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CHAPTER 1 

INTRODUCTION 

It is common to be confident in one’s own ability to make and remember decisions 

accurately. Consider the following scenarios: 

Two people are discussing the weather and come to the agreement that the 

upcoming tropical storm will only mildly impact people with thunderstorms. After the 

tropical storm, which destroys many homes in the area, the two people then decide that in 

fact, they both knew this was going to be the worst storm of the year. 

In a local election, a person votes for the candidate they prefer while asserting their 

candidate definitely will win. During the tallying of votes, the other candidate acquires a 

sizable lead, which causes this person to doubt if their candidate will win. After all the votes 

have been counted, the person’s candidate does manage to win, to which the person 

exclaims they were always sure their candidate would be the winner. 

What do these scenarios have in common? For one, both include events that change 

the relevant information of the scenario. Next, both have a sense of certainty, before and 

after the event. And these two cases also include reflection upon a previous assertion. 

Essentially, both of these scenarios outline hindsight bias. 

Hindsight bias, also known as the “knew it all along” phenomenon, occurs when 

once the outcome of an event is known, people tend to overestimate what was known 

before the event and the predictability of the event’s outcome. This cognitive bias 

emphasizes the complexity of accurately remembering or reconstructing one’s ability to 

predict an event after the outcome, new information, or a correct answer is revealed.  

Hindsight bias has been shown to occur pervasively in all types of decision making 

or judgment tasks in various domains. Some of these domains include elections, labor 

disputes, terrorist attacks, betting, accidents and injuries, and medical diagnoses (Berstein 

et al, 2001, Hawkins & Hastie, 1990, Roses & Vohs, 2012, Meuer et al, 2021). The kind of 

effects ensuing from hindsight bias offers one reason as to why there is such substantial 

literature surrounding this phenomenon. For example, hindsight bias has been shown to 

cause overconfidence in decisions, an inflation in perception of self, or alter decision 
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making ability (Roese & Vohs, 2012, Fischoff & Beyth, 1975, Pezzo, 2011). With these 

effects in mind and because of its widespread relationship with cognition, hindsight bias 

has been studied in depth, both in the real world and in controlled laboratory settings. The 

core examinations focus on understanding the causes and effects of this phenomenon.  

While highly studied, there is not a singular agreed upon cognitive model, or a 

theoretical representation of how the mind works, that fully captures all facets of hindsight 

bias. Similarly, there is not an agreed upon computational model, which is a model that 

uses computers to simulate and study complex systems. In attempting to better understand 

and explain the cognitive process and implications of this phenomenon, this paper 

implements one of the established cognitive processes found in the literature, 

Reconstruction After Feedback with Take the Best (RAFT), that focuses on recollection and 

reconstruction biases associated with hindsight bias. The following sections of this chapter 

go through the literature on hindsight bias, the origins of hindsight bias, and the 

motivations and contributions of this paper.  

1.1  Hindsight Bias in Literature  

In 1975, Baruch Fischhoff was the first to formalize the pervasive cognitive 

distortion now known as hindsight bias (Fischhoff, 1975) in psychological research. He 

designed a study that sought to observe how accurately people recorded having knowledge 

at a previous time. He presented two groups of participants each with different scenarios, 

one that included foresight with a list of possible outcomes, and one with hindsight that 

included the “correct” outcome that was supposed to be ignored. Overall, Fischhoff found 

that those in the hindsight group could not ignore the given outcome and gave higher 

likelihood estimates to that outcome. Since this first study, hindsight bias has been 

investigated in multiple domains and across multiple disciplines.  

Investigations mainly follow two experimental paradigms where hindsight bias is 

identified and measured (Bernstein, 2016, Pohl, 2007, Mahdavi et al., 2017). In a 

hypothetical-outcome design, hindsight bias is found when two different groups of people 

have differences in judgements, similar to Fischhoff’s original study design (Fischhoff, 

1975). The group given the correct answer is told to answer what they would have if they 
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had not been given the answer. Here hindsight bias is observed when the group with 

hindsight information gives answers closer to the correct outcome. In a memory design, 

there is only one group of participants and one condition instead of two. Participants are 

asked a question and offer an original response; then researchers reveal the true outcome, 

and ask the participants what the original answer was. Here hindsight bias is observed 

when the post-information answer moves closer to the correct answer as compared to the 

original.  

From the substantial literature since 1975, two principal conclusions have been 

drawn about hindsight bias. Firstly, that it is robust (Pezzo, 2011, Pohl, 2007). This is due 

to the fact that hindsight bias is found in various settings, such as with stock markets (Knoll 

et al., 2017), medical diagnoses (Hugh et al., 2009), election predictions (Meuer et al., 

2021), and auditing judgments (Bernstein et al., 2016). Additionally, hindsight bias can 

occur at any age, within any culture, and with any intelligence level (Bernstein et al., 2011).  

Secondly, there is a general agreement in the literature that hindsight bias and its 

robustness are a result of cognitive processes. Cognitive processes are any of the mental 

functions associated with accessing, storing, or manipulating knowledge. Beyond this 

general agreement for the prominence of cognitive processes, there is not a consensus 

upon a single model for them. Instead, the most pervasive of the theories for the cognitive 

processes surrounding hindsight bias can be represented in three main categories: 

memory, reconstruction, and motivation (Bernstein et al., 2016).  

One category encompasses the theories having to do with memory, specifically how 

issues with memory translate to hindsight bias. In this category, hindsight bias can result 

from biased recall, possibly due to automatic, unconscious assimilation of the correct 

answer (Fischhoff, 1975) or from differing strengths of memories (Hell et al., 1988).  

Another category of the cognitive processes behind hindsight bias emphasizes how 

bias appears when accessing memory fails, instead leading to the reconstruction of the 

original answer. This reconstruction bias is found when the reconstruction of the original 

response is closer to the correct response than originally reported. Additionally, this 

category emphasizes how hindsight bias is gradual, meaning the degree of change toward 

the correct answer shows the extent of one’s hindsight bias (Schwarz & Stahlberg, 2003, 

Roese & Vohs, 2012). Bias in reconstruction can result from the correct answer functioning 
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as an anchor (Fischhoff, 1975, Bernstein et al., 2016, Mahdavi et al., 2017). The anchoring 

and adjustment theory led to the development of the Selective Activation and 

Reconstructive Anchoring (SARA) cognitive model. Here, the correct answer alters the 

pattern of associations for memory traces, meaning the correct answer anchors or guides 

reconstruction (Bernstein et al., 2016, Pohl et al., 2000). Another possible cause for 

hindsight bias from reconstruction argues that when memory retrieval is not possible, the 

original answer is reconstructed with bias because of using foresight and hindsight 

information. The formal model following from this theory is Reconstruction After Feedback 

with Take the Best (RAFT) (Bernstein et al., 2016, Hoffrage & Pohl, 2003, Hertwig et al., 

2003). Another possibility for hindsight bias in reconstruction is based on metacognition, 

or thinking about thinking. Here, judgments can affect confidence in original and recalled 

answers (Müller & Stahlberg, 2007, Sanna & Schwarz, 2007). The “knew it all along” feeling 

is a reflection of overconfidence in one’s ability to make or remember a decision. In 

contrast with SARA and RAFT, which are considered automatic processes, many of the 

metacognitive motivations are considered effortful and conscious.  

The third category of all cognitive processes causing hindsight bias surrounds the 

role of motivation. Motivational factors, such as aiming to maintain one’s self-worth as 

taken from perceived levels of intelligence and memory capabilities, are thought to be a 

foundation for this category. Specifically, motivations reflect hindsight bias when moving 

toward the correct answer occurs in the face of negative outcomes (Blank & Nestler, 2007, 

Bernstein et al., 2016, Louie, 1999, Ash and Wiley, 2008) or in response to previous bad 

decisions (Louie, 1999, Roese & Vohs, 2012, Coolin et al., 2015, Ash, 2009).  

The three categories of cognitive processes in hindsight bias literature suggest the 

difficulty in capturing the robustness and complexity of hindsight bias in a single model. 

Different situations and settings generate the necessity of utilizing different cognitive 

processes. Instead of one of these categories being the most suitable for every context, it is 

likely that all of these categories and processes play a role in producing hindsight bias. The 

next section discusses how the past literature contributes to the present paper.  
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1.2 Motivations and Contributions 

There is an abundance of literature and psychological experimentation investigating 

the various cognitive processes behind hindsight bias. Yet the literature lacks research into 

computational models, or models that use computers to simulate and study complex 

systems, of these cognitive processes. Additionally, the literature does not provide a 

unified, comprehensive model for understanding, interpreting, or predicting hindsight bias.  

This paper presents an application of a combination of the prominent cognitive 

processes underlying hindsight bias in a way that accounts for two of the three theoretical 

umbrellas of hindsight bias models. Specifically, this paper’s model accounts for distorted 

memory and reconstruction in the face of uncertainty and different settings. The two 

settings, utilized in order to analyze how context influences hindsight bias, are the urgent 

and novel COVID-19 and the common, everyday nutrition.  

From this computational model, I aim to further understand the underlying 

cognitive processes of hindsight bias in a way that can provide a framework for better, 

cohesive model of hindsight bias as well as providing a distinction of conditions where 

hindsight bias is present or absent. Beyond contributing to the expansive literature on 

hindsight bias, this paper hopes to inform how understanding hindsight bias’s cognitive 

processes can translate into identifying and preventing the same biases in machine 

learning, leading to greater explainabilty for machine learning algorithms.  

The following chapter details this paper’s model design which utilizes Hoffrage’s 

Reconstruction After Feedback with Take the Best (RAFT) cognitive model. 
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CHAPTER 2 

MODELING HINDSIGHT BIAS 

This paper’s computational model accounts for two of the three categories of 

cognitive processes thought to underlie hindsight bias: memory and reconstruction. Since 

this model is framed as following the memory design of the two experimental paradigms, 

the model is asked a question, given some information, and asked to remember the original 

response. Memory issues are introduced in the form of time and uncertainty, where the 

original and subsequent decisions are influenced by a degree of time between them and the 

possibility that original memory is unreliable. To account for reconstruction in the face of 

irretrievable memory, the RAFT model is adopted.  

The two categories of cognitive processes chosen for this paper’s model are relevant 

since they offer access to different knowledge. When a memory is recalled, the strength of 

the memory is considered. With RAFT, a memory is reconstructed with the original and 

new information that recall does not incorporate. 

2.1 RAFT Explained 

The model introduced follows the RAFT method, Reconstruction After Feedback 

with Take the Best, first introduced by Hoffrage (Hoffrage & Pohl, 2003, Bernstein et al., 

2016, Blank & Nestler, 2007). In this cognitive model, which follows the memory design 

experimental paradigm, there are three time steps. First, a task and context information are 

given at Time 1 (T1), where an original decision is made. Following the decision at T1, new 

information is introduced at Time 2 (T2). Finally, at Time 3 (T3), the original response 

must be recalled. 

The RAFT method follows from the theory of probabilistic mental models (PMM) 

(Hertwig et al., 2003, Hoffrage & Pohl, 2003). This theory describes the cognitive process 

behind decision-making tasks that are between choices. Essentially, this theory formalizes 

that making a choice based on a quantitative criterion results in a confidence value for that 

choice. RAFT builds from the PMM theory by utilizing both the confidence value and 

original choice in reconstruction.   
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RAFT is utilized in this paper because of the three distinct assumptions it makes. 

Firstly, if the original response made cannot be retrieved in memory, the original response 

will be reconstructed by reanalyzing the original problem. This reflects the complexity 

associated with hindsight bias since simply recalling an old belief is not always possible. 

Second, the reanalysis that occurs if the original response is irretrievable involves the cues 

and cue values used in the original choice. Naturally, the original decision influences the 

reconstructed decision. The third assumption follows that knowledge, in particular 

uncertain knowledge, is automatically updated by the given feedback. This feedback 

indirectly influences or changes the knowledge used in the reconstruction process, 

meaning that while this process enables individuals to improve their inferences over time, 

it has a by-product: hindsight bias. 

2.2 Take the Best Explained 

In the decision-making process at Time 1, and later if applicable at Time 3, the RAFT 

method uses an inferential heuristic to pick which cue has the most predictive power in 

order to make a decision. This heuristic is named Take the Best and is the heuristic most 

commonly associated with the PMM framework (Gigerenzer & Todd, 1999, Hoffrage & 

Pohl, 2003, Hertiwg et al., 2003). This heuristic performs as follows: given cues with their 

associated validities, an inference is made based on the cue with the highest discrimination 

value. First, the cue values are searched in memory. If the best cue discriminates, searching 

is stopped; if the best cue does not, search is continued until the next best is found. Once 

searching stops, the decision about the cue is chosen; if there is no cue that discriminates, a 

random choice is made. Finally, the cue validity is used to update the confidence value of 

the choice, where a random guess is simply 50%.  

This heuristic is used because of its simplicity and functionality as a one-reason 

decision making method, meaning it decides from only one cue, i.e. the best. Due to its 

simplicity, it has great efficiency, which is important in complex deliberation models. Thus, 

Take the Best is known as a fast and frugal heuristic from its quick computational power 

and since it only searches through some of the available information. It has been found to 
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generally provide higher accuracy than other fast and frugal heuristics with one-reason 

decision making (Gigerenzer & Goldstein, 1999). 

2.3 Complete Cognitive Process 

The comprehensive cognitive process that serves as a foundation for this paper’s 

computational implementation is summarized in figure 2.1. It starts at Time 1.   

Time 1: Original Response 

At T1, there is a certain amount of given available information 
and a question is asked. This question requires a binary response. 
Using the information and the Take the Best heuristic, an original 
response (OR) is decided.  

 

Time 2: Feedback 

Sometime after the original response is made, new information 
is added to what was originally available. There is access to the 
combined original and new information at Time 3. 
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Figure 2.1: Summarization of complete cognitive process following RAFT. 

 

Time 3: Recall or Reconstruction 

After the information update, there is a reflection on the 
original choice. With the time introduced, there will either be a 
recollection (ROR) of the original choice or a reconstruction (ROR) of 
the choice if it is inaccessible in memory. If retrievable, the confidence 
value of the choice is updated with the amount of time between T1 
and T3, meaning the model will reflect on the strength of its memory. 
If the original response is irretrievable in memory, steps from T1 are 
reconstructed, but now using the combined accessible information. 
The reconstruction process follows the steps of T1 where the 
information and TTB heuristic results in a T3 decision. 

 

 From the formalization of this cognitive process, hindsight bias is measured by 

comparing the decisions at T1 and T3 in multiple ways. One way is by comparing the 

original response to the recalled or reconstructed response (ROR = OR). Hindsight bias is 
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present when the decisions are strengthened or completely changed. For example, the 

confidence value in the OR is strengthened when it is discovered that the original response 

was correct. Another way to measure hindsight bias is between the recalled or 

reconstructed response and the correct response (ROR = CR). Hindsight bias is present 

when the ROR is the same as or moves towards the CR after learning new information. The 

formulation for these measurements is shown in figure 2.2.  

Finally, it is possible to measure hindsight bias using the OR, CR, and ROR in the 

following way: 

         △HB = |OR - CR| - |ROR - CR|                                 (2.1) 

With this equation, if one does not engage in hindsight bias, their original response and 

their recalled or reconstructed response will be approximately the same, meaning the 

change in hindsight bias should be close to 0. Alternatively, if one does suffer from 

hindsight bias, their recalled or reconstructed response will shift towards the correct 

response, regardless if the original response is the same as the correct response. This 

means the change in hindsight bias should be positive and larger than the case without 

hindsight bias. 

The next chapter introduces the implementation of this cognitive process as a 

computational model. Specifically explaining how this cognitive process translates to the 

machine learning context and offering a description of the two different domains the model 

is applied to.   

Figure 2.2: Decisions made with hindsight bias after original response (OR). Each branch 
gives corresponding output, used to formulate hindsight bias equation. 
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CHAPTER 3 

DATA AND METHODOLOGY 

 

3.1 Data Summarization 

This project utilizes many different datasets with the aim of assessing hindsight bias 

in two different domains.  

3.1.1 COVID-19 

First, hindsight bias is examined in the context of COVID-19. With the increase in 

cases, deaths, and hospitalizations of the novel Coronavirus, effects have spread beyond the 

medical community. Indeed, COVID-19 has impacted social, domestic, and economic 

spheres across cultures and countries (Brennan, 2021). This unique setting provides an 

abundance of factual and subjective information. Media coverage and public perception are 

strongly related to the coverage of COVID-19, making it possible here to incorporate 

subjective information with factual information.  

In the context of this project’s computational model, the model is given a 

combination of factual and subjective reports and asked to decide if either cases or deaths 

will increase or decrease over a given period of time.  

There are three sources of data relating to COVID-19 utilized in this paper: the 

Center for Disease Control (CDC), Consumer Reports of American Experiences Survey 

(Consumer Reports), and surveys of consumer behavior in the time of COVID-19 from 

IPSOS (IPSOS). The CDC offers the relevant factual data where the surveys offer subjective 

data. The CDC provides a tracker dataset that has updated case and death counts daily since 

January of 2020. The format of the tracker dataset includes attributes for each day for each 

territory in the United States. The Consumer Reports offer qualitative data in the form of 

attitudes about various COVID-19 based questions. The IPSOS surveys are also included 

because they recorded COVID-19 attitudes framed in a different way, providing more data 

as well as the potential for better representation and generalization. A full description of 

the COVID-19 sources is given in Appendix A.  
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3.1.2 Nutrition 

The second domain for this paper’s model is in the context of an everyday, 

commonly observed decision concerning healthy food choices. Nutrition data offers factual 

information about various foods, specifically lacking novelty and social urgency like 

associated with COVID-19. In this setting, the model is asked to decide if a given food is 

healthy or not.  

The nutrition data comes from the United States Department of Agriculture (USDA) 

National Nutrient Database for Standard Reference (Haytowitz et al., 2019). This dataset 

functions as the major source of factual food composition data in the United States which 

includes 8,617 entries with 45 different attributes for each. The relevant subjective data 

about healthy food choices comes from the International Food Information Council (2021). 

This survey from May 2021, offers information on Americans perceptions, beliefs, and 

behaviors surrounding food. It gives details about health and nutrition as well as eating 

patterns and purchasing behaviors. A full description of the nutrition datasets is included 

in Appendix A.  

3.2 Preprocessing 

This section describes the methods behind cleaning, feature selection, engineering, 

and scaling of the datasets, and offers a comprehensive view of the final datasets used in 

this paper. First, the COVID-19 data is described, then the nutrition data.  

In order to clean the data, apply preprocessing, build the computational model, and 

incorporate machine learning models, the Python programming language (Python Software 

Foundation) is used within the Anaconda environment (Anaconda Software Distribution). 

Throughout this process, the built in packages of Pandas (MicKinney, 2010), Scikit-Learn 

(Pedregosa et al., 2011), matplotlib (Hunter, 2007), numpy (Oliphant, 2006), random (Van 

Rossum, 2020), and datetime (Van Rossum, 2020) were used.  

3.2.1 COVID-19 

3.2.1.1 Cleaning and Feature Selection 
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In order to combine the three COVID-19 based datasets, first each dataset needs to 

be examined and cleaned individually. The process of cleaning entails fixing or removing 

incorrect, duplicate, or missing data. The CDC tracker dataset, that holds an entry for each 

day of case and death tabulations, does not require any cleaning since there are not any 

missing or outlier values. For the Consumer Reports surveys, there are three entries 

(weeks) missing within the time frame of the tracker dataset. The missing weeks' concern 

values are fixed by averaging between the previous and following week’s scores. The IPSOS 

data does not have any missing values in the time frame, thus does not require the same 

averaging for missing scores as the Consumer Report surveys. 

 The next step in preprocessing is to apply feature selection, or determine which 

attributes are relevant to the problem. Here, the irrelevant attributes are dropped from the 

dataset. All attributes are preserved from the CDC tracker dataset. In both survey datasets, 

many questions are not relevant to the problem, so these two datasets have the most 

dropped attributes. From the Consumer Reports, only two attributes are selected, concern 

over the next month and concern of the next 6 months. Similarly, from the IPSOS survey 

dataset, only one attribute is selected, the personal perceived threat of COVID-19. With 

cleaning and feature selection complete, the next section describes how the dataset is 

engineered, from decompositions to transformations and aggregations. 

3.2.1.2 Feature Engineering and Feature Scaling 

 This step in preprocessing requires the most attention. In the tracker dataset, the 

first action is to transform it so that there is one entry per day that accounts for the entirety 

of the United States, instead of one entry per day per territory. Here, the data is grouped 

first by date, then the counts of all remaining attributes (total cases, total deaths, new 

cases, new deaths) are summed, creating one instance for each date instead of one for each 

of the 52 jurisdictions.  

After each attribute is summed, two new types of attributes are created that reframe 

the dataset’s numerical quantities. One type calculates the difference in counts from the 

previous day, labeled Case Diffs and Death Diffs. From this attribute, the second attribute of 

binary output label is assigned for both cases and deaths. If the difference from the 
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previous day is negative, the value is 0 (decrease) and if the difference is zero or positive, 

the value is 1 (increase).  

At this point in the feature engineering, all relevant attributes are combined into one 

dataset. Since each dataset has the same number of instances, with each being a different 

day, the datasets were simply merged. The final step in feature engineering is the 

decomposition of the datetime feature. Five new datetime numerical attributes are created: 

day, month, year, week day, and week of month. 

Feature scaling, or standardizing the numerical quantities of each attribute to the 

same fixed range, is an important part of preprocessing. Descriptive histograms reveal the 

attributes ‘newCases’ and ‘newDeaths’ are both tail heavy. This makes sense since the 

growth in cases and deaths was originally higher during the beginning of the pandemic in 

2020. The skewed distributions show that every attribute does not conform to the same 

scale, making this step of preprocessing necessary. The combined dataset is normalized 

with Scikit-Learn's preprocessing Normalizer that results in each attribute’s values being in 

the range from 0 to 1.  

3.2.1.3 Overview of complete COVID-19 dataset 

 After all the preprocessing, the final COVID-19 dataset, now referred to as the 

COVID-19 dataset, has 17 columns and 541 entries. All attributes are integers except for the 

full datetime object. The distribution of output labels is shown in figure 3.1 for both cases 

and deaths, revealing that in both situations the output labels are almost balanced, and that 

there are more instances of cases increasing, while there are more instances of deaths 

decreasing. The COVID-19 dataset is not split into a train and test set during preprocessing 

because the split is dependent on the model parameters, as explained in the next chapter. 

Instead, at the time of implementation the dataset is split into a train and test set, and then 

a train and test validation set. 
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Figure 3.1: Overview of COVID-19 dataset. a) shows more instances of increase for cases, b) 
shows more instances of decrease for deaths. 

 

3.2.2 Nutrition   

In this subsection, the same cleaning and engineering process is described for the nutrition 

dataset. 

3.2.2.1 Cleaning and Feature Selection 

 In order to join the two nutritional datasets, each needs to be examined and cleaned 

individually. Within the USDA nutritional dataset, analysis reveals that all quantitative 

attributes do not have any missing values or outliers, meaning this dataset does not need to 

be cleaned. The survey dataset reveals the same. The cleaning process is simpler as 

compared to the COVID-19 process since this dataset does not incorporate datetime 

attributes. 

Concerning feature selection, each dataset retains different attributes. The USDA 

dataset drops most non-integer attributes, such as ‘ShortDescrip’ and ‘Descrip’. From the 

survey dataset, two attributes are preserved: what kinds of foods are most likely to cause 

weight gain and what defines a food as healthy. With cleaning and feature selection 

complete, the next section describes how the dataset is engineered. 

3.2.2.2 Feature Engineering and Feature Scaling 
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 The first step in making the datasets easier to analyze, or engineer, is to transform 

any categorical data. The only categorical attribute preserved from the USDA dataset is 

FoodGroup. To transform this attribute into a numerical format, Scikit-Learn's One Hot 

Encoding is used. This preprocessing method creates a binary column for each category 

and returns a sparse matrix, where in the matrix the value is 1 if an instance is that 

category and otherwise 0 (Pedregosa et al., 2011).  

The next step in feature engineering is to aggregate the two datasets. Each 

instance’s subjective data is based on its’ components, meaning the survey values are 

added dependent on the food itself and a series of conditional statements. There are two 

new attributes added to the dataset, ‘weightCauses’ and ‘whatsHealthy’. For example, the 

‘weightCauses’ value first checks if the food entry has a high amount of sugar. If it does, it is 

assigned the value of 0.22, the ratio of participants that ranked high sugar levels as the 

most important in weight gain. If it does not, the next ranked component from the survey is 

checked, and so on. The ‘whatsHealthy’ values are assigned with similar conditional 

statements. The combination process results in a dataset with the same number of entries 

as the USDA dataset, 8,617, but now with 42 attributes for each instance. 

After aggregation, the last step is to determine the output labels for each food 

instance. Since the USDA dataset does not provide a health label, it is necessary to create 

this new feature. This is done through the unsupervised clustering algorithm K-Means 

Clustering (Pedregosa et al., 2011), that clusters data points together based on certain 

similarities that minimize each cluster’s sum of squares. Before applying the algorithm, the 

full dataset is normalized with Scikit-Learn's Normalizer. It is then fit to the algorithm with 

a goal of two classes (Healthy and Unhealthy). This results in a division of classes with 

counts of 3,540 and 5,078. In order to determine the label of each class, the two groups are 

analyzed by food group. It is found that class 0 is Unhealthy, while class 1 is Healthy. For 

example, class 0 contains 315 instances of Sweets, while class 1 has 47. Adding this new 

feature results in a final dataset of 43 attributes. 
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Figure 3.2: Overview of nutrition dataset. a) shows there are more instances of unhealthy 
in nutrition dataset, b) shows label counts by Food Group in the dataset. 

 

3.2.2.3 Overview of complete nutrition dataset 

The final full dataset, now referred to as the nutrition dataset, has 43 attributes and 

8,617 instances. Of these instances, 5,078 are of the class Healthy (1) and 3,540 are of the 

class Unhealthy (0). 

The nutrition dataset is now ready for training and testing. It is split into a train and 

test set, with the dataset shuffled. The train set is used in training the model, which holds 

95% of the data, while the test set holds the instances the model will predict on, 5% of the 

full data. The training set has 8,187 instances and the test set has 431 instances. The 

training set will be further divided into a train and test validation set during decision 

making. 
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CHAPTER 4 

MODEL ENVIRONMENT AND IMPLEMENTATION 

This chapter details the environment and implementation of the proposed 

computational model that follows the RAFT cognitive process. First, the model is 

contextualized within each domain, defining the testing setting and parameters. Then the 

execution of the model in each domain is outlined, intimating where the domains diverge. 

4.1 Environment 

The proposed model is required to answer two different questions due to the two 

problem domains. But the questions are formulated in the same way, i.e. with a binary 

output.  

For the COVID-19 domain, the model is asked to predict if a certain range of dates 

will have an associated decrease (0) or increase (1) in cases or deaths. This generates two 

different datasets to analyze and compare, cases and deaths. For both sets, the testing 

environment is predefined by start date, range of time of information given, range of time 

to predict over, and range of time between decisions. Table 4.1 shows the possible values 

for each of these variables. For each of the fifteen start dates, there are four amounts of 

information given at T1, between one and four weeks. Similarly, for each start date and 

each amount of time given at T1, there are four different time periods to predict over, 

between one and four weeks, and the amount of time between decisions is between one 

and twenty weeks. 

In the nutrition domain, the model is asked to determine whether a single food is 

Unhealthy (0) or Healthy (1). The testing parameters are predefined in the same way as 

the COVID-19 domain and are shown in table 4.2. The amount of information given at T1 is 

an interval of the data, the information added at T2 is an interval of the  
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Table 4.1: Testing environment for COVID-19.  

 

Table 4.2: Testing environment for nutrition. 

 

 

remaining data, and the time between decisions is between one and twenty weeks.    

The main difference between the two domains is that information in nutrition is not 

dependent on time. While the COVID-19 data must be given in order of date, the nutrition 

data is shuffled. The nutrition testing parameters are in the form of intervals instead of 

weeks of time. 

The following sections walk through the three time steps of the computational 

model’s process for each scenario, highlighting where there are differences in 

implementing the proposed model. 

 

 

 

 

Parameter Possible values 
Start dates  
(at T1) 

3/3/20             4/3/20              5/3/20            6/3/20 
7/3/20             8/3/20              9/3/20            10/3/20 
11/3/20           12/3/20             1/3/21            2/3/21 
3/3/21 

Information given at 
T1 (weeks) 

4      6      8      10 

Prediction time 
(same for T1 and T3) 
(weeks) 

1      2      3      4 

Time between 
decisions (weeks) 

1       2       3      4      5      6      7       8      9      10 
11     12    13    14     15    16    17    18    19     20 

Parameter Possible values 
Given information at T1  
(in intervals) 

0.1     0.25     0.4     0.5     0.65     0.75     0.9 

Information added at T2  
(in intervals) 

0.1     0.25     0.4     0.5     0.65     0.75     0.9 

Time between decisions 
(weeks) 

1      2      3     4     5     6     7      8     9     10      
11    12    13    14    15   16   17     18   19    20 
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4.2 Implementation for COVID-19 

4.2.1 Time 1 

 In each COVID-19 testing scenario, the model is given a start date and end date that 

delineates the given information. From this range of dates, the model is asked to predict if 

cases or deaths will increase or decrease over each of the prediction ranges, one to four 

weeks. First a correlation matrix is calculated, then the Take the Best heuristic steps are 

applied by (1) searching the cues, (2) stopping at the cue with highest discrimination, 

making a (3) decision rule about cue value, and calculating a (4) confidence value in the 

chosen cue.  

The next step in the RAFT model is to make the prediction, which is achieved 

through the machine learning classifiers. The T1 given information is split into train-test 

sets with a test size of 30%, normalized, and then fit to the three classifiers: K Nearest 

Neighbors (KNN) Classifier, Decision Tree (DT) Classifier, and Random Forest (RF) 

Classifier. All hyperparameters were determined using Scikit-Learn's Grid Search 

(Pedregosa et al., 2011) and can be found in Appendix B. After each model is trained and 

tested, the classifiers and their associated accuracies are stored. 

The model then selects the classifier with the highest accuracy. Once the highest 

ranked classifier is selected, the model then uses that classifier to predict the output labels 

for each day over the range of prediction dates, where each day corresponds to a value of 1 

(increase) or 0 (decrease). The predictions are then averaged. The decision value is 

computed as the logistic, so that it is between 0 and 1, of the confidence value, classifier 

accuracy, and prediction value. This decision value is compared to the output threshold 

value of 0.5 that translates to a binary output label of 0 (decrease) or 1 (increase).  

4.2.2 Time 2 and 3 

After the model’s decision, a new date and information is given at T2 dependent on 

the time between decisions, and then at T3 the model is asked to remember the decision 

made in T1. The original response is deliberated on following the RAFT cognitive process, 

where either the model is able to access its’ previous decision in memory or will have to 
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reconstruct its’ decision by repeating the steps from T1. Here, time between decisions is 

introduced as a random variable in weeks, with a range of 0 to 20 weeks. Whether the 

model is able or not to access its’ original response is determined by a random choice, i.e. 

half of the time it can remember and half of the time it must reconstruct the original 

response. A random choice is used here in order to get balanced occurrences of recall and 

reconstruction for analysis. 

If it is determined that the model is able to remember at T3, a new confidence and 

decision value are calculated with time between decisions. The new decision value is 

compared to the output threshold and the resulting binary output label is the T3 decision. 

 If the model is unable to remember the original response, it is necessary to 

reconstruct the response. This is done following the same steps from T1, but now the given 

information used to make the decision includes T1 and T2. The T3 confidence is calculated, 

the given information is split and normalized, all classifiers are trained and tested, and a 

decision value is found using the best classifier, confidence value, and time between 

decisions. From this decision value, a choice is made by using the threshold value.  

4.3 Implementation for Nutrition 

Moving on from COVID-19, now the implementation for nutrition is described. Both 

domains are described because there are a few differences in implementation due to the 

separate contexts. The implementation of the model for nutrition is not described in the 

same detail as for COVID-19 since much of it is repetitive. Instead, the differences are 

mentioned. 

4.3.1 Time 1 

 At T1, the model is given a rate value that corresponds to the amount of information 

given from the training dataset. In the preprocessing step, the nutrition data was split into 

a train-test set with a test size of 5%. The given information is taken from the training 

dataset using the Pandas sample() method, proportional to the rate given. The sample() 

method returns a random sample of the size given. A single test instance is sampled from 

the test dataset in the same way. The TTB process is applied to the information given at T1, 
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following the same implementation for COVID-19. The given information is split into 

validation train and test sets with a test size of 30%, then applied to the same three 

classifiers. The hyperparameters are detailed in Appendix B. The classifiers and their 

accuracies are stored. Using the best classifier, a prediction is made on the single test 

instance, given in the form of probabilities for each class. The prediction value, the 

confidence value, and classifier accuracy are then calculated the same way as the COVID-19 

decision value. The decision value is applied to the threshold value that indicates the class 

that is chosen (healthy or unhealthy).   

4.3.2 Time 2 and 3 

 After the original response is made, a random amount of time is introduced. New 

information is added, where the amount of information added is given from the T2 rates. 

The added information is a portion of the remaining training set of data after divided at T1, 

and again is found through the sample method. This is one of the main implementation 

differences, since the nutrition dataset does not add new information that is proportional 

to the time between decisions. 

If it is determined that the model is able to remember after the given time, a new 

decision value and decision are calculated in the same way as described above.  

 If the model is unable to remember the values from T1, it reconstructs the original 

response using the steps from T1, in the same process as the COVID-19 implementation.  
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CHAPTER 5 

PREDICTIONS 

This chapter introduces the predictions before testing is performed. There are three 

groups of predictions, those only concerning the COVID-19 domain, those only concerning 

the nutrition domain, and those connecting the two. 

5.1 COVID-19 

Within the COVID-19 scenarios, there are four kinds of predictions. The first three 

outline different measurements of hindsight bias: through the change in hindsight bias 

(HBC) equation introduced in chapter 2, by confidence values of T1 and T3 decisions, and 

by comparison of T1 and T3 decisions to the correct response (CR).  

Across the COVID-19 domain, it is predicted that when decision-making is 

unimpaired, hindsight bias will be low. The three assumed sources of impairment for 

COVID-19 are the time given at T1, the prediction size, and the time between decisions. The 

first three categories of predictions detailed below show the results in the context of each 

source of impairment. The fourth category compares the death and case testing scenarios 

in the COVID-19 domain. 

The first category of predictions concerns the three sources of assumed impairment 

as measured by the HBC equation. The predictions are defined and explained below, for 

both cases and deaths. 

COVID-19 (1.a): As the amount of time given at T1 increases, HBC averages 
will decrease. Having less information to make an informed decision is an 
impairment, where increasing the amount of information will lead to less 
HBC. 
 
COVID-19 (1.b): As the prediction size increases, HBC averages will increase. 
Here, predicting over a larger amount of time is expected to reflect that it is 
harder to accurately decide, leading to more HBC. 
 
COVID-19 (1.c): As the time between decisions increases, HBC averages will 
increase.  With more time between decisions, the ability to accurately 
remember or reconstruct the original response will become more impaired. 
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The second category of predictions for COVID-19 uses confidence values of T1 and 

T3 decisions as a measure of hindsight bias. This category’s predictions are defined and 

explained below, for both cases and deaths. Overall, it is expected that T3 will be associated 

with lower levels of confidence than T1. Since it is expected that T3 decisions are made in 

the face of more impairment, T3 decisions will have lower confidence values. 

COVID-19 (2.a): As the given time at T1 increases, confidence values will 
increase. Decisions are more impaired with less information given, so the 
confidence in decisions will increase with more time given. 
 
COVID-19 (2.b): As the prediction size increases, confidence values will 
decrease. With more time to predict over, it is expected that decisions will 
become more impaired.  
 
COVID-19 (2.c): As the time between decisions increases, confidence values 
will decrease. With more time between decisions, it is expected there will be 
more trouble accurately recalling or reconstructing the original response, 
leading to lower confidence values. 
 

The third category of predictions evaluates how the COVID-19 model performed in 

deciding the correct response (CR). Overall, it is predicted that the T3 decisions will be 

closer to the CR than T1 decisions. The relevant predictions are defined and explained 

below, for both cases and deaths.  

COVID-19 (3.a): As the time given at T1 increases, the amount of CR will 
increase. Less given time is an impairment that will be associated with less 
CR. 
 
COVID-19 (3.b): As the prediction size increases, the amount of CR will 
decrease. By predicting over larger amounts of time, the ability to decide the 
CR will decrease. 
 
COVID-19 (3.c): As the time between decisions increases, the amount CR will 
increase. It is predicted that after more time, there will be higher impairment 
in accurately recollecting or reconstructing the original response. With more 
time, decisions will move towards the CR. 
 

The fourth COVID-19 category compares the case and death testing scenarios within 

the COVID-19 domain. It is predicted that the COVID-19 death results will be associated 
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with higher hindsight bias. Since the number of cases throughout the dataset is far greater 

and more variable than the number of deaths, and since deaths are more subjectively 

consequential, as conveyed in the survey data, it is expected the results will reveal greater 

hindsight bias for deaths than for cases.  

COVID-19 (4): Greater hindsight bias will be observed with respect to deaths 
than cases. 
 

5.2 Nutrition 

The nutrition setting’s predictions follow the same first three categories as in the 

COVID-19 domain, but does not include the fourth category. Within the three nutrition 

categories, there are two differences from their COVID-19 parallels.  

First, the nutrition setting does not use the concept of time in the same way. The 

given information at T1 is in the form of rates instead of weeks. Subsequently, the amount 

of information at T2 is not determined by weeks after the original decision, but is instead in 

the form rates. The second difference is that the nutrition setting does not have a variable 

for prediction size, instead making decisions for one instance. As a results of these two 

differences, the assumed impairment of prediction size in the COVID-19 domain is replaced 

by the T2 information rate in the nutrition domain. It is predicted that as the T2 

information rate increases, impairment will increase.  

For the sake of comprehension and readability, even though time is not relevant in 

the nutrition dataset, the terminology of time between decisions is retained in the nutrition 

domain. Here, time between decisions should be understood as the amount of added 

uncertainty between decisions.  

The first category of nutrition predictions measures hindsight bias through the HBC 

equation. These predictions are defined and explained below. 

Nutrition (1.a): As the given rate at T1 increases, HBC averages will decrease. 
It is expected that less information is an impairment, so HBC averages will 
decrease with more information. 
 



 

26 

 

Nutrition (1.b): As the given rate at T2 increases, HBC averages will decrease. 
It is expected that less information is an impairment, so HBC averages will 
decrease with more T2 information given. 
 
Nutrition (1.c): As the time between decisions increases, HBC averages will 
increase. More time between decisions will impair accurately remembering 
or reconstructing the original decision. 
 

The second category of nutrition predictions measures hindsight bias through 

confidence values. Overall, it is expected that T3 decisions will have lower levels of 

confidence than T1. This category’s predictions are defined and explained below. 

 

Nutrition (2.a): As the given rate at T1 increases, confidence values will 
increase. Decisions are impaired with less information given, so the 
confidence in decisions will increase as the information rate increases. 
 
Nutrition (2.b): As the given rate at T2 increases, confidence values will 
increase at T3. With more information at T3 deliberation, confidence values 
will become less impaired. 
 
Nutrition (2.c): As time between decisions increases, confidence values will 
decrease. With increasing impairment, confidence will decrease. 

 

The third category of nutrition predictions measures hindsight bias by examining 

the amount of correct responses (CR) at T1 and T3. These predictions are defined and 

explained below. 

Nutrition (3.a): As the given rate at T1 increases, the amount of CR will 
increase. With less impairment, the amount of CR will increase. 
 
Nutrition (3.b): As the given rate at T2 increases, the amount of CR will 
increase. With less impairment at T3 deliberation, there will be more CR at 
T3. 
 
Nutrition (3.c): As the time between decisions increases, the amount of CR 
will increase. With more time between, T3 decisions will move towards the 
CR. 
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5.3 Combined COVID-19 and Nutrition 

The third grouping of predictions compares the two testing domains. It is predicted 

that the COVID-19 results will display higher levels of hindsight bias. This prediction is 

made for three reasons. First, that COVID-19 is a more novel and socially charged domain 

than nutrition, meaning the difference between the original response and correct response 

is weighted more in the COVID-19 domain. Second, the COVID-19 scenario predicts over a 

range of instances (dates), while the nutrition scenario must predict over one instance (a 

food). Having one prediction instance makes the problem simpler for the nutrition 

scenario. Third, the nutrition dataset has more training instances than the COVID-19 

dataset. It is predicted the nutrition implementation’s recalled or reconstructed decisions 

will be more influenced by the degree of information available than COVID-19, resulting in 

more hindsight bias.  

Combined (1): Greater hindsight bias will be observed with respect to 
COVID-19 than nutrition.  
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CHAPTER 6 

RESULTS 

 The results chapter first contextualizes COVID-19 with its predictions, followed by 

nutrition, and then both domains combined. 

6.1 COVID-19 

This section describes the results in the context of the aforementioned COVID-19 

predictions.  In COVID-19 testing, there were a total of thirteen start dates, four options of 

amount of T1 given information, a range of one to four weeks for the prediction date, and 

twenty possible times between decisions. Each start date was tested five times, resulting in 

a total of 4,160 test instances for both cases and deaths. Other general results and 

statistical descriptions are given in Appendix C. 

COVID-19 results are given for both cases and deaths within each prediction 

category. There are assumed to be three sources of impairment that impact hindsight bias: 

time given at T1, prediction size, and time between decisions. The first prediction category 

measures hindsight bias with the HBC equation, the second uses confidence values, and the 

third compares T1 and T3 decisions to the correct responses (CR). The fourth category of 

COVID-19 predictions compares the results of cases and deaths. 

6.1.1 COVID-19 (1) measuring hindsight bias with HBC equation 

The first prediction category utilizes the HBC equation to measure hindsight bias. 

1.a    As the time given at T1 increases, HBC averages will decrease 
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Time given at T1 is in the form of four, six, eight, or ten weeks, and it is predicted 

that as time increases, the average HBC will decrease. Cases results are associated with an 

overall decrease in HBC from four to ten weeks, but show eight weeks to have the highest 

HBC average (0.129) in figure 6.1. The results for deaths show that the average HBC 

decreases from four to ten weeks (figure 6.1). For both cases and deaths, time given at T1 

appears as expected to be a source of hindsight bias as measured by HBC. 

Figure 6.1: COVID-19 (1.a) prediction results of average HBC by time given at T1. a) shows 
the results for cases, with an overall decrease from 4 weeks to 10, b) shows the results for 

deaths, with HBC averages decreasing overall from 4 weeks to 10. 
 

1.b    As prediction size increases, HBC averages will increase 

It is expected that HBC averages will increase as prediction size grows since 

deliberation will have higher impairment. Figure 6.2 shows that for cases, the average HBC 

increases with prediction size. Death results, while having an overall increase in HBC from 

one to four weeks, do not show a significant difference in HBC averages over prediction 

size (figure 6.2). HBC averages increase with prediction size for cases and deaths, showing 

prediction size to function as expected as a source of impairment when measured by HBC. 
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Figure 6.2: COVID-19 (1.b) prediction results of average HBC by prediction time. a) shows 
the results for cases, with an increase in HBC with prediction size, b) shows an overall 

increase in HBC from 1 to 4 weeks. 
 

1.c    As time between decisions increases, HBC averages will increase 

With time between decisions increasing, it is predicted that there will be greater 

HBC averages. The cases testing performs as expected, where the HBC averages increase 

(figure 6.3). Similarly, the average HBC increases with time between decisions for deaths, 

with each value being larger than those for cases (figure 6.3). Results show time between 

decisions to be a strong source of impairment for cases and deaths as measured by HBC.  

Figure 6.3: COVID-19 (1.c) prediction results of average HBC by time between decisions. a) 
shows the results for cases, with almost proportional increase of HBC average with time 

between decisions, b) shows the same trend for deaths as cases, with higher values at each 
time between decisions. 
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 In summary for the COVID-19 (1) predictions, the given time at T1 and prediction 

size appear as expected as sources of impairment, but time between decisions is revealed 

to be a strong source of impairment for hindsight bias for cases and deaths in the COVID-19 

domain. 

6.1.2 COVID-19 (2) measuring hindsight bias with confidence values 

This prediction category examines the confidence values of T1 and T3 decisions as a 

measurement of hindsight bias. Overall, it is predicted that T3 will have lower levels of 

confidence than T1 for the COVID-19 domain, reflecting that as impairment increases, 

confidence values will decrease. Table 6.1 shows, for both cases and deaths, confidence 

values decrease from T1 to T3, with deaths changing more significantly (cases: 4.6% 

difference, deaths: 29.1% difference).  

Table 6.1: Confidence values at T1 and T3 for COVID-19 cases and deaths. The percent 
difference for deaths is greater than that for cases. 

 

2.a    As the rate of information at T1 increases, confidence values will increase 

 It is predicted that less information at T1 is an impairment, where increasing time 

given at T1 will lead to an increase in confidence values. Table 6.2 shows that confidence 

values decrease with time for cases T1 and T3, and for deaths T3. T1 confidence values for 

deaths increase with T1 time given. For both cases and deaths, the confidence values at T3 

are less than those at T1. From these results, T1 given information performs contradictory 

to the predictions, with confidence values overall decreasing for cases and deaths by time 

given at T1. 

T1 confidence T3 confidence % difference T1 confidence T3 confidence % difference

mean 0.7929 0.7561 -4.6499 0.7968 0.5653 -29.0534

std 0.0596 0.0507 -- 0.0523 0.1329 --

Cases Deaths
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Table 6.2: COVID-19 (2.a) prediction results of T1 and T3 confidence values for cases and 
deaths by time given at T1. 

 

2.b As prediction size increases, confidence values will decrease 

 It is expected that as prediction size increases, confidence values at T1 and T3 will 

decrease due to greater impairment. The results for cases show an increase in confidence 

values with prediction size at T1 and T3, while results for deaths show the expected 

decrease in confidence values at T1 and T3 (table 6.3). Prediction size functions as 

expected only in the context of COVID-19 deaths. Prediction size is revealed to be 

contradictory to the predictions, with confidence values increasing with prediction size for 

cases and deaths.  

Table 6.3: COVID-19 (2.b) prediction results of T1 and T3 confidence values for cases and 
deaths by time to predict over. The percent differences for deaths are greater than cases. 

 

2.c    As time between decisions increase, confidence values will decrease 

In examining time between decisions and confidence values, it is predicted that 

confidence values decrease with an increase in time at T3, since T1 decisions are made 

independently of time between decisions. This trend occurs in the results for both cases 

and deaths. The change in confidence values from one week to twenty is more significant 

for deaths (53.5% difference) than for cases (8.5% difference). The results show that time 

mean std mean std mean std mean std

1 0.7899 0.0496 0.7559 0.0502 -4.31 0.6793 0.0596 0.5637 0.1304 -17.02

2 0.7902 0.0592 0.7547 0.0504 -4.49 0.6693 0.0592 0.5561 0.1295 -16.91

3 0.7909 0.0660 0.7562 0.0526 -4.39 0.6699 0.0606 0.5600 0.1303 -16.41

4 0.7929 0.0696 0.7574 0.0499 -4.48 0.6479 0.0575 0.5596 0.1321 -13.64

% 

difference

Cases Deaths

Time to 

predict  over

% 

difference

T1 confidence T3 confidence T1 confidence T3 confidence

mean std mean std mean std mean std

4 0.7987 0.0808 0.7661 0.049505 -4.08 0.6378 0.0514 0.5729 0.1310 -10.19

6 0.7968 0.0520 0.7600 0.050501 -4.63 0.6479 0.0541 0.5586 0.1304 -13.79

8 0.7924 0.0541 0.7556 0.050198 -4.65 0.6697 0.0572 0.5543 0.1309 -17.23

10 0.7838 0.0440 0.7426 0.049925 -5.26 0.6987 0.0788 0.5531 0.1309 -20.83

Cases Deaths

% 

difference

% 

difference

T1 confidence T3 confidenceT1 confidence T3 confidence

T1 given 

t ime
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between decisions is a strong source of impairment for both cases and deaths as measure 

by confidence values.  

 

Table 6.4: COVID-19 (2.c) prediction results of T1 and T3 confidence values by time 
between decisions for cases and deaths. The percent differences are greater for deaths than 

cases. 
 

Examining hindsight bias through confidence levels reveals both time given at T1 

and time to predict over to be contradictory sources of impairment for hindsight bias when 

measured by confidence values. Time between decisions is found to be a strong source of 

impairment for both cases and deaths. Overall, the percent differences in confidence values 

from T1 to T3 for deaths are larger than for cases. 

 

 

 

mean std mean std mean std mean std

1 0.7929 0.0597 0.7855 0.0513 -0.93 0.7729 0.0687 0.7647 0.0555 -1.06

2 0.7929 0.0597 0.7885 0.0502 -0.56 0.7729 0.0687 0.7508 0.0457 -2.86

3 0.7929 0.0597 0.7809 0.0486 -1.52 0.7729 0.0687 0.7242 0.0449 -6.31

4 0.7929 0.0597 0.7776 0.0495 -1.93 0.7729 0.0687 0.7016 0.0420 -9.23

5 0.7929 0.0597 0.7753 0.0473 -2.23 0.7729 0.0687 0.6800 0.0410 -12.03

6 0.7929 0.0597 0.7761 0.0448 -2.13 0.7729 0.0687 0.6585 0.0375 -14.81

7 0.7929 0.0597 0.7713 0.0429 -2.73 0.7729 0.0687 0.6368 0.0391 -17.61

8 0.7929 0.0597 0.7711 0.0439 -2.75 0.7729 0.0687 0.6061 0.0370 -21.59

9 0.7929 0.0597 0.7675 0.0432 -3.21 0.7729 0.0687 0.5918 0.0338 -23.44

10 0.7929 0.0597 0.7596 0.0415 -4.20 0.7729 0.0687 0.5727 0.0309 -25.91

11 0.7929 0.0597 0.7534 0.0428 -4.99 0.7729 0.0687 0.5478 0.0302 -29.13

12 0.7929 0.0597 0.7514 0.0375 -5.23 0.7729 0.0687 0.5248 0.0289 -32.10

13 0.7929 0.0597 0.7450 0.0422 -6.05 0.7729 0.0687 0.5098 0.0260 -34.05

14 0.7929 0.0597 0.7456 0.0478 -5.97 0.7729 0.0687 0.4802 0.0317 -37.87

15 0.7929 0.0597 0.7362 0.0495 -7.16 0.7729 0.0687 0.4579 0.0279 -40.76

16 0.7929 0.0597 0.7354 0.0447 -7.25 0.7729 0.0687 0.4384 0.0287 -43.28

17 0.7929 0.0597 0.7321 0.0495 -7.67 0.7729 0.0687 0.4171 0.0278 -46.03

18 0.7929 0.0597 0.7270 0.0463 -8.31 0.7729 0.0687 0.3944 0.0262 -48.98

19 0.7929 0.0597 0.7204 0.0504 -9.15 0.7729 0.0687 0.3803 0.0257 -50.80

20 0.7929 0.0597 0.7187 0.0462 -9.37 0.7729 0.0687 0.3555 0.0253 -54.00

Cases Deaths

% 

difference

% 

difference

T1 confidence T3 confidenceT1 confidence T3 confidence
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6.1.3 COVID-19 (3) measuring hindsight bias with correct responses 

This COVID-19 prediction category analyzes T1 and T3 decisions compared to the 

correct responses (CR). Overall, it is predicted that the T3 decisions will be closer to the CR 

than T1 decisions. Figure 6.4 shows this trend for cases, where the amount of correct 

responses is larger at T3 than T1, moving from 88.94% correct to 95.12% (6.95% 

difference). Death results show the opposite, where T3 has less correct responses than T1, 

moving from 88.46% correct decisions to 76.25% (-13.98% difference). While the previous 

measures have shown hindsight bias occurs for deaths, comparing the decisions to the CR 

reveals that T3 decisions move towards incorrect decisions. This means that death results 

have less accurate hindsight bias than cases. 

Figure 6.4: CR at T1 and T3 for COVID-19 cases and deaths. a) shows the choices made at 
T1 for cases, b) shows the number of correct decisions increases at T3 for cases, c) shows 
the choices made at T1 for deaths, d) shows the number of correct decisions decreases at 

T3 for deaths. 
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3.a    As given time increases, the amount of CR will increase 

With increased given information at T1, it is predicted the amount of CR will 

increase. Cases show this trend for both T1 and T3, and show that T3 has higher amounts 

of CR (figure 6.5). For deaths, CR decreases with time given, but T1 has more CR than T3. 

Time given at T1 is a strong source of impairment for cases as measured by CR, but acts 

contradictory for deaths.  

Figure 6.5: COVID-19 (3.a) prediction results of CR at T1 and T3 by time given at T1. a) 
shows the CR for cases at T1, b) shows CR for cases at T3, with more correct than at T1, c) 
shows the CR for deaths at T1, d) shows CR for deaths at T3, with less correct than at T1. 
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3.b    As prediction size increases, CR will decrease 

It is expected that as prediction size grows, the amount of CR will decrease. CR are 

lowest at prediction sizes of one and four weeks for cases but does not have a clear trend. 

Figure 6.6 shows that for deaths, as prediction size increases, the number of CR decreases 

as expected. Overall, prediction size is a strong indicator of hindsight bias for deaths but is 

inconsequential for cases. 

Figure 6.6: COVID-19 (3.b) prediction results of CR at T1 and T3 by prediction size. a) 
shows the CR for cases at T1, b) shows the CR for cases at T3, with more correct than at T1, 
c) shows the CR for deaths at T1, d) shows CR for deaths at T3, with less correct than at T1. 

 

3.c    As time between decisions increases, CR will increase 

 It is predicted that as time between decisions increases, the more CR are made at T3, 

since T1 decisions are independent of time between decisions. For cases, the number of 



 

37 

 

incorrect decisions steadily drops until 17 weeks between decisions, where it drops 

significantly (figure 6.7).  Deaths show a similar trend, with the number of incorrect 

decisions dropping steadily until 18 weeks between decisions. Time between decisions as 

an impairment functions as expected for both cases and deaths. 

 

Figure 6.7: COVID-19 (3.c) prediction results of CR at T1 and T3 by time between decisions. 
a) shows CR for cases at T1, b) shows CR for cases at T3, where CR increase with time, c) 

shows CR for deaths at T1, d) shows CR for deaths at T3, where CR increase with time. 

 

 Within category three that examines hindsight bias through CR, it is shown that 

overall, cases have a more accurate shift towards the CR than deaths (figure 6.4), 

exemplified by there being more amounts of CR for cases in the context of each source of 

impairment. Prediction size is shown to be a weak indicator of hindsight bias for cases, 

while time given at T1 and time between decisions are strong sources for both cases and 

deaths. 
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6.1.4 COVID-19 (4): Death results will have higher hindsight bias than cases 

Overall, it is predicted that death results will display more hindsight bias than cases. 

This expectation is confirmed in each prediction category. In prediction category one, death 

results reveal higher HBC averages for each source of impairment (figures 6.1-6.3). For 

category two, the percent of difference between T1 and T3 confidence levels is greater for 

deaths than cases (cases: 4.65%, deaths: 29.05%, table 6.1). In the third prediction 

category, the death results reveal higher percent differences in T1 to T3 CR (cases: 6.95%, 

deaths: 13.98), even though this difference leads to deaths having more incorrect 

responses than cases. Each category of COVID-19 predictions show deaths to be associated 

with greater hindsight bias than cases. 

6.2 Nutrition 

This section explores the results of nutrition testing in the context of the relevant 

predictions. For nutrition, there are a total of nine rates of information given at T1, nine 

rates of information added at T2, and twenty possible values for time between decisions. 

Since nutrition does not have an input for prediction size, the whole process is tested five 

times to get comparable amounts of test instances. This results in a total of 4,900 test 

instances for nutrition. Other general results and statistics are given in Appendix C. 

The results section for nutrition follows the same format as for COVID-19, without 

the fourth prediction category and with the T2 given rate replacing prediction size. The 

three sources of assumed impairment are: rate of information given at T1, rate of 

information given at T2, and time between decisions. The first category of predictions 

measures hindsight bias with the HBC equation, the second category uses confidence 

values, and the third compares decisions to the correct responses (CR). 

6.2.1 Nutrition (1) measuring hindsight bias with HBC equation 

1.a  As rate given at T1 increases, HBC averages will decrease 

In nutrition, it is expected that as the given rate at T1 increases, the average HBC 

will decrease. The results show the average HBC increasing instead as the given rate of 
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information increases (figure 6.8). The T1 given rate is found to be a contradictory source 

of impairment for hindsight bias as measured by HBC.  

 

Figure 6.8: Nutrition (1.a) prediction results of average HBC by given rate at T1. Average 
HBC increases as amount of information given at T1 increases. 

 

1.b    As T2 given rate increases, HBC averages will decrease 

With the rate of information added at T2, it is predicted that the average HBC will 

decrease. The HBC averages do not show an overall yet unclear trend of HBC averages 

increasing with T2 given information (figure 6.9). T2 given information is a contradictory 

source of impairment for hindsight bias when measures by HBC. 

Figure 6.9: Nutrition (1.b) prediction results of average HBC by given rate at T2. Overall 
HBC averages increase with T2 rate. 
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1.c    As time between decisions increases, HBC averages will increase 

With time between decisions increasing, it is predicted that HBC averages will 

increase. The results show there is an increase in average HBC with time between 

decisions, as expected (figure 6.10). Time between decisions is a strong source of 

impairment of hindsight bias as measured by HBC. 

Figure 6.10: Nutrition (1.c) prediction results of average HBC by time between decisions. 
Average HBC increases with time between decisions. 

 Within the first category of nutrition predictions, both T1 given rate and T2 given 

rate are found to be contradictory sources of impairment for hindsight bias for nutrition. 

Yet time between decisions is a strong source of impairment for nutrition. 

6.2.2 Nutrition (2) measuring hindsight bias with confidence values 

In the context of the second method for measuring hindsight bias, it is predicted that 

as impairment increases, confidence values in the nutrition domain will decrease. This 

means that T3 decisions will have lower confidence values than decisions made at T1 due 

to more impairment. Comparison of T1 and T3 confidence values of nutrition do show that 

T3 confidence is on average lower than T1’s, but also reveals there is not much difference 

in the two (0.0002) (table 6.5). The percent difference in values from T1 to T3 is -0.028.  
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 Table 6.5: Confidence values of T1 and T3 decisions for nutrition. There is slight percent 

difference from T1 to T3. 

2.a    As given rate at T1 increases, confidence values will increase 

 It is predicted that less information at T1 is an impairment, where increasing the 

rate given at T1 will lead to an increase in confidence values. Table 6.6 shows that 

confidence values decrease with T1 rate for T1 and there is not clear trend for T3. The 

percent differences from T1 to T3 decrease for all rates. Given information at T1 is revealed 

to be a weak source of impairment for hindsight bias as measured by confidence values in 

the nutrition domain.  

Table 6.6: Nutrition (2.a) prediction results of confidence values by T1 given information. 
The percent differences decrease for all rates. 

 

2.b As given rate at T2 increases, confidence values will increase 

 It is predicted that less information at T1 is an impairment that will lead to an 

increase in confidence values. Table 6.7 shows there not to be a clear trend for values at T1, 

but an overall decrease at T3. The percent difference between T1 and T3 show an average 

decrease from T1 to T3. The percent differences form T1 to T3 decrease on average. The 

mean std mean std

0.1 0.7740 0.0152 0.7734 0.0062 -0.070

0.25 0.7744 0.0084 0.7739 0.0047 -0.072

0.3 0.7739 0.0076 0.7738 0.0031 -0.021

0.5 0.7734 0.0054 0.7734 0.0499 -0.003

0.6 0.7735 0.0041 0.7734 0.0027 -0.011

0.75 0.7734 0.0028 0.7734 0.0020 -0.002

0.9 0.7735 0.0017 0.7734 0.0012 -0.018

% 

difference

Nutrit ion

T
1
 g

iv
en

 r
a
te

T1 confidence T3 confidence

T1 confidence T3 confidence % difference

mean 0.7737 0.7735 -0.0280

std 0.0077 0.0038 --

Nutrit ion
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given rate at T1 is revealed to be a weak source of impairment for hindsight bias as 

measured by confidence values in the nutrition domain.  

Table 6.7: Nutrition (2.b) prediction results of confidence values by T2 given information. 
The percent differences on average decrease for T2 rates. 

 

2.c    Confidence values will decrease as time between decisions increases 

In examining time between decisions and confidence values, it is predicted that 

confidence values decrease with time between decisions. Results show that confidence 

values for T1 and T3 overall increase from 1 week to twenty, and the percent differences 

decrease on average for time between decisions (table 6.8). Time between decisions is 

found to be a source of impairment as expected, but with small percent changes of 

confidence values.  

 

 

 

 

 

 

mean std mean std

0.1 0.7736 0.0079 0.7737 0.0061 0.01

0.25 0.7740 0.0077 0.7737 0.0047 -0.04

0.3 0.7734 0.0071 0.7736 0.0043 0.02

0.5 0.7739 0.0077 0.7735 0.0034 -0.04

0.6 0.7742 0.0071 0.7733 0.0028 -0.11

0.75 0.7734 0.0078 0.7734 0.0020 0.00

0.9 0.7737 0.0086 0.7735 0.0012 -0.03

Nutrit ion

T1 confidence T3 confidence % 

difference

T
2
 g

iv
en

 r
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Table 6.8: Nutrition (2.c) prediction results of confidence values by time between 
decisions. Percent differences decrease on average for each time. 

 
 

Examining hindsight bias through confidence levels shows T1 given rates and T2 

given rates to be weak sources of impairment for hindsight bias. Time between decisions is 

found to be a strong indicator of hindsight bias. Overall, nutrition confidence values 

decrease from T1 to T3, but at low numbers.  

 

6.2.3 Nutrition (3) measuring hindsight bias with correct responses 

The third category of predictions analyzes the model results compared to the 

correct responses (CR). Overall it is predicted that T3 will have more CR than T1. Nutrition 

mean std mean std

1 0.7735 0.0067 0.7737 0.0036 0.034

2 0.7738 0.0086 0.7734 0.0039 -0.062

3 0.7737 0.0074 0.7733 0.0038 -0.060

4 0.7742 0.0076 0.7737 0.0035 -0.063

5 0.7736 0.0065 0.7734 0.0038 -0.031

6 0.7737 0.0080 0.7735 0.0040 -0.021

7 0.7744 0.0079 0.7737 0.0041 -0.085

8 0.7743 0.0070 0.7737 0.0038 -0.074

9 0.7735 0.0083 0.7734 0.0038 -0.022

10 0.7736 0.0074 0.7736 0.0040 -0.008

11 0.7737 0.0072 0.7737 0.0041 0.007

12 0.7736 0.0076 0.7734 0.0037 -0.027

13 0.7738 0.0075 0.7731 0.0038 -0.090

14 0.7733 0.0078 0.7737 0.0034 0.043

15 0.7741 0.0076 0.7736 0.0033 -0.063

16 0.7733 0.0084 0.7738 0.0041 0.058

17 0.7727 0.0080 0.7734 0.0038 0.088

18 0.7744 0.0087 0.7732 0.0045 -0.151

19 0.7738 0.0079 0.7733 0.0035 -0.058

20 0.7738 0.0079 0.7740 0.0037 0.021

% 

difference

T1 confidence T3 confidence
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results in figure 6.11 show a shift upwards in correctly deciding the CR from an accuracy at 

T1 of 51.71% to an accuracy of 92.08% at T3 (78.07% difference). 

Figure 6.11: Nutrition counts of T1 and T3 CR. a) shows more correct decisions at T1, b) 
shows more correct decisions at T3, with greater difference than T1. 

 

3.a    As T1 given rate increases, amount of CR will increase 

It is predicted that as the T1 given information rates increase, the more CR will be 

made. Figure 6.12 shows an overall increase at T1 and T3 in CR among the rates, except for 

the largest rate of 0.9. Also, between T1 and T3, T3 has more instances of CR for each rate.  

Figure 6.12: Nutrition (3.a) prediction results of a) T1 and b) T3 CR by rate given at T1. 
There are more CR at T3 than T1 for each time rate. 

 

3.b    As T2 given rate increases, the amount of CR will increase 
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It is predicted that the T2 given rate will reveal the same trends as T1 given rate, 

where the T2 given rate increases the amount of CR increases. For nutrition, there is not a 

clear trend for amounts of actual decisions by T2 given rate at T1 or T3 (figure 6.13). 

Hindsight bias in the nutrition domain is not dependent on T2 given rate as measured by 

actual decisions. 

Figure 6.13: Nutrition (3.b) prediction results of a) T1 and b) T3 CR by rate given at T2. 
There are more CR at T3 than T1.  

3.c As time between decisions increases, CR will increase at T3 

 With time between decisions, it is predicted that as time increases, the more CR are 

made. Figure 6.14 shows that T1 decisions are independent of time between, with T3 

dependent on time between decisions. There are not any incorrect responses after eight 

weeks between decisions, showing time between decisions to be a strong source of 

hindsight bias as measured by CR in the nutrition domain. 

Figure 6.14: Nutrition (3.c) prediction results of a) T1 and b) T3 CR by time between 
decisions. There are more CR at T3 than T1. 
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 Within the third category of predictions for nutrition, rates given at T1 and T2 are 

revealed to be positive but weak indicators for hindsight bias as measured by CR. Time 

between decisions is a strong source of impairment for hindsight bias. Overall, nutrition 

has a 78.07% increase from T1 to T3 of CR (figure 6.11). 

6.3 Combined COVID-19 and Nutrition 

This third section of results compares and contrasts the conclusions from the two 

different domains. Overall, it is predicted that COVID-19 will reveal greater hindsight bias 

than nutrition. Examination of each prediction category demonstrates the nutrition domain 

to be associated with greater hindsight bias in two of the three categories. 

The first prediction category uses the HBC equation to measure hindsight bias. In 

comparing the averages of HBC for nutrition, cases, and deaths, nutrition results contain 

higher values for each source of impairment (figures 6.8-11) and more hindsight bias. 

COVID-19 results show deaths to have higher HBC averages than cases (figures 6.1-3). 

By comparing the percent differences in confidence values of T1 and T3, death 

results are found to demonstrate the most hindsight bias, with cases also being higher than 

nutrition (cases: 4.65%, deaths: 29.05%, nutrition: 0.028%). This consequence is 

attributed to the added subjectivity of COVID-19 deaths and cases as compared to nutrition. 

Similarly, COVID-19 death results are concluded to have more subjectivity than cases. 

The third category of predictions measures hindsight bias by comparing the CR of 

T1 and T3. Nutrition is revealed to have the greatest percent difference of CR, leading 

nutrition to have the most hindsight bias in this category. The percent difference for 

nutrition is 78.07%, which is greater than the 29.05% difference of COVID-19 deaths and 

4.65% difference of cases. 

Through comparison of the results from each prediction category, nutrition is 

shown to be associated with greater hindsight bias in a majority of the categories. It is 

concluded that the nutrition domain has more hindsight bias, followed by COVID-19 

deaths, and then COVID-19 cases.  
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CHAPTER 7 

DISCUSSION 

This section discusses the results in the context of this project’s motivations and 

contributions, the limitations to this project, and directions for future research. Going back 

to the motivations behind this project, I hoped to create a usable and complete simulation 

of hindsight bias accounting for two of the three groupings of theoretical cognitive 

processes underlying hindsight bias. This was accomplished using RAFT and the TTB 

heuristic with Python in the Anaconda environment. The completion of a computational 

model in this context depicts the feasibility of expanding computational modeling to 

research in hindsight bias and psychology. Additionally, applying computational simulation 

to the specific cognitive process of RAFT shows the necessity of research using different 

techniques since they highlight different aspects of cognitive processes. Computer 

simulation allows for a more transparent approach to analysis of decision making. Deeper 

understanding in regard to the complexity behind cognitive processes, and those related to 

hindsight bias, can be further explored with the baseline feasibility achieved with this 

project. 

Additionally, I hoped this thesis would provide insight into what a comprehensive 

model of hindsight bias encompasses, since there is not a single, unified representation in 

the literature. Testing shows that more often than not hindsight bias occurs as expected, 

and is thus a satisfactory baseline computational model of hindsight bias. This model works 

well as a foundation for a unified, comprehensive model, but there are various limitations 

that need to be addressed before generalization is possible. Analysis of these limitations 

helps guide the formalization of the requirements needed for a comprehensive model. First 

it is necessary to compare the computational results to those from human experiments. An 

experimental comparison will quantify the model’s similarity to the biological cognitive 

processes related to hindsight bias in a way that goes beyond comparison to theoretical 

predictions that this paper provides. Also, contextualization of the model’s results is 

essential in understanding the degree of adequacy of computational simulation in studying 

hindsight bias. The second limitation that frames what is needed in a unified model is this 
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model’s inattention to the third grouping of possible underlying cognitive processes for 

hindsight bias, metacognitive motivations. Without expansion to account for motivation as 

a role in hindsight bias, hindsight bias may not be fully accounted for. One way to expand 

this research to include motivation would be to introduce a reward function dependent on 

the model’s ability to correctly make a decision. The third way this model comments on 

creating a unified model of hindsight bias is this simulation’s ability to only handle binary 

decision making tasks. Expansion to handling various types of tasks is necessary for 

generalization of hindsight bias and should be included in a comprehensive model. 

The third general motivation behind this project was to examine whether context 

plays a role in hindsight bias. Using the model in two different settings, COVID-19 and 

nutrition, we see that the context of nutrition led to higher levels of hindsight bias. This 

result contradicts the original prediction that social urgency of the COVID-19 domain 

would lead to more hindsight bias. But these results do not imply that social urgency was 

not central in the decision making process for each domain. Instead, the results should be 

understood in the context of various limitations that may have impacted the performance 

of the classifiers used in the computational model. First, the target labels for each dataset 

were derived differently. The COVID-19 labels were a calculation of differences between 

days, while the nutrition labels were found with the unsupervised K-Means Clustering 

algorithm. While the clusters were examined, each food instance in the dataset was not 

manually corrected. Depending on an algorithm to divide the dataset into meaningful 

clusters could have been one reason for the observed degree of hindsight bias in nutrition. 

Second, it is important to note limitations in the datasets themselves. The differences in 

hindsight bias could be a consequence of the sizes of the datasets, where there are many 

more instances for training and testing in the nutrition scenario. With less data to learn 

from, it is possible that the model overfit the COVID-19 dataset and resulted in less 

hindsight bias. Overall, these three kinds of limitations provide a structure in how to 

expand this project in meaningful ways. l. 

The fourth general motivation for this project was to better understand how the 

underlying cognitive processes of hindsight bias can translate to machine learning. In the 

field of machine learning, algorithms have recently been exposed to regularly succumb to 

unintended cue learning, or shortcut learning, from the type and quality of the datasets 
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used (41). This project’s simulation of hindsight bias functions as a foundation for 

analyzing the combination of cognitive processes with various machine learning strategies. 

The results presented in this paper emphasize the importance of bringing awareness to 

shortcut learning in hindsight bias and machine learning due to the fact that many of the 

predictions occur as expected. Since the simple heuristic used in this computational model 

focuses on the best cues, hindsight bias may be able to be mitigated in serious decision-

making tasks in the field of machine learning by controlling for cue values. A future 

approach would be to further explore cue learning in machine learning by augmenting and 

manipulating the training data to remove unintended cues. 

In summary, this project accomplished its main goals while providing a new 

computational contribution to the wide literature on hindsight bias. Despite limitations, 

there are still various ways this research can be revisited and expanded, influencing not 

just the field of psychology but also machine learning.  
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APPENDIX A 

DATA SUMMARIZATION 

A.1 COVID-19 

From the CDC, data was collected from the COVID-19 tracker dataset. This tracker 

data is updated daily, beginning January 22, 2020, and is based on records provided by 

states and territories. Even though this tracker data is being used as a foundation for this 

project, it does not imply this data is assumed to be completely accurate. There are delays 

and mistakes in reporting and testing, all those infected do not seek medical care, and there 

is no way to ensure states and territories record their cases and deaths accurately. Yet this 

data is utilized because it aggregates information from states and territories, the National 

Vital Statistics System (NVSS) for death certification, and many local health departments 

and hospitals. This dataset contains multiple features, such as the submission date, the 

jurisdiction reporting, that location’s total number of cases and total number of deaths, the 

confirmed cases and deaths, the number of probable new cases and deaths, as well as the 

number of new cases and deaths for that day. The tracker dataset includes one datetime 

object, one string feature (the jurisdiction), and the rest of the attributes are represented as 

integers.   

In addition to quantitative information about the cases and deaths relating to 

COVID-19, it was necessary to also acquire qualitative data, which is why the Consumer 

Reports and IPSOS surveys are included. In the Consumer Reports survey, which was 

administered by NORC at the University of Chicago, a nationally representative sample of 

2,000 residents responded online and by phone to a variety of questions. This study is 

multi-mode, but divided into sections, where only relevant COVID-19 items have been 

preserved. This survey includes questions about COVID-19 concern over the next month 

and next six months, the vaccine, safety level during multiple activities, and issues with 

financial assistance. A margin error of +/- 2.93 percentage points was found at a 

confidence level of 95 percent.  

In the weekly tracker survey from IPSOS, consumer’s attitudes are measured on 

various COVID-19 related topics, including personal perceived threat of COVID-19, habits 
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and rituals, media and entertainment, comfort relating to vaccinations and masks, finances 

and spending, and alcohol consumption, for a total of nineteen questions. Each week, about 

1,100 individuals from the continental U.S. complete this survey online. From the targeted 

sample results, IPSOS analyzes and transforms the results to fit a more general sample. 

Each survey has a credibility interval of +/- 3.3 percentage points and confidence interval 

of +/- 4.8 percentage points.  

A.2 Nutrition 

In the USDA nutrition dataset, all entries have an associated identification number. 

Additionally, each entry belongs to a given Food Group, and has other non-integer 

attributes of a short description, a longer description, its common name and its scientific 

name. The rest of the attributes are integers that explain different levels of nutrition for 

each entry. For example, some attributes are protein (in g), calcium (in mg), and zinc (in 

mg). Importantly, not all attributes are on the same scale, i.e. some are measured in grams 

while others in milligrams. 

The qualitative data for the nutrition domain is survey information concerning 

health, nutrition, and eating behaviors. The survey was conducted by Greenwald Research, 

using Dynata’s consumer panel, formatted as an online survey with 1,014 Americans ages 

18 to 80 participating. In order to ensure the results are reflective of the 2020 American 

population, the results were weighted according to age, education, gender, race/ethnicity 

and region. The relevant questions and answers are under the Perceptions about Health 

and Nutrition section of the survey. Two questions and answers are preserved in the 

context of this project: what kinds of foods are most likely to cause weight gain and what 

defines a food to be healthy.  

 

 

 

  



 

55 

 

APPENDIX B 

CLASSIFIERS AND HYPERPARAMETERS 

The classifiers used in this paper are K Nearest Neighbors (KNN) Classifier, Decision 

Tree (DT) Classifier, and Random Forest (RF) Classifier. All classifier hyperparameter 

tuning was done through GridSearchCV(), which finds the optimal hyperparameters of a 

model. Optimal means the hyperparameters that result in the best predictions. Before 

testing, each classifier was trained and tested with a 70-30 split for each dataset. A baseline 

for each model was determined by training and testing on the default model 

hyperparameters. After, Grid Search was applied for each classifier in the context of each 

dataset in order to get the optimal hyperparameters for COVID-19 deaths, COVID-19 cases, 

and nutrition. 

KNN is known for its simplicity and effectiveness, and works by classifying data 

based on its neighbors using Euclidean distance. Decision Tree classification is a tree based 

technique that outputs a decision from conditions for each node. DTs are advantageous 

because they are easy to understand and interpret. Random forests are a type of ensemble 

method that combines the predictions of several trees that are each trained in isolation. It 

uses averaging over the subsamples of data to improve predictive accuracy.  

The particular hyperparameter used for each dataset are detailed below. 

COVID-19 Cases 

 KNN – n_neighbors=10, p=1, weights=’distance’ 

 DT – max_depth=2, criterion=’gini’ 

 RF – max_features=4, n_estimators=30, bootstrap=True 

COVID-19 Deaths 

 KNN - n_neighbors=3, p=1, weights=’uniform’ 

 DT - max_depth=2, criterion=’gini’ 

 RF - max_features=6, n_estimators=100, bootstrap=True 
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Nutrition 

 KNN - n_neighbors=3, p=1, weights='distance' 

 DT - max_depth=12, criterion=’gini’ 

 RF - max_features=8, n_estimators=100, bootstrap=False 
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APPENDIX C 

ADDITIONAL RESULTS 

 This section offers general results and statistics from testing that are not defined 

within the predictions section. First, additional results are given for COVID-19 cases and 

deaths, then for nutrition. 

C.1  COVID-19 

C.1.1 Classifiers 

Table C.1 shows the number of times each classifier was used for cases and deaths, 

divided by T1 and T3 decisions. For cases, RF was applied the most at T1 and the most at 

T3. For deaths, RF was applied the most at T1 and T3. These results show that the 

ensemble method was most frequently chosen in both COVID-19 settings.  

 

Table C.1: Classifiers utilized at T1 and T3 decisions for COVID-19 cases and deaths. 

 

Table C.2 shows the accuracies of each classifier, for T1 and T3. For both cases and 

deaths, there is an increase in accuracy, precision, recall, and F1 score from T1 to T3. The 

accuracy difference for cases is larger than for deaths, meaning cases should have higher 

levels of hindsight bias. This is supported by the evidence in section 1 of the results 

chapter.  

KNN RF DT

T1 1520 2160 480

T3 168 1545 361

T1 0 2640 1520

T3 179 1558 351

Classifier counts

Cases

Deaths
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 Table C.2: Classifier accuracies at T1 and T3 for COVID-19 cases and deaths. 

C.1.2 Decisions made at T1 and T3 

 As explained in the predictions section, hindsight bias is shown when decisions 

change. Here the amount of decisions (either increase or decrease) are given at T1 and T3 

in figure C.1. For cases, there are more decisions of increase at T3 than at T1. Deaths show 

the same trend as cases between T1 and T3.  

Figure C.1: Decisions made at T1 and T3 for COVID-19. a) shows more instances of 
decrease for cases at T1, b) shows more instances of increase for cases at T3, c) and d) 

show the same for deaths as cases. 
 

Accuracy Precision Recall F1

mean 0.9886 0.9940 0.9876 0.9897

std 0.0373 0.0299 0.0539 0.0348

mean 0.9975 0.9984 0.9964 0.9972

std 0.0109 0.0107 0.0207 0.0123

mean 0.9908 0.9904 0.9923 0.9904

std 0.0291 0.0414 0.0385 0.0308

mean 0.9969 0.9980 0.9958 0.9967

std 0.0130 0.0141 0.0215 0.0136

Cases

T1

T3

Deaths

T1

T3
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C.1.3 Similar decisions between T1 and T3 

In comparing similar decisions, there are more instances of similar decisions 

between T1 and T3 for cases than for deaths, which is supported by the evidence in the 

results chapter. 

Figure C.2: Similar decisions between T1 and T3 for COVID-19. a) shows the results for 
cases, b) shows the results for deaths, with more different decisions than cases. 

 

C.1.4 Recall and Reconstruction value counts 

 Since recall and reconstruction were determined randomly, not dependent on any 

source of impairment, the number of times for each deliberation method should be about 

equal. The counts of each in figure C.3 show this to occur. 

Figure C.3: Recall or Reconstruction for COVID-19 a) cases and b) deaths. 
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C.1.5 HBC levels 

From the HBC equation, each test instance was grouped into either high or low 

categories of HBC, according to distribution in each scenario. The threshold for cases is 

0.194 and is 0.199 for deaths. There are more instances of high HBC for deaths than for 

cases. 

Figure C.4: HBC levels between T1 and T3 of COVID-19 a) cases and b) deaths, with more 
high changes than cases. 

 

C.2  Nutrition 

C.2.1 Classifiers 

Table C.3 shows the number of times each classifier was used in the nutrition 

results, divided by T1 and T3 decisions. These results show that the ensemble method 

performed the best so was most frequently chosen in both COVID-19 settings.  

 

Table C.3: Classifiers utilized at T1 and T3 decisions for nutrition. 

Table C.4 shows the accuracies of each classifier, for both T1 and T3. Nutrition 

results show accuracy, precision, recall and F1 score increase from T1 to T3. This is 

supported by the evidence in section 1 of the results chapter.  

KNN RF DT

T1 0 3774 1126

T3 0 1944 506

Classifier counts

Nutrit ion
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Table C.4: Classifier accuracies at T1 and T3 for nutrition. 

C.2.2 Decisions made at T1 and T3 

 As explained in the predictions section, hindsight bias is shown when decisions 

change. Here the amount of decisions (either healthy or unhealthy) are given at T1 and T3 

in figure C.5. For nutrition, there are only 70 more instances of healthy chosen at T3 than 

T1. Since there is not a significant difference in amounts of decisions but we know nutrition 

is associated with more hindsight bias than COVID-19, these results are attributed to the 

ratio of decisions right at T1, but made on the wrong instances. 

Figure C.5: Decisions made at T1 and T3 for nutrition. a) shows more instances of healthy 
decisions at T1, b) shows more instances of healthy decisions at T3, only slightly increasing 

from T1. 
 
 
 
 
 
 
 
 
 

Accuracy Precision Recall F1

mean 0.9973 0.9985 0.9969 0.9977

std 0.0028 0.0027 0.0036 0.0024

mean 0.9985 0.9980 0.9981 0.9987

std 0.0012 0.0141 0.0017 0.0011

Nutrit ion

T1

T3
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C.2.3 Similar decisions between T1 and T3 

In comparing similar decisions, there are more instances of similar decisions than 

different between T1 and T3 for nutrition. 

Figure C.6: Similar decisions between T1 and T3 for nutrition, with more same decisions 
than different. 

 

C.2.4 Recall and Reconstruction value counts 

 Since recall and reconstruction were determined randomly, not dependent on any 

source of impairment, the number of times for each deliberation method should be about 

equal. The counts of each in figure C.7 show this to occur. 

Figure C.7: Recall or Reconstruction for nutrition. 
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C.2.5 HBC levels 

From the HBC equation, each test instance was grouped into either high or low 

categories of HBC, according to its distribution. The threshold for nutrition is 5.68. There 

are more instances of low change than high. 

Figure C.8: HBC levels between T1 and T3 of nutrition. 

 


