the three types into three different test sets for three

55

different tasks. To do so, we utilized minimum spanning tree to capture the minimum

number of nodes that can be added to the test set while having the nodes in the training set.

It is necessary, because our method requires that the node exist in the training data,

although the node does not necessarily need to have the edge of interest in the training set.

However, it can have other relations with other types of nodes. So, for each task, we extract

the maximum number of edges of interest from the graph as the test set, while the remaining

edges of interest and instances of other relations are combined to form the training data.

We have already discussed how to use the edge of interest in creating the training

data with positive and negative examples for a binary classification model. We can

follow the same process to make examples for testing in order to evaluate the

performance of our method. Following the work described in [5], we chose two relations

CompetesWith and playsAgainst for our link prediction experiments with the NELL

dataset. The cited work reported the best metapaths used to predict these relations and

Table 4. 1. Statistics of split of data for different experiments

 isLocatedIn isCitizenOf IsLeaderOf

Train Set Graph 1,039,499 1,080,570 1,083,079

Train set edges 44,542 3,128 855

Test set edges 44,541 342 106

56

used these metapaths for comparison. We performed a similar process (as described

above) to split the data into a train and test sets.

4.5.3 Performance

Having approximately a balance training set we train a logistic regression for binary

classification. We evaluate our model using 10-fold cross-validation and test it using

unseen set that we extracted from the graph.

To evaluate the performance of RegPattern2Vec on YAGO39, we chose metapath2vec

as our baseline, shown in Figure 4.3, to demonstrate that RegPattern2Vec can cover more

meta-paths without explicitly defining them and perform better, too. To get the best meta-

paths for isLocatedIn and isCitizenOf relations, we chose the ones that achieved the best

scores reported in the literature. However, were not able to find the best metapaths for

Figure 4. 2. Distribution of relation types in the YAGO39K dataset.

57

isLeaderOf, and we designed them ourselves. After our experiments, Person
isLeaderOf
→ city

isLocatedIn
→ country

isLocated
← city was the best meta-path. For example, a leader of state, is

specified as leader of cities with the state. That information suggesting the earlier meta-

paths to perform better than any other meta-paths. The regular pattern for three

aforementioned links were defined as follow:

[^𝑖𝑠𝐿𝑒𝑎𝑑𝑒𝑟𝑂𝑓{2, } 𝑖𝑠𝐿𝑒𝑎𝑑𝑒𝑟𝑂𝑓]

[^𝑖𝑠𝐿𝑜𝑐𝑎𝑡𝑒𝑑𝐼𝑛]{2, } 𝑖𝑠𝐿𝑜𝑐𝑎𝑡𝑒𝑑𝐼𝑛]

[^𝑖𝑠𝐿𝑜𝑐𝑎𝑡𝑒𝑑𝐼𝑛]{2, } 𝑖𝑠𝐿𝑜𝑐𝑎𝑡𝑒𝑑𝐼𝑛]

To run the experiments, we kept the same parameter settings for each of the method,

when working on a specific relation prediction. The settings included the number of walks

from each node, the maximum walk lengths, the Logistic Regression parameters, and the

metrics to evaluate their performance. To select the best algorithm for binary classification

we examine two famous and popular algorithms, Logistic Regression and Random Forest,

and we tested several experiments with both, and it seems that logistic Regression in our

case the best performing method.

Therefore, all the experiments are performed with logistic Regression for evaluation

purposes. RegPattern2Vec shown superior performance over metapath2vec method with

best meta-paths possible. It is expected that RegPattern2Vec would perform better in link

prediction tasks where it can obtain more semantics by exploring different path within the

knowledge graph. In the case of the isLeaderOf relation, as the data does not contain

information useful for predicting this relation, the performance is lower than for other

relations.

58

For the evaluation of RegPattern2Vec on NELL datasets, we chose metapath2vec and

used the best meta-paths reported in [30] for each of the relations. For CompetesWith, there

were top five meta-paths. Our experiment showed that HeadQuarteredIn performs the best

although it was ranked as the third in top 5. And for the PlaysAgainst relation, we selected

two best meta-paths for evaluation purposes. We used the following regular expression

patterns:

[^𝐶𝑜𝑚𝑝𝑒𝑡𝑒𝑠𝑊𝑖𝑡ℎ]{2, } 𝐶𝑜𝑚𝑝𝑒𝑡𝑒𝑠𝑊𝑖𝑡ℎ

[^𝑃𝑙𝑎𝑦𝑠𝐴𝑔𝑎𝑖𝑛𝑠𝑡]{2, } 𝑃𝑙𝑎𝑦𝑠𝐴𝑔𝑎𝑖𝑛𝑠𝑡

As shown in Figure. 4.3, RegPattern2Vec outperforms metapath2vec with different

meta-paths for both relations in correctly predicting the unseen links between different

nodes. The ROC shows that across most of the threshold the performance of

RegPattern2Vec is significantly higher than metapath2vec with different metapaths.

59

F
ig

u
re

 4
.

3
.

C
o
m

p
ar

in
g
 R

O
C

 o
f

R
eg

P
at

te
rn

2
V

ec
 w

it
h
 b

as
el

in
e

o
n
 t

w
o
 d

at
as

et
s.

 a
)

T
h
re

e
re

la
ti

o
n
s

o
n
 Y

A
G

O
3
9
K

 b
)

T
w

o
 r

el
at

io
n
s

o
n
 N

E
L

L

60

4.5.4 Patterns Discovered of Random walk guided by Regular Pattern

Based on the dataset and underlying schema, RegPattern2Vec discovers different

patterns in the data and uses them to accurately predict possible links in the KG. Figure 4.4

shows the top 30 frequent meta-paths capture with RegPattern2Vec without explicitly

specifying them. Although the number of possible relation sequences is very high,

especially allowing for repetitions, some of the sequences can be seen frequently, based on

the graph and they might significantly influence the vector embeddings. So, it is important

to have a way to capture most of the patterns in the graph and consequently all path

instances to allow the representation learning model to produce more accurate embeddings.

This cannot be achieved by meta-paths as prior knowledge is needed to design each meta-

path and they can be easily missed, especially when the schema of KG is unambiguous or

not well-defined. Although just the frequency of each pattern in the data does not provide

a good measure of how the pattern is important or useful for the link prediction problem,

it can provide information about the graph itself and what are the frequent patterns in the

graph. Then, the representation learning model can decide how frequent two specific nodes

appear in the same context and provide a closer embedding for each of them, based on their

local structures and neighbors.

61

Figure 4. 4. The top 30 most frequent relationship patterns discovered by

RegPattern2Vec for isCitizenOf relation.

62

Effect of Hyper-parameters

In this section we studied the effect of two important hyper-parameters in the random

walks on performance and elapse time namely the number of walk and length of walks.

The effect of different choices of these two on the AUC ROC is demonstrated in Fig. 4.5a

for playsAgainst relation on NELL dataset. As more nodes are connected to each other, we

need to sample more paths by increasing the number of walks or walk length. On the other

side, due to the large size of KGs, one of the challenges of learning the embeddings is

scalability and efficiency. we showed that increasing the number of walks can improve the

performance, as the random walks are able to trace more paths in the data. Figure 4.5b

shows how the increase of this parameter affects the elapsed time of the random walk, in

this case when experimenting with the competesWith relation on the NELL dataset in two

cases of walk length 10, and 100. As demonstrated the elapsed time is linearly related to

the hyper-parameters.

Figure 4. 5. a) Effect of number of walks and walk length on AUC ROC b) Effect of

number of walks per node on elapsed time of random walks with two different walk

lengths 10 and 100.

63

4.6 Conclusion and Future work

In this work, we presented RegPattern2Vec, where a regular pattern guides the random

walks in a knowledge graph to efficiently sample sequences of nodes to learn high quality

embeddings for link prediction. We demonstrated link prediction using relation types,

where the schema of knowledge graph is unknown, or node type hierarchy is complex. As

a future direction for our work, we want to explore how to bias the random walks to favor

the nodes or relations that might contribute more accurate link prediction results. Also, if

the most frequent relations found in the patterns of walks would improve the results. We

plan to achieve this by automatically tuning the bias score for each type of node (or

relation), while training on the graph and checking the link prediction results to adjust the

scores. The number of parameters to tune is related to the number of types or relations that

we have in KG, which seems to be practical to a model to work with.

64

CHAPTER 5

PREDICTING PATHWAY ASSOCIATIONS FOR UNDERSTUDIED DARK

KINASES USING A PATTERN-BASED GRAPH EMBEDDING ON

HETEROGENOUS KNOWLEDGE GRAPHS 27

27 Abbas Keshavarzi, Liang-Chin Huang, Krzysztof J. Kochut, and Natarajan Kannan, to be submitted to

Computational Biology.

65

Abstract

Given a Knowledge Graph (KG) Link Prediction is a task of predicting links between

nodes in the graph. Capturing the structure of the graph and the characteristics of

neighboring nodes may offer critical information for predicting possible links within the

graph. Although link prediction can be applied to networks from different domains, it is

particularly interesting in biological networks, where many important associations can be

discovered based on graph structure. In this work, we propose a new approach to sampling

a large knowledge graph and using an embedding technique adapted from one often used

in Natural Language Processing. We were able to use this approach to accurately predict

known associations between kinases and biological pathways and predict new putative

associations between under studied kinases and pathways.

66

5.1 Introduction

Given a Knowledge Graph (KG), the Link Prediction task is predicting the next most

probable link in the network [52], [60] This task differs from finding missing links that

occur frequently due to incompleteness of KGs. To this end, capturing the structure of data,

the characteristics of neighboring nodes might result in predicting the possible links within

the data. Although the link prediction can be applied to networks from different domains,

it is particularly interesting in biological networks where some associations are to be

discovered [61], [62]. As the analytics techniques are computationally expensive especially

on huge graphs, researchers tend to reduce the dimensionality of a graph into the low

dimension space. Graph embedding aims to preserve the structure of the graph while

representing it into low dimensional vectors [32]. Based on the work mentioned earlier,

there are six different categories to generate vectors from a graph namely, matrix

factorization, deep learning, edge reconstruction-based optimization, graph kernels,

generative models, and hybrid models. There are two main categories of Deep Learning

approaches to learn representation of graphs. The DL with random walks such as

metapath2vec [34] and DL without random walks where other techniques used to compute

the vector embeddings such as [38] and [39].

In this work, we focus on deep learning approach in which random walks are used to

sample the graph. This approach is based on a family of models from Natural Language

Processing (NLP) called word2vec [33] and we specifically used the skip-gram model in

producing the vector embeddings. Skip-gram tries to find the semantic similarity between

words in a context by learning a meaningful representation for each word in a corpus of

sentences or documents. The main intuition is that we can imply the meaning of a word by

67

the understanding of other words in a sentence. In the basic word2vec approach, the

algorithm took a sentence and consider a window (usually of size 5 to 10) around the word

of interest (center word) and generate training examples for a simple Neural Network (NN)

with one hidden layer. The training examples would be the pair of the center word and each

of the words within the window size (context words). Then it trains the Neural Network

to maximize the probability of context word, given the center word. Then the weights in

the trained network are used as embeddings for each word in the dictionary.

5.2 Materials and Methods

5.2.1 Creation of curated kinase knowledge graph for kinase-pathway link prediction

Knowledge Graphs are very similar to Heterogeneous Information Networks. An

Information Network is a directed graph G = (V, E), composed of vertices and edges, with

an associated object type mapping function ϕ : V → A and an edge type mapping function

ψ : E → R [31]. Each object v ∈ V belongs to one particular object type in the object type

set A: ϕ(v) ∈ A, and each edge e ∈ E belongs to a particular relation type in the relation

type set R: ψ(e) ∈ R. An Information Network is called a Heterogeneous Information

Network if the sets A and R both contain more than one element, that is, there are multiple

labels for graph nodes and multiple labels for edges. In case that the sets A and R are

singletons, the Information Network is called Homogeneous Information Network (all

nodes in the network are of the same type and all edges are of the same type). While

Heterogeneous Information Networks require that if two edges belong to the same relation

type, the two edges share the same starting object type as well as the ending object type,

68

Knowledge Graphs do not. That is, the same relation (edge) type can be applied to different

starting object types and different ending types. It is the case in the Resource Description

Framework (RDF), a notation often used to represent Knowledge Graphs. RDF is based on

the notion of triples of the form subject-predicate-object [50] representing edges

connecting entities in the graph.

For example, in a knowledge graph representing information about protein kinases, a

node (entity) representing a protein kinase EGFR can be connected by an edge labeled

participatesIn to a node representing a pathway Signaling by EGFR in Cancer, which

represents the knowledge that EGFR participates in the pathway Signaling by EGFR in

Cancer. In such a knowledge graph, EGFR may be connected to other nodes (entities)

using different labels (predicates), such as, EGFR – contains—Furin-like domain, EGFR

– isClassifiedAs—EGFR family and EGFR – isLocatedIn—Cell membrane. Here, edges

have multiple labels and destination nodes are of different types, which indicates that it is

a Heterogeneous Knowledge Graph.

Given a Heterogeneous Information Network G = (V, E) (as defined above), the

network’s schema is a directed graph, S = (A, R), based on G’s object type mapping ϕ : V

→ A and its link type mapping ψ : E → R. S is a directed graph defined over object types

A, with edges as relations from R. Similarly, the 0schema of a Knowledge Graph

represented in RDF is represented in RDFS (RDF Schema [51]). For example, given the

EGFR examples above, the schema would contain the edges Protein —participatesIn —

Pathway, Protein – isClassifiedAs—Kinase Family, and Protein — isLocatedIn — Cellular

Location. The schema (sometimes referred to as a meta-knowledge graph, or meta graph)

specifies constraints on the use edge (property) labels to certain types of starting and ending

69

nodes (subjects and objects in RDF). Also, given a Knowledge Graph Schema, we can

create a Knowledge Graph (instance) conforming to the schema containing many

individuals (entities).

Our kinase-pathway link prediction knowledge graph was populated by individuals

from a variety of relevant types. Edges interconnecting them were populated based on the

data obtained from various sources. The list of human protein kinases was obtained from

[63]. The protein-protein interation network was retrieved from STRING [64] and we only

included interaction with score more than 700 based on laboratory experiments. For

pathway association we used the Reactome [65] v.76 dataset and split the associations to

two sets of manually curated (evidence=TAS) and predicted association (evidence=IEA).

We include the manually curated in our KG and saved the predicted pathway associations

for future evaluation purposes. We filtered out high-level pathways and removed their

association until no protein that has some number of pathway association left without any

association. We also removed the predicted pathways with low confidence under hierarchy

of disease pathway except infectious diseases. The Gene Ontology annotations [66]

(v2019_11) was used to enriched the proteins with molecular functions, cellular

components and biological processes. We excluded the associations that were not manually

curated (IEA evidence) and removed the high level ones when they have more than 5000

connections. All the functional domains for proteins from the Pfam [67] (version 33.1)

were used except protein kinase domains (“Pkinase” and “Pkinase_Tyr”). The[68] PTMs

and the assoications extracted from iPTMnet [18] (version 5) with confidence score more

than 1.0 were included in the graph. The protein-chemical and protein-disease associations

70

were extracted from the Comparative Toxicogenomics Database [69]. Table 5.1 shows

basic statistic of different edges and their source and target nodes.

Therefore, the populated KG has 11 types of nodes (meta-nodes) and 13 types of edges

(meta-edges), where 6,279,373 edges are connecting the 1,064,097unique nodes of

different types. The total unique number of each type of nodes along with their average

degrees are shown in Table 5.2.

As discussed above, the KG may contain hierarchical data. For example, Pathways are

often organized into a parent-child relationship among pathways. Similarly, data for

Molecular Function, Biological Process and Cellular component contain hierarchical data,

as, for example, there are many subtypes of Molecular Function. The lower-level nodes

are necessary and useful to our approach, but such higher-level nodes have some

Table 5. 1. Number of associations between different type of nodes.

Association (source node-target node) Edge Source node Target node

Protein-Pathway 68,856 7298 1974

Protein-Functional Domain 1,711,017 990,504 7834

Protein-PTM 872 308 677

Protein-Molecular Function 743,539 166,338 4,528

Protein-Biological Process 2,621,261 188,237 17,670

Protein-Cellular Component 466,057 124,988 2,152

Protein-Protein interaction 64,517 11,091 44,819

Protein-Chemical 436,831 9,426 14,397

Protein-Disease 27,282 6,806 5,234

Chemical-Disease 74,757 5,251 1,731

Chemical-Molecular Function 3,274 1,154 229

Chemical-Biological Process 60,974 5,357 3,976

Chemical-Cellular Component 136 92 54

71

disadvantages. First, having hierarchical nodes in the graph introduces redundancy in the

data, as edges connecting lower-level nodes should have mirror edges for the

corresponding parent nodes. Second, nodes in the upper level of the hierarchy might

connect to thousands of nodes (often referred to as hubs) which makes the vector

embeddings (used in our method) more general than they should be. In fact, we want vector

embeddings for nodes to be encoded for more specific semantics. Consequently, we

removed the high-level nodes of types Molecular Function, Biological Process and

Cellular component, from the graph which led to more accurate predictions.

The knowledge graph used in our link predition experiments described here

contains several types of entities (meta nodes) such as Protein, GO Terms (Biological

Process, Molecular Function, and Cellular component), Disease, and other types. The

schema organization is shown in Figure 5.1. The dotted line represents the schema edge

Table 5. 2. The unique number of node types with their average degree in the KG.

Node Type Unique # of nodes Average degree

Well-studied Kinases 390 85

Under-studied Kinases 151 29

Protein 1014061 6

Pathway 1974 34

PTM 677 1

Functional Domain 7834 218

Biological Process 17670 151

Molecular Function 4528 164

Cellular Component 2152 216

Chemical 9426 61

Disease 5234 19

72

Protein —participatesIn — Pathway, which represents the known (existing) edges,

retrieved from Reactome [65] and included in our knowedge graph, and unknown

(previously not reported) links that we are predicting. In addition, the Protein type includes

the understudies kinases (referred to as Dark Kinases), well-studied kinases (referred to as

Light Kinases), and other human proteins. This distinction is important, as it gives us the

ability to make predictions for a subset of proteins. The meta-edges (edges in the schema)

are not labeled here, as we do not consider them in our method described here. Instead, we

only rely on the types of source and target nodes. The loop edge going back to the Protein

type indicates the Protein-Protein interaction relation, which is included in our knowledge

graph.

Figure 5. 1. Schema of the Knowledge Graph. The dotted line is the link of interest.

73

5.2.2 Predicting Links

In the experiments and results presented in this paper, we used our novel graph

embedding approach, called RegPattern2Vec. It is used as the first step in our link

prediction process to produce vector representations for the nodes in the graph and

formulate the link prediction as a classification problem. A Machine Learning model was

trained using the combined vectors of existing pairs of nodes connected by an edge (link)

of interest. The outline of the method is illustrated in figure 5.2. We discuss each step of

our link prediction method in the subsequent sections.

5.2.3 Regular pattern selection and its usage in random walks

To encode the nodes in the KG to vectors suitable to be used in Machine Learning, we

need a way to “flatten” the graph into sequences of nodes. Performing random walks on a

graph is one way to generate such sequences and previous approaches have constrained

random walks using metapaths [34] which contrain the walk by a fixed number of user

defined hops (the length of a meta-path). However, creating such metapaths for complex

Figure 5. 2. RegPattern2Vec overview.

74

Heterogeneous Knowledge Graphs, often with no well-defined schema, is challenging and

time consuming. A number of previous attempts to automatically generate meta-paths have

been reported in the literature [30], [58], [70] but they all rely on fixed-length meta-paths

which seems to be a major limitation for vector representations, when we just look into

their immediate neighbors. A regular pattern approach introduced in this work, allows

numerous sequences of meta-nodes based on the pattern and is a generalization of the meta-

paths and meta-graphs (figure 5.3b).

The regular pattern is defined as schema subgraph that should include only the meta-

nodes that are suitable for a specific problem. An example regular pattern subgraph is

shown in figure 5.3.b. Unlike in the Node2Vec method [71], the schema graph pattern

represents several paths (walks) that can be used to predict missing links, in our case,

“Proteins” participating in “Pathways”. Another way to think of several possible walks is

to represent them as a regular expression that connects Protein and Pathway. For example,

the meta-graph pattern includes a path (walk) represented as a regular expression 𝑯[^𝑻]+

𝑯 𝑻 , where H is a set of source node type of edge of interest and T is a set of target node

type of edge of interest and it guides random walks, as demonstrated in Figure 3c. As

mentioned before, as the link of our interest is Protein-Pathway, we have defined the

regular pattern as 𝑃𝑟𝑜𝑡𝑒𝑖𝑛 [^𝑃𝑎𝑡ℎ𝑤𝑎𝑦] + 𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝑃𝑎𝑡ℎ𝑤𝑎𝑦 and each walk instance

should satisfy it. Each walk starts by randomly selecting a Protein node. Selecting the next

nodes on a walk is based on the existing graph nodes and matching the neighbor’s type in

the regular pattern. When a walk reaches a pathway node, it follows the pattern in reverse

75

order and does so until a certain number of steps (nodes) in the walk are reached or when

it reaches a termination node when there is no neighbor to follow the graph pattern.

5.2.4 Capturing semantic relationships between Proteins and Pathways in Deep

Learning

RegPattern2Vec uses a modified skip-gram model presented in [34] to generate vector

representations for the nodes of the Knowledge Graph. The random walks generate

sequences of nodes, which resemble natural language sentences. The machine learning

model simultaneously captures the local structure of the graph and types of the nodes and

encodes them as vector representations. Figure 5.4. shows learned vector representation of

Figure 5. 3. (a) a hypothetical subgraph of KG. (b) The regular pattern (c) the

flattened node of the subgraph.

76

node in the vector space using dimension reduction technique called Principal Component

Analysis (PCA). As our goal is to predict the protein-pathway associations, we just

consider the nodes to be of three types: “Protein”, “Pathway” and “others”, when learning

representation for the nodes. The separation of nodes in PCA shows the encoded types of

nodes and other dimensions of vector capture their local structure in graph.

Figure 5. 4. PCA of vector embeddings of all nodes generated by machine learning

model.

77

5.2.5 Regular-pattern definition

Given 𝐺 = (𝒱, ℰ) where 𝒱 denotes a node set with type mapping function

𝜙 : 𝒱 → 𝒯, where 𝒯 denotes a node type set and ℰ is an edge set with type mapping

function 𝜑 : ℰ → ℛ where ℛ denotes a relation type set. if (ℎ, t, r) is edge of interest,

where h, t ∈ 𝒱 and r ∈ ℰ and 𝜑(ℎ) = 𝐻,𝜑(t) = T, The regular pattern is defined as 𝑯[^𝑻]+

𝑯 𝑻.

5.2.6 Biased random walk constrained by regular pattern

As this work considered undirect graphs, enumerating all the paths of a given graph is

impossible. The solution is to sample some paths from all possible path according to some

distribution. The random walk with regular pattern is selected to generate arbitrary number

of paths. This number can be controlled by “walk length” parameter. Having the undirected

heterogeneous network, and selected regular pattern, the random walk can be started from

each instance of a starting node type in the pattern. As we want all the nodes to appear in

our walk, iterating over all of them would be desirable. It is obvious that if we repeat the

walk from each node, we will discover more path as the node might link to multiple nodes

of the same type. We will call this parameter “number of walks”. We will discuss how to

choose the parameter and analysis of their impacts in the next section. The next step for

each node is to select a node from the adjacent nodes based on the pattern that we are

considering. This might result in multiple choices and this is where the randomization

comes to play. RegPattern2vec can get distribution by user-defined function to generate

same probability for all the node or arbitrary distribution. A regular pattern is converted to

a Deterministic Finite Automata (DFA) and each of the possible transitions are mapped to

78

the DFA, denoted by M. The DFA M is responsible to check if transitions are allowed (an

edge between two nodes) thus, disallowed transition gets zero probability and were not

used in the random walks.

On the other hand, in scale-free networks where the degree distribution follows the

power law, there are some “hub” nodes that have high degree of income/outgoing edges.

Because such high degree nodes can dominate random walks and, consequently,

representation learning, one popular way is bias the walk by inverse of degrees of nodes

[71] where probability of choosing the node vi+1 from vi is calculated by normalizing the

inverse of degrees of all neighbors of vi. Although this approach prevents the random walk

from selecting high degree nodes , it biases the random walk toward low-degree nodes . To

accomplish better distribution and avoid both biases, we proposed the formula below:

Where 𝑔(𝑟𝑖) is the proportion of 𝑟𝑖among all outgoing edge types, |𝑁𝑣| is the of degree

of node 𝑣, 𝑣𝑖 denotes the current node and the candidate node for next step is 𝑣𝑖+1 ∈ 𝑁𝑣𝑖,

and 𝑁𝑣𝑖 is the set of all the neighbors of node 𝑣𝑖. Therefor we randomly choose one relation

type (independently) and then use the probability distribution by inverse of node degrees

to select the next node in the walk. After applying the proposed formula above, the nodes

with high and also low degrees are visited moderately and suggest the better exploration of

nodes as demonstrated in figure 5.5.

 𝑃(𝑣𝑖+1 | 𝑣𝑖 , 𝑀) =

{

𝑔(𝑟𝑖)

1
|𝑁𝑣𝑖+1|

∑
1

|𝑁𝑣|
𝑣∈𝑁

𝑣𝑖

 (𝑣𝑖 , 𝑟𝑖 , 𝑣𝑖+1) 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑎𝑝ℎ 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛

 𝑓𝑟𝑜𝑚 𝑣𝑖 𝑡𝑜 𝑣𝑖+1 𝑖𝑠 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑖𝑛 𝑀.

0 (𝑣𝑖 , 𝑟𝑖 , 𝑣𝑖+1) 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒, 𝑏𝑢𝑡 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑

0 (𝑣𝑖 , 𝑟𝑖 , 𝑣𝑖+1) 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑎𝑝ℎ

79

5.3 Link Prediction as a classification problem

For each pair of protein-pathways, we combined their vector embedding using a widely

used Hadamard product [72]–[74] and resulting vector is used as features to train a Logistic

Regression model as positive examples. Generating negative examples is the next issue.

The open-world assumption for knowledge representation defines that the true values are

the statement whether that is known or not. In contrast, the close-world assumption,

determines the statement are known to be true which is the basis for generating the negative

examples. Having an edge of interest, a random node from head nodes of the edge along

with another node from tail nodes of the edge are selected. If they don’t form a link in the

data, we combined their vector embeddings and count them as negative example. And we

do this process until the same number of negative examples are generated.

.

Figure 5. 5. Left figure shows the number of times a node appears in the random walk only

using the inverse of degrees. The Right figure shows the effect of using our proposed formula

for finding proper probability distribution for selecting the next node.

80

5.4 Results and Discussion

5.4.1 Comparison of RegPatter2vec and other graph embedding methods in Protein-

Pathway prediction

To evaluate our method, we generated a test set by excluding 50% of known Protein-

Pathway associations from the training set. The training examples are generated using the

process mentioned in section “Link Prediction as a classification problem” and a logistic

regression algorithm is selected as the binary classification model for the link prediction

task. A 10-fold cross-validation applied to make sure that model does not have overfit, then

the train model acquired f1-score of 0.859 and AUC ROC of 0.9383 on the test set. We

selected two methods as baseline to compare their performance to RegPattern2Vec method.

The node2vec [73] which has been shown to perform well on many datasets and

metapath2vec [34] which inspired this work are selected for comparison. To select a

specific meta-path that is required by metapath2vec approach, we tested several meta-paths

and selected the “Protein-Functional Domain-Protein-Pathway”, which showed the best

performance. As shown in figure 6 RegPattern2vec achieves better or comparable accuracy

to Node2Vec. Both Node2Vec and RegPatter2Vec perform significantly better than

metapath2vec as determined by AUC-ROC shown in figure 6.

Figure 5. 6. Comparing ROC of RegPattern2Vec with baselines, node2vec and

metapath2vec with best metapath (Protein-FunctionalDomain-Protein-Pathway)

81

5.4.2 Predicting possible association of Dark Kinases and pathways

We next used the two high performing methods (RegPattern2Vec and Node2Vec) to

predict pathway associations for under-studied (dark) Kinase nodes in the graph.. The

optimal threshold is extracted from the model when it maximizes both the precision and

recall, and it has been used to make predictions. Among all 319,214 possible pairs,

RegPattern2Vec predicted 44,142 new possible associations and node2vec predicted

33,409 associations. The top 50 overlap predictions of possible protein-pathway

associations by both methods are shown in the figure 5.7.

Figure 5. 7. Top 50 overlap predictions of RegPattern2Vec and node2vec methods on

dark kinases.

82

5.4.3 Meta-paths contributing to the predictions.

Comparing RegPattern2vec with meta-path approaches show that although regular

pattern does not explicitly use meta-path, it can take advantage of such paths implicitly.

RegPattern2Vec discovers meta-paths along the way and benefits from their power to find

similarity between nodes in the graph. Defining each of the meta-paths discovered by

regular patterns is not trivial for a domain expert and the representation learning model

determines their importance based on the node types and their proximity to each other

within the generated path instances. Figure 8.5 shows the top 5 predictions of protein and

pathway pairs, and the analysis the path instances in which they appeared together. The x-

axis contains the frequent patterns inferred from those path instances and the y-axis is five

prediction pairs. And the number of time that each pattern is discovered during guided

walk using RegPattern are colored.

Figure 5. 8. Explored patterns contributing to the top 5 predictions by Regular Pattern's

Constrained walks. Note Pr stands for protein, DK for dark kinase, LK for light kinase, MF

for molecular function, FD for functional domain, BP for biological process, CC for cellular

components.

83

5.4.4 Overlap predictions and IDG Protein-Protein Interaction

The enrichment analysis results based on IDG protein-protein interaction contains 533

associations from 16 unique dark kinases and 216 pathways. From those numbers, only 12

dark kinases and 183 pathways exist in our graph. If we extract enrichment result only for

protein and pathways that exist in our graph, there will be only 472 associations. We

compare them with overlap predicted associations by both methods and we find out 27

predictions in common, although RegPattern2Vec was able to predict 76 of them. The 27

common predictions are listed in table 5.3.

84

Table 5. 3. Overlap association commonly predicted by RegPattern2Vec and

node2vec and the result of enrichment analysis on IDG PPI.

Protein Pathway RegPattern2Vec node2vec FDR

CDK12 RNA Polymerase II Pre-transcription Events 0.999999464 0.995687 0.0344

CDK12 Formation of RNA Pol II elongation complex 0.999999941 0.992527 0.0241

CDK12 RNA Polymerase II Transcription Elongation 0.999999557 0.991911 0.0321

CDK12 RNA polymerase II transcribes snRNA genes 0.99999982 0.991324 0.0279

CSNK1G2 G2/M Checkpoints 0.997483821 0.942078 0.00455

TLK2 Formation of Senescence-Associated
Heterochromatin Foci (SAHF) 0.999998816

0.934615 0.00102

CSNK1G2 Activated PKN1 stimulates transcription of
AR (androgen receptor) regulated genes
KLK2 and KLK3 0.982463888

0.938096 0.00103

CSNK1G2 Signaling by WNT 0.999999723 0.910032 0.00165

CDK13 RNA Polymerase II Transcription Elongation 0.999575457 0.909773 0.0552

CSNK1G2 M Phase 0.998510706 0.886028 0.0425

CDK13 Formation of RNA Pol II elongation complex 0.999986057 0.840819 0.0368

CSNK1G2 Mitotic Prophase 0.993864995 0.822416 0.00184

CSNK1G2 Nonhomologous End-Joining (NHEJ) 0.990734367 0.822585 0.000915

CSNK1G2 TCF dependent signaling in response to
WNT 0.99996334

0.78728 0.000838

CSNK1G2 Signaling by Nuclear Receptors 0.999999822 0.77718 0.00115

CAMKK1 Cilium Assembly 0.997762204 0.776394 0.00419

CSNK1G2 Cell Cycle Checkpoints 0.999919748 0.720566 0.0217

CSNK1G2 RHO GTPases activate PKNs 0.999970941 0.713065 0.000795

CSNK1G2 Processing of DNA double-strand break
ends 0.999509566

0.702158 0.00112

CAMKK1 Organelle biogenesis and maintenance 0.98835753 0.67373 0.00922

CSNK1G2 E3 ubiquitin ligases ubiquitinate target
proteins 0.99902807

0.653647 0.0189

CSNK1G2 Developmental Biology 0.992324873 0.643503 0.00163

CSNK1G2 Amyloid fiber formation 0.999952875 0.630661 0.00114

CSNK1G2 Cellular Senescence 0.929697325 0.64151 0.00571

CSNK1G1 Signaling by Nuclear Receptors 0.861378864 0.693192 0.0275

CSNK1G2 Depurination 0.922711131 0.588167 0.00128

CSNK1G2 Oxidative Stress Induced Senescence 0.603904458 0.804577 0.00143

85

5.5 Conclusion and future work:

In this work, we propose a new guided random walk approach for link prediction in

KGs. Unlike metapath2vec [34], RegPattern2Vec [75] does not need prior knowledge of

graph structure (i.e., predefined metapaths) for capturing contextual information in KGs.

RegPattern2Vec is more accurate than metapath2vec and more efficient than approaches

like node2vec.

We aim to extend this framework as a tool for graph databases, such as neo4j, where

users and a domain expert can effortlessly perform link prediction on the live data and

evaluate their predictions with the existing knowledge. Another goal is to investigate

existing explainable AI approaches to justify the predicted links and discover better method

when they can be applied to any domain. Using the paths (the sequences of nodes) that are

generated in random walks is possibly the best way to tackle this problem. The instances

of nodes usually have descriptive names consist of terms and domain specific phrases. An

overrepresentation analysis of these terms for each of predictions may consist of semantics

that needed for justification. Also, as the RegPattern2vec method uses regular expression

patterns, the patterns with high frequency for each prediction can also be used to explain

the vector representation of each node and therefore identifying the semantic behind the

proposed links in the knowledge graph.

86

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this dissertation, we presented a framework, called KGdiff, to discover the

schema and schema-in-use of knowledge graphs and track its evolution over time where it

collects meta-data information of KG by running many fixed (domain-independent)

SPARQL queries against a SPARQL endpoint and stores the information for further

analysis and comparison with future and prior versions. The report consists of statistics and

descriptions of various constructs in a KG. It helps KG engineers avoid manual comparison

of different versions of KG, which is time-consuming and expensive. Our results show that

KGdiff is efficient even on sizable KGs and ontologies, and it can accurately identify

changes both in the schema and the number of individuals on different versions. To

accomplish this, we started by learning the process of ontology population, differentiate

the validation and verification of ontologies and how to query in triple stores and what are

the main construct of vocabularies used to build a KG. Then we learnt the different methods

and API to connect the KG/Ontology, analyzing the data by discovering schema and

schema in-use from the KGs.

Our second work presents a novel graph sampling approach called

RegPattern2Vec, where a regular pattern guides a random walk to sample a large KG more

efficiently and learn node embeddings for different tasks, especially link prediction, as

demonstrated in our work. RegPattern2Vec has shown to be superior to related graph

embedding approaches both in accuracy and efficiency. We have examined different

87

methods in different disciplines and tested the state-of-the-art methods on a real-world

application. We thoroughly tested our method and verified our results through a

comprehensive experiments and evaluations. And finally, we thoroughly studied the

impact of our results in an important domain of biology.

As for future direction, we want to extend the KGdiff to be able to work with

different data stores and graph databases and their query languages, such as Cypher in

Neo4j. Although Cypher was inspired by SPARQL, a specific mapping from our generic

SPARQL queries should be converted to Cypher. Another improvement would be to

identify and report other OWL constructs and include them in a complete KGdiff report.

Also, it would be beneficial to include a visualization component to provide more insight

about the KG for the users.

For RegPattern2Vec, we will explore the possibility of learning the biases of

random walks to favor indicated types of nodes (or relation types) that might better

contribute to the link prediction accuracy. It has been shown that some patterns and types

of nodes and/or relations are more relevant for discovery of possible unknown linkages in

a graph. Having such a flexibility, we will be able to take advantage of the existing

knowledge in the domain of interest to increase the accuracy and confidence of the

predictions.

We have implemented the RegPattern2Vec as Python package, which can be easily

installed on a computer system and used for link prediction experiments. The data in this

case stored in some text files, such as CSV, and an extra step needs to be done to convert

the KG to edge and node files with specific formats. Recently, graph databases, such Neo4j,

have been rapidly increasing in popularity and we want to implement our method as a

88

plugin for Neo4j, where the RegPattern2Vec can be applied directly to the data in the graph

database, avoiding the extra data preparation step.

Finally, we have implemented some level of parallelism in RegPattern2Vec taking

advantage of multiprocessing servers with multiple cores, to speed up the process of model

learning. As multi-clustering is available in Neo4j 3.4 28 or higher, we plan to adapt our

method to work on partitioned KGs. We plan to study the effects of different types of

partitioning on time efficiency and accuracy of random walks on partitioned knowledge

graphs.

28 https://neo4j.com/blog/neo4j-graph-database-3-4-ga-release/

89

REFERENCES

[1] T. BERNERS-LEE, J. HENDLER, and O. LASSILA, “The Semantic Web,” Sci.

Am., vol. 284, no. 5, pp. 34–43, 2001.

[2] J. Barrasa, “Neosemantics.” .

[3] G. A. Miller, “WordNet: a lexical database for English,” Commun. ACM, vol. 38,

no. 11, pp. 39–41, 1995, doi: 10.1145/219717.219748.

[4] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, Freebase: A

Collaboratively Created Graph Database For Structuring Human Knowledge. .

[5] S. Mudgal et al., “Deep Learning for Entity Matching: A Design Space

Exploration,” p. 16, 2018, doi: 10.1145/3183713.3196926.

[6] N. Taleb, B. Tighiouart, and S. Laiche, “A method based on OWL schema for

detecting changes between Ontology’s versions,” Intell. Decis. Technol., vol. 8, pp.

45–52, 2014, doi: 10.3233/IDT-130176.

[7] N. Noy, M. Klein, and M. A. Musen, “Tracking Changes During Ontology

Evolution,” 2004, doi: 10.1007/978-3-540-30475-3_19.

[8] J. Eder and K. Wiggisser, “Detecting Changes in Ontologies via DAG

Comparison,” 2006. Accessed: Sep. 18, 2019. [Online]. Available:

http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-200/11.pdf.

[9] D. Hutchison and J. C. Mitchell, A Versioning and Evolution Framework for RDF

Knowledge Bases, vol. 9, no. 3. 2006.

[10] D. Zeginis, Y. Tzitzikas, and V. Christophides, “On the Foundations of Computing

Deltas Between RDF Models,” 2007. Accessed: Sep. 18, 2019. [Online]. Available:

http://www.w3.org/2004/03/trix/.

90

[11] R. S. Gonçalves, B. Parsia, and U. Sattler, Categorising Logical Differences

Between OWL Ontologies. 2011.

[12] M. Hartung, A. Groß, and E. Rahm, “COnto-Diff: Generation of complex

evolution mappings for life science ontologies,” J. Biomed. Inform., vol. 46, no. 1,

pp. 15–32, 2013, doi: 10.1016/j.jbi.2012.04.009.

[13] Y. Roussakis, I. Chrysakis, K. Stefanidis, G. Flouris, and Y. Stavrakas, “A

Flexible Framework for Understanding the Dynamics of Evolving RDF Datasets:

Extended Version.” Accessed: Sep. 20, 2019. [Online]. Available:

http://www.w3.org/RDF/.

[14] J. Malone et al., “Modeling sample variables with an Experimental Factor

Ontology,” Bioinformatics, vol. 26, no. 8, pp. 1112–1118, 2010, doi:

10.1093/bioinformatics/btq099.

[15] F. Emmert-Streib, M. Dehmer, and Y. Shi, “Fifty years of graph matching,

network alignment and network comparison,” Inf. Sci. (Ny)., vol. 346–347, pp.

180–197, 2016, doi: 10.1016/j.ins.2016.01.074.

[16] G. Nayak, S. Dutta, D. Ajwani, P. Nicholson, and A. Sala, “Automated assessment

of knowledge hierarchy evolution: comparing directed acyclic graphs,” Inf. Retr.

J., vol. 22, no. 3–4, pp. 256–284, 2019, doi: 10.1007/s10791-018-9345-y.

[17] M. Pietranik and N. T. Nguyen, “Framework for ontology evolution based on a

multi-attribute alignment method,” Proc. - 2015 IEEE 2nd Int. Conf. Cybern.

CYBCONF 2015, pp. 108–112, 2015, doi: 10.1109/CYBConf.2015.7175915.

[18] A. Castelltort and A. Laurent, “Representing history in graph-oriented NoSQL

databases: A versioning system,” 8th Int. Conf. Digit. Inf. Manag. ICDIM 2013,

91

vol. 1, pp. 228–234, 2013, doi: 10.1109/ICDIM.2013.6694022.

[19] G. Gosal, K. J. Kochut, and N. Kannan, “Prokino: An ontology for integrative

analysis of protein kinases in cancer,” PLoS One, vol. 6, no. 12, pp. 1–9, 2011, doi:

10.1371/journal.pone.0028782.

[20] D. I. Mcskimming et al., “ProKinO: A unified resource for mining the cancer

kinome,” Hum. Mutat., vol. 36, no. 2, pp. 175–186, 2015, doi:

10.1002/humu.22726.

[21] S. Bamford et al., “The COSMIC (Catalogue of Somatic Mutations in Cancer)

database and website,” Br. J. Cancer, vol. 91, no. 2, pp. 355–358, 2004, doi:

10.1038/sj.bjc.6601894.

[22] A. Bateman, “UniProt: A worldwide hub of protein knowledge,” Nucleic Acids

Res., vol. 47, no. D1, pp. D506–D515, 2019, doi: 10.1093/nar/gky1049.

[23] D. Croft et al., “The Reactome pathway knowledgebase,” Nucleic Acids Res., vol.

42, no. D1, pp. 472–477, 2014, doi: 10.1093/nar/gkt1102.

[24] A. Kwon et al., “Tracing the origin and evolution of pseudokinases across the tree

of life,” Sci. Signal., vol. 12, no. 578, 2019, doi: 10.1126/scisignal.aav3810.

[25] A. Bandrowski et al., “The Ontology for Biomedical Investigations,” PLoS One,

vol. 11, no. 4, pp. 1–19, 2016, doi: 10.1371/journal.pone.0154556.

[26] I. Atastina, B. Sitohang, G. A. P. Saptawati, and V. S. Moertini, “A Review of Big

Graph Mining Research,” 2018, Accessed: Feb. 20, 2018. [Online]. Available:

http://iopscience.iop.org/article/10.1088/1757-899X/180/1/012065/pdf.

[27] A. R. Elias, N. Golubovic, C. Krintz, and R. Wolski, “Where’s The Bear?,” 2017

IEEE/ACM Second Int. Conf. Internet-of-Things Des. Implement., pp. 247–258,

92

2017, doi: 10.1145/3054977.3054986.

[28] M. Toutiaee, A. Keshavarzi, A. Farahani, and J. A. Miller, “Video Contents

Understanding using Deep Neural Networks.”

[29] I. Spasic, S. Ananiadou, J. McNaught, and A. Kumar, “Text mining and ontologies

in biomedicine: Making sense of raw text,” Brief. Bioinform., vol. 6, no. 3, pp.

239–251, 2005, doi: 10.1093/bib/6.3.239.

[30] G. Wan, B. Du, S. Pan, and G. Haffari, “Reinforcement Learning based Meta-path

Discovery in Large-scale Heterogeneous Information Networks,” Aaai, 2020,

Accessed: Jun. 12, 2020. [Online]. Available:

https://github.com/mxz12119/MPDRL.

[31] C. Shi, Y. Li, J. Zhang, Y. Sun, and P. S. Yu, “A Survey of Heterogeneous

Information Network Analysis,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 1, pp.

17–37, 2017, doi: 10.1109/TKDE.2016.2598561.

[32] H. Cai, V. W. Zheng, and K. C. C. Chang, “A Comprehensive Survey of Graph

Embedding: Problems, Techniques, and Applications,” IEEE Trans. Knowl. Data

Eng., vol. 30, no. 9, pp. 1616–1637, 2018, doi: 10.1109/TKDE.2018.2807452.

[33] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Distributed Representations of

Words and Phrases and their Compositionality.” Accessed: Oct. 29, 2018.

[Online]. Available: https://papers.nips.cc/paper/5021-distributed-representations-

of-words-and-phrases-and-their-compositionality.pdf.

[34] Y. Dong, N. V Chawla, and A. Swami, “metapath2vec: Scalable Representation

Learning for Heterogeneous Networks,” 2017, doi: 10.1145/3097983.3098036.

[35] M. Belkin and P. Niyogi, “Laplacian Eigenmaps and Spectral Techniques for

93

Embedding and Clustering,” 2002.

[36] P. Ristoski and H. Paulheim, “RDF2Vec: RDF graph embeddings for data

mining,” in Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), 2016, vol. 9981

LNCS, pp. 498–514, doi: 10.1007/978-3-319-46523-4_30.

[37] H. Wang et al., “GraphGAN: Graph Representation Learning with Generative

Adversarial Nets,” pp. 2508–2515, 2017, [Online]. Available:

http://arxiv.org/abs/1711.08267.

[38] L. F. R. Ribeiro, P. H. P. Saverese, and D. R. Figueiredo, “struc2vec: Learning

Node Representations from Structural Identity,” 2017, doi:

10.1145/3097983.3098061.

[39] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning Entity and Relation

Embeddings for Knowledge Graph Completion.” Accessed: Oct. 02, 2019.

[Online]. Available: www.aaai.org.

[40] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov, and M. Welling,

“Modeling Relational Data with Graph Convolutional Networks,” in Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 2018, vol. 10843 LNCS, pp. 593–607, doi:

10.1007/978-3-319-93417-4_38.

[41] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” Proc. ACM

SIGKDD Int. Conf. Knowl. Discov. Data Min., vol. 13-17-Augu, pp. 1225–1234,

2016, doi: 10.1145/2939672.2939753.

[42] M. Ley, “Dblp computer science bibliography,” 2005. .

94

[43] C. Meng, R. Cheng, S. Maniu, P. Senellart, and W. Zhang, “Discovering meta-

paths in large heterogeneous information networks,” in WWW 2015 - Proceedings

of the 24th International Conference on World Wide Web, 2015, pp. 754–764, doi:

10.1145/2736277.2741123.

[44] A. Keshavarzi and K. J. Kochut, “KGdiff: Tracking the Evolution of Knowledge

Graphs,” Proc. - 2020 IEEE 21st Int. Conf. Inf. Reuse Integr. Data Sci. IRI 2020,

pp. 279–286, 2020, doi: 10.1109/IRI49571.2020.00047.

[45] Z. Huang, Y. Zheng, R. Cheng, Y. Sun, N. Mamoulis, and X. Li, “Meta structure:

Computing relevance in large heterogeneous information networks,” in

Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1595–1604, doi:

10.1145/2939672.2939815.

[46] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “MetaGraph2Vec: Complex Semantic

Path Augmented Heterogeneous Network Embedding,” 2018.

[47] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel, “Convolutional 2D

Knowledge Graph Embeddings,” 2017, Accessed: Nov. 23, 2018. [Online].

Available: www.aaai.org.

[48] W. L. Hamilton, P. Bajaj, M. Zitnik, D. Jurafsky, and J. Leskovec, “Embedding

Logical Queries on Knowledge Graphs.” Accessed: Aug. 20, 2019. [Online].

Available: https://papers.nips.cc/paper/7473-embedding-logical-queries-on-

knowledge-graphs.pdf.

[49] M. Spiser, Introduction to the Theory of Computation. Cengage learning., 2012.

[50] R. Cyganiak, D. Wood, and M. Lanthaler, “RDF 1.1 Concepts and Abstract

95

Syntax,” W3C Recommendation, 2014. https://www.w3.org/TR/rdf11-concepts/

(accessed Dec. 31, 2020).

[51] W3C, “RDF Schema 1.1,” 2014. Accessed: Dec. 31, 2020. [Online]. Available:

https://www.w3.org/TR/rdf-schema/.

[52] X. Cao, Y. Zheng, C. Shi, J. Li, and · Bin Wu, “Meta-path-based link prediction in

schema-rich heterogeneous information network,” Int. J. Data Sci. Anal., vol. 3,

pp. 285–296, 2017, doi: 10.1007/s41060-017-0046-1.

[53] J. E. Friedl, Mastering Regular Expressions. O’Reilly Media, Inc., 2006.

[54] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago,” in Proceedings of the 16th

international conference on World Wide Web - WWW ’07, 2007, p. 697, doi:

10.1145/1242572.1242667.

[55] J. Lehmann et al., “DBpedia-A Large-scale, Multilingual Knowledge Base

Extracted from Wikipedia LinkingLOD: interlinking knowledge bases View

project DL-Learner View project DBpedia-A Large-scale, Multilingual

Knowledge Base Extracted from Wikipedia,” Semant. Web, vol. 1, pp. 1–5, 2012,

doi: 10.3233/SW-140134.

[56] T. Mitchell et al., “Never-ending learning,” Commun. ACM, vol. 61, no. 5, pp.

103–115, 2018, doi: 10.1145/3191513.

[57] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “Pathsim: Meta path-based top-k

similarity search in heterogeneous information networks,” Proc. VLDB Endow.,

vol. 4, no. 11, pp. 992–1003, 2011, doi: 10.14778/3402707.3402736.

[58] C. Yang, M. Liu, F. He, X. Zhang, J. Peng, and J. Han, “Similarity modeling on

heterogeneous networks via auto-matic path discovery,” in Lecture Notes in

96

Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 2018, vol. 11052 LNAI, pp. 37–54, doi:

10.1007/978-3-030-10928-8_3.

[59] H. Zhao, Q. Yao, J. Li, Y. Song, and D. L. Lee, “Meta-graph based

recommendation fusion over heterogeneous information networks,” in

Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2017, vol. Part F1296, pp. 635–644, doi:

10.1145/3097983.3098063.

[60] Y. Sebastian, E. G. Siew, and S. O. Orimaye, “Learning the heterogeneous

bibliographic information network for literature-based discovery,” Knowledge-

Based Syst., vol. 115, pp. 66–79, 2017, doi: 10.1016/j.knosys.2016.10.015.

[61] J. Jiang, L.-P. Liu, and S. Hassoun, “Learning graph representations of bio-

chemical networks and its application to enzymatic link prediction,” 2020.

Accessed: Aug. 09, 2020. [Online]. Available:

https://github.com/HassounLab/ELP.

[62] D. S. Himmelstein and S. E. Baranzini, “Heterogeneous Network Edge Prediction:

A Data Integration Approach to Prioritize Disease-Associated Genes,” PLoS

Comput. Biol., vol. 11, no. 7, 2015, doi: 10.1371/journal.pcbi.1004259.

[63] L.-C. Huang et al., “KinOrtho: a method for mapping human kinase orthologs

across the tree of life and illuminating understudied kinases,” doi:

10.1101/2021.03.05.434161.

[64] D. Szklarczyk et al., “STRING v11: protein-protein association networks with

increased coverage, supporting functional discovery in genome-wide experimental

97

datasets,” Nucleic Acids Res., vol. 47, pp. 607–613, 2018, doi:

10.1093/nar/gky1131.

[65] B. Jassal et al., “The reactome pathway knowledgebase,” Nucleic Acids Res., vol.

48, no. D1, pp. D498–D503, Jan. 2020, doi: 10.1093/nar/gkz1031.

[66] A. Bateman et al., “UniProt: The universal protein knowledgebase in 2021,”

Nucleic Acids Res., vol. 49, no. D1, pp. D480–D489, Jan. 2021, doi:

10.1093/nar/gkaa1100.

[67] J. Mistry et al., “Pfam: The protein families database in 2021,” Nucleic Acids Res.,

vol. 49, 2021, doi: 10.1093/nar/gkaa913.

[68] H. Huang et al., “IPTMnet: An integrated resource for protein post-translational

modification network discovery,” Nucleic Acids Res., vol. 46, no. D1, pp. D542–

D550, 2018, doi: 10.1093/nar/gkx1104.

[69] A. P. Davis et al., “Comparative Toxicogenomics Database (CTD): update 2021,”

Nucleic Acids Res., no. 1, 2020, doi: 10.1093/nar/gkaa891.

[70] C. Meng, R. Cheng, S. Maniu, P. Senellart, and W. Zhang, “Discovering Meta-

Paths in Large Heterogeneous Information Networks,” doi:

10.1145/2736277.2741123.

[71] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for networks,” in

Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, Aug. 2016, vol. 13-17-Augu, pp. 855–864, doi:

10.1145/2939672.2939754.

[72] P. Minervini, N. Fanizzi, C. D’amato, and F. Esposito, “Scalable Learning of

Entity and Predicate Embeddings for Knowledge Graph Completion.” Accessed:

98

Feb. 17, 2019. [Online]. Available: https://developers.google.com/freebase/data.

[73] A. Grover and J. Leskovec, “node2vec: Scalable Feature Learning for Networks

Aditya,” 2016, pp. 855–864, doi: 10.1145/2939672.2939754.

[74] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning Entity and Relation

Embeddings for Knowledge Graph Completion,” in Proceedings of the Twenty-

Ninth AAAI Conference on Artificial Intelligence Learning, 2015, pp. 2181–2187,

Accessed: Apr. 08, 2019. [Online]. Available: www.aaai.org.

[75] A. Keshavarzi, N. Kannan, and K. Kochut, “RegPattern2Vec: Link Prediction in

Knowledge Graphs,” 2021 IEEE International IOT, Electronics and Mechatronics

Conference (IEMTRONICS), 2021.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9422604 (accessed

May 18, 2021).

