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ABSTRACT 

 A knowledge graph (KG) provides a framework for data representation, integration, 

analytics by expressing sets of linked descriptions of entities and places data in a context 

via semantic metadata, and it helps to enrich the data with computer-processable semantics. 

In many domains, the KG aids researchers blend related information to a single source for 

effortless and efficient investigations.  External resources and datasets, usually Web 

documents, are acquired by software programs for the purpose of creating or evolving a 

KG create or evolve a KG. New findings lead to changes in the original data sources 

relentlessly; therefore, the generated KG should comply with the changes. The introduced 

changes can range from individual entities and their relations to more significant changes 

in the KG schema. In both cases, the domain expert or KG engineer should employ 

mechanisms to track them and take proper actions. The structure and connectivity among 

entities in graph-like data make researchers curious about finding new associations by 

visualizing or querying the data. With the rise of diverse machine learning techniques, this 

process can be more efficient and achievable. Thus, the link prediction task becomes one 

of the priorities on KGs, especially in domains such as biology, social networks, and 



recommender systems. It generally aims to discover unknown linkage between existing 

entities in the KG. Machine learning techniques for link prediction have become popular 

solutions for link prediction, especially deep learning (DL) methods. The scalability issue 

of these approaches for large graphs calls for an alternative direction. Toward addressing 

these issues, this dissertation investigates scalable approaches for evaluating and using KG 

for knowledge discovery. First, we present our work, KGdiff, for tracking the evolution of 

KGs by discovering meta-data information from KGs and then we introduce 

RegPattern2Vec for the link prediction problem and its successful application on a large 

biological dataset. 
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CHAPTER 1 

INTRODUCTION 

 Storing and representing the increasing amount of data, produced by millions of 

users, introduced great challenges for scientists in different domains. The data should be 

stored in a way that it can be queried effortlessly and efficiently to better help experts 

discover new knowledge. On the other hand, representation of data based on the desired 

task should consider machine-readability or human understandability.  The mid-point 

would be desirable when representation consider both aspects. Another import 

consideration is, as the data might have different forms from text to documents, the 

architect of the data store should be flexible enough to contain such a diversity. One of the 

most popular solutions is to use knowledge graphs. Knowledge graphs are a way of storing 

data in a form of a graph, where entities from different types might have a variety of 

relationships with other entities. These knowledge graphs can be encoded in different 

forms, which we discuss next. 

One of the most popular ways is to use Web Ontology Language1 (OWL) to express 

the data and define relations among the entities in a KG. The expressivity of OWL gives is 

a huge advantage to explain complex relationships and the light-weighted vocabulary make 

it possible to store or even transfer huge amount of data. The more recent choice is to use 

graph databases. A graph database, such as Neo4j2, offers major advantages, such as 

 
1 https://www.w3.org/TR/owl-features/ 
2 https://neo4j.com/ 
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performance, flexibility and agility.  For graph data, it performs much better than relational 

databases and the flexible schema gives users the ability to keep up with new demands in 

evolution of the data. As important graph algorithms are often built in some of the graph 

databases, such as Neo4j, they became the source of extensive popularity of KGs among 

researchers in different domains, such as social networks, biomedicine, health sciences, 

and many more.  

KGs are usually populated using a variety of external data sources, such as Web 

documents, articles, and other diverse datasets. As the data evolve due to advancement of 

science or acquiring more data, domain experts need to understand the changes introduced 

to the KG, which sometimes cause massive structural changes, like transformation  in the 

schema of KG. The domain experts and knowledge engineers need to be informed of these 

changes and validate their generated KGs.  However, manual version comparison is a time-

consuming process and thus impractical.  

On the other hand, since these KGs enable their users to identify interesting patterns, 

the demand for automated methods has emerged, largely due to the significant size of data. 

Tasks such as node clustering, KG completion, node classification, and link prediction are 

commonly used within different domains and a variety of approaches to tackle them exist. 

Machine learning proved to be a good solution to many of these tasks, as it has been shown 

to have successful applications in a variety of tasks such as image and video processing, 

natural language processing, text mining, and many others. 

One of the interesting tasks on graphs is link prediction where researchers try to infer 

previously unknown relationships between entities in data [1]. Link prediction can be 

applied in many domains.  For example, in social networks, where the goal is to suggest 
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possible friends for a user based on people they know, and in biological networks, where 

scientists try to discover relations between two biological entities, based on their relations 

with other biological entities. To perform such a task, one should use properties and 

existing links in data to locate semantic relationships between entities and use them as 

features for machine learning algorithms in order to learn and eventually predict unknown 

relationships between entities in the KG.  

In this dissertation, we first introduce a framework to track the evolution of a KG, 

where it incrementally collects meta-data about instances and also the schema of KGs 

encoded in OWL. We evaluate our framework on various KGs and ontologies to show the 

advantages of using such a tool. The discovery of the schema and the schema-in-use is 

beneficial for any KGs, which might not have a well-defined schema. We explain how the 

framework compares a KG to its previous versions and gives a comprehensive report about 

its evolution. It highlights the statistics of the data and the main compartment of the KG to 

the user.  

Then we present our link prediction approach, which samples a large KG and captures 

semantic relationships between the entities with minimum prior knowledge and human 

involvements. We use well-established benchmarks to evaluate our method and compare 

to results of similar graph embedding approaches as our baselines. 

Further, we applied our method to a specific biological KG as a case study, where domain 

experts and external data sources evaluated the predictions. We created a KG based on 

ProKinO project about protein kinases and enriched it with external datasets focusing on 

under-studied (dark) protein kinases to predict dark kinase and pathway possible 

associations. Although RegPattern2Vec was initially designed to select the informative 
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part of the KG, it also performed better in the case that the relative subgraph is the whole 

KG, as shown in Chapter 5. 
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CHAPTER 2 

BACKGROUND 

In this chapter, we introduce some of the concepts and definitions that have been 

used through this work. Then, we move to explain our goals by defining the evolution of 

the knowledge graph and the link prediction task. 

1.1 Ontologies 

According to W3C3 ontologies (vocabularies) are defined as: 

“An ontology is a specification of a conceptualization in specific domain.” 

The conceptualization is the main component of representing knowledge. It can be seen 

as a simplified view of the entities, concepts, and their relations to each other in the domain 

of interest. The common ingredients of an ontology are Individuals, Classes, Attributes, 

Relations, Restrictions, Axioms, and others. Developing an ontology, enables reusability 

of the knowledge and sharing mutual thought among different disciplines, and machines 

and humans and give more flexibility to software to adjust to changes in underlying 

assumptions in domain knowledge. The two most popular standard languages to encode 

these specifications are RDF, RDFS, and OWL.  They offer different levels of expressivity, 

as needed for the conceptualizations. To get a better understanding of these differences, we 

provide the definition of each of them in the following sections. 

 
3

 https://www.w3.org/standards/semanticweb/ontology 
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2.1 Resource Description Framework 4 (RDF) 

 The simplest model to exchange data on the web is RDF. It is a graph model that  uses 

Uniform Resource Identifiers (URI) to identify and distinguish the resources across the 

web. In a nutshell, RDF is a triple that consists of a subject, a predicate, and an object.  

 

As shown in Figure 2.1, the example triple can be viewed as a directed edge in a graph 

structure, where the head node is the subject, the connection (edge) is the predicate, and 

the object is the tail node. In RDF, a subject should be either a URI, or a blank node, a 

predicate must be a URI, and an object can be in the form of a URI, literal, or a black node, 

which are referred to as RDF terms. 

 

 

2.2 RDF Schema (RDFS) 

RDFS is the vocabulary for RDF data to be modeled. It provides the ability to define 

classes, properties and to describe a related group of resources either as a hierarchy or an 

association to explain the RDF data. We can summarize RDFS into two groups of 

vocabulary terms: RDF classes and RDF properties. As shown in Figure 2.2, RDFS helps 

 
4 https://www.w3.org/TR/rdf11-concepts/ 

 

Figure 2. 1. A graph structure example of RDF for triple the (Christopher_Nolan, 

birthplace, London) 
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to provide more clear specifications to a document by providing characteristics of different 

terms defined in the document. 

 

 

 

 

Figure 2. 2. An UML diagram showing the extension of semantic for RDF data using 

RDFS extension. 

 



 

8 

2.3 OWL 

Web Ontology Language (OWL) is the extension to RDFS to enable formulating data 

expression for classes, properties, individuals, datatypes, and annotations. It has been used 

to formally provide the meaning to the Semantic Web [1]. Here is the formal definition of 

OWL by W3C5: 

“OWL is a computational logic-based language such that knowledge expressed in 

OWL can be exploited by computer programs, e.g., to verify the consistency of that 

knowledge or to make implicit knowledge explicit.”  

2.4 SPARQL 

SPARQL is the query language for RDF data. The basic building block of SPARQL 

queries is the triple pattern. A triple pattern is similar to an RDF triple, but in place of each 

triple element, one can place a variable. A triple pattern is then used to retrieve any 

matching number of the RDF data by matching triples in the data set to the triple pattern, 

substituting variables in the pattern by entities and properties found in the matched data 

triples.  

 
5 https://www.w3.org/OWL/#:~:text=Overview,things%2C%20and%20relations%20between%20things. 
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As illustrated in Figure 2.3, variables can be used in the triple patterns to retrieve the 

information needed. There are other query forms available in SPARQL, such as 

CONSTRUCT, ASK, and DESCRIBE, as well. The “WHERE” clause is where a triple 

pattern should be specified, and it will be used for matching against the RDF data. The 

namespace definition and also solution sequence modifiers (such as ORDER BY, LIMIT, 

etc.) are optional. The SPARQL syntax is straightforward, and it is the basis for other 

standard query syntaxes, as explained later. 

2.5 Triple Stores 

To store RDF data or triples, we need a data store that has been optimized for storage 

and retrieval of triples, and like relational databases, queries are used to store and retrieve 

data. Generally, triple stores are built to store and retrieve RDF data via semantic queries. 

 

Figure 2.3. SPARQL query example and the result. a) example SPARQL query b) 

result of the query. 
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Some of the popular triple stores are AllegroGraph6, OpenLink Virtuoso7, Jena TDB8, 

and the Oracle Graph database9.  

Note that, graph databases are more general stores as compared to purpose-built triple 

stores, where graph structure with nodes, edges are used to store the data. This might lead 

to faster lookups by using index-free adjacency structure. Most of the previously mentioned 

data stores are graph databases capable of storing RDF directly.  Typically, graph 

databases, such Neo4j10, do not accept RDF natively and SPARQL queries need to be 

converted to Cypher queries (Neo4j query language), beforehand.  Recently, plugins to 

load RDF/RDFS into Neo4j became available [2] . 

2.6 Knowledge Graphs 

From 1972, when the term knowledge graph (KG) was first introduced, researchers 

focused on designing semantic networks to capture semantic relationships between entities 

in their specific domains and projects such as Wordnet [3] remained active until now. On 

the other hand, projects such as DBPedia [4] and Freebase [4] were designed for 

unspecialized knowledge in 2007 although they have never considered themselves as KG. 

But the term gained popularity in 2012, when Google introduced their Knowledge Graph 

11 to incorporate the semantics in search engine, e.g., NELL[2] and YAGO[3]. There are 

multiple definitions for knowledge graphs in the literature but here we present the graph-

based definition to better differentiate them from Heterogeneous Information Networks. 

 
6 https://franz.com/ 
7 https://virtuoso.openlinksw.com/ 
8 https://jena.apache.org/documentation/tdb/ 
9 https://www.oracle.com/database/technologies/spatialandgraph.html 
10 https://neo4j.com/ 
11 https://blog.google/products/search/introducing-knowledge-graph-things-not/ 
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A knowledge graph (KG) is a directed graph 𝐺: (𝑉, 𝐸) whose nodes 𝑣𝑖 ∈ 𝑉 are entities 

and edges 𝑒𝑖 ∈  𝐸 are relations connecting the entities. For each node in 𝑉, we have a type 

mapping function 𝜙 : 𝑉 →  𝑇, where 𝑇 denotes a node type set, and edges have an 

associated type mapping function 𝜑 :  𝐸 →  𝑅 where 𝑅 denotes a relation type set. Thus, a 

triple (𝑣𝑖, 𝑒, 𝑣𝑗) forms an edge which implies the relation 𝑒 between two nodes 𝑣𝑖and 𝑣𝑗 .  

 

2.7 KG Evolution 

A critical consideration for a domain expert or knowledge engineer is how a KG 

evolves over time. Since most of the KG population software uses different datasets or 

even Web documents to generate/update a KG, it is necessary to validate the resulting 

KG before making it available to the users. Even in the most extreme cases, the changes 

 

Figure 2.4. Size and linkage degree of publicly available knowledge graphs on the 

Web. [source ISBN:9781643680811] 
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in those datasets may require software to be adjusted or modified, therefore a knowledge 

engineer needs to monitor such processes. The basic way is to check the logs of the 

software along with running some fixed number of queries to compare their results to the 

expected results manually.  

On the other hand, domain experts need to be notified of the changes in the reference 

data sets when populating a new version. That is because the sciences are evolving each 

day, and monitoring these changes helps them to get a better understanding of the data 

and even make necessary decisions to utilize the information to their benefit. As 

mentioned before, querying the data is time-consuming and usually insufficient when 

dealing with large KGs.  

Chapter three presents a method to automatically gather meta-information of different 

versions of KGs to monitor changes in the numbers of nodes and edges as well as 

structural changes and produce comprehensive reports. 

2.8 Link Prediction  

The link prediction task on a directed/undirected graph is defined as inferring the 

subset of missing relations in timet+1 given a snapshot of the graph in timet, where nodes 

in the graph represent entities and edges represent relationships between the entities [1]. 

There are different ways to formulate a link prediction task on a graph, but the most 

popular way is to express it as a ranking problem, where a threshold is set on the 

likelihood of the presence of edges between each pair of nodes. The most comprehensive 

taxonomy of different approaches for link prediction is provided by [5] and improved in 

[1], where the authors group the methods into four main categories: similarity-based 
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methods, probabilistic and statistical model, algorithmic methods, and preprocessing 

method. 

Link prediction has a large number of applications in different domains, such as 

predicting protein-protein interactions in biology, social network analysis, entity 

resolution [5], and many more. In chapter 5, we present a case study in the biological 

domain, where the domain experts are interested in discovering unknown associations 

between proteins and pathways in which the proteins participate. 

 

 

2.9 Knowledge discovery in KGs 

As mentioned earlier, there are numerous knowledge graphs in different fields that 

contain hidden knowledge to be discovered. One primary way to achieve this is to use link 

prediction to propose new associations within the entities in KG. The variety of entities 

and edges between them make it hard to realize the schema of the KG. These entities and 

relations might come from other resources or even more general-purpose KGs or 

ontologies that have been used to populate the new KG and the schema of those resources 

might not be known. This makes the link prediction problem even harder and less efficient, 

sometimes less accurate.  

Furthermore, the newly populated KG version might introduce changes in the 

schema and the instances of the data, and this causes the previously successful data mining 

methods to perform poorly on the new version of KG. Here is where the KGdiff, our 

method to track the evolution of KG comes to play. It discovers the schema and schema 

in-use of the KG and gives the better understanding of KG to the engineers and domain 
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experts and help them realize the overall schema and actual relations between different 

types of entities in KG to variety of purposes such as link prediction. 

The RegPattern2Vec is a powerful tool for large KGs where their schema in-use is 

known to experts, and it takes advantage of the known schema to perform faster and more 

accurate by selecting the sub-graph from KG that is more informative for such prediction 

without expending lots of time tracing the whole KG. RegPattern2Vec has shown its very 

good performance on the gold-standard datasets, but we did not stop there. Many other 

methods perform well on these datasets but they are not able to perform as well in real-life 

tasks. To show that RegPattern2Vec is applicable to real-life datasets, we applied to a 

biological KG where it can predict association that are crucial in that domain. We have 

shown that some of the predictions have literature support when the associations were not 

known in our data and even propose new associations that are promising. 

This dissertation proposes a knowledge discovery pipeline for domain experts 

where a huge data in a form of a KG is available and discovery of knowledge is desired. 
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CHAPTER 3 

KGdiff: TRACKING THE EVOLUTION OF KNOWLEDGE GRAPHS12 

  

 
12 Abbas Keshavarzi and Krys Kochut. To be submitted to IEEE Transactions on Knowledge and Data 

Engineering Journal.  

* Presented in 21st IEEE International Conference on Information Reuse and Integration for Data Science 

(IRI), 2020. 
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Abstract 

A Knowledge Graph (KG) is a machine-readable, labeled graph-like representation 

of human knowledge. As the main goal of KG is to represent data by enriching it with 

computer-processable semantics, the knowledge graph creation usually involves acquiring 

data from external resources and datasets. In many domains, especially in biomedicine, the 

data sources continuously evolve, and KG engineers and domain experts must not only 

track the changes in KG entities and their interconnections but introduce changes to the 

KG schema and the graph population software. We present a framework to track the KG 

evolution both in terms of the schema and individuals. KGdiff is a software tool that 

incrementally collects the relevant meta-data information from a KG and compares it to a 

prior version the KG. The KG is represented in OWL/RDF/RDFS and the meta-data is 

collected using domain-independent queries. We evaluate our method on different 

RDF/OWL data sets (ontologies). 
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3.1 Introduction 

Recently, knowledge graphs have gained considerable interest among researchers. 

They play an important role in various software systems, including recommendation 

systems, information retrieval, search engines, and many others. Therefore, creating, 

managing, and evaluating them is critically important. 

A knowledge graph (KG) is a machine-readable, labeled graph-like representation of 

human knowledge. This definition is similar to that of ontology, as they share largely the 

same terminology and specifications, and they are used interchangeably in the literature. 

Often, they both use the Resource Description Framework (RDF) to store, transfer, and 

represent data. Broadly speaking, RDF is a set of triples, composed of a subject, predicate, 

and object. It offers a very simple, yet powerful way to make data easier to process, transfer 

and store by a variety of software systems. RDF Schema (RDFS) and the Web Ontology 

Language (OWL) can be used to create a schema for the knowledge graph data. In this 

regard, OWL is more expressive, which makes it possible to define many constraints and 

restrictions to closely follow the meaning of the KG data. Consequently, RDF/RDFS and 

OWL are some of the most popular specifications to represent both ontologies and 

knowledge graphs. 

Despite the aforementioned similarity between ontologies and knowledge graphs, there 

are some fundamental differences between the two. In an ontology, the main focus is on 

conceptualizing a given domain as accurately as possible and so the accuracy of the 

knowledge modeling is at the forefront. An ontology should faithfully capture all of the 

concepts and relationships in a given domain and appropriately represent them in its 
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schema.  Often, only a limited number of instances, if any, are included, often as an 

illustration.  

On the other hand, knowledge graphs, while often including a schema as well, focus 

more on the data represented as individuals (graph nodes) and interconnections among 

them (graph edges). Usually, a major goal is to represent a large amount of data in a graph 

form with an aim to leverage the data in many tasks requiring a semantics-based approach. 

As previously mentioned, KG may be used to enhance graph-based search capabilities or 

to support the core functions of recommendation systems. A KG can be created using 

various resources, ranging from semi-structured to structured data, possibly including 

unstructured natural language text. The acquired data is often curated and interconnections 

are identified to form a knowledge graph. The resources may be evolving over time and 

the KG construction process should be flexible enough to accommodate the changes. Thus, 

a framework is needed to track the changes and offer the KG engineers a good grasp of the 

accumulated changes in the KG. In this work, we present a framework to track KG 

evolution from the perspective of both the schema and the individuals (instances). KGdiff 

retrieves meta-data and other important information about the knowledge graph, which can 

be analyzed by KG engineers and domain experts.  Also, it can be used for comparison to 

other (past or future) versions of the same KG. KGdiff uses SPARQL endpoints to execute 

a number of SPARQL queries in order to get the necessary meta-data.  Therefore, it does 

not need to load the whole KG to memory. The queries are independent of the knowledge 

graph schema and comprehensive enough to gather all of the necessary information for 

tracking KG version evolution. 
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3.2 Related work 

Some of the original knowledge graph comparison methods were motivated by the 

UNIX diff command, but they have been proven to be unsuitable [6]. 

[7] is one of the pioneering works for ontology versioning. Although the main purpose 

was to match different versions of ontologies together, similarly to version control systems 

in software development, the authors managed to use different heuristic matchers to find a 

delta of two ontology versions. Another way to tackle the problem was reported in [8], 

where the authors convert each version of an ontology to a rooted directed acyclic graph 

and compare them to establish differences. Atomic changes such as addition and deletion 

were aggregated into more complex changes in [9]. Zeginis et al. [10] tried to find a set of 

changes that could transform a previous version of ontology into a newer one. Although 

these approaches sounded promising, in reality, their complexity of the types of reports 

render them unsuitable for a comprehensive comparison of KGs. 

In [11], the authors categorize changes in OWL ontologies as effectual or ineffectual 

by applying their approach to 88 versions of the same ontology. The basic change 

operations in [12], along with a rule-based approach helped the authors to determine 

semantically relevant concepts in different versions. Similarity measures were used in [6] 

to detect semantic differences in versions of an OWL ontology along with syntactic 

differences using OWL syntax. [13] also used low-level changes and simple changes to 

detect more complex ontology changes, but it is not clear if the authors consider changes 

of the concepts or not. SPARQL select queries were used to retrieve simple changes from 

a Virtuoso server used as an RDF datastore. Some other approaches include [14], and an 

online ontology browser with a diff tool called Bubastis [14], which simply tracks the 
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changes in class entities within different versions of the same ontology. However, the 

comparison of classes in Bubastis (classes added, removed or changed) is not sufficient to 

track the evolution of an complex ontology or a knowledge graph.  

In general, tracking changes in a knowledge graph evolution is rooted in area of 

network science, where measuring the structural similarity/distance provides a metric to 

tackle important challenges in graph analysis, such as graph matching, network comparison 

and network and ontology alignment. For example, in [15], the authors investigated 

approaches to determine the exact or inexact matches and used global and/or local 

measures to determine if the networks are deterministic or random graphs. 

Most recently, in [16], the authors studied the evolution of a knowledge hierarchy using 

an approximation of Katz similarity measure to capture the concept hierarchy and 

relationship importance to track the evolution of a hierarchy in large knowledge graphs. In 

another work, researchers attempted to express changes in an ontology due to evolution 

based on an ontology log and to determine whether the revalidation of existing alignment 

is necessary or not [17]. 

Recently, graph databases become one of the options for storing Knowledge Graphs. 

Often, the evolution of graph data is considered as a tool for tracking the history of data, 

such as the recent work on the Neo4j13 database [18]. The similarity of the RDF data to 

graph database data models makes it easy to store a KG in any graph database. Neo4j 

gained significant popularity because of its compatibility with Java and its ease of use. Its 

query language, Cypher, is easy to understand and has a lot in common with other well-

established query languages such as SPARQL and SQL. Having no schema requirement in 

 
13 https://neo4j.com/neo4j-graph-database/ 
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Neo4j databases is a plus, especially in the development phase, which imposes no 

restriction on structuring the data. However, in the production phase, there is a need for a 

schema in order to restrict the structure of the data stored in the database, typically, to avoid 

errors. The schema is also helpful in understanding the structure of the graph data when 

dealing it for the first time. Recently, some efforts in this regard have been made in the 

graph database community, including Data Profiling (using Cypher’s built-in db.schema14 

) and Database Analyzer15 . To the best of our knowledge, there are no efforts to analyze 

the evolution of a knowledge graph represented in a graph database. This offers an 

opportunity for us to expand our approach to graph databases, in the future. 

 

 

 

3.3 Motivating Example 

The Protein Kinase Ontology (ProKinO) [19], [20] is a  Knowledge Graph, encoded in 

OWL, containing a large amount of comprehensive data on protein kinases.  Protein 

kinases play an important role in many different types of cancer and have been a focus of 

intensive research.  At present, ProKinO has 829 classes, 81 relationships (properties) and 

close to two million individuals. Its schema has been jointly developed by kinase scientists 

and ontology engineers and the included hierarchy of classes, object and datatype 

properties and other constructs define a comprehensive domain of knowledge on protein 

kinases.  The ProKinO knowledge graph is automatically populated by custom-built 

 
14 https://neo4j.com/blog/data-profiling-holistic-view-neo4j 
15 https://medium.com/neo4j/introducing-the-neo4j-database-analyzer-a989b85e4026 
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software and uses a number of external data sources, such as COSMIC [21], UniProt [22],  

Reactome [23] and Kinbase.  However, much of the data included in ProKinO has been 

created at the lab of Dr. Kannan at the University of Georgia. 

The hierarchical structure of the ProKinO classes has been designed by kinase 

specialists and ontology engineers to closely follow the biologist's view of protein kinases, 

their structure and function.  The kinase classification into groups, families and subfamilies 

has been established by kinase scientists at many institutions. However, classification of 

the pseudokinases has been created largely at the University of Georgia [24]. The ProKinO 

knowledge graph population software loads the schema and the kinase classification files 

and then populates the individuals and links among them using resources mentioned above 

to form the whole ProKinO knowledge graph. 

The population process is repeated at regular intervals to keep ProKinO up-to-date 

(usually bi-monthly) as the data resources release new versions, regularly. Consequently, 

these regular updates result in new versions of the ProKinO knowledge graph. Obviously, 

as the resources change, the ProKinO versions continually accumulate differences, which 

are important both for the knowledge engineers and the domain experts who are the 

intended knowledge graph users. Changes in the individuals in various classes and the 

numbers of links between those individuals are crucial for the scientists, as they query the 

ProKinO data and perform various kinase analysis tasks. With each new version, the 

scientists are forced to execute numerous test queries or even manually verify the newly 

generated knowledge graph to discover how the new data changed in comparison the 

previous ProKinO version. 
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The ontology schema evolves over time, albeit not frequently, and the automatic 

knowledge graph population software must be modified, as well.  Consequently, the 

knowledge graph engineers must evaluate the populated ProKinO Knowledge Graph and 

check the new version for accuracy and verify that the population process was completed 

correctly.  The verification queries check if the numbers of instances in each class follow 

the general growth trends and if a change in a specific class or a property causes any issues 

for the populated data.  These verification steps typically consume a significant amount of 

time and resources but are absolutely necessary to maintain high quality of various protein 

kinase analysis tasks. KGdiff has been designed as a comprehensive solution for 

monitoring the evolution of a Knowledge Graph. To the best of our knowledge, there are 

no other software tools available that are capable of monitoring the above concerns. As 

shown in Figure 3.1, KGdiff displays information about a single version of a KG and also 

the result of comparing two versions of a KG. We will present details about its design, 

implementation and capabilities in the following sections.   

 

Figure 3. 1. Screenshot of KGdiff 
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To evaluate KGdiff further, we selected a set of knowledge graphs and ontologies in 

different domains. Then, using their different versions, we showed that the KGdiff is able 

to track knowledge graph evolution and can provide important information for the 

knowledge engineers and domain experts. We will discuss the experiments in the section 

on evaluation. 

3.4 Difference of Knowledge Graph versions 

KGdiff is a software system which identifies and reports changes in an evolving 

knowledge graph represented in RDF/RDFS or OWL. KGdiff is capable of identifying 

changes both in the KG structure (at the schema level, sometimes referred to as the TBox) 

and among the individuals and connections among them included in the graph (sometimes 

referred to as the ABox).  However, identified changes among the individuals only refer to 

their counts, and not the actual individuals. The system provides a summary report in terms 

of the statistics about the number of modified and retained classes, object and datatype 

properties and other important concepts in a knowledge graph. Subsequently, the user can 

evaluate the changes as either expected, e.g., new classes and properties, or any typical 

increases in the numbers of class individuals, or unexpected, perhaps due to population 

process errors or unintended class or property modifications.  The system is divided into 

two components: (1) the meta-data acquisition and (2) the graph difference evaluator.  We 

assume that the knowledge graph is accessible by SPARQL endpoints, one for each KG 

version to be compared.  At the end, a summary report is presented to the user. 

The meta-data acquisition component executes a series of specific SPARQL queries 

against the two endpoints to acquire the necessary information for each version of the 

RDF/RDFS/OWL knowledge graph. Subsequently, the comprehensive meta-data 
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information about the graphs is stored in a MySQL database. The graph difference 

evaluator uses the meta-data information for two versions stored in the database and 

computes the differences between the versions.  The final summary is prepared and 

presented to the use. 

As the difference evaluator is focused on the differences between the versions of 

knowledge graphs, it does not report the complete meta-data for both versions. However, 

as a convenience, the system also allows the user to view the entire meta-data information 

identified for one KG version, which shows all graph entities (resources) and their 

statistics.  

 

 

3.4.1 Meta-data discovery 

The meta-data for a knowledge graph includes primarily all classes of the resource in 

the graph (nodes) and their hierarchical organization, relationships (properties) and their 

hierarchical organization, as well as all types of edges (patterns of triples) in the graph.  For 

OWL-encoded knowledge graphs, it may also include class expressions and restrictions, 

as defined in the graph.   

A fixed set of SPARQL queries is executed.  Due to the space limitations, we are not 

showing them here, but an outline of one such query is shown in Figure 3.2. Classes are 

retrieved first.  For each class in the graph, KGdiff obtains the class’s URI, its labels 

(rdfs:label),  parent classes (rdfs:subClassOf), if they exist, and the count of its individuals 

(instances).  Here, we assume that individuals are classified using the rdf:type property.  

The number of individuals for a class includes only the direct (immediate) instances.  For 

example, if class RoseWine has 100 instances, none of them are counted as instances of 
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the parent class Wine (if the Wine class has no direct instances, its number of instances is 

set to zero).  

Object and datatype properties are discovered next.  In RDF/RDFS and OWL they are 

first-class objects, and KGdiff collects their labels and parent properties 

(rdfs:subPropertyOf).  Classes defined as set expressions on other classes are discovered, 

as well.  OWL restrictions (including value and cardinality) are discovered, too, if present. 

After all the classes have been collected, KGdiff retrieves the edge (triple) types.  For each 

triple, it determines the predicate, which is either an object property or a datatype property. 

Furthermore, it obtains the class of the triple’s subject and the class of its object (for object 

properties), or the XSD type (for datatype properties). SPARQL queries also establish the 

counts of the instances for all triple types.  Another important aspect of meta-data discovery 

concerns discovery of additional class descriptions16. 

 

 
16 https://www.w3.org/TR/owl-ref/ 

 

Figure 3. 2. A sample SPARQL query 
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3.4.2 Meta-data store 

A relational database has been selected to store the retrieved meta-data information 

from Knowledge Graphs. Fig. 3.3 illustrates an outline of the database organization as a 

UML diagram. There are 19 classes and several associations created to capture all of the 

important graph elements.  Note that this is only an outline of the meta data organization, 

and the actual database schema is considerably more comprehensive.  For simplicity, the 

diagram does not provide association multiplicities and many other details. 

The central classes are Class, ResourceType, and EdgeType.  EdgeType represents all 

of the types of edges in a given Knowledge Graph and represents the property, the class of 

the subject and the class of the object (for object properties).  Note that blank nodes (RDF 

resources without assigned URIs) can be used as subject or objects in edges.  For graphs 

represented in OWL, ClassExpression captures classes defined using set expressions, 

including owl:unionOf, owl:intersectionOf and owl:complementOf.  OWL restrictions are 

represented by the Restriction class, which can be either value or cardinality restrictions.  

Please note that a Restriction can be a part of a class set expression, as in a “classic” 

example of a the RedWine definition as an intersection of the class Wine and all individuals 

with the hasColor property restricted to color red17. 

 

 

3.4.3 Defined schema vs. schema “in-use” 

RDF graphs do not have to have a defined schema in RDFS or OWL.  In fact, an RDF 

knowledge graph may only include resources (individuals) and links among them in the 

 
17 https://www.w3.org/TR/owl-test/misc-000-guide 
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form of triples. First, KGdiff identifies the defined schema by retrieving the explicitly 

specified classes (rdfs:Class, owl:Class), properties (rdfs:Property, owl:DatatypeProperty, 

owl:ObjectProperty), class expressions, restrictions, and other constructs.  In addition, 

KGdiff recognizes how object and datatype properties are used in a graph, where the ranges 

and domains have not been explicitly specified, effectively recognizing what we call the 

schema “in use”. 

Consequently, there are two main types of information that KGdiff gathers from an 

endpoint. In summary, a graph schema is retrieved by running SPARQL queries to retrieve 

all concepts specified as classes, object properties and datatype properties, their domains 

and ranges, expressions, restrictions, etc. Second, all edge types (triple types) which are 

not explicitly defined in the schema but occur in the graph are recognized and stored as 

ObjectEdges and DatatypeEdges, as well (see Figure 3.3 for an example). 

The class of individuals participating as subjects (or objects) in any triple can be a 

subclass of the actual domain and range defined for the property. This means the class of 

the subject and object in an instantiated triple can be different from the domain and range 

defined for that property.  For example, in the ProKinO ontology, the class Mutation has 

been defined as the domain for an object property named locatedIn, while the Motif class 

has been defined as the range. The Mutation class has multiple subclasses, including 

Insertion, Deletion, etc., and the actual individuals are populated from these classes, not 

the Mutation class. So, in this case, EdgTypes can be <Insertion, locatedIn, Motif>, 

<Deletion, locatedIn, Motif>, etc., instead of <Mutation, locatedIn, Motif> which was 

defined in the schema. 
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Therefore, in evolving KGs, tracking the actual instances of the inferred schema is as 

important as the changes in the defined schema. KGdiff is able to retrieve all object and 

datatype edge types from an RDF or OWL knowledge graph and compare it to another 

version of the graph for verification and to detect any changes for further analysis. 

 

 

3.4.4 Implementation 

KGdiff is an open-source18 web application coded in Java that uses both Apache Jena19 

and HTTP REST requests to retrieve a comprehensive knowledge graph meta-data, 

accessible from a SPARQL endpoint.  It uses a SPARQL endpoint and the target graph 

name and executes a number of SPARQL queries against the endpoint to gather various 

aspects of the knowledge graph meta-data and store them in the database. Finally, the 

complete structure of restrictions and class expressions are identified using a recursive 

function and appropriate queries. Note that the restriction and class expressions are defined 

using blank nodes which are resources with no URIs and no defined classes. Each 

RDF/OWL datastore treats blank nodes differently. Although we gather information about 

them in the database, KGdiff does not count them as classes but represents them as a 

separate type.  

As previously discussed, KGdiff requires Java, Jena, MySQL, Apache Tomcat20 and 

can be used from a typical Web browser. Please note that Apache Tomcat can be easily 

 
18 https://github.com/abbask/KGdiff 
19 https://jena.apache.org 
20 http://tomcat.apache.org 
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replaced by a different Java-based application server.  Similarly, another relational 

database accessible by JDBC can be used in place of MySQL. 

 

 

3.5 Evaluation 

We selected a number of ontologies and knowledge graphs in the domains of biology, 

geography, linguistics, and agriculture. We tested KGdiff using different versions of each 

knowledge graph. For some of the graphs, we used the published release notes or other 

forms of descriptions to determine what has been changed in comparison to the previous 

version.  We used them to evaluate our results. 

3.5.1 Datasets 

We have collected five datasets, which will be discussed in more detail. For ProKinO, 

we obtained several versions and compared them with the results reported by KGdiff.  

Detailed change logs may not be available for some KGs, as they might be created and 

populated automatically by software systems. In such cases, KGdiff may be used to 

generate and record change logs for future reference. 

The Ontology for Biomedical Investigations (OBI) [25] defines terms and protocols to 

describe an investigation in the biomedical domain. We chose OBI due to its size and the 

schema complexity. It can be used as a good benchmark to test our method’s performance 

and correctness. OBI is a fairly large ontology, with numerous class and property 

definitions.  Many of them are defined using complex expressions and restrictions using 
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the OWL vocabulary. We used different versions of the OBI graph available on 

BioPortal21.   

Plant Ontology (PO) links the anatomy of plants to genomic data by defining common 

vocabulary for anatomy, morphology, and development of plants. We have used two 

versions of PO for our experiment, versions 2015/10/20 and 2019/05/0622. 

To evaluate KGdiff further, we selected the GeoNames23 ontology and compared 

versions 3.0 and 3.2, using the provided release notes as a reference.  

Gold24 is an ontology for descriptive linguistics.  It is an effort to systematize the 

general knowledge in this field. For the evaluation purposes, we selected three different 

versions of this ontology. 

The BioPortal uses a tool called Bubastis [14], which provides some brief description 

about what classes have been added and removed and the total number of differences 

between the current and previous versions of an ontology. 

 

 

3.5.2 Results 

Table 3.1 shows the results of KGdiff for datasets mentioned earlier. The counting for 

several aspect of the KG that KGdiff considers are listed for two different version of them. 

Along with these counts, KGdiff retrieves and shows separate reports, listing entities, 

numbers of instances and their parent(s). The differences are based on the changes in the 

entity's name, their parent entities, and their definitions. For this work, we considered 

 
21 https://bioportal.bioontology.org 
22 https://www.ebi.ac.uk/ols/ontologies/po 
23 http://www.geonames.org/ontology/documentation.html 
24 http://linguistics-ontology.org 
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classes, object properties, datatype properties, object edges, datatype edges, restrictions 

and class expressions. Others, including class axioms, functional properties and 

annotations are left for future work. 

It is worth mentioning that an ontology such as OBI has a large number of classes 

defined by restrictions on other classes and object properties, and their definitions use blank 

nodes to represent them. Blank nodes play a special role of graph nodes and are treated 

differently in various RDF datastores.  Since they do not have any definitions, they are not 

clear to ontology users. Consequently, we decided not to count them in overall statistics in 

the current version of KGdiff which is a practice follow by other tools such as Protege25. 

Each graph version was retrieved using its own endpoint and the meta-data information 

was stored in the database for further comparison. KGdiff has no limitation on the 

number of the processed graph versions.  All versions are stored independently from the 

endpoints can be used offline. For the purpose of the evaluation, we selected only two 

versions of each KG to evaluate KGdiff. 

 
25 https://protege.stanford.edu/ 
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3.5.3 Results evaluation 

In the case of ProKinO, the changes detected by KGdiff were exactly as expected by 

the KG engineers. All of the changes in the new version of ProKinO were successfully 

identified by KGdiff and the correctness of KG population was verified. Obviously, such 

an exact change log is available for a KG population process managed by knowledge 

engineers, where some part of the process is semi-automatic. KGdiff is beneficial in 

verifying the resulting KG or ontology created by an automatic or semi-automatic 

population process.  It shows a comparison of meta-data snapshots of the compared 

versions. 

KGdiff is also very useful when analyzing large RDF and OWL knowledge graphs, 

such as OBI, with hundreds or thousands of classes and complex restrictions and class 

expressions. In our experiment, the comparison results produced by KGdiff showed the 

expected modifications, as compared to what has been provided in the change log.  KGdiff 

identified many additional changes in class expressions and restrictions, which were 

verified by our analysis of the serialized ontology versions.  

When a class (or a property) is replaced by a different class (or a property), it will not 

be reflected in the changed counts of entities, as previously discussed. For that reason, we 

have created an additional KGdiff module handling modifications for each entity types of 

concern. For instance, the Gene class in the ProKinO ontology has recently been replaced 

by the Protein class (to better model protein motifs and other specific information not 

associated with genes).  KGdiff, in its classes view notifies he user that the Gene class, 

which existed in the previous version, does not exist in the new version of the ontology 
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graph, and that the Protein class did not exist in the previous version but exists in the new 

version.  KGdiff identified and reported all such changes in ProKinO. 

In the GeoName graph dataset, the newly added GeonamesFeature class and the 

geonamesID property were correctly identified along with all deleted entities. As 

mentioned previously, the changes to the parent properties are also detected by KGdiff. 

Table 1 shows the most important aspect of the changes in different versions of this 

ontology. Note that, due to the extensive changes in the feature code entity, the vast number 

of restrictions introduced in version 3.2, were skipped here due to the size limitations. 

The versions of the GOLD ontology show a changing number of classes in versions 

2008 (505) and 2009 (506). The class Greater Plural was removed and the classes Thing, 

Circumfix were added. Some other classes, such as Closed and Salience Propety were 

modified to Close and Salienc eProperty. The other observed changed between these two 

versions was that 505 individuals of type Class were removed from the ontology. The other 

release that we used was version 2010 (not shown here). We compared it to version 2009 

to show the evolution of the ontology. 12 classes were removed namely Version, Proverb, 

Predicative, Small Paucal Number, Several Number, ConVerb ,FreeUnit, Morphological 

Unit, Inflectional Unit, Recent Tense, FunctionalUnit, DerivationalUnit and 8 new classes 

were added, including InflectionalMorpheme, BoundMorpheme, Complement, 

Morpheme, ProVerb, Converb, FreeMorpheme, and DerivationalMorpheme. Except for 

the ProVerb class that seems to have been just renamed, others seem to have been 

added/removed due to the change of concept. This shows that a domain expert can greatly 

benefit from this tool to recognize and understand the evolution of the ontology or track its 

changes over time. 
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The GOLD ontology does not include any individuals, so the triple types for the two 

graph versions in this experiment resulted in empty lists. We observed the growth in the 

number of classes from the 2015 to 2019 versions by 1131 classes (not shown here) and in 

the number of object properties by 11. The number of restrictions and expressions is also 

increased by 1108 and 67 respectively.  

It is worth mentioning that the results from the Bubastis difference tool was different 

for this ontology. Bubastis reported that there were 329 classes that have been changed and 

271 classes have been deleted, which indicates that the number of classes have been 

reduced over the period of four years. According to the Ontology Lookup Service, none of 

the classes have been deleted in this period of time. It might have occurred due to uses of 

external terms and definitions in Plant Ontology or, perhaps, Bubastis just uses the 

ontology namespace to find classes and is limited to the internal class definitions and does 

not identify all existing classes within the ontology. 

3.6 Conclusions and future work 

In this work, we presented a software solution, KGdiff, for tracking the evolution of 

knowledge graphs and ontologies. KGdiff uses generic SPARQL queries to extract all 

concepts and entities from an RDF/OWL graph and stores them in a relational database. 

The process of acquisition is a one-time process and the information gathered can be used 

to compare a graph version to its future versions as many times as necessary.  The report 

consists of data about a variety of concepts in the knowledge graph along with the overview 

of its schema and schema “in-use”. The simplicity and interpretability of the results relieve 

the knowledge engineers of time-consuming manual version comparison. Using examples 

of knowledge graphs and sizeable ontologies, we have shown that this work accurately 
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identifies all of the changes in the schema and in the numbers of instances, which is an 

important part of the knowledge graph evolution processes.  

Currently, KGdiff does not handle all of the OWL constructs.  However, it focuses on 

the most important aspects of RDF/OWL knowledge graphs to help KG engineers and 

domain experts to verify the correctness of the ontology/KG population and to track the 

evolution of the graph.  In the future, we plan to add the handling of the remaining OWL 

constructs, such as Annotations, Class Axioms and some of the property descriptions, such 

as owl:sameAs, owl:inverseOf, and others. Also, we plan to provide better visualization to 

help the users understand different aspect of the knowledge graph changes and provide 

more efficient ways to verify the data. 

Another avenue for us is to explore the knowledge graphs that are stored in graph 

databases, instead of RDF or OWL, as many knowledge engineers turn to graph databases 

for knowledge graph representation. KGdiff can be adapted to identifying changes to KGs 

represented in graph databases (SPARQL queries would have to be replaced by suitable 

queries in Cypher, GSQL, or other graph database query language). Otherwise, much of 

the KGdiff software could be reused. 
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CHAPTER 4 

RegPattern2Vec: LINK PREDICTION IN KNOWLEDGE GRAPHS26 

 

 
26 Abbas Keshavarzi, Natarajan Kannan and Krys Kochut. To be submitted to IEEE Transactions on Pattern 

Analysis and Machine Intelligence.  

* Presented in 2021 IEEE International IOT, Electronics, and Mechatronics Conference (IEMTRONICS). 
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Abstract 

Link prediction is an important task in many domains, including health sciences, 

biology, recommender systems, social networks, and many more.  It is one of the problems 

residing within the intersection of knowledge graphs and machine learning. Link prediction 

aims to discover unknown links between entities in a graph using various techniques. 

However, due to the size of knowledge graphs today and their complexity, it is a 

challenging and time-consuming task. In this work, we present RegPattern2Vec, a method 

to effectively sample a large knowledge graph to learn node embeddings, while capturing 

the semantic relationships between graph nodes with minimum prior knowledge and 

human involvement. Our results show that the link prediction using RegPattern2Vec 

outperforms related graph embedding approaches on large-scale and complex knowledge 

graphs. 

 

 

4.1 Introduction 

Today, knowledge graphs (KG) are gaining popularity in many domains. KGs can be 

stored and represented using standardized vocabularies, including Resource Description 

Framework (RDF), Web Ontology Language (OWL), and various graph databases that are 

rapidly gaining popularity, nowadays. Today, KGs often are very large and represent vast 

amounts of actionable data and researchers and computing practitioners have turned to 

graph data mining to leverage the KG data even further. 

Recently, machine learning (ML) has been gaining popularity due to numerous 

successful applications in many different domains, including graph mining [26], image and 
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video processing [27], [28], text mining [29], reinforcement learning [30], and many others.  

It is also applicable to data mining of KGs. Software systems can automatically discover 

interesting patterns in KGs, while not being explicitly programmed to achieve that task. 

There are various types of learning algorithms, such as supervised and unsupervised 

learning, reinforcement learning, and many more. Classification and clustering are some 

of the most popular algorithms for machine learning on KGs. Experts take advantage of 

different algorithms to create recommendation systems for social media networks, 

entertainment libraries, find similarities in bibliographic networks, and many mor e. 

KGs in nature are similar to Heterogeneous Information Networks (HIN) [31], where 

a variety of node and/or relation types between are used to represent data. This diversity of 

types provides benefits for learning, as compared to Homogenous Network, where types 

of nodes and relations are uniform. Finding appropriate methods to capture this extra 

information and use it in ML algorithms is a significant challenge. 

Another major area, in the intersection of machine learning and KGs, is KG completion 

and, more specifically, link prediction. This problem has two aspects: predicting the 

missing links. KGs are usually populated automatically using variety of internal and 

external resources and due to the incompleteness of those resources, there might be some 

known links that are missing in populated KG. Here, one task of machine learning methods 

is to find those missing links and suggest that there should be connections between them.  

As the graph analytics techniques are computationally expensive, especially on large 

graphs, researchers often aim to reduce the dimensionality of a graph into a low 

dimensional space. Graph embedding aims to preserve the structure of the graph while 

representing it as low dimensional vectors [32]. 
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Based on [32], there are six different categories to generate vectors from a graph. These 

include matrix factorization, deep learning, edge reconstruction-based optimization, graph 

kernels, generative models, and hybrid models.   In this work, we use a deep learning 

approach, in which random walks are used to sample the graph. This approach is based on 

a family of models from Natural Language Processing (NLP) called word2vec [33]; we 

specifically use the modified version of skip-gram model [34] in producing the vector 

embeddings. Skip-gram attempts to find the semantic similarity between words in a context 

by learning a meaningful representation for each word used in sentences in a corpus or 

documents. The main intuition is that we can discover the meaning of a word by 

understanding other words appearing close in a sentence. In the basic word2vec approach, 

the algorithm accepts a sentence and considers a window, usually of size 5 to 10, around 

the word of interest (center word) and generates training examples for a simple Neural 

Network (NN) with one hidden layer. The training examples are pairs of the center word 

and each of the words within the window size (context words).  Then it trains the Neural 

Network to maximize the probability of a context word, given a center word. Then, the 

weights in the trained network are used as embeddings for each word in the corpus 

dictionary. 

In this paper, we adopted this NLP method to our novel graph flattening approach using 

regular expressions to produce vector representation for the nodes in the graph.  We 

formulate the link prediction as classification problem, using a model trained on the vector 

embeddings of the pairs of nodes connected by the link of interest. Our method, which we 

call RegPattern2Vec, shows high accuracy and discovers interesting possible links between 

unlinked nodes in the graph. 
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4.2 Related Work 

Past research includes several approaches to capturing the semantic relationship 

between graph nodes. Matrix factorization-based methods generate embeddings by 

factoring the matrix that represents the relations between nodes [35]. The matrix can be an 

adjacency or a Laplacian matrix, among other methods. Another technique that is used to 

generate vector embeddings, is Graph Kernels. Graph kernels are a measure of similarity 

of pairs of graphs. For example, [36] uses graph kernels for subtrees and similarity of 

instances in the original graph by counting common structures. Intuitively, vector 

embeddings of nodes with similar structure in a subtree are closer to each other. 

Generative models are also popular as a graph representation learning method. The 

generative and discriminative models play the minmax game, where the generator 

approximates the connectivity of a graph and a discriminator calculates the probability of 

edge’s existence. They are used to perform link prediction and node classification [37]. 

Finally, we discuss two approaches that can be classified as Deep Learning (DL) methods. 

DLs using random walks, such as metapath2vec [34], and DLs not relying on random walks 

[38] and [39], utilizing other techniques for computing vector embeddings. Whether 

employing minimization of Margin-Based Ranking Loss for entities or constructing a 

multilayer graph with structural similarity of all nodes in level of hierarchy, their goal is to 

translate the graph to a low dimensional space, where it can be used for applications such 

as link prediction or node classification. It is worth mentioning that there are other 

techniques such as using Convolutional Networks [40] and Autoencoders [41], which we 
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do not discuss in this section because they fall into an entirely different type of methods. 

Generally, most GCN approaches suffer from scalability problems when the graph is large 

and dense due to the number of parameters and so are impractical to use. Therefore, 

different type of approach with a smaller number of parameters and hyperparameters will 

be required to large KGs such as approaches to sample the graph and learn representation 

in more efficient way, which will be discussed next. 

Since in our method we rely on deep learning using random walks, we will focus on 

similar approaches in greater detail. As the computation of all possible walks on a graph is 

computationally expensive, researchers tend to choose random walks on the graph using 

some probability distribution. This would be sufficient for walks on homogenous networks.  

However, in heterogeneous networks with multiple types of nodes and edges, we need to 

differentiate types of nodes/edges when selecting the next node. Metapath2vec++ [34] is 

an approach that considers a fixed path of node types, which is called a meta-path. For 

instance, on a DBLP computer science bibliographic dataset [42], the meta-paths APA, 

APVPA, and OAPVPAO were chosen, where A represents the author, P paper, O the 

organization, and V the venue. These meta-paths are used to bias the random selection of 

the next node with the appropriate type in a random walk. Although some results of 

automatically discovering meta-paths have been published [43], usually domain experts 

are needed to choose the meta-paths of their interest for random walks. A domain expert 

should fully understand the KG organization. Although some tools for a KG schema 

discovery exist, such as KGdiff [44], due to the complexity of KGs and the hierarchy of 

concepts in them, it becomes difficult and time consuming to create appropriate meta-

paths. Their selection should consider several aspects, e.g., the problem we want to solve 
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(node classification, clustering, etc.), either the selected subgraph or the whole KG, and the 

meta-path coverage within it (number of nodes that can be reached using meta-paths/meta-

graphs). Although the meta-path approaches on HINs were often used for various tasks, 

they are not useful for capturing more complex relations among entities. Each type of node 

must be explicitly defined or the meta-path does not capture the variation of attributes 

linked to the nodes. [45] proposed meta-graphs, which in a nutshell are meaningful 

combinations of meta-paths. For instance, if there are two meta-paths as APA, AVA, a 

possible meta-graph would be A-[P/V]-A. The use of meta-graphs as constrained to 

random walks was tested in [46], but the choice of meta-graphs where they can improve 

the overall model poses another challenge.  To overcome these weaknesses, we introduce 

RegPattern2Vec, where a regular expression guides the random walks to sample sequences 

of nodes in a more efficient way, especially for large KGs. where other methods fail due 

to the lack of scalability.  The embeddings produced by our representation learning 

captures all of the necessary characteristics of each node to be used for high accuracy link 

prediction. 

 

 

4.3 Preliminaries and Problem Definition 

In this section, we first introduce some preliminary concepts and then define the 

problem of Link prediction on KGs using Random Walks constrained by Regular 

Expressions. As of this writing, a single, commonly accepted definition of a knowledge 

graph does not exist, yet, and many researchers provide their own definitions.   A good 
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analysis is of KG definitions has been presented in [47], [48].  Here, we will use graph-

based definition. 

Knowledge graphs. A knowledge graph (KG) is a directed graph 𝒢: (𝒱, ℰ) whose 

nodes 𝑣𝑖 ∈ 𝒱 are entities and edges 𝑒𝑖 ∈  ℰ are relations connecting the entities.  Edges, 

usually referred to as triples of the form (𝑣𝑖, e, 𝑣𝑗), represent some type of semantic 

dependence between the connected entities. Nodes have an associated type mapping 

function 𝜙 : 𝒱 →  𝒯, where 𝒯 denotes a node type, while edges have an associated type 

mapping function 𝜑 :  ℰ →  ℛ where ℛ denotes a relation type set. 

Given a knowledge graph G, an edge with a relation type R connects source nodes of 

type S and target nodes of type T defines a meta edge 𝑆 
𝑅
→  𝑇 . A set of all such meta edges 

for G is called a schema graph (sometime referred to as meta-template).  In fact, schema 

graph is a directed graph defined over node types 𝒯, with edges from ℛ, denoted as GS = 

(𝒯, ℛ) [49]. 

Knowledge graphs are often represented as RDF [50] datasets, where nodes (entities) 

and relationships are represented using Uniform Resource Identifiers (URI).  Nodes and 

relationships have assigned types, given as URIs, as well.  Furthermore, these types may 

form type hierarchies. RDFS [51] is often used to define a schema for an RDF knowledge 

graph. Knowledge graphs are closely related to Heterogeneous Information Networks 

(HIN).  In HINs, object (node) and relationship types both contain more than one element, 

that is, there are multiple labels for graph nodes and multiple labels for edges.  In case that 

type sets are singletons, the Information Network is called a Homogeneous Information 

Network (all nodes in the network are of the same type and all edges are of the same type).   
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Despite the obvious similarity of KGs and HINs, there exist important differences 

between them.  An important distinction is that in HINs, a relation of type R ∈ ℛ uniquely 

determines the types of source and target nodes that can be connected by the relation R.  In 

knowledge graphs, however, a relation of type R may connect nodes of many different 

source types and target types.  Many other differences KGs and HINs exist, but they are 

not important for the research presented in this paper. 

It has been shown that the results of various graph-embedding tasks are sensitive to the 

selection of a specific meta-paths [52]. In this paper, we propose a method of using regular 

expressions as a specification of a wide range of semantic relationships to be incorporated 

in random walks. 

Regular Patterns on KGs. Let 𝐺 be a knowledge graph, 𝐺 =  (𝒱,  ℰ), with a node 

type mapping function 𝜙 : 𝒱 →  𝒯 and an edge type mapping function 𝜑 :  ℰ →  ℛ. A 

Regular Pattern on 𝐺 is a regular expression (pattern) [49] r formed over either set 𝒯 or ℛ 

as the alphabet.   

We will not formally define regular expressions, since they are commonly used in 

computing, today. Briefly, a regular expression defines a set of strings (sequences, or 

words) over an alphabet; it defines a regular set [49]. We assume a standard format of 

regular expressions used in many programming languages today, for example in Python 

[53].  Here, we will only use a subset of possible regular expression constructs, including 

the concatenation, the alternative (|), repetitions of zero or more times (the Kleene star *), 

one or more times (+), specified number of times ({n, m} n through m, and {n,} at least n), 

and the complement matching [^xy] (any symbol other than x or y).  Note that a meta-path, 

as defined in the metapath2vec algorithm [34], can be regarded as a regular expression over  
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𝒯 (or ℛ) since it can be regarded as a concatenation of node (or relation) types placed on 

the meta-path (again, a relation in HINs uniquely determines the source and target node 

types and vice-versa). 

As an example, given node types Ti ∈ 𝒯 in a KG, we could formulate a variety regular 

patterns over node types, for example, T1 T2 T3, T1 (T2 | T3) T4, (T1 | T2) T3+ T4, any many 

others. Similarly, given edge types Ei ∈ ℛ in a KG, we could create regular patterns over 

edge types, such as [^R1] R2 R3* R4 or  R1 (R2 | R3)* R4. Intuitively, a regular pattern defines 

a set of node (or edge) type sequences (a regular set), which we use to bias random walks 

on a KG to follow semantically relevant data.   

Many knowledge graphs utilize complex hierarchies of node (entity) types such as 

Yago[54], DBpedia[55], and NELL[56].  Consequently, defining regular patterns based on 

node types is impractical, as they would require costly type inference (node types in actual 

sampled walks could be subtypes of those included in the defined regular pattern).  Hence, 

using regular patterns on edge types may be a better choice.   

In this paper, we focus on link prediction and so we rely on a specific general format of 

regular patterns for biasing the random walks. Assume that given a KG, we need to predict 

an edge (h, r, t), where h, t ∈ 𝒱, r ∈ ℰ, 𝜙(ℎ) = 𝐻, 𝜙(t) = 𝑇, and 𝜑(r) = 𝑅. If the KG has 

a simple (non-hierarchical) structure of node types, our expression pattern can be based on 

node types and have a general format 𝑯[^𝑻]+ 𝑯 𝑻.  However, in a KG with a large node 

type hierarchy, we use edge-based patterns with the general format of [^R]{2,} R. That is, 

at least 2 edges with relation types different than the one to be predicted followed by the 

edge relation type to be predicted. 
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The intuition behind the above regular (expression) pattern formats primarily comes 

from the observations of meta-paths and meta-graphs, where the similarity of two nodes is 

calculated based on the number of paths between them that follow a specific meta-path [57]. 

While some works [34], [46], [58] use symmetric meta-paths to calculate similarity between 

nodes of the same type, others [59] use more complex meta-paths for a different types of 

nodes. RegPattern2Vec follows the latter idea of finding the similarity of nodes with 

different types, but meta-paths and meta-graphs must be explicitly designed by domain 

experts and each such meta-path needs to be used in a separate experiment.  In general, 

individual meta-paths cannot capture all possible semantically relevant connections 

between the nodes of interest.  RegPattern2Vec, due to its use of regular patterns cover a 

large set of meta-path-like connections and takes advantage of a multitude of such semantic 

connections in one experiment. 

We can explain the RegPattern2Vec using a simple example shown in Figure 4.1. The 

graph contains 4 different relations: R1, R2 R3, and R4 (red, green, blue and yellow, 

respectively). The link that we want to predict is R2. Following the regular pattern, 

[^R2]{2,}R2, we have R1, R3, R4 ∈ [^R2].  An example walk following the pattern is 𝑎1

𝑅1
→  𝑐1 

𝑅1
→  𝑎2 

𝑅2
→  𝑑1. The intuition is that if we found two nodes (a1 and a2) where they link 

to another common node (c1), they are semantically related and node a1 might have the 

relationship R2 to d1, as well, which is useful for the link prediction task. 
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In the example nodes a1 and a2 have two common nodes b1 and c1 and plus the above 

path, 𝑎1
𝑅4
→  𝑏1 

𝑅4
→  𝑎2 

𝑅2
→  𝑑1 is also allowed based on the regular pattern. It is possible that 

the intermediate nodes have a relationship with other nodes, such as nodes c1, c2, and c3. 

These links might be considered as loops within the same type of nodes. If the nodes are 

the same or different type, a regular pattern can find such path and there is hyperparameter 

to control number of such possible loop. If this parameter is 1 the path 𝑎1

𝑅1
→  𝑐1 

𝑅3
→ 𝑐2 

𝑅1
→ 𝑎3 

𝑅2
→  𝑑2 is allowed and if it was 2, a walk from node c1 can reach node 

c3 and the path 𝑎1
𝑅1
→  𝑐1 

𝑅3
→ 𝑐2 

𝑅3
→ 𝑐3 

𝑅1
→  𝑎4

𝑅2
→  𝑑3 is also permitted. Here, a1 and a2 are 

more similar than a1 and a4 but it can be beneficial to capture those paths, as well. By this 

logic, a random walk constrained by a regular pattern can reach different paths to capture 

more links within the graph, if necessary. 

 

Figure 4. 1. Illustration of random walks using regular expression. 
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4.4 RegPattern2Vec 

RegPattern2Vec relies on random walks to produce graph embeddings. Random walks 

on knowledge graphs are constrained to those matching a defined regular pattern. 

 

 

4.4.1 Random Walks 

Random walks in RegPattern2Vec are designed to sample an arbitrary number of 

walks. Their number can be controlled by parameters, such as “walk length” and “number 

of walks” (per starting node). Even though the knowledge graphs we use are defined as 

directed graphs, here, we treat them as undirected. We do this to be able to sample paths 

from all possible paths according to a defined distribution. Having an undirected 

knowledge graph and a regular expression pattern, a random walk can be started from any 

instance of the starting edge (or node) type in the pattern. 

A regular pattern is converted to an equivalent Deterministic Finite Automaton (DFA) 

M [49] with the same input alphabet as the one used in the regular expression pattern 

definition. We will not introduce a formal definition of a DFA here but simply state that a 

DFA has a finite set of states, an input alphabet, a transition function , a starting state, and 

a set of final states. In our case, the state transition function is defined as : Sℛ → 𝑆 (or 

: S𝒯 → 𝑆) and specifies state transitions based on edge (or node) types, depending on 

the regular pattern expression. We assume that  is a partial function and for some states, 

transitions on some relation (or node) types may be undefined. We use the transition 

function  of M to define the probabilities of node selections in our random walks. 
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It is obvious that if we repeat the walk from each node, we will discover more paths as 

the node might link to multiple nodes, which are allowed based on the regular pattern. We 

will call this parameter “number of walks”. We will discuss how to choose the parameter 

and analysis of their impacts in the next section. As in each step there might be multiple 

choices, randomization will help the random walk to select a next node in each step. In the 

scale-free networks, where the degree distribution follows the power law, some nodes, 

often referred to as hubs, have high number of incoming/outgoing edges. It seems that such 

nodes would dominate the random walks as they have a higher probability of being reached 

when the next node selection follows the normal distribution. As the frequency of nodes 

appeared in the walk is the key point of representation learning, we bias the walks while 

using a regular expression pattern and its equivalent DFA M, using the formula below: 

   𝑃(𝑣𝑖+1 | 𝑣𝑖, 𝑀)  =          

{
 
 
 
 

 
 
 
 

1

|𝑁𝑣𝑖+1|

∑
1

|𝑁𝑣|
𝑣∈𝑁

𝑣𝑖

  (𝑣𝑖, 𝑟𝑖 , 𝑣𝑖+1) ∈ ℰ,𝑀 𝑖𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑠𝑖  𝑎𝑛𝑑

     (𝑠𝑖, 𝜑(𝑟
𝑖)) = 𝑠𝑖+1

 
0 (𝑣𝑖, 𝑟𝑖 , 𝑣𝑖+1) ∈ ℰ, 𝑏𝑢𝑡 (𝑠𝑖, 𝜑(𝑟

𝑖)) 𝑖𝑠 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑

0 (𝑣𝑖, 𝑟𝑖 , 𝑣𝑖+1) ∉ ℰ

 

 

Here, |𝑁𝑣| is the of degree of node 𝑣, 𝑣𝑖 indicates the current node and 𝑣𝑖+1 ∈ 𝑁𝑣𝑖  is 

the next candidate node, where 𝑁𝑣𝑖 is the entire neighborhood of node 𝑣𝑖.  Furthermore, si 

is the current state of M, that is, after processing the sequence of edge types 𝜑(𝑟1)… 𝜑(𝑟𝑖), 

and M’s transition function from state si on edge type 𝜑(𝑟𝑖) is defined and leads to state si+1. We 

can easily create a similar formula using a DFA M with node types, instead of relation types, as shown 

in (1). By fine tuning the previously mentioned parameters, this probability distribution will 
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be sufficient to reach as many nodes as possible (of reachable nodes) to be included in 

walks, which results in more accurate vector embeddings. 

 

 

4.4.2 Representation Learning 

RegPattern2Vec converts the graph into the sequences of nodes and, from this point, 

we treat the nodes as words in sentences, as produced by random walks. These sentences 

are used as input to a model, similar to the one used in metapth2vec++ [9], for generating 

node embeddings. This model is an improved version of the original skip-gram model, as 

it takes into consideration types of edges (nodes). This allows the embeddings to capture 

the similarity of edges (nodes) based on their types (often considered as classes) along 

with their appearance of closely connected nodes, as required by the pattern. 

 

 

4.4.3 Link Prediction 

RegPattern2Vec formulates Link Prediction in KGs as a classification problem. Each 

existing link (or edge) of interest is represented as a vector of real numbers and is treated 

as a positive example for training the model. We can combine two vectors using Hadamard 

product and used the resulted vector as features for machine learning algorithm with label 

as positive. As the negative examples are typically not included in knowledge graphs, we 

create combinations of pairs of nodes that are not connected by edges in the graph and use 

them as negative examples, which as a common approach in the published research in this 

area. RegPattern2Vec uses an element-wise multiplication of vectors as the combination 
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operation, which transforms the pairs of nodes to another space. These examples are used 

to train a classification model, such as Logistic Regression, which can be used for link 

prediction. 

 

 

4.5 Experiments 

4.5.1 Datasets 

In our experiments, we used two popular datasets, YAGO39K [35] and NELL [5].  

YAGO39K contains a subset of the YAGO knowledge base [29], which includes data 

extracted from Wikipedia, WordNet and GeoNames. This subset contains 123,182 unique 

entities (nodes) and 1,084,040 edges, using 37 different relation types. A histogram of 

relation type distribution in the YAGO39K dataset is shown in Figure 4.2. NELL is a 

knowledge graph mined from millions of web documents and contains 49,869 unique 

nodes, 296,013 edges, using 827 relation types.  In contrast to the Heterogeneous 

Information Networks, both datasets include many edges with the same relation type 

connecting nodes with many source types and/or many target node types. 

 

 

4.5.2 Link Prediction Experiments 

Following the work on link prediction on the YAGO dataset [35], we chose three 

different relation types namely isLocatedIn, isCitizenOf, and isLeaderOf. Based on the 

relation to be predicted, we split the KG data, as reported in Table 4.1. We need to extract 

some number of edges from each of the three types into three different test sets for three 
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different tasks. To do so, we utilized minimum spanning tree to capture the minimum 

number of nodes that can be added to the test set while having the nodes in the training set. 

It is necessary, because our method requires that the node exist in the training data, 

although the node does not necessarily need to have the edge of interest in the training set. 

However, it can have other relations with other types of nodes. So, for each task, we extract 

the maximum number of edges of interest from the graph as the test set, while the remaining 

edges of interest and instances of other relations are combined to form the training data.  

 

We have already discussed how to use the edge of interest in creating the training 

data with positive and negative examples for a binary classification model. We can 

follow the same process to make examples for testing in order to evaluate the 

performance of our method. Following the work described in [5], we chose two relations 

CompetesWith and playsAgainst for our link prediction experiments with the NELL 

dataset.  The cited work reported the best metapaths used to predict these relations and 

 

Table 4. 1. Statistics of split of data for different experiments 

 isLocatedIn isCitizenOf IsLeaderOf 

Train Set Graph 1,039,499 1,080,570 1,083,079 

Train set edges 44,542 3,128 855 

Test set edges 44,541 342 106 
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used these metapaths for comparison. We performed a similar process (as described 

above) to split the data into a train and test sets. 

 

 

4.5.3 Performance 

Having approximately a balance training set we train a logistic regression for binary 

classification. We evaluate our model using 10-fold cross-validation and test it using 

unseen set that we extracted from the graph.  

To evaluate the performance of RegPattern2Vec on YAGO39, we chose metapath2vec 

as our baseline, shown in Figure 4.3, to demonstrate that RegPattern2Vec can cover more 

meta-paths without explicitly defining them and perform better, too. To get the best meta-

paths for isLocatedIn and isCitizenOf relations, we chose the ones that achieved the best 

scores reported in the literature. However, were not able to find the best metapaths for 

 

Figure 4. 2. Distribution of relation types in the YAGO39K dataset. 
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isLeaderOf, and we designed them ourselves. After our experiments, Person 
isLeaderOf
→        city 

isLocatedIn
→        country 

isLocated
←       city was the best meta-path. For example, a leader of state, is 

specified as leader of cities with the state. That information suggesting the earlier meta-

paths to perform better than any other meta-paths. The regular pattern for three 

aforementioned links were defined as follow: 

[^𝑖𝑠𝐿𝑒𝑎𝑑𝑒𝑟𝑂𝑓{2, } 𝑖𝑠𝐿𝑒𝑎𝑑𝑒𝑟𝑂𝑓] 

[^𝑖𝑠𝐿𝑜𝑐𝑎𝑡𝑒𝑑𝐼𝑛]{2, } 𝑖𝑠𝐿𝑜𝑐𝑎𝑡𝑒𝑑𝐼𝑛] 

[^𝑖𝑠𝐿𝑜𝑐𝑎𝑡𝑒𝑑𝐼𝑛]{2, } 𝑖𝑠𝐿𝑜𝑐𝑎𝑡𝑒𝑑𝐼𝑛] 

To run the experiments, we kept the same parameter settings for each of the method, 

when working on a specific relation prediction. The settings included the number of walks 

from each node, the maximum walk lengths, the Logistic Regression parameters, and the 

metrics to evaluate their performance. To select the best algorithm for binary classification 

we examine two famous and popular algorithms, Logistic Regression and Random Forest, 

and we tested several experiments with both, and it seems that logistic Regression in our 

case the best performing method. 

Therefore, all the experiments are performed with logistic Regression for evaluation 

purposes. RegPattern2Vec shown superior performance over metapath2vec method with 

best meta-paths possible. It is expected that RegPattern2Vec would perform better in link 

prediction tasks where it can obtain more semantics by exploring different path within the 

knowledge graph. In the case of the isLeaderOf relation, as the data does not contain 

information useful for predicting this relation, the performance is lower than for other 

relations. 
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For the evaluation of RegPattern2Vec on NELL datasets, we chose metapath2vec and 

used the best meta-paths reported in [30] for each of the relations. For CompetesWith, there 

were top five meta-paths. Our experiment showed that HeadQuarteredIn performs the best 

although it was ranked as the third in top 5. And for the PlaysAgainst relation, we selected 

two best meta-paths for evaluation purposes. We used the following regular expression 

patterns: 

[^𝐶𝑜𝑚𝑝𝑒𝑡𝑒𝑠𝑊𝑖𝑡ℎ]{2, } 𝐶𝑜𝑚𝑝𝑒𝑡𝑒𝑠𝑊𝑖𝑡ℎ 

[^𝑃𝑙𝑎𝑦𝑠𝐴𝑔𝑎𝑖𝑛𝑠𝑡]{2, } 𝑃𝑙𝑎𝑦𝑠𝐴𝑔𝑎𝑖𝑛𝑠𝑡 

As shown in Figure. 4.3, RegPattern2Vec outperforms metapath2vec with different 

meta-paths for both relations in correctly predicting the unseen links between different 

nodes. The ROC shows that across most of the threshold the performance of 

RegPattern2Vec is significantly higher than metapath2vec with different metapaths. 
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4.5.4 Patterns Discovered of Random walk guided by Regular Pattern 

Based on the dataset and underlying schema, RegPattern2Vec discovers different 

patterns in the data and uses them to accurately predict possible links in the KG. Figure 4.4 

shows the top 30 frequent meta-paths capture with RegPattern2Vec without explicitly 

specifying them. Although the number of possible relation sequences is very high, 

especially allowing for repetitions, some of the sequences can be seen frequently, based on 

the graph and they might significantly influence the vector embeddings. So, it is important 

to have a way to capture most of the patterns in the graph and consequently all path 

instances to allow the representation learning model to produce more accurate embeddings. 

This cannot be achieved by meta-paths as prior knowledge is needed to design each meta-

path and they can be easily missed, especially when the schema of KG is unambiguous or 

not well-defined. Although just the frequency of each pattern in the data does not provide 

a good measure of how the pattern is important or useful for the link prediction problem, 

it can provide information about the graph itself and what are the frequent patterns in the 

graph. Then, the representation learning model can decide how frequent two specific nodes 

appear in the same context and provide a closer embedding for each of them, based on their 

local structures and neighbors. 
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Figure 4. 4. The top 30 most frequent relationship patterns discovered by 

RegPattern2Vec for isCitizenOf relation. 
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Effect of Hyper-parameters 

In this section we studied the effect of two important hyper-parameters in the random 

walks on performance and elapse time namely the number of walk and length of walks. 

The effect of different choices of these two on the AUC ROC is demonstrated in Fig. 4.5a 

for playsAgainst relation on NELL dataset. As more nodes are connected to each other, we 

need to sample more paths by increasing the number of walks or walk length. On the other 

side, due to the large size of KGs, one of the challenges of learning the embeddings is 

scalability and efficiency. we showed that increasing the number of walks can improve the 

performance, as the random walks are able to trace more paths in the data.  Figure 4.5b 

shows how the increase of this parameter affects the elapsed time of the random walk, in 

this case when experimenting with the competesWith relation on the NELL dataset in two 

cases of walk length 10, and 100.  As demonstrated the elapsed time is linearly related to 

the hyper-parameters. 

 

 

 

Figure 4. 5. a) Effect of number of walks and walk length on AUC ROC b) Effect of 

number of walks per node on elapsed time of random walks with two different walk 

lengths 10 and 100. 
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4.6 Conclusion and Future work 

In this work, we presented RegPattern2Vec, where a regular pattern guides the random 

walks in a knowledge graph to efficiently sample sequences of nodes to learn high quality 

embeddings for link prediction. We demonstrated link prediction using relation types, 

where the schema of knowledge graph is unknown, or node type hierarchy is complex. As 

a future direction for our work, we want to explore how to bias the random walks to favor 

the nodes or relations that might contribute more accurate link prediction results. Also, if 

the most frequent relations found in the patterns of walks would improve the results. We 

plan to achieve this by automatically tuning the bias score for each type of node (or 

relation), while training on the graph and checking the link prediction results to adjust the 

scores. The number of parameters to tune is related to the number of types or relations that 

we have in KG, which seems to be practical to a model to work with. 
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CHAPTER 5 

PREDICTING PATHWAY ASSOCIATIONS FOR UNDERSTUDIED DARK 

KINASES USING A PATTERN-BASED GRAPH EMBEDDING ON 

HETEROGENOUS KNOWLEDGE GRAPHS 27 

  

 
27 Abbas Keshavarzi, Liang-Chin Huang, Krzysztof J. Kochut, and Natarajan Kannan, to be submitted to 

Computational Biology. 
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Abstract 

Given a Knowledge Graph (KG) Link Prediction is a task of predicting links between 

nodes in the graph. Capturing the structure of the graph and the characteristics of 

neighboring nodes may offer critical information for predicting possible links within the 

graph. Although link prediction can be applied to networks from different domains, it is 

particularly interesting in biological networks, where many important associations can be 

discovered based on graph structure. In this work, we propose a new approach to sampling 

a large knowledge graph and using an embedding technique adapted from one often used 

in Natural Language Processing. We were able to use this approach to accurately predict 

known associations between kinases and biological pathways and predict new putative 

associations between under studied kinases and pathways. 
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5.1 Introduction 

Given a Knowledge Graph (KG), the Link Prediction task is predicting the next most 

probable link in the network [52], [60] This task differs from finding missing links that 

occur frequently due to incompleteness of KGs. To this end, capturing the structure of data, 

the characteristics of neighboring nodes might result in predicting the possible links within 

the data. Although the link prediction can be applied to networks from different domains, 

it is particularly interesting in biological networks where some associations are to be 

discovered [61], [62]. As the analytics techniques are computationally expensive especially 

on huge graphs, researchers tend to reduce the dimensionality of a graph into the low 

dimension space. Graph embedding aims to preserve the structure of the graph while 

representing it into low dimensional vectors [32]. Based on the work mentioned earlier, 

there are six different categories to generate vectors from a graph namely, matrix 

factorization, deep learning, edge reconstruction-based optimization, graph kernels, 

generative models, and hybrid models. There are two main categories of Deep Learning 

approaches to learn representation of graphs. The DL with random walks such as 

metapath2vec [34] and DL without random walks where other techniques used to compute 

the vector embeddings such as [38] and [39].  

In this work, we focus on deep learning approach in which random walks are used to 

sample the graph. This approach is based on a family of models from Natural Language 

Processing (NLP) called word2vec [33] and we specifically used the skip-gram model in 

producing the vector embeddings. Skip-gram tries to find the semantic similarity between 

words in a context by learning a meaningful representation for each word in a corpus of 

sentences or documents. The main intuition is that we can imply the meaning of a word by 
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the understanding of other words in a sentence. In the basic word2vec approach, the 

algorithm took a sentence and consider a window (usually of size 5 to 10) around the word 

of interest (center word) and generate training examples for a simple Neural Network (NN) 

with one hidden layer. The training examples would be the pair of the center word and each 

of the words within the window size (context words).  Then it trains the Neural Network 

to maximize the probability of context word, given the center word. Then the weights in 

the trained network are used as embeddings for each word in the dictionary. 

 

 

5.2  Materials and Methods 

5.2.1 Creation of curated kinase knowledge graph for kinase-pathway link prediction 

Knowledge Graphs are very similar to Heterogeneous Information Networks.  An 

Information Network is a directed graph G = (V, E),  composed of vertices and edges, with 

an associated object type mapping function ϕ : V → A and an edge type mapping function 

ψ : E → R  [31].  Each object v ∈ V belongs to one particular object type in the object type 

set A: ϕ(v) ∈ A, and each edge e ∈ E belongs to a particular relation type in the relation 

type set R: ψ(e) ∈ R.  An Information Network is called a Heterogeneous Information 

Network if the sets A and R both contain more than one element, that is, there are multiple 

labels for graph nodes and multiple labels for edges.  In case that the sets A and R are 

singletons, the Information Network is called Homogeneous Information Network (all 

nodes in the network are of the same type and all edges are of the same type).  While 

Heterogeneous Information Networks require that if two edges belong to the same relation 

type, the two edges share the same starting object type as well as the ending object type, 
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Knowledge Graphs do not.  That is, the same relation (edge) type can be applied to different 

starting object types and different ending types.  It is the case in the Resource Description 

Framework (RDF), a notation often used to represent Knowledge Graphs. RDF is based on 

the notion of triples of the form subject-predicate-object [50] representing edges 

connecting entities in the graph. 

For example, in a knowledge graph representing information about protein kinases, a 

node (entity) representing a protein kinase EGFR can be connected by an edge labeled 

participatesIn to a node representing a pathway Signaling by EGFR in Cancer, which 

represents the knowledge that EGFR participates in the pathway Signaling by EGFR in 

Cancer.  In such a knowledge graph, EGFR may be connected to other nodes (entities) 

using different labels (predicates), such as, EGFR – contains—Furin-like domain, EGFR 

– isClassifiedAs—EGFR family and EGFR – isLocatedIn—Cell membrane.  Here, edges 

have multiple labels and destination nodes are of different types, which indicates that it is 

a Heterogeneous Knowledge Graph. 

Given a Heterogeneous Information Network G = (V, E) (as defined above), the 

network’s schema is a directed graph, S = (A, R), based on G’s object type mapping ϕ : V 

→ A and its link type mapping ψ : E → R.  S is a directed graph defined over object types 

A, with edges as relations from R.  Similarly, the 0schema of a Knowledge Graph 

represented in RDF is represented in RDFS (RDF Schema [51]).  For example, given the 

EGFR examples above, the schema would contain the edges Protein —participatesIn —

Pathway, Protein – isClassifiedAs—Kinase Family, and Protein — isLocatedIn — Cellular 

Location.  The schema (sometimes referred to as a meta-knowledge graph, or meta graph) 

specifies constraints on the use edge (property) labels to certain types of starting and ending 
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nodes (subjects and objects in RDF).  Also, given a Knowledge Graph Schema, we can 

create a Knowledge Graph (instance) conforming to the schema containing many 

individuals (entities).  

Our kinase-pathway link prediction knowledge graph was populated by individuals 

from a variety of relevant types.  Edges interconnecting them were populated based on the 

data obtained from various sources. The list of human protein kinases was obtained from 

[63]. The protein-protein interation network was retrieved from STRING [64] and we only 

included interaction with score more than 700 based on laboratory experiments. For 

pathway association we used the Reactome [65] v.76 dataset and split the associations to 

two sets of manually curated (evidence=TAS) and predicted association (evidence=IEA). 

We include the manually curated in our KG and saved the predicted pathway associations 

for future evaluation purposes. We filtered out high-level pathways and removed their 

association until no protein that has some number of pathway association left without any 

association. We also removed the predicted pathways with low confidence under hierarchy 

of disease pathway except infectious diseases. The Gene Ontology annotations [66] 

(v2019_11) was used to enriched the proteins with molecular functions, cellular 

components and biological processes. We excluded the associations that were not manually 

curated (IEA evidence) and removed the high level ones when they have more than 5000 

connections. All the functional domains for proteins from the Pfam [67] (version 33.1) 

were used except protein kinase domains (“Pkinase” and “Pkinase_Tyr”). The[68] PTMs 

and the assoications extracted from iPTMnet [18] (version 5) with confidence score more 

than 1.0 were included in the graph. The protein-chemical and protein-disease associations 
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were extracted from the Comparative Toxicogenomics Database [69]. Table 5.1 shows 

basic statistic of different edges and their source and target nodes.   

 

 

Therefore, the populated KG has 11 types of nodes (meta-nodes) and 13 types of edges 

(meta-edges), where 6,279,373 edges are connecting the 1,064,097unique nodes of 

different types. The total unique number of each type of nodes along with their average 

degrees are shown in Table 5.2.  

As discussed above, the KG may contain hierarchical data. For example, Pathways are 

often organized into a parent-child relationship among pathways.  Similarly, data for 

Molecular Function, Biological Process and Cellular component contain hierarchical data, 

as, for example, there are many subtypes of Molecular Function.  The lower-level nodes 

are necessary and useful to our approach, but such higher-level nodes have some 

 

Table 5. 1. Number of associations between different type of nodes. 

Association (source node-target node) Edge  Source node  Target node 

Protein-Pathway 68,856 7298 1974 

Protein-Functional Domain 1,711,017 990,504 7834 

Protein-PTM 872 308 677 

Protein-Molecular Function 743,539 166,338 4,528 

Protein-Biological Process 2,621,261 188,237 17,670 

Protein-Cellular Component 466,057 124,988 2,152 

Protein-Protein interaction 64,517 11,091 44,819 

Protein-Chemical 436,831 9,426 14,397 

Protein-Disease 27,282 6,806 5,234 

Chemical-Disease 74,757 5,251 1,731 

Chemical-Molecular Function 3,274 1,154 229 

Chemical-Biological Process 60,974 5,357 3,976 

Chemical-Cellular Component 136 92 54 
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disadvantages.  First, having hierarchical nodes in the graph introduces redundancy in the 

data, as edges connecting lower-level nodes should have mirror edges for the 

corresponding parent nodes.  Second, nodes in the upper level of the hierarchy might 

connect to thousands of nodes (often referred to as hubs) which makes the vector 

embeddings (used in our method) more general than they should be.  In fact, we want vector 

embeddings for nodes to be encoded for more specific semantics.  Consequently, we 

removed the high-level nodes of types Molecular Function, Biological Process and 

Cellular component, from the graph which led to more accurate predictions.  

 

 

 

The knowledge graph used in our link predition experiments described here 

contains several types of entities (meta nodes) such as Protein, GO Terms (Biological 

Process, Molecular Function, and Cellular component), Disease, and other types.  The 

schema organization is shown in Figure 5.1. The dotted line represents the schema edge 

Table 5. 2. The unique number of node types with their average degree in the KG. 

Node Type Unique # of nodes Average degree 

Well-studied Kinases 390 85 

Under-studied Kinases 151 29 

Protein 1014061 6 

Pathway 1974 34 

PTM 677 1 

Functional Domain 7834 218 

Biological Process 17670 151 

Molecular Function 4528 164 

Cellular Component 2152 216 

Chemical 9426 61 

Disease 5234 19 
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Protein —participatesIn — Pathway, which represents the known (existing) edges, 

retrieved from Reactome [65] and included in our knowedge graph, and unknown 

(previously not reported) links that we are predicting. In addition, the Protein type includes 

the understudies kinases (referred to as Dark Kinases), well-studied kinases (referred to as 

Light Kinases), and other human proteins.  This distinction is important, as it gives us the 

ability to make predictions for a subset of proteins.  The meta-edges (edges in the schema) 

are not labeled here, as we do not consider them in our method described here.  Instead, we 

only rely on the types of source and target nodes.  The loop edge going back to the Protein 

type indicates the Protein-Protein interaction relation, which is included in our knowledge 

graph.   

  

 

Figure 5. 1. Schema of the Knowledge Graph.  The dotted line is the link of interest. 
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5.2.2 Predicting Links 

In the experiments and results presented in this paper, we used our novel graph 

embedding approach, called RegPattern2Vec.   It is used as the first step in our link 

prediction process to produce vector representations for the nodes in the graph and 

formulate the link prediction as a classification problem. A Machine Learning model was 

trained using the combined vectors of existing pairs of nodes connected by an edge (link) 

of interest.  The outline of the method is illustrated in figure 5.2.   We discuss each step of 

our link prediction method in the subsequent sections.  

 

 

5.2.3 Regular pattern selection and its usage in random walks  

To encode the nodes in the KG to vectors suitable to be used in Machine Learning, we 

need a way to “flatten” the graph into sequences of nodes. Performing random walks on a 

graph is one way to generate such sequences and previous approaches have constrained 

random walks using  metapaths [34] which contrain the walk by a fixed number of user 

defined hops (the length of a meta-path). However, creating such metapaths for complex 

 

Figure 5. 2. RegPattern2Vec overview. 
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Heterogeneous Knowledge Graphs, often with no well-defined schema, is challenging and 

time consuming.  A number of previous attempts to automatically generate meta-paths have 

been reported in the literature [30], [58], [70] but they all rely on fixed-length meta-paths 

which seems to be a major limitation for vector representations, when we just look into 

their immediate neighbors.  A regular pattern approach introduced in this work, allows 

numerous sequences of meta-nodes based on the pattern and is a generalization of the meta-

paths and meta-graphs (figure 5.3b).  

The regular pattern is defined as schema subgraph that should include only the meta-

nodes that are suitable for a specific problem.  An example regular pattern subgraph is 

shown in figure 5.3.b.  Unlike in the Node2Vec method [71], the schema graph pattern 

represents several paths (walks) that can be used to predict missing links, in our case, 

“Proteins” participating in “Pathways”.  Another way to think of several possible walks is 

to represent them as a regular expression that connects Protein and Pathway.  For example, 

the meta-graph pattern includes a path (walk) represented as a regular expression 𝑯[^𝑻]+ 

𝑯 𝑻 , where H is a set of source node type of edge of interest and T is a set of target node 

type of edge of interest and it guides random walks, as demonstrated in Figure 3c.  As 

mentioned before, as the link of our interest is Protein-Pathway, we have defined the 

regular pattern as 𝑃𝑟𝑜𝑡𝑒𝑖𝑛 [^𝑃𝑎𝑡ℎ𝑤𝑎𝑦] +  𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝑃𝑎𝑡ℎ𝑤𝑎𝑦 and each walk instance 

should satisfy it. Each walk starts by randomly selecting a Protein node.  Selecting the next 

nodes on a walk is based on the existing graph nodes and matching the neighbor’s type in 

the regular pattern.  When a walk reaches a pathway node, it follows the pattern in reverse 
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order and does so until a certain number of steps (nodes) in the walk are reached or when 

it reaches a termination node when there is no neighbor to follow the graph pattern. 

 

 

5.2.4 Capturing semantic relationships between Proteins and Pathways in Deep 

Learning  

RegPattern2Vec uses a modified skip-gram model presented in [34] to generate vector 

representations for the nodes of the Knowledge Graph. The random walks generate 

sequences of nodes, which resemble natural language sentences. The machine learning 

model simultaneously captures the local structure of the graph and types of the nodes and 

encodes them as vector representations. Figure 5.4. shows learned vector representation of 

 

Figure 5. 3. (a) a hypothetical subgraph of KG. (b) The regular pattern (c) the 

flattened node of the subgraph. 
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node in the vector space using dimension reduction technique called Principal Component 

Analysis (PCA). As our goal is to predict the protein-pathway associations, we just 

consider the nodes to be of three types: “Protein”, “Pathway” and “others”, when learning 

representation for the nodes.  The separation of nodes in PCA shows the encoded types of 

nodes and other dimensions of vector capture their local structure in graph. 

 

 

 

Figure 5. 4. PCA of vector embeddings of all nodes generated by machine learning 

model. 

 



 

77 

 

5.2.5 Regular-pattern definition 

Given 𝐺 =  (𝒱,  ℰ) where 𝒱 denotes a node set with type mapping function 

𝜙 : 𝒱 →  𝒯, where 𝒯 denotes a node type set and ℰ is an edge set with type mapping 

function 𝜑 :  ℰ →  ℛ where ℛ denotes a relation type set. if (ℎ, t, r) is edge of interest, 

where h, t ∈ 𝒱 and r ∈ ℰ and 𝜑(ℎ) = 𝐻,𝜑(t) = T, The regular pattern is defined as 𝑯[^𝑻]+ 

𝑯 𝑻. 

5.2.6 Biased random walk constrained by regular pattern 

As this work considered undirect graphs, enumerating all the paths of a given graph is 

impossible. The solution is to sample some paths from all possible path according to some 

distribution. The random walk with regular pattern is selected to generate arbitrary number 

of paths. This number can be controlled by “walk length” parameter. Having the undirected 

heterogeneous network, and selected regular pattern, the random walk can be started from 

each instance of a starting node type in the pattern. As we want all the nodes to appear in 

our walk, iterating over all of them would be desirable. It is obvious that if we repeat the 

walk from each node, we will discover more path as the node might link to multiple nodes 

of the same type. We will call this parameter “number of walks”. We will discuss how to 

choose the parameter and analysis of their impacts in the next section. The next step for 

each node is to select a node from the adjacent nodes based on the pattern that we are 

considering. This might result in multiple choices and this is where the randomization 

comes to play. RegPattern2vec can get distribution by user-defined function to generate 

same probability for all the node or arbitrary distribution. A regular pattern is converted to 

a Deterministic Finite Automata (DFA) and each of the possible transitions are mapped to 
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the DFA, denoted by M. The DFA M is responsible to check if transitions are allowed (an 

edge between two nodes) thus, disallowed transition gets zero probability and were not 

used in the random walks. 

On the other hand, in scale-free networks where the degree distribution follows the 

power law, there are some “hub” nodes that have high degree of income/outgoing edges. 

Because such high degree nodes can dominate random walks and, consequently, 

representation learning, one popular way is bias the walk by inverse of degrees of nodes 

[71] where probability of choosing the node vi+1 from vi is calculated by normalizing the 

inverse of degrees of all neighbors of vi. Although this approach prevents the random walk 

from selecting high degree nodes , it biases the random walk toward low-degree nodes . To 

accomplish better distribution and avoid both biases, we proposed the formula below: 

Where 𝑔(𝑟𝑖) is the proportion of 𝑟𝑖among all outgoing edge types,  |𝑁𝑣| is the of degree 

of node 𝑣, 𝑣𝑖 denotes the current node and the candidate node for next step is 𝑣𝑖+1 ∈ 𝑁𝑣𝑖, 

and 𝑁𝑣𝑖 is the set of all the neighbors of node 𝑣𝑖. Therefor we randomly choose one relation 

type (independently) and then use the probability distribution by inverse of node degrees 

to select the next node in the walk. After applying the proposed formula above, the nodes 

with high and also low degrees are visited moderately and suggest the better exploration of 

nodes as demonstrated in figure 5.5. 

 

   𝑃(𝑣𝑖+1 | 𝑣𝑖 , 𝑀)  =          

{
 
 
 
 

 
 
 
 
𝑔(𝑟𝑖)

1
|𝑁𝑣𝑖+1|

∑
1

|𝑁𝑣|
𝑣∈𝑁

𝑣𝑖

  (𝑣𝑖 , 𝑟𝑖 , 𝑣𝑖+1) 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑎𝑝ℎ 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 

     𝑓𝑟𝑜𝑚 𝑣𝑖  𝑡𝑜 𝑣𝑖+1  𝑖𝑠 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑖𝑛 𝑀.

 
0 (𝑣𝑖 , 𝑟𝑖 , 𝑣𝑖+1) 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒, 𝑏𝑢𝑡 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑

0 (𝑣𝑖 , 𝑟𝑖 , 𝑣𝑖+1) 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑎𝑝ℎ
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5.3 Link Prediction as a classification problem 

For each pair of protein-pathways, we combined  their vector embedding using a widely 

used Hadamard product  [72]–[74] and resulting vector is used as features to train a Logistic 

Regression model as  positive examples. Generating negative examples is the next issue. 

The open-world assumption for knowledge representation defines that the true values are 

the statement whether that is known or not. In contrast, the close-world assumption, 

determines the statement are known to be true which is the basis for generating the negative 

examples. Having an edge of interest, a random node from head nodes of the edge along 

with another node from tail nodes of the edge are selected. If they don’t form a link in the 

data, we combined their vector embeddings and count them as negative example. And we 

do this process until the same number of negative examples are generated. 

.

 

Figure 5. 5.  Left figure shows the number of times a node appears in the random walk only 

using the inverse of degrees. The Right figure shows the effect of using our proposed formula 

for finding proper probability distribution for selecting the next node. 
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5.4 Results and Discussion 

5.4.1 Comparison of RegPatter2vec and other graph embedding methods in Protein-

Pathway prediction 

To evaluate our method, we generated a test set by excluding 50% of known Protein-

Pathway associations from the training set. The training examples are generated using the 

process mentioned in section “Link Prediction as a classification problem” and a logistic 

regression algorithm is selected as the binary classification model for the link prediction 

task. A 10-fold cross-validation applied to make sure that model does not have overfit, then 

the train model acquired f1-score of 0.859 and AUC ROC of 0.9383 on the test set. We 

selected two methods as baseline to compare their performance to RegPattern2Vec method. 

The node2vec [73] which has been shown to perform well on many datasets and 

metapath2vec [34] which inspired this work are selected for comparison. To select a 

specific meta-path that is required by metapath2vec approach, we tested several meta-paths 

and selected the “Protein-Functional Domain-Protein-Pathway”, which showed the best 

performance. As shown in figure 6 RegPattern2vec achieves better or comparable accuracy 

to Node2Vec. Both Node2Vec and RegPatter2Vec perform significantly better than 

metapath2vec as determined by AUC-ROC shown in figure 6. 

 

Figure 5. 6. Comparing ROC of RegPattern2Vec with baselines, node2vec and 

metapath2vec with best metapath (Protein-FunctionalDomain-Protein-Pathway) 
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5.4.2 Predicting possible association of Dark Kinases and pathways 

We next used the two high performing methods (RegPattern2Vec and Node2Vec) to 

predict pathway associations for under-studied (dark) Kinase nodes in the graph.. The 

optimal threshold is extracted from the model when it maximizes both the precision and 

recall, and it has been used to make predictions. Among all 319,214 possible pairs, 

RegPattern2Vec predicted 44,142 new possible associations and node2vec predicted 

33,409 associations. The top 50 overlap predictions of possible protein-pathway 

associations by both methods are shown in the figure 5.7. 

 

Figure 5. 7. Top 50 overlap predictions of RegPattern2Vec and node2vec methods on 

dark kinases. 
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5.4.3 Meta-paths contributing to the predictions. 

Comparing RegPattern2vec with meta-path approaches show that although regular 

pattern does not explicitly use meta-path, it can take advantage of such paths implicitly. 

RegPattern2Vec discovers meta-paths along the way and benefits from their power to find 

similarity between nodes in the graph. Defining each of the meta-paths discovered by 

regular patterns is not trivial for a domain expert and the representation learning model 

determines their importance based on the node types and their proximity to each other 

within the generated path instances. Figure 8.5 shows the top 5 predictions of protein and 

pathway pairs, and the analysis the path instances in which they appeared together. The x-

axis contains the frequent patterns inferred from those path instances and the y-axis is five 

prediction pairs.  And the number of time that each pattern is discovered during guided 

walk using RegPattern are colored. 

 

 

Figure 5. 8. Explored patterns contributing to the top 5 predictions by Regular Pattern's 

Constrained walks. Note Pr stands for protein, DK for dark kinase, LK for light kinase, MF 

for molecular function, FD for functional domain, BP for biological process, CC for cellular 

components. 
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5.4.4 Overlap predictions and IDG Protein-Protein Interaction  

The enrichment analysis results based on IDG protein-protein interaction contains 533 

associations from 16 unique dark kinases and 216 pathways. From those numbers, only 12 

dark kinases and 183 pathways exist in our graph. If we extract enrichment result only for 

protein and pathways that exist in our graph, there will be only 472 associations. We 

compare them with overlap predicted associations by both methods and we find out 27 

predictions in common, although RegPattern2Vec was able to predict 76 of them. The 27 

common predictions are listed in table 5.3. 
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Table 5. 3. Overlap association commonly predicted by RegPattern2Vec and 

node2vec and the result of enrichment analysis on IDG PPI. 

Protein Pathway RegPattern2Vec node2vec FDR 

CDK12 RNA Polymerase II Pre-transcription Events 0.999999464 0.995687 0.0344 

CDK12 Formation of RNA Pol II elongation complex  0.999999941 0.992527 0.0241 

CDK12 RNA Polymerase II Transcription Elongation 0.999999557 0.991911 0.0321 

CDK12 RNA polymerase II transcribes snRNA genes 0.99999982 0.991324 0.0279 

CSNK1G2 G2/M Checkpoints 0.997483821 0.942078 0.00455 

TLK2 Formation of Senescence-Associated 
Heterochromatin Foci (SAHF) 0.999998816 

0.934615 0.00102 

CSNK1G2 Activated PKN1 stimulates transcription of 
AR (androgen receptor) regulated genes 
KLK2 and KLK3 0.982463888 

0.938096 0.00103 

CSNK1G2 Signaling by WNT 0.999999723 0.910032 0.00165 

CDK13 RNA Polymerase II Transcription Elongation 0.999575457 0.909773 0.0552 

CSNK1G2 M Phase 0.998510706 0.886028 0.0425 

CDK13 Formation of RNA Pol II elongation complex  0.999986057 0.840819 0.0368 

CSNK1G2 Mitotic Prophase 0.993864995 0.822416 0.00184 

CSNK1G2 Nonhomologous End-Joining (NHEJ) 0.990734367 0.822585 0.000915 

CSNK1G2 TCF dependent signaling in response to 
WNT 0.99996334 

0.78728 0.000838 

CSNK1G2 Signaling by Nuclear Receptors 0.999999822 0.77718 0.00115 

CAMKK1 Cilium Assembly 0.997762204 0.776394 0.00419 

CSNK1G2 Cell Cycle Checkpoints 0.999919748 0.720566 0.0217 

CSNK1G2 RHO GTPases activate PKNs 0.999970941 0.713065 0.000795 

CSNK1G2 Processing of DNA double-strand break 
ends 0.999509566 

0.702158 0.00112 

CAMKK1 Organelle biogenesis and maintenance 0.98835753 0.67373 0.00922 

CSNK1G2 E3 ubiquitin ligases ubiquitinate target 
proteins 0.99902807 

0.653647 0.0189 

CSNK1G2 Developmental Biology 0.992324873 0.643503 0.00163 

CSNK1G2 Amyloid fiber formation 0.999952875 0.630661 0.00114 

CSNK1G2 Cellular Senescence 0.929697325 0.64151 0.00571 

CSNK1G1 Signaling by Nuclear Receptors 0.861378864 0.693192 0.0275 

CSNK1G2 Depurination 0.922711131 0.588167 0.00128 

CSNK1G2 Oxidative Stress Induced Senescence 0.603904458 0.804577 0.00143 
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5.5 Conclusion and future work: 

In this work, we propose a new guided random walk approach for link prediction in 

KGs. Unlike metapath2vec [34], RegPattern2Vec [75] does not need prior knowledge of 

graph structure (i.e., predefined metapaths) for capturing contextual information in KGs. 

RegPattern2Vec is more accurate than metapath2vec and more efficient than approaches 

like node2vec. 

We aim to extend this framework as a tool for graph databases, such as neo4j, where 

users and a domain expert can effortlessly perform link prediction on the live data and 

evaluate their predictions with the existing knowledge. Another goal is to investigate 

existing explainable AI approaches to justify the predicted links and discover better method 

when they can be applied to any domain. Using the paths (the sequences of nodes) that are 

generated in random walks is possibly the best way to tackle this problem. The instances 

of nodes usually have descriptive names consist of terms and domain specific phrases. An 

overrepresentation analysis of these terms for each of predictions may consist of semantics 

that needed for justification. Also, as the RegPattern2vec method uses regular expression 

patterns, the patterns with high frequency for each prediction can also be used to explain 

the vector representation of each node and therefore identifying the semantic behind the 

proposed links in the knowledge graph. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

In this dissertation, we presented a framework, called KGdiff, to discover the 

schema and schema-in-use of knowledge graphs and track its evolution over time where it 

collects meta-data information of KG by running many fixed (domain-independent) 

SPARQL queries against a SPARQL endpoint and stores the information for further 

analysis and comparison with future and prior versions. The report consists of statistics and 

descriptions of various constructs in a KG. It helps KG engineers avoid manual comparison 

of different versions of KG, which is time-consuming and expensive. Our results show that 

KGdiff is efficient even on sizable KGs and ontologies, and it can accurately identify 

changes both in the schema and the number of individuals on different versions. To 

accomplish this, we started by learning the process of ontology population, differentiate 

the validation and verification of ontologies and how to query in triple stores and what are 

the main construct of vocabularies used to build a KG. Then we learnt the different methods 

and API to connect the KG/Ontology, analyzing the data by discovering schema and 

schema in-use from the KGs. 

Our second work presents a novel graph sampling approach called 

RegPattern2Vec, where a regular pattern guides a random walk to sample a large KG more 

efficiently and learn node embeddings for different tasks, especially link prediction, as 

demonstrated in our work. RegPattern2Vec has shown to be superior to related graph 

embedding approaches both in accuracy and efficiency. We have examined different 
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methods in different disciplines and tested the state-of-the-art methods on a real-world 

application. We thoroughly tested our method and verified our results through a 

comprehensive experiments and evaluations. And finally, we thoroughly studied the 

impact of our results in an important domain of biology. 

As for future direction, we want to extend the KGdiff to be able to work with 

different data stores and graph databases and their query languages, such as Cypher in 

Neo4j. Although Cypher was inspired by SPARQL, a specific mapping from our generic 

SPARQL queries should be converted to Cypher. Another improvement would be to 

identify and report other OWL constructs and include them in a complete KGdiff report.  

Also, it would be beneficial to include a visualization component to provide more insight 

about the KG for the users.  

For RegPattern2Vec, we will explore the possibility of learning the biases of 

random walks to favor indicated types of nodes (or relation types) that might better 

contribute to the link prediction accuracy. It has been shown that some patterns and types 

of nodes and/or relations are more relevant for discovery of possible unknown linkages in 

a graph. Having such a flexibility, we will be able to take advantage of the existing 

knowledge in the domain of interest to increase the accuracy and confidence of the 

predictions. 

We have implemented the RegPattern2Vec as Python package, which can be easily 

installed on a computer system and used for link prediction experiments. The data in this 

case stored in some text files, such as CSV, and an extra step needs to be done to convert 

the KG to edge and node files with specific formats. Recently, graph databases, such Neo4j, 

have been rapidly increasing in popularity and we want to implement our method as a 
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plugin for Neo4j, where the RegPattern2Vec can be applied directly to the data in the graph 

database, avoiding the extra data preparation step.  

Finally, we have implemented some level of parallelism in RegPattern2Vec taking 

advantage of multiprocessing servers with multiple cores, to speed up the process of model 

learning. As multi-clustering is available in Neo4j 3.4 28 or higher, we plan to adapt our 

method to work on partitioned KGs. We plan to study the effects of different types of 

partitioning on time efficiency and accuracy of random walks on partitioned knowledge 

graphs. 

  

 
28 https://neo4j.com/blog/neo4j-graph-database-3-4-ga-release/ 
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