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Abstract

Although some research focuses on reducing the network sizes for Sum Product Networks and Sum

Product Max Networks, the current structure learning algorithms have no control over the network sizes

or the learning times. There exist some applications where the computation time is critical rather than

the model performance. Anytime algorithms provide an approach to trade-o� the computation time

with the quality of the models. In this work, we introduce anytime algorithms for learning the SPNs and

SPMNs. These algorithms return multiple models such that the initial approximate models need less

learning time and are small in size. But by allowing more nodes and computation time, the performance

of the networks improves over time. We evaluate the anytime algorithms over a testbed and demonstrate

that the performance of the SPNs in terms of the log-likelihood and the SPMNs as given by the average

rewards improves and re�ect the performance pro�les as expected for an anytime algorithm.

Index words: [Anytime Algorithms, Probabilistic Graphical Models, Decision Making,
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Chapter 1

Introduction

Many tasks that are performed by the intelligent or automated systems require reasoning. They need to

take into consideration the available information given to them and draw some conclusions from it. Such

conclusions might consist of �nding the probability of some fact being true given the evidence or what

actions to take in the given scenario. For example, consider the use of such a reasoning system in the

�eld of medical. Given the symptoms, test results and other characteristics of the patient, such systems

would aid the medical professional to �nd the possibility of some underlying disease or would help in

proposing a treatment plan that would bene�t the patient. Such tasks involving complex distributions

and dependencies between multiple factors need a mechanism for e�cient representation and inference.

Probabilistic Graphical Models have the ability to compactly represent such complex distributions

over a high dimensional space using graph-based representations. The nodes of the graph structures

represent the variables, and the edges denote the probabilistic dependence between them. This makes the

conditional dependence and independence clear and o�er a factored distribution of the joint distribution

that they represent. Such distribution is e�ective for inference, but the inference is often intractable. Also,

the graph structures could be designed by hand or learnt directly using a data-driven approach.

Bayesian Networks have been the predominant and the most popular probabilistic graphical models.

Bayesian Networks are directed acyclic graphs that represent the probability distribution by exploiting con-

ditional independence properties of the distribution to allow a compact and natural representation (Koller
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& Friedman, 2009). But their inference is generally intractable or exponential in the number of nodes.

Other graphical model like Arithmetic Circuits (Darwiche, 2003) and Sum Product Networks (Poon &

Domingos, 2011) have inference that is linear in the number of edges and nodes of the networks respectively

maintaining tractability.

Sum Product Networks are Probabilistic Graphical Models that can be learned directly from the data.

Multiple algorithms have been presented in the past for structure learning for the SPNs. Most of these

works target an improvement in the log-likelihood that is given by the networks learned by the algorithms.

These networks are appealing due to the linear inference complexity in the terms of the size of the network.

They are based upon the network polynomials that gives a representation of the probability distribution

of the Bayesian Networks in form of a polynomial. They represent these network polynomials compactly

which otherwise would be exponential in the number of variables. But a major limitation of these SPNs

is that the size of the networks is not bounded.

Similarly, In�uence Diagrams (IDs) have been the state-of-the-art graphical models used for making

decision in order to maximize the expected utility. These diagrams are a generalization of the Bayesian

Networks using utility and decision variables. Not much research exists for learning the IDs directly from

data. Also, the inference is np-hard.

Later, Sum Product Max Networks (Melibari et al., 2016) have been introduced for probabilistic

decision making. These networks generalize the SPNs by adding max and utility nodes to the structure.

The max nodes correspond to the decision variables and the utility nodes to the reward functions. The

inference for these networks is tractable and linear in the number of nodes. However, in the case of

complex or sequential domains, the structure learning algorithm for SPMNs fails to learn the networks

in reasonable time. Recurrent SPMNs (Tatavarti et al., 2021) and State-based Recurrent SPMNs (Hayes

et al., 2021) have been designed to model sequential data. But still the sizes of these networks remain

unbounded.

In some of the applications requiring reasoning for probabilistic inference or decision making, the

amount of time required for computation may be more critical than the quality of the results. Such

2



Figure 1.1: An example of a Navigation Grid Domain

intelligent systems can perform satisfactorily using approximate results computed in lesser amount of

time. The longer times required for �nding the optimal results degrade the overall utility of these systems.

Such systems should have the capability to the trade the computation time with the quality of the results.

The structure learning algorithms for SPNs and SPMNs have no control over the network sizes or the

complexity of the learnt networks. Some researchers have focused on simplifying the networks by limiting

the data splits to two clusters and stopping the recursive learning algorithm early by having multivariate

leaves (Vergari et al., 2015). Attempts have been made by (Di Mauro et al., 2017) to reduce the network

size and the learning times by an alternate variable splitting method by sacri�cing the performance of the

networks. Although these e�orts exist, there is a need of a mechanism that allows us to adjust the trade-o�

between the performance of the network and the network complexity or the structure learning time.

Anytime or �exible algorithms are the algorithms that showcase an increase in the quality of the results

as the computation time increases (Zilberstein, 1996; Zilberstein & Russell, 1995). These algorithms can

3



(a) Initial Policy (b) Intermediate Policy (c) Final Policy

Figure 1.2: Improvement in the policy by an Anytime Technique.

return multiple approximate models in the initial phases and generate improved models as the algorithm

progresses. In this thesis, we develop anytime approaches for learning the Sum Product Networks and

the Sum Product Max Networks.

To better understand the concept of anytime algorithms in decision making, consider the navigation

grid example as shown in the Figure 1.1. This toy domain consists of a 3× 3 grid where task is to �nd the

directions for the hungry baby panda to reach the milk location. The possible action at each step includes

going to the North, South, East or West directions. The goal for the baby panda is to reach the green cell

having milk to get a reward of 10. If the baby panda goes to a normal cell location, then the action drains

its health by 1, that is a penalty of 1. If the panda steps into the spiky location, then it gets a penalty of 5.

But if it goes to the red ghost cell, then it won’t be able to escape that cell and receives a penalty of 100.

Thus, a proper path is to be found by achieving maximum points.

An anytime algorithm to �nd a path in this domain would start with a bad policy and proceed to

improve the average rewards gained. Consider that the algorithm �rst generates a model that gives a

random policy allowing actions in any of the directions with equal probability as shown in �gure 1.2a.

Such a model would receive a very low reward since the probability of the panda going to the ghost location

is very high. As the algorithm continues, consider that it generates an intermediate model that �gures the

relative location of the goal state to south − east and takes only south or east action at each step as
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seen in �gure 1.2b. Such a policy would receive a higher reward since the probability of going to the ghost

cell is reduced only to two possible policies: ‘going south and then east’ or ‘first going east and then south’.

At the end, the anytime algorithm would be able to �gure out a proper policy giving optimal rewards by

consuming enough resources. Using the policy shown in the �gure 1.2c, the baby panda would always be

able to reach the milk location by avoiding the danger cells.

As seen from the example, an anytime algorithm would improve the performance or the quality of

the results as the algorithm progresses. Such an algorithm would be able to produce approximate results

by utilizing less computation time as compared to the time required for �nding the optimal results. Thus,

the system wouldn’t have to wait for long learning times and would be able to gain some better results

while the anytime algorithm continues to focus on improving the results.

The work in this thesis focuses on addressing such types of reasoning problems by introducing anytime

algorithms for learning SPNs and SPMNs that would initially generate approximate and less complex

networks, and then add on to the network complexity for improving the performance.

1.1 Contribution

In this thesis, we present separate anytime or �exible algorithms for structure learning of Sum Product

Networks and Sum Product Max Networks. The speci�c contributions are as follows:

• We present a new anytime algorithm, AnytimeSPN, for learning the structures of Sum Product

Network with increasing performance. The AnytimeSPN algorithm makes use of a modi�ed

LearnSPN algorithm, LearnSPN*, that generates the networks �exibly at each iteration. The

generated SPNs have increasing log-likelihood as the computation time and the network complexity

increases.

• We also introduce an anytime algorithm called AnytimeSPMN that o�ers �exible structure

learning for the Sum Product Max Networks such that the average rewards obtained on simulating

the policies given by the networks and the log-likelihood of the networks increases over time. This
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algorithm generates the structures using the presented LearnSPMN* algorithm, which is an

extended version of the LearnSPMN algorithm to have a control over the network structure.

• Some modi�cations to the structure of the decision nodes of the SPMNs are presented in this thesis

in order to incorporate �exibility.

• We rede�ne validity for SPMNs and further prove that the network structures returned by the

anytime algorithms at each iteration satisfy the conditions that are required for a valid network.

• On a well-de�ned testbed of binary datasets for SPNs and decision-making datasets for SPMN,

we evaluate our anytime algorithm to obtain the performance pro�les for each dataset. We show

an increase in the log-likelihood for the AnytimeSPN algorithm and an improvement in the

average rewards and the log-likelihood for the AnytimeSPMN. We also showcase the increasing

network complexities and computation time for the algorithms.

• To have a better understanding of the performance pro�les of the anytime algorithms, we compare

the performances with the baselines given by the LearnSPN and the LearnSPMN algo-

rithms, and also with an upper bound or an optimal value for the results to show that the perfor-

mance of these anytime algorithms converge towards an optimal value.

1.2 Organization of Thesis

The remaining thesis is organized as follows:

• In the Chapter 2, "Background", we discuss important concepts and preliminaries that help in build-

ing a better understanding of the thesis. In Section 2.1, we discuss network polynomial and their

evaluation. Then in the Sections 2.2 and 2.3, we elaborate on Sum Product Networks and Sum

Product Max Networks along with their properties, the notion of validity and their structure learn-

ing algorithms. Here we present a new de�nition for SPMN validity. The Section 2.4 then explains
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the anytime algorithms and their performance pro�les. The Section 2.5 explains the working of the

X-means clustering algorithm.

• The "Related Work" chapter, Chapter 3, discuss some important research work done in the �eld of

SPNs and SPMNs that relates to the thesis work.

• The Chapter 4 "Anytime SPN" focuses on presenting an anytime algorithm for the Sum Product

Networks. The Section 4.1 presents an algorithm which induces changes in the controlling pa-

rameters for the SPNs and also discusses the convergence criteria for the algorithm. A modi�ed

LearnSPN algorithm for generating �exible SPNs given the parameters is introduced in the

Section 4.2. We then show the e�ects of the anytime algorithm on the SPN structure in the Section

4.3. We also discuss the validity for each SPN structure returned by the algorithm in the Section

4.4.

• The "Anytime SPMN" chapter, Chapter 5, introduces an anytime approach for generating Sum

Product Max Networks for decision making. The Section 5.1 �rst explains the changes made to the

structure of networks. In the Section 5.2, we present the anytime algorithm for SPMN that returns

better structures that are learned using the modi�ed LearnSPN algorithm given in the Section

5.3. We illustrate the improvement in the SPMN structure by the anytime algorithm in the Section

5.4. Further in the Section 5.5, we discuss that each generated SPMN is valid. And �nally, in the

Section 5.6, we discuss the policy evaluation for the modi�ed SPMN structure.

• In the Chapter 6, "Experiments", we discuss the experimental results for the anytime algorithms.

In the Section 6.1, we discuss the datasets used for evaluating the AnytimeSPN and the Any-

timeSPMN algorithm. The Section 6.2 presents the performance pro�les given by the Any-

timeSPN algorithm for the datasets. Similarly, the Section 6.3 showcases the performance pro�les

and changes in the network over the duration of the AnytimeSPMN algorithm.

• Finally, we conclude the thesis in the Chapter 7 in which we summarize our work and discuss some

future directions to this work.
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Chapter 2

Background

In this chapter, we discuss the background foundation concepts and preliminaries that are necessary for a

proper understanding of the work that is described in the later chapters of this thesis. In the Section 2.1, we

�rst explain the network polynomial and some theorems related to it. Then in the Section 2.2, we de�ne

the Sum Product Networks and some properties associated with a valid SPN. Further we also describe the

structure learning algorithm LearnSPN. We similarly de�ne the Sum Product Max Networks along

with their properties and the structure learning algorithm in the Section 2.3. To understand the notion

of the anytime algorithms and their performance pro�les, we explain them in the Section 2.4. We also

describe the working of the X-means algorithm in the Section 2.5.

2.1 Network Polynomials

A network polynomial (Darwiche, 2003) gives us the probability distribution of a Bayesian network in

form of a polynomial. Such a probability distribution is a multilinear function that takes the form of a

multivariate polynomial where each variable has a degree 1.

In order to understand the network polynomial, let us consider a Bayesian NetworkN , having two

random variables (A and B) as shown in the Figure 2.1. In this network, variable A is the parent of B.

Such a Bayesian networkN is a directed acyclic graph over the variables X, having conditional probability

8



Figure 2.1: A Bayesian Network with two variables

tables for each of the variables. The conditional probability value θx|u for the variable x having parent u

is considered to be the network parameters and represent the probability P (x|U).

The probability distribution for the Bayesian Network shown in the Figure 2.1 can be given as:

P (A,B) =
∑
a

∑
b

P (a, b)

= P (a, b) + P (a, b̄) + P (ā, b) + P (ā, b̄)

= P (a)P (b|a) + P (a)P (b̄|a) + P (ā)P (b|ā) + P (ā)P (b̄|ā)

Since θx|U represents the probability P (x|U), we can re-write the equation as:

P (A,B) = θaθb|a + θaθb̄|a + θāθb|ā + θāθb̄|ā (2.1)

To compute the probability distributions given a set of evidence variables, evidence indicators λx for

each of variableX are introduced so as to generalize the multivariate polynomial.
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De�nition 2.1.1 (Evidence Indicator) For a variableX in the Bayesian network N given the evidence e,

the evidence indicator variable λx is defined as:

λx =


1 , if x is consistent with the evidence e

0 , otherwise
(2.2)

Thus, we can use the evidence indicators for generalizing the Equation 2.1 to get the network polyno-

mial as:

f = λaλbθaθb|a + λaλb̄θaθb̄|a + λāλbθāθb|ā + λāλb̄θāθb̄|ā (2.3)

De�nition 2.1.2 (Network Polynomial) IfN is a Bayesian network over the variables X andU denotes

the parents of the variableX in the network, then the network polynomial for the networkN is given as:

f =
∑
x

∏
xu∼x

λxθx|u (2.4)

In the Equation 2.4, the outer summation ranges over all possible instantiations x of the variables.

For each of such instantiation x, the inner product ranges over all instantiations of families xu that are

compatible with x. In order to compute the probability for an evidence e, that represents any instantiation

of some variables E in the network, we can simply evaluate the network polynomial f for e.

De�nition 2.1.3 (Darwiche, 2003) The value of network polynomial f at evidence e, denoted by f(e), is

the result of replacing each evidence indicator λx in f with 1 if x is consistent with e, and with 0 otherwise.

For example, consider the Equation 2.3 for the Figure 2.1. Let the evidence e be āb. Then we can

compute f(e) by substituting λa = 0, λā = 1 and λb = 1, λb̄ = 0. On evaluating the equation, we get

f(e) = θāθb, which represents the probability Pr(āb).

10



Theorem 2.1.1 (Darwiche, 2003) Let N be a Bayesian network representing probability distribution Pr

and having polynomial f . For any evidence e, we have f(e) = Pr(e)

The network polynomials and their partial derivative can be used to answer multiple probabilistic

queries as given by (Darwiche, 2003). The polynomial is exponential in size and cannot be represented as a

set of terms. But they can be represented e�ciently using Arithmetic Circuits (ACs) that may sometimes

even be linear in size. The Arithmetic Circuits can be de�ned a rooted directed acyclic graphs having

arithmetic operators (+,−,×, /) as the internal nodes and numerical values of the variables as the leaf

nodes. The size of this representation is given by the number of edges that it consists of. Evaluating the

arithmetic circuits for probabilistic inference is tractable as it is linear in their size.

2.2 Sum Product Networks

The Sum Product Networks (SPNs) can be considered to be a restricted form of the Arithmetic Circuits

where the internal nodes are only sum and product nodes. The notion of the network polynomials

forms the basis of the SPNs. As stated in (Poon & Domingos, 2011), the network polynomial can be

generalized using an unnormalized probability distribution Φ(x) ≥ 0. Considering Π(x) to be product

of indicators having a value of 1 in state x, we get the network polynomial as f ′ =
∑

x Φ(x)Π(x). The

partition functionZ is the normalizing factor that is obtained from the network polynomial when all the

indicator values are set to 1. For any given evidence e, we can then compute its probability asP (e) = Φ(e)
Z

.

The size of the network polynomial is exponential in the number of the variables. But we could

represent and evaluate the network polynomial in linear space and time with the help of Sum Product

Networks. The de�nition of the SPNs is given as:

De�nition 2.2.1 (Sum Product Networks) (Poon & Domingos, 2011) A sum product network (SPN)

over variables x1, x2, ..., xd is a rooted directed acyclic graph whose leaves are the indicators x1, ..., xd and

x̄1, ..., x̄d and whose internal nodes are sums and products. Each edge (i, j) emanating from a sum node i

has a non-negative weight wij . The value of a product node is the product of the values of its children. The

11



Figure 2.2: A Sum Product Network with two variables

value of a sum node is
∑

j∈Ch(i) wijvj , where Ch(i) are the children of i and vj is the value of the node j.

The value of an SPN is the value of its root.

The SPNs can be considered to be a function of their indicator variables as S(x1, ..., xn, x̄1, ..., x̄n).

Consider the SPN having two variables that is shown in Figure 2.2. This SPN can be considered to be

one of the possible representations for the network polynomial 2.3 that is given for the Bayesian network

illustrated in Figure 2.1. In the case of Figure 2.2, the given SPN can be evaluated by S(a, b, ā, b̄). If

the complete state is āb, then S(x) = S(0, 1, 1, 0). If the partial evidence e is a = 0, then S(e) =

S(0, 1, 1, 1). Here the SPN can be evaluated as:

S(a, b, ā, b̄) = wabab+ wab̄ab̄+ wābāb+ wāb̄āb̄ (2.5)

The term S(x) for an SPN represents that the indicators specify the complete state x. If a partial

evidence e is given, it is abbreviated as S(e). Similarly, when all the indicator variables are set to 1, it

is represented as S(∗). The unnormalized probability distribution over X is de�ned by the values of
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S(x) for all x ∈ X. So, under this distribution, the unnormalized probability of evidence e is ΦS(e) =∑
x∼e S(X) and the partition function isZS =

∑
x∼X S(X).

De�nition 2.2.2 (Validity) (Poon & Domingos, 2011) A sum product networkS is valid i�S(e) = ΦS(e)

for all evidence e.

Thus, we can say that an SPN is valid if it is always able to correctly compute the probability of any

given evidence. So, if the SPN S is valid, then S(∗) = ZS . Such condition for a valid SPN is possible

only if the expansion of the SPN is its network polynomial. By evaluating the SPN S in a bottom-up

fashion, it can be expressed as the polynomial
∑

k skΠk(...), where the term πk(...) is a monomial over

the indicator variables and sk ≥ 0 is the coe�cient. That is, the monomials in the expansion are in

one-to-one correspondence with the state x. This means that each of the monomials is non-zero in exactly

one state and each state has exactly one monomial that is non-zero in the expansion. The detailed proof

for the validity condition is given in (Poon & Domingos, 2011).

For a better understanding of valid SPNs, consider the SPN S(a, b, ā, b̄) in Figure 2.2 having the

expansion 2.5. Consider the partial evidence e to be (a = 0). Thus S(e) = S(0, 1, 1, 1) and from

Equation 2.5, we get S(e) = wāb + wāb̄. Now the evidence is consistent with the states āb and āb̄. Since

ΦS(e) =
∑

x∼e S(x), we compute ΦS(e) = S(0, 1, 1, 0) + S(0, 0, 1, 1). Since S(0, 1, 1, 0) = wāb

and S(0, 0, 1, 1) = wāb̄, we have ΦS(e) = wāb + wāb̄. Thus, we can conclude that since the given SPN

structure is valid, we can observe that S(e) = ΦS(e).

From the De�nition 2.2.2 and the further discussion, it is clear that a sum product network is valid

if its expansion gives its network polynomial. But to ensure this condition, some properties are provided

for the SPNs that help to guarantee validity.

De�nition 2.2.3 (Scope) (Poon & Domingos, 2011) The scope of a node is union of the scopes of its children,

where the scope of a leaf node is the set of random variables whose distribution it holds.

De�nition 2.2.4 (Completeness) (Poon & Domingos, 2011) An SPN is complete i� each child of a sum

node has the same scope.
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Figure 2.3: Examples illustrating the properties of the SPNs

De�nition 2.2.5 (Consistency) (Poon & Domingos, 2011) An SPN is consistent i� no variable appears

negated in one child of the product node and appears non-negated in another.

De�nition 2.2.6 (Decomposability) (Poon & Domingos, 2011) An SPN is decomposable i� no variable

appears in the scopes of more than one child of a product node.

The Figure 2.3 illustrates various examples of SPNs that portray the satisfaction of the properties that

are de�ned above. Using these properties, we can ensure the validity of any SPN structure.

Theorem 2.2.1 (SPN validity) (Poon & Domingos, 2011) An SPN is valid if it is sum-complete and con-

sistent / decomposable.
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Figure 2.4: An illustration of the LearnSPN algorithm

It is important to note that the properties completeness and consistency / decomposability are su�-

cient to guarantee validity, but they are not necessary for validity. For example, an SPN that represents the

polynomialS(x1, x2, x̄1, x̄2) = 1
2
x1x2x̄2+ 1

2
x1 satis�es the condition 2.2.2 for validity, but is incomplete

and inconsistent. But these properties are essential for a stronger property that every sub-SPN is valid.

2.2.1 Structure Learning

We have discussed the properties that are su�cient for a valid SPN or necessary for every sub-SPN structure

to be valid. Also, as the SPN is able to e�ciently represent the network polynomial, it o�ers tractable

inference. But it is important to understand how the structure of these SPNs are designed so that the

validity and tractability of the networks are maintained. One of the earlier methods was to design these

networks by hand and then try to adjust the network weights over the training dataset. This approach

would require deep understanding of the domain and might prove to be a complicated task for complex

domains. To resolve this issue, a structure learning algorithm was presented by (Gens & Domingos,
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Algorithm 1: LearnSPN
Input: D: Dataset, V : Variables
Output: learned SPN structure

1 if |V | = 1 then
2 return smoothed univariate distribution over V

3 else
4 Partition variables V into independent subsets Vj
5 if success then
6 return

∏
j LearnSPN(Dj , Vj)

7 else
8 partitionD into clustersDj of similar instances
9 return

∑
j
|Dj |
|D| × LearnSPN(Dj , V )

2013) that is able to learn the network structures directly from the data. This generic structure learning

algorithm, known as LearnSPN, is presented in Algorithm 1.

The LearnSPN algorithm is a recursive algorithm as illustrated in Figure 2.4 that returns a valid

SPN at each call. The recursive de�nition of SPNs is given as:

De�nition 2.2.7 (SPNs) (Gens & Domingos, 2013) A sum product network is defined as:

1. A tractable univariate distribution is an SPN

2. A product of SPNs with disjoint scope is an SPN

3. A weighted sum of SPNs with the same scope is an SPN, given all weights are positive

4. Nothing else is an SPN

The LearnSPN algorithm takes as input a dataest D having a set of variables V , the algorithm

�rst checks if the set V contains only a single variable. If this is the case, then the algorithm returns a

smoothed univariate distribution over that variable. This algorithm repeatedly performs splits on the

dataset using independence testing and clustering until it reaches the base case of a single variable in the

data. First the algorithm applies independence testing on the variables V and tries to split them into
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approximately independent subsets. If it is successfully able the partition the variable set, then a newly

created product node is returned whose children are the sub-SPNs that are learned using each of these

correlated subsets of variables that are independent of variables in other groups. Hence each of these

groups have a disjoint scope that ensures decomposability. If the independence testing fails to �nd any

such partitions, then the algorithm partitions the dataset into clusters having similar instances. In this

case, a sum node is returned whose edges correspond to the sub-SPNs learned from the respective clusters.

Each out-going edge of a sum node corresponding to a cluster is a weighted edge whose weight is given by

the proportion of instances within that cluster (NumberOfInstanceInTheCluster
TotalInstancesInTheDataset

). Since all the clusters have

the same scope, the resultant SPN is complete. Thus, recursive application of independence testing and

clustering operations guarantee a valid SPN. An additional base case can be used for the algorithm where

the dataset is naïve factorized on reaching a required minimum number of instances. Till date, multiple

structure learning algorithms have been built upon this generic LearnSPN algorithm.

2.3 Sum Product Max Networks

The Sum Product Networks, that are probabilistic graphical models, have been extended to Sum Product

Max Network by (Melibari et al., 2016) to incorporate decision making capability in them. As evident

from the name, the SPMNs include max nodes for decision variables in addition to the sum and product

nodes, and also include utility nodes to represent the utility functions.

De�nition 2.3.1 (Sum Product Max Networks) (Melibari et al., 2016) An SPMN over decision vari-

ablesD1, ..., Dm, random variablesX1, ..., Xn, and utility functionsU1, ..., Uk is a rooted directed acyclic

graph. Its leaves are either binary indicators of the random variables or utility nodes that hold constant val-

ues. An internal node of SPMN is either a sum, product, or max node. Each max node corresponds to one

of the decision variables and eachoutgoing edge from a max node is labeled with one of the possible values of

the corresponding decision variable. Values of a max node i is maxj∈Children(i) vj , where Children(i) is
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Figure 2.5: A Sum Product Max Network

the set of children of i, and vj is the value of the subgraph rooted at child j. The sum and product nodes are

defined as in the SPN.

Before discussing the validity for SPMN, we must understand the concepts of information sets and

partial orders (Koller & Friedman, 2009). The information sets I0, I1, ...Im are subsets of random vari-

ables such that the variables in the information set Ii−1 are observed before the decisionDi is taken. Such

sets could be possibly empty and the variables in the set Im need not be observed before any decision

variable. The order in which the variables are observed and the decisions are taken is the partial order P≺

and is given as I0 ≺ D1 ≺ I1 ≺ ... ≺ Dm ≺ Im. This order is partial in the sense that the variables in an

information set can be observed in any order. Also, given the partial order, it is important to understand

how the decision making problems are expressed mathematically.

2.3.1 Sum-Max-Sum Rule

The mathematical expression that is used for the evaluation of a decision making problem by utilizing the

partial order is termed as the Sum-Max-Sum rule (Koller & Friedman, 2009). Consider the partial order
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P≺ = I0 ≺ D1 ≺ I1 ≺ ... ≺ Dm ≺ Im. Let Xi denote the set of random variables that are included in

the information set Ii. Thus, the maximum expected utility (MEU) is given by the Sum-Max-Sum rule

as:

MEU(P≺) =
∑
X0

P (X0)maxD1

∑
X1

P (X1|X0, D1)maxD2 ...

maxDm

∑
Xm

P (Xm|X0, ...,Xm−1, D1, ..., Dm)U(X0, ...,Xm, D1, ..., Dm)

In this rule we alternate between summing over the variables in the information set and maximizing

over the decision variable that requires the information set to compute the MEU. This equation can be

further simpli�ed as:

MEU(P≺) =
∑
X0

maxD1

∑
X1

maxD2 ...
∑
Xm−1

maxDm

∑
Xm

P (X0, ...,Xm|D1, ..., Dm)U(X0, ...,Xm, D1, ..., Dm)

Let σ be the one of the possible policies, that is a sequence of decisions to be taken, for the decision

making problem. LetX be the set of all random variables in the scope given by P≺, and Φ(X, σ) be the

unnormalized joint distribution forX given σ. Then the above Sum-Max-Sum rule can be rewritten as:

MEU(P≺) = maxσ
∑
x∼X

Φ(x, σ)U(x, σ) (2.6)

Thus, the optimal policy σ∗ can be obtained as σ∗ = maxσ
∑

x∼X Φ(x, σ)U(x, σ). The expansion

of a sum product max network yields an expression that is identical to the Sum-Max-Sum rule. Hence,

for all the possible decision policies, the SPMN must return the policy that maximizes the expected utility

by following an optimal policy.
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2.3.2 SPMN Validity and Properties

The term S(x) for an SPMN S represents that the indicators specify the complete state x. If a partial

evidence e is given, it is abbreviated asS(e). The expected utility value for the given policy σ and evidence

e is given asEU(e, σ) =
∑

x∼e Φ(x, σ)U(x, σ), that is a marginal of expected utility of all the states that

are consistent with the evidence. We rede�ne validity as:

De�nition 2.3.2 (SPMN validity) A sum product max network S is valid i� S(e) =
∑

x∼e S(x) for

all evidence e.

Corollary 2.3.1 A sum product max networkS is valid i� the evaluation of the network for a given evidence

emaximizes the expected utility for that evidence, that is S(e) = maxσEU(e, σ)

Proof: The expansion of an SPMNS can be given using the expressionmaxσ
∑

k sk,σΠk(...)U(k, σ),

where Πk(...) is the monomial over the indicator variables and sk,σ ≥ 0 is its coe�cient. For evaluating

SPMN to get the expansion, the indicator variables that are consistent with the evidence are set to 1 and

the remaining to 0. A bottom-up pass is performed by applying the operators at each node on the values

of its children. Thus, an SPMN is valid if it is able to correctly compute the MEU for any given evidence.

For this purpose, the states x and the monomials given by expansion must be in one-to-one correspon-

dence. Thus, each monomial is non-zero in exactly one state (condition 1), and each state has exactly one

non-zero monomial in it (condition 2). So, from condition 2, S(x) would be equal tomaxσsx,σU(x, σ)

corresponding to the monomial that is non-zero. Therefore,
∑

x∼e S(x) =
∑

x∼emaxσsx,σU(x, σ) =

maxσ
∑

k sk,σU(k, σ)nk(e), wherenk(e) is the number of statesx consistent with e for which Πk(x) =

1. But nk(e) = 1 from condition 1 if the state x for which Πk(x) = 1 is consistent with the evidence

and nk(e) = 0 in all other cases. Thus, we get
∑

x∼e S(x) = maxσ
∑

k:Πk(e)=1 sk,σU(k, σ) = S(e)

which is the condition for validity. The coe�cients sx,σ represent the probability distribution Φ(x, σ).

As stated previously,
∑

x∼e S(x) =
∑

x∼emaxσsx,σU(x, σ) = maxσ
∑

x∼e Φ(x, σ)U(x, σ) =

maxσEU(e, σ). Thus, we also have S(e) = maxσEU(e, σ) that shows that the expansion of the

network maximizes the expected utility.

20



The maximum expected utility is computed by performing a bottom-up pass after setting the indicator

variables for the given evidence. The policy given by the network is found by performing a top-down trace

by choosing the edges that maximize the decision nodes. Similar to the discussion in the Section 2.2 for

SPNs, we discuss a few properties for SPMNs to ensure its validity. This guarantees that the evaluation

of the SPMN gives its Maximum Expected Utility value.

De�nition 2.3.3 (Sum-completeness) (Melibari et al., 2016) An SPMN is sum-complete i� each child of

a sum node has the same scope.

De�nition 2.3.4 (Decomposability) (Melibari et al., 2016) An SMPN is decomposable i� no variable

appears in the scopes of more than one child of a product node.

De�nition 2.3.5 (Max-complete) (Melibari et al., 2016) An SPMN is max-complete i� each child of a

max node has the same scope.

De�nition 2.3.6 (Max-uniqueness) (Melibari et al., 2016) An SPMN is max-unique i� each max node

corresponding to a decision variable appears at most once in every path from the root to the leaves.

Theorem 2.3.2 (Melibari et al., 2016) An SPMN is valid if it is sum-complete, decomposable, max-complete,

and max-unique.

2.3.3 Structure Learning

A structure learning for Sum Product Max Networks, known as LearnSPMN, was introduced by

(Melibari et al., 2016) that learns the SPMN structures given the dataset and the partial order. Here we dis-

cuss the modi�ed version of the LearnSPMN algorithm (Tatavarti, 2020) in Algorithm 2, that leads to

an improvement in the results as compared to the original algorithm. The working of the LearnSPMN

algorithm is illustrated in the Figure 2.6.

The LearnSPMN algorithm takes as input a datasetD having variables V and partial order P≺.

Initially, the current information set for this recursive algorithm is the �rst set in the partial order. The
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Algorithm 2: LearnSPMN
Input: D: Dataset, V : Variables, i: Information set index, P≺: Partial order
Output: learned SPMN

1 if |V | = 1 then
2 if variable v ∈ V is utility then
3 u← estimate Pr(V = True) fromD
4 return utility node with value u

5 else
6 return smoothed univariate distribution over V

7 if V ∩ P [i] = φ then
8 i← i+ 1

9 VR ← P≺[i+ 1] ∪ P≺[i+ 2] ∪ P≺[i+ 3]...
10 if P≺[i] is a decision variable then
11 for v ∈ decision values ofP [i] do
12 Dv ← subset ofD where P≺[i] = v

13 return MAXv LearnSPMN(Dv, VR, i+ 1, P≺)
14 else
15 Partition variables V into independent subsets S
16 Merge together subsets having variables∈ VR
17 if |S| > 1 then
18 return

∏
j LearnSPMN(Dj , Vj , i, P

≺)

19 else
20 partitionD into clustersDj of similar instances based on the values in P[i]
21 return

∑
j
|Dj |
|D| × LearnSPMN(Dj , V, i, P

≺)

algorithm checks if the variable set V contains only one variable. In this case, if that single variable is

a utility value, then the algorithm returns a utility node with an estimated value of Pr(V = True).

Otherwise, it returns a smoothed univariate distribution for that variable. If the variable in the current

information set P≺[i] is a decision variable, then the algorithm returns a max node having sub-SPNs as

its children that were learnt from the data slices corresponding to each possible decision value for that

decision variable.

If the current information set consists of random variables, an independence test is performed on

the entire variable set V to form independent subsets. Then the subsets having variables in the future

information sets are merged together. Now if there are more than one subset present, then a product
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Figure 2.6: An illustration of the LearnSPMN algorithm

node is returned. The children of this product node are learnt from the data corresponding to the subset

partitions. If no such subsets exist, then the dataset is split into clusters of similar instances by considering

the variables in the current information set. The SPNs learnt from these clusters form the children of a

sum node whereas the proportion of the clusters are the edge weights.

2.4 Anytime Algorithms

In many reasoning applications, �nding the optimal or the exact solution might not be necessary. The

inherent complexity of such intelligent reasoning systems makes it undesirable or infeasible to provide

results in a reasonable amount of time. In such systems, the time taken to compute the results might be

more critical than the quality of the results. Thus, computing approximate results in the given time is
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su�cient in these cases. So, to allow a trade-o� between the computation time and the performance of

the system, anytime algorithms were introduced.

The term ‘Anytime Algorithms’ was �rst introduced by (Dean & Boddy, 1988) in the context of their

work on time-dependent planning. Similarly, ‘Flexible Computing’ was presented by (Horvitz, 1987) to

solve time-critical decision problems. But these approaches are built upon the idea that the quality of the

results improve gradually as the computation time increases. This ensures a trade-o� between the output

quality and the resource consumption.

As mentioned in (Zilberstein, 1996), following are some of the desirable properties that an anytime

algorithm must be based on:

• Measurable Quality: We should be able to precisely determine the quality of the approximate result.

• Recognizable Quantity: We should be able to determine the quality of the result easily at run time.

• Monotonicity: The quality of the result should be a non-decreasing function of time and the in-

put quality. This can be guaranteed by simply returning the best result so far rather than the last

generated result when the quality is recognizable.

• Consistency: The quality of the result should be correlated with the computation time and input

quality. The output quality might not be deterministic, but the variance in the quality must be

narrowed.

• Diminishing Returns: The improvements in the output quality are larger at the early stages, but it

diminishes over time.

• Interruptibility: The algorithm can be stopped anytime and provide some result.

• Preemptability: The algorithm can be interrupted and resumed with less overhead.

A metric for the result quality is important to consider for constructing an anytime algorithm. Di�er-

ent types of algorithms tend to approach the results in completely di�erent way. The following metrics
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Figure 2.7: Expected performance pro�le for an Anytime Algorithm

have been speci�ed in (Zilberstein, 1996; Zilberstein & Russell, 1995) for evaluating the performance of

the anytime algorithms:

• Certainty: It is a measure of the degree of certainty that the results is correct.

• Accuracy: It measures how close the approximate result is to the actual answer.

• Specificity: It is a measure of the level of detail of the result. In this case, the result is always correct,

but the level of detail increases.

The behavior of an anytime algorithm is characterized by performance pro�les (PPs) to allow for an

e�cient meta-level control of the algorithm. They can be de�ned as:

De�nition 2.4.1 (Performance Pro�le) (Zilberstein, 1996) A performance profile of an anytime algo-

rithm,Q(t), denotes the expected output quality with execution time t.
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De�nition 2.4.2 (Conditional Performance Pro�le) (Zilberstein & Russell, 1995) The conditional per-

formance profile (CPP) of an anytime algorithmA is a functionCPPA : Qin×R+ −→ Qout that maps

input quality and computation time to the expected quality of the results.

The improvement in the performance over the time is summarized quantitatively using PPs. They

generally describe the expected output quality as a function of run time. A conditional performance

pro�le can capture the dependency of output quality in the execution time as well as the input quality.

The expected performance pro�les are typically considered to be monotonically increasing functions of

the time as shown in the Figure 2.7.

2.5 X-means Clustering Algorithm

The well-known and simple to use clustering algorithm, the K-means algorithm, has a major drawback.

For this algorithm, the number of clusters (K) to be found in the data are needed to be pre-speci�ed.

Knowing the value of K is not always possible as it would require expert knowledge to understand the

data domain and know the optimal number of clusters that are present in the data. Thus, a clustering

algorithm that is able to discover the number of clusters present in the data is needed.

The X-means algorithm, introduced by (Pelleg & Moore, 2000), serves this purpose. This algo-

rithm is able to determine the optimal number of clusters using measures like Bayesian Information

Criterion (BIC) (Schwarz, 1978). The algorithm tries to search the number of clusters to optimize BIC.

The Bayesian Information Criterion or the Schwarz Information Criterion is a criterion used to select the

best model from a given �nite set of models. The model having a greater BIC score is preferred.

De�nition 2.5.1 (Bayesian Information Criterion) The BIC score, in (Schwarz, 1978), is formally de-

fined as:

BIC(Mj) = log-likelihood(Dj)−
pj
2
log(R) (2.7)

Where Mj is one of the models available for selection, Dj is the data for that model, pj is the number of

parameters inMj andR is the number of data instances.
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Algorithm 3: X-means
Input: D: Dataset
Output: Clusters C

1 kcur = 2
2 while True do
3 Cluster setC ← K-means(D, kcur)
4 k′ = kcur
5 for c inC do
6 bicprev ← BIC({c})
7 C ′ ← K-means(c, 2)
8 bicnew ← BIC(C ′)
9 if bicnew > bicprev then

10 k′ = k′ + 1

11 if k′ > kcur then
12 kcur = k′

13 else
14 returnC

The algorithm 3 describes the functioning of the X-means algorithm. The algorithm starts by

considering the lowest possible number of clusters (kcur) in the data, that is two clusters. This algorithm

works in two phases: Improve Parameters and Improve Structure. The Improve Parameters phases runs

the K-means algorithm for the current number of clusters until convergence. The Improve Structure

phase determines whether new centroids should appear and where should they appear. In this phase, the

current BIC score is estimated for each cluster that is currently found. Then for each of these clusters,

the K-means algorithm further tries to split the cluster into two parts. If the BIC score for that newly

found split is greater than the one for that original cluster, then the new centroids are considered and the

value of kcur is incremented. Once all the clusters are checked for improvement, if the value of kcur has

increased, then the algorithm proceeds with the Improve Parameters phase again with the newly found k.

The algorithm stops if the value of kcur doesn’t increase further.

The X-means algorithm is illustrated in the Figure 2.8. The �gure 2.8a shows that the algorithm

has currently found two clusters for the value of kcur = 2. Then for each of these two clusters, the K-

means algorithm tries to split them in two parts. The new and old BIC scores for each cluster are then
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(a) (b) (c)

Figure 2.8: Illustration of the X-means algorithm. Initially, the algorithm starts with two clusters as
shown in the sub-�gure (a). The sub-�gure (b) shows comparison of the current BIC score with the new
ones for each cluster. The updated clusters are shown in sub-�gure (c).

computed. As seen in the �gure 2.8b, there is an improvement in the BIC score for the right-side cluster,

but the score for the left cluster degrades. Thus, the value of kcur is increased to 3 and the new clusters are

found in the data.
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Chapter 3

Related Work

In this chapter, we discuss some previously done research work in the �eld of SPNs and SPMNs that

relate to our work and also distinguish our thesis work from the currently existing work.

Since the inception of the Sum Product Networks by (Poon & Domingos, 2011), multiple algorithms

have been presented for learning their structure. This includes the cluster architecture algorithm given by

(Dennis & Ventura, 2012), the LearnSPN algorithm (Gens & Domingos, 2013) that learns tree SPNs

with leaves as univariate distributions, SPNs using discriminative learning by (Gens & Domingos, 2012),

Indirect-Direct SPNs (ID-SPNs) by (Rooshenas & Lowd, 2014) having leaves as Arithmetic Circuits

representing multivariate distributions, a bottom-up greedy approach by (Peharz et al., 2013), SPN-SVDs

(Adel et al., 2015) based on rank-one sub-matrices, etc. Most of these works have focused on designing

structure learning algorithms that would increase the log-likelihood of the learned SPNs as compared to

the previously existing algorithms. There isn’t much work that emphasizes on controlling the sizes of the

learned networks or reducing the learning times.

A greedy structure search strategy, SearchSPN (Dennis & Ventura, 2015) tries to convert the tree

SPNs into graph SPN for the purpose of increasing the log-likelihood. It proposes the SearchSPN

algorithm that acts as a post-processing step on the tree structured SPNs given by the LearnSPN algo-

rithm for converting the SPNs to a graph network. This approach improves the log-likelihood over the

input network. But it also leads to an increase in the number of nodes in the structure along with the
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total computation time due to the further processing. Our approach doesn’t perform any post-processing

on the SPNs, either to increase the log-likelihood or to decrease the network sizes, but the anytime ap-

proach shows an improvement in the log-likelihood of the networks learnt in less time as compared to the

LearnSPN algorithm.

A few modi�cations have been suggested by (Vergari et al., 2015) to improve or simplify the Learn-

SPN algorithm. This work suggests binary splits for all the sum nodes in the network for allowing

deeper SPN structures to be learned. This approach shows some improvement over the LearnSPN

log-likelihood. For yielding simpler SPNs with fewer number of edges, they suggest the use of Chow

Liu Trees (Chow & Liu, 1968) as the leaves instead of performing a naïve factorization for allowing the

recursive LearnSPN algorithm to stop if the number of instances in the dataset falls below a threshold

value. Although the log-likelihood is improved, this approach would lead to an increase in run time due

to the learning of CLTs. Another suggestion is to make use of bagging where multiple sub-SPNs are

learned using bootstrapped samples. Although the work fails to present the impact of this approach on

the network sizes, intuitively this approach would lead to an increase in the size. The SPFlow library

(Molina et al., 2019) implements the LearnSPN algorithm utilizing the �rst suggestion by using the

K-means algorithm with two clusters for the sum nodes. This algorithm forms the baseline for our

work.

An alternative approach for variable splitting is proposed by (Di Mauro et al., 2017). They present a

method, Random Greedy Variable Splitting (RGVS), for the variable splitting operation. For the RGVS

method, they randomly pick a subset from the scope variablesV having the size
√
|V |. The independence

testing uses a greedy G-test method. They limit the possible number of independent subsets to only two

groups which might not always be the case. Also, all the other remaining variables from V are assigned

to one of the groups selected at random. This method shows reduction in the learning time as well as a

drop in the performance of the model. But it doesn’t display a gradual trend in the log-likelihood when

the number of variables in the random subset that are considered for splitting are varied. Our approach

draws inspiration from this method for selecting a subset from V for the variable splitting task but allows
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multiple independent subsets to be formed using a non-greedy method and avoids allocating the remaining

variables randomly to one of the subsets.

To obtain a more expressive and accurate model, two alternate adaptive instance clustering methods

have been given by (Liu & Luo, 2019). They present the method ’MSH’ based on Mean Shift (Fukunaga

& Hostetler, 1975) and another method ’DBSH’ based on DBSCAN (Ester et al., 1996) having lower

complexity. This optimized clustering avoids the number of clusters to be pre-speci�ed. They impose a

threshold on the number of clusters, which if crossed set the number of clusters to two. Our approach

uses the X-means algorithm that does not need the number of clusters to be pre-speci�ed and limits

the number of clusters to the maximum allowed value.

The algorithm LearnSPMN is introduced by (Melibari et al., 2016) for learning the Sum Product

Max Networks that are used for decision making given its domain data and the partial order. Extensions

of SPMNs for sequential domains, RSPMNs (Tatavarti et al., 2021) and S-RSPMNs (Hayes et al., 2021),

use a template network that reduces the network size as compared to the SPMNs. They further showcase

that the size of these learned networks still remains unbounded and express a need for having a �exible

control on the network sizes. Our approach tries to have a control on the size and the learning time of the

networks in relation to their performance.

31



Chapter 4

Anytime SPN

The LearnSPN algorithm is widely used for learning the structures of the SPNs from the data. But it

has no control over the size or the performance of the networks. For a given dataset, the implementation

of this algorithm in SPFlow (Molina et al., 2019) would always generate the same network as the default

number of clusters to be formed for a sum node is always two (Vergari et al., 2015) and all the scope

variables are used for variable splitting for the product nodes. Such an algorithm would take a long time

and learn complex networks for large datasets. Also due to the algorithm not being �exible, it might learn

complex networks even for simpler domains. Other algorithms that were designed to reduce the size of

such networks act as a post-processing step for this algorithm. This would increase the overall run time

for learning the network.

In this chapter we introduce an anytime algorithm for the SPNs. This anytime approach for learning

SPNs would allow us to have a control over the size and the performance of the learned networks. In

the initial phases of the algorithm, this approach generates simpler networks, having smaller size and an

approximate model of the data in lesser run times. As the algorithm progresses, the size of the networks

increases along with their performance.

The Section 4.1 present the AnytimeSPN algorithm that returns improved SPNs at each iteration.

A modi�ed LearnSPN algorithm is presented in the Section 4.2 that learns the networks �exibly. The
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Section 4.3 shows the updates to the structure of the SPNs by the AnytimeSPN algorithm. Finally,

in the Section 4.4, we show that the networks generated at each iteration is valid.

4.1 The AnytimeSPN Algorithm

Algorithm 4: AnytimeSPN
Input: D: Dataset, V : Variables
Output: Series of Learned SPN

1 Set maximum cluster limit k ← 2

2 Set # variables for independence testing n←
√
|V |

3 Set the �rst operator curOp← sum
4 do
5 spn← LearnSPN*(D,V, curOp)
6 Increment the parameters k and n
7 until log-likelihood converges

The Algorithm 4 shows us the anytime technique, AnytimeSPN, that gives us better SPN struc-

tures at each iteration. This algorithm requires two inputs. It takes the datasetD of the domain whose

probabilistic graphical model is to be learned, along with a list of the random variables V that gives us the

scope of the domain as the inputs. The algorithm then outputs a series of sum product networks such

that their performance, estimated by the log-likelihood, keeps on improving as the algorithms progresses

and the networks become more complex.

The AnytimeSPN algorithms consists of two parameters: the maximum cluster limit k and the

number of variables used for independence testing n. The value of k denotes the upper limit on the possi-

ble number of clusters that could be formed at the sum node. This gives us a control over the branching at

the sum node and leads to an increase in the complexity of the networks over time. The other parameter

n gives us the size of the subset of the scope variables that are considered for independence testing for

forming the product nodes. This leads to a reduction in the run time and generates approximate networks

in the initial iterations. This parameter is further elaborated in the Section 4.2.
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Figure 4.1: An illustration of the AnytimeSPN algorithm

The initial value of k is set to the value 2 in order to limit it to least the possible branching at the sum

node. The value of n is set to the root of the number of variables present in the scope. It is set to the

value
√
|V | initially. The initial value of n is chosen to be

√
|V | since it leads to a linear complexity for

the RGVS method (Di Mauro et al., 2017). Otherwise, the complexity remains sub-quadratic. Choosing

a very small fraction for nmight lead to larger networks, since only a few or no variables are considered

independent of others and might require variable splitting a large number of times. This in turn would

increase the run time. Thus, we use the value suggested by (Di Mauro et al., 2017).

At each iteration of the algorithm, a sum product network is generated using the LearnSPN*

algorithm that would be discussed in the Section 4.2. The current operation for the LearnSPN*

algorithm is set to sum so that the root of the generated networks is always a sum node. The parameters

k and n are incremented at each iteration after learning the SPN structure. The value of the parameter

k is incremented by 1 at each step. To ensure that the increase in the performance is higher in the initial

iterations, the increments for the parameter n is distributed over the �rst 20 iterations. This process

continues until the value ofn increments to the upper bound of |V | and the performance (log-likelihood)

of the learnt networks comes to a convergence. The algorithm terminates when the standard deviation

in the log-likelihood of the past three iterations falls below the value 10−3. The high-level functioning of

the AnytimeSPN algorithm is illustrated in the Figure 4.1.
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4.2 Modi�ed LearnSPN for the Anytime Approach

Algorithm 5: LearnSPN*
Input: D: Dataset, V : Variables, curOp: current operation
Parameters: k: maximum cluster limit, n: # variables for independence testing,m: minimum number

of instances to allow an operation
Output: learned SPN structure

1 if |V | = 1 then
2 return smoothed univariate distribution over V

3 if |D| < m then
4 return naïveFactorization(D,V )

5 if curOP = prod then
6 Partition variables V [: n] into independent subsets Vj
7 Distribute the remaining variables V [n :] evenly among the subsets Vj
8 return Πj× LearnSPN*(Dj , Vj , sum)
9 else

10 partitionD into clustersDj of similar instances such that j ≤ k
11 return Σj

|Dj |
|D| × LearnSPN*(Dj , V, prod)

The sum product networks at each iteration of the AnytimeSPN algorithm are generated using

the Algorithm 5. The LearnSPN* algorithm follows the outline of the LearnSPN algorithm along

with the addition of the parameters k and n that are updated at each iteration of the AnytimeSPN

algorithm. Along with these parameters, the algorithm also takes as input the domain datasetD, the list of

scope variables V and a current operation indicator curOp that indicates whether the current operation

for the recursive call is to form a sum node or a product node. These two nodes are generated alternately

from the root node to the leaf nodes of the network. An additional parameter m is used that gives the

minimum number of instances that are in the dataset to perform an operation. The algorithm returns

the SPN structure that is learned from the data by adhering to the given values of the parameters k and n.

The algorithm �rst checks if only one variable remains in the scope of the dataset. If this is the case,

then the algorithm returns a smoothed univariate distribution over that variable to form a leaf node. If

the number of instances in the dataset D falls below as threshold value of m, then the variables in V

are naïve-factorized. To naïve-factorize the variables, a product node is returned whose children are the
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Figure 4.2: An illustration of the variable splitting for the LearnSPN* algorithm

smoothed univariate distributions for each of the variables in the setV . Otherwise, the algorithm performs

independence testing as explained in the section 4.2.1, if the curOp is prod. Else if the curOp is sum, then

clustering as given in the section 4.2.2 is performed.

4.2.1 Variable Splitting for LearnSPN*

The algorithm LearnSPN* makes use of the Randomized Dependence Coe�cient (RDC) method

for the independence testing task to generate the product nodes in the networks. The parameter n gives

the number of scope variables from |V | that would be used for the variable splitting operation using

independence testing between the variables. An overview of the �exible variable splitting method that we

use for our algorithm is given in the Figure 4.2.

In this approach, only the �rst n variables from the scope variables V are used for the independence

testing. We denote this selected set as V [: n] and the set of remaining variables as V [n :]. Then the set

V [: n] is partitioned into independent subsets Vj of variables. In the case if only one such subset is found,

another subset is created using min(n, |V | − n) number of variables from the set V [n :]. Now if any
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variables are remaining in the set V [n :], i.e. V [n :] > 0, then those variables are evenly distributed

amongst the variable subsets in a circular fashion, starting from the �rst one. If the value of the parameter

n exceeds the value of |V |, then n is set to a default value of |V |. Finally, the sub-trees learned from each

of the subsets are assigned as the children of a product node. We avoid selecting the n variable randomly

from the scope, because it may cause the log-likelihood to drop due to the random nature.

This approach would improve on the RGVS method (Di Mauro et al., 2017), given the fact that we

do not restrict the number of children for a product node to two. Also, we do not assign all the remaining

variables to one of the subsets selected at random which might lead to sudden changes in the performance

of the AnytimeSPN algorithm over the duration.

4.2.2 Clustering for LearnSPN*

The children for the sum nodes are found by clustering the given dataset into groups of similar instances.

The LearnSPN* algorithm provides a control over the possible number of branches at the sum nodes

of the network.

The maximum number of clusters at any sum node in the network is restricted to an upper limit that

is given by the parameter k. These clusters are formed by a slightly modi�ed version of the X-means

clustering algorithm that was discussed in the Section 2.5. In addition to the dataD being clustered, this

new algorithm termed as X-meansWithLimit also takes as input the parameter k that restricts the

partitioning to k clusters. The X-meansWithLimit algorithm is given by the algorithm 6.

For a given dataset, the X-meansWithLimit algorithm initially tries to partition the dataset

into two clusters. If clusters are found, in the next iteration it further tries to partition the data in each of

the clusters of the previous iteration again into two clusters. If the BIC score of the new model including

a split within the cluster is better than that of the previous model where no split is considered, then the

number of clusters found is incremented accordingly. After evaluating each cluster from the previous

iteration, if the number of clusters newly found equals or exceeds the limit k, then k clusters from the

dataset are returned. Otherwise, if the number of the newly found clusters exceeds the number of clusters
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Algorithm 6: X-meansWithLimit
Input: D: Dataset k: Upper Limit on the Number of Clusters
Output: Clusters C

1 kcur = 2
2 while True do
3 Cluster setC ← K-means(D, kcur)
4 k′ = kcur
5 for c inC do
6 bicprev ← BIC({c})
7 C ′ ← K-means(c, 2)
8 bicnew ← BIC(C ′)
9 if bicnew > bicprev then

10 k′ = k′ + 1

11 if k′ ≥ k then
12 Cluster setC ← K-means(D, k)
13 returnC
14 if k′ > kcur then
15 kcur = k′

16 else
17 returnC

found in the previous iteration, then the process is repeated again. Else the algorithm is terminated and

the clusters from the previous iteration are returned.

Thus, such a process of clustering is allowed to continue while the number of clusters found is less

than k. The sub-SPN structures learned from each of the clusters form the children of the sum node.

4.3 Understanding AnytimeSPN with an Example

To gain a better understanding of how the AnytimeSPN algorithm a�ects the structure of the Sum

Product Networks, consider an example of the NLTCS dataset. The National Long Term Care Survey

(NLTCS) data consist of 16 binary variables. This is a detailed longitudinal survey data that makes obser-

vations of health and functional status of adults that are of age 65 years or older. It measures a person’s

ability to perform various daily living activities.
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Figure 4.3: Sum Product Network structures given by the AnytimeSPN algorithm for the NLTCS
domain. The structures from the �rst three iterations are shown.

The Figure 4.3 shows the changes in the learned structures of the SPNs for the NLTCS dataset for

the �rst three iterations of the AnytimeSPN algorithm. As seen, the �rst network is restricted to only

two branches at the sum nodes of the network allowing an approximate representation of the probability

distribution. In the next iterations, the allowed upper limit on the number of branches can be seen to be

increased to 3 and then 4. These structures show an improvement in the representation of the distribution

over the previous iteration. This is understood by the increase in the number of network parameters, that

is the number of the edge weights at the sum nodes. Also, the number of nodes in the networks and hence

the network complexity is seen to be increasing.

39



4.4 Validity of the Generated SPNs

Theorem 4.4.1 The SPNs returned at each iteration of the AnytimeSPN algorithm are valid.

The AnytimeSPN algorithm makes use of the LearnSPN* algorithm that utilizes the two

parameters k and n. We need to show that for any combination of the parameters k and n in the given

ranges, the SPN remains complete and decomposable, thus ensuring validity. So, we prove by induction

from leaves to the root of the network that the SPNs at each iteration are valid.

Base Case:

Validity is trivially true in the case of the leaf nodes since they only represent the univariate distributions

and are not a�ect by the parameters of the algorithm.

Induction Hypothesis:

Let n0 be an internal node having children n1, ..., nl. Following the notations in (Poon & Domingos,

2011), the scope ofn0 is given asV 0, a state ofV 0 asx0, the expansion of the sub-network rooted atn0 asS0,

and the unnormalized probability ofx0 underS0 as Φ0(x0). The same notations apply for the other nodes

as well. Thus, by induction hypothesis, the expansion of SPN rooted at nl is Sl =
∑

xl Φl(xl)Π(xl).

Induction Step:

If the node n0 is the product node in the case of naïve-factorization, then its children n1, ..., nl consists

of leaf nodes representing univariate distributions of each distinct variable in V . Thus, V i ∩ V j = φ,

where V i and V j are the scopes of distinct children of n0. This ensures decomposability of the node.

Also, S0 = (
∑

x1 Φ1(x1)Π(x1))× ...× (
∑

xl Φl(xl)Π(xl)) which is its network polynomial.

Consider the sub-SPN rooted at the sum node n0. This node could have 2 to k number of children.

All these clusters would de�nitely share the same scope since they are discovered within the same dataset

which would ensure completeness irrespective of the parameter k. Thus, if it has k children, then the

expansion S0 = w01

∑
x1 Φ1(x1)Π(x1) + ...+w0k

∑
xk Φk(xk)Π(xk). If the scopes of all the children

are same, V 0 = V 1 = ... = V k, then a one-to-one correspondence is established between the monomials
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of the expansions S0 and the states of V 0. Therefore, S0 =
∑

x0(w01Φ1(x0) + ...+w0kΦ
k(x0))Π(x0).

This represents the network polynomial and maintains validity.

Now consider the case of n0 being a product node. Let the independence testing performed on the

subset of �rst n variables in V 0 �nd l independent subsets having scopes V 1, ..., V l where l ≤ n. Since

the subsets are independent of each other, V i ∩ V j = φ, for all distinct subset pairs V i and V j . The

distribution of remaining |V |−n variables ensures that the subsets are still disjoint and the product node

n0 having children of scopes V 1, ..., V l is decomposable. Thus, the expansion of sub-SPN rooted at n0,

S0 = (
∑

x1 Φ1(x1)Π(x1)) × ... × (
∑

xl Φl(xl)Π(xl)), is its network polynomial since V i ∩ V j = φ

for all distinct subset pairs V i and V j .

Thus, the introduction of the parameters k andn to the structure learning algorithm for SPNs do not

interfere with the completeness and decomposability of the internal nodes irrespective of the parameter

values. Since the network remains complete and decomposable at each iteration of the AnytimeSPN

algorithm, the algorithm always generates a valid network structure.
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Chapter 5

Anytime SPMN

The LearnSPMN algorithm, for learning the structures of the Sum Product Max Networks from

the data, was introduced by (Melibari et al., 2016). But this algorithm has no bound or control over the

size or the performance of the learnt networks. The implementation of the LearnSPMN algorithm is

provided in the spmn branch of the https:// github.com/ SwarajPawar/ SPFlow.git repository. Considering

the suggestion by (Vergari et al., 2015) for SPNs, this implementation always creates two clusters for the

sum nodes to be formed and involves all the scope variables for variable splitting for the product nodes.

This algorithm would take a long time and would learn complex networks for large datasets. Since

the algorithm is not �exible, it might learn much complex networks even for simple domains. The size of

the networks increases exponentially for sequential domains. The RSPMNs (Tatavarti et al., 2021) and S-

RSPMNs (Hayes et al., 2021) introduce a recurrent template network for perfectly observable and partially

observable environments respectively. But still the size of these template networks remains unbounded.

In this chapter we introduce an anytime algorithm for learning the SPMNs. This anytime approach for

SPMNs would allow us to have a control over the size of the learned networks by trading the performance

of the networks. This approach would generate simpler networks in the initial iterations, that have smaller

size and approximately model the data in lesser computation times. As the algorithm progresses, the

performance of the networks increases by adding on to the network complexity.
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Initially, we introduce a few modi�cations to the structure of the SPMNs in the Section 5.1. The

Section 5.2 presents the AnytimeSPMN algorithm that returns better networks at each iteration. The

modi�ed LearnSPMN algorithm used by the AnytimeSPMN algorithm is then presented in the

Section 5.3 that helps to learn the networks �exibly. The Section 5.4 illustrates the changes in the SPMN

structure by the AnytimeSPMN algorithm with an example. In the Section 5.5, we show that the

SPMNs generated at every iteration are valid. In the last Section 5.6, we explain the evaluation of the

policy from the generated networks.

5.1 Modi�cations to the SPMN Structure

According to the de�nition of SPMNs, De�nition 2.3.1, each max node in the network corresponds to

one of the decision variables and each outgoing edge from a max node is labeled with one of the possible

values of the corresponding decision variable. Thus, the number of branches for a particular max node

is �xed and is equal to the number of decision values for the decision variable that the node represents.

Having a control over the branching factor at nodes is necessary as it allows us to have a control over the

size of the SPMN structure.

Thus, we introduce a modi�cation to the structure of the max nodes and limit the possible number of

branches to d. The parameter d gives the number of children that a decision node can have. But the value

of d needs to be less than or equal to the possible number of decision values v. Due to this modi�cation,

the decision values are distributed amongst the d groups. Now in this case, the outgoing edges from the

max nodes are labeled with one of the groups of the decision values rather than labelling them with a

single decision value. This modi�cation to the structure of the network has been illustrated in the Figure

5.1. To evenly distribute the decision values among the d groups, the distribution is performed in a circular

fashion.

If the child node corresponding to the group di, ..., dj yields the maximum value, then it means that

any decision value from that group at random can be considered for the policy. Hence now we do not

43



(a) The original SPMN structure having a separate branch for each decision
value and need v branches

(b) A modi�ed decision node where branches a group of decision values
and need less than v branches

Figure 5.1: Modi�cation to the SPMN decision node structure

obtain a policy having a de�nite decision value for each of the decision variables, but we get an approximate

stochastic policy that gives a set of possible decision values for a decision variable.

This modi�cation, thus, yields approximate models giving approximate policies at the initial iterations

of the anytime algorithm. As the value of the parameter d is increased, the number of decision values per

group are gradually reduced. Finally, when the value of d reaches the maximum possible value of v, each

of the groups has only one possible decision value left. Thus, the models become less approximate and

return better policies over the duration, which is the aim of an anytime technique. When the parameter

d reaches v, the model returns an optimal policy.
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Algorithm 7: AnytimeSPMN
Input: D: Dataset, V : Variables, P≺: Partial order

Output: Series of Learned SPMN
1 Set maximum cluster limit k = 2
2 Set maximum decision node branches d = 2

3 Set # variables for independence testing n =
√
|V |

4 Set maximum depth after decision nodes dmax = 1
5 do
6 spmn← LearnSPMN*(D,V, 0, null)
7 Increment the parameters k, n, d and depthmax
8 until log-likelihood converges

5.2 The AnytimeSPMN Algorithm

Similar to the algorithm 4 used for generating SPNs, the AnytimeSPMN algorithm (Algorithm 7)

gives the overall procedure for learning SPMNs using the anytime technique at each iteration. A dataset

D consisting of randomly generated tuples 〈X0, D1, X1, ..., Dm, Xm, U〉, following the partial order

P≺ = I0 ≺ D1 ≺ I1 ≺ ... ≺ Dm ≺ Im, is given as an input to the algorithm, where I is the

information set, D is the decision variable and U is the utility value. The algorithm also takes as input

the list of variables V present in the scope of the dataset domain along with the partial order P≺ of the

variables. This algorithm outputs a series of learnt SPMNs such that there is an improvement in the

performance at each iteration as the network complexity increases.

Additionally, the AnytimeSPMN algorithm consists of the four controlling parameters: k, d, n

and dmax. The parameters k represents the upper limit on the maximum number of clusters allowed

while creating a sum node and the parameter n represents the number of variables that are used for the

independence testing operation for creating the product nodes. These two parameters have the same

semantics as explained previously for the algorithm 4 that was introduced for the SPNs. A new parameter

d gives the maximum number of outgoing edges allowed for each decision node present in the SPMN.

Each of these edges could have a group of decision values assigned to it as discussed in the Section 5.3.

The decision value for that decision variable is selected randomly from the set of values linked to the edge
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Figure 5.2: An illustration of the AnytimeSPMN algorithm

that gives the maximum value during evaluation. The value of the parameter dmax gives the maximum

possible depth allowed from the point where no decision variables appear in the scope of the branch. This

allows us to control the depth and hence the size of the network from that point. Truncating the depth

of the networks from the chosen point avoids interfering with the max-uniqueness of the network.

The algorithm �rst initializes these parameters to their lowest feasible values. The value of k is initial-

ized to two clusters for the sum nodes and the parameter n is initialized to the value of
√
|V | as discussed

previously in the Section 4.1. The possible number of edges for the decision nodes is initially restricted

to only two edges. The maximum possible depth dmax of the branches after the last decision node in the

branch is limited to one. These parameters are given to the modi�ed LearnSPN algorithm, termed as

LearnSPMN* algorithm, to learn the SPMN structures at each iteration. After an SPMN is learned,

the values of the parameters k, d, n and dmax are incremented. The value of n is incremented till it equals

to |V |, while the value of d is incremented till it reaches the total number of decision values possible for

the decision variables. The values for k and dmax are increased by 1 without any maximum limit. This

process stops when the log-likelihoods of the generated networks reaches convergence after the value of n

equals |V |. The algorithm is said to be converged when the standard deviation in the log-likelihood of the

last three networks falls below the threshold of 10−3. The overall functioning of the AnytimeSPMN

algorithm is illustrated by the Figure 5.2.
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5.3 Modi�ed LearnSPMN for the Anytime Approach

Algorithm 8: LearnSPMN*
Input: D: Dataset, V : Variables, i: Information set index, dcur: current depth after decision nodes
Parameters: P≺: Partial order, k: Maximum cluster limit,

d: Maximum decision node branches,
n: # variables for independence testing,
dmax: Maximum depth after decision nodes

Output: learned SPMN
1 if |V | = 1 then
2 if variable v ∈ V is utility then
3 u← estimate Pr(V = True) fromD
4 return utility node with value u

5 else
6 return smoothed univariate distribution over V

7 Update i and dcur
8 if dcur ≥ dmax then
9 return Πj× naïveFactorize(D,V )

10 VR ← P≺[i+ 1] ∪ P≺[i+ 2] ∪ P≺[i+ 3]...
11 if P≺[i] is a decision variable then
12 vgroups ← distribute decision values in d groups
13 for vg ∈ vgroups do
14 Dvg ← subset ofD where P≺[i] ∈ vg
15 return MAXvg LearnSPMN*(Dvg , VR, i+ 1, dcur)
16 else
17 Partition variables V [: n] into independent subsets S
18 Distribute the remaining variables V [n :] among the subsets Vj ∈ S
19 Merge together subsets having variables∈ VR
20 if |S| > 1 then
21 return Πj× LearnSPMN*(Dj , Vj , i, dcur)
22 else
23 partitionD into clustersDj of similar instances based on the values in P[i] such that j ≤ k
24 return Σj

|Dj |
|D| × LearnSPMN*(Dj , V, i, dcur)

The LearnSPMN* algorithm, given by the algorithm 8, that is used for learning the SPMN struc-

tures �exibly at each iteration is based upon the method given by the LearnSPMN algorithm. Along

with the domain dataset D, the scope variables V and the partial order P≺, the algorithm requires the
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information set index i as the input. This is the index of the current information set from the partial

order that is to be processed. At the beginning, i is set to 0 to start from the �rst information set. Another

parameter dcur is used to keep a track of the depth from the point when decision variables vanish from

the scope of data to the point where the recursive algorithm currently is. This parameter is initially passed

as null since decision variables initially exist in the scope V . Other controlling parameters required by

the algorithm are k, d, n, and dmax whose values are provided by the algorithm 7. The LearnSPMN*

algorithm returns the learnt SPMN structure by adhering to the parameter values that are provided to it.

The algorithm 8 initially checks whether the scope V of the dataset contains only a single variable. If

this is the case, then the algorithm returns a utility node if the variable inV is a utility variable. Otherwise if

the variable is a random variable, then the smoothed univariate distribution over that variable is returned.

The information set index i is incremented if there are no variable from the current information set

P≺[i] in the scope V . After updating the current information set index, all the variables from the next

information set onward are stored in VR.

5.3.1 Controlling Depth in LearnSPMN*

The two parametersdmax anddcur are used to control the depth of the branches while learning the network

recursively. The depth is the SPMNs can be controlled after a particular point in the branches. If the

current scope of variables V contains any decision variables within it, it is not possible to truncate the

current branch since it would not a valid policy. This is because the path from the root of the network

to the utility leaf nodes must contain all the decision variables on which that utility is dependent upon

for deriving a valid policy from the network. Hence, a branch in the network can be truncated only if the

decision variables no longer appear within the scope of that branch.

Initially the value of the parameter dcur is null. This indicates that the decision variables exist within

the scope V . If there are no decision variables in the scope V and parameter dcur is still null, the current

branch can be truncated from this point onward. Thus, when this point is reached, the value of the
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parameter dcur is set to 1. If the value of dcur is already an integer value, it is updated to the next integer

value to indicate an increment in the level of depth of the branch.

The parameter dmax gives us the maximum depth that is allowed from the point from where the

branch can be safely truncated. If the value of dcur exceeds the limit given by dmax, then the algorithm

returns a product nodes having |V | children created by naïve-factorizing the scope variables V . This gives

an approximate distribution over the variables V once the maximum allowed depth is reached.

The maximum limit dmax is initially assigned the value and incremented after each iteration of the

AnytimeSPMN algorithm. Since the allowed depth for the branches increases over time, it allows

the LearnSPMN* algorithm to generate deeper and better models having more nodes and complexity.

This reduces the learning time in the initial iterations and improves the performance in the later phases.

5.3.2 Decision Variable Splitting in LearnSPMN*

As discussed previously in the Section 5.1, the decision nodes in the network are modi�ed to consist of a

maximum of d children. Thus, the parameter d is used to control the branching of the max nodes that

represent the decision variables.

The task of decision variable splitting is performed when the current information set in the partial

order contains only a single decision variable P≺[i]. In such a case, all the distinct decision values corre-

sponding to the variableP≺[i] are discovered within the datasetD. Then d groups are created to hold the

decision values. If the number of the decision values discovered within the data is less than the value of d,

then the number of groups created equals the number of decision values found. After creating the groups,

the discovered decision values are distributed among the groups. For each of the decision groups vg, a

subsetDvg of datasetD where the value of the decision variable P≺[i] belongs to that group is formed.

The algorithm returns a new max node having at the mostd children for the variableP≺[i] whose children

are the sub-SPMNs learnt from each of the created subsetsDvg with the scope VR.

The distribution of the decision values among the d groups is done in a circular fashion for even

distribution of the values. To understand how this distribution is performed, consider an example of
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(a) The original SPMN structure for v = 6 (b) Modi�ed decision node structure for d = 2

(c) Modi�ed decision node structure for d = 3 (d) Modi�ed decision node structure for d = 6

Figure 5.3: An example illustrating the changes in the grouping of the decision values as the controlling
parameter d is varied

a decision variable D having the six decision values given as {1, 2, 3, 4, 5, 6} as shown in the Figure 5.3.

If the value of the parameter d = 2, then the distribution is done as {[1, 3, 4], [2, 4, 6]}. For n = 3,

the grouping is {[1, 4], [2, 5], [3, 6]}. When the value of n is set to the maximum possible value of v, we

would get 6 decision value groups as {[1], [2], [3], [4], [5], [6]}. Thus, when the value of the parameter d

reaches the maximum possible value, the branching for the modi�ed max node becomes similar to the

branching in the original SPMN structure.

As evident from the example, the approximation level of the expected utility is reduced as the value of

d is increased. Thus, the parameter d also controls the quality of the policy along with the network size.

So, as the parameter d is increased, the maximum utility obtained over the groups of the decision variables

also increases till it reaches the optimal MEU value.
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Figure 5.4: Illustration of the variable splitting operation for the LearnSPMN* algorithm

5.3.3 Independence Testing for LearnSPMN*

If the current information set P≺[i] doesn’t consist of a decision variable, then variable splitting opera-

tion is performed for creating a possible product node. As explained previously for the LearnSPN*

algorithm in the Section 4.2.1, the parameter n is similarly used for the LearnSPMN* algorithm as

well to reduce the computation time required for independence testing.

The variable splitting operation for the LearnSPMN algorithm also uses the �rst n variables from

the scope V for independence testing. This set of n variables, denoted as V [: n], are partition into the

independent subsets Vj ∈ S. The remaining |V | − n scope variables, V [n :] are distributed among

the subsets S in such a way that none of the variables V [n :] that are also in the set VR are assigned to

the subsets that are disjoint from VR. In other words, if a variable in V [n :] is present in VR, it is only

assigned to the subsets Vj having variables from VR, that is Vj ← Vj ∪ {v}, v ∈ V [n :], if v ∈ VR and

Vj ∩ VR 6= φ. After distributing the variables in VR, all the subsets Vj having variables that are present

in VR are merged together to form a single subset. Now if there are more than one subset that are still
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Figure 5.5: Illustration of the clustering operation for the LearnSPMN* algorithm when k = 3

left, a new product node is created having the SPMN structures that are learned from these subsets as its

children. An overview of this operation is presented in the Figure 5.4.

Since only n variables are used for the independence testing rather than all the |V | variables, the

computation time for the product nodes is reduced. Also, as variables from the next information sets

also might be used for the splitting, any correlations between the variables in P≺[i] and VR are preserved.

Additionally, having all the variables from VR in the same subset helps in respecting the partial order.

5.3.4 Clustering for LearnSPMN*

In the case when only one independent subset is found during the variable splitting, the algorithm �-

nally proceeds to discover clusters within the data for creating a sum node. Similar to the clustering

operation given in the Section 4.2.2 for the SPNs, the LearnSPMN* algorithm also uses the X-

meansWithLimit algorithm for computing the clusters from the data.

As explained previously, the parameter k is used to control the number of clusters and hence the

branching at the sum node. The datasetD is partitioned into a maximum of k clusters of similar instances.

The only change is that instead of using all the variables present in the dataset for clustering, only the

52



Figure 5.6: In�uence Diagram for the Export Textiles domain

variables that are present within the current information set P≺[i] are used for this operation. This is

because the clustering over all the variables might violate the partial order. Then a sum node is returned

having the SPMNs learned from the clusters as its children and the relative proportions of the instances

in these clusters as their respective edge weights. Thus, the upper limit k on the number of clusters is used

to �exibly manage the complexity at the sum nodes by respecting the partial order using this approach.

This is illustrated in the Figure 5.5.

5.4 Understanding AnytimeSPMN with an Example

For understanding the changes in the structure of the network over the course of the AnytimeSPMN

algorithm, consider the Export Textiles domain as introduced in (Er & Lezki, 2012). This domain consists

of one random variable ‘Economical State’ (ES), a decision variable ‘Export Decision’ (ED) and a utility

value ‘Profit’ (Pr). The task here is to select the decisionED that maximizes the utility pro�t Pr. The

Figure 5.6 displays the in�uence diagram for this domain. The decision variable ED has three decision

values, and the variableES is a discrete random variable having three possible values.
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(a) (b)

(c) (d)

(e)

Figure 5.7: Sum Product Max Networks given by the AnytimeSPMN algorithm for the Export Textiles
domain. The sub-image (a) is the initial network, and the sub-image (e) is the �nal network. The sub-
images (b), (c) and (d) are the intermediate networks learnt over the course of the AnytimeSPMN
algorithm
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The SPMN networks that were returned by the AnytimeSPMN algorithm for the Export Textiles

domain are shown in the �gure 5.7. We can observe that the max node has only two branches with grouped

decision values in the �rst two networks, while the branches are increased to 3 after the second network.

The depth in the case of the �rst network after the decision node is limited to one by naïve factorizing the

variables. The intermediate networks are not able to model the underlying distribution accurately since

they are approximated by the parameters. As evident from the sum nodes, the �nal network is able to

capture the complete probability distribution as given by the ID. Also as expected, the number of nodes

and the accuracy of the models is seen to be increasing over the iterations of the anytime algorithm.

5.5 Validity of the Generated SPMNs

Theorem 5.5.1 The SPMNs returned at each iteration of the AnytimeSPMN algorithm are valid.

The AnytimeSPMN algorithm makes use of the LearnSPMN* algorithm that requires the

parameters k,n, d anddmax to learn SPMNs. We need to show that for any combination of the parameters

in the given ranges, the SPMN structures hold the properties that ensure validity. So, we prove that the

SPMNs at each iteration are valid by using induction from leaves to the root of the network.

Base Case:

Validity is trivial in the case of the leaf nodes since they only represent the univariate distributions or the

utility values and are not a�ect by the parameters of the algorithm. For the base case of validity, consider

the case of a SPMN having partial orderP≺ = [[D], [U ]]. This case only has one decision node connected

to d utility nodes that are leaves. The evaluation of this SPMN gives S = maxvgU(vg) which maximizes

the utility for the decision groups.

Induction Hypothesis:

Let n0 be an internal node having children n1, ..., np. Let the scope of n0 be V 0, σ0 be a policy us-

ing decisions in the scope, a state of V 0 be x0, let the expansion of the sub-network rooted at n0 be

S0, and the unnormalized probability of x0 under S0 be Φ0(x0, σ0). The same notations apply for
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the other nodes as well. Thus, by induction hypothesis, the scope of sub-SPN rooted at np is Sp =

maxσp

∑
xp Φp(xp, σp)U(xp, σp).

Induction Step:

Thus, if n0 is a max node for decision variableD0 having d children corresponding to the decision value

groups in vg, the expansion S0 = maxvg{S1, ..., Sd}. By induction hypothesis, S1, ..., Sd return the

MEUs yielded by sub-SPMNs rooted at nodes n1, ..., nd that are learned from data having the same

scope VR. Thus, maximization over these values returns the MEU at the max node and the node n0 is

max-complete. The decision variable D0 is processed at the node n0 and D0 /∈ VR. Since the children

n1, ..., nd have the scope VR, the decision variableD0 appears at the most once in the paths from the root

to the leaves. Hence, max-uniqueness is also ensured.

If the node n0 is a sum node, it could have 2 to k number of children. The dataset D is clustered

into k clusters by considering the variables in the current information set P≺[i], but the scope of the

clusters remains identical. Thus, sum-completeness is guaranteed irrespective of the value of k. For the

sub-SPMN rooted at sum node n0 with k children, the expansion is S0 = w01S
1 + ...+ w0kS

k.

∴ S0 = w01(maxσ1

∑
x1

Φ1(x1, σ1)U(x1, σ1)) + ...+ w0k(maxσk

∑
xk

Φk(xk, σk)U(xk, σk))

If the scopes of all the children are same, V 0 = V 1 = ... = V k, then a one-to-one correspondence is

established between the monomials of the expansions S0 and the states of V 0. Therefore,

∴ S0 = maxσ0

∑
x0

[w01Φ1(x0, σ0) + ...+ w0kΦ
k(x0, σ0)]U(x0, σ0))

This expression too maximizes the expected utility at the sum node n0 and so the sub-SPMN rooted at

this node remains valid.

Now consider the case of n0 being a product node. Let the variable splitting performed on the subset

of �rst n variables in V 0 �nd p independent subsets having scopes V 1, ..., V p where p ≤ n. Since the

subsets are independent of each other, V i ∩ V j = φ for all distinct subset pairs V i and V j . The subsets

having variables in VR are merged together and the remaining variables are distributed as mentioned. Due

to this, only one branch of the product node has decision or utility variables in its scope and the product
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node n0 having children of scopes V 1, ..., V q is decomposable. Hence, the expansion of V 0 is,

S0 = S1 × ...× Sq−1 × (maxσq

∑
xq

Φq(xq, σq)U(xq, σq))

=
∑
x1

Φ1(x1)× ...×
∑
xq−1

Φq−1(xq−1)× (maxσq

∑
xq

Φq(xq, σq)U(xq, σq))

= maxσ0

∑
x0

Φ0(x0, σ0)U(x0, σ0)

This is because V i ∩ V j = φ for all distinct subset pairs V i & V j and V 0 = V 1 ∪ ... ∪ V q. Hence,

the policy σ0 = σq and Φ0(x0, σ0) = Φ1(x1)...Φq−1(xq−1)Φq(xq, σq). So, the sub-SPN rooted at the

product node n0 is valid.

If the depth of the branch from the mentioned point exceeds dmax, then the variables V are naïve-

factorized. We had already proved validity for naïve factorization in Section 4.4.

Thus, the parameters k, n, d and dmax for the �exible structure learning algorithm LearnSPMN*

for SPMNs do not interfere with properties required for validity irrespective of the parameter values. Since

the network remains sum-complete, decomposable, max-complete and max-unique at each iteration of

the AnytimeSPMN algorithm, the algorithm always generates a valid network structure.

5.6 Policy Evaluation

Now that the anytime structure learning algorithm for the modi�ed SPMN structure has been introduced,

it is also important to understand how the policies are evaluated for these networks. If the best decision

value for a decision variable was to be evaluated in the case of the original SPMN structure, then the

expected utility for all the possible decision values given the previous decisions and evidence is computed.

Then the decision value that gives the maximum expected utility value is considered for the policy.

This method could also be applied for the modi�ed structures that are returned by the anytime al-

gorithm. But now in this case, all the possible decision values that return the maximum expected utility

value are considered for the policy. For a particular decision variable, the agent may select any of the deci-

sion values that are available for that variable in the policy at random. Since a group of decision values is
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assigned to a branch of a max node, multiple decision values could yield the highest expected utility value.

This approach still reduces the inference time as compared to the original structure evaluation since all

the structures given by the anytime algorithm except the �nal structure have smaller network sizes. The

�nal network structure has max node splits similar to the original structure and thus would require the

same inference time if the network size is same.

But in the case of the domains having less number of decision values per decision variable, the decision

value grouping for all the max nodes corresponding to a particular decision variable would be the same.

So, evaluating the expected utilities for all the decision values in the same group would not be necessary

since they give the same utility value. Thus, any one decision value from a group could be used to get the

expected utility for that group. If this value is the maximum, then all the decision values in that group are

considered for the policy.

The second approach provides a good policy only if all the max nodes related to a decision variable

have the same grouping. The �rst approach provides a good policy irrespective of the groupings, but needs

more computation. Thus, a hybrid method for policy evaluation is used. The second approach is used

for the cases where it would give a good policy, while the �rst approach is used for the rest of the cases.
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Chapter 6

Experiments

In the previous chapters we have introduced two anytime algorithms, AnytimeSPN and Anytime-

SPMN, for learning the structures for the sum product networks and the sum product max networks

respectively. Now it is important to understand how e�ective these algorithms are in generating the net-

works �exibly and whether these algorithms show an increase in the performance of the models as expected

for the anytime algorithms. These anytime algorithms for learning the SPNs and the SPMNs have been

implemented using the open-source SPFlow library (Molina et al., 2019). The AnytimeSPN algorithm

is available in the anytime_spn branch of the https://github.com/SwarajPawar/SPFlow.git repository, and

the AnytimeSPMN algorithm is provided in the anytime_spmn branch.

In this chapter, we describe the experiments that were conducted to evaluate the e�cacy of these two

algorithms and also analyze the results that were produced by them. In the Section 6.1 of this chapter, we

discuss the datasets that were used in the experiments. The sub-section 6.1.1 discusses the testbed for the

SPNs, while the sub-section 6.1.2 gives the datasets that were used for SPMNs along with the modi�cations

made to the domains. Then the Section 6.2 presents the results and analysis for the AnytimeSPN

algorithm by presenting the performance pro�les, computation times and the changes in the network sizes.

Similarly, the Section 6.3 analyzes the results given by the AnytimeSPMN algorithm by discussing

the improvement in the networks and their policies as observed from their performance pro�les and the

other related plots.
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6.1 Datasets for Evaluation

6.1.1 SPN Evaluation Testbed

For the anytime approach using the AnytimeSPN algorithm for learning the sum product networks,

we evaluate the performance of this algorithm on a testbed that is selected from the datasets provided by

the SPFlow repository. We selected six datasets from the repository for conducting our experiments. These

datasets consist of random variables having binary values. The repository has split these datasets into the

train, validation and test sets. The instances from the train and test sets are combined into one dataset for

the experiments. The number of domain variables and the number of instances for the combined train

and test datasets are listed in Table 6.1. All of these datasets are present within the src/spn/data/binary

folder of the anytime_spn branch of the repository.

Table 6.1: Data sets for evaluating AnytimeSPN. |V | indicates the number of random variables in the
dataset.

Dataset |V | # Instances

NLTCS 16 19417
MSNBC 17 349591
KDDCup 2K 65 215047
Jester 100 13116
Audio 100 18000
Net�ix 100 18000

6.1.2 SPMN Evaluation Testbed

The AnytimeSPMN algorithm, introduced for learning the sum product max networks with im-

proving performance, was evaluated over a testbed of datasets that were generated from the RDDLSim

domains (Sanner, 2010). The domains provided by the RDDLSim repository are sequential domains.

In order to make them suitable for our experiments, these domains were modeled as decision making

domains consisting of a �nite number of steps. The number of steps for the domains is the number
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Table 6.2: Data sets for evaluating AnytimeSPMN. Here |X| denotes the number of discrete random
variables, |D| is the number of decision variables and |d| is the number of decision values per decision
variable.

Dataset |X| |D| |d| Optimal MEU

Elevator 35 6 4 0.5
Navigation 36 5 4 -4.047
Game of Life 36 3 9 10.808
Skill Teaching 72 5 4 -7.181
Crossing Tra�c 72 5 4 -4.0

of decisions to be taken. Each instance in the dataset is generated by simulating a random agent in the

environment for the given number of time steps |D|. The initial state, along with the states observed after

performing each random action are recorded. The total reward gained after taking all the |D| decision

is recorded as the utility U . The generated sequences respect the partial order P≺, since the variables in

the information set Ii represent the state observed after an actionDi at the time step i. These generated

datasets are available within the src/spn/data folder of the anytime_spmn branch.

Since most of the RDDLSim domains model a continuous interaction between the agent and the

environment rather than having a �nite goal state, a few modi�cations have been made to these domains

for conducting our experiments. In the case of the Elevators domain that consists of an instance having

three �oors, a person may randomly show up at the middle �oor with a pre-de�ned probability and

may wish to go to the top �oor or the bottom �oor. This domain is modi�ed such that the elevator at

the �rst �oor is the start state and a person is present on the second �oor waiting to go up. Here, the

goal for the elevator is to take that person to the third �oor which would yield a reward of +5.0. The

Navigation domain originally has a grid of cells of size 3 × 3. This problem is converted to a domain

with a 3× 2 grid by simply removing the middle column. The initial state of the Crossing Traffic domain,

having a 3 × 3 grid, is modi�ed to have the robot start from the cell that is diagonally opposite to the

goal cell. The Game of Life and the Skill Teaching domains are kept unchanged. All of these domains

are available in the https://github.com/SwarajPawar/rddlsim.git repository and having the �les named as

domain_name_inst_mdp__2.rddl in the files/final_comp/rddl directory.
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6.2 Performance Pro�les for AnytimeSPN

The performance pro�le displays the improvement in the models returned by an anytime algorithm.

The log-likelihood of the sum product networks that are learned by the AnytimeSPN algorithm is

considered as the quality criterion for the performance pro�les. Along with this quality measure, we also

record the trend in the size of the networks learned and the computation time required for learning them.

We use a 3-fold cross-validation for evaluating our experimental results. We also compare the evaluation

metrics as given by the LearnSPN algorithm from the SPFlow repository with the anytime results.

Additionally, we compare the results of the model that was learned without imposing any constraints

on the number of clusters and the number of variables for splitting. That is, there is no limit on the

number of clusters to be partitioned by the X-means algorithm and all the scope variables are used for

independence testing operation during the learning of the model. This model is expected to showcase

the true representation of the data and it is considered as the UpperLimit for our results. The anytime

approach would eventually yield this model if allowed to continue without any termination criterion.

We use the entire datasets that were formed by combining the train and test sets given in the SPFlow

repository for learning the networks models for the LearnSPN and the Upper Limit baselines. We also

use the same data for evaluating these baseline models. The train and test splits that obtained by the 3-

fold cross validation split are used for training and evaluating the models yielded by the AnytimeSPN

algorithm. This algorithm terminates after reaching convergence when the standard deviation in the

log-likelihood of the past three models is less than 10−3.

Also, the monotonicity property of the anytime algorithms given by (Zilberstein, 1996) states that the al-

gorithm can return the best model generated so far rather than the last model to maintain a non-decreasing

performance pro�le. To demonstrate the strength of the introduced algorithm, the performance pro�les

in these results show the quality of the model returned at a particular iteration rather than the best model

at that point. The results of our experiments using the AnytimeSPN algorithm are presented in the

Figures 6.1, 6.2 and 6.3.
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Figure 6.1: Results given by the AnytimeSPN algorithm for the NLTCS and MSNBC datasets. The
top row illustrates the trend in log-likelihood as the algorithm progresses, the middle row shows the trend
in the structure sizes and the last row shows the learning time observed in seconds.
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Figure 6.2: Results given by the AnytimeSPN algorithm for the KDDCup-2K and Jester datasets. The
top row illustrates the trend in log-likelihood as the algorithm progresses, the middle row shows the trend
in the structure sizes and the last row shows the learning time observed in seconds.
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Figure 6.3: Results given by the AnytimeSPN algorithm for the Audio and Netflix datasets. The �rst
row illustrates the trend in log-likelihood as the algorithm progresses, the middle row shows the trend in
the structure sizes and the last row shows the learning time observed in seconds.
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As evident from the experimental results for the AnytimeSPN algorithm that are presented in

�gures, the log-likelihood curves given by the models for the datasets showcase the performance pro�le

as expected for an anytime technique. As desired, the algorithm is able to demonstrate diminishing

results because the improvements in the log-likelihood are greater in the early iterations and they continue

reducing over time as it reaches convergence. The algorithm is able to learn the models having nearly

non-decreasing log-likelihoods as the computation progresses. Also, we observe a few minor drops in the

log-likelihood as we do not return the best generated models at each iteration which could be done to

preserve monotonicity. But the algorithm is seen to be able to recover from such drops immediately in the

following iterations. Thus, the AnytimeSPN algorithm is clearly able to preserve the characteristics

and show the desired properties of an anytime algorithm.

One of the interesting observations inferred from the results is that the anytime algorithm can learn

much complex networks having more nodes than the model learned by the LearnSPN algorithm by

utilizing much less time. The algorithm is able to learn models that show a better log-likelihood as com-

pared to the LearnSPN model in lesser computation times. Hence, the AnytimeSPN algorithm is

able to reduce the computation time required by orders of magnitude to provide a performance compara-

ble to the LearnSPN model. The reason for the reduction in the learning time is because only a subset

of variables of size n is used for variable splitting instead of using all of them. But the performance of the

same model is improved as it able to represent the distribution in a better way because of having a value

of k greater than the value 2 that is used for the LearnSPN algorithm.

The AnytimeSPN algorithm for the SPNs is able to achieve a performance level that is comparable

to that of the model considered for the Upper Limit. But the algorithm is able to achieve such a perfor-

mance in signi�cantly lesser number of nodes. In most of the datasets, such a performance is observed

in less than half of the number of nodes required for the Upper Limit network. It is able to reach this

performance level in less or equivalent run-times as compared to the upper baseline using smaller network

sizes. This quality of the models is observed when the algorithm is closer to the convergence. Apart from

this, the results show a steady and linear increase in the network sizes.
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6.3 Performance Pro�les for AnytimeSPMN

The sum product max networks are used to model the decision making problems. Thus, the quality

measure for the performance pro�le of the AnytimeSPMN algorithm must indicate an estimate of

the quality of the policies that are learned. Therefore, we also include the pro�les given by averages rewards

yielded by the policies of the models along with the log-likelihood that provides an estimate of how well

the data distribution is modeled. Additionally, we also plot the changes in the size of the networks and

the computation time over the duration of the algorithm till the algorithm terminates after reaching the

convergence criterion.

The complete dataset that was generated by the simulating the random agent was used for the training

of the models given by the AnytimeSPMN algorithm to evaluate the policies. The average rewards

were computed over 25 batches of 20, 000 simulations of the policies that were given by the models. For

this evaluations, the mean values along with the standard deviations over the given batches are recorded.

Similar to the evaluation of the AnytimeSPN algorithm, we use 3-fold cross-validation for computing

the log-likelihood of the models learnt by the AnytimeSPMN algorithm.

We compare the results that are obtained from the AnytimeSPMN algorithm with the results

given by the model that is learned using the LearnSPMN algorithm. The evaluations for the Learn-

SPMN models were performed in the same way as described for the anytime algorithm. Additionally,

we also compare the average rewards obtained by the models with the optimal maximum expected utility

value for the decision making domains. This MEU value is obtained by simulating the policy given by

the value iteration solver that is provided in the RDDLSim code. These optimal values are given in the

Table 6.2 and the average rewards given by the anytime algorithm is expected to reach these values towards

convergence. We also compare the anytime approach rewards against the average reward that is given by

a random policy. The Figures 6.4 and 6.5 illustrates the performance pro�les for both the quality mea-

sures given by the anytime algorithm for the SPMNs along with the trends in the network sizes and the

computation time.
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Figure 6.4: Results given by the AnytimeSPMN algorithm for the Elevators, Navigation and Game
of Life datasets. The �rst row gives the trend in the log-likelihood, the second row shows the number of
nodes, the third row illustrates the trend in the average rewards, and the last row shows the learning time
in seconds for the anytime approach.
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Figure 6.5: Results given by the AnytimeSPMN algorithm for the Skill Teaching and Crossing Traffic
datasets. The �rst row gives the trend in the log-likelihood, the second row shows the number of nodes,
the third row illustrates the trend in the average rewards, and the last row shows the learning time in
seconds for the anytime approach.
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As seen from the �gures, the performance pro�les having log-likelihood of the models as the quality

measure for datasets is seen to be increasing as the algorithm proceeds. This again shows the expected

behavior of an anytime algorithm. The improvement in the log-likelihood is steeper in the initial iterations.

The algorithm is able to observe a non-decreasing log-likelihood in all the cases except the Crossing Traffic

domain. As mentioned previously, the algorithm returns the last model rather than the best one. This

helps us to see that the Crossing Traffic domain is able to recover from the drop immediately in the next

iteration. Since the size of the networks is in the order of 100, 000, we are not able to directly visualize

the change in the network structure during these iterations. But a possible cause for the drop might be

the combined increase of the k and d parameters which might have led to a shallower structure with less

nodes in this case.

Also, average rewards that are obtained by the AnytimeSPMN algorithm are able to reach the

optimal MEU in the later stages of the algorithms. As seen by the improvements in the rewards, the

anytime algorithm is able to discover better policies over the time. Thus, the approximation of the policies

decreases and their quality improves as expected. Even though a drop was observed in the log-likelihood

and the network size of the Crossing Traffic domain, the rewards are seen to be improved. The only drop

in the rewards is observed in the case of the Game of Life domain. The possible reason for this drop is that

the best grouping of the decision values might not have been found due to large possibilities of groupings

in this case. Also, the anytime algorithm is able to produce networks that perform better than a random

policy in most of the iteration except some initial iterations in some of the cases.

The improvement in the log-likelihood and the average rewards is coherent with the increase in the

network sizes. Also, the computation time required to learn the models increases over the iteration. An

interesting observation is that the computation time required for the models in the earlier phases is less than

the models showing similar performance in the later iterations of the algorithm. The anytime algorithm

is able to produce optimal models within lesser learning times than the computation time required for

the LearnSPMN algorithm.
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Chapter 7

Conclusion and Future Work

The Sum Product Networks are appealing since their structures could be learned directly from the data

and they provide tractable inference. The Sum Product Max Networks that extend and generalize the

SPNs for decision making are interesting as compared to the hand-designed previous models since they

are driven by structure learning directly from the data. But the previously introduced structure learning

algorithms for SPNs and SPMNs yielded models having no bound over the size or the computation time.

In this work, we introduced the AnytimeSPN algorithm for the Sum Product Networks and the

AnytimeSPMN algorithm for the Sum Product Max Networks that are able to learn the structure

of these networks with improving performance. These algorithms make use of the LearnSPN* and

the LearnSPMN* algorithms respectively that learn the networks structures �exibly by respecting the

controlling parameters. These algorithms are successfully able to trade the computation time and the

network complexity with the performance or the quality of the models.

We explain in detail the meaning and the role of the parameters used by the algorithms that control

the structure of the networks. For both the algorithms, we present a control over the branching of the

sum nodes using the parameter k and a reduction in the computation time for variable splitting using the

parameter n. Additionally for the AnytimeSPMN algorithm, the parameter d is used to control the

branching of the max nodes and the parameter dmax is used to control the depth of the branches. Also,
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some modi�cations are introduced for the max nodes in the SPMN structure to control the approximation

of the policies.

It is important that every network structure returned by the anytime algorithms is a valid structure.

Thus, we also present the validity proofs to show that the networks returned at each iteration of the

algorithms satisfy the properties of a valid network. We show that the validity of these networks is not

a�ected by any possible combination of the parameter values.

The testbed of the datasets used for conducting the experiments for evaluating the algorithms is well

explained. Some of the modi�cations that are made to the sequential decision making domains given in

the RDDLSim repository for the convenience of our experiments are also stated. We also introduced the

baseline models that are used to understand the e�cacy of the anytime algorithm results by comparison.

The method used for evaluating the models is also mentioned.

The experimental results are visualized and analyzed using the performance pro�les. The quality of the

SPN models improves over time as estimated by the log-likelihood measure. Similarly the performance of

the SPMN is improved over the algorithm duration as given by the log-likelihood and the average rewards.

The SPN structures learned by the AnytimeSPN algorithm in lesser computation time perform better

than the LearnSPN algorithm and perform comparable to the Upper Limit results using signi�cantly

less nodes. Similarly, the models given by the AnytimeSPMN are able to learn the optimal policy

using less computation time than that required for the LearnSPMN algorithm. These algorithms can

be applied to the areas where the computation time is more critical than the quality of the results.

A future direction to this work could be extending the anytime technique for learning the template

network structures for the recurrent variants whose size currently remains unbounded. Also, a more

sophisticated method for grouping the decision values for the max nodes should be discovered which

might help to prevent any drops in the average rewards.
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