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ABSTRACT 

Combining multiple pure breeds or admixed breeds into one evaluation can be detrimental if the 

accuracy of prediction for one is lower than within-breed. Prediction accuracy was compared 

when considering SNP effects as different across breeds (non-shared), or the same in all (shared) 

for 5 simulated breeds. The non-shared approach prevented changes in accuracy, while the 

shared method only maintained accuracy when the SNP density was high and effective 

population size was large. Imputation accuracy for crossbred animals differs depending on 

reference populations. Different reference populations (crossbreds, Jersey, Holstein, or all 

combined) for the imputation of Holstein-Jersey crossbred genotypes were compared. The best 

results were achieved with a crossbred reference population. The accuracy and inflation of 

indirect genomic predictions (IP) for milk yield were evaluated for Holstein-Jersey crossbred 

animals. Different reference populations were used to calculate SNP effects – ~80k Holstein 

(HO), ~40k Jersey (JE), ~22k crossbreds (CROSS), Holstein and Jersey combined (JE_HO), or 

equal proportions of each pure breed and crossbred animals (MIX). While JE, CROSS, and 

JE_HO gave the same accuracy (0.50), HO and MIX were slightly lower (0.47 and 0.46). An 

additional method that used breed proportion in combination with SNP effects based on pure 



breeds, had the lowest accuracy (0.32). Inflation was best when using the MIX scenario (1.00), 

and worst when using HO (0.55). Diversity within 20,990 US Holstein cattle was evaluated by 

using k-means clustering on the genomic relationship matrix. Each of the 5 clusters were traced 

back for 10 generations - G0 (oldest) to G10 (youngest) to form 5 families (F1 to F5). Allele 

frequency changes over time was observed for specific SNP based on different criteria – key 

genes of known importance, markers associated with time, a population diversity parameter (Fst), 

markers that changed the most in the whole population, and markers that have changed 

differently across families (based on greatest variance and range). Non-parallel changes were 

observed across families, showing genetic redundancy and divergent selection. The Replicate 

Frequency Spectrum (RFS) was used to measure the similarity of change across families. Results 

show that populations have changed differently, supporting the presence of genetic redundancy. 
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CHAPTER 1 

INTRODUCTION 

Genomic selection is now applied in multiple species and breeds in various countries. 

The adoption of these methods has greatly improved the accuracy of selection. The improvement 

in accuracy is especially pronounced in young animals with no records. This has decreased the 

generation interval and increased selection intensity. All these factors combined has led to a 

substantial increase in the rate of genetic change and response to selection. Evaluations are 

typically performed within a single breed. However, multi-breed evaluations are not uncommon. 

Multi-breed evaluations are particularly appealing where numerically small breeds want to 

combine data with others to increase the size of their reference population, which is important for 

prediction accuracy. Chapter 3 investigates the accuracy of evaluations in a multi-breed context 

when treating SNP markers as shared, or non-shared among breeds.  

Across-breed predictions, where the marker effects calculated using one population are 

used to indirectly predict genetic merit of animals from a different breed or country, is also 

desirable to expand benefits of genomic selection to even more sectors of the industry. Across-

breed predictions are explored in chapters 3 and 5 in both simulated and real data. 

Crossbred dairy animals have generally been excluded from evaluations. The increase in 

popularity of crossbreeding in dairy has made it crucial to determine how to include these 

animals in evaluations. Many crossbred animal genotypes contain a small number of SNP 

markers (such as 3K). In general, the genotypes of purebred animals are imputed from the true 

SNP chip, to a desired number of markers. Imputation accuracy depends on the size of the 
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training population, as well as the relationship between said population and the target population. 

Crossbreeding results in a new population that is different from component pure breeds, thus 

chapter 4 investigated the accuracy of imputation when using purebred or crossbred animals in 

the training population. Chapter 5 explores how breeding values can be estimated for crossbred 

animals using marker effects based on different populations. 

When few animals are intensively used within a single breed, inbreeding will increase. 

This leads to inbreeding depression and reduced genetic diversity. Genetic diversity is important 

for continuous genetic improvement and adaptation to changing environments. Chapter 6 

investigates whether the US Holstein population can be divided into genetically more distinct 

sub-populations based only on the genomic relationship matrix. The chapter further delves into 

these different groups, how they have changed, and how it can influence breeding values. 
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CHAPTER 2 

LITERATURE REVIEW 

The accuracy of genomic predictions is highly influenced by the reference population. 

The size of the reference population is a crucial contributor (Hayes and Goddard, 2008). This is a 

challenge for numerically small breeds that do not have adequate resources. A multi-breed 

evaluation is a desirable option if these breeds could benefit from the reference population of 

another (Swan et al., 2014) without disadvantaging the other breeds. Although the importance of 

a large reference population cannot be overstated, it is only one requirement for the successful 

application of genomic selection. The relatedness between the reference and validation 

populations is important (Clark et al., 2012), as well as the relatedness of animals within the 

reference population (Pszczola et al., 2012). In fact, having a smaller reference population that is 

more related to the target population can be more advantageous than including more, less related 

individuals (Neyhart et al., 2017, Van den Berg et al., 2020). Accuracies may be low for specific 

herds if they do not have animals in the reference population (Hayes et al., 2018). The inclusion, 

or balance of sexes used in the reference population can further influence its accuracy (Lourenco 

et al., 2015, Van den Berg et al., 2020). Accuracy decays as the generational distance between 

reference and target populations increases (Hidalgo et al., 2021, Hollifield et al., 2021). 

Therefore, the reference population must be updated continuously to maintain optimum 

accuracy. 

Genomic evaluations essentially work by capturing independent chromosome segments 

(ICS) (Daetwyler et al., 2010). The number of ICS (Me) is related to the effective population size 

(Me=Ne4L where Ne is the effective population size and L is the chromosome length in 



4 

 

Morgans) (Stam, 1980). More homogenous breeds will have fewer, longer ICS. Therefore, 

accuracies will be higher within breeds that show greater genetic similarities among animals.  

MULTI-BREED EVALUATIONS 

The number of markers required to successfully apply genomic selection must be enough 

to capture the ICS (Pocrnic et al., 2018). Multi-breed evaluations include animals from multiple 

breeds or populations. These will have many more Me, and consequently more markers are 

expected to be required to achieve the same accuracies as within-breed evaluations (Rahimi et 

al., 2020, Marjanovic and Calus, 2021).   

In general, multi-breed studies have shown small changes in accuracy compared to 

within-breed, as long as the target breed is included in the reference population and marker 

density is high enough. Results have been inconsistent, not only across studies, but across traits 

and methods (Erbe et al., 2012, Kemper et al., 2015, Calus et al., 2018, Van den Berg et al., 

2019). Overall, small or no differences have been observed with approximately 50k markers or 

more, even when increasing markers to over 700K (Su et al., 2012, Raymond et al., 2018a). 

When improvements did occur in multi-breed studies, the numerically smaller breed tended to 

benefit more (Olson et al., 2012, Hozé et al., 2014, Jónás et al., 2017). However, when the 

largest breed is considerably larger than the smaller breed, the larger one will dominate and lead 

to lower accuracies for the smallest breeds (Van den Berg et al., 2020). In a study with three 

tropical beef breeds, Hayes et al. (2018) compared the scenario where all breeds and herds were 

represented in the reference population, to the scenario where each herd in turn was removed 

from the reference population and used for validation. For the first scenario, increasing from 28K 

to 728K markers resulted in small improvements in accuracy for female fertility, and including 

multiple breeds in the reference population did not result in higher accuracies than within-breed 
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predictions. For the second scenario, even within-breed accuracies approached zero. The 

accuracy increased substantially when marker density was increased, BayesR was applied, and a 

multi-breed evaluation was used. 

Approaches for multi-breed evaluations include a simple, joint relationship matrix (Pryce 

et al., 2011, Erbe et al., 2012, Olson et al., 2012), a genomic relationship matrix using breed-wise 

allele frequencies (Makgahlela et al., 2014), accounting for linkage disequilibrium (LD) (Zhou et 

al., 2014, Rahimi et al., 2020), using two genomic matrices of which one contains the most 

important markers and the second the remaining markers (Raymond et al., 2018b, Raymond et 

al., 2020), or treating breeds as different traits (Olson et al., 2012, Calus et al., 2018, Van den 

Berg et al., 2020). Accounting for breed-wise allele frequencies did not lead to improvement in 

accuracies. Treating breeds as different, but correlated traits, generally delivered better results 

than a single joint matrix, but not necessarily a remarkable difference. A disadvantage of this 

method, is that animals must be classified into a specific pure breed. Thus, crossbred animals 

cannot be included. While Rahimi et al. (2020) found improvements in accuracy when 

accounting for LD, Zhou et al. (2014) found that accounting for LD phasing did not improve 

accuracy beyond what could be achieved by treating the breeds as different traits.  

Wientjes et al. (2016) successfully derived an equation to predict the accuracy of 

genomic values when combining breeds. Results showed that treating the breeds as different 

traits in a multi-trait evaluation will deliver similar accuracies when the genetic correlation 

between populations is 1, and better than within-breed evaluations if the correlation deviates 

from 1. Input parameters included the number of individuals, heritability from each of the 

populations in the reference population, the genetic correlation between populations, the 

effective number of chromosome segments across target and reference populations, and the 
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proportion of the genetic variance in the predicted population captured by the markers in each of 

the reference populations. 

GENETIC CORRELATION BETWEEN POPULATIONS 

The additive genetic correlation between populations are typically estimated by treating 

the same phenotype in the populations as separate, correlated traits in a multi-trait model. The 

genomic restricted maximum likelihood (GREML) or Bayesian methods can be used to estimate 

variance components, from which the correlation can be calculated (Karoui et al., 2012). 

Wientjes et al. (2017) derived a method of compiling the genomic relationship matrix to 

accurately estimate variance components. This matrix takes the allele frequencies of each 

population into consideration as follows: 

𝑮 =  

[
 
 
 
 

𝒁1𝒁1
′

∑2𝑝1𝑗(1 − 𝑝1𝑗)

𝒁1𝒁2
′

√∑2𝑝1𝑗(1 − 𝑝1𝑗)√∑2𝑝2𝑗(1 − 𝑝2𝑗)

𝒁2𝒁1
′

√∑2𝑝1𝑗(1 − 𝑝1𝑗)√∑2𝑝2𝑗(1 − 𝑝2𝑗)

𝒁2𝒁2
′

∑2𝑝2𝑗(1 − 𝑝2𝑗) ]
 
 
 
 

 

where Z1 and Z2 are centered genotypes within populations as gijm – 2pjm, where gijm is 

the allele count of individual i, from population m at locus j, and p1j and p2j are the allele 

frequencies of marker j in populations 1 and 2. 

Another method to determine the correlation between two populations was introduced by 

Duenk et al. (2020) and applied between pure- and crossbred populations in a later study (Duenk 

et al., 2021). This correlates the additive genetic values of animals when expressed in the genetic 

background of different populations. The additive genetic value of individual i for the trait 

expressed in the population that i belongs to (here population 1) is: 

𝒗𝑖
𝑃1 = 𝒉𝑎,𝑗

′ 𝜶𝑃1 
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where vi
P1 is the additive value of animal i when expressed in population 1, ha,j is a 

column vector of additive genotypes (measured as allele counts, minus the mean allele count in 

the population) of individual i at the marker, and αP1 is a column vector of average effects at 

those markers in population 1. The additive genetic value of individual i for population 2 is: 

𝒗𝑖
𝑃2 = 𝒉𝑎,𝑗

′ 𝜶𝑃2 

where vi
P2 is the additive value of animal i when expressed in population 2, αP2 is a 

column vector of average effects in population 2. The correlation between these two additive 

genetic values is the genetic correlation between the populations. Essentially, it is the correlation 

between indirect genomic predictions (IGP) when using SNP effects based on one population, 

and the IGP of the same animals when using SNP effects based on the other population. 

ACROSS-BREED EVALUATIONS 

While multi-breed evaluations refer to a scenario where all breeds are represented in the 

reference population, across-breed evaluations refer to scenarios where the target breed is not 

included. Thus, information from one breed, or a collection of breeds, is used to predict the 

genetic merit of animals in a different breed. Across-breed evaluations would be highly desirable 

if it improves the accuracy of prediction in breeds that do not have enough genotypes to have 

their own reliable reference population. The same applies for within-breed but across-country 

populations. Additionally, it can also be advantageous to large breeds with successfully 

established genomic evaluations if they want to incorporate a novel trait that is well recorded in a 

different breed. 

In contrast to multi-breed evaluations, across-breed genomic prediction accuracies have 

consistently been poor, although the extent of accuracy varies (Olson et al., 2012, Van den Berg 

et al., 2016a, Raymond et al., 2018a, Karaman et al., 2021). Within-breed but across country has 
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been shown to be more successful than across-breed, but results were not compared to within-

breed within-in country (Raymond et al., 2018a). Raymond et al. (2018b) managed to apply 

across-breed predictions more successfully than using a traditional G-matrix by using multiple 

genomic relationship matrices that allow more weight on pre-selected significant markers. It also 

accounted for genetic correlations between breeds as described by Wientjes et al. (2017). Breeds 

that were not highly correlated to each other did not benefit from this approach. Although better 

than a single traditional G-matrix, accuracies were still much lower than what was achieved 

using within-breed or multi-breed evaluations. 

A recent study by Meuwissen et al. (2021) concluded that the accuracy from their across-

breed evaluation was higher for the Jersey breed than a within-breed evaluation, and similar for 

Holstein. At first, this may seem to be in stark contrast to all previous research. However, the 

terminology used in their study is different. The reference population included both Holstein and 

Jersey animals. Thus, based on our definition, this is a multi-breed scenario for the Jersey and 

Holstein. These results correspond to previous research where small differences are achieved for 

participating breeds, and the smaller breed tended to benefit more when any are found. When 

Australian Red was used as validation population (thus, a true across-breed scenario), accuracies 

were much lower than that of the other breeds but not close to zero (0.17 to 0.34). No 

comparison was made to a within-breed Australian Red evaluation. Bayesian methods delivered 

better results, while increasing markers from 600K to WGS marginally improved the accuracy of 

prediction for the Australian Red. 
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REASONS FOR LACK OF IMPROVEMENT IN ACCURACY OF MULTI- AND ACROSS-

BREED EVALUATIONS 

Capturing LD is considerably more important for the accuracy of genomic predictions 

compared to capturing only Mendelian sampling (Habier et al., 2013, Ling et al., 2021). Due to 

random recombination during meiosis, the LD will not persist across breeds, even if they 

originated from the same historical population. An early simulation study by De Roos et al. 

(2009) showed promising potential for multi-breed evaluations to increase the accuracy of 

prediction for the participating breeds as long as marker density is high enough to capture LD in 

all sub-populations. However, this has not been achieved in real data, even with whole-genome 

sequencing. In fact, having too many markers have a diluting effect on accuracy (Raymond et al., 

2018a). However, when only markers near the QTL are used, prediction accuracies of across-

breed evaluations can be improved compared to using all markers on the 50K chip, or randomly 

selected markers, but will still be lower than within-breed evaluations (Erbe et al., 2012, Van den 

Berg et al., 2016a). Considerable improvements over sequence data were achieved by using as 

few as 133 significant markers (Raymond et al., 2018a).  

Even if LD is fully captured across the populations, QTL properties are important factors 

affecting the accuracy of selection. The same QTL may have different substitution effects in 

different populations (Thaller et al., 2003). The predominant factors affecting the correlation of 

substitution effects across populations are the genetic relatedness between populations, the 

distribution of allele frequencies at QTL, and various non-additive genetic factors such as 

dominance, gene-by-gene interactions (epistasis), and genotype by environment interactions (G x 

E) (Duenk et al., 2020, Legarra et al., 2021). A simulation study by Duenk et al. (2020) showed 
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that additive genetic correlations between breeds, or populations, below 0.80 are not due to 

dominance alone. Realistic levels of epistasis decreased this correlation down to 0.45.  

When the number of QTL affecting the trait is low (and thus effect size is larger), across-

breed evaluations will be more accurate (Van den Berg et al., 2015). When the number of QTL is 

lower than the number of independent chromosome segments (Me), Bayesian variable selection 

models are expected to perform better than GBLUP models (Van den Berg et al., 2015). The 

minor allele frequency (MAF) of QTL also affects the accuracy of multi-breed evaluations, with 

accuracies of both within- and multi-breed evaluations decreasing as MAF decreases (Wientjes 

et al., 2015). This is especially true if the QTL has a large effect. Commercial SNP chips tend to 

include markers with higher MAF to ensure that markers segregate in a variety of populations 

(Matukumalli et al., 2009). Many causative QTL may not segregate in all breeds in a multi-breed 

evaluation (Raven et al., 2014). The greatest potential of sequence data is therefore the ability to 

capture these low MAF markers and use only prioritized markers in multi- and across-breed 

evaluation. This has been shown to be more accurate than using all markers (Erbe et al., 2012, 

Van den Berg et al., 2016a, Raymond et al., 2018a). Imputation errors may hinder this process by 

not capturing causative QTL, nor markers in close LD with these QTL. The mapping of QTL can 

be improved by using multi-breed populations, as LD only persists over short regions across 

breeds, and more ICS are present (Raven et al., 2014, Kemper et al., 2015, Van den Berg et al., 

2016b). 

CROSSBREED EVALUATIONS 

Although across-breed evaluations have been shown to be unsuccessful, including 

crossbred animals to the purebred reference population has the potential to improve the accuracy 

of genomic predictions of the component pure breed not included in the reference population. 
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However, this accuracy is lower than within-breed (Toosi et al. 2010). This was shown in a study 

by Moghaddar et al. (2014) using genotypes from purebred Merino sheep and Merino crosses – 

Merino crossed with either Border Leicester, Poll Dorset, or White Suffolk. When the crossbreds 

were used as a reference population, the accuracy of genomic predictions for the purebreds was 

higher than an across-breed scenario (using Merino to predict the other breed). Depending on 

trait, the accuracy of prediction for the Merino breed was highest when using a reference 

population containing only Merino, or predominantly Merino (>70%). The accuracy of 

prediction for the crossbred animals was not tested. 

Combining crossbred and purebred genotypes has been shown to increase the accuracy of 

prediction for crossbred animals, both in real pig populations and simulated data (Lourenco et 

al., 2016). This combination might not improve the accuracy of the purebred pigs, as most of the 

genomic information is already captured by the purebred animals (Pocrnic et al., 2019). 

However, in a recent study that simulated a 3-rotational dairy cross, Karaman et al. (2021) found 

that the accuracy of purebred predictions can be improved with the inclusion of crossbred 

animals, especially when the breed of origin of alleles are accounted for. Additionally, in pig 

populations, it has been shown that using crossbred genotypes instead of purebred genotypes can 

be more advantageous if the focus is on crossbred performance (as opposed to purebred 

performance), and the correlation between crossbred- and purebred performance is not high (Van 

Grevenhof and Van Der Werf, 2015). The same conclusion was reached in a recent simulation 

study by González-Diéguez et al. (2020).  

Crossbreeding is a central part of the pig and poultry breeding. While many pure breeds 

or lines are maintained in breeding programs of nucleus herds, the animal marketed to farmers 

are crossbred animals that are expected to perform in a commercial environment. This adds the 
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additional complexity of genotype by environment interactions (G x E) and non-additive genetic 

factors, such as heterosis and dominance. The same trait measured in purebred and crossbred 

animals can be considered as different, but correlated traits (Wei and van der Werf, 1994, Wei 

and van der Werf, 1995). The crossbred model that includes both pure and crossbred animals 

was proposed by Wei and van der Werf (1994) and extended by Christensen et al. (2014) to 

accommodate genotypes of both pure- and crossbred animals. 

In the beef industry, crossbreeding is often applied to exploit heterosis in rotational and 

terminal crosses, to use breed complementarity for the creation of synthetic breeds, or to 

transform a herd from one breed to another (upgrading). Conversely, crossbreeding was 

relatively uncommon in dairy cattle, with New Zealand being an exception. According to the 

New Zealand Dairy Statistics, almost 50% of registered dairy cattle during the period 2019 to 

2020 were crossbreds. Common reasons breeders want these crossbreds are hybrid vigor, and the 

combination of desirable traits from component breeds (LIC and DairyNZ, 2020). The 

improvement in fertility, health, and longevity could offset a loss of production that producers 

may incur by crossbreeding. (Buckley et al., 2014). Crossbreeding elsewhere, including the US, 

has become increasingly popular. Reasons include the improvement of fertility and health, 

changes in consumer demand for different milk products, and the promotion of additional 

European breeds (VanRaden et al., 2020). An analysis of trends in the breed composition of US 

Dairy Herd Improvement herds showed that the percentage of dairy cattle reported as crossbred 

increased from 0.1% to 5.3% from 1990 to 2018 (Guinan et al., 2019). By May 2019, the total 

number of genotyped dairy cattle in the US exceeded 3 million, of which about 2% were 

crossbred cattle (VanRaden et al., 2020). 
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Adding crossbred animals in a traditional pedigree BLUP evaluation improved accuracy 

of pure- and crossbreds since more phenotypic information could contribute to animals’ breeding 

values through pedigree connections (VanRaden et al., 2007). However, realized relationships 

captured by the genomic relationship matrix connects all animals to each other. Genomic 

evaluations in US dairy initially excluded genotypes of crossbred animals. This was because the 

marker effects estimated within a pure breed may not be appropriate, parent averages are 

incomplete or incorrect if the breeding value of both parents are not on the same scale, and the 

imputation accuracy of crossbred genotypes was low (VanRaden et al., 2020). In 2019, the 

national genomic evaluation in the US extended services to provide genomic values for 

crossbred animals (Wiggans et al., 2019). VanRaden et al. (2020) successfully estimated 

breeding values by using breed proportions based on genomic information, and breed-specific 

SNP effects. Karaman et al. (2021) used genotypes of three dairy breeds for the simulation of a 

3-way cross, and breed of origin instead of breed proportion. Combining all breeds and crosses 

in the same evaluation gave higher accuracies than indirect predictions for crossbred selection 

candidates with breed specific SNP effects and breed origin of alleles. However, a multibreed 

evaluation that included crossbreds in the reference population and accounted for breed origin of 

allele, gave the highest accuracies. 

A dairy crossbred system that has become a hot topic over the last decade, is beef-on-

dairy. Heifers that are not preferred for the next generation of replacements, can be mated to beef 

bulls. This will allow the female to have a lactation while producing a calf more suited to beef 

production. This increases the income generated from the sale of surplus calves. A dairy-beef 

index was derived to enable breeders in Ireland to select beef bulls that will maximize the value 

of the calves while maximizing profit from the lactating female (Berry et al., 2019). 



14 

 

Large populations containing multiple different breeds and crosses creates computational 

challenges. Genomic evaluations require the inverse of the genomic relationship matrix (G). 

Unlike the traditional relationship matrix (A), this matrix only contains non-zero elements and 

must be inverted directly. Once the matrix becomes large, it can be impossible to invert directly 

with currently available computational resources. Even if it can be inverted, it could take more 

time than what is practically acceptable for routine evaluations. Two approaches have been 

developed to overcome this challenge. 

A commonly used method to approximate this inverse, is the Algorithm for Proven and 

Young (APY) (Misztal et al., 2014). This requires the partitioning of the G into blocks 

corresponding to core (c) and non-core (n) animals: 

𝑮 =  [
𝑮𝑐𝑐 𝑮𝑐𝑛

𝑮𝑛𝑐 𝑮𝑛𝑛
] 

The inverse with APY was then obtained with: 

𝑮𝐴𝑃𝑌
−1 = [𝑮𝑐𝑐

−1 0
0 0

] + [−𝑮𝑐𝑐
−1 𝑮𝑐𝑛

𝐈
] 𝑴𝑛𝑛

−1 [−𝑮𝑛𝑐𝑮𝑐𝑐
−1 𝐈] 

where Mnn = diag(mnn,i) = diag(gii –gicGcc
-1gci), gii is the diagonal element of Gnn for non-

core animal i, and gic is a vector of the genomic relationship of non-core animal i with all core 

animals. The selection of core animals is important. While initially the core animals were 

recommended to be only proven animals, it has been shown that randomly selecting the core 

animals is better (Fragomeni et al., 2015, Bradford et al., 2017) as long as enough animals are 

included in the core. A study on multiple sheep breeds in New Zealand also showed that a 

randomly selected core was best, both in terms of accuracy and bias. However, it was still 

important for all breeds to be part of the core (Nilforooshan and Lee, 2019). The size of the core 

should at least be equal to the number of eigenvalues that explain 98% of the variation in the G 
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matrix (Pocrnic et al., 2016a, Pocrnic et al., 2016b). This may be only a small fraction of 

animals, especially when including only one breed.  

However, the dimensionality will be higher for populations that include many breeds. 

The Me would be much higher and LD will be poorer. If the number of eigenvalues that explain 

98% of the variance is too large, even the inversion of only core animals would not be possible, 

or require too much time. Mäntysaari et al. (2017) developed a different method of inverting G 

by using a T matrix. This obtains the exact inverse instead of an approximation while greatly 

reducing computational cost. It was successfully applied on a large Irish population with 41 

different breeds (pure and crosses). 

WITHIN-BREED POPULATIONS 

Genomic evaluations are typically applied within-breed. In contrast to multi-breed 

evaluations, within-breed populations are more homogeneous, with greater levels of inbreeding. 

Fewer, larger Me are expected to be present and Ne will be lower. Thus, the number of markers 

required to capture LD is lower. Since capturing LD is the main component to the accuracy of 

genomic evaluations (Habier et al., 2013), this is a great advantage. However, the lack of genetic 

diversity can be detrimental for long term improvement. 

There can still be distinct sub-populations within a breed, especially when they have been 

separated for many generations. The founder effect can occur from a bottleneck where a subset 

of a population is isolated from another (Mayr, 1954). This is the case when animals of an 

existing breed are imported to establish a local population in a different country. This founder 

population can undergo considerable genetic differentiation from the population of origin due to 

reduced genetic variation, changes in allele frequencies, and genetic drift. In fact, the resulting 

genetic changes over time can even lead to speciation (Templeton, 1980). Additionally, breeding 
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objectives may differ between countries, leading to selection pressure on different subsets of 

genes. Upgrading mating strategies further incorporate different genetics into the new local 

population. Therefore, prediction accuracy may be low for some, or all groups, if animals of all 

countries are combined in the same population.  

Genetic variance is expected to reduce within a population over generations of selection. 

This is referred to as the Bulmer effect (Bulmer, 1971). Strong selection on traits that are highly 

heritable, will lead to better LD and a greater reduction in genetic variance (Walsh and Lynch, 

2018). This was observed in pigs where the reduction in heritability was greater for growth traits 

than fitness traits (Hidalgo et al., 2021). While strong selection can produce a desirable uniform 

product, the reduction in genetic variation can be concerning. A lack in diversity will reduce a 

population’s ability to adapt to change (Markert et al., 2010), which is a growing concern in the 

face of climate change and everchanging consumer preferences. Increased inbreeding has been 

shown to lead to inbreeding depression in dairy populations for both production and reproduction 

(Bjelland et al., 2013). Identifying and maintaining genetic diversity within a population is 

important. 

Animals that have the same genetic merit and similar phenotype can still differ 

genetically. Genetic redundancy produces more genetic variants (Nowak et al., 1997) than is 

needed to express the same phenotype. Most traits of economic importance are highly polygenic, 

with each gene having small contributions to the phenotype, hence the infinitesimal model 

(Fisher, 1918, Bulmer, 1971, Turelli, 2017). The breeding value itself is simply the sum of the 

contributions of all genes/markers. The number of possible combinations of genes that still result 

in the same sum, is infinite. Different sub-populations in the same breed can respond differently 

to achieve the same breeding objective, showing unparallel changes in allele frequencies over 
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time (Barghi et al., 2019). Additionally, additive genetic variance is not the only kind of genetic 

variance. Pleiotropy, epistasis, and dominance can further allow genetic diversity. Liu et al. 

(2019) found that up to 70% of variance can be attributed to trans-chromosomal effects through 

peripheral genes that impact the expression of core genes. In the US Holstein population, the 

percentage of epistatic effects that were inter-chromosomal varied from 1.9% to 84.2%, 

depending on trait (Prakapenka et al., 2021). This is encouraging for continuous improvement 

through selection. 

CONCLUSION 

The accuracy of genomic predictions is predominantly dependent on the ability of the 

markers to capture LD, the size of the reference population, and the relatedness between the 

reference and validation population. Multi-breed and across-breed genomic predictions are not 

straightforward. Linkage disequilibrium does not persist across populations and QTL properties 

differ. More diverse populations, such as a multi-breed or crossbred population, require more 

markers to capture LD. Even when LD is captured, other non-genetic factors can reduce the 

ability to predict across breeds. When all breeds are represented in the reference population, the 

accuracy of prediction does not vary greatly from those obtained from separate within-breed 

evaluation. When a pure breed is not included in the reference population, but crossbred animals 

that contain this breed are, the accuracy of prediction is lower than what would have been 

achieved within-breed, but higher than what would be achieved in across-breed predictions. 

Changes are inconsistent across breeds, traits, and methods. When benefits were present, it was 

usually for the smaller breed. Even within-breed, distinct sub-populations can be present, 

especially across countries. Genetic redundancy, epistasis, and pleiotropy help maintain 

substantial genetic variation within a breed, even between animals with the same breeding value. 
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ABSTRACT 

Combining breeds in a multi-breed evaluation can have a negative impact on prediction 

accuracy, especially if SNP effects differ among breeds. The aim of this study was to evaluate the 

use of a multi-breed genomic relationship matrix (G), where SNP effects are considered to be 

unique to each breed, i.e., non-shared. This multi-breed G was created by treating SNP of different 

breeds as if they were on non-overlapping positions on the chromosome although in reality they 

were not. This simple setup may avoid spurious IBS relationships between breeds and 

automatically considers breed-specific allele frequencies. This scenario was contrasted to a regular 

multi-breed evaluation where all SNP were shared, i.e., the same position, and to single-breed 

evaluations. Different SNP densities (9k and 45k), and different effective population sizes (Ne) 

were tested. Five breeds mimicking recent beef cattle populations that diverged from the same 

historical population were simulated using different selection criteria. It was assumed that QTL 

effects were the same over all breeds. For the recent population, generations 1 to 9 had 

approximately half of the animals genotyped, whereas all animals in generation 10 were 

genotyped. Generation 10 animals were set for validation; therefore, each breed had a validation 

group. Analysis were performed using single-step GBLUP (ssGBLUP). Prediction accuracy was 

calculated as correlation between true (T) and genomic estimated (GE) BV. Accuracies of GEBV 

were lower for the larger Ne and low SNP density. All three evaluation scenarios using 45k 

resulted in similar accuracies, suggesting that the marker density is high enough to account for 

relationships and linkage disequilibrium with QTL. A shared multi-breed evaluation using 9k 

resulted in a decrease of accuracy of 0.08 for a smaller Ne and 0.12 for a larger Ne. This loss was 

mostly avoided when markers were treated as non-shared within the same G matrix. A G matrix 
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with non-shared SNP enables multi-breed evaluations without considerably changing accuracy, 

especially with limited information per breed. 

INTRODUCTION 

Genomic evaluations have become common in animal breeding due to the possibility of 

improving the rate of genetic gain (Schaeffer, 2006). Traditionally, evaluations are done within 

pure breeds. There is an interest in multi-breed evaluations in cattle and sheep where there are 

many breeds and crosses, as well as chickens and pigs with many lines. Combining breeds 

increases the training population, which can potentially enhance accuracy of genomic predictions 

(Hayes and Goddard, 2008) and is reasonably simple. It also allows the sharing of resources such 

as funding, specialists, and infrastructure, which is especially attractive and practical for small 

breeds or countries. This simplicity may come at the expense of accuracy for some or all breeds. 

Many studies have struggled to find an advantage of using multi-breed evaluations, sometimes 

obtaining a slightly increased accuracy but often unchanged or slightly decreased (Hayes et al., 

2009; Erbe et al., 2012; Olson et al., 2012; Makgahlela et al., 2014; Calus et al., 2018). 

The linkage disequilibrium (LD) between markers and QTL differs among breed and does 

not persist across breeds (De Roos et al., 2009). Capturing LD contributes more to the accuracy of 

prediction than tracking relationships through markers (Habier et al., 2013), making it essential to 

have dense enough markers to capture LD in diverse populations. This extra genotyping cost could 

defy the cost-saving strategies of sharing other resources. Avoiding a loss of accuracy with low 

density markers would be beneficial. 

The cause of persistent or non-persistent LD is due to independent chromosome segments 

(ICS). Genomic selection in the absence of QTL identification is based on the estimation of these 

segments (Goddard, 2009). Larger segments means that more markers will be in LD with the QTL 
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and therefor fewer SNP are required. The number of ICS (Me) is expected to be 4NeL, where Ne 

is the effective population size and L is the chromosome length (Stam, 1980). Populations with a 

smaller Ne will have fewer, larger ICS and therefore require fewer SNP markers to obtain the same 

accuracy as those with larger Ne (Pocrnic et al., 2018). Combining different breeds or lines 

together in a single evaluation should increase genetic diversity and Ne, requiring more SNP to 

trace all segments and avoid loss of accuracy. In fact, Pocrnic et al. (2019) showed that about 30% 

of the chromosome segments were independent between two different pig lines, which caused a 

reduction in prediction accuracy across the lines. 

Even when markers and QTL are in LD, the QTL and allele substitution effects can differ 

among breeds (Thaller et al., 2003). Differences in QTL minor allele frequencies (MAF) also 

affects accuracy of prediction (Wientjes et al., 2015) and differs in populations due to selection 

and genetic drift.  

The objective of this study was to evaluate the accuracy of multi-breed genomic prediction 

when using the same SNP effects for all breeds, and when obtaining breed-specific SNP effects by 

treating the markers as non-shared in populations with different Ne and genotyping density. 

MATERIALS AND METHODS 

Simulated data 

Five different breeds were simulated using QMSim (Sargolzaei and Schenkel, 2009) from a 

historical population that was randomly mated for 1,000 generations. The historic population 

started with 10,000 animals, decreased to 1,000 at generation 500 to create LD and reached 9,000 

animals at generation 1,000. Different number of founders using different selection criteria were 

selected from this population to create the breeds (i.e., recent populations), or distant lines. Each 

dam had only one progeny. 
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Within each breed, animals were randomly mated without artificial selection for 40 

generations after which half of the animals in the last generation were used to initiate the selected 

population. Selection based on high EBV for a single trait was applied for 10 generations using 

different mating designs and proportion of replacement males and females. Some breeds differed 

in their number of initial animals. This led to slightly different breed sizes, which created different 

effective population sizes (Ne). The trait heritability was 0.30 and phenotypes were from a normal 

distribution with a mean of 0 and variance of 1. Two simulations were done where one had double 

the number of initially selected animals compared to the other to create breeds with a larger Ne. 

The summary of parameters used for each breed are presented in Table 3.1. 

The genome was simulated assuming 29 chromosomes of varying length, resulting in a total 

genome length of 23 Morgans, with 1,000 QTL evenly distributed among them. The QTL effects 

were sampled from a Gamma distribution with a shape parameter of 0.4.  After quality control of 

genotypes, 45,000 segregating SNP with minor allele frequency > 0.05 were retained for analysis. 

There was a mutation rate for markers and QTLs of 2.5 x 10-5 per generation per locus. The QTL 

effects were assumed to be the same over all the breeds but the QTLs had different frequencies in 

each population. This caused a difference in variance explained for each breed. The largest QTL 

variance in generation 10 of each breed did not exceed 0.02. The average LD measured as the 

pooled square of the correlation between markers (R2) was between 0.14 and 0.18 within breed. 

Few QTL became fixed in the breeds, using a MAF of <0.001 as criteria.   

The genotyped animals consisted of all animals in generation 10, and 600 randomly selected 

animals from each previous 9 generations. The difference in the size of the 10th generation led to 

slightly different numbers of genotyped animals per breed (Table 1.1).  Two different SNP 
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densities were used in this study – 45k and a subset of 9k. The 9k SNP panel was created by 

selecting each 5th marker from the full 45k panel. 

The simulation was replicated four times and the entire process is visually explained in Fig 

3.1, including the total number of animals (genotyped or not) in the 10 generations that had 

undergone selection.  The different selection criteria for the breeds and the resulting number of 

animals and Ne in the data/pedigree and genotype file for both small and large Ne are presented in 

Table 3.1. A principle component analysis (PCA) based on 45k was done to visualize the 

separation between breeds. The Ne for each breed was calculated using the following formula by 

Wright (1931): 

𝑁𝑒𝑇 = 
4𝑁𝑚𝑁𝑓

𝑁𝑚 + 𝑁𝑓 
 

where 𝑁𝑚 and 𝑁𝑓 are the number of breeding males and females in each generation. This method 

assumes no selection (Table 3.1). Various other methods exist to calculate Ne.  

 

Model and Analyses 

A single-trait animal model was fitted for traditional pedigree-based and genomic 

evaluations: 

y = 1μ + Zu + e, 

where y is a vector of simulated phenotypes, μ is an overall mean, u is a vector of additive genetic 

effects, Z is an incidence matrix relating y to the effects in u, and e is a vector of random residuals.  

Single-step genomic BLUP (ssGBLUP) was used with BLUPF90 software (Misztal et al., 

2014) for analyses of all breeds, both separately and together to obtain genomic estimated breeding 

values (GEBV). Single-step GBLUP is simple to apply, avoids double counting, accounts for pre-

selection on Mendelian sampling, and allows the inclusion of genotyped and non-genotyped 
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animals in the same evaluation. In ssGBLUP the inverse of the pedigree relationship matrix (A-1), 

regularly used in BLUP, is replaced with the inverse of the realized relationship matrix (H-1) as 

demonstrated by Aguilar et al. (2010). This H-1 combines A-1 with the inverse of the genomic 

relationship matrix (G-1): 

𝐇−𝟏 = 𝐀−𝟏 + [
0 0

0 G-1 − A𝟐𝟐
−𝟏] 

In this case, G was obtained using the formula 𝐆 =
𝐌𝐌′

2 ∑pi (1−pi )
  where M is a centered matrix of 

marker content adjusted for allele frequencies and pi is the allele frequency for SNP i (VanRaden, 

2008). The pedigree-based relationship matrix between genotyped animals is referred to as A22. 

To reduce bias due to the different genetic level of genotyped and non-genotyped animals, G is 

tuned using the constant α, where α is 
1

𝑛2 (∑ ∑ 𝐀22(𝑖,𝑗)𝑗𝑖 − ∑ ∑ 𝐆(𝑖,𝑗))𝑗𝑖  (Vitezica et al., 2011) and 

n is the number of animals. To avoid singularity problems, G was multiplied by 0.95 and A22 by 

0.05 before combining them. 

For validation purposes, phenotypes of the validation animals (generation 10) were removed 

before estimating GEBV. The resulting GEBV of generation 10 were correlated to the true 

breeding value (TBV) to obtain the accuracy of prediction. A Pearson correlation was used and 

bias was estimated as the regression coefficient when regressing TBV over GEBV. 

The GEBVs were estimated by within- and multi-breed evaluations using 9k and 45k SNP 

markers. The multi-breed evaluations were done based on two different assumptions: a) animals 

from different breeds shared the same SNP effects (shared); b) animals from different breeds did 

not share the same SNP effects (non-shared). To achieve the first assumption, genotypes for 

animals from all breeds overlap and are stacked together prior to the evaluation. In the second 

assumption, SNP are considered non-overlapping. The SNP file is manipulated to achieve this. 
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The SNP of the same breed are in the same columns in the file. The SNP of different breeds appear 

in different columns in the SNP file to create a non-shared scenario. Breed A is treated as if it had 

SNP markers from position 1 to 45k (or 1 to 9k) and missing markers for the remaining 180k (or 

36k) SNP. Breed B is treated as if its markers start at position 45,001 to 90k (or 9,001 to 18k) with 

all other markers as missing. The same pattern continues for breeds C, D and E. This multiplies 

the number of columns in the SNP file by the number of breeds, even though all animals have SNP 

in the same physical position on the chromosome. Therefore, in the non-shared scenario, the newly 

created SNP file will have n x m markers, where n is the number of markers evaluated and m is 

the number of breeds. The treatment of the SNP file is graphically explained in Fig 3.2. The shared 

scenario results in a genomic relationship matrix in which all animals are related to each other (i.e., 

a dense matrix). The non-shared scenario results in a genomic relationship matrix where all 

animals within a breed are related, but animals from different breeds are not. This assumes a 

correlation of 0 between breeds. All missing SNP are ignored to calculate allele frequency, which 

allows each breed to be centered around its own frequencies. This is graphically explained in Fig 

3.3. 

An across-breed analyses was also performed to determine whether the breeds are 

genetically distant. If breeds are closely related, it would be expected that the direct genomic values 

(DGV) of one breed can be predicted based on SNP solutions obtained from another breed, with 

similar accuracy as in single-breed evaluations. For these analysis, SNP effects for one breed were 

computed based on GEBV using the POSTGSF90 software (Misztal et al., 2014) with the 

following formula:  

�̂� = λ𝐃𝐌′𝐆−1(GEBV)      
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where �̂� is a vector of estimated SNP effects, λ is the ratio of SNP to additive genetic variance, D 

is a diagonal matrix of weights (standardized variances) for SNP and M is a matrix of centered 

genotypes for each animal (VanRaden, 2008). Based on SNP effects, DGV for validation animals 

were calculated by PREDF90 (Misztal et al., 2014) as the sum of SNP effects weighted by the 

genotype content.   

In across-breed evaluations, the SNP effects estimated based on one breed were used to 

calculate DGV of its own validation population and that of the other breeds. For example, SNP 

effects estimated using only the training population of Breed A were used to calculate the DGV of 

the validation population of Breed A and then the validation populations of Breed B, Breed C, 

Breed D, and Breed E separately.  

Accuracy was computed as the Pearson correlation between TBV and GEBV or DGV, 

whereas bias was calculated as the regression coefficient when regressing TBV on GEBV. This 

shows the over- or under-dispersion of GEBV. 

RESULTS AND DISCUSSION 

The genetic distance across the breeds using 45k can be observed in the PCA plots. Fig 3.4 

is a 3-dimensional plot showing the first three principal components. Breed A and E showed an 

overlap although Breed E was more variable. This could be because Breed E underwent negative 

assortative mating but founders in generation 0 of these two breeds were selected using similar 

criteria.  The variance explained by the first five principal components averaged over replicates 

for the smaller Ne were 3.65%, 3.21%, 2.80%, 2.40% and 0.56%, respectively.  The values for the 

larger Ne were 2.38%, 2.08%, 1.84%, 1.50% and 0.39%, respectively. The number of eigenvalues 

explaining 98% (EIGEN98) of the genomic variation for each breed and all combined are 

presented in Table 3.2. Considerably more eigenvalues were needed to explain 98% of the genomic 
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variation in the combined evaluation, reflecting a more diverse population. The value is smaller 

than the sum of the required EIGEN98 for each individual breed, meaning the breeds are not 

completely independent. This was expected since they originated from the same historical 

population that had the same QTL effects.  

Very poor predictive ability was observed across-breed. Table 3.3 presents the within-

breed predictive ability in the diagonal and across-breed in the off-diagonal when using 45k in the 

smaller Ne scenario. The other SNP densities or Ne showed the same trend. The DGV within breed 

had an average accuracy of 0.70 ± 0.02 when using the scenario with a smaller Ne and 45k, and 

0.66 ± 0.01 with a larger Ne. Whereas, the average accuracy across breed was 0.11 ± 0.03 with a 

smaller Ne with 45k and 0.07 ± 0.02 with a larger Ne. This simulation results correspond to other 

studies (Hayes et al., 2009; Kizilkaya et al., 2010; Pryce et al., 2011; Olson et al., 2012; Kachman 

et al., 2013, Zhou et al. 2014) including Raymond et al. (2018), who found poor predictive ability 

in dairy cattle across-breed and across-country, even when using whole-genome sequence (WGS) 

information.  

The lack of predictive ability in across breed further showed that breeds were genetically 

different. Within more homogenous breeds, larger ICS will be present and SNP estimates will 

capture these segments (Goddard et al., 2011). Across breed, animals will share shorter segments, 

which is more difficult to estimate accurately. Therefore, information from one breed is limited 

for another even when the true SNP effects are the same (Khansefid et al. 2014). Correlations 

between estimated SNP effects of different breeds in this study were all lower than 0.05, regardless 

of the Ne. 

Table 3.4 shows accuracies for breeds A-E with a smaller Ne, 9k and 45k SNP information 

when each breed was considered separately, when all breeds shared SNP effects, and when the 
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SNP information for each breed was treated as non-shared. With 9k SNP, i.e., 80% of the SNP 

masked, the accuracies with analyses for each breed separately were on average 0.05 lower than 

with 45k SNP. The 9k SNP are not enough to fully account for the genomic information provided 

by larger SNP panels, although the difference was relatively small. In a study by Luan et al. (2009), 

masking 75% of SNP reduced the realized accuracy in Norwegian Red Cattle by 0.02. They 

postulated that this could partly be due to SNP markers clustering together with high LD in some 

regions of the chromosome.  

The accuracies with 45k SNP remained stable no matter how the evaluation was set up. 

Sharing SNP effects using 9k decreased the accuracy compared to single-breed analyses by an 

average of 0.08 when the Ne is smaller. Thus with a limited number of SNP, sharing SNP among 

several breeds is not ideal.  

Table 3.5 shows the results obtained with a larger Ne. All accuracies were lower than 

obtained in a smaller Ne, as expected from the increase of Me (Daetwyler et al., 2010; Pocrnic et 

al., 2016). The drop in accuracy from single-breed to shared SNP was 0.12 in the larger Ne, instead 

of 0.08. Sharing SNP comes with a larger accuracy penalty when the population is more diverse. 

Accuracies still remained stable when SNP were treated as non-shared, even with a drastically 

lower SNP density or when Ne was larger. 

Even though, on average accuracies were the same, very small differences were observed 

for some breeds in both 45k and 9k evaluations. Such small changes can be attributed to the scaling 

of G before being combined with A22.  A simulation study by Vitezica et al. (2011) found that bias 

exists in estimation when no adjustments are made to account for the fact that the genetic level of 

genotyped animals is different from that of the whole population, especially with strong selection. 

The G must be combined with a constant α, which is equal to the average difference between all 
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elements of A22 and G to account for this difference. In the non-shared SNP scenario all animals 

appear in these matrices, and therefore, the constant used for scaling is overall, instead of breed-

specific. Such adjustments could be done in theory, however, in practice, any partial change done 

in specific portions of G may result in non-positive definiteness. It is important to note that these 

differences in accuracy are often in the third decimal and thus negligibly small. They may be bigger 

in reality where data structures are more complex and incomplete. In practical studies the effect of 

scaling was limited, indicating weak selection on any individual trait with multi-trait selection, but 

the scaling had some effect on biases and inflation of GEBV (Chen et al., 2011). Table 3.6 shows 

the average bias in all scenarios. When using 9k SNP, GEBV were clearly inflated when SNP were 

shared, especially when Ne was smaller. The bias was essentially unchanged when SNP were non-

shared. The 45k scenario led to negligibly small changes, regardless of method used. 

 Olson et al. (2012) reported that sharing three breeds –Holstein, Jersey, and Brown Swiss 

using about 44k SNP- reduced accuracy compared to single-breed analyses using US data. This 

suggests that larger populations may benefit from more SNPs while smaller do not require so 

many, however, a point is reached where denser markers are not useful. It has been shown that 

marker densities more than 50k generally do not show a remarkable increase in accuracy of multi-

breed evaluations, even when using approximately 600k (Erbe et al., 2012) or 700k (Su et al., 

2012; Hozé et al., 2014).  

In this study, accuracy was depressed with SNP sharing across breeds only with 9k but not 

with 45k SNP information. When 9k SNP were shared, there was not enough information to 

estimate the ICS in the multi-breed population. Pocrnic et al. (2018) showed that combining breeds 

increases Ne, which requires more SNP to accurately trace all chromosome segments segregating 

in the population. The Me as proposed by Stam (1980) can be approximated as the number of 
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eigenvalues explaining 98% of the variance of G (EIGEN98; Pocrnic et al., 2016). The EIGEN98 

in this study for each breed separately were approximately 3.6k and 5k for the smaller and larger 

Ne, respectively (Table 3.2). These EIGEN98 do not correspond to the prediction of Stam (1980). 

This indicates that the Ne is lower than estimated by the formula of Wright (1931). There are 

various methods of estimating Ne, each has particular justifications or merit. Although the 

simulated scenario with larger Ne is not double that of the smaller one, it is still larger. When the 

breeds were pooled together and SNP were shared, EIGEN98 were 13k for smaller Ne and 18k for 

larger Ne, meaning 9k SNP were not enough to estimate all the chromosome segments segregating 

in the combined population.  

The observed drop of 0.08 for the smaller Ne and 0.12 for the larger reflects a loss in 

accuracy that is dependent on the proportion of available SNP and segregating ICS in the 

population under genomic selection. When breeds are pooled together but SNP are not shared, the 

genomic information for each breed behaves independently and the chromosome segments are 

assumed to be segregating only within breed. This reflects the reality of multi-breed evaluations if 

crossbreds are not included. The inclusion of crossbred animals when using multi-breed G with 

non-shared SNP is discussed later. 

A question arises whether sharing SNP at 45k level will reduce accuracy for larger data 

sets. For example, the Irish national evaluation uses a shared SNP model for over 40 breeds 

(Mantysaari et al., 2017) with a 54k chip. A 14-breed evaluation that includes the Simmental breed 

also uses a shared SNP model with less than 3k SNP (Golden et al., 2018). If each breed has Me 

close to 10,000, even with 50% common segments, the combined Me assuming unrelated breeds 

could be close to 200,000 and 70,000, respectively, much larger than 18,000 reported in this study. 

Therefore, the impact of SNP sharing can be larger in real populations than observed here.   
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Pocrnic et al. (2019) looked at accuracy of genomic prediction in GBLUP when only a 

fraction of the largest eigenvalues of G were retained. With less phenotypic information, they 

found that little accuracy was gained when more than 10% of the total number of EIGEN98 were 

considered. With more phenotypic information, the accuracy reached a plateau when about 50% 

of the eigenvalues were considered. As more SNPs were needed to estimate more eigenvalues, the 

study suggests larger data benefits from more SNP. 

Multi-breed evaluations are used in the livestock improvement industry and some studies 

have shown increases in accuracy, even with the assumption of shared SNP effects. Literature 

where benefits were found showed that they were mostly small and inconsistent over traits, breeds 

and methods (Hayes et al., 2009; Karoui et al., 2012; Olson et al., 2012; Makgahlela et al., 2013b; 

Hozé et al., 2014; Jónás et al., 2017). Olson et al. (2012) also treated three dairy breeds as different 

traits in a multi-trait evaluation, which slightly increased the accuracy and prevented the largest 

breed from dominating the smaller breeds. However, this slight improvement did not justify the 

increased computational demand. Similar findings were made by Makgahlela et al. (2013b). In 

another study, Makgahlela et al. (2013a) adjusted G for breed-specific allele frequencies of a multi-

breed evaluation of Nordic Red cattle and Lourenco et al. (2016) did the same for a pig population. 

They all found that breed-specific G did not improve the validation accuracy. Zhou et al. (2014) 

accounted for LD phasing and breed-specific SNP-effects by using weights in externally created 

within- and between-breed G-matrix blocks. Accuracies were not improved further compared to a 

multi-trait approached. Khansefid et al. (2014) created different G for breeds, or combinations of 

breeds, and combined them with off-diagonals between breeds set to zero. Depending on the 

method of measuring accuracy and the grouping of animals, accuracies changed for some breeds 

and traits.  
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In general, realistic simulation of multi-breed data is a difficult topic as a more 

comprehensive simulation would involve dominance and epistasis, and consequently QTL with 

different substitution effects (Spelman et al., 2002). In this simulation, QTL substitution effects 

were set to be equal among breeds. This assumes a correlation of one, however, this is not the case 

in practice (Wientjes et al., 2017). Even though this assumption is unrealistic, the SNP markers 

had different frequencies and their effects still differed among the breeds.  

Scaling G when sharing or not sharing SNP effects 

Aside from explicit scaling of relationships as in Vitezica et al. (2011), alternative options 

include using base population allele frequencies for each breed (Strandén and Christensen, 2011), 

or in Single-Step Bayesian Regression, fitting fixed effect for each breed (Hsu et al., 2017). Scaling 

by base population frequencies is less obvious in cases when populations are heterogeneous, i.e., 

parents are missing across generations. With shared SNP effects, a recently developed option is 

fitting “metafounders” – a special form of unknown parent groups – to each combination of breed 

and generation (Legarra et al., 2015). The advantage of metafounders depends on the quality of 

estimates of parameters for such a model.    

Non-shared SNP effects and crossbred animals 

When sharing SNP, all breeds and crossbred animals are considered together naturally. 

When SNPs are separate across breeds, considering crossbreds is more difficult. One possibility is 

to consider only F1 and use phasing to ascertain which alleles came from sire and dam (Xiang et 

al., 2016). In this case, F1 would have twice as many SNP as the parents. A more complex 

possibility for any crossbred would be to use weighted genotypes based on breed proportions. The 

use of crossbreds would be justified if they increase accuracy of the purebreds. In a study in pigs 
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involving two parental lines and crossbreds, use of shared SNPs resulted in same accuracy, and 

addition of crossbreds did not improve purebred accuracy (Pocrnic et al., 2019).  

Implications 

The use of non-shared SNP as in this study, i.e., by creating a SNP file with a separate 

block for each breed may lead to large files if many breeds are considered. Possible solutions 

include compressed files where empty fields are not explicitly stored, or separate genotype files 

per breed and breed combinations. Using preselected markers based on importance for the traits 

can also drastically reduce the genotype file while even improving the accuracy of prediction (Erbe 

et al., 2012; Van den Berg et al., 2016; Raymond et al., 2018). Preselected SNPs for each breed 

separately can be combined in a single evaluation using this non-shared SNP method. Additionally, 

if a fraction of SNP has similar effect size among breeds, a combined G can be constructed that 

considers shared and non-shared SNP. Overall, the use of non-shared SNP may make the most 

sense when the number of genotyped animals is unequal among breeds. In such case, sharing SNP 

favors the largest breeds, possibly at the cost of lower accuracy for the smaller breeds.  

CONCLUSION 

Sharing SNP effects among breeds is an easy way to perform genomic evaluation of multiple 

breeds and crossbreds, but can result in reduction of accuracy as well as biases if scaling is 

incorrect and the number of markers is not sufficient. Remedies include increasing the number of 

SNP and using appropriate scaling. Use of non-shared SNP per breed can avoid reduction of 

accuracy even when marker density is low, however, accommodating crossbreds more complex 

than F1 may be difficult. A decision on whether to share or not to share SNP effects can be made 

based on validation and on computing viability.  
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TABLES 

Table 3.1: Summary of parameters used to simulate the five different breeds for the evaluation 

Simulation Breed A Breed B Breed C Breed D Breed E 

Sire replacement 0.50 0.50 0.60 0.60 0.50 

Dam 

replacement 

0.20 0.30 0.30 0.20 0.20 

Mating design Random Random + assortative Random -assortative 

Smaller Ne      

Ne 98 118 117 98 117 

Initial males 25 30 30 25 30 

Initial females 1,200 1,500 1,200 1,500 1,200 

Final data 13,225 16,530 13,230 16,525 13,230 

Genotyped 6,600 6,900 6,600 6,900 6,600 

Larger Ne      

Ne 196 236 234 197 234 

Initial males 50 60 60 50 60 

Initial females 2,400 3,000 2,400 1,500 2,400 

Final data 26,450 33,060 26,460 33,050 26,460 

Genotyped 7,800 8,400 7,800 8,400 7,800 
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Table 3.2: The number of eigenvalues explaining 98% of the variation of each breed and in a full 

multi-breed scenario using 45k SNP markers when effective population size (Ne) is smaller and 

larger. 

 Breed A Breed B Breed C Breed D Breed E ABCDE 

Smaller Ne 3,780 3,627 3,280 3,764 3,737 13,024 

Larger Ne 5,072 5,189 4,661 5,172 5,073 18,059 
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Table 3.3: The correlation between true breeding value (TBV) and direct genomic value (DGV) 

of the validation populations when 45k SNP effects based on one breed is used to predict within 

breed (diagonal) or to predict across-breed (off-diagonal). Results are for the smaller effective 

population scenario. 

 

Breed Effects 

Used 

Breed Predicted 

Breed A Breed B Breed C Breed D Breed E 

Breed A 0.67 ± 0.01 0.15 ± 0.04 0.11 ± 0.04 0.10 ± 0.03 0.15 ± 0.03 

Breed B 0.12 ± 0.02 0.71 ± 0.01 0.12 ± 0.04 0.11 ± 0.03 0.13 ± 0.03 

Breed C 0.09 ± 0.01 0.10 ± 0.02 0.72 ± 0.03 0.07 ± 0.04 0.13 ± 0.03 

Breed D 0.10 ± 0.02 0.16 ± 0.03 0.12 ± 0.04 0.73 ± 0.01 0.07 ± 0.03 

Breed E 0.13 ± 0.02 0.10 ± 0.02 0.11 ± 0.02 0.13 ± 0.04 0.69 ± 0.02 
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Table 3.4: Accuracies obtained for breeds A-E with smaller Ne using 9k and 45k SNP markers. 

Single-breed evaluations were performed as well as multi-breed. For multi-breed, SNP effects 

were first assumed to be the same in a shared scenario, and then SNP effects were treated as 

different in a non-shared scenario.  

SNP Density Breed Single-breed Multi-breed  

shared 

Multi-breed  

non-shared 

  Acc SE Acc SE Acc SE 

9k 

Breed A 0.63 0.01 0.54 0.01 0.63 0.01 

Breed B 0.63 0.01 0.54 0.03 0.60 0.00 

Breed C 0.70 0.03 0.63 0.06 0.72 0.04 

Breed D 0.74 0.02 0.67 0.04 0.73 0.01 

Breed E 0.57 0.01 0.48 0.03 0.58 0.01 

Average 0.65 0.01 0.57 0.04 0.65 0.02 

45k 

Breed A 0.67 0.01 0.68 0.01 0.67 0.01 

Breed B 0.71 0.01 0.71 0.01 0.69 0.01 

Breed C 0.72 0.03 0.72 0.02 0.71 0.03 

Breed D 0.73 0.01 0.74 0.01 0.73 0.01 

Breed E 0.70 0.02 0.71 0.02 0.69 0.02 

Average 0.70 0.02 0.71 0.01 0.70 0.02 
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Table 3.5: Accuracies obtained for breeds A-E with larger Ne using 9k and 45k SNP markers. 

Single-breed evaluations were performed as well as multi-breed. For multi-breed, SNP effects 

were first assumed to be the same in a shared scenario, and then SNP effects were treated as 

different in a non-shared scenario.  

SNP Density Breed Single-breed Multi-breed  

shared 

Multi-breed  

non-shared 

  Acc SE Acc SE Acc SE 

9k 

Breed A 0.61 0.01 0.51 0.01 0.62 0.01 

Breed B 0.63 0.01 0.52 0.03 0.61 0.00 

Breed C 0.63 0.03 0.49 0.06 0.63 0.04 

Breed D 0.70 0.02 0.60 0.04 0.69 0.01 

Breed E 0.60 0.01 0.49 0.03 0.59 0.01 

Average 0.64 0.01 0.52 0.04 0.63 0.02 

45k 

Breed A 0.65 0.02 0.66 0.02 0.65 0.02 

Breed B 0.66 0.00 0.66 0.01 0.65 0.00 

Breed C 0.73 0.03 0.71 0.03 0.73 0.04 

Breed D 0.76 0.01 0.75 0.01 0.74 0.01 

Breed E 0.60 0.01 0.60 0.01 0.60 0.01 

Average 0.68 0.01 0.68 0.02 0.67 0.02 
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Table 3.6: Bias measured as the regression coefficient when true breeding value (TBV) is 

regressed over genomic estimated breeding value (GEBV) for single breed evaluations and 

multi-breed evaluations using shared or non-shared SNP effects, 9k and 45k SNP markers in 

breeds with a smaller or larger effective population size (Ne) 

  Single Multi-breed 

(Shared) 

Multi-breed 

(Non-shared) 

9k Smaller Ne 0.96 ± 0.03 0.87 ± 0.03 0.94 ± 0.03 

Larger Ne 0.92 ± 0.01 0.76 ± 0.03 0.89 ± 0.02 

45k Smaller Ne 0.99 ± 0.03 0.98 ± 0.03 0.97 ± 0.03 

Larger Ne 0.98 ± 0.02 0.94 ± 0.02 0.95 ± 0.02 
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FIGURES 

 

Figure 3.1: Visual presentation of the simulated data.  The historic population of 10,000 animals 

was mated randomly for 1,000 generations, undergoing a bottleneck in generation 500.  Founder 

animals for five breeds were selected and mated randomly for 40 generations followed by 10 

generations of selection, resulting in different breed sizes and selected number of genotyped 

animals. 
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Figure 3.2: A graphic presentation of the SNP file for the shared and non-shared scenarios using 

three hypothetical breeds (X,Y and Z) corresponding to the three primary colors (red, blue and 

yellow), and only 3 SNP markers for all animals. When SNP effects were shared, the number of 

SNPs in the file is 3 and all animals have non-missing markers that overlap completely. When 

SNPs were treated as non-shared, the total number of SNPs in the file is 9 (3 SNPs x 3 breeds) and 

animals from each breed have 6 missing SNPs. Although physically all animals have SNPs in the 

same position on the chromosome, the file treats them as if they are in different, non-overlapping 

positions. 
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Figure 3.3: A visual presentation of the genomic relationship matrix (G) in a shared and non-shared 

scenario using 3 hypothetical breeds (X, Y and Z) corresponding to 3 primary colors (red, blue 

and yellow). In the shared scenario, the genotypes of all breeds are scaled to a single allele-

frequency base (assuming a correlation of 1 between breeds) and all values are based on the 

combined information from all breeds. In the non-shared scenarios, there are no SNPs in common 

and therefore each breed is based and centered according to its own allele frequencies and animals 

from different breeds are not genetically correlated to each other. The G matrix has mostly zero 

elements. 
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Figure 3.4: A principal component analysis with 1st, 2nd and 3rd principal components (PC) with 

the 5 different simulated breeds in one replicate using 45k SNP markers. 
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CHAPTER 4 

OPTIMIZING THE REFERENCE POPULATION FOR VARIANT IMPUTATION IN 

CROSSBRED DAIRY CATTLE POPULATIONS 
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ABSTRACT 

The objective of this study was to evaluate the accuracy of imputation of genotypes of 

crossbred animals using different reference populations and different SNP densities. Medium 

density genotypes (approximately 41,000 SNP markers) were available on 795 Holstein x Jersey 

crossbred animals as well as about 21,000 and 1,000 purebred Holstein and Jersey animals, 

respectively. Imputation accuracies were investigated from four different SNP panels – 3k (2 901 

markers), LD (6 910 markers), ZL4 (18 820 markers), ZL5 (35 335 markers). This study evaluated 

three different reference populations – 500 crossbreds, 500 Holstein, 500 Jersey, and all three of 

these combined. The target population consisted of randomly selected 295 crossbred animals. 

Using a reference of crossbred animals resulted in the same average (0.91, 0.97, 0.98, and 0.98 for 

3k, LD, ZL4 and ZL5 SNP panels, respectively) and maximum imputation accuracies (1.00 for all 

panels) as using a combined group. However, minimum accuracies were higher using only 

crossbreds (0.55, 0.60. 0.67 and 0.68 for the SNP panels in the same aforementioned order) 

compared to a combination (0.52, 0.58, 0.65 and 0.65). Jersey animals were considerably better as 

a reference group (averages 0.91, 0.97, 0.98 and 0.98) compared to Holstein (averages 0.81, 0.91, 

0.94 and 0.94). This reflects the greater similarity to the Jersey breed based on available breed 

proportions, because the target crossbred animals had an average Jersey proportion of 0.63. The 

results suggest that using crossbred information improves the imputation accuracy rather than 

considering only information on each pure breed. 

Key Words: imputation accuracy, Jersey, Holstein, genomic selection 

INTRODUCTION 

Genomic selection greatly improves accuracy of prediction in dairy cattle (Hayes et al., 

2009, VanRaden et al., 2009). Although genotyping costs are becoming affordable, the majority 
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of animals in genomic evaluation are still being genotyped with lower density chips and imputed 

to higher densities (Hayes et al., 2012). Accuracy of imputation may depend on the statistical 

method used, minor allele frequency (MAF) of the markers to be imputed, linkage disequilibrium 

between markers, discrepancy in marker densities between high and low density panels, size and 

composition of the reference population, and the degree of relatedness to the target population 

(Schrooten et al., 2014; Lashmar et al., 2019).  

The pig industry commonly uses crossbreeding strategies to obtain a commercial 

population that exploits heterosis (Christensen et al., 2015). The beef industry also makes use of 

composite breeds and crosses and therefore most imputation studies have been done in these fields 

(pigs – Duerte et al., 2013; Xiang et al., 2015; beef – Ventura et al., 2014; Chud et al., 2015; Wang 

et al., 2016). Studies focusing on imputation accuracy on dairy cattle have been less common 

(Oliveira Junior et al., 2017, Aliloo et al., 2018). Generally, crossbreeding is less common in the 

dairy industry, however, more dairy producers are choosing crossbreeding in order to improve 

efficiency of dairy animals (Olson et al., 2012; Shonka-Martin et al., 2019) and reduce potentially 

undesirable effects of inbreeding (Hazel et al., 2017). Inclusion of crossbred animals in the 

genomic evaluation is essential to make the correct selection decisions.  

Imputation is generally more accurate when the animals to be imputed are of the same 

breed as the reference population (Berry et al., 2014, Moghaddar et al., 2014, Xiang et al., 2015). 

This creates a challenge for crossbred animals - these animals will have haplotypes originating 

from different purebred ancestors while imputation accuracy greatly depends on the proportion of 

shared haplotypes between the reference and target populations (Xiang et al., 2015). The objective 

of this study was to evaluate the accuracy of imputation of genotypes of crossbred animals using 

different reference populations and different SNP densities.  
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Data for US Holstein and Jersey dairy cattle and their crosses were provided by Zoetis. 

Genotypes were available for over 22k crossbred animals, but only 795 had 40k or more SNP 

markers, with a maximum of 41 008. Raw genotypes were previously edited using criteria 

described in Wiggans et al. (2011). Imputation was therefore applied to reach ~41k markers. None 

of the 795 crossbred animals had genotyped parents. The target population consisted of 295 

crossbred animals randomly selected from the 795 crossbred animals. The remaining 500 

crossbred animals were used as a crossbred reference population (CROSS). Breed proportions 

were obtained from the Council on Dairy Cattle Breeding (CDCB). The average proportion of 

Jersey present in the 795 crossbred animals was 63.11%. The crossbred training population had an 

average Jersey proportion of 62.72%, and the validation population had 63.76%. 

To represent each group equally, the Holstein reference population consisted of 500 

animals (HOL), and the Jersey reference population of 500 Jersey animals (JER), randomly 

selected from a set of about 21,000 and 1,000 Holstein and Jersey animals. These three populations 

were combined (COMB) to have a reference population that included all breeds and crosses (1,500 

animals). 

Marker names and positions for four different Illumina SNP chips were used to select and 

impute markers. The first was the Bovine 3k Beadchip with 2,901 SNP markers, BovineLD with 

6,910 markers, a custom Zoetis SNP chip (ZL4) with 18,820 markers, and a custom Zoetis SNP 

chip (ZL5) with 35,335 markers. The original genotypes of 295 target animals were reduced to 

mimic the panels described above. Pedigree information was not used because previous research 

by Zoetis showed that it does not provide benefits to imputation accuracy (results not published).  

FIMPUTE software (Sargolzaei et al., 2014) was used for imputation. Accuracy of imputation was 

measured as concordance, i.e., the proportion of markers that were correctly imputed. 
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The minimum, maximum and mean concordance for all scenarios are presented in Table 

4.1. The number of animals within a certain range of concordance are presented in Table 4.2. 

Imputation accuracy was lowest when imputing from 3k and LD. The imputation accuracy 

essentially remains unchanged from ZL4 and ZL5. 

On average, using COMB as the reference was as successful as using CROSS and both 

scenarios could impute the genotypes of some animals perfectly regardless of the density imputed 

from. However, using CROSS gave slightly higher minimum concordance – 0.55 vs 0.52, 0.60 vs 

0.58, 0.67 vs 0.65, and 0.68 vs 0.65 for 3k, LD, ZL4, and ZL5, respectively. In all different SNP 

panel scenarios, three more animals reached concordance over 0.95 when using CROSS compared 

to COMB (285 vs 282). 

Accuracy of imputation was considerably higher when using JER as a reference instead of 

HOL, which reflects the level of relatedness based on breed proportion. Previous studies also found 

that imputation becomes more accurate as the relatedness between the reference and target 

population increases (Ventura et al., 2014, Xiang et al. 2015). Moghaddar et al. (2015) found an 

accuracy of 0.88 when Merino-cross animals were imputed from 3,000 crossbred animals but 

increased to 0.96 when the reference population was strategically selected instead of being random. 

The highest average obtained when using HOL as reference was 0.76, whereas the highest average 

using JER was 0.94. No animals imputed from 3k or LD had 0.95 or higher concordance when 

using HOL, and only two when imputing from ZL4 and ZL5. When using JER as reference, 117 

animals had a concordance of 0.95 or more when imputing from ZL4, and 122 when imputing 

from ZL5. In crossbred dairy in Brazil, Oliveira Junior et al. (2017) also found that including 

crossbred animals in the reference population, whether by themselves or in combination with one 

or all component pure breeds deliver the best imputation accuracy. However, in their study, only 
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including component breeds delivered almost identical results. Work on pigs by Xiang et al. 

(2015), found that only including component breeds without any cross animals deliver great 

results, but it was not compared to a reference population that also included crossbred animals. 

The accuracy of imputation is essential to obtain reliable genomic predictions for crossbred 

animals. Moghaddar et al. (2014) found that moderately well (0.62 to 0.86 accuracy) imputed 

genotypes (12k to 50k) still gave higher prediction accuracy than using 12k observed markers. 

When imputation was poor, it was more accurate to use 12k observed markers than 50k imputed 

ones. Bolormaa et al. (2015) found that, provided the imputation accuracy is greater than 0.90, 

there is no apparent difference in prediction accuracy of genomic selection when using 50k 

observed or imputed markers. In this study, most animals had a concordance of 0.90 or higher 

when using only crossbred animals, or a combination of all pure and crossbred animals. This is 

true even when imputing from low density panel. It should be mentioned that all crossbred animals 

in this study originated from one single farm and therefore were more related to each other than 

the average population, which may have an influence on the results. This could be reflective of 

recently formed composite breeds where animals are closely, but not directly, related to the pure 

component breeds, and more closely related to each other.  

In conclusion, we found that, in order to accurately impute genotypes of crossbred animals, 

the reference population should contain crossbred animals. Similar accuracies can be obtained by 

combining the purebreds and crossbreds together in a single reference population. However, using 

only a pure breed to impute crossbred animals did not result in an adequate imputation accuracy. 

Imputation accuracies when imputing from 3k or LD were lower compared to ZL4 and ZL5. 
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TABLES 

Table 4.1: Summary statistics for accuracy of imputation, measured as the proportion of SNP 

markers correctly imputed when using four different reference groups described in the footnotes. 

The target population was 295 Jersey-Holstein crossbred animals and four different SNP panels 

were used to impute to 41k markers from – 3k, low density (LD), and two customized Zoetis chips 

(ZL4 and ZL5). 

 

1 

CROSS consisted of 500 Jersey-Holstein crossbred animals, HOL of 500 purebred Holstein 

animals, JER of 500 purebred Jersey animals, and COMB of all three of these reference 

populations 
2 The 3k panel had 2 901 SNP markers, LD had 6 910, ZL4 had 18 820, and ZL5 had 38 335 

 

 

Reference1 SNP chip2 Minimum Mean Maximum 

 

CROSS 

 

 

3k 0.55 0.91 1.00 

LD 0.60 0.97 1.00 

ZL4 0.67 0.98 1.00 

ZL5 0.68 0.98 1.00 

 3k 0.51 0.61 0.85 

HOL LD 0.57 0.70 0.94 

 ZL4 0.65 0.75 0.96 

 ZL5 0.66 0.76 0.97 

 3k 0.54 0.81 0.94 

JER LD 0.60 0.91 0.98 

 ZL4 0.67 0.94 0.99 

 ZL5 0.68 0.94 0.99 

 3k 0.52 0.91 1.00 

COMB LD 0.58 0.97 1.00 

 ZL4 0.65 0.98 1.00 

 ZL5 0.65 0.98 1.00 
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Table 4.2: The number of animals with an imputation accuracy less than or equal to 0.90, greater 

than 0.90 and less than 0.95, and more than 0.95. The target population was 295 crossbred animals 

and four different reference populations were used, as described in the footnote. Four different 

SNP panels were used to impute to 41k markers from – 3k, low density (LD), and two customized 

Zoetis chips (ZL4 and ZL5). 

  Number of animals within concordance range 

Reference1 SNP chip2 ≤ 0.90 > 0.90 to 0.95 > 0.95 

CROSS 3k 63 195 37 

 LD 8 12 275 

 ZL4 8 2 285 

 ZL5 8 2 285 

 3k 295 0 0 

HOL LD 295 0 0 

 ZL4 293 2 2 

 ZL5 293 2 2 

 3k 275 20 0 

JER LD 101 150 44 

 ZL4 14 164 117 

 ZL5 15 158 122 

 3k 94 168 33 

COMB LD 12 12 271 

 ZL4 11 2 282 

 ZL5 11 2 282 
1CROSS consisted of 500 Jersey-Holstein crossbred animals, HOL of 500 purebred Holstein 

animals, JER of 500 purebred Jersey animals, and COMB of all three of these reference 

populations2 

2 The 3k panel had 2 901 SNP markers, LD had 6 910, ZL4 had 18 820, and ZL5 had 38, 335 
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CHAPTER 5 

INDIRECT GENOMIC PREDICTIONS FOR MILK YIELD IN CROSSBRED HOLSTEIN-

JERSEY DAIRY CATTLE1 
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Lourenco, I. Misztal. 2021. Journal of Dairy Science. 104(5):5728-5737. Reprinted here with 

permission of publisher. 
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ABSTRACT 

The objective of this study was to predict genomic breeding values for milk yield of 

crossbred dairy cattle under different scenarios using single-step genomic BLUP (ssGBLUP). 

There were 13,880,217 milk yield measurements on 6,830,415 cows. Genotypes of 89,558 

Holstein, 40,769 Jersey, and 22,373 Holstein-Jersey crossbred animals were used, of which all 

Holstein, 9,313 Jersey, and 1,667 crossbred animals had phenotypic records. Genotypes were 

imputed to 45k SNP markers. The SNP effects were estimated from single-breed evaluations for 

Jersey (JE), Holstein (HO) and crossbreds (CROSS), and multi-breed evaluations including all 

Jersey and Holstein (JE_HO) or approximately equal proportions of Jersey, Holstein and 

crossbred animals (MIX). Indirect predictions (IP) of the validation animals (358 crossbred 

animals with phenotypes excluded from evaluations) were calculated using the resulting SNP 

effects. Additionally, breed proportions (BP) of crossbred animals were applied as a weight 

when IP were estimated based on each pure breed. The predictive ability of IP was calculated as 

the Pearson correlation between IP and phenotypes of the validation animals adjusted for fixed 

effects in the model. Regression of adjusted phenotypes on IP was used to assess the inflation of 

IP. The predictive ability of IP for CROSS, JE, HO, JE_HO and MIX scenario was 0.50, 0.50, 

0.47, 0.50, and 0.46, respectively. Using BP was least successful, with a predictive ability of 

0.32. The inflation of the IP for crossbred animals using CROSS, JE, HO, JE_HO, MIX, and BP 

scenarios were 1.17, 0.65, 0.55, 0.78, 1.00, and 0.85, respectively. The IP of crossbred animals 

can be predicted using ssGBLUP under a scenario that includes pure breed genotypes. 

Keywords: single-step GBLUP, breed proportions, direct genomic value, independent 

chromosome segments 
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INTRODUCTION 

Genomic breeding values are typically estimated within pure breeds, especially in dairy 

cattle. Interest in combined purebred and crossbred evaluation is limited to countries with a large 

number of crossbred animals that are potentially used for breeding., e.g. in New Zealand (Harris 

and Johnson, 2010). As of May 2019, the total number of genotyped dairy cattle in the U.S. 

exceeded 3 million, of which only about 2% were of crossbred cattle (VanRaden et al., 2020). By 

September 2020, the number of genotyped US dairy animals increased to over 4.5 million, of 

which 86% are Holstein and 12% are Jersey animals (CDCB, 2020a). Although the proportion of 

crossbred animals is small, it amounts to a substantial financial cost that requires a return on 

investment. Crossbreds are becoming increasingly popular. An analysis of trends in the breed 

composition of U.S. Dairy Herd Improvement (DHI) herds showed that the percentage of dairy 

cattle reported as crossbred increased from 0.1% to 5.3% from 1990 to 2018 (Guinan et al., 

2019). In April 2019, the Council on Dairy Cattle Breeding (CDCB) extended genomic 

evaluation services to provide estimates for crossbred animals (Wiggans et al., 2019, CDCB, 

2020b).  

Joint modeling of purebreds and crossbreds may require adjustments to account for non-

additive effects and heterogeneous variance of the breeds (Wei and van der Werf, 1994; 

Christensen et al., 2014). For purebred parents and F1 crossbred animals, an optimum strategy 

may be based on separating the genomic information for F1 due to each parent. However, simpler 

methods based on combining all genotypes in a single relationship matrix may work as well 

(Lourenco et al., 2016). Another possibility is providing evaluations based on purebreds and 

estimated breed proportions (VanRaden et al., 2020).  
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Genomic evaluation works primarily by estimating the value of chromosome segments 

(Daetwyler et al., 2010; Habier et al., 2013; Pocrnic et al., 2016a; Pocrnic et al., 2019a). Such 

segments are different for each pure breed and probably only partially overlap with those of 

purebreds for crossbreds. In such cases, it would be useful to include the crossbred data for 

crossbred prediction.  

Single-step genomic BLUP (ssGBLUP) is widely used for different species in numerous 

countries. This method includes both genotyped and non-genotyped animals independently of the 

phenotyping status (Legarra et al., 2009). Therefore, it allows the joint evaluation of purebred- 

and crossbred animals, as well as separate evaluations. Additionally, there is an interest to apply 

genomic selection in commercial crossbred animals that may not be part of the official 

evaluation (i.e., not registered). These animals could have indirect genomic predictions (IP) 

computed based on SNP effects back-solved from the official evaluation. The objective of this 

study was to evaluate the predictive ability and inflation of indirect genomic predictions for 

crossbred animals using SNP effects estimated with ssGBLUP methods. Genotypes of Holsteins, 

Jerseys, and Holstein-Jersey crossbreds were used in ssGBLUP for the estimation of SNP 

effects. Additional comparisons involved a method that incorporates breed proportions based on 

genomic information.  

MATERIALS AND METHODS 

 The trait of interest was milk yield and 13,880,217 records were available on 6,830,415 

animals, consisting of Holstein, Jersey, and animals classified as Holstein-Jersey crossbreds. 

Phenotypic and pedigree data were directly obtained from producers in the USA through on-farm 

software using proprietary scripts. Genotypes were obtained from the Zoetis Genotyping Lab 

(Zoetis Genetics, Kalamazoo, MI) and a variety of low density chips with a number of SNP 
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(ranging from about 3,000 to over 35,000, and medium density chips with 50-80K markers) were 

used. Animals genotyped on chips with less that 40K SNPs were imputed to 45,245 markers 

using the program FImpute (Sargolzaei et al., 2011). Details on the data sources is provided in 

Vukasinovic et al. (2017). The crossbred animals were imputed using a reference population of 

795 Holstein-Jersey crossbred animals. The number of animals genotyped (and phenotyped) 

were 375,487 (89,558) Holstein, 40,769 (9,313) Jersey, and 22,373 (1,667) crossbred animals. 

Among the parents of crossbred animals, 1,331 Holstein sires and 202 Holstein dams, 147 Jersey 

sires and 122 Jersey dams were genotyped. In total, 9% of the purebred parents of crossbred 

animals were genotyped. Breed proportions (BP) were obtained for crossbreds based on 

genotypes using an ADMIXTURE (Alexander et al., 2009) analysis supervised with two 

clusters. The available crossbreds were of varying breed proportions (1%-99% Holstein or 

Jersey). Figure 5.1(A) shows the distribution for the Holstein proportion in all crossbred animals. 

The average Holstein BP for all genotyped crossbred animals was 59% and Jersey BP was 41%. 

Figure 5.2. shows the first two principal components (PC) for all crossbred animals. All 

genotyped Jersey and crossbred animals were used and 89,558 Holstein animals with phenotypes 

and genotypes were selected to lower computational requirements.  

Validation animals for milk yield consisted of animals that had measurements for the first 

lactation only, and were born within 2015 to 2017, such that the validation populations were 

20% of all the genotyped animals. There were three different validation populations – for 

Holstein (15,695 animals), Jersey (2,186 animals), and crossbreds (358 animals). Among the 

parents of the 358 validation crossbred animals, 61 Holstein sires and 10 Holstein dams, and 26 

Jersey sires and 19 Jersey dams were genotyped. This amounted to 32% of the known purebred 

parents of crossbred validation animals. Breed proportions of validation animals ranged from 1% 
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to 99% of either Holstein or Jersey. Figure 5.1(B) shows the distribution of the proportion of 

Holstein in validation crossbred animals. The average Holstein BP for crossbred validation 

animals was 48%, and Jersey BP was 52%. Phenotypes of the validation populations were 

removed to estimate SNP effects based on that breed/group. All evaluations included the same 

pedigree and data file of all available animals, but the selection of genotypes differed for each 

scenario. 

The repeatability animal model for milk yield was: 

y = Xb + Z1u + Z2pe + Z3hs + e 

where y is the vector of milk yield,  X is the incidence matrix assigning the measurement 

to fixed effects that included age group, management group, pedigree-based inbreeding, and 

pedigree-based heterosis (obtained using the R package OptiSel (Wellman, 2019,2020)); b is a 

vector of solutions for fixed effects, Z1 is the incidence matrix assigning the measurement to the 

random animal effect; u is a vector of solutions for animal, Z2 is the incidence matrix for random 

permanent environment effect; pe is a vector of solutions for permanent environment effect; Z3 is 

an incidence matrix for the random effect of sire nested within herd; hs is a vector of solutions 

for herd  ×  sire interaction, and e is the residual. It was assumed that u ~ N(0, H𝜎𝑢
2) where 𝜎𝑢

2 = 

additive genetic variance and H is the relationship matrix combining genotyped and non-

genotyped animals in single-step GBLUP (ssGBLUP) (Legarra et al., 2009); pe ~ N(0, I𝜎𝑝𝑒
2 ) 

where 𝜎𝑝𝑒
2 = permanent environment variance; hs ~ N(0, I𝜎ℎ𝑠

2 ) where 𝜎ℎ𝑠
2 = herd  ×  sire variance; 

e ~ N(0, I𝜎𝑒
2) and I is the identity matrix. A heritability of 0.30 was assumed for milk yield 

(Wiggans, 1997).  

The inverse of H, which is required for the ssGBLUP evaluations was constructed as in 

Aguilar et al. (2010): 
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𝐇−𝟏 = 𝐀−𝟏 + [
0 0

0 𝐆−𝟏 − A𝟐𝟐
−𝟏] 

In this study, G was obtained using the formula 𝐆 =
𝐌𝐌′

2 ∑pi (1−pi )
  where M is a matrix of 

SNP content centered by twice the current allele frequencies, and pi is the allele frequency for 

SNP i (VanRaden, 2008). The pedigree-based relationship matrix between genotyped animals is 

referred to as A22. To reduce bias due to the different genetic level of genotyped and non-

genotyped animals, G was tuned to be compatible with A22 using the method described by Chen 

et al. (2011). To avoid singularity problems, 5% of A22 was combined with 95% of G.  

The G was constructed differently for each scenario to account for the difference in allele 

frequencies. Three evaluations were within-breed – Jersey (JER), Holstein (HOL), and 

crossbreds (CROSS). The respective G matrices were constructed using within-breed allele 

frequencies. Two evaluations were multi-breed and used the relevant genotypes to construct 

different G matrices – 1) all Jersey and Holstein genotypes used as reference (JER_HOL) with G 

constructed using allele frequencies of all Jersey and Holstein combined, and 2) equal 

proportions (~20k each) of Jersey, Holstein and crossbreds (MIX) with G constructed using 

allele frequencies of only these animals. Because the number of genotyped animals was large in 

all scenarios, except CROSS, the inverse of G was computed using the APY algorithm with core 

animals selected randomly (Fragomeni et al., 2015; Misztal, 2016). The number of core animals 

corresponded to approximately the number of eigenvalues explaining 99% of the variation in G. 

The number of eigenvalues explaining 90%, 95%, 98%, and 99% are presented in Table 5.1. The 

direct inverse of G was only used for the CROSS evaluation.  

Single-step genomic BLUP implemented in the BLUPF90 software suite (Misztal et al., 

2014), was used for analyses of these five scenarios. After removing phenotypes of all validation 

animals, genomic breeding values (GEBV) for all animals were estimated in each scenario. The 
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BLUP90IOD2 v3.102 software was used to compute these GEBV. The combination of 

breeds/groups together assumes that SNP effects and variances are the same across all 

populations. The SNP effects were estimated for each scenario separately based on these GEBV 

using the POSTGSF90 v1.63 software package with the formula (VanRaden, 2008; Wang et al., 

2012): 

�̂� = λ𝐃𝐌′𝐆−1(GEBV) 

where �̂� is a vector of estimated SNP effects, λ is the ratio of SNP to additive genetic 

variance, D is a diagonal matrix of weights for SNP (in this case an identity matrix), and M was 

defined before. The 𝐆−1 for JER, HOL, JER_HOL and MIX, were obtained using APY. The IP 

from ssGBLUP have been shown to be stable when using different core animals as long as the 

size of the core is at least equal to the number of eigenvalues required to explain 98-99% of the 

genomic variation (Garcia et al., 2020), which was the case in this study.  

Based on SNP effects, IP for validation animals were calculated as the sum of SNP 

effects weighted by the genotype content using the PREDF90 v1.04 software. Across-breed 

predictions were obtained using SNP effects estimated in one scenario to predict the IP of 

validation animals not included in that evaluation. The IP obtained using different methods were 

compared to the GEBV obtained with full data in the CROSS (GEBVFull_CROSS) and MIX 

(GEBVFull_MIX) scenarios, as well as GEBV obtained using CROSS without data of the validation 

populations (GEBVPartial).  

Indirect predictions for crossbred animals were also estimated using breed proportions 

and IP obtained using SNP effects of both the component breeds with the following formula: 

IPBP = BPH(IPH) + BPJ(IPJ) 
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where IPBP is the IP of crossbred animals using breed proportions, BPH is the proportion 

of Holstein in the crossbred animal, and BPJ is the proportions of Jersey in the crossbred animal, 

IPH is the IP of the crossbred animal estimated using Holstein SNP effects, and IPJ is the IP of 

the same crossbred animal estimated using Jersey SNP effects. This weighting of the IP with the 

breed proportion follows the same concept as VanRaden et al. (2020) and Strandén and 

Mäntysaari (2013). A requirement for this method is for IP to be on an all-breed scale, which 

was achieved by including phenotypes of all breeds and a full pedigree in every evaluation. 

The predictive ability was determined using a Pearson correlation between the phenotype 

adjusted for all other effects, and the IP of the relevant validation population. The adjusted 

phenotype was obtained using the PREDICTf90 v1.3 software package, with the same model as 

described before, and data of all animals, regardless of breed. No genotypes were included for 

this purpose. Inflation was measured as the regression coefficient when regressing adjusted 

phenotype on IP. A coefficient of 1 indicates no inflation, above 1 indicates an under-estimation 

(deflation) and below 1 an over-estimation (inflation). 

RESULTS 

The number of eigenvalues required to explain 90%, 95%, 98% and 99% of the variation 

in the G matrix for the different scenarios are presented in Table 5.1. To apply APY, it is 

recommended to have a core size equal to the number of eigenvalues that explains between 98% 

and 99% of the variation of G (Pocrnic et al., 2016b). Since available resources were able to 

handle larger core sizes, the core was selected to explain at least 99%. 

Results of the predictive abilities of indirect predictions are presented in Table 5.2. The 

predictive ability within-breed was 0.48, 0.45, and 0.50 for JER, HOL, and CROSS, respectively. 

The JER could not predict HOL well (0.13) and HOL had even lower ability to predict JER 
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(0.09), which is expected as across-breed predictions have been shown to have low accuracies in 

dairy cattle (Olson et al., 2012; Pryce et al., 2011). Both pure breeds could predict CROSS 

approximately the same as when using only crossbred animals (0.50 with JER effects, 0.47 with 

HOL, and 0.50 with CROSS). The CROSS was better at predicting the pure breeds (0.24 for JER 

and 0.26 for HOL) than the pure breeds were able to predict each other (across-breed), however 

the predictive ability was still low. The JER_HOL scenario could predict all three groups with 

relatively similar predictive ability as the single-breed analyses (0.45, 0.44, and 0.50 for Jersey, 

Holstein, and crossbreds, respectively). Making use of breed proportions was the least successful 

of all scenarios, with a predictive ability equal to 0.32. 

The resulting IP for crossbred validation animals in the different scenarios were 

compared to the GEBVPartial, GEBVFull_CROSS and GEBVFull_MIX. Table 5.3 summarizes these 

correlations. The estimated GEBV were adjusted for the genetic base consisting of animals born 

in 2015. The means were -70.13 for IP based on CROSS, -929.48 for GEBVPartial, -1003.76 for 

GEBVFull_CROSS and -1083.12 for GEBVFull_MIX. Figure 5.3 compare the distribution of adjusted 

phenotype to the IP of crossbred animals obtained from different approaches and GEBVPartial. 

The means and standard deviations differ between scenarios, especially when crossbred animals 

were not part of the reference population. The distribution of the adjusted phenotypes is wide, 

while distributions are more centered around zero for the GEBVPartial and IP when SNP effects 

were based on CROSS, BP, and MIX. Their ranges are narrower compared to the IP based on 

JER, HOL or JER_HOL. The IP for crossbred validation animals are generally above zero when 

based on JER and below zero when based on HOL. 
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The inflation of the IP of crossbred animals when using SNP effects based on CROSS, 

JER, HOL, JER_HOL, and MIX was 1.17, 0.65, 0.55, 0.78, and 1.00. Inflation when IP was 

based on pure breeds or with breed proportions was 0.85.  

DISCUSSION 

The number of eigenvalues associated with the genomic relationship matrix is an 

indicator of the number of independent chromosome segments (Me) (Pocrnic et al., 2016a). A 

smaller Me indicates longer chromosome segments and less genetic diversity within the 

population. The Jersey breed required considerably fewer eigenvalues compared to the Holstein. 

However, this may be an artifact of the number of genotypes available for Jersey. In the case of 

JER_HOL, more eigenvalues were required compared to either JER or HOL, but less than the 

sum of eigenvalues obtained for those pure breeds separately. This deviation from the sum 

suggests that the Holstein and Jersey breeds share similarities (Pocrnic et al., 2019b) albeit not 

enough to do across-breed predictions. It is not unexpected for breeds, especially the ones with 

similar breeding goals (such as dairy breeds) to share similarities, such as the DGAT1 gene 

(Spelman et al., 2002; Thaller et al., 2003). In fact, genetic similarities can occur across species 

(Raymond et al., 2020). The number of eigenvalues required in the MIX scenario was 

considerably higher than in the other scenarios. Since crossbred animals receive their genes from 

the component pure breeds, adding the crossbred genotypes is not expected to provide any 

additional genomic content information not already captured by purebred parents. However, 

crossbred animals in this study have a wide range of breed proportions instead of only F1. This 

may produce new haplotypes, recombination, and LD not present in the pure breeds, thereby 

resulting in the higher number of eigenvalues needed to explain 98-99% of variation. More 

importantly, only a small proportion of known purebred parents were genotyped in our study. 
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Thus, our crossbred population provided additional information from purebred animals that do 

not have genotypes. The study by Pocrnic et al. (2019b) on pigs found that adding F1 crossbred 

animals did not increase the number of eigenvalues beyond that of the purebred animals. 

However, the size of their data was larger than the Me in pigs. 

The low ability of one pure breed to predict the other has been observed in previous 

work, both on real and simulated data (Pryce et al., 2011; Olson et al., 2012; Raymond et al., 

2018; Steyn et al., 2019). Results of our study show that when both purebreds are combined in 

the JER_HOL multi-breed evaluation, the predictive ability of the purebred validation animals 

was slightly lower than single-breed evaluations (0.01 lower for Holstein and to 0.03 for Jersey), 

which corresponds to other studies that did not find much of a difference (Olson et al., 2012; 

Pryce et al., 2011). The change in predictive ability for Holstein is small enough to be negligible. 

In multi-breed evaluations, it is important for component breeds to be present in the reference 

population (Toosi et al., 2010; Pryce et al., 2011; Olson et al., 2012; Steyn et al., 2019). The 

small, but slightly larger, decrease in predictive ability for Jersey could be because the number of 

Holstein genotypes far outweighs the number of Jersey genotypes in the JER_HOL reference 

population. When the number of genotypes per group is more balanced in the MIX scenario, the 

predictive ability of IP for Holstein decreased by 0.05 but only 0.02 for Jersey IP compared to 

single-breed evaluations. 

In the JER_HOL, the number of Holstein animals was considerably higher than the 

number of Jersey animals, yet the crossbred IP were predicted better than when all groups were 

represented equally (MIX). The ability to predict IP for Holstein or crossbreds noticeably 

decreased in the MIX scenario compared to single-breed evaluations while predictive ability of 

Jersey IP changed very little. The change in Holstein but not Jersey, could be because the 
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number of Holstein genotypes removed for the MIX scenario was proportionally larger for 

Holstein (from ~90K to ~20K) compared to the Jersey genotypes (~40K to ~20K). More 

influential Holstein animals may have been removed, decreasing the average relatedness between 

the MIX reference population and the Holstein validation populations. Additionally, the Jersey 

population may be genomically less diverse and more related to the MIX reference population.  

In pigs, it was shown that the accuracy for crossbred animals was higher when using both 

parent breeds or equal number of animals from the parent breeds, compared to using either pure 

breed by itself or only crossbreds for most traits (Hidalgo et al., 2015). Pocrnic et al. (2019b) 

also found an increase in predictive ability for crossbred pigs when both pure lines were 

combined compared to only one pure breed. However, their study was on F1 crossbred animals 

and had more animals with both genotypes and phenotypes compared to our study. No increase 

in predictive ability of crossbred IP was observed in our study using JER_HOL compared to only 

using JER or CROSS, but there was a slight increase compared to using only HOL. The 

crossbreed structure of this study was complex with a range of breed proportions instead of F1 

crossbred animals.  The purebred dairy breeds may also be genetically more diverse than the pig 

breeds, as reflected in the different effective population sizes in Pocrnic et al. (2016b). The MIX 

scenario included all the crossbred animals and equal proportions of each pure breed. This 

inclusion of purebred animals for crossbred evaluations is expected to yield higher predictive 

abilities but this was not the case in our study. The random sampling of purebred animals may 

have excluded influential parents that contributed to previous predictive abilities. 

In the study by VanRaden et al. (2020), the quality of prediction for crossbreds was 

evaluated by squared correlations of later milk yield deviation on earlier prediction by breed base 

representation.  For all crossbred cows, those correlations for several traits was 0.01 to 0.05 
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higher for genomic predictions using breed proportions than for parent average, indicating 

limited improvement. While the correlation was 0.05 higher for milk, it was much higher (up to 

0.34) when separated by breed base representation. This shows the variation within crossbred 

evaluations, as the same approach to all can lead to different responses. Their study used much 

larger data for Holsteins and Jerseys, but crossbred animals were not used in the prediction 

process, only in validation.  

In our study, accounting for breed proportions for the estimation of IP of crossbred 

animals led to a decrease in predictive ability compared to not making any adjustments at all 

(0.32 using proportions versus 0.50 using CROSS). This does not correspond to VanRaden et al. 

(2020), where using breed proportions was slightly more accurate than using the nearest pure 

breed. They also found that the accuracy was highest when the major breed proportion was from 

75% to 90% (0.52), and lowest from 50% to 74% (0.35). The validation population in our study 

was, on average, 52% Jersey. The SNP effects in the study by VanRaden et al. (2020) were 

estimated from much larger data, while our study used approximately 2k crossbred animals with 

both genotypes and phenotypes. The relatively high predictive ability of crossbreds based on the 

crossbred SNP effects in this study despite the small reference population could be due to the 

limited number of purebred parents. 

Predictive abilities assume that the model was adequate to adjust for all effects other than 

the additive genetic effect. Breed effect was not specifically included in the model. Animals are 

generally compared within breed and therefore breed adjustment will not compromise the 

ranking within the pure breed. Crossbred animals are most likely compared only with crossbreds 

to select replacement animals, but the range of breed proportions of animals adds a layer of 

complexity regarding breed effect. Accounting for non-additive factors and accounting for breed 
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origin of markers may increase the predictive ability for crossbred animals. However, Lopes et 

al. (2017) used a genomic matrix as described by Christensen et al. (2014) that takes breed-

effects into account for the estimation of GEBV before back-solving for SNP effects. They found 

that accounting for breed-specific effects did not change the accuracy of prediction compared to 

only using effects of crossbreds. Simulations showed that accounting for breed origin of alleles is 

only beneficial when lines are distantly related (Esfandyari et al., 2015a; Esfandyari et al., 

2015b), which might be the case with Jersey and Holstein. Obtaining breed-specific effects in 

those studies required knowledge of the breed origin of alleles. Assigning breed of origin to 

alleles achieved accuracies greater than 90% in both simulated and real data (Sevillano et al., 

2016; Vandenplas et al., 2016). 

The IP of crossbred animals were inflated when using HOL (0.55), slightly less using 

JER (0.65) and even less when using JER_HOL (0.78). Using CROSS was the only scenario 

with a deflated IP of crossbred animals (1.17). Although using MIX had a lower predictive 

ability than using JER_HOL or CROSS, the IP were neither inflated nor deflated. Inflation when 

using breed proportions was 0.85, which was better than using either pure breed or a 

combination of both, but not as successful as using MIX. This trade-off regarding predictive 

ability and inflation may influence the decision made by breed associations regarding the chosen 

reference population. Inflation in the study by VanRaden et al. (2020) was smaller when using 

breed proportions compared to using the nearest pure breed, which corresponds to this study. 

Crossbred animals can be selected to be backcrossed with purebred animals with the 

objective to transform the current herd to a specific component pure breed (Holstein or Jersey in 

this study). In this case, the resulting progeny will be expected to perform within the genetic 

background of the pure breed. Therefore, SNP effects based on that pure breed could be useful 
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(JER or HOL). The performance of crossbreds is expected to be an intermediate of the parental 

breeds but often deviates from their average due to heterosis (Buckley et al., 2014). On average, 

Holstein milk production is considerably higher than Jersey milk production (CDCB, 2020c). 

This is reflected by the mean of the different IP, as presented in Figure 5.3. When IP are based 

on Jersey SNP effects for milk production, the IP for crossbreds are generally positive, while 

they are generally negative when using Holstein SNP effects. When IP were based on both 

Jersey and Holstein, the values were more intermediate. 

The correlation between IP using CROSS and GEBVPartial is almost 1, which is expected 

since these GEBV were used to estimate the SNP effects. These GEBV were not used to estimate 

SNP effects for all other scenarios. Therefore, correlations between the other IP and GEBVPartial 

are considerably lower, but they are generally still high (over 0.65). The correlations between the 

IP from CROSS and GEBVFull_CROSS and GEBVFull_MIX are high (0.86 and 0.73), but lower than 

those with CROSSPartial. These correlations are expected to be lower because more information 

became available to improve the predictions. It is important for these correlations to still be high 

since high correlations show that the IP was a strong indicator of a future breeding value. All 

correlations with IP based on breed proportions were much lower, confirming that this approach 

is not appropriate for this data. However, the results are affected by sample size and the number 

of crossbred animals in this data is relatively small. There were also differences in means, as 

shown in Figure 5.3. To compare or rank animals using predictions obtained from different 

sources of SNP information, they can be transformed to the same scale (Legarra et al., 2018; 

Lourenco et al., 2018).  

In this study, less than 10% (24%) of the genotyped crossbred (purebred) animals had 

phenotypes. This is a challenge since the success of the estimation of SNP effects depends on the 
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number of animals with both phenotypes and genotypes (Gonzalez-Recio et al., 2014), however, 

it is important to research methods to accurately predict breeding values of young animals based 

on information that is present before phenotypes become available.  

CONCLUSION 

Indirect predictions for crossbred animals can be computed via single-step GBLUP using 

various combinations of purebred and crossbred data. The best reference population considering 

predictive ability and inflation of prediction is the mix of purebred and crossbred animals. The IP 

themselves provide a useful tool to select crossbred animals. 
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TABLES 

Table 5.1: Eigenvalues explaining 90%, 95%, 98% and 99% of variation in the genomic 

relationship matrix (G) when all genotyped animals are considered. 

 Animals 90% 95% 98% 99% 

Holstein 89 558 4 637 8 101 14 068 19 046 

Jersey 40 769 3 325 5 775 9 841 13 216 

Cross 22 373 4 939 6 698 8 676 9 887 

Jersey & Holstein 130 327 5 661 9 666 16 250 21 564 

Mix1 61 275 7 396 11 857 18 017 22 483 

1 The mixed population contains around equal numbers of Holstein, Jersey, and crossbred 

animals 
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Table 5.2: Predictive ability (Pearson correlation between IP and adjusted phenotype) when 

using marker effects based on a breed, or group, to predict the indirect genomic value of itself, 

and that of others. Inflation for predictions on crossbreed animals are included. 

Breed used Breed predicted  

 Jersey Holstein Cross 

 Predictive ability Inflation 

Jersey 0.481 0.13 0.50 0.65 

Holstein 0.09 0.451 0.47 0.55 

Cross 0.24 0.26 0.501 1.17 

Jersey & Holstein 0.451 0.441 0.50 0.78 

Mix 0.461 0.401 0.461 1.00 

Proportions - - 0.321 0.85 

1Indicates whether the breed predicted was also represented in the training population 
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Table 5.3: The correlations between indirect predictions of crossbred validation animals (IPCross) 

obtained using different SNP effects and GEBV of crossbred animals estimated with different 

datasets.  

IPCross GEBVPartial
1 GEBVFull_CROSS

2 GEBVFull_MIX
3 

Population used for SNP effects    

        Crossbreds 0.97 0.86 0.73 

        Jersey 0.75 0.72 0.65 

        Holstein 0.68 0.66 0.62 

       Jersey and Holstein 0.65 0.67 0.75 

       MIX4 0.76 0.72 0.84 

Other method    

       Breed proportions 0.29 0.37 0.56 

 

1 The GEBVPartial were obtained from an evaluation with crossbred genotypes and only phenotypes 

of the training population. 

2 The GEBVFull_CROSS were obtained from an evaluation with crossbred genotypes and all available 

phenotypes. 

3 The GEBVFull_MIX    were obtained from an evaluation with all crossbred genotypes, ~20K 

Holstein genotypes, ~20K Jersey genotypes and all available phenotypes. 

4 The mixed population contains approximately equal numbers of Holstein, Jersey and crossbred 

animals 
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FIGURES 

 

Figure 5.1. Distribution of the proportion of the crossbred genotypes that are assigned as Holstein. 

The first plot applies to all crossbred animals, while the second applies to only validation crossbred 

animals 
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Figure 5.2: Principal component (PC) plot for all crossbred animals. Color intensity indicates the 

Holstein breed proportion (BP) of each crossbred animal. Animals with a Holstein BP lower than 

0.50 have higher Jersey BP 
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Figure 5.3: The distributions for the resulting estimations for the crossbred validation animals. 

Distributions include adjusted phenotype, Genomic Breeding Value (GEBV) obtained when 

genotypes of only crossbred animals are included and phenotypes of the validation populations are 

excluded, and Indirect Predictions (IP) obtained from SNP effects estimated when excluding 

phenotypes of validation animals and including genotypes of specific groups. The different 

reference groups to estimate SNP effects for the calculation of IP were composed of 1) only 

crossbred animals, 2) MIX as described before, 3) only Jersey genotypes, 4) only Holstein 

genotypes, or 5) both Jersey and Holstein genotypes. Another IP was obtained by using genomic 

breed proportions as weights to sum the IP obtained when using Jersey SNP effects, and when 

using Holstein SNP effects. 
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ABSTRACT 

Maintaining genetic variation in a population is important for long-term genetic gain. The 

existence of sub-populations within a breed helps maintain genetic variation and diversity. The 

20,990 selected candidates, representing the breeding animals in the year 2014, were identified 

as the sires of animals born after 2010 with at least 25 progeny, and females measured for type 

traits within the last 2 years of data. K-means with 5 clusters (C1,C2,C3,C4, and C5) was applied 

to the genomic relationship matrix based on 58,990 SNP markers to stratify the selected 

candidates into subpopulations. The general higher inbreeding resulting from within-cluster 

mating compared to across-cluster mating, suggests the successful stratification into genetically 

different groups. The largest cluster (C4) contained animals that were diverse enough to allow 

low inbreeding both within and across cluster. The average Fst was 0.03, indicating that allele 

differences across the sub-populations are not due to drift alone. Starting with the selected 

candidates within each cluster, a family unit was identified by tracing back through the pedigree, 

identifying the genotyped ancestors and assigning them to a generation.  Each of the five families 

(F1, F2, F3, F4 and F5) were traced back for 10 generations, allowing for changes in frequency 

of individual SNPs over time to be observed, which we call allele frequency (AF) change. 

Alternative procedures were used to identify SNPs changing in a parallel or non-parallel way 

across families. For example, literature search of previously identified genes known to be 

changing in frequency, markers with the greatest association with time, markers that have 

changed most in the whole populations, and markers that have changed differently across 

families. The genomic trajectory taken, by each family, involves selective sweeps, polygenic 

changes, hitchhiking and epistasis. The Replicate Frequency Spectrum (RFS) was used to 

measure the similarity of change across families, and showed that populations have changed 
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differently, supporting the presence of genetic redundancy. The proportion of markers that 

reversed direction in AF change varied from 0.00 to 0.02 if the magnitude of change was greater 

than 0.02 per generation, or from 0.14 to 0.24 if the rate of change was greater than 0.005 within 

each family. Genome-wide association studies (GWAS) for stature was done for all clusters 

combined (ALL) and within each cluster. Utilizing the different SNP effects for indirect genomic 

predictions (IGP) resulted in reranking within family, indicating epistasis. Correlations between 

IGP for stature based on SNP effects from a specific cluster, or all combined, show that the 

exclusion of a cluster from the training population may reduce the accuracy of genomic 

prediction. Further research is required to determine how this knowledge can be applied to 

maintain diversity and optimize selection decisions in the future. 

Keywords: k-means, clustering, polygenic adaptation, hitchhiking, selection sweeps, epistasis 

INTRODUCTION 

Understanding the population structure of a breed is critical in revealing its genetic 

diversity and the changes occurring within its genome over time. Stratification allows for the 

identification of SNP that change in frequency in a uniform way across all subpopulations, as 

well as those that change in a unique way within one, or more, subpopulations. Without 

stratification, the pooling of all animals together masks these family specific changes. In recent 

years, an abundance of genomic information on different species undergoing adaptive response 

to environmental change or selection for different agricultural goals has become available. This 

has led to new ideas on how to evaluate adaptation and understand the genetic architecture of 

traits. 

The additive genetic model does an excellent job of allowing breeders to change the 

phenoypic average of a population towards a desired goal. However, it does not expose the 
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genetic complexity and diversity that help maintain the genetic variation that allows for both 

current and future genetic change. The additive breeding value itself is the sum of all markers 

affecting the trait, while the total breeding value also include interactions and other non-additive 

effects. The different combinations may be infinite, thus, populations may show non-parallel 

changes in gene frequencies. Heterogenous change in allele frequencies among sub-populations 

is an indication of genetic redundancy (Barghi et al., 2019). 

Genetic redundancy allows multiple genetic pathways to achieve the same phenotype, 

essentially providing more beneficial variants than needed (Goldstein and Holsinger, 1992, 

Nowak et al., 1997). Therefore, populations that have been separated and selected for the same 

trait, may have undergone different changes in allele frequencies (AF) even when phenotypes are 

similar. This is due to different sets of loci responding differently to the same selection pressure 

(Barghi et al., 2019). Genetic redundancy arise through multiple factors. One or more genes may 

serve the same function and therefore, the absence of expression in one may not affect the 

phenotype (Pickett and Meeks-Wagner, 1995). Additionally, highly polygenic traits are 

influenced by many genes that each have a relatively small contribution to the phenotype, hence 

the infintisimal model (Bulmer, 1971, Turelli, 2017). Each allele would then be expected to 

slowly change by subtle shifts, instead of selection sweeps of few genes (Höllinger et al., 2019). 

Additionally, many genes not directly involved in obvious biological pathways of trait 

expression may collectively explain more variation in traits than core genes, reflecting the 

omnigenic nature of traits (Boyle et al., 2017). It has been shown that up to 70% of trait variance 

can be attributed to trans-chromosomal effects through peripheral genes that impact the 

expression of core genes (Liu et al., 2019). These trans-chromosomal effects are partly due to 

pleiotropy (where genes are involved in the expression of more than one trait), and epistasis 
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(where the expression of one gene influences the expression of another). In the US Holstein 

population, the percentage of epistatic effects that were inter-chromosomal varied from 1.9% to 

84.2%, depending on trait (Prakapenka et al., 2021). 

The global dairy industry is dominated by a few breeds, in particular the Holstein. 

Concern has been expressed that artificial insemination has resulted in the widespread use of 

semen from a handful of bulls (Yue et al., 2015). Which can lead to higher inbreeding and 

genetic similarities worldwide. Although this genetic connectedness can be advantageous for 

genetic evaluations and the similarity of animals provides a more uniform and predictable 

product, it may be problematic for long-term genetic improvement and adaptability. While 

inbreeding can increase the frequency of favorable genes for traits under selection, it leads to the 

decrease in performance of other traits, in particular fertility and overall health (Pryce et al., 

2014), as well as the loss of rare alleles that could be of importantance in the future. Maintaing 

genetic diversity is considered crucial for a population to adapt to changing environments, such 

as climate change and consumer preferences. 

The objectives of this study were to investigate the amount of stratification occurring 

within the U.S. Holstein population, and the role that genetic redundancy contributes to the 

differences in these sub-populations. 

MATERIALS AND METHODS 

Genotypes were available for the US Holstein population up to 2014. The number of 

animals in the pedigree was 9,817,252, which contained 330,837 sires and 5,471,039 dams. The 

most progeny for a sire was 58,266 (USAM000001626813 - Mars). The average number of 

progeny per sire was 29. The data file contained only type traits, and totaled 10,067,745 records. 
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After removal of unmapped and sex chromosomes, 58,990 SNP markers remained. Genotypes 

were available for 569,404 animals. 

The genomic relationship matrix (G) was obtained using the formula 𝐆 =
𝐌𝐌′

2 ∑pi (1−pi )
  

where M is a matrix of SNP content centered by twice the current allele frequencies, and pi is the 

current allele frequency for SNP i (VanRaden, 2008).   

Clustering the selected candidates 

Potential selection candidates in 2014 were identified as sires of animals born after 2010 

with at least 25 progeny (3,902 animals), and cows that were recorded for type traits in 2013 or 

2014 (16,197 animals).  The animals represented 14 countries, including Australia, Austria, 

Canada, Czech Republic, Germany, Denmark, Finland, France, Great Britain, Hungary, Italy, 

Netherlands, Sweden, and the US. K-means clustering with a built-in R package (Hartigan and 

Wong, 1979) and 50 iterations was based on the genomic relationship matrix (G) to identify five 

clusters of animals (C1, C2, C3, C4, and C5) as giving shape to the genetic diversity of the 

Holstein. The number of animals in each cluster is presented in table 6.1. A principal component 

analysis plot is presented in Fig 6.1. Hypothetical matings were performed within and across 

clusters with the INBUPGf90 software package within the BLUPF90 software suite (Misztal et 

al., 2014b). Expected inbreeding of offspring was calculated for every possible mating between a 

specific group of sires and specific group of dams. Solutions were based on the complete 

pedigree information of the Holstein population assuming non-zero inbreeding for unknown 

parents (Aguilar and Misztal, 2008). The average expected inbreeding of animals when mating 

within-cluster, and of all animals in across-cluster scenarios are presented in table 6.2.  
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Families 

Five families were formed, not based on a stringent pedigree structure, but by the 

transmission of alleles identical by descent flowing down through the generations amongst a 

subgroup of highly related animals. To track the gene flow over time, the selection candidates 

were labeled as generation 10 (G10). Within each cluster of G10, the pedigree was traced back 

for 10 generations, with parents, grandparents, and greatgrandparents of G10 labeled as G9, G8, 

and G7 (up to G0) to form five families (F1, F2, F3, F4, F5). Figure 6.2 visually explains how 

families were constructed. Grouping of animals into different families is highly dependent upon 

the most recent ancestors. Ancestors varying in their occurrence in different families, alter the 

gene flow, resulting in different allele frequencies across families.  The number of genotyped 

animals in each generation of each family are presented in table 6.1. Due to the overlapping of 

generations and abundance of admixture amongst families, animals may appear in different 

families and in several different generation. Table 6.3 shows the number of times that several 

prominent bulls appear as a sire of a G10 animal, or genotyped G9 animal, in different families, 

while table 6.4 shows the number of times highly influential bulls appear in each family. Table 

6.5 shows the number of animals unique to each family, or common to all, within each 

generation. As shown in Fig 6.3, 82% of animals appear in more than one family in G0, while 

54% of the animals are common to all families. As generations pass, the proportion of ancestors 

shared becomes smaller. By G6, the number of animals in common for all families is greater than 

the number of animals unique to any family. The total number of unique animals for each family 

is 4,355 (F1), 3,555 (F2), 3,574 (F3), 7,107 (F4), and 4,879 (F5). 
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Changes in allele frequencies 

Changes in allele frequencies (AF) for the whole breed were calculated from the 

differences in AF between each generation for all families combined. Specific within family AF 

changes were determined solely from within family generational data. Six different procedures 

were used to identify SNPs changing in a parallel or non-parallel way across families. These 

procedures included investing AF changes for specific genes (GENES) known to be changing in 

our specific population, GWAS on the whole population with birth year considered a trait 

(TIME), largest regression coefficient (COEF) when regressing AF on generation number, the 

variance and range in the absolute difference in AF between the youngest and oldest generation 

across the five families (VAR and RANGE), and those SNPs identified by the Lewontin and 

Krakauer’s test (LK). 

Selected genes (GENES)  

The DGAT1 gene on chromosome 14 was chosen to observe over time due to its known 

significant genetic effect on milk production (Thaller et al., 2003, Barbosa da Silva et al., 2010). 

Additionally, AVEN (chromosome 10), SPATA6 (chromosome 3), ERBB4 (Chromosome 2), 

SKIV2L (chromosome 23), and USP13 (chromosome 1) were chosen based on results from Ma et 

al. (2019), which showed that these genes are among those that have changed the most in the US 

Holstein population. Their findings were based on a comparison between modern animals and 

the animals from the University of Minnesota Holstein control line. This line has been unselected 

since 1964. The chosen genes were not on the same chromosome, nor on the sex chromosomes. 
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SNP identified with GWAS for birth year (TIME) 

To identify alleles with unknown functions that are most associated with time, we 

performed a single-step genome-wide association study (GWAS) using blupf90 software 

(Misztal et al., 2014b) with birth year as trait  (Rowan et al., 2020). The model was: 

y = xb + Zu + e 

where y is the vector containing birth year, x is a vector of ones to assign the mean (b) to 

all records, Z is an incidence matrix assigning the measurements to the random animal effect, u 

is a vector of solutions for animal effect, and e is the residual. Single-step genomic BLUP 

(ssGBLUP) was performed with BLUPf90IOMD2 to obtain genomic breeding values (GEBV) 

for all animals. This required a relationship matrix that combines both genotyped and 

ungenotyped animals (H). The inverse of the H matrix is constructed as (Aguilar et al., 2010): 

𝐇−𝟏 = 𝐀−𝟏 + [
0 0

0 𝐆−𝟏 − A𝟐𝟐
−𝟏] 

Where A is the traditional pedigree relationship matrix among all animals, and A22 is the 

pedigree-based relationship matrix between only genotyped animals. The approximated inverse of 

G was constructed using the algorithm for proven and young (APY) with 15,000 randomly selected 

animals as core (Misztal et al., 2014a). To reduce bias due to the different genetic level of 

genotyped and non-genotyped animals, G was tuned to be compatible with A22 using the method 

described by Chen et al. (2011). To avoid singularity of the relationship matrix, 5% of A22 was 

combined with 95% of G. A weighted G was constructed using non-linear methods (VanRaden, 

2008) and evaluations followed 3 iterations. The SNP effects were estimated based on these GEBV 

using the POSTGSF90 software package with the formula (VanRaden, 2008, Wang et al., 2012): 

�̂� = λ𝐃𝐌′𝐆−1(GEBV) 
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where �̂� is a vector of estimated SNP effects, λ is the ratio of SNP to additive genetic 

variance, D is a diagonal matrix of weights for SNP, and M was defined before. The 5 SNP that 

showed the greatest effects were selected. 

Change in AF over generations (COEF) 

All families were combined to determine the AF change over time for the overall 

population. The AF was calculated for each generation and regressed over generations to obtain 

a slope for each SNP marker. The formula was 𝑦𝑖𝑗 = 𝛽0𝑖 + 𝛽1𝑖𝑥𝑗 + 𝑒𝑖𝑗 , where yij is the vector 

of AF for SNP i in generation j, 𝛽0𝑖 is the mean AF for SNP i, 𝛽1𝑖 is the regression coefficient 

over generations for SNP i, 𝑥𝑗 is a vector of generation j (11 levels), and 𝑒𝑖𝑗 is the error 

associated with SNP i in generation j. The 20 SNP with the greatest change over time were 

identified. Of these SNP, 5 that were further apart from each other were identified. The ranking 

based on β1 for these SNP were 1, 5, 6, 16, and 19. 

Greatest variance of change over generations within families (VAR) 

The absolute difference between G10 and G0 was calculated within each family, 

providing an estimate for change in AF over time. To identify SNP markers that have changed 

differently across families, the variance of these differences in the five families was calculated. 

The 20 SNP with the highest variance were identified and 5 were selected to avoid having 

markers close to each other. The ranking based on the variance were 1, 2, 3, 5, and 19. 

Greatest range of change over generations within families (RANGE) 

The range between the AF change of the family with the least change, and that of the 

family with the greatest change was calculated. This is an additional measure to identify SNP 

markers that have changed differently across families. The top 20 SNP were identified and five 
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were chosen to avoid markers close to each other and eliminate those that were also among the 

top 20 based on variance. The ranking based on range were 2, 5, 7, 9, and 13.  

Lewontin and Krakauer test (LK) 

Genetic drift and migration are also contributors to changes in gene frequencies over time 

(Falconer and Mackay, 1996). The Lewontin and Krakauer test (TLK) aims to identify markers 

that changed due to selection, not drift or migration (Lewontin and Krakauer, 1973). The test 

makes use of a measure of genetic differences among sub-populations, namely the Fst test as 

defined by Wright (1943). The Fst test is effectively the fraction of total genetic variance due to 

differences among sub-populations. Only SNP markers with a MAF > 0.05 based on all families 

combined were used for this test. The AF of these SNP within G10 of each family were 

calculated. Let p = (p1,…,p5) be a vector of the AF of an individual SNP in each of the 5 

families. The Fst for each SNP was calculated as: 

𝐹𝑠𝑡 = 
𝑠𝑝

2

�̅�(1 − �̅�)
 

where �̅� is the mean of vector p and 𝑠𝑝
2 is the sampling variance of each SNP across families. 

This is used in TLK formula (Lewontin and Krakauer, 1973): 

𝑇𝐿𝐾 = 
𝑛 − 1

�̅�𝑠𝑡

 𝐹𝑠𝑡 

where n is the number of families and �̅�𝑠𝑡 is the mean Fst of all markers. The TLK follows a χ2
 

distribution with n-1degrees of freedom. P-values were obtained from this distribution based on 

the TLK of each marker. The Bonferroni adjustment, and the false discovery rate (FDR) were 

used as measures of significance. The five SNP markers with the highest -log(p-value) were 

selected. 
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Epistasis 

The interaction between loci (epistasis) is a non-additive genetic contributor to the 

genetic architecture of quantitative traits (Mackay, 2014). If epistatic effects are present, it is 

expected that SNP effects may be significant in sub-populations, but not in the whole population. 

Therefore, a modified mechanical heuristic approach was taken to compare effects across 

populations and with the whole population (Reverter et al., 2018). Six GWAS were performed 

with stature as trait – one with all female animals of G10 combined (ALL), and one with all 

females within each cluster of G10. The model was as described by Tsuruta et al. (2021). Unlike 

the GWAS with birth year as trait, GBLUP was performed instead of ssGBLUP. Thus, only 

genotyped animals were included in the analysis and the genomic relationship matrix (G) was 

not blended with the traditional pedigree relationship matrix. To make G invertible, 0.05 was 

added to the diagonal of G. Significance was determined based on the p-value with Bonferroni 

correction, and the false discovery rate (FDR). Since stature is only measured on females, males 

were removed and more daughters with measurements were added to increase the representation 

of genotyped males. These daughters were born after 2005, had phenotypes, and were unique to 

each cluster. The number of females in C1, C2, C3, C4, and C5 before adding these daughters 

were 2 866, 2 627, 2 572, 4 908, and 3224, respectively. The number of unique daughters added 

to each cluster were 678, 1 222, 1 287, 5 462, and 658, respectively. Only genotypes of female 

animals were used as training population. The genotypes of male animals were used as validation 

populations to compare indirect genetic predictions (IGP) obtained using SNP effects based on 

each cluster or ALL. The number of training (and validation) animals were 3 544 (711), 3 849 

(446), 3 859 (730), 10 370 (1023), 3 882 (992), and 25 504 (3902) for C1, C2, C3, C4, C5, and 

ALL, respectively. The IGP for validation animals in each cluster when using different SNP 
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effects were compared using a Pearson correlation, with IGP based on within-cluster SNP effects 

as the benchmark for comparison (Table 6.6). This is a measure of correlations between two 

popolations, as proposed by Duenk et al. (2020). The method provides two different correlations 

since one refers to the IGP of population 1 based on the SNP effects of population 2, and the 

other to the IGP of population 2 based on the SNP effects of population 1. Animals from each 

cluster were ranked according to their IGP based on different SNP effects. Table 6.7 shows the 

ranking of 10 bulls (two bulls from each cluster) when using different SNP effects. 

Genetic redundancy 

The replicate frequency spectrum (RFS) can be used as a measure for heterogeneity and 

genetic redundancy across populations (Barghi et al., 2019). This identifies the percentage of the 

top 100 SNP markers (based on different criteria) that change similarly in different clusters. 

Criteria included the 100 markers with the highest Fst , VAR, and RANGE. Table 6.8 shows how 

many of these markers had AF changes greater than 0.10 or 0.30 (from the earliest generation to 

most recent) in each family. Additionally, the regression coefficient when regressing AF over 

generations within each family was used to identify the 100 markers that have changed the most 

in each family. Table 6.9 shows how many of these markers also changed in other families. 

The proportion of markers that have changed direction within each family (initially 

increased but later decreased, or initially decreased but later increased) was calculated. Change 

was measured by comparing the regression coefficient when regressing AF over G0 to G5, and 

the regression coefficient when regressing AF over G5 to G10. Instead of using zero as cut-off 

point for directional change, we identified those that changed in one direction (increased or 

decreased) at a rate of at least 0.02 per generation in the first phase, and in the opposite direction 

at a similar rate in the second phase. Less strict cut-offs of 0.01 or 0.005 per generation were also 
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used to detect more subtle directional changes. The number and proportion of markers that have 

changed direction are presented in Table 6.10. 

RESULTS AND DISCUSSION 

Studies have shown that cross-validation accuracy to determine the usefulness of 

genomic prediction was lowest when using k-means as clustering (Saatchi et al., 2012, 

Boddhireddy et al., 2014, Baller et al., 2019). Since the accuracy of genomic predictions depends 

on the relationships between the training and target populations (Habier et al., 2010, Clark et al., 

2012, Pszczola et al., 2012), this suggests that k-means clustering is successful at separating 

groups that are more related to each other, but less related to other clusters. K-means clustering 

identified five clusters as giving shape to the genetic diversity of the Holstein breed. The PCA 

plot in Fig 6.1 reveal different, but overlapping subgroups within the population. 

Cluster differences 

High within-cluster inbreeding and low across-cluster inbreeding indicates that animals 

have indeed been separated into clusters with animals that are genetically more similar to each 

other, and more different compared to animals in other clusters. A noticeably small expected 

inbreeding occurs for all mating scenarios with animals in C4, whether within- or across-cluster. 

This shows that although C4 is more different than other clusters, it still contains enough 

variation within itself to allow low inbreeding (table 6.2).  

An additional measure of genetic differences, is the fixation index (Fst), which is an 

indication of genetic changes not due to drift alone. The average Fst value for markers across the 

five clusters was 0.03, which is lower than the 0.07 found in a French study that compared three 

different dairy breeds  – Holstein, Montbéliarde, and Normande (Flori et al., 2009) – but higher 

than the expected value (0.00) if populations were uniform. The selected candidates do not 
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represent one large panmictic population. They come from a complex mixture of family 

subgroups with differences in AF. 

Genome changes 

There are two main fields of thought on how alleles change under selection. Selection 

sweeps, in which favorable alleles quickly move towards fixation, favors traits that are 

influenced by few genes with large effects and less pleiotropy. Subtle frequency shifts occur 

more often in highly polygenic traits following the infintisimal model (Höllinger et al., 2019). 

Three phases for AF change of a trait under selection have been identified using simulated data 

for a trait with an intermediate optimum. The first is the directional selection phase where AF of 

multiple loci move towards the trait optimum. The second is a plateauing phase, where the 

frequency changes slow down and remain more or less at the same level. The third phase is 

where the alleles either move to fixation (or are lost) and the trait mean stabilizes. These separate 

phases occur over hundreds of generations. Factors that affect the duration of these phases 

include the effective population size, number of loci, selection intensity, distance to the new 

fitness optimum, the distribution of effect sizes, and the starting frequencies of the alleles 

(Franssen et al., 2017). 

“Evolve and re-sequence” studies observe changes in AF over generations. An example 

is the study by Barghi et al. (2019), where they observed a natural outcross population as it 

adapted to a higher temperature. This led to different subpopulations with their own genetic 

solutions (redundancy) to converge to the same phenotypic goal. Genetic redundancy in dairy 

cows is expected as breeders define an overall breeding objective or fitness measure and then 

select breeding animals from the available candidates representing several different 

subpopulations. 
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To fairly compare the genomic changes across families from a similar starting point, it is 

important for the earliest generation to contain similar animals, while the more recent 

generations are different. The large proportion of shared ancestors in the earlier generations 

allows for greater similarity. This can be seen in tables 6.3 and 6.4. Prominent bulls, such as 

Planet, Goldwyn, Shottle, BW Marshall, and Oman are not exclusive to a specific family as they 

appear in the different families and generations. However, differences in their proportional 

influence upon a family allows them to shift the frequency of different alleles over time. 

Heterogenous changes in AF across families can come from similar ancestors contributing a 

varying percentage of descendants. Tracing back to some of the historically most prominent 

ancestors, such as Elevation, Chief, and Blackstar, it can be seen that they are more evenly 

represented in the genotyped animals of each family. This provides a homogenous early genetic 

base with similar initial AF across all families. 

Our analysis concentrated on temporal changes in AF over several generations amongst 

five different families. Heterogeneity in AF changes across families indicates that different sets 

of SNPs are changing over time. Having several distinct families with diversity in their genome 

helps to maintain genetic variation over time. Comparing AF changes in our study allowed us to 

identify signatures of selection that are family specific. Fixation of alleles was infrequent across 

the whole population (3 alleles), however, it was greater and varied within families. The number 

of alleles (from the 58,990 SNP markers) that became fixed within each family were 38, 22, 22, 

59, and 40 for F1, F2, F3, F4, and F5, respectively. None could be described as a selective sweep 

as all had initial frequencies near fixation. The genome trajectory taken by each family, involves 

selective sweeps, polygenic shifts, hitchhiking, epistasis, and genetic redundancy. These can be 

observed in plots of specific alleles selected based on these different criteria: 
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GENES 

The AF change for DGAT1 for all families are presented in Fig 6.4. It starts at a high 

frequency and remains relatively unchanged, or show small increases, for four of the families. 

This gene is known to have a significant effect on fat yield (Spelman et al., 2002, Thaller et al., 

2003, Jiang et al., 2019). The high starting point of AF in G0 is not surprising given that milk 

production traits have undergone selection decades before the birth of our G0. If this gene was 

acting alone, the expectation would have been that it would be fixed in the population. However, 

due to its antagonistic effects with milk yield, AF have remained similar over time (Jiang et al., 

2018). The change for F2 is distinctly different, clearly decreasing. Surrounding SNP markers 

also show different behavior compared to other families. This may reflect a change in breeding 

objectives in the dairy industry. While fat yield was widely considered as unfavorable for human 

health, the attitude towards fat in diets changed within the last few decades. This sub-group may 

capture animals that were selected more for solids than milk yield. 

The AVEN gene is associated with male fertility (Laurentino et al., 2011) and shows 

similar increasing trends in AF changes, with surrounding SNP markers showing different 

behavior in F2 (not shown). The ERBB4 gene is involved in embryonic lethality (Tidcombe et 

al., 2003). The F1 and F5 show sharper increases in AF compared to other families, but the 

overall trend may also be considered as similar. The surrounding SNP markers in F1 show 

signals of hitchhiking (Fig 6.5).  It is possible that this is only observed in F1 because linkage 

disequilibrium (LD) was lost due to recombination in other families. 

The SKIV2L gene is also involved in fertility (Ma et al., 2019). Here, more heterogeneity 

is observed as the AF in F3 start to decrease from G9 while others continue to increase. 

Differences can also be observed in the surrounding SNP markers (not shown). The SPATA6 
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gene is associated with sperm quality (Yuan et al., 2015) and also shows heterogenous changes. 

The AF increased up to G7 for all families, after which they plateau or slowly decrease in F2, F3 

and F4, decrease more sharply in F5, and increase sharply in F1 (Fig 6.6). The surrounding SNP 

also behave differently in F1. The USP13 gene is involved in the immune system (Zhang et al., 

2013) and shows change in different directions across the families (Fig 6.7). This difference in 

direction of change may indicate epistatic effects that are different in the families. 

TIME 

Genes that are most associated with time are expected to be those that have been 

subjected to selection. There were no clear SNP markers that showed exceptionally strong 

associations with time. The AF of the SNP with the greatest, and fourth greatest effect on birth 

year are more consistent in direction across families (not shown). More non-parallel changes are 

observed for the three other SNP in the top 5. In F1 and F2, sharper decreases can be observed 

for the SNP second most associated with time. The AF in F2 and F4 appear to plateau after 

decreasing, and increase in F3 after an initial decrease. The surrounding SNP markers show 

similar behavior in F1, F2, and F3 compared to the other families (Fig 6.8). For the SNP third 

most associated with time, AF in F5 show a sharp change in direction, while AF slowly decrease 

in the other families. The surrounding SNP behave differently in F4 (Fig 6.9). The AF changes 

for the SNP fifth most associated with time, along with some surrounding SNP, show greater 

changes in F1 compared to the other families (Fig 6.10). 

COEF, VAR, and RANGE 

The regression coefficient when regressing AF over generations for the whole population 

(COEF) was used to identify SNP markers that have changed the most over time. Thus, this is 

not family specific. The change in AF is fairly consistent in direction and magnitude across all 
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five families for two of the top five selected SNP, such as in Fig 6.11 and 6.12. This rapid 

change in AF for all families may reflect a partial selection sweep for a gene that has undergone 

selection. Some surrounding SNP markers change at a similar rate, but in opposite directions, 

and are more pronounced in some cases. This can be a hitchhiking effect by nearby markers. It is 

possible that our selected marker is in fact the hitchhiker, instead of the gene under selection.  

The variance of change was used as a measure to identify scenarios where at least one 

family show small changes while at least one other family shows a large change. For all five 

selected SNP, F1 and F5 follow similar trends, while F2 and F3 have trends similar to each other, 

but in a different direction and pattern compared to F1 and F5 (Fig 6.13 and Fig 6.14).  This 

change in direction may indicate epistasis, where the fate of a given allele is highly contingent on 

the allelic makeup at other loci within the family. Surrounding SNP markers show stronger 

linkage in Fig 6.13, while those in Fig 6.14 show weak linkage. 

The range between the family with the least change and family with the most change was 

also used to identify SNP that behave differently in the families. The top 3 selected SNP showed 

the greatest change in F1, as well as stronger responses in the surrounding SNP (Fig 6.15 shows 

the SNP with the greatest range). The fourth and fifth selected SNP markers show changes in 

different directions across families (such as Figures 6.16 and 6.17). 

LK 

Figure 6.18 includes the resulting Manhattan plot of the -log10(p-value) of each SNP 

marker. Peaks are observed and some approach significance, but none of the SNP markers met 

the criteria for statistically significant differences (p<0.05 with a Bonferroni adjustment for the 

number of markers, or FDR). The AF change for five SNP nearest to the significance threshold 

were investigated. All were markers that started with AF close to fixation. While the AF 
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remained stable for four of the families, one family (F1 for 4 of the SNP, and F2 for the other) 

showed a dramatic change in the recent generations (Fig 6.18). These may have been the result 

of strong divergent selection. Figure 6.19 shows the distribution of Fst values of all markers. 

While most markers are smaller than 0.05, a subset of markers reach Fst values higher than 0.10. 

Genetic redundancy 

The replicate Frequency Spectrum (RFS) is a measure of redundancy. Tables 6.8 and 6.9 

show the number of SNP markers, identified as the top 100 based on different criteria, that 

change similarly in different clusters from G0 to G10 (AF change greater than 0.10, or greater 

than 0.30). Clear differences were observed. Based on Fst, F1 and F2 showed the greatest change, 

with over 60 SNP markers changing more than 0.10 in both, while 16 or less change similarly in 

the other families. In general, F4 shows the least change. Family 1 shows the greatest number of 

SNP with AF change greater than 0.30, and usually the most when AF change is 0.10. Table 6.9 

compared changes of the 100 SNP with the greatest regression coefficient from G0 to G10 

within each specific family, instead of the population as a whole. The AF change must be greater 

than 0.20, or greater than 0.30. Again, F4 has the fewest number of SNP that change more than 

0.30. However, differences across-clusters are more similar when change is greater than 0.20. 

Based on these results, we conclude that genetic redundancy is indeed present. 

Epistasis 

Interactions among genes create more genetic diversity, may account for missing 

heritability (Mackay, 2014), and lead to different allele substitution effects across populations 

(Legarra et al., 2021). Epistasis and different substitution effects can be observed by comparing 

results from GWAS and the IGP obtained if different sets of SNP effects are used. The 

Manhattan plots for the GWAS using ALL or each cluster separately showed different peaks. 
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Only ALL and C4 had large enough numbers to identify significant markers, thus only they are 

presented in Fig 6.20. When ALL was used in our study, significant markers for stature were 

found on chromosomes 5, 11, 14, 15, 18, and 29, while C4 identified one on chromosome 14 and 

one on chromosome 20 as significant. Chromosome 5 was the only chromosome that appeared 

among the top 20 in all scenarios. According to Cole et al. (2011), chromosome 5 and 11 share 

significant markers for stature and body depth in Holstein, while the most significant markers on 

an autosomal chromosome for stature were on chromosome 11. More recently, Abo-Ismail et al. 

(2017) found that 30% of markers associated with body conformation in US Holstein cattle were 

located on chromosome 5, while a further 27% were on chromosome 18, and 5% on 

chromosome 14. Markers specifically associated with stature were on chromosomes 5, 11, 18, 

and 29, with chromosomes 5 and 18 having most significant markers. Chromosome 29 carried 

markers associated with stature in Chinese Holstein (Wu et al., 2013). Our smaller population 

sizes in C1, C2, C3, and C5 did not allow us the power to detect significant markers. 

Table 6.6 presents the correlations between IGP based on different training populations 

as measures of genomic correlations between clusters. All are compared to the IGP within-

cluster (e.g. IGP of males in cluster X when SNP effects were based on females of the same 

cluster). Correlations between within-cluster IGP and IGP based on ALL vary from 0.70 to 0.88. 

The across-cluster predictions have lower correlations with the IGP obtained when using within-

cluster effects, ranging from 0.38 to 0.62. The correlations with ALL are expected to be higher 

than using across-cluster SNP effects since all clusters are represented in the training population. 

It has been shown that all breeds must be included in the training population in multi-breed 

evaluations to obtain high accuracies for each single breed. Across-breed prediction is poor, even 

when the training population include more than one breed (Pryce et al., 2011, Olson et al., 2012, 
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Raymond et al., 2018, Steyn et al., 2019). Our results suggest that the clusters among G10 are 

indeed genetically different. Non-additive gene actions, such as dominance and epistasis, can 

contribute to these differences. A correlation lower than 0.80 is not due to dominance alone. 

Epistasis may play a considerable role. In a simulation with realistic epistatic scenarios decreased 

the correlation between populations to as low as 0.45 (Duenk et al., 2020). The lowest 

correlation observed in our data, is 0.47, while the highest is 0.88. Thus, results suggest that 

epistasis is present. 

Another indication of epistasis is a change in direction of AF change. The frequency may 

increase, or decrease initially, but change antagonistic relationships with other genes is present. 

These may be due to de novo mutations or a change in selection pressure, whether due to 

artificial or natural selection. Table 6.10 shows the number of SNP markers that have changed 

directions when comparing the regression coefficient of AF over G0 to G5, with the regression 

coefficient of AF over G5 to G10. While the number of SNP that reversed direction over time 

numbered in the thousands, the proportion of SNP markers that initially increased (or decreased) 

by 0.005 per generation until G5, and then changed at the same, but opposite, rate, range from 

0.14 in F4 to 0.24 in F1. 

Reranking of IGP 

An important consideration when calculating the breeding value of an animal is the 

specification of the population(s) where the animal will be mated. Wade and Goodnight (1998) 

reviewed the assumptions used in Fisher’s infinitesimal model and Wright’s shifting balance 

theory. The US Holstein, under Fisher’s model, would be described as a single, large, panmictic 

populations with a singular set of allele substitution effects. The average effect of an allele would 

be estimated from all animals combined and the targeted mates would be from a uniform 
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population. Under Wright’s model, the Holstein breed consists of multiple demes (or families) 

with shifting allelic values depending upon the genetic background of these sub-populations. 

Genetic redundancy, across families, leads to the additive effect of an allele varying between 

families and resulting in a unique set of breeding values for each family. Our results are more in 

line with Wright’s shifting balance theory where reranking is expected within different sub-

populations. 

Table 6.7 shows the ranking of ten specific bulls (two from each cluster) based on their 

IGP when using ALL, or each separate cluster. Reranking of bulls depending upon the target 

population is clearly evident. While Airlift ranks the highest of all the G10 males when using 

ALL SNP effects, he only ranks within the top 10 again when using SNP effects of C2. Alleles 

have different substitution effects in populations, and therefore alleles that are more favorable in 

one population, may not be favorable in another. Further investigation is required to determine 

whether results from this study can be used to improve the accuracy of genetic evaluations for 

the individual subgroups within the population. If subgroups are truly different, excluding one 

from the training population could mimic across-population genomic prediction, which 

consistently gives poor prediction accuracies even with high density markers and sophisticated 

techniques (Hayes et al., 2009, Karoui et al., 2012, Raymond et al., 2018). Genomic selection is 

more accurate when the training population is closely related to the target population (Clark et 

al., 2012, Chen et al., 2013). Current national evaluations include genotypes of many shared 

ancestors, which could ensure improvements in prediction accuracy across all subgroups. 

Limitations 

Replicate populations over time are useful for the observation of adaptation (Franssen et 

al., 2017). Ideally, these replicates should be from the same environment, share a founder 
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population, and evolve independently to the same environmental stressor (Barghi et al., 2020).  

In our study, the high overlap of animals in our families in older generations allowed us to have 

reasonable founding populations that are similar across families. Differences from this starting 

point over time reflect both divergent selection and genetic redundancy. 

Genotypes of older Holstein animals in our data do not reflect a true baseline of animals 

that were part of the gene pool at the time, since they are generally animals that were 

predominantly bulls and considered to be best. However, these bulls were widely used in 

artificial insemination (AI) programs. Therefore, their genetic material is expected to be present 

in large proportions of the population. In 2015, it was shown that all AI bulls could be traced 

back to only 2 bulls born in 1880. Two highly influential bulls, Pawnee Farm Arlinda Chief and 

Round Oak Rag Apple shared Y-chromosomes with 48.78%, and 51.06% of the Holstein bull 

population in the 2010s (Yue et al., 2015). Both these bulls are included in our study. Our 

imbalance of sexes among older genotypes is not unlike the study by Barghi et al. (2019), where 

only females were genotyped in the founder population. During more recent decades, genotyping 

costs have decreased enough for breeders to genotype most of their animals, regardless of their 

genetic merit or sex. This will enable future studies to use AF that are more reflective of the 

whole population over time. 

Other limitations of our study include the small number of replicates and generations. 

More generations will be better to detect the genetic change in different sub-populations. 

Additionally, our families are not closed families. Not all parents were genotyped and therefore, 

not all genetic changes over time are captured by our animals. This is also similar to the study by 

Barghi et al. (2020) where not all replicate members were genotyped.  
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The number of genotypes available among the selection candidates are too small to reach 

sufficiently accurate and significant GWAS results. However, even with our data, differences in 

results still support our hypothesis. Our work may serve as a preliminary study to encourage the 

investigation of adaptation and genetic redundancy in future once these obstacles are overcome. 

Considerably more genotypes have been collected since 2014. Their inclusion in future studies 

will greatly increase the ability to investigate the differences among sub-populations more 

thoroughly.  

Implications 

Non-parallel changes across families reveal genetic redundancy, however, since families 

may differ in genetic merit, this may be confounded with divergent selection. Whether due to 

selection or redundancy, non-parallel change shows underlying genetic diversity within the US 

Holstein breed. These results have important implications for the projection of long-term genetic 

response in the breed and other large panmictic populations. Genetic selection in Holstein cattle 

has achieved a continued increase in milk production with no apparent sign of reaching a 

selection limit for the trait. A question arises whether selection should continue treating the breed 

as one large population with AF that can converge to the best overall average AF for the 

population, or as separate lines to increase the genetic distance between families. The latter can 

potentially prevent the loss of alleles that may be beneficial in future and allow outcrossing that 

can take advantage of heterosis. 

CONCLUSIONS 

The Holstein breed is a complex mixture of family subgroups with different allele 

frequencies and gene combinations. The different families offer redundant solutions to the goals 

of modern-day breeders. Genetic redundancy allows for the value of individual alleles to shift 
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over time in unique ways within a specific family. The substitution value of different alleles, and 

consequently the breeding value, will differ for different target populations such as a specific 

family versus the overall combined population. Stratification of selection candidates into unique 

subpopulations provides genetic redundancy, maintains diversity, and lowers the risk of the 

fixation, or loss, of alleles. 
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TABLES 

Table 6.1: The number of genotyped animals per generation within each family. The most recent 

generation (G10) was used for clustering. Their pedigrees were traced back 10 generations (G9 

to G0). 

Generation Family 1 Family 2 Family 3 Family 4 Family 5 

G10 3,577 3,073 3,302 5,931 4,216 

G9 1,513 1,471 1,478 2,830 1,859 

G8 1,337 1,242 1,302 2,364 1,591 

G7 1,043 975 1,004 1,666 1,161 

G6 838 792 797 1,139 914 

G5 645 582 608 839 669 

G4 467 432 454 603 489 

G3 336 304 310 426 346 

G2 243 229 221 299 245 

G1 189 171 171 223 183 

G0 148 135 137 171 146 
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Table 6.2:  The average expected inbreeding of offspring resulting from hypothetical mating 

within-cluster, and across-cluster. The expected inbreeding if animals were mated at random is 

0.12. 

Cluster ID Inbreeding within-cluster Inbreeding across-cluster 

1 0.22 0.11 

2 0.20 0.11 

3 0.18 0.12 

4 0.10 0.10 

5 0.17 0.11 
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Table 6.3: The number of times a prominent bull appears as a sire of animals in G10 (or G9) of 

each family. 

Name Family 1 Family 2 Family 3 Family 4 Family 5 

Planet 1 (321) 0 (42) 0 (27) 0 (13) 0 (104) 

Goldwyn 0 (99) 449 (399) 0 (92) 0 (43) 0 (158) 

Shottle 0 (209) 0 (171) 584 (492) 0 (44) 0 (222) 

Domain 22 (0) 42 (0) 118 (0) 276 (7) 43 (1) 

BW Marshall 0 (7) 0 (16) 0 (25) 34 (65) 2 (25) 

Oman 0 (77) 0 (49) 0 (49) 1 (20) 95 (223) 

 

 

 



139 

 

Table 6.4: The number of times historically prominent ancestors appear across all generations in 

each family 

Name Family 1 Family 2 Family 3 Family 4 Family 5 

Ivanhoe Star 7 7 6 7 7 

Chairman 8 8 6 9 7 

Chief 10 12 12 14 11 

Elevation 17 20 20 26 18 

Bell 29 25 24 33 26 

Starbuck 24 32 23 34 26 

Blackstar 49 47 44 53 41 
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Table 6.5: The number of animals in common for all families per generation, and number of animals unique to each family within 

each generation. 

Generation Common Unique 

  Family 1 Family 2 Family 3 Family 4 Family 5 All within 

generation 

G10 0 4,355 3,555 3,574 7,107 4,879 20,099 

G9 55 783 703 623 1,862 831 6,546 

G8 253 380 290 247 952 392 4,150 

G7 397 169 141 120 469 169 2,478 

G6 411 92 84 72 234 98 1,635 

G5 351 66 42 41 159 66 1,142 

G4 288 38 34 25 98 41 793 

G3 218 25 14 21 75 24 540 

G2 169 17 12 6 48 20 370 

G1 131 8 5 5 24 7 261 

G0 108 7 3 4 17 6 200 
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Table6. 6: The Pearson correlations between indirect genomic predictions (IGP) obtained from 

SNP effects estimated with different populations. The benchmark for comparison was the IGP 

obtained from within-cluster analysis (thus males of cluster X based on SNP effects estimated 

using females of the same cluster). 

SNP effects 

used 

(females) 

Cluster predicted (males) 

 C1 C2 C3 C4 C5 

C1 1.00 0.47 0.59 0.48 0.58 

C2 0.41 1.00 0.49 0.47 0.38 

C3 0.45 0.45 1.00 0.54 0.59 

C4 0.56 0.53 0.62 1.00 0.57 

C5 0.53 0.38 0.58 0.44 1.00 

All 0.76 0.70 0.75 0.88 0.78 
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Table 6.7: The ranking of two bulls from each cluster when IGP for stature is based on different SNP 

effects. 

Bulls in G10 of cluster 1 

Bull Relationship Group SNP effects were based on 

All C1 C2 C3 C4 C5 

Doorman Planet grandson 43 158 825 871 152 777 

McCutchen Planet grandson 56 636 583 56 729 814 

Bulls in G10 of cluster 2 

Airlift Goldwyn grandson 1 101 3 64 44 276 

G.W. Atwood Goldwyn son 22 81 8 1150 212 446 

Bulls in G10 of cluster 3 

Edison Domain son 21 94 15 1 233 50 

Scorpio Domain son 326 265 272 9 281 524 

Bulls in G10 of cluster 4 

Chuckie Domain son 12 892 173 26 1 234 

Domain Sons in C3 and C4 167 465 114 15 114 153 

Bulls in G10 of cluster 5 

Monreal Oman grandson 2 46 97 140 30 2 

Broch Oman grandson 4 52 146 124 19 57 
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Table 6.8: Replicate frequency spectrum (RFS): The number of SNP identified as top 100 for Fst , greatest 

variance, or greatest range that have shown an allele frequency change greater than 0.10 (or greater than 

0.30) from earliest to last generation in each family. 

Top 100 SNP Family 1 Family 2 Family 3 Family 4 Family 5 

Highest Fst 61 (5) 63 (4) 15 (0) 13 (0) 16(0) 

Variance 67 (56) 59 (34) 74 (30) 48 (1) 52 (17) 

Range 71 (66) 56 (28) 64 (17) 60 (1) 70 (14) 

 

 

 



144 

 

Table 6.9: Replicate frequency spectrum (RFS): The number of SNP that have allele frequency changes 

(AFC) greater than 0.20 or 0.30 from oldest to youngest generation in each family, when SNP markers are 

selected based on the greatest absolute AF change when regressing allele frequencies over generations 

within each family. 

  Top 100 SNP in Family 1 

AFC  Family 1 Family 2 Family 3 Family 4 Family 5 

>0.20  100 75 89 74 86 

>0.30  100 45 61 26 59 

  Top 100 SNP in Family 2 

>0.20  83 100 97 89 77 

>0.30  57 100 68 25 51 

  Top 100 SNP in Family 3 

>0.20  76 87 100 95 75 

>0.30  60 61 100 31 46 

  Top 100 SNP in Family 4 

>0.20  82 90 99 100 90 

>0.30  68 67 78 55 60 

  Top 100 SNP in Family 5 

>0.20  69 75 93 83 100 

>0.30  50 57 57 20 100 
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Table 6.10: The number and proportion of SNP markers that have changed direction in each family. 

These are SNP that changed at a rate of 0.02, 0.01, or 0.005 allele frequencies per generation in one 

direction (positive or negative) from G0 to G5, and the same (but opposite) rate from G5 to G10. 

 Rate of allele frequency change 

Family >0.02  >0.01  >0.005 

 Number Proportion  Number Proportion  Number Proportion 

Family 1 1086 0.02  6765 0.11  14132 0.24 

Family 2 780 0.01  5986 0.10  13012 0.22 

Family 3 833 0.01  6238 0.11  13161 0.22 

Family 4 56 0.00  2172 0.04  8121 0.14 

Family 5 839 0.01  6285 0.11  13450 0.23 
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FIGURES 

 

 

Figure 6.1: Principal component analyses plots for three dimensions showing the clustering results of 

selected candidates (G10). 
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Figure 6.2: The resulting 5 clusters (here 4 are visualized) were considered as generation 10 (G10). From 

each cluster, pedigrees were traced back 10 generations (G9 to G0). Animals from a specific generation 

within a specific family were unique, but animals may appear in the same generation of other families. 

Due to overlapping generations, animals in one generation may also appear in other generations of the 

same family, or other families. 
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Figure 6.3:  The proportion of animals that appear in more than one family in each generation, and a 

Venn diagram illustrating the overlapping nature of families in generation 8 (G8) 
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Figure 6.4: The allele frequency of the DGAT gene (blue) and surrounding 20 SNP markers (red) per 

genration within each family.  
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Figure 6.5: The allele frequency of the ERBB4 gene (blue) and surrounding 20 SNP markers (red) 

per generation within each family.  
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Figure 6.6: The allele frequency of the SPATA6 gene (blue) and surrounding 20 SNP markers 

(red) per generation within each family.  
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Figure 6.7: The allele frequency of the USP13 gene (blue) and surrounding 20 SNP markers (red) 

per generation within each family.  
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Figure 6.8: The allele frequency of the SNP second strongest associated with birth year (blue) and 

the surrounding 20 SNP markers (red) per generation within each family 
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Figure 6.9: The allele frequency of the SNP third strongest associated with birth year (blue) and the 

surrounding 20 SNP markers (red) per generation within each family 

 

 

 

 

 

 



155 

 

 

Figure 6.10: The allele frequency of the SNP fifth strongest associated with birth year (blue) and the 

surrounding 20 SNP markers (red) per generation within each family 

 

 

 

 

 

 

 

 

 

 

 

 



156 

 

 

Figure 6.11: The allele frequency of the second selected SNP among the 20 SNP markers that have 

changed the most over time based on the regression coefficient (blue) and the surrounding 20 SNP 

markers (red) per generation within each family. The rate and direction of change are generally similar 

across families, with the exception of F5. 
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Figure 6.12: The allele frequency of the fifth selected SNP among the 20 SNP markers that have changed 

the most over time based on the regression coefficient (blue) and the surrounding 20 SNP markers (red) 

per generation within each family. The rate and direction of change are generally similar across families, 

with the exception of F2 and F4 that change direction from G9. 
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Figure 6.13: The allele frequency of the first selected SNP among the 20 SNP markers that have 

shown different changes across families (blue) and the surrounding 20 SNP markers (red) per 

generation within each family. Changes in F1 and F5 share the same pattern (decrease followed 

by a sharp increase), while F2 and F3 share the same pattern (continue to decrease). Many 

surrounding SNP markers follow the same, or opposite trend as the selected marker. 
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Figure 6.14:  The allele frequency of the first selected SNP among the 20 SNP markers that have 

shown different changes across families (blue) and the surrounding 20 SNP markers (red) per 

generation within each family. Changes in F1 and F5 share the same pattern (decrease followed 

by a sharp increase), while F2 and F3 share the same pattern (continue to decrease). 
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Figure 6.15: The allele frequency of the first selected SNP among the 20 SNP markers that have 

shown small changes in at least one family and large changes in another (blue) and the 

surrounding 20 SNP markers (red) per generation within each family. 
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Figure 6.16: The allele frequency of the fourth selected SNP among the 20 SNP markers that 

have shown small changes in at least one family and large changes in another (blue) and the 

surrounding 20 SNP markers (red) per generation within each family 
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Figure 6.17: The allele frequency of the fifth selected SNP among the 20 SNP markers that have 

shown small changes in at least one family and large changes in another (blue) and the 

surrounding 20 SNP markers (red) per generation within each family. 
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Figure 6.18: The Manhattan plot with p-values based on the Lewontin and Krakauer (LK) 

extension of the Fst test, and the allele frequency of the SNP with the highest LK-value (blue) 

and the surrounding 20 SNP markers (red) over generations within each family 
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Figure 6.19: The distribution of Fst values of SNP markers across the five different clusters in 

G10. 
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Figure 6.20: The Manhattan plot for the negative natural log of p-values for each SNP’s 

contribution to stature when based on G10 of all clusters combined (ALL), or only cluster 4 
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CHAPTER 7 

CONCLUSIONS 

Multi-breed and across-breed evaluations with or without crossbred animals are desirable 

for their potential simplicity and pooling of resources to obtain accurate genomic predictions for 

all animals. Many approaches have failed to improve accuracy of prediction beyond what could 

be achieved with within-breed evaluations. In particular, across-breed predictions have been 

consistently poor, even with sophisticated techniques. Reasons for the lack of success or 

improvement include the inability to capture LD across breeds, different substitution effects, lack 

of allele segregation in all breeds, different allele frequencies, little representation of a specific 

breed, non-additive genetic factors, and inability to include all QTL in the evaluations. In 

general, treating breeds as separate traits, appear to be more successful, as well as approaches 

that take breed of origin of alleles into account. When a breed benefits, it is usually the smaller 

breed, although breeds that are numerically too small may have even lower accuracies when 

being combined with another. Marker density is crucial in multi-breed evaluations to capture LD 

better.  

Results from our studies confirm that all breeds must be present in the reference 

population to at least obtain accuracies similar to within-breed evaluations. No benefits were 

found when combining breeds in a single, joint genomic relationship matrix. If marker density 

was low, the accuracy of multi-breed evaluations produced lower accuracies than within-breed 

evaluations, even when all breeds were in the reference population. Applying our non-shared 

SNP approach in compiling the genomic relationship matrix, prevented a reduction in accuracy, 
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but did not improve it. This is an advantage, as it can allow the use of fewer markers selected for 

their importance in each separate breed as non-shared SNP markers, while using those important 

in all breeds as shared SNP markers.  

The use of crossbred animals is becoming increasingly popular in the dairy industry, 

which is known for their large, within-breed evaluations. Low imputation accuracy has long been 

a reason for their exclusion in genomic evaluations. Including component pure breeds alongside 

crossbred genotyped can deliver imputation accuracies high enough to include in evaluations. 

Approaches that have shown to be successful include the use of breed proportions along with 

pure-bred specific SNP effects, or taking breed origin of allele into account. Results from our 

studies show that the accuracy of prediction for crossbred animals were similar, regardless of 

whether only one pure breed, both pure breeds, equal proportions of each pure breed and 

crossbreds, or only crossbred animals were used as reference. Using Jersey as reference was 

slightly better than using only Holstein. Using breed proportions with breed-specific SNP effects 

resulted in the lowest accuracies. Inflation was best if an equal proportion of each pure breed and 

crossbreds were used as reference. Thus, crossbred animals can be included in the reference 

population without accounting for breed proportion. Another recent study also found that using 

breed-specific effects along with breed proportions was less successful than simply combining 

all animals, or combining all while also accounting for breed origin of allele.  

Even within a single breed, distinct sub-populations can exist, either across-country or 

within. Animals with similar genetic merit can still be genetically different. This is mostly due to 

genetic redundancy, pleiotropy, and epistasis. Results from our study found that different sub-

populations have evolved differently over time due to these factors. Genetic redundancy is 

advantageous to maintain genetic diversity over time, even within a population that has been 
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strongly selected for production. This could allow even greater genetic improvement without 

great losses of diversity. Further work is required to establish the best way to apply the 

identification of distinct groups in mating program. 


