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ABSTRACT 

Rapid and ongoing environmental change and additional anthropogenic stress pose a 

threat to many forest ecosystems. Environmental stresses including changes in disturbance 

regimes, altered land use, and introduced species can directly affect native tree and plant 

abundance and alter natural ecological functions and processes. Small forests face additional 

vulnerability to these environmental stresses due to their size and isolation or lack of 

connectivity to other forest ecosystems. As there are a myriad of situations in which to conserve, 

restore, and manage forest ecosystems at small spatial scales of 50 ha or less, it is imperative that 

forest land managers and owners, restoration practitioners, and environmental consultants and 

stewards realize what management tools and restoration efforts are available and understand their 

ecological consequences. 

To address some small forest management concerns and restoration challenges, my 

dissertation research uses a range of methods to better understand small forest ecology and 

identify management consequences of different tools and restoration efforts. I will first evaluate 

forest dynamics models that are available and appropriate for small forest use and can help 

answer questions small forest managers have about their forests. Then, I will demonstrate how 



demographic modeling and decision-making frameworks can help guide forest managers to 

make management decisions about tree population dynamics, using maritime live oak (Quercus 

virginiana) (MLO) forests on Jekyll Island and other barrier islands along the Georgia, U.S. 

coast as a case study. I will then continue to explore MLO forest ecology within Jekyll Island by 

evaluating the effects of deer on native plant and tree seedling abundance and note whether deer 

are facilitating a camphor (Cinnamomum camphora) invasion using an experiment with deer 

H[FORVXUHV�RQ�RQH�RI�WKH�LVODQG¶V�VPDOO�IRUHVWV��)LQDOO\��,�ZLOO�XVH�PXOWLYDULDWH�DQDO\VHV�WR�

understand how abiotic and biotic environmental conditions such as soil moisture and adult tree 

composition affect native plant communities on Jekyll Island. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Rapid and ongoing environmental change and additional anthropogenic stress pose a 

threat to many forest ecosystems. Environmental stresses including a change in fire regime and 

altered land use can directly affect native tree and plant abundance and alter natural ecological 

processes including hydrological flow and soil structure. Stresses such as introduced herbivore, 

parasitic, or invasive species can also indirectly influence native plant composition and 

ecosystem functions by changing interspecific plant competition dynamics. Small forests face 

additional vulnerability to these environmental stresses due to their size and isolation or lack of 

connectivity to other forest ecosystems (Decocq et al., 2016; Valdés et al., 2020). Small forests, 

especially those less than 1km2 in size, have greater edge effects, which can lessen resilience to 

disturbances and stochastic events (Turner & Corlett, 1996) like storms and hurricanes. Tree 

mortality has been shown to increase closer to edges due to a change in microclimate, and there 

is less of a buffer from human activity like resulting smoke from fire and water diversion from 

channeling compared to larger forests (Decocq et al., 2016). When small forests are isolated, 

they may be less likely to recover after a disturbance (Godefroid & Koedam, 2003).  

6PDOO�IRUHVW�HFRORJ\�LV�XQLTXH�DQG�QRW�DV�ZHOO�XQGHUVWRRG�FRPSDUHG�WR�ODUJHU�RU�³PRUH�

QDWXUDO´�DQG�XQGLVWXUEHG�FRXQWHUSDUWV�(Agrawal et al., 2007; Morrison, 2017), which is one of the 

various challenges of managing and conserving small forests. A common ecological concern is 

the fate of the tree and plant community itself, especially when many native communities within 

small forests are facing a suite of environmental stresses. Without management action, 

environmental stresses like altered land use and invasive plant species can have undesired effects 
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on the future condition of small forests including loss of valued tree or plant species and 

biodiversity (Shifley et al., 2014).  

1. Modeling small forest change 

Forest dynamics models have become increasingly valuable tools for simulating and 

projecting change in forest attributes through time based on current conditions or knowledge 

about forest structure and behavior (Pretzsch et al., 2015; Shifley et al., 2017). There are many 

forest dynamics models available, each developed to predict certain forest attributes at a 

specified spatial resolution. Among them, models with outputs relating to forest composition and 

structure, ecosystem functions, and landscape-level changes can potentially inform many 

common small forest management concerns. Yet, some small forest management concerns, such 

as faunal diversity, visitor accessibility, or stream health, may not be directly informed from 

using forest dynamics models, unless coupled with additional ecological knowledge to predict 

these conditions from modeled forest attributes (Fontes et al., 2011). 

Despite the broad utility of forest dynamics models, some may not be appropriate for 

small forests or the particular forest attributes of interest in a given management context. Each 

model entails assumptions and simplifications. The modeO¶V�UHSUHVHQWDWLRQ�RI�HFRORJLFDO�

dynamics and outputs must align with the complexity and level of detail required to inform 

specific management concerns, in a number of important ways (Battaglia & Sands, 1998; 

Bellehumeur et al., 1997; Monserud, 2003; Porté & Bartelink, 2002). First, models that simulate 

dynamics at large spatial scales may not help address particular small forest management 

concerns such as local species turnover during succession or regeneration and competition in 

single treefall gaps (Fontes et al., 2011; Shifley et al., 2017; Twery, 2004). Second, models 

developed for single tree species or specific forest types may not be informative for managers of 
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multi-use, mixed small forests, who are often concerned with multi-species community structure 

DQG�G\QDPLFV�WKDW�FRQWULEXWH�WR�WKH�IRUHVW¶V�GHVLUHG�HFRV\VWHP�VHUYLFHV�(Forrester, 2014; Pretzsch 

et al., 2015). Third, because of the smaller spatial scale, it is more critical to understand localized 

ecological interactions that depend on the explicit spatial relations among trees, often at the level 

of individual trees (Shugart et al., 2018). Fourth, managers are often striving to anticipate the 

consequences of environmental change or novel ecological conditions; models that simulate 

forest change based on underlying processes rather than past empirical observations will be 

better able to predict novel dynamics and outcomes (Fontes et al., 2011; Larocque et al., 2016). 

Lastly, however, models that simulate underlying processes may require detailed physiological 

data to parameterize, which are rarely available for non-commercial tree species and may be 

technically difficult or impossible for small forest managers to obtain themselves (Fontes et al., 

2011). Managers or model users may opt to use simpler models to avoid the extensive input 

information or complex calculations (Härkönen et al., 2010; Porté & Bartelink, 2002; Pretzsch et 

al., 2015). Choosing a model is therefore dependent on aligning the specific information needs 

for a given small forest management context with the data requirements and relevance of model 

outputs.  Based on the reasoning above, these five issues of alignment between model 

characteristics and the particular concerns of small forest managers can serve as a useful set of 

criteria for evaluating the suitability of forest dynamics models to inform small forest 

management.  

The purpose of the review reported in Chapter 2 is to evaluate different existing forest 

dynamics models²including models of individual tree species, communities, succession, and 

ecosystem processes²to assess their applicability to address common small forest management 

concerns. To do so, we arranged the five identified issues²(1) spatial resolution, (2) species the 
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model can simulate, (3) spatial structure, (4) approach for modeling ecological processes, and (5) 

mechanistic detail²as a tiered hierarchy of criteria that can be queried based on model 

characteristics. We then applied the tiered criteria to evaluate 54 existing forest dynamics models 

to address the central question of which available models are the most suitable for addressing the 

concerns of small forest managers. The review is intended to provide small forest managers with 

a convenient guide to facilitate the selection and adoption of appropriate models to inform their 

management efforts.  

2. Environmental stresses and small forest management on the Georgia Coast 

Maritime live oak (Quercus virginiana; MLO) forests on barrier islands along the 

southeastern Atlantic coast from North Carolina to Florida are highly regarded for their multiple 

natural and cultural heritage values (Evans & Keen, 2013; Horsley, 2020; Jones et al., 2013). 

MLO forests play a central role in supporting biodiversity and the ecological health of islands 

and are globally rare but one of the least studied coastal ecosystems (Jones et al., 2013; Shiflett 

et al., 2013; Smith et al., 2015). In recent decades, these MLO forests are also facing various 

environmental stresses including climate change, land development, invasive plant species, and 

altered wildlife abundances (Helm et al., 1991). Storm damage, intense fire, and beach erosion 

are an increasingly observed cause of mature tree mortality on barrier islands (Conner et al., 

2005; Helm et al., 1991), and now managers on Jekyll Island and other barrier islands along the 

Georgia coast have seen little evidence of live oak seedlings or saplings. With low live oak 

recruitment, these environmental stresses could create undesired long-term effects on tree 

community structure, function, and resilience. 

 Jekyll Island is a state park that conserves about 65% of the island as natural areas while 

also supporting tourism amenities and a residential community. Jekyll Island offers opportunities 
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for the public to enjoy the unique heritage of barrier island maritime live oak (MLO) forests in 

Georgia. It contains roughly 400ha of MLO forests (Jekyll Island Authority, 2020), which are 

undergoing several environmental stresses that could be affecting live oak regeneration. First, on 

Jekyll Island, and in many forests throughout North America, white-tailed deer (Odocoileus 

virginianus) pose a critical constraint on tree seedling establishment and survival to maturity 

(Aronson & Handel, 2011; Blossey et al., 2017; Rooney & Waller, 2003; Slater & Anderson, 

2014; Thyroff et al., 2019). Jekyll Island Authority (JIA), a self-supporting state agency that is 

responsible for management and stewardship of Jekyll Island, is especially concerned how the 

deer could affect the future of its maritime live oak forests (Jekyll Island Authority, 2020). 

Herbivores like deer can affect plant communities directly through biomass loss and plant 

mortality (Averill et al., 2018) but can also indirectly influence interspecific plant competition 

through selective herbivory. A second concern Jekyll Island managers have is invasive plant 

species, especially camphor (Cinnamomum camphora), an Asian evergreen tree that was 

introduced for horticulture but has now invaded a few natural areas on the island. Fast-growing 

and with prolific seed production, camphor may out-compete native plant species and its 

establishment raises concerns about native plant biodiversity (Schenk, 2009). A third concern is 

hurricane and storm damage resulting in adult live oak crown damage and biomass loss (Conner 

et al., 2005; Helm et al., 1991). However, disturbances that damage the canopy also create light 

gap conditions that promote live oak regeneration, but it is uncertain whether regeneration can 

successfully compete to reach the overstory. A fourth concern on Jekyll Island is the ecological 

consequence of long-term fire exclusion, which has led to a thick shrub layer of saw palmetto 

(Seneroa repens) and a heavy accumulation of litter and duff. Fire is a keystone process that 

maintains forest biodiversity by creating fluctuations in resource availability and preventing 
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competitive exclusion (Kerns & Day, 2017). Therefore, fire exclusion creates an additional stress 

for tree species and the herbaceous layer that rely on periodic reduction in litter and shrub cover 

to regenerate and reach above the shrub layer. This suite of ecological concerns is why Jekyll 

Island and its MLO forests are an excellent context for exploring how small forest ecology 

research can benefit restoration and conservation success. 

To address some of these management and restoration challenges on Jekyll Island, my 

dissertation research used a range of methods to begin understanding small forest ecology and 

management consequences of different tools restoration efforts. Chapters 3, 4, and 5 explore 

different ways that small forest managers can address their ecological problems.  

In Chapter 3, we collaborated with JIA and other coastal stewards to use structured 

decision-making (SDM), an organized framework (Gregory et al., 2012), to find potential MLO 

management actions to solve the live oak regeneration problem. This chapter first explores how 

our team has used SDM to define management objectives and identify management alternatives 

that meet those objectives. Because stakeholders agreed that planting live oaks would best meet 

their management needs, we compiled different types of knowledge to build a demographic 

model and decision support tool that projects likely outcomes, costs, and associated uncertainties 

with alternative tree-planting strategies and the degree to which they would meet different 

management objectives. 

In Chapter 4, we sought to explore whether deer herbivory is affecting native understory 

vegetation cover, abundance of native hardwood tree seedlings, and camphor seedling abundance 

and growth. We established 22 6m x 6m plots in a 40ha forest on Jekyll Island with heavy 

camphor proliferation, of which 11 were fenced to exclude deer and 11 were not. Within each 

plot for two years, we measured total understory vegetation cover, cover by species, and 
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abundance of hardwood tree seedlings. We also tagged and measured two cohorts of camphor 

seedlings. In this chapter, I examined the relationship between herbivory effects on camphor 

versus native species and discuss the implications for efforts to control camphor invasion and 

support native tree recruitment and native plant establishment. 

Finally, understanding how local environmental conditions influence native plant  

abundance, composition, and biodiversity can provide valuable contextual information for 

ecological restoration and invasive species control (Hess et al., 2019; Holmes & Webster, 2011; 

Ozinga et al., 2004). Chapter 5 thus explored how abiotic and biotic environmental conditions 

including soil moisture and temperature, elevation, leaf litter depth, adult tree composition, and 

light availability influence native understory plant composition. I used multivariate analyses on 

data collected from Chapter 4 to observe variations in species richness, total understory 

vegetation cover, species cover, and cover by growth form across a heterogeneous landscape. 

Because JIA plans to exclude deer and eradicate camphor populations, I also assessed how deer 

exclosures affect native plant composition through these analyses. 
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Abstract 

Globally, there are myriad situations in which people aim to conserve, restore, or manage 

forest ecosystems at small spatial scales of 50 ha or less. To inform management, forest 

dynamics models provide an increasingly diverse and valuable portfolio of tools for projecting 

forest change under different management and environmental conditions. Yet, many models may 

not be appropriate or feasible to use in small forest management because of their design for 

larger-scale applications, the information needed to initialize models, or discrepancies between 

model outputs and information relevant for small forest management objectives. This review 

explores the suitability of 54 existing forest dynamics models to inform the management of small 

forests. We evaluated the characteristics of each model using five criteria with implications for 

small forest management: spatial resolution, number of species the model can simulate, inclusion 

of spatial structure, modeling approach, and mechanistic detail. While numerous models can be 

suitable under certain conditions, the review criteria led us to conclude that two models offered 

the broadest versatility and usability for small forest contexts, SORTIE and FORMIND. This 

review can help orient and guide small forest managers who wish to add modeling to their forest 

management efforts.  

Keywords: simulation models; mixed-species models; spatially explicit models; empirical 

models; process-based models; mechanistic models 

1. Introduction 

Trends of increasing forest fragmentation (Grantham et al., 2020; Taubert et al., 2018), 

parcellation (Weiss et al., 2019), devolution of forest stewardship (Hajjar et al., 2021), and forest 

cover gains in fragmented landscapes (Decocq et al., 2016) are seen around the world²all of 

which can result in more forest fragments and parcels being managed at smaller scales (Mayer, 
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2019). In the United States, for instance, forest land area has remained relatively stable for 

several decades (Alig et al., 2010; Georgia Forestry Commission, 2019; Oswalt & Smith, 2014), 

but the mean size of individual forest parcels has steadily decreased due to continued 

parcellation, land conversion, and fragmentation (Caputo et al., 2020). Forests that exist or are 

managed as parcels less than 50 ha in size have thus increased in number (Forest? Woodland? - 

The Importance of Small Acreages in Stewardship, 2019; Small Woodlot Improvement Guide, 

n.d.) DQG�PDNH�XS�DERXW�����RI�WKH�QDWLRQ¶V�SULYately owned forests (Mehmood & Zhang, 

2001). In addition to private properties, small forests are also found as green spaces in urban and 

residential areas, in nature reserves and state parks, and as woodlands or woodlots in other 

fragmented landscapes. 

While fragmentation and parcellation are significant threats to the ecological integrity of 

forested landscapes (Grantham et al., 2020), people are increasingly recognizing the value of 

small forests for the host of ecosystem services and benefits they offer (Bengston, 1994; 

Endreny, 2018; Felipe-Lucia et al., 2018; Khanal & Straka, 2021; Nowak et al., 2010; Valdés et 

al., 2020). In both urban and agricultural landscapes, small forests provide ecosystem functions 

including nutrient cycling, soil stabilization, water purification, flood control, and carbon 

sequestration. Small forests can also offer an array of recreational or economic opportunities 

including walking trails and timber production. Some contain rare species, communities, and 

ecosystems or are prized for the biological or cultural heritage they represent. Many small, 

forested lands are managed to preserve historical landmarks and educate its visitors. In urban 

areas, forested greenspaces can significantly improve individual and community well-being and 

public health by providing desired aesthetics, reducing noise and heat, improving air quality, or 

offsetting carbon dioxide emissions (Khanal & Straka, 2021; Nowak et al., 2010). Furthermore, 
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while fragmentation is generally detrimental to service provision, the persistence of small forests 

within a fragmented landscape can still promote landscape biodiversity by providing habitat 

connectivity for pollinators, birds, and other wildlife (Proesmans, 2019). 

In addition to the aims of maintaining or enhancing these benefits, many small forest 

managers must also face concerns about the future of the small areas they manage. 

Environmental changes and anthropogenic stressors such as climate change, altered land use, 

pests and invasive species, and limiting resources can directly alter forest tree density, com- 

position, and structure (Endreny, 2018; Felipe-Lucia et al., 2018; Shifley et al., 2014). Natural 

disturbances (or lack thereof) including storms, drought, and fire can result in undesired effects 

on forest health and function (Nowak et al., 2010; Seidl et al., 2011; Shifley et al., 2014). In 

addition, managing forest composition or structure for multiple uses often requires complex 

coordination with governmental agencies, forest users, and other stakeholders to meet 

management objectives and optimize benefits. This is especially evident in urban greenspaces 

and parks as forest managers balance recreational use and aesthetic value with forest ecological 

integrity and habitat quality (Khanal & Straka, 2021; Nowak et al., 2010; Wear & Greis, 2013). 

As one forest parcel can influence the potential of another, coordination with managers and 

stakeholders of adjacent lands may also be necessary (Bengston, 1994; Nowak et al., 2010; 

Valdés et al., 2020; Wear & Greis, 2013). 

The types and extent of benefits that small forests provide depend on the attributes of the 

structure and composition, ecosystem functioning, and landscape-level context of forest parcels 

(Felipe-Lucia et al., 2018). Understanding how these attributes of forests will change through 

time as a result of internal community dynamics, succession, feedbacks with ecological 

processes, management interventions, disturbance, and other environmental factors, is vital for 
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restoring, sustaining, and enhancing desired ecological services and benefits (Porté & Bartelink, 

2002; Shifley et al., 2014, 2017). For instance, altered surface hydrology and invasive plants can 

result in population declines of valued tree or plant species, or reduced resilience to natural 

disturbances (Shifley et al., 2014). As a consequence, the management concerns of small forest 

stewards tend to focus on how forest structure/composition, ecosystem function, and landscape-

scale attributes will change under the influence of different drivers, and how different 

management alternatives can direct that change (Forrester, 2014; Pretzsch et al., 2015). Forest 

dynamics models have become increasingly valuable tools for simulating and projecting change 

in forest attributes through time based on current conditions or knowledge about forest structure 

and behavior (Pretzsch et al., 2015; Shifley et al., 2017). There are many forest dynamics models 

available, each developed to predict certain forest attributes at a specified spatial resolution. 

Among them, models with outputs relating to forest composition and structure, ecosystem 

functions, and landscape-level changes can potentially inform many common small forest 

management concerns (Figure 2.1). Yet, some small forest management concerns, such as faunal 

diversity, visitor accessibility, or stream health, may not be directly informed from using forest 

dynamics models, unless coupled with additional ecological knowledge to predict these 

conditions from modeled forest attributes (Fontes et al., 2011). 
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Figure 2.1. Small forest management concerns that can be informed by forest dynamics models, 
and the types of forest dynamics model outputs and response variables that can help address 
them. They are grouped in columns as issues related to forest structure and composition, 
ecosystem function, and landscape-scale patterns and processes. Management concerns with 
closed bullets may be relevant for many types of small forests, including urban forests, parks, 
isolated forest fragments, and small parcels with contiguous forested landscapes. Open bullets, 
which relate to timber production and larger forested matrices, are generally not relevant for 
urban forests. Superscripted citations provide examples from the literature: 1- Battaglia et al., 
2004); 2- Deckmyn et al., 2008); 3- Decocq et al., 2016); 4- Felipe-Lucia et al., 2018); 5- Fischer 
et al., 2010); 6- Fischer et al., 2016); 7- Gielen et al., 2010); 8- Godefroid & Koedam, 2003); 9 - 
Fontes et al., 2011); 10- Khanal & Straka, 2021); 11- Landsberg, 2003); 12- Mäkelä et al., 2012); 
13- Miehle et al., 2009); 14- Monserud, 2003); 15- Nowak et al., 2010); 16- Peng, 2000); 17- 
Perot et al., 2010); 18- Porté & Bartelink, 2002); 19- Pretzsch et al., 2008); 20- Robinson & Ek, 
2000); 21- Sampson et al., 2006); 22- Scheller & Mladenoff, 2007); 23- Seidl et al., 2011); 24- 
Shifley et al., 2014); 25- Shifley et al., 2017); 26- Siqueira et al., 2006); 27- Snell et al., 2017); 
28- Taylor et al., 2009); 29- Thurnher et al., 2017); 30- Valdés et al., 2020); 31- Wang et al., 
2013) 

 

 

Despite the broad utility of forest dynamics models, some may not be appropriate for 

small forests or the particular forest attributes of interest in a given management context. Each 

PRGHO�HQWDLOV�DVVXPSWLRQV�DQG�VLPSOLILFDWLRQV��7KH�PRGHO¶V�UHSUHVHQWDWLRQ�Rf ecological 

dynamics and outputs must align with the complexity and level of detail required to inform 
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specific management concerns, in a number of important ways (Battaglia & Sands, 1998; 

Bellehumeur et al., 1997; Monserud, 2003; Porté & Bartelink, 2002). First, models that simulate 

dynamics at large spatial scales may not help address particular small forest management 

concerns such as local species turnover during succession or regeneration and competition in 

single treefall gaps (Fontes et al., 2011; Shifley et al., 2017; Twery, 2004). Second, models 

developed for single tree species or specific forest types may not be informative for managers of 

multi-use, mixed small forests, who are often concerned with multi-species community structure 

DQG�G\QDPLFV�WKDW�FRQWULEXWH�WR�WKH�IRUHVW¶V�GHVLUHG�HFRV\VWHP�VHUYLFHV�(Forrester, 2014; Pretzsch 

et al., 2015). Third, because of the smaller spatial scale, it is more critical to understand localized 

ecological interactions that depend on the explicit spatial relations among trees, often at the level 

of individual trees (Shugart et al., 2018). Fourth, managers are often striving to anticipate the 

consequences of environmental change or novel ecological conditions; models that simulate 

forest change based on underlying processes rather than past empirical observations will be 

better able to predict novel dynamics and outcomes (Fontes et al., 2011; Larocque et al., 2016). 

Lastly, however, models that simulate underlying processes may require detailed physiological 

data to parameterize, which are rarely available for non-commercial tree species and may be 

technically difficult or impossible for small forest managers to obtain themselves (Fontes et al., 

2011). Managers or model users may opt to use simpler models to avoid the extensive input 

information or complex calculations (Härkönen et al., 2010; Porté & Bartelink, 2002; Pretzsch et 

al., 2015). Choosing a model is therefore dependent on aligning the specific information needs 

for a given small forest management context with the data requirements and relevance of model 

outputs. 
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Based on the reasoning above, these five issues of alignment between model 

characteristics and the particular concerns of small forest managers can serve as a useful set of 

criteria for evaluating the suitability of forest dynamics models to inform small forest 

management. The purpose of this review is to evaluate different existing forest dynamics 

models²including models of individual tree species, communities, succession, and ecosystem 

processes²to assess their applicability to address common small forest management concerns. 

To do so, we arranged the five identified issues²(1) spatial resolution, (2) species the model can 

simulate, (3) spatial structure, (4) approach for modeling ecological processes, and (5) 

mechanistic detail²as a tiered hierarchy of criteria that can be queried based on model 

characteristics (Figure 2.2). The following section provides a detailed explanation of each 

criterion, describing the different model characteristics affecting their suitability for modeling 

small forests. We then applied the tiered criteria to evaluate 54 existing forest dynamics models 

to address the central question of which available models are the most suitable for addressing the 

concerns of small forest managers. The Results section describes how the evaluation narrowed 

the pool of suitable models at each step. Ultimately, two models, SORTIE and FORMIND, were 

found to have the strongest and broadest suitability characteristics.  

This review aims to provide small forest managers with a convenient guide to facilitate 

the selection and adoption of appropriate models to inform their management efforts. To that 

end, the Discussion section has three subsections. The first distills the key findings of the model 

suitability evaluation for small forests, and why SORTIE and FORMIND were most favorable, 

given the criteria, constraints, and tradeoffs. The second subsection discusses additional 

considerations that managers and modelers may face when applying a model specifically in a 

new context²including technical feasibility aspects, software accessibility, and the reliability 
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and usefulness of outputs²and how those issues can be navigated when using SORTIE and 

FORMIND in particular. The discussion concludes with some practical recommendations for 

getting a new modeling endeavor successfully underway. 

 

 

Figure 2.2. Tiered series of evaluation criteria used to assess the suitability of 54 forest 
dynamics models for informing small forest management concerns. Characteristics that are more 
relevant and appropriate for small forests are in green. Characteristics with weaker relevance, or 
narrow applicability to specific management concerns, are in blue. Characteristics that will not 
help inform small forest management are in white. 
 

 

2. Five Criteria for Assessing Model Suitability for Small Forests 

The suitability criteria focus on attributes of models that have been previously used to 

classify forest dynamics models. We adopted and modified a common typology following (Porté 

& Bartelink, 2002; Pretzsch et al., 2015; Robinson & Ek, 2000) and other published works 

(Landsberg, 2003; Larocque et al., 2016; Mäkelä et al., 2000; Monserud, 2003; Peng, 2000) to 
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define differences among model attributes that are specifically relevant for small forests. Similar 

to other existing typologies, we organized the suitability factors hierarchically, allowing us to 

conduct our subsequent evaluation of models by applying the tiered set of five criteria for small 

IRUHVW�VXLWDELOLW\��LOOXVWUDWHG�LQ�)LJXUH��������:KDW�LV�WKH�PRGHO¶V�VSDWLDO�UHVROXWLRQ������KRZ�PDQ\�

species can the model simulate, (3) is thH�PRGHO�VSDWLDOO\�H[SOLFLW������LV�WKH�PRGHO¶V�DSSURDFK�

empirical or process based, and (5) does the model represent physiological processes 

mechanistically? 

2.1 :KDW�,V�WKH�0RGHO¶V�6SDWLDO�5HVROXWLRQ" 

Forest dynamics models can be classified by their spatial resolution, defined as the 

smallest spatial unit at which the model evaluates forest dynamics or reports outcomes. Spatial 

resolution determines the types of forest attributes the model can simulate or project, and thus the 

types of management issues the model can inform (Porté & Bartelink, 2002; Taylor et al., 2009). 

Forest dynamics models are broadly categorized into four spatial resolutions: individual-tree, 

cohort or size-class, stand, and landscape (Pretzsch et al., 2015; Robinson & Ek, 2000). 

Individual-tree models consider each tree as a unit, and they help explore how individual trees 

compete with one another for sunlight, nutrients, and other resources. Cohort models simulate 

aggregates of trees as separate groups, which can be defined by species, functional types, 

diameter or height size classes, or ecological layers (Robinson & Ek, 2000). Typically, cohort 

models apply one representative set of characteristics to all trees within a group (Köhler & Huth, 

1998; Shugart et al., 2018). Separating groups by specific characteristics can help study the 

variation and relative performance between species, cohorts of the same species, and other size 

classes (Blanco et al., 2015). 
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Most stand and landscape models, on the other hand, have less resolution and treat large 

forest patches as a single unit, within which species age and composition are assumed to be 

uniform (Taylor et al., 2009). Stand models represent one or more forest patches that typically 

correspond to management units (Taylor et al., 2009) and can be applied to study mosaics of 

forest patches with different compositions. When stand models represent the interactions of a 

stand and neighboring patches, they can help understand how litter decomposition, water 

cycling, and other environmental processes in one patch can influence an adjacent patch (Porté & 

Bartelink, 2002). Stand models can therefore provide useful outputs for issues relating to 

ecosystem function as well as landscape-level management issues (Figure 2.1). Landscape-scale 

models, also called forest landscape simulation models (FLSMs), can simulate similar processes 

that drive change but at a much larger spatial resolution (Scheller & Mladenoff, 2007). 

Landscape models tend to focus on carbon and water balance over large, homogeneously 

represented areas, and thus better address broader-scale management concerns such as regional 

or global effects of climate change (Scheller & Mladenoff, 2007; Shifley et al., 2017). Forest 

landscape models such as LANDIS PRO and LANDCLIM typically lack species differentiation 

or size differentiation that finer-resolution models have (Schumacher et al., 2004; Wang et al., 

2013). Although some forest landscape models may simulate succession at a stand or larger 

scale, they are unable to simulate interspecific competition or heterogeneity in tree growth and 

survival at an individual or plot level (Schumacher et al., 2004). 

Individual-tree, cohort, and stand models are likely to be more useful when simulating 

small forest dynamics (Taylor et al., 2009) compared to landscape models because their smaller 

scale resolution can inform many common issues concerning forest structure and com-position, 

including the persistence of specific tree species, rates and trajectories of succession, and fine-
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scale responses to environmental change (Figure 2.1). When choosing a suitable spatial scale for 

a model, managers should consider whether the required parameterizing data are available or 

feasible to obtain, and also whether the resolution of outputs will provide enough detail to 

answer management questions (Taylor et al., 2009). The subsequent evaluation criteria consider 

these decision points further. 

2.2 Can the Model Simulate More than One Species? 

This tier distinguishes forest dynamics models by how many species and what types of 

species they can simulate. Single-species models treat the entire forest as one species, using a 

single set of species-specific parameters, such as average growth rate or adult height, to simulate 

forest dynamics (Pretzsch et al., 2015; Shugart et al., 2018). Most single-species models were 

developed to estimate timber production in monoculture forestry of commercially important 

native or exotic tree species, so their outputs are typically yield estimates such as total biomass 

or productivity (Pretzsch et al., 2015; Shifley et al., 2017). Other single-species models were 

designed for natural forests that contain only one species or one dominant species (Larocque et 

al., 2013). Single-species models have been applied to multi-species forests by simulating each 

VSHFLHV¶�G\QDPLFV�VHSDUDWHO\�DV�D�PRQRFXOWXUH�ZLWKRXW�FRQVLGHULQJ�WUHH±tree interactions and 

combining these simulation outputs proportionally to species abundance in the forest (Pretzsch et 

al., 2015; Shifley et al., 2017). On the other hand, there are a growing number of multi-species 

models with species-mixing capabilities, which use different sets of growth, mortality, and 

resource allocation parameters for more than one tree species. Multi-species models may also 

account for interspecific interactions, either abstractly using competition indices or more 

explicitly by modeling the processes or mechanisms through which trees interact (Pretzsch et al., 

2015). 
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Choosing between single- or multi-species models depends on management needs and 

the forest under observation. Single-species models can be more beneficial when managing total 

tree cover for timber production, carbon storage, or aesthetic value (Figure 2.1) (Battaglia et al., 

2004; Hauhs et al., 1995; Kramer et al., 2010). When addressing these concerns, treating a multi-

species forest as a monoculture may not necessarily compromise the usefulness of model outputs 

if managers are seeking aggregate stand-level predictions (Battaglia et al., 2004). However, 

increased interest in the dynamics of mixed-species, multi-use forests has made multi-species 

models a vital tool for forest management. Most tree species differ in how they photosynthesize, 

grow, and allocate resources (Pretzsch et al., 2015), which will influence the relative abundances 

of individual trees, species, and cohorts over time (Porté & Bartelink, 2002). Thus, multi-species 

models can better inform many small forest management concerns because they can simulate 

changes in forest composition and structure, patch and landscape heterogeneity, and species-

specific environmental responses (Figure 2.1).  

Some single-species and multi-species models were primarily developed for a particular 

species, site, or region to serve specific needs (Larocque et al., 2013; Pretzsch et al., 2015; 

Shifley et al., 2017) and modifying them to apply to other species and regions may be difficult or 

impossible for small forest managers in different contexts. For example, the individual-tree, 

single-species model FOREGEM uses a set of allometric rules or equations derived from 

species- and site-specific parameters to simulate the forest response to environmental change 

(Kramer et al., 2010). To parameterize the model for a different species or site, the model user 

must have knowledge of physiological parameters and phenotypically plastic traits, including the 

timing of bud burst, pollen dispersal distance, or relation between stomatal conductance and 

water stress, which may not be known for non-commercial tree species (Kramer et al., 2008; 
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Kramer et al., 2010; Pretzsch et al., 2015; Shugart et al., 2018) On the other hand, the individual-

tree, multi-species model FORMIND can be more readily adapted to different contexts because it 

classifies species into functional groups and then uses physiological parameters and allometric 

equations that generally represent each functional group (Fischer et al., 2016). When choosing 

between single- and multi-species models, small forest managers should consider not only the 

specific management concerns, but also the inputs necessary to run the model and the type of 

trees it was designed to simulate in order to select the simplest model that can generate relevant 

outputs. Multi-species models are likely to satisfy these considerations for a broader range of 

small forest management concerns. 

2.3 Is the Model Spatially Explicit? 

Individual-tree, cohort, and stand models differ in terms of whether and how they 

represent the spatial location or distribution of trees. Most distance-independent models are stand 

models that do not specify the locations of individual trees, cohorts, or species. Instead, they 

often treat the entire stand as one unit, implicitly assuming that all individual trees within the 

stand have the same growing space (Figure 2.3A). These models abstractly infer intra- and 

interspecific competition using stand-level variables of density or basal area (Goreaud et al., 

1997; Houllier et al., 1991). 

Distance-dependent models do not assume all trees within a stand have the same growing 

space. Instead, they implicitly or explicitly describe tree±tree competition by incorporating intra- 

and interspecific interactions into model functions (Pretzsch et al., 2015). Distance-dependent 

models can be further classified as either spatially explicit or non-spatially explicit, with the 

classification depending on the spatial resolution of model inputs and outputs. Most non-spatially 

explicit models are stand or cohort models that use a statistical approach when representing 
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spatial distributions by assuming a random or clustered distribution of individual trees or species 

within a stand or grid cell (Goreaud et al., 1997; Larocque et al., 2016; Porté & Bartelink, 2002) 

(Figure 2.�%���7KH\�XVH�FRPSHWLWLRQ�LQGLFHV�RU�PXOWLSOLHUV�ZLWKLQ�WKH�PRGHO¶V�DOJRULWKPV�WR�

estimate individual-tree, species-specific, or stand growth and mortality at the stand level as a 

function of assumed distance to neighbors. Stand structure is therefore a feedback loop between 

species-specific competition indices and multipliers, tree growth and mortality, and stand growth 

(Pretzsch et al., 2015), and outputs mostly represent stand-level attributes. Spatially explicit 

models, on the other hand, are often individual based. They can generate tree locations either by 

simulating them within a forest patch or plot based on distance or distribution statistics (Figure 

2.3C), or they can use full stem maps of (x, y) coordinates to recreate an observed distribution of 

individual trees across a stand (Figure 2.3D) (Larocque et al., 2016). In gap models, forest 

patches spatially represent the influence zone of a large, mature tree, and tree species and size 

classes compete for resources within that patch. Spatially explicit models describe horizontal 

spatial structure at a higher resolution and provide individual-tree or cohort and size class 

information as model outputs, whereas non-spatially explicit model outputs provide stand-level 

attributes (Goreaud et al., 1997; Larocque et al., 2016; Shugart et al., 2018; Zhang et al., 2018).  

Both distance-independent and -dependent models can help guide small forest 

management planning. Most distance-independent models and non-spatially explicit, distance-

dependent models provide stand outputs such as total stand growth, biomass yield, and density 

(Deckmyn et al., 2008; Forrester & Tang, 2016; Kimmins et al., 1999), which can prove useful 

when managing timber production or estimating carbon and nutrient pools and fluxes (Figure 

2.1). However, many small forest management concerns require acknowledgement of within-

stand spatial heterogeneity to predict the relevant attributes of future forest composition and 
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structure (Goreaud et al., 1997; Porté & Bartelink, 2002). Although distance-dependent models 

typically have higher data input requirements to represent variable tree spacings, they can better 

SUHGLFW�KRZ�LQGLYLGXDO�WUHHV¶�LQWHUDFWLRQV�ZLWK�RQH�DQRWKHU�FDQ�LQIOXHQFH�IRUHVW�FKDQJH�DQG�DUH�

thus more broadly useful for informing small forest management concerns (Miehle et al., 2009; 

Pretzsch et al., 2015). For example, the initial design of the stand-level, distance-independent 

model FOREST-DNDC requires biomass per unit area but no spatial information inputs, and 

assumes monospecific characteristics at the grid level, including survival rate and mean tree 

height (Miehle et al., 2009). In contrast, the distance-dependent cohort model CABALA can 

incorporate the effects of within-stand tree spatial distributions in biophysical processes and 

outcomes of management actions because it requires tree spacing information within and 

between grid cells (Battaglia et al., 2004). In a study comparing Eucalyptus forest growth 

estimates from different models, FOREST-DNDC overestimated forest growth because of its 

spatial simplification of competition and growth processes while CABALA provided the most 

accurate predictions (Miehle et al., 2009). Thus, FOREST-DNDC is often used to simulate 

stand-level information such as photosynthesis, respiration, and carbon and nitrogen pools and 

fluxes when there is little concern about local tree competition and resources to parameterize and 

calibrate are limited. 
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Figure 2.3. Representation, or implied representation, of tree distributions in different 
model types. Distance-independent models do not specify locations in space; they implicitly 
assume all trees have equal space, which would imply an equidistant lattice if represented 
spatially (A). Distance-dependent, non-spatially explicit models assume different statistical 
distributions of distances between individual trees across a stand. Examples of distributions, 
realized spatially for illustrative purposes, include random and clustered (B). In distance-
dependent spatially explicit models, the locations of individual trees are typically simulated 
within a forest gap (represented by grid cells) (C) or are mapped as (x, y) coordinates within a 
stand (D) (Goreaud et al., 1997). 
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Distance-dependent models can be useful when studying smaller, mixed-species forests 

because they contain the spatial relationships required to simulate how trees of different species 

interact with one another and the local environment (Perot et al., 2010), which is especially 

beneficial to small forest managers concerned with species assembly, succession, invasion, or 

responses to limiting resources (Figure 2.1). Simulating a mixed-species forest without 

considering more specific tree, species, or cohort distributions can lead to unrealistic predictions 

about small forest dynamics, such as how light competition influences the age structure and 

species composition of a forest (Goreaud et al., 1997; Pretzsch et al., 2015). The CABALA 

example demonstrates how accounting for spatial distribution of individual trees or species can 

result in more reliable model projections in a single-species forest. For multi-species forests, 

incorporating distance dependence becomes even more valuable to account for the effects of 

spatial pattern on both intra- and interspecific interactions. Spatially explicit models are 

particularly well suited for simulating the localized effects of intra- and interspecific interactions. 

2.4 Is the Modeling Approach Empirical or Process Based? 

Two modeling approaches, empirical and process based, differ in the way that biological 

processes or physical mechanisms are incorporated into the model and how they influence tree 

growth (Fontes et al., 2011; Peng, 2000; Pretzsch et al., 2015). Empirical models typically use 

correlations between repeated measurements of tree species, age, diameter, and height and 

observed environmental parameters from forest inventories to derive allometric equations and 

growth functions (Shifley et al., 2017). The models then simulate forest dynamics by applying 

those relationships deterministically or probabilistically (Taylor et al., 2009; Twery, 2004). 

Process-based models, on the other hand, simulate forest dynamics via the biological and 

physical principles and processes and that govern tree growth and forest development, with 
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varying degrees of mechanistic detail (discussed in Tier 5) (Korzukhin et al., 1996; Larocque et 

al., 2016; Larocque et al., 2016). Both modeling approaches have their advantages and 

disadvantages for addressing different management concerns related to small forest growth, 

succession, and responses to environmental change. Each approach is also constrained by data 

availability²empirical models by the availability of inventory data relevant to the species and 

conditions to be modeled, and process-based models by the detailed environmental and 

physiological data needed to parameterize them. 

Projecting tree and forest growth may be valuable to small forest managers concerned 

with timber production, carbon sequestration, or rates of recovery from disturbance. Empirical 

models can provide simple and accurate projections of forest growth, but only if the species and 

conditions used to derive allometric relationships are well matched to the scenario being 

modeled (Taylor et al., 2009; Thürig et al., 2005). However, data needed to describe allometric 

growth relationships for non-commercial, multi-species forests are generally rare and highly site 

specific. In contrast, process-based models predict tree growth by simulating the underlying 

physiological processes, which allows these models to predict forest growth under a range of 

conditions for which there may be no empirical growth data. This advantage comes at a cost in 

terms of model complexity and data needs, however. For instance, in order to project change in 

tree biomass, many models simulate the process of photosynthesis mechanistically, which 

requires the accurate parameterization of several physical variables such as radiation, rainfall, 

vapor pressure deficit, and soil type, as well as species-specific physiological traits (Fontes et al., 

2011). 

Empirical and process-EDVHG�PRGHOV�KDYH�WKH�SRWHQWLDO�WR�LQIRUP�VPDOO�IRUHVW�PDQDJHUV¶�

concerns regarding compositional change over time, such as the persistence of certain tree 
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species, shifts toward or away from desired forest composition, or the restoration of historic 

forest communities. Historically, empirical models were developed primarily to project single-

species timber production after harvest, but their outputs and more recent multi-species variants 

can also inform site-specific questions about the succession and trajectories of forest composition 

change (Shifley et al., 2017). To achieve this, empirical models often predict stand-level 

community change by linking successional stages through probabilistic or deterministic state-

and-transition pathways. However, establishing the patterns and rates of shifts in species 

composition requires extensive prior observational data of stand-level changes in relative species 

abundance over time or tree-level transition probabilities (Taylor et al., 2009). Competition for 

light is a dominant driver of forest composition change. Empirical models represent this process 

phenomenologically, usually through gross correlations between neighborhood or stand density 

and species-specific growth (Taylor et al., 2009), which limits realism and resolution. Process-

based models offer advantages for modeling community change, especially for representing light 

availability as a driver, because growth is modeled via the process of photosynthesis, which is 

driven by light availability (Porté & Bartelink, 2002). Process-based models at gap and 

individual tree levels calculate light availability as a dynamic function of the surrounding tree 

canopy structure when simulating tree growth, mortality, and recruitment to project forest 

compositional change (Larocque et al., 2016). To achieve this, however, these models introduce 

additional complexities and data requirements (Fontes et al., 2011; Twery, 2004) regarding 

canopy structure and light attenuation, species-specific photosynthesis±light response curves, 

and additional physiological parameters in more mechanistic models. 

For many small forest management concerns, incorporating responses to environmental 

change is vital because many small forests experience continuous change due to their size and 
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proximity to humans, and novel suites of environmental factors will create different future states 

of a forest (Peng, 2000). Empirical models are generally limited in their ability to simulate 

responses to a changing environment. Because empirical models use fixed relationships fitted to 

GLUHFW�IRUHVW�REVHUYDWLRQV��WKH\�DUH�RIWHQ�UHIHUUHG�WR�DV�³VWDWLF´�(Robinson & Ek, 2000; Shifley et 

al., 2017; Taylor et al., 2009). Accurate projections are limited to the suite and range of 

environmental conditions that were measured during inventories used to build the model 

(Pretzsch et al., 2015; Thürig et al., 2005), and these models often offer no reliable way to 

account for disturbances or the effects of climate change (Fontes et al., 2011; Korzukhin et al., 

1996; Taylor et al., 2009) which are common small forest management concerns (Figure 2.1).  

Most process-based models can account for responses to environmental change 

dynamically because they contain one or more sub-models or behaviors that interact with one 

another to simulate the effects of environmental conditions on photosynthesis and thus tree 

growth from basic physical and physiological principles (Monserud, 2003; Pretzsch et al., 2015). 

The most commonly modeled environmental processes that influence photosynthesis are climate, 

soil and site conditions, including soil texture and nitrogen content, and water balance (Fontes et 

al., 2011; Pretzsch et al., 2015). However, including these additional processes greatly increases 

computational complexity and demand for accurate atmospheric, soil, and hydrological 

parameter values. Because inaccurate parameter estimates can be compounded when coupling 

processes and scaling up, these models are more often used to study underlying processes in 

research, rather than to make reliable projections for informing management (Taylor et al., 

2009). Process-based models are better suited for understanding forest ecosystems and 

simulating different management or climate scenarios than providing absolute predictions of 

future forest composition and structure (Adams et al., 2013; Larocque et al., 2016; Pretzsch et 
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al., 2008). Other seasonal or episodic changes of relevance to small forest managers, such as 

altered storm, fire, and pest disturbance regimes, are not as easily represented or parameterized 

in model structures (Fontes et al., 2011; Pretzsch et al., 2015). 

Empirical and process-based models represent two ends of a modeling approach 

spectrum (Adams et al., 2013). So-called hybrid models couple together various components of 

empirical and process-based approaches to take advantage of both physiological and empirical 

data to span scales from leaf-level metabolism to forest-level change (Peng, 2000; Taylor et al., 

2009). In practice, most individual-tree and gap process-based models must rely on at least some 

empirical tree-level data in order to scale up physiological processes, even if not fully coupled to 

an empirical model (Korzukhin et al., 1996). In choosing a modeling approach, small forest 

managers should ask what input and output details are necessary to answer their management 

question or concern. If a manager has sufficient inventory data that span the environmental 

conditions of interest, an empirical model may sufficiently and accurately provide the desired 

projections of forest change (Taylor et al., 2009). Otherwise, process-based models can simulate 

many relevant dynamics, including projections that account for environmental change and light 

competition, but they require at least some physiological information for the species to be 

modeled. If a forest manager wishes to pursue forest dynamics modeling but lacks both 

appropriate empirical allometric data and physiological parameters, the latter can usually be 

obtained or estimated from existing forests, whereas allometric relationships require time-series 

inventory data collected over many years. Thus, from a pragmatic stance, the data limitations of 

process-based models may be more easily overcome than limitations for empirical models. 
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2.5 Does the Model Represent Physiological Processes Mechanistically? 

Although all process-based models simulate forest dynamics via the underlying 

biological and physical processes that govern tree growth and forest development, some employ 

more mechanistic representations of these processes than others. As models vary in their degrees 

RI�PHFKDQLVP�DQG�DEVWUDFWLRQ��VR�GR�GLIIHUHQW�VFKRODUV¶�WHUPLQRORJLHV�DQG�FULWHULD�IRU�FDWHJRULHV�

(Blanco et al., 2015; Fontes et al., 2011; Larocque et al., 2016; Pretzsch et al., 2015). Herein, we 

distinguish between mechanistic and simplified process-based models, as this has relevant 

implications regarding model complexity and usability for small forest managers. So-called 

mechanistic process-based models explicitly simulate tree growth as a function of species-

specific physiology, morphology, and/or architecture using established equations (Larocque et 

al., 2013; Letort et al., 2008). These physiological equations, with those for photosynthesis and 

respiration being the most common (Larocque et al., 2016; Larocque et al., 2016), entail 

numerous input parameters at the tree organ or (sub-)cellular level such as stomatal density, 

photosynthetic photon flux density on a leaf, and potential electron transport rate (Larocque et 

al., 2016; Larocque et al., 2016; Letort et al., 2008; Porté & Bartelink, 2002). 

Process-based models that require less mechanistic information and feature simpler 

parameterization protocols are often called simplified process-based models because they use 

simpler metabolic relationships to represent more detailed biochemical and bio-physical 

mechanisms (Larocque et al., 2016; Shugart et al., 2018). These models still simulate the 

processes that are the underlying causes of tree growth, competition, and mortality, but do so via 

coarser relationships between tree or species allometry and organ-specific photosynthesis and 

respiration rates (Larocque et al., 2016). For instance, the cohort-model FORMIX simulates tree 

growth using a carbon balance approach that calculates carbon assimilation from 
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photosynthesis±light response curves and canopy allometric relationships. This is an example of 

a simplified process-based models because it incorporates the underlying causes of tree growth 

but does not calculate photosynthesis and respiration at a mechanistic level. In addition to the 

core behaviors of growth and mortality as simplified functions of light availability and 

photosynthesis, some simplified process-based models allow model users to include additional 

degrees of mechanistic and environmental detail. For example, the individual-tree models 

SORTIE and FORMIND provide optional sub-models to simulate processes that directly affect 

growth dynamics, including precipitation, harvest and disturbance, and dispersal functions 

(Canham, 2017). 

In principle, both physiological and simplified process-based models can help address 

small forest management questions regarding changes in forest structure and composition 

through time. Their outputs can project the age or size class distributions of individual species 

and relative abundances of different species or functional groups (Figure 2.1). Because 

mechanistic process-based models often include more physiological, phenotypical, and genetic 

information as inputs and model parameters (Fontes et al., 2011; Grote & Pretzsch, 2002) and 

describe eco-physiological feedbacks at a (sub-) cellular level, they can increase our 

understanding of forest and tree function (Grote & Pretzsch, 2002; Letort et al., 2008). However, 

JHQHUDOO\�VSHDNLQJ��DV�D�PRGHO¶V�PHFKDQLVWLF�GHWDLO�LQFUHDVHV��VR�GRHV�WKH�GLIILFXOW\�RI�

measuring, estimating, and validating the detailed, species- and size-class specific biophysical 

parameters and abstract coefficients their equations require (Monserud, 2003). This can render 

them nearly impossible to use for small forest managers studying non-commercial trees for 

which these parameters are unknown. In addition, few attempts have been made to create or 

calibrate physiological process-based models beyond the study systems for which they were 
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developed, so the pool of models that can be feasibly adopted to project forest structure and 

composition in a new context is limited (Fontes et al., 2011). 

Simplified process-based models have much greater potential feasibility for small forests. 

Their simplified representation carbon assimilation and allocation still simulate forest growth 

processes dynamically, yet they require more easily obtainable data and are computationally less 

complex (Larocque et al., 2016; Larocque et al., 2016; Poorter et al., 2013). Simplified process-

based models provide information to help small forest managers answer questions about 

individual tree growth, forest structure, and species composition at appropriately local scales 

(Figure 2.1), while decreasing uncertainty in model parameters relative to mechanistic models. 

3. Methods 

To compile a set of models to evaluate, we first used Google Scholar and Web of Science 

to gather publications that developed or used forest dynamics models. We used search terms 

³IRUHVW´�DQG�³PRGHO´�ZLWK�RWKHU�WHUPV��LQFOXGLQJ�³G\QDPLFV´��³JURZWK´��³DOORPHWULF´��

³VLPXODWLRQ´��³VWDQG´��³JDS´��DQG�³WUHH´��)RU�HDFK�SXEOLFDWLRQ��ZH�LGHQWLILHG�WKH�QDPH�RI�WKH�

model used, its general purpose (i.e., modeling timber production, change in forest composition, 

etc.), and the specific management question asked. The search identified several review papers, 

from which we tabulated the set of models covered in the review. Among the publications we 

gathered, one review by Pretzsch and others (Pretzsch et al., 2015) covered a sufficiently 

complete, representational, and recent set of 54 foundational models, which were compiled from 

other literature searches and reviews (Burkhart & Tomé, 2012; Fontes et al., 2011; Pretzsch et 

al., 2015). This set included a wide range of models that varied in how they represent forest 

function, structure, and environmental processes. Furthermore, Pretzsch and others (Pretzsch et 

al., 2015) summarized several common model attributes that were relevant to our criteria of 
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applicability to small forests, including spatial resolution, species-mixing potential, spatial 

structure, modeling approach, and mechanistic complexity. In this study, we re-assessed the 54 

models reviewed in Pretzsch et al. (Pretzsch et al., 2015) specifically to evaluate their suitability 

for small forests according to our tiered series of evaluation criteria. At each tier, we evaluated 

whether each model had characteristics that are suitable for small forests, as described in Section 

2. Those models that were deemed most likely to be useful for informing small forest 

management were forwarded for evaluation at the subsequent tier level. 

4. Results 

The tiered small forest evaluation criteria (Figure 2.2) consider five model characteristics: 

(1) spatial resolution, (2) number of species the model can simulate, (3) whether spatial structure 

is incorporated, (4) modeling approach used, and (5) mechanistic detail. At each tier, we 

considered each of the 54 rHYLHZHG�PRGHO¶V�DWWULEXWHV�LQ�OLJKW�RI�WKHLU�VXLWDELOLW\�WR�DGGUHVV�WKH�

potential management concerns that small forest managers may have. Below we describe the 

outcomes of the model attributes evaluations. 

4.1 7LHU����:KDW�,V�WKH�0RGHO¶V�6SDWLDO�5HVROXWLRQ" 

All 54 models that we evaluated simulate forest dynamics at an individual, cohort, or 

stand level. In effect, this first tier suitability criterion was applied in our initial selection of 

models to review. Small forest managers do frequently have landscape-scale concerns, such as 

habitat connectivity and the broader-scale spread of invasive species or pests. However, 

landscape-scale forest dynamics models on their own may not be the most appropriate tools to 

evaluate these effects. These concerns would be more readily addressed by incorporating outputs 

of stand-scale or finer simulations into geospatial analyses of the matrix surrounding the focal 

small forest (Pretzsch et al., 2008). Additionally, forest dynamics models can be coupled with 
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regional hydrological models to capture important feedbacks between forest change and water 

availability (Ameztegui, Cabon, et al., 2017), which is another salient concern for many small 

forest managers. 

4.2 Tier 2: Can the Model Simulate for More than One Species? 

Of the 54 models evaluated, 38 can simulate more than one species. Some of the multi-

species models were developed for specific species. For instance, COMMIX was designed to 

study two species, Fagus sylvatica (European beech) and Pseudotsuga menziesii (Douglas fir) 

(Bartelink, 2000). FINNFOR evaluates three different species native to Finland: Picea abies 

(Norway spruce), Pinus sylvestris (Scots pine), and Betula pendula (Silver birch) (Fontes et al., 

2011). These models would likely require extensive re-parameterization to simulate other tree 

species. Therefore, small forest managers may find these models less convenient when studying 

forests that contain species other than those. Other multi-species models, including SORTIE, 

FORMIND, FORMIX, and 3-PG, are more flexible and can generally be applied to various 

species and forest types (Blanco et al., 2015; Landsberg, 2003; Pretzsch et al., 2015; Shugart et 

al., 2018). 

4.3 Tier 3: Is the Model Spatially Explicit? 

For each of the 38 multi-species models identified in Tier 2, we assessed whether they 

were distance dependent, and if so, whether they were spatially explicit and at what resolution. 

We found that 10 models can incorporate horizontal spatial structure at an individual-tree or 

patch level and provide individual-tree, cohort, and size-class information as model outputs 

(Table 2.1). FORMIX is a distance-dependent but non-spatially explicit size-class or cohort 

model, and the other nine models are spatially explicit individual-tree models. 
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Table 2.1. Model characteristics of the 10 reviewed distance-dependent, multi-species models 
that simulate tree coordinates of more than one tree species at an individual-tree or patch level. 
Characteristics include spatial resolution, species capacity, (horizontal) spatial explicitness of 
distance-dependence, modeling approach, and whether the model represents physiological 
processes mechanistically. Spatial explicitness and mechanistic details were determined by other 
reviews: (Blanco et al., 2015; Fontes et al., 2011; Larocque et al., 2016; Pretzsch et al., 2008; 
Pretzsch et al., 2015). 

Model Name 

Spatial 
Resolution 

(Pretzsch et al., 
2015) 

Potential  
# of  

Species 
(Pretzsch et 

al., 2015) 

Spatial  
Explicitness 

Approach  
(Empirical,  

Process-Based, 
or Hybrid) 

(Pretzsch et al., 
2015)  

Use of  
Physiological 

Mechanisms to 
Simulate 
Processes 

BALANCE Individual 5 
Explicit, individual-

tree coordinates 
(Rötzer et al., 2010) 

Process-based Yes (Rötzer et al., 
2010) 

BWIN PRO, 
TreeGrOSS Individual Several 

Explicit, individual-
tree coordinates 

(Albrecht et al., 2011; 
Yousefpour & 

Hanewinkel, 2009) 

Empirical No (Nagel, 2003) 

COMMIX Individual 2 
Explicit, individual-

tree coordinates 
(Bartelink, 2000) 

Process-based  Yes (Bartelink, 
2000) 

EFIMOD Individual 3 
Explicit, individual-

tree coordinates 
(Packalen et al., 2013) 

Hybrid Yes  

FORMIND Individual Several 

Explicit, individual-
tree coordinates 

(Fischer et al., 2016; 
Helmholtz Centre for 

Environmental 
Research, 2021) 

Process based  Not required  

FORMIX Cohort 5 groups 
Explicit, statistical 

distribution at patch or 
plot level  

Process based  Not required 

MAESTRO/ 
MAESPA Individual Several 

Explicit, individual-
tree coordinates 

(Charbonnier et al., 
2013; Duursma & 

Medlyn, 2012) 

Process based 

Yes (Charbonnier 
et al., 2013; 
Duursma & 

Medlyn, 2012) 

MOSES Individual 4 
Explicit, individual-

tree coordinates 
(Thurnher et al., 2017) 

Empirical 
No (Mikac et al., 
2013; Thurnher et 

al., 2017) 

SILVA Individual 5 Explicit, individual-
tree coordinates  Hybrid Not required  
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SORTIE/BC Individual Several 
Explicit, individual-

tree coordinates 
(Canham, 2017) 

Process based Not required 
(Canham, 2017) 

 

 

4.4 Tier 4: Is the Modeling Approach Empirical or Process-Based? 

We evaluated each of the 10 distance-dependent, spatially explicit models according to 

their modeling approach (Table 2.1). Empirical models include BWIN PRO/TreeGroSS and 

MOSES. Hybrid models EFIMOD and SILVA contain both empirical and process-based 

components. The remaining six models use a process-based approach. Although empirical 

models such as BWIN PRO/TreeGroSS and MOSES and the hybrid models with empirical 

components can accurately predict forest structure and composition, they lack a dynamic 

approach to account for changing environments. Because models with process-based 

components vary in their degrees of mechanistic detail, they pose different tradeoffs between 

biological realism and data requirements. In Tier 5, we explore the implications of these 

differences for the eight process-based and hybrid models. 

4.5 Tier 5: Does the Model Represent Physiological Processes Mechanistically? 

The evaluation at Tier 5 identified three simplified process-based models, SORTIE, 

FORMIX, and FORMIND, and three fully mechanistic process-based models, COMMIX, 

BALANCE, and MAESTRO/MAESPA. Two hybrid physiological models, EFIMOD and 

SILVA, statistically simulate tree growth based on empirically fitted physiological parameters 

for sub-organ- and organ-level mechanisms in the most basic model versions (Pretzsch et al., 

2015). The Tier 5 attributes of these models, and other model characteristics from previous tiers, 

are summarized in Table 2.1. Figure 2.4 summarizes the tier-by-tier evaluation of all models. 
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Figure 2.4. Tiered series of evaluation criteria used to assess the suitability of 54 forest 
dynamics models for informing small forest management concerns. Characteristics that are more 
relevant and appropriate for small forests are in green. Characteristics with weaker relevance, or 
narrow applicability to specific management concerns, are in blue. Characteristics that will not 
help inform small forest management are in white. Models that best met small forest evaluation 
criteria include SORTIE, FORMIX, and FOR-MIND. 
 

As simplified, process-based, multi-species models, SORTIE, FORMIX, and FORMIND 

have the broadest potential application to small forest management out of the models we 

evaluated. FORMIND and FORMIX are highly cited models (Blanco et al., 2015; Larocque et 

al., 2016) and have primarily been used by the research team that developed them to evaluate 

forest change in species-rich tropical regions (Helmholtz Centre for Environmental Research, 

2021). They have similar model structures and algorithms (Blanco et al., 2015). However, 
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FORMIX is cohort based and not fully spatially explicit at an individual-tree resolution, while 

FORMIND is an individual-tree, spatially explicit model. The most recent versions of FORMIX 

(i.e., FORMIX3 and FORMIX3-Q) contain improved equations that more accurately describe 

tree productivity (Blanco et al., 2015; Huth et al., 1997; Kammesheidt et al., 2001; Tietjen & 

Huth, 2006), but FORMIND has the capacity to address finer-scale interspecific interactions that 

influence forest structure and composition issues of concern to small forest managers as well as 

more adaptable equations that have been calibrated for various forest types. Like FORMIND, 

SORTIE is also an individual-tree, spatially explicit model, and it has evolved (the most recent 

version being called SORTIE-ND) to become more adaptable across ecosystems and can help 

inform small forest management for different regions. Because of their spatially explicit 

simulations and potential portability to other systems, SORTIE and FORMIND are thus deemed 

the most suitable, flexible, and potentially applicable models for informing small forest 

management goals and concerns, particularly in new modeling contexts. In the discussion, we 

explore additional practical aspects and offer guiding recommendations for new implementations 

of SORTIE or FORMIND in small forests. 

5. Discussion 

5.1 Key Findings from the Model Suitability Evaluation 

The five-tiered suitability criteria assess different aspects of model scale, structure, and 

approach, from which we inferred their potential suitability of 54 forest dynamics models for 

informing several common small forest management issues. Tiers 1 and 3 focus on spatial 

resolution; we concluded that models that simulate forests at the stand level or finer resolution 

are most suitable, with spatially explicit models affording more nuanced treatments of 

environmental effects and interspecific interactions. Tier 2 evaluates model design in terms of 
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number of tree species represented; except in the contexts of small forests dominated by a single 

well-studied species, models with the capacity to represent multiple species can inform a broader 

the range of small forest management concerns. Tier 4 examines empirical versus process-based 

models; we found that both have their own forms of data availability limitations, yet process-

based models offer the advantage of simulating dynamic environmental effects and growth 

dynamics beyond those measured empirically in the past. Lastly, Tier 5 assesses the level of 

mechanistic detail in process-based models, and we posited that because of the difficulty of 

parameterizing highly mechanistic models, simplified process-based models are likely to be 

much more feasible for small forest management applications. Of the three simplified models 

identified in this final tier, we concluded that SORTIE and FORMIND have advantageous 

combinations of spatially explicit individual-tree simulations and flexible model designs to 

address a range of potential processes that influence small forest dynamics (Table 2.2). 

 

Table 2.2. Summary of advantageous attributes of SORTIE and FORMIND, in terms of criteria 
for (A) suitability for small forests and for (B) application in new contexts. 

Suitability Criteria SORTIE and FORMIND 
Attributes Advantages 

A. Suitability for small forest management concerns 

1. Spatial resolution Individual tree Aligns with small spatial scale 
concerns and localized processes 

2. Number of species Multiple Broadest applicability across 
diversity of small forest contexts 

3. Spatial explicitness Explicit Captures effects of heterogeneous 
environments and local interactions 

4. Empirical or process-based Process based Better suited for modeling dynamic 
and novel environments 

5. Mechanistic or simplified 
processes Simplified 

Reduces technical complexity and 
need for hard-to-measure 
physiological parameters 

B. Suitability for application in new contexts 
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1. Data needs and availability 
Tree size attributes plus 
establishment, mortality, 
light-growth rates 

Requires multiple data sources, but 
less demanding for site-specific and 
physiological data than other models 

2. Model portability Simplified, process-based 
multi-species simulations 

Facilitates transfer to new systems 
without detailed physiological 
parameterization 

3. Range of application conditions Numerous optional modules 
Modules can be added to address 
different applied management 
scenarios and questions 

4. Software availability Freely available, well-
documented 

User-friendliness lowers obstacles for 
use in new contexts and by new or 
novice modelers 

5. Model robustness Highly parameterizable 

Tailoring parameters improves 
robustness but assumptions and 
uncertainties should be explored with 
sensitivity analyses 

 

 

5.2 Considerations for Implementing Models in New Contexts 

The tiered criteria fruitfully address a range of factors particularly relevant to 

management concerns in small forests, as well as some factors relevant to new contexts, by 

which we mean forest units, conditions, and/or management contexts that have not been modeled 

previously. Because this review is intended to orient and inform forest managers who are not yet 

using forest dynamics models, the pragmatic feasibility of implementing a model in new contexts 

is an especially important topic, as emphasized in other forest model reviews (Monserud & 

Robinson, 2002; Robinson & Monserud, 2003). We highlight five key issues for model 

suitability in new contexts, which were previously identified (but categorized slightly differently) 

by Monserud and Robinson (Monserud & Robinson, 2002). The tiered criteria already provide a 

lens for considering three key pragmatic issues: (1) input data needs and availability, (2) model 

portability, and (3) range and extendibility of application conditions. Two other key issues have 
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not been addressed explicitly thus far and warrant further evaluation: (4) technical accessibility 

of modeling software, and (5) the reliability, or robustness, of model outputs. 

Input data needs are determined by model structure and design, but input data availability 

is determined by the extent of research and monitoring efforts applicable to the new forest 

context (Robinson & Monserud, 2003). In each tier, we discussed both data needs and likelihood 

of adequate data availability. The latter was a key factor in determining model suitability in Tiers 

4 and 5, where we concluded that data availability for both empirical models (Pretzsch et al., 

2015; Thürig et al., 2005) and mechanistic models (Fontes et al., 2011) is expected to be 

prohibitively low for most novel small forest applications, leading to our recommendation for 

simplified process-based models. At their basic model structures, SORTIE and FORMIND 

require relatively easily obtainable information about size attributes of different life history 

stages such as height, diameter, and crown characteristics (Figures 2.5 and 2.6) (Canham, 2017; 

Helmholtz Centre for Environmental Research, 2021). However, some physiological and 

environmental knowledge²notably, species-specific establishment, mortality rates, and growth 

responses to varying light conditions²is required (Larocque et al., 2016). Because the models 

are process based, these characteristics do not need to be site specific, but they should be species 

specific (Larocque et al., 2016). If estimates are unavailable, parameterization and calibration 

will prove difficult, and the usefulness of model outputs will be limited.  

Model portability, or the ease at which a model can be calibrated for an intended use, is 

largely determined by model design (Blanco et al., 2015; Robinson & Monserud, 2003). 

Portability to both small forests and new forest contexts was addressed in Tiers 2, 4, and 5. These 

evaluations found that single-species and empirical model designs require prior information 

about species- and site-specific growth rates, and most models of those types were developed for 
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specific forest types (Pretzsch et al., 2015). These factors limit their portability to other forests 

with different species and environmental conditions. In the Tier 5 evaluation, we concluded that 

simplified process-based models are more portable to new contexts than heavily mechanistic 

models because they can simulate growth under novel conditions based on relatively simple 

light-growth relationships (Blanco et al., 2015). In particular, SORTIE and FORMIND have a 

history of sequential applications to new contexts and also have modules that can expand the 

range of forest processes that models can represent, which strengthens their portability and 

expandability (Canham, 2017; Helmholtz Centre for Environmental Research, 2021; 

Schumacher et al., 2004; Shugart et al., 2018). 

 

 

Figure 2.5. Schematic of the FORMIND model. Main processes are in white, and parallelograms 
indicate climatic parameters, some of which are required to run the model (abbreviations: PET²
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potential evapotranspiration; PPFD²photoactive photon flux density). Yellow, blue, and green 
boxes show physiological, demographic, and optional extensions including logging, harvesting, 
and fire at different spatial scales. Numbers in parentheses indicate scheduled flow of individual 
processes within the model, and grey frames underlying boxes group them according to their 
processes and chapters associated with the FORMIND handbook. Reprinted from (Helmholtz 
Centre for Environmental Research, 2021) ZLWK�WKH�DXWKRU¶V�SHUPLVVLRQ�DQG�XQGHU Creative 
Commons license. 
 
 

 

Figure 2.6. Basic schematic of the SORTIE model. Initialization requirements include tree size 
attributes of four different size classes or life history stages (i.e., seedlings, saplings, adults, and 
snags). In each annual timestep, neighborhood density and light±growth relationships drives 
individual-tree growth and mortality. SORTIE is pre-loaded with growth parameters for eight 
North American tree species, and users can upload values for additional species. Optional sub-
models can be coupled at each timestep to account for other factors that influence forest 
community change. After SORTIE annually projects individual-tree growth and mortality, the 
resulting forest structure determines light that is available for the next annual time-step. 
Information source: (Canham, 2017). 
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Application conditions UHIHU�WR�D�PRGHO¶V�DELOLW\�WR�VLPXODWH�PDQDJHPHQW-relevant factors 

such as environmental change, disturbance, and management actions when projecting future 

forest conditions, and extendibility refers to the ease of adding more sub-models or behaviors 

(Robinson & Monserud, 2003). Application conditions were key considerations when assessing 

PRGHOV¶�VXLWDELOLW\�IRU�VPDOO�IRUHVW�LVVXHV��)LJXUH�2.1) in Tiers 3, 4, and 5. The arguments in Tier 

4 and 5, regarding the advantages of process-based models to simulate novel environmental 

conditions, also relate to new forest contexts. Because process-based models simulate 

environmental effects via underlying processes instead of via previously observed growth 

responses, they are more suitable than empirical models for informing a wider range of 

application conditions in new contexts as well. While mechanistic process-based models also 

generate useful outputs for many application conditions, the data needs and availability for 

parameterizing such application conditions in new forest contexts presents a larger obstacle, as 

discussed in Tier 5.  

Although both SORTIE and FORMIX were originally designed for specific application 

conditions, they contain adaptable equations that are calibrated for various forest types across the 

world (Blanco et al., 2015; Canham, 2017; Evans & Moustakas, 2016; Helmholtz Centre for 

Environmental Research, 2021; Shugart et al., 2018), and they can simulate the effects of a 

variety of management scenarios through optional model behaviors and sub-models (Figures 2.4 

and 2.5) (Canham, 2017; Ditzer et al., 2000; Huth et al., 1997). These options extend both the 

portfolio of useful model outputs as well as the applications conditions that the models can 

simulate. For example, SORTIE and FORMIND have been used to study logging and harvesting 

(Bose et al., 2015; Canham et al., 2013; Kammesheidt et al., 2001); climate change scenarios 

(Bugmann et al., 2019; Canham & Murphy, 2017); and insect, pathogen, and herbivore intensity 
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(Dantas de Paula et al., 2018; Forsyth et al., 2015) in tropical, temperate, and boreal forests. 

Many forest management studies have also incorporated other environmental processes like 

water balance, nitrogen deposition, and natural disturbances into the model process (Ameztegui, 

Paquette, et al., 2017; Canham, 2017; Kunstler et al., 2013). FORMIND is one of the few forest 

dynamics models that has a sub-model called ForFire (Figure 2.5) that can simulate the impact of 

fire events (Fischer, 2021; Knapp et al., 2018; Ribeiro et al., 2021). However, many of the 

optional functions within FORMIND and SORTIE that are relevant to new management contexts 

cannot be parameterized without additional data collection (Evans & Moustakas, 2016). 

Technical availability of modeling software, an issue we have not yet addressed in this 

review, includes both source code availability and adequate documentation to guide its use 

(Robinson & Monserud, 2003). This is critical to the feasibility of implementing a forest 

dynamics model for a new context. SORTIE and FORMIND are widely used internationally and 

have free source code that is available online (Blanco et al., 2015; Canham, 2017; Helmholtz 

Centre for Environmental Research, 2021; Shugart et al., 2018). Thus, they meet the essential 

criterion of technical availability. However, the utility of SORTIE and FORMIND to small forest 

management is still heavily influenced by the number of parameters that can be estimated within 

the source code. Simply supplying these models with only DBH or other more easily obtainable 

data leaves little room for calibrating many of the allometric equations required to provide 

accurate model predictions (Evans & Moustakas, 2016). Without existing forest inventory data, a 

substantial data collection effort may be required to get reliable model outputs.  

Therefore, the last issue, which is a perennial concern in all modeling work, is model 

robustness²WKH�PRGHO¶V�DELOLW\�WR�SURYLGH�DFFXUDWH�DQG�UHOLDEOH�HVWLPDWHV�(Blanco et al., 2015; 

Monserud & Robinson, 2002; Robinson & Monserud, 2003). Model robustness does not depend 
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on model complexity but on the variability and un-certainty of model inputs and parameters 

(Blanco et al., 2015). This is a limitation in any modeling context, but parameter uncertainty is 

likely to be particularly high for small forests due to the lack of well-studied analogs. 

Uncertainty or inaccuracy in parameter estimates do not all have proportional effects on the 

robustness of model outputs. Rather, model outputs tend to be more sensitive to uncertainties in 

some parameters, and more robust to others. Thus, it is important to evaluate the reliability of 

functional relationships within the model structure and model outputs through sensitivity 

analyses. Sensitivity analyses systematically alter model inputs and parameters through multiple 

simulations to identify those that contribute the most to model fluctuations outputs (Larocque et 

al., 2016; Vanclay & Skovsgaard, 1997). This technique offers small forest managers a way to 

identify model limitations and also recognize highly influential ecological information that can 

be prioritized during parameterization and calibration (Larocque et al., 2016; Vanclay & 

Skovsgaard, 1997). For instance, it often recommended to focus on light competition variables 

when applying a simplified process-based model (Evans & Moustakas, 2016). For SORTIE and 

FORMIND, the most basic light competition variables include tree crown geometry and 

estimates of size-dependent growth rates (Ameztegui, Cabon, et al., 2017; Canham, 2017). These 

variables can be derived for a large number of tree species, and studies have generally found the 

PRGHOV¶�FRPPXQLW\-level predictions to be rather robust to uncertainties in those parameters. 

However, if forest community change is driven by factors other than light competition, and 

relevant available sub-models are other major drivers not incorporated, SORTIE and FORMIND 

and other simplified process-based models can generate unrealistic or inaccurate estimates 

(Evans & Moustakas, 2016). Model calibration, validation, and sensitivity analyses are thus 

particularly important if quantitative model estimates are used as the basis for making 
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management decisions (Blanco et al., 2015; Vanclay & Skovsgaard, 1997). When model 

robustness is limited due to the novelty of a new context, an alternative use of model outputs for 

forest management is more qualitative evaluations of management alternatives, and to explore 

the relative influence of different factors that can affect the trajectory of forest change. 

Sensitivity analyses of both SORTIE and FORMIND have helped researchers make both 

quantitative and qualitative inferences from model outputs, as appropriate given parameter 

uncertainties (Coates et al., 2003). Thus, SORTIE and FOR-MIND do not offer immunity to this 

challenge of model robustness or the previously discussed issues that arise when implementing a 

model in a new context, but since they were designed for wide adoption and user friendliness, 

they offer options, advantageous attributes, and documented implementation examples that can 

help minimize obstacles (Table 2.2B). 

5.3 Recommendations 

Choosing a model ultimately depends on alignment between management concerns, the 

information needed to answer that question, and the generation of robust outputs to inform 

management (Porté & Bartelink, 2002). SORTIE and FORMIND are accessible, relevant, and 

relatively user-friendly tools that can address a wide range of small forest management concerns, 

as summarized in Table 2.2. They are often seen as alternatives to one another (Evans & 

Moustakas, 2016) because they both have similar input parameters, requiring at minimum initial 

stand structure, tree geometries, and species-specific tree growth rates (Figures 2.4 and 2.5) 

(Canham, 2017; Evans & Moustakas, 2016; Helmholtz Centre for Environmental Research, 

2021). SORTIE has been more frequently applied in temperate forests, and FORMIND in 

tropical forests, but they are not constrained to those contexts. Rather, selection should be guided 

by alignment between the salient management concerns, the likely ecological importance of 



54 
 

available sub-model options, and the usefulness of available simulation outputs. When resources 

and information are limited, we recommend starting with the simplest forms of the model and 

structuring management questions to compare management actions and alternatives instead of 

depending solely on quantitative model estimates. Combining different sources of information 

and collaborating with modelers, research organizations, ecological forestry consultants, 

academic institutions, and other partners and scientists of different disciplines can also help 

fulfill model requirements and data needs, facilitate implementation, and build capacity and 

management effectiveness through multi-directional knowledge sharing (Evans & Moustakas, 

2016; Larocque et al., 2016; Pretzsch et al., 2008; Thurnher et al., 2017). 

Collaborating with decision-support experts can also help small forest managers relate 

model outputs to particular management actions. Model outputs can feed a decision-support tool, 

framework, or system to help landowners, small forest managers, and stewards transfer scientific 

knowledge to practical forest management actions to meet their objectives (Packalen et al., 

2013). For example, a SORTIE model was built to incorporate climatic and management 

prescription data, creating an array of future forest projections that served as a decision-support 

tool to evaluate how different forest management actions and climate change scenarios may 

affect ecosystem services (Cristal et al., 2019). Other decision tools are not specific to any forest 

dynamics model and can incorporate model outputs describing future forest structure and 

composition. As decision-support tools that require information about forest structure and 

composition are becoming more popular for forest management (Abelson et al., 2021; Beier et 

al., 2008; Cristal et al., 2019; Packalen et al., 2013; Thrippleton et al., 2020), they are a potential 

resource for many small forest managers to couple with forest dynamics modeling when 

addressing forest benefits and concerns. 
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6. Conclusions 

Although forest dynamics models have become increasingly vital when answering 

management questions, their appropriateness for simulating the dynamics of management 

concern in smaller forested areas had not been systematically explored. In this literature review, 

we evaluated the suitability of 54 existing forest dynamics models to small forest management 

using five criteria. All models had some drawbacks. However, two, SORTIE and FORMIND, 

offered the most suitable balance of scale appropriateness, forest type flexibility, structural 

definition, management relevance, model dynamism and simplicity, plus portability, robustness, 

and pragmatic usability for application in new, small forest contexts. Establishing a robust 

implementation of either of these models in a new, small forest context, including those of 

varying agricultural and urban influences, is likely to proceed incrementally as model calibration 

improves and environmental factors are incorporated. While full model validation may be an 

unrealistic near-term goal in most small forest contexts, sensitivity analyses provide useful, 

accessible techniques for gaining insights regarding achievable conditions and the potential 

impact of management actions. Each of these models have their advantages and can therefore be 

applied to different management scenarios (Robinson & Ek, 2000) whether preserving key tree 

species, conserving a particular forest structure and composition, restoring historical tree 

communities, or managing a forest for multi-use. 

These findings will hopefully inform small forest managers about the suite of available 

forest dynamic models available to them and which models to use for specific research questions 

and help them make sound management decisions. As more and more forests globally exist and 

are managed at smaller spatial scales, guidance through modeling is also becoming increasingly 

relevant, feasible and accessible through models like SORTIE and FORMIND. 
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Abstract 

Maritime Live Oak (Quercus virginiana; MLO) forests along the Georgia (U.S.A.) coast 

are highly regarded for their multiple natural and cultural heritage values. In recent decades, 

MLO forests have shown evidence of limited live oak recruitment, which may result in undesired 

long-term effects on tree community structure, function, and resilience. Many MLO forest 

stewards and other stakeholders share a common interest in conserving forests by planting live 

oaks to augment existing populations. But there is uncertainty regarding potential restoration 

strategies because knowledge about MLO ecosystem dynamics is limited and fragmented among 

stakeholders. We used structured decision making to collaboratively develop a decision support 

tool for live oak tree-planting strategies. First, we held workshops with MLO forest stewards to 

identify: the managers' long-term objectives and shorter-term success indicators; spatial and 

temporal scales of likely management actions; a set of potential management options; and data, 

legal, and resource constraints. Then we constructed transition matrix models using empirical 

data and expert knowledge to estimate parameters for juvenile tree growth and survival rates 

associated with alternative tree-planting strategies. The decision support tool incorporated the 

transition models and associated cost estimates of management alternatives in order to project 

likely outcomes, costs, associated uncertainties, and the degree to which alternatives would meet 

different management objectives. This process ensured that we capitalized on diverse 

understandings and perspectives and that the decision support tool would be directly relevant to 

stewards' values, objectives, and information needs. 
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1. Introduction 

1.1 Problem: Maritime live oak forests²conservation, management, and knowledge 

gaps 

Maritime live oak (Quercus virginiana; MLO) forests on barrier islands along the 

southeastern Atlantic coast from North Carolina to Florida are highly regarded for their multiple 

natural and cultural heritage values (Evans & Keen, 2013; Horsley, 2020; Jones et al., 2013). 

MLO forests play a central role in supporting biodiversity and the ecological health of islands 

and are globally rare but one of the least studied coastal ecosystems (Jones et al., 2013; Shiflett 

et al., 2013; Smith et al., 2015). As a result of the sRXWKHDVWHUQ�FRDVW¶V varying geology, 

hydrology, ecological diversity, and human history, its MLO forests are complex, dynamic, and 

variable. In recent decades, these MLO forests are also facing various environmental stresses 

including climate change, land development, invasive plant species, and altered wildlife 

abundances (Helm et al., 1991). Storm damage, intense fire, and beach erosion are an 

increasingly observed cause of mature tree mortality on barrier islands (Conner et al., 2005; 

Helm et al., 1991), and now managers on Jekyll Island and other barrier islands along the 

Georgia coast have seen little evidence of live oak seedlings or saplings. With low live oak 

recruitment, these environmental stresses could create undesired long-term effects on tree 

community structure, function, and resilience. 

Jekyll Island is a state park that conserves about 65% of the island as natural areas while 

also supporting tourism amenities and a residential community. Jekyll Island offers opportunities 

for the public to enjoy the unique heritage of barrier island MLO forests in Georgia. It contains 

roughly 400ha of maritime live oak forests (Jekyll Island Authority, 2020), which are undergoing 

several environmental stresses that could be affecting live oak regeneration. First, on Jekyll 
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Island, and in many forests throughout North America, white-tailed deer (Odocoileus 

virginianus) pose a critical constraint on tree seedling establishment and survival to maturity 

(Aronson & Handel, 2011; Thyroff et al., 2019a). Jekyll Island Authority (JIA), a self-supporting 

state agency that is responsible for management and stewardship of Jekyll Island, is especially 

concerned how the deer could affect the future of its maritime live oak forests (Jekyll Island 

Authority, 2020). Herbivores like deer can affect plant communities directly through biomass 

loss and plant mortality (Averill et al., 2018) but can also indirectly influence interspecific plant 

competition through selective herbivory. A second concern Jekyll Island managers have is 

invasive plant species, especially camphor (Cinnamomum camphora), an Asian evergreen tree 

that was introduced for horticulture but has now invaded a few natural areas on the island. Fast-

growing and with prolific seed production, camphor may out-compete native plant species and 

its establishment raises concerns about native plant biodiversity (Schenk, 2009). A third concern 

is hurricane and storm damage resulting in adult live oak crown damage and biomass loss 

(Conner et al., 2005; Helm et al., 1991). However, disturbances that damage the canopy also 

create light gap conditions that promote live oak regeneration, but it is uncertain whether 

regeneration can successfully compete to reach the overstory. A fourth concern on Jekyll Island 

is the ecological consequence of long-term fire exclusion, which has led to a thick shrub layer of 

saw palmetto (Seneroa repens) and a heavy accumulation of litter and duff. Fire is a keystone 

process that maintains forest biodiversity by creating fluctuations in resource availability and 

preventing competitive exclusion (Kerns & Day, 2017). Therefore, fire exclusion creates an 

additional stress for tree species and the herbaceous layer that rely on periodic reduction in litter 

and shrub cover to regenerate and reach above the shrub layer.  
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For the project presented in this chapter, a team of researchers, decision-scientists, and 

graduate students including myself have addressed these suites of concerns about live oak 

regeneration and the future of MLO forests using structured decision making (SDM), an 

organized framework that can help stakeholders solve an environmental problem by finding 

management alternatives that best meet their ultimate goals or fundamental objectives. We have 

collaborated with JIA and other island managers and coastal stewards along the Georgia coast 

through SDM to integrate knowledge and find potential MLO management actions to evaluate 

the low live oak regeneration problem. This chapter first explores how our team used SDM to 

define management objectives and identify management alternatives to help pursue those 

objectives. Because stakeholders agreed that planting live oaks would best meet their 

management needs, we have then compiled different types of knowledge to build a demographic 

model and decision support tool that projects likely outcomes, costs, and associated uncertainties 

under alternative tree-planting strategies and the degree to which each alternative would meet 

different management objectives.  

1.2 Approach: Structured decision making with coastal land managers and stewards 

SDM is an organized decision making framework that uses a series of steps to 

incorporate uncertainties, risk analyses, and decision-theory to help solve complex ecological 

and environmental problems (Gregory et al., 2012). SDM has proven effective in promoting 

sound environmental management, particularly when faced with conflicting management 

objectives (Gregory & Keeney, 2002). Although this project was inspired by ecological concerns 

on Jekyll Island, our team agreed that collaborating with other island managers and coastal 

stewards would best identify knowledge gaps and research priorities. Therefore, this framework 

is ideal to addressing potentially alternative management styles and goals. 
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Figure 3.1 demonstrates the general SDM process (Gregory et al., 2012). (1) The first 

step is to identify and clearly define a management problem within a decision context such as 

poor habitat quality or low endangered species population density. (2) Then, stakeholders 

identify fundamental objectives or ultimate goals that reflect individual stakeholder needs, which 

often represent various ecological, social, and economic values (Brown & Ferguson, 2019; 

Kozak & Piazza, 2015; Robinson et al., 2016b). There is also often an objective hierarchy that 

defines means objectives or sub-objectives, which further clarifies how to achieve the 

fundamental objective, and measurable attributes or performance measures, which are specific 

measurements to realize how a management alternative meets an objective (Gregory et al., 

2012). After defining management objectives, (3) the third step is to identify management 

alternatives that can help meet those objectives. This information also usually reflects 

stakeholder preferences and avoidances but does need to include practical management actions 

that decision-makers could consider (Gregory et al., 2012). Next, (4) scientists use a variation or 

combination of empirical and statistical models, population simulation models, expert or 

stakeholder elicitation techniques, or other performance or analysis tools to evaluate 

consequences of each management action or alternative (Robinson et al., 2016a). Consequences 

predict the outcomes or measurable attributes of each management alternative on each of the 

objectives (Robinson et al., 2016a). Next, after (5) evaluating trade-offs and exploring 

optimizations between actions and management objectives, (6) stakeholders collectively decide 

on a management strategy. Typically, steps (1) Problem, (2) Objectives, (3) Alternatives, and (6) 

Decide and Take Action reflect stakeholder aims and values while steps (4) Consequences and 

(5) Trade-Offs and Optimization use ecological knowledge like scientific research and 

monitoring (Moore & Runge, 2012). 
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Figure 3.1. Structured decision making is a six-step process designed to help stakeholders solve 
a problem while balancing different management objectives. SDM requires different types of 
knowledge like empirical ecological information, expert opinion, and stakeholder values to run. 
Knowledge can be incorporated at various points during the SDM process, a couple of which are 
shown in orange. Adapted from Gregory et al. (2012). 
 
 

1.3 Application of SDM to MLO forest restoration under uncertainty  

Because of its stepwise structure and organization, SDM can be applied to nearly any 

system, including those found in engineering, economics, and natural resource management 

(Guntenspergen, 2014). The studies using SDM for forest or plant community management have 

mostly been interested in preserving endangered and threatened animal populations, improving 

habitat quality for fish and wildlife, prioritizing policies and values when managing larger forest 

ecosystems (Ogden & Innes, 2009; Zakaria, 2020). However, there is little evidence in the 

literature of using SDM to direct actions at individual plant or tree populations, especially for 

conservation and restoration purposes (Guerrero et al., 2017). Therefore, one key component of 
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this chapter will be to combine different sources of information and addressing uncertainty 

within the information that is gathered. 

Ultimately, the type of knowledge used is entirely dependent on the decision context and 

what constitutes as the best available information (Gregory et al., 2012). Although there is some 

ecological field research conducted on live oak seedlings that observe the effects of deer 

herbivory, light availability, and competing vegetation on seedling growth and survival (Thyroff 

et al., 2019a; Thyroff et al., 2019b), there is not enough information to inform tools for 

evaluation as each of these studies have observed live oak growth and survival for a limited 

number of years, which may underestimate the time it takes for live oak seedlings to reach the 

canopy. Furthermore, there are some knowledge gaps in how different management alternatives 

like planting live oaks at later life stages or how extensive watering can affect live oak seedling 

performance. Therefore, we have synthesized and combined available empirical data with 

elicited information from stakeholders through workshops and interviews using a participatory 

process and methods of knowledge co-production.  

Most steps within the SDM framework require different types of information but they can 

also integrate RWKHU�IRUPV�RI�NQRZOHGJH��/RFDO�PDQDJHUV¶�DQG�RWKHU�VWDNHKROGHUV¶�GLUHFW�

experience and expertise are increasingly recognized as valuable sources of knowledge (Kuhnert 

et al., 2010; Reed, 2008), although not always well documented or available. Knowledge co-

production has therefore been used within the decision-making process to incorporate various 

types of stakeholder and expert knowledge regarding the ecological problem. In knowledge co-

production, scientists, decision-makers, and other stakeholders share and combine knowledge to 

inform environmental decision-making (Djenontin & Meadow, 2018). Pieces of knowledge are 

usually directly incorporated into qualitative and quantitative statements as management 
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objectives or alternatives, parameter values for modeling and other analysis tools when assessing 

consequences, or direct decision-making (Czembor & Vesk, 2009). Many studies have used a 

combination of knowledge sources to fill knowledge gaps within the SDM framework, especially 

during steps (4) Consequences and (5) Trade-Offs and (Brown & Ferguson, 2019; Liu et al., 

2012; Moore & Runge, 2012; Ogden & Innes, 2009).  

This chapter is a technical report on how our team has worked within the structured 

decision making approach to evaluate the live oak regeneration problem when facing limited 

knowledge about live oak life history and community-dynamics of MLO forest ecology. We will 

explain our approach organized around the SDM steps, ultimately describing how our designed 

decision support tool can help meet different fundamental objectives. The decision support tool 

will be run with different management scenarios selected by stakeholders to help them make 

decisions about their MLO forests. 

2 Methods 

2.1 Steps 1 and 2: Identifying the problem and objectives 

Our first workshop was held in March 2018. We invited seventeen stakeholders to obtain 

three goals: discuss the problem of live oak regeneration, elicit and synthesize knowledge 

regarding live oak regeneration, and begin defining fundamental objectives for the SDM 

framework. We first asked our participants to write lists of ecological factors they thought would 

influence live oak regeneration. We compiled their lists and found that the participants had 

identified 18 factors, and the five most common factors included mammal herbivory, water 

availability, herbaceous plant competition, light availability, and fire (Table 3.1). We then asked 

each manager to define their fundamental objectives relating to MLO forest management. The 

key management objectives for four main barrier islands are shown in Table 3.2. Ossabaw and 
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St. Catherines Island managers stated that they favored a more passive approach to live oak 

management, allowing forest processes to occur naturally and evolve. Jekyll Island and Sapelo 

managers were more concerned with maintaining specific conditions in their MLO forests and 

favored active management to ensure success. These stakeholders were highly interested in 

identifying management alternatives and site prioritization for restoration through live oak 

planting.  

 

Table 3.1. Top factors influencing live oak regeneration, ranked by the percentage of 
participants that cited them during the first workshop. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Influence Factor % of Participants Citing 

Mammal herbivory 100 
Water availability 100 

Herbaceous (understory) plant 
competition 

88 

Light/canopy gaps 75 
Fire 75 

Soil Conditions 63 
Acorn production and viability 63 

Salt stress 56 
Management & human impacts 50 

Climate 44 
Past land use 38 

Litter conditions 31 
Genetics 31 

Weather/storms 31 
Acorn predation 25 

Pests/disease 19 
Acorn dispersal 13 

Forest composition 6 
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Table 3.2. Key management objectives of four barrier islands. Those interested in passive versus 
active management through restoration are noted below. 

 

 

 

 

2.2 Steps 2 (continued) and 3: Refining objectives and identifying management 

alternatives 

Our second workshop was held in April 2019. We included the eight participants from 

Jekyll and Sapelo who were interested in active restoration through the planting of young live 

oaks to address the live oak regeneration problem. These stakeholders were highly concerned 

about the lack of live oak seedlings and saplings in their forests and wanted to find a specific 

solution to ensure live oak juveniles successful grew into the canopy to replace other mature live 

oak trees. Our main goal for this workshop was to build on the first workshop by refining 

fundamental objectives for MLO restoration and identifying management alternatives for 

planting live oaks to help meet those objectives.  

We first asked our participants to individually list their desired future MLO forest 

condition (i.e., long-term goal or fundamental and means objectives) and their desired MLO 

condition within 10 years (i.e., short-term goal or means objective). We then held an open 

Key Management Objectives of Four Barrier Islands 
Ossabaw St. Catherines Sapelo Jekyll 

Maintain and allow 
landscape to exist as 

it would naturally 
occur 

Allow forests to 
evolve with minimal 

intervention 

Maintain and enhance 
existing maritime live 

oak forests 

 
Maintain maritime live 
oak forest composition 

Identify and prioritize 
sites for maritime live 

oak restoration 

 
Manage fire risk 

WĂƐƐŝǀĞ�ŵĂŶĂŐĞŵĞŶƚ� �ĐƚŝǀĞ�ŵĂŶĂŐĞŵĞŶƚ�ƚŚƌŽƵŐŚ�ƌĞƐƚŽƌĂƚŝŽŶ 
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discussion about what our participants would define as fundamental objectives to optimize 

within the SDM framework. Ultimately, participants identified two main fundamental objectives: 

cost-effectiveness and high live oak juvenile survival after planting.   

We then held a brainstorming session about what management alternatives or practical 

management actions would ensure some juvenile trees would ascend to the canopy. We asked 

questions such as the density of planted juveniles, site location, what accompanying treatments 

might enhance survival, and whether treatments were too costly to be practical. As we 

considered what factors might significantly influence the success of planted seedlings, we 

reviewed our list of 18 factors that influence live oak regeneration from our first knowledge co-

production workshop (Table 3.1). Although many conditions affect juvenile live oak growth and 

survival, they are not all feasible to control as a management action. For instance, Jekyll Island 

has suppressed fire from many of their forests for decades, and any burning treatment would 

require additional permitting and safety measures, which could not be easily achieved in the 

short-term. After discussing which of these factors would be most practical to control and 

potentially result in the highest seedling survival, participants identified three ecological factors: 

mammal herbivory, herbaceous (understory) plant competition, and overstory canopy conditions. 

Manipulations of these factors were then translated to possible restoration actions as 

management alternatives. Furthermore, participants expressed interest in planting two stock 

types of live oak saplings (15-gallon vs 100-gallon containers) under different overstory canopy 

conditions. When watering stress is reduced and nutrient needs are met after planting, larger 

containerized trees have demonstrated higher growth rates and can better compete with 

surrounding vegetation, than their smaller counterparts (Baehre, 2020; Haase et al., 2006).  
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2.3 Steps 4 and 5: Evaluating consequences and determining trade-offs 

2.3.1  Decision context 

7KH�LQLWLDO�JRDO�RI�WKLV�6'0�SURFHVV�ZDV�WR�DGGUHVV�WKH�TXHVWLRQ�³$UH�maritime live oak 

forests on barrier islands LQ�SHULO"�,I�VR��ZKDW�UHVWRUDWLRQ�DFWLYLWLHV�DUH�UHTXLUHG"´�7KURXJKRXW�WKH�

first two workshops, we identified fundamental objectives and a suite of management 

alternatives that can help meet those objectives. However, most of the participants committed to 

finding management alternatives were interested in active live oak restoration, specifically by 

planting juvenile trees. Therefore, we re-evaluated our decision options so we could tailor the 

final decision support tool to those participants. Our new reseDUFK�TXHVWLRQ�LV��³:KDW�OLYH�RDN�

planting treatments are the most cost-effective and will result in the highest probability of 

UHFUXLWPHQW�LQWR�WKH�VDSOLQJ�VL]H�FODVV"´ 

Stakeholders interested in active restoration are primarily from Jekyll Island and Sapelo 

Island. Therefore, we held group interviews with participants from each island, individually, to 

finalize the problem summary and decision context. With each island, we discussed the ultimate 

objective in the context of a spatially-defined establishment unit (EU), the number of potential 

EUs within a site, and other site-associated contextual information that would help develop 

decision variables for the decision support tool. We also spoke with live oak propagators and 

environmental consultants to gather information about site preparation and live oak planting 

strategy feasibility. After these discussions, we finalized the type of information required and 

available to address this live oak regeneration problem using alternatives discussed from the 

previous workshops.  

The final group of stakeholders²participants from the second workshop²agreed that the 

main objective for the decision support tool was to achieve the highest probability of recruiting 
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at least one live oak into the sapling size class (> 1.5m, the height above which saplings escape 

KHDY\�EURZVH�GDPDJH��UHIHUUHG�WR�KHUHLQ�DV�³DERYH-browse KHLJKW´) per establishment unit (18m 

x 18m) at least cost. The EU size was chosen as best approximating the canopy area of an adult 

live oak tree. We then agreed that planting stock used in each EU would be a choice among three 

alternatives of containerized seedlings and saplings at specific ages and/or heights (identified 

according to sizes used by nurseries): larger saplings of 4-inch stem diameter (100 gallon 

container), smaller saplings of at least 1 ¾-inch stem diameter (15 gallon container), and 

seedlings that were 30-50cm in height. For either sapling alternative, one sapling would be 

planted at the center of each EU. For the seedling alternative, up to 81 seedlings (9x9 grid at 2m 

spacing) would be planted within each EU. The seedling alternative linked to a set of other 

decision variables that included browse protection, competing vegetation suppression, and 

overstory removal, all of which were key ecological factors listed by these participants as highly 

influential to live oak regeneration. Each decision applies to all EUs in a particular site context, 

and D�VLWH¶V�context could influence cost of an action but not the likelihood of established 

outcomes. Some site contexts we considered were the spatial arrangement of EUs within a site 

(i.e. scattered, grouped, or grid), public visibility (public or remote) of the site on Jekyll Island, 

and location of site within or outside existing MLO forest on Sapelo Island, as they could 

influence cost and utility values. We also decided that general cost estimates for each 

management alternative would include cost of individual seedling and sapling stock, planting 

labor, overstory removal, browse protection (materials and labor to install), and competing 

vegetation suppression (materials and labor per application). 
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Figure 3.2. Each establishment unit is an 18m x 18m cell. One EU holds a single sapling at the 
center or a maximum of 81 seedlings on a 9x9 grid at 2m spacing.  
 

 

 

 

2.3.2 Demographic modeling of consequences for each management alternative: 

live oak seedlings and saplings 

2.3.2.1 Transition matrix model to simulate seedling survival and growth 

To evaluate management alternatives, we needed to decide the type of information 

required and available to address this live oak regeneration problem. After the second workshop 

and during a series of interviews with island managers, live oak propagators, and ecological 

consultants and stewards, we decided to use a demographic transition matrix model to predict 

seedling survival and growth. Transition matrix models project population growth based on the 

probabilities that individuals will survive and stay in a certain size or stage class or survive and 

grow from one size or stage class to another. Over the last couple of decades, matrix models are 

increasingly used for management purposes (Crone et al., 2011), and some have proven effective 

in projecting tree dynamics (Davis et al., 2011; Evans & Keen, 2013). Although these types of 

models may not provide predictions at resolutions as high as those from models that include 

PRUH�UHILQHG�OLIH�KLVWRU\�DQG�HQYLURQPHQWDO�GHWDLO��PDWUL[�PRGHOV�FDQ�³FDOFXODWH�WKH�ORJLFDO�



89 
 

outcomes of observed environmental conditions and experimental manipulations...[and] examine 

what-LI�VFHQDULRV�WKDW�H[SORUH�SRVVLELOLWLHV�RXWVLGH�WKH�UDQJH�RI�REVHUYHG�FRQGLWLRQV´�(Crone et 

al., 2011). Furthermore, matrix models can easily be informed by multiple knowledge sources 

including field reVHDUFK�DQG�PRQLWRULQJ��HPSLULFDO�GDWD��DQG�PDQDJHUV¶�DQG�VWDNHKROGHUV¶�GLUHFW�

experience and expertise (Kuhnert et al., 2010; Reed, 2008). Although there are many forest 

dynamics and growth models that can simulate forest and individual-level dynamics, many are 

data-intensive or are not appropriate for the scale and nature of restoration treatments. This 

transition matrix model will be directly incorporated into a decision-making tool that managers 

can use to evaluate how different management alternatives meet their fundamental objectives. 

Alternatives that are practical to implement, likely to influence seedling performance, and 

will impose varying cost include: limiting mammal herbivory, limiting understory plant 

competition, and planting in created or existing canopy gaps. Our transition matrix model 

projects seedling growth and survival rates for manipulations of each of these factors (i.e. 

management alternatives), ultimately providing probability of achieving a specified height 

(1.5m, 2m, and 2.5m) at each year up to five years. We parameterized our model from results of 

an experimental planting study conducted on St. Simons Island (Thyroff, 2018). Chapter 2 of 

Thyroff (2018) explored the effects of deer herbivory and understory vegetation suppression 

intensity on growth and survival of live oak seedlings planted in a clearcut or in full sun. Chapter 

3 of Thyroff (2018) observed the effect of different overstory treatments on growth and survival 

of seedlings that were protected from deer browse.  

Because all combinations of herbivory protection, understory vegetation suppression, and 

overstory removal were not manipulated in the Thyroff (2018) work, we used marginal data 

summaries from that study to parameterize a pair of models: a linear-logit model of survival and 
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a linear model of height growth. The height growth model included main effects of the three 

management treatments, the three 2-way interactions among treatment effects, and a variance 

term for an individual random effect (8 parameters). The survival model contained the same 

terms except the 2-way interactions (5 parameters). Given an array of values for the full set of 13 

parameters, we used the models in sequence to simulate survival and height growth of a group of 

seedlings over time. Our models produced the expected number of survivors and their average 

height at any arbitrary point in time. 

Using the pair of models, we conducted a search to find the array of parameter values that 

minimized the sum of squared differences between a set of marginal means of height from the 

Thyroff (2018) study (Table 3.3) and the corresponding summaries from simulated individuals. 

We GHILQHG�DV�VROXWLRQ�³ILWQHVV´�WKH�QHJDWLYH�YDOXH�RI�this criterion, and we used the GA 

package in R (Scrucca, 2013) to implement a genetic algorithm to maximize the fitness function 

(i.e., to minimize the sum of squared differences). This package is a stochastic search algorithm 

that simulates the evolution of a population of artificial chromosomes. Each chromosome codes 

for a potential solution and is associated with a value of fitness, and the algorithm mimics 

genetic recombination and biological mechanisms of evolution to find one or more chromosomes 

(solutions) with high fitness after many simulated generations (Scrucca, 2013). We assumed real-

valued data where linear model effects represent real numbers, a chromosome population size of 

100, and 1000 evolutionary steps (generations). We also specified relevant design information 

from the Thyroff (2018) studies, which would pass through the fitness function. Information 

included initial seedling height at planting (0.47m), number of seedlings per treatment group (80 

in each of 8 groups, which represent combinations of overstory condition, herbivory protection, 

and competition vegetation control), and time period of observation (9 or 23 months, depending 
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on study component; Table 3.3). To judge whether solutions provided by the genetic algorithm 

were within reasonable numerical bounds, we performed simple arithmetic operations on the 

marginal means reported in Thyroff (2018) to approximate the model quantities we would expect 

to see (Table 3.4). 

 

Table 3.3. Model parameters that were used as optimization targets within the genetic algorithm 
package. 
 
Model parameter Study from Thyroff (2018) Optimization 

target (cm) 
Clearcut, BA=0m2/ha, height 
of seedling after 9 months 

Chapter 3: Overstory BA vs vegetation 
competition, excluding deer 

48.37 

No thin (full canopy), 
BA=33.9m2/ha, height of 
seedling after 9 months 

Chapter 3: Overstory BA vs vegetation 
competition, excluding deer 

30.34 

Fenced, annual vegetation 
removal, height after 23 
months 

Chapter 2: browsing treatment vs 
vegetation competition control  

119.80 

Fenced, no vegetation 
removal, height after 23 
months 

Chapter 2: browsing treatment vs 
vegetation competition control 

92.28 

Not fenced, annual vegetation 
removal, height after 23 
months 

Chapter 2: browsing treatment vs 
vegetation competition control 

37.58 

Not fenced, no vegetation 
removal, height after 23 
months 

Chapter 2: browsing treatment vs 
vegetation competition control 

40.60 

 

 

Table 3.4. Model parameters optimized that best replicate data summaries in Thyroff (2018) and 
their corresponding naïve values derived from manipulation of the reported marginal means. 
 
Model parameter 
category 

Specific model parameter 
to be optimized 

Naïve estimates Optimization 
solution 

Mean rates under 
ideal condition (no 
overstory, no browse, 
no competition) 

Mean probability of annual 
survival 

0.780 0.974 

Mean height growth 
(m)/year, conditional on 
survival 

0.380 0.363 
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Additive effects 
(logit scale) of 
treatments on annual 
survival, relative to 
ideal conditions 

Effect of dense overstory -0.670 -0.475 
Effect of herbivory 0 -0.541 
Effect of competing 
understory vegetation 

0 -0.461 

Additive effects of 
treatments, relative to 
ideal, on annual 
height growth rate 
(m/year) 

Effect of dense overstory -0.520 -0.566 
Effect of herbivory -0.421 -0.698 
Effect of competing 
vegetation 

-0.278 -0.229 

2-way interactive 
effects of treatments 
on annual height 
growth rate 

Overstory x herbivory * -0.033 
Overstory x competing 
vegetation 

0.240 -0.162 

Herbivory x competing 
vegetation 

0.270 0.182 

Individual variation 
(normal standard 
deviation) 

Annual survival (logit 
scale) 

* 0.454 

Height (m) * 0.311 
* not estimable from results provided in Thyroff (2018) 

 

 

The genetic algorithm produced a solution (Table 3.4) that achieved a maximum fitness 

value of -0.046 (sum of squared differences between target and simulated means = 0.046). The 

values in the solution were generally in agreement with corresponding quantities derived naively 

from the marginal means (Table 3.4). Model code for this optimization tool is presented in 

Appendix A.1. 

We used the optimized linear models to estimate the probability of a seedling achieving 

WKUHVKROGV�RI�KHLJKW�DW�HDFK�RI�������«����\HDUV�SRVW-planting under each of eight treatment 

combinations. We used height thresholds of 1.5m, 2m, and 2.5m, provided by stakeholders, to 

represent alternative above-browse heights. From a group of n seedlings planted (and assuming 

seedling height of 0.47m at planting), we computed the proportion achieving each of the height 

thresholds under each treatment combination at each year of the simulation. For purposes of the 
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decision support model, we retained estimated probabilities of achieving a height threshold of 

1.5m at the 5-year time horizon. Model code for the simulation is shown in Appendix A.2. 

We then sought to compute EU-wise success probability (i.e., that at least one seedling in 

the EU would succeed) by considering that fates of seedlings in an EU may not be independent. 

Assuming independence among n seedlings planted in the EU (assumed = 81, maximum of 

seedlings planted/EU), and given the probability p of achieving 1.5m sapling height in a given 

time period, then the binomial model yields the probability Y of an EU producing at least one 

sapling in the time period: Y = 1 ± (1-p)n. However, more likely, the fates of individual seedlings 

are not independent, so we also considered a beta-binomial model to portray overdispersion of 

FRXQWV�RI�VXUYLYLQJ�VHHGOLQJV��:LWK�ĳ�!���UHSUHVHQWLQJ�WKH�LQWUDFODVV�FRUUHODWLRQ among seedling 

IDWH��ĳ� �� for independent fates), we used the model Y= 1 ± Beta(D, n+E)/Beta(D, E), where D = 

p (1-p-ĳ�pĳ� / �ĳ��-p)) and E = (1-p-ĳ-pĳ� / ĳ (Kim & Lee, 2017). $V�ĳ�LQFUHDVHV��WKH�

probability of at least 1 of n seedlings surviving to the sapling stage in the time period 

approaches p, regardless of n. The seedling model and its predicted correlation with other planted 

seedlings are directly incorporated into our decision support tool.  

2.3.2.2 Sapling survival estimates 

Because there is little empirical data on planting live oak saplings in a Southern maritime 

live oak forest, we elicited stakeholder knowledge to obtain survival estimates. We interviewed a 

few coastal land managers, nurserymen, and restoration professionals, synthesizing and 

combining their knowledge. These stakeholders emphasized that light and water availability 

would be the main deterrents to sapling survival as saplings are past browse height and will not 

heavily compete with understory vegetation; however, they require additional maintenance via 

irrigation. Larger trees require greater volumes of water for transpiration and metabolism and 
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take a longer time after transplanting to establish healthy extensive root systems to harvest 

sufficient water from surrounding soil. Thus supplemental watering reduces damage or death due 

to water stress. (Fernández et al., 2016; Pecknold, 2022). Therefore, we obtained sapling stock 

(larger vs smaller sapling sizes) survival predictions for different overstory canopy and watering 

conditions after the first, second, and fifth year post-planting. Survivorship for each sapling 

stock-light availability scenario is presented in a graph in Appendix A.3. 

2.3.3 Cost estimates 

After the second workshop, we interviewed stakeholders from Jekyll and Sapelo Islands 

to elicit cost estimates for each management alternative. Costs were estimated by EU (18m x 

18m) but could be scaled up when considering multiple EUs to reduce cost of some bulk items. 

Cost of specific materials not confirmed by stakeholders were found through commercial 

vendors (Forestry Suppliers, The Home Depot). All cost estimates are presented in Appendix 

A.4. 

2.3.4 Utility function 

Utility functions map the attributes of the fundamental objectives ± here, costs of actions 

and probabilities of sapling establishment (i.e. at least 1 planted seedling entering the sapling 

stage after five years or a planted sapling surviving one year post-planting) ± to stakeholder 

satisfaction or contentment with outcomes (Ferguson et al., 2015). We measured utility on a 0-10 

scale, 0 as the least content and 10 as the most content for an action given a probability of 

achieving tree response at a given cost per unit. After finalizing cost per management alternative, 

we elicited utility values from key stakeholders using scenario-planning techniques. For varying 

costs, we asked stakeholders to report their anticipated level of satisfaction with achieving at 

least one surviving sapling for each establishment unit. We also requested utility values for 
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specified probability-cost combinations according to different site contexts. Both Jekyll and 

Sapelo Island managers have expressed interest planting in both publicly visible and more 

remote locations. We then created a utility function for each stakeholder and an aggregate utility 

function for all stakeholders in R, fitting elicited values to a predictive polynomial regression in 

cost and success probability and projecting the regression surfaces onto contour plots. The most 

preferred management alternative among a set of candidate alternatives was the combination of 

live oak treatments yielding greatest expected utility.   

2.3.5 Evaluating uncertainty 

Within our seedling simulation model and elicited sapling survival parameters, there are 

three primary areas of uncertainty: stochasticity in seedling performance, correlation of seedling 

fate, and sapling estimates. Stochasticity in seedling performance refers to the fact that seedling 

fate is a stochastic outcome, even if treatment conditions do not vary. Low versus high 

correlation of seedling fate affects the probability of t1 seedlings successfully reaching the 

sapling stage. We also addressed uncertainty in sapling survival expressed by stakeholders who 

provided estimates of these quantities. 

To evaluate the uncertainty due to stochasticity in seedling performance, we extracted the 

probability of a seedling entering the sapling stage after 5 years for each combination of 

treatments on seedlings. Our main objective was to identify when a change in this model output 

would change the most preferred management alternative when planting seedlings. As annual 

survivorship was relatively similar for all treatments, we used the 2.5 percentile (25th highest 

growth increment) and 97.5 percentile (975th highest growth increment) out of 1000 seedlings 

per treatment group to evaluate whether a change in average height growth would alter the 

probability of seedlings reaching the sapling stage after 5 years. We altered this value under ideal 
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conditions (i.e. open canopy, protected from deer, and no understory vegetation competition) 

using these percentiles, which the model then incorporated additive effects of treatments on 

annual height growth rate (m/year), relative to the ideal.  

Regarding correlation of seedling fate, we noted the difference in the probability of t1 

planted seedlings reaching browse height for each treatment combination by assuming varying 

values of the intraclass correlation coefficient (ĳ) within the beta-binomial model. We had 

initially assumed ĳ=0.3 as a likely estimate of correlation of tree seedling fate. Therefore, we 

compared the probabilities of t1 planted seedlings successfully reaching the sapling stage 

assuming ĳ=0.3 against assumptions of higher fate dependence (ĳ=0.8) (Yao et al., 2016) and 

full independence (ĳ=0). The former represents the ³ZRUVW-FDVH´�VFHQDULR�ZKLOH�ODWWHU�UHSUHVHQWV�

RXU�³EHVW-FDVH´�VFHQDULR� 

:H�DOVR�REWDLQHG�WKH�³ZRUVW-FDVH´�DQG�³EHVW-FDVH´�VFHQDULR�HVWLPDWHV�IRU�VDSOLQJ�

VXUYLYDO��$V�ZH�LQWHUYLHZHG�RXU�VWDNHKROGHUV��ZH�DVNHG�IRU�D�³PRVW�OLNHO\´��³KLJKHVW�UHDOLVWLF´��

DQG�³ORZHVW�UHDOLVWLF´�VXUYLYDO�UDWH�IRU�HDFK�VDSOLQJ�VWRFN-overstory canopy combination. 

Survivorship for all scenarios and treatment combinations are presented in Appendix A.3.  

To note whether an increase or decrease in stochasticity in seedling performance, 

correlation of seedling fate, and sapling survival estimates changed the most preferred 

management alterative, we created eight scenarios (Table 3.5) that could help us identify areas of 

uncertainty that most influenced decision-making.  
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Table 3.5. Eight scenarios used to determine whether uncertainty with seedling simulation, 
seedling correlation, or sapling survival estimates altered the most preferred management 
alternative. 
 

Scenario Performance 
stochasticity 

Seedling correlation Sapling survival 

High Low High Low High Low 
1 ¥  ¥  ¥  
2 ¥  ¥   ¥ 
3 ¥   ¥ ¥  
4 ¥   ¥  ¥ 
5  ¥ ¥  ¥  
6  ¥ ¥   ¥ 
7  ¥  ¥ ¥  
8  ¥  ¥  ¥ 

 

 

3 Results 

3.1 Decision support tool 

The decision support tool was designed to accommodate different management scenarios 

selected by stakeholders. We used Excel and incorporated R code to create an interface through 

which stakeholders can clearly see the decisions to be made as well as trade-offs associated with 

those decisions. There are 16 management alternatives that affect ecological outcomes, each 

alternative associated with four parts of a single decision action that land managers and coastal 

stewards will face during the decision-making process when planting juvenile live oaks (Table 

3.6). The action taken at a planting site for one site context (i.e. publicly visible vs remote or 

within MLO forest vs not within MLO forest) reflects a combination of nested sub-actions with 

respect to overstory removal, type of planting stock, browse protection, and understory 

vegetation suppression/removal (Table 3.6). Individual sub-actions may be conditional on other 

sub-actions taken (i.e., the choice to plant saplings will remove choices about browse protection), 

and each one is associated with further detail such as number of seedlings planted and sapling 
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water intensity. Each sub-component of the decision (e.g., overstory removal) induces a resulting 

state (increased light to forest floor), and their combined effects are linked to an expected 

outcome through an appropriate model (the seedling growth model or the sapling survival 

model). Costs of alternatives vary depending on the suite of sub-actions taken, and they also vary 

by island due to differences in management conventions and availability of personnel and 

material resources. Because cost minimization is one of the fundamental objectives of the 

decision, specification of costs aids stakeholders in evaluating trade-offs among alternative 

actions.  

 

 

Table 3.6. 16 management alternatives comprised of four decision points that drive ecological 
outcomes.  
 
Alternative Overstory 

(open, 
closed) 

Stock type (3 types) Browse 
protection 

(Y/N) 

Vegetation control 
(3 options) 

A Open 100-gallon sapling - - 
B Open 15-gallon sapling - - 
C Closed 100-gallon sapling - - 
D Closed 15-gallon sapling - - 
E Closed Seedlings No None 
F Closed Seedlings No Once 
G Closed Seedlings No Recurrent 
H Closed Seedlings Yes None 
I Closed Seedlings Yes Once 
J Closed Seedlings Yes Recurrent 
K Open Seedlings No None 
L Open Seedlings No Once 
M Open Seedlings No Recurrent 
N Open Seedlings Yes None 
O Open Seedlings Yes Once 
P Open Seedlings Yes Recurrent 
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Although sub-actions are executed simultaneously as parts of a single action, 

stakeholders will select these sub-actions and other relevant details in a specific order within the 

decision support tool according to the descending order of decision points presented in Table 3.7. 

This is to ensure ease of use and tool simplification. The four parts that comprise each 

management alternative in Table 3.6 are the only decision points that determine ecological 

outcomes �PDUNHG�DV�µ
¶�LQ�7DEOH�����. Other decision points only influence cost. First, managers 

will evaluate the current overstory state to determine if there is enough light availability to 

support live oak growth, which was listed as the fourth most-cited ecological concern about live 

oak regeneration in the first workshop (Table 3.1). Creating canopy gaps has proven to be an 

effective practice for many forest managers when planting tree seedlings (Vilhar et al., 2015). 

Because Jekyll Island managers have expressed interest in creating canopy gaps for the potential 

of improving live oak seedling growth and survival, the decision tool includes this management 

alternative (light availability/gap creation).  

 

Table 3.7. Decision points that will be chosen by stakeholders in the decision support tool. The 
four main parts of a single decision action that influence ecological outcomes (*) include: 
overstory treatment, live oak stock, browse protection, and understory vegetation control. Other 
decision points only influence cost. 
 
Decision Point Choice Type Decision point choice 

could alter: 
Number of 
establishment units (EU) 

Number entered Total cost for all EUs 

Overstory treatment* (A) No overstory treatment or (B-F) 
options of single-tree overstory 
treatment x # trees removed 

Cost for all EUs; overstory 
canopy condition, which 
could influence live oak 
performance 

Live oak stock* (A) 100-gallon sapling,  
(B) 15-gallon sapling, 
(C) Seedlings (number entered)  

Other decision points 
available, cost per EU  

Watering method 
(saplings only) 

(A) Water buffalo (portable tank) 
(B) Gravity-fed pump 

Cost per EU 
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Optional: planting gel 
Labor for planting Number entered for each labor type 

(staff vs volunteer) 
Cost per EU 

Browse protection* 
(seedlings only) 

Yes or no Seedling performance 

Caging material  (A-C) Different material options Cost per EU 
Understory vegetation 
control* (seedlings only) 

(A) None 
(B) herbicide one time 
(C) herbicide one time, continued 
treatment via manual removal 

Seedling performance, cost 
per EU 

Labor for vegetation 
control 

Number entered for each labor type 
(staff vs volunteer) 

Cost per EU 

 

 

Stakeholders will also decide whether to plant live oak seedlings or saplings. Planted 

seedlings will require a different type of maintenance during and after planting than saplings. 

Saplings will not require browsing or competing understory vegetation treatments because they 

have already reached above-browse height (1.5m) and are not shaded by neighboring understory 

plants. However, saplings require additional irrigation to reduce the risk of mortality from water 

stress. Because stakeholders have expressed interest in planting saplings of different ages/sizes to 

accommodate for cost and site-specific limitations, stakeholders will also have the option to plant 

one larger sapling (100 gallons) or one smaller sapling (15 gallons) per establishment unit. In the 

evaluation of consequences and trade-offs, the decision model links each live oak stock decision 

alternative to the appropriate demographic model (i.e. seedling or sapling) to inform the 

fundamental objective of survival to (from a planted seedling) or beyond (from a planted sapling) 

the sapling stage at the scale of the EU. 

For the seedling planting alternative, subsequent sub-actions include whether to protect 

live oak seedlings from mammal herbivory and whether to treat understory vegetation based on 

an assessment of competing understory vegetation status. Choosing to protect live oak seedlings 
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or suppress understory vegetation incurs more cost to stakeholders, but not choosing to do so 

may lessen live oak seedling growth and survival, as mentioned as a top concern for live oak 

regeneration by all stakeholders in the first workshop (Table 3.1). Within the understory 

vegetation suppression sub-action, stakeholders will also decide the level of suppression. 

Stakeholders may opt to choose one-time treatment of herbicide application or recurrent control, 

which includes one-time herbicide application and annual manual removal of understory 

vegetation.  

3.2 Most effective management alternative 

After running each seedling and sapling model individually, we found the most effective 

or optimal management alternative for 1) planting a sapling and 2) planting a seedling. Here, 

³PRVW�HIIHFWLYH´�is defined as the scenario that results in the highest probability of sapling 

survival after one year or the highest probability of a seedling entering the sapling (1.5m) stage 

after five years.  

(1) Both the 100-gallon and 15-gallon sapling planted in partial sun to full shade were 

estimated to have 90% survival during the first year. Therefore, we also assessed survival rates 5 

years post-planting. The strategy that resulted in the highest survival (87%) when planting a 

sapling is the planting of a smaller sapling (15-gallon) in partial sun to full shade. Planting a 

larger sapling in partial sun to full shade will most likely result in 85% survival, planting a 

smaller sapling in full sun will most likely result in 83% survival, and planting a smaller sapling 

in full sun will most likely result in 80% survival.  

(2) For seedlings, the management alternative that resulted in the highest probability of at 

least one seedling entering the sapling stage after five years includes sub-actions of browse 

protection and suppressing understory vegetation recurrently. This strategy also assumes an open 
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canopy and a slight correlation of survival fates among planted seedlings (ĳ=0.3) within the EU. 

After five years, for a single EU with 81 seedlings, the probability that at least one seedling 

reaching above-browse height (1.5m) is 54%.  

Ultimately, the most effective management alternative that results in at least one 

surviving sapling per EU one year post-planting is the planting of a smaller sapling in partial sun 

to full shade. 

3.3 Most desirable management alternative 

Figure 3.3 presents management alternatives that are less than $2000 and higher in utility, 

which include those of lower labor costs and limited to no overstory canopy removal. Appendix 

A.5 reports the entire range of cost, including varying overstory canopy treatment, for each 

management alternative. Management alternatives are labeled according to Table 3.5. 

The most desirable management alternative is dependent on which live oak treatment 

meets the optimum utility value for each island (Jekyll and Sapelo). For both islands, the most 

desirable management alternative, regardless of site-specific costs differences (i.e. public 

location vs. remote location and canopy openness) is planting a 15-gallon sapling in partial sun 

to full shade (Figure 3.3, Appendix A.5). This sapling will most likely survive after one year 

post-planting (90%) and five years post-planting (87%). Although our main objective was for at 

least one seedling within an establishment unit to reach sapling height five years post-planting or 

one sapling to survive one year post-planting, all sapling stock-canopy condition combinations 

resulted in the same survival for the first year. Therefore, we used the five years post-planting 

estimate to compare sapling planting strategies. All seedling treatment combinations resulted in 

less than 54% probability of at least one seedling within an EU reaching sapling height (Figure 

3.3, Appendix A.5).  
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The most desirable alternative, planting a 15-gallon sapling, is consistent regardless of 

cost of labor. When volunteers are enlisted, the minimum cost for this alternative is $205.48. 

However, even if no volunteers are enlisted, and island managers utilize solely paid staff 

members to plant saplings, the preferred management alternative does not change. 
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Figure 3.3. Management alternatives on utility contours for each individual stakeholder and 
island. Alternatives are labeled according to scenarios A-P in Table 3.6, and each line segment 
corresponds to the range of cost estimates possible for a single management alternative (i.e. 
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minimum and maximum cost of labor, no overstory canopy removal cost is assumed). Utility 
contours for full minimum and maximum costs, including overstory canopy removal, are 
presented in Appendix A.5. A-E: Contour plots that contain utility information for each 
individual stakeholder interviewed from Jekyll Island. Pairings of B-C and D-E show utility 
values for the same stakeholder but at sites that have different public visibility. F-G: Aggregated 
contour plots that contain utility information for all stakeholders from Jekyll Island. This pairing 
demonstrates utility values for the same island but at sites that have different public visibility. H-
I: Contour plots that contain utility information for one stakeholder interviewed from Sapelo 
Island. This pairing demonstrates the utility values for the same person but at sites that represent 
different MLO habitat value.  
 

 

 

3.4 Evaluating uncertainty 

We assessed whether stochastic uncertainty in seedling fate, uncertainty in seedling fate 

correlation, and uncertainty in sapling survival would affect the most desirable management 

alternative using the 8 combinations presented in Table 3.5.  

Initially, the most desirable management alternative for any site visibility or accessibility 

on both islands was planting a 15-gallon sapling in partial sun to full shade. Regardless of the 8 

combinations, the most desirable management alternative does not change. However, higher 

predictions of seedling height growth significantly improved treatment combinations, especially 

when planting in an open canopy, with browse protection, and while suppressing understory 

YHJHWDWLRQ��+LJK�VHHGOLQJ�SHUIRUPDQFH�DQG�KLJK�FRUUHODWLRQ�DPRQJ�VHHGOLQJV��ĳ �����UHVXOWHG�LQ�

a higher probability (83%) of at least one seedling entering the sapling stage after five years post-

planting. High seedliQJ�SHUIRUPDQFH�DQG�ORZ�FRUUHODWLRQ�DPRQJ�VHHGOLQJV��ĳ ���UHVXOWHG�LQ�DQ�

even higher probability (87%), which is comparable to the lowest estimate of the 15-gallon 

sapling survival when planted in partial sun to full shade (90%). However, this seedling 

management alternative is still more costly and retains a lower utility compared to the sapling 

alternative (Appendix A.5). 
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4 Discussion 

4.1 Applying SDM in a data deficient system 

Extensive knowledge gaps and uncertainty in information is often a barrier to restoration 

success (Cortina-Segarra et al., 2021), often stalling the decision-making process as there are 

disagreements about priorities and optimal management actions �2¶'RQQHOO�HW�DO��������. 

However, the recent upturn in incorporating stakeholder¶�GLUHFW�H[SHULHQFH�DQG�H[SHUWLVH into 

ecological models (Kuhnert et al., 2010; Reed, 2008) paves a way for scientists, land managers, 

and other collaborators to explore management options when there is deficient data.  

Little is known about the complexities of southeastern MLO forest dynamics. However, 

instead of allowing scarce data and uncertainty to impede our progress in supporting MLO forest 

restoration, we harnessed stakeholder and expert knowledge and values within our live oak 

demographic models and through other steps of the SDM process. We began structuring our 

decision support tool by first evaluating the wealth of experiential ecological knowledge 

stakeholders hold about their MLO forests. Island managers and other coastal stewards identified 

multiple salient concerns about the MLO forest ecosystem, which provided a diverse and 

complementary knowledge base from which to begin understanding MLO forest ecology and 

live oak life history. We also identified fundamental objectives and designed a suite of live oak 

planting treatments as management alternatives. We then created live oak demographic models 

using both empirical data and expert opinion, incorporating their ecological outcomes and 

stakeholder priorities and costs of different live oak treatments directly into the decision support 

tool. Ultimately, we synthesized and combined different sources of information to both begin 

understanding MLO forest ecology and help with decision support for barrier island managers 

along the Georgia coast interested in MLO forest restoration.  
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Many other studies have also informed ecological models (King & Franz, 2016) and 

decision-making frameworks (Ogden & Innes, 2009) using expert opinion when there are 

extensive knowledge gaps, often combining that information with available empirical and field 

data �&RKHQ�HW�DO���������0RRUH�	�&RQUR\��������2¶'RQQHOO�HW�DO���������5RELQVRQ�HW�DO���

2016b). While supplementing limited data with expert judgements during the decision-making 

process may prove internally inconsistent or reflect partial pieces of information (Czembor & 

Vesk, 2009), there are multiple ways to address this uncertainty. Conducting sensitivity analyses 

can help determine which ecological model variables or parameters and functions respond to 

changes in other parameter perturbations (Barabás et al., 2014). These analyses can help evaluate 

model robustness (Barabás et al., 2014), note limitations of the result and the dependence of the 

optimal outcome on model variables and stochastic factors (Chu-Agor et al., 2012; Conroy & 

Peterson, 2013), and help prioritize data collection and research (Biek et al., 2002; Chu-Agor et 

al., 2012).  To begin assessing the sensitivity of the decision support tool, we evaluated the effect 

of uncertainty in empirically-derived seedling growth and survival rates and expert-elicited 

sapling survival rates, and found that plausible best-case and worst-case scenarios did not affect 

the most preferred management alternative. This suggests the decision recommendations for 

Jekyll and Sapelo are not dependent on these sources of large uncertainty. 

4.2 Call for an adaptive management strategy: limitations and recommendations for 

the future 

Although identification of the most desirable management alternative was seemingly 

robust to uncertainties within our ecological models, we emphasize that we evaluated 

management alternatives for the planting of seedlings based on short-term data and not long-term 

estimates of live oak survival and growth, which could misinform decision-making. For each live 
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oak treatment combination, we simulated 5-year survival and growth estimates based on a 2-year 

study, and sapling estimates were solely informed by expert opinion. There is still little known 

about the stage-specific growth and survival rates of live oaks or the community-level dynamics 

of MLO forests. While we and others have conducted some field studies on live oak seedlings, 

there is inadequate formal scientific knowledge to construct reliable demographic models and 

make sound management decisions using this one iteration of SDM. Effects of different 

treatments on live oak seedling growth and survival are uncertain, especially those regarding 

seedling correlation and survival rates in the long-term. Although we found that some of the 

richest sources of knowledge rest with island managers, environmental stewards, and ecological 

consultants, efforts to reduce uncertainty need to be implemented. 

We suggest applying an adaptive management strategy to better inform actions being 

undertaken to restore MLO forests through the actions themselves. Rapid SDM prototyping has 

proven effective in identifying areas of uncertainty (Blomquist et al., 2010; Moore et al., 2011; 

Neckles et al., 2015) and addressing those concerns in another iteration. Neckles et al. (2015) 

developed their first prototype decision framework during a week-long workshop. Results then 

guided preliminary monitoring of salt marshes, which later informed future workshops, refined 

predictive models, and evaluated trade-offs in the second prototype (Neckles et al., 2015). 

Continued monitoring several years post-planting and field research on the effects of a wider 

variety of treatments on live oak seedling and sapling growth and survival should provide more 

accurate estimates and reduce uncertainty in decision-making. Furthermore, incorporating other 

main ecological factors cited as highly influential to live oak regeneration including fire and salt 

stress (Table 3.1) in future research could better improve our understanding of MLO forest 

ecology and meet island- and site-specific ecological concerns. Fire is a keystone process that 
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could benefit live oak seedlings by creating fluctuations in resource availability, and preventing 

competitive exclusion (Kerns & Day, 2017), but intense fire has also increasingly been observed 

as a main factor influencing mature live oak mortality on many barrier islands (Helm et al., 

1991). Noting how tolerant and resistant live oaks are to fire at different life history stages will 

help inform restoration efforts. As MLO forests are often experiencing hurricane and storms that 

fell or damage adult trees, saltwater intrusion, salt spray, and increased bouts of drought (Bellis, 

1995; Conner et al., 2005; Helm et al., 1991; Jones et al., 2013), it is imperative that future 

research explore the complexities of stochastic events and soil-water-plant dynamics on live oak 

regeneration.  

Using SDM as an iterative process can also better refine fundamental objectives and 

identify the suite of MLO forest restoration alternatives available. Most participants during the 

first workshop were committed to finding management alternatives through active live oak 

restoration so we continued working with these stakeholders (primarily from Jekyll and Sapelo 

Islands) during the SDM process. However, the diversity of management objectives for all island 

managers could be better met through another iteration of SDM. For example, Blomquist et al. 

(2010) initially incorporated expert opinion and available information during the first iteration of 

SDM to address how different actions would influence the persistence of an invasive species, 

Adeleges tsugae (hemlock woolly adelgid). They then revised the problem statement and 

prioritized specific fundamental objectives while treating others as model constraints. Identifying 

common ecological and social concerns among island managers could not only meet their 

management objectives while supporting those of Jekyll and Sapelo Island, but could also 

increase the applicability and relevancy of our decision support tool to multiple coastal stewards 

along the Georgia coast. 
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4.3 Application to support decisions on Jekyll and Sapelo Islands 

As this report demonstrates one iteration of SDM, the full decision support model is a 

rapid prototype and could be improved through adaptive management by incorporating 

additional empirical data and field data from monitoring planted seedlings and saplings. This will 

allow us to build a better inventory of juvenile live oak performance, hopefully reducing 

uncertainty when making restoration decisions. Also, as we discuss specific cost estimates and 

their associated seedling and sapling survival probabilities, we can further refine utility functions 

to best reflect satisfaction with different management alternatives in terms of meeting the 

fundamental objectives. Trade-offs will inevitably arise regarding costs associated with creating 

the most favorable conditions for seedling and sapling success, and our aim is to continue 

IDFLOLWDWLQJ�WKH�VWDNHKROGHUV¶�XVH�RI�PRGHOLQJ�RXWSXWV�WR�ILQG�RSWLPDO�FRPELQDWLRQV�RI�DFWLRQV�IRU�

their budget, risk tolerance, and priorities for certainty and time frames for realizing restoration 

success.  

5 Conclusions 

Southeastern maritime live oak forests are experiencing many environmental stresses 

including climate change, land development, and altered wildlife abundances, many of which 

may be causing low live oak regeneration. To address this live oak regeneration problem and 

find potential solutions for restoration, we used the SDM framework to define fundamental 

objectives and identify management alternatives. We assess consequences to specific 

management actions by constructing ecological models using available empirical data and 

eliciting juvenile live oak survival estimates. Finally, we explored optimizations between actions 

and different management objectives by obtaining cost estimates and considering model outputs 

to evaluate trade-offs.  
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We found a few management strategies that would both be cost-effective and result in the 

highest seedling or sapling survival. However, there is still uncertainty regarding the accuracy of 

estimates used to predict the effect of treatments on juvenile live oaks, so we encourage adopting 

an adaptive management strategy by continuing to synthesize available empirical data and to 

collect field data, and incorporating parameters into the ecological models used to inform the 

decision support tool. Our ongoing commitment to supporting restoration decision-making on 

Jekyll Island, Sapelo Island, and other barrier islands includes updating our models with 

emerging research findings, technical advice on logistics and methods for sourcing, and 

developing monitoring plans for restoration actions. Specifically, both Jekyll and Sapelo have 

exceptional capacity to use adaptive management to accelerate restoration success, and we look 

forward to further addressing management needs in this poorly understood forest ecosystem. 
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Abstract 

The camphor tree (Cinnamomum camphora) was introduced from Asia to the subtropical 

portions of the southeastern United States more than 100 years ago and is naturalized in many 

areas. In recent decades, however, it has become increasingly abundant in maritime forests on 

Jekyll Island, an Atlantic Ocean barrier island in Georgia. Native white-tailed deer (Odocoileus 

virginianus) populations have also increased during this period. We sought to experimentally 

explore whether deer herbivory may be limiting native understory vegetation cover and 

abundance of native hardwood tree seedlings, and whether camphor seedlings in turn increase in 

abundance and growth due to competitive release. In April 2018, within a 10ha forest stand with 

heavy camphor proliferation, we established 22 6m x 6m plots, of which 11 were fenced to 

exclude deer and 11 were not. At the initialization of the experiment, we counted, tagged, and 

measured height of each camphor seedling. We also recorded total understory vegetation cover, 

cover by species, and abundance of hardwood tree seedlings. Plots were re-measured in July 

2018, September 2018, May 2019, and May 2020, also tagging and measuring newly emerged 

camphor seedlings at each census. 

Deer exclusion was associated with increased native understory vegetation cover but did 

not have an immediate effect on the abundance of native tree seedlings or species richness. Vine 

species, especially Vitis rotundifolia, benefitted from excluding deer, yet camphor seedling 

growth and survival also increased when deer were excluded. Although longer-term herbivory 

effects on camphor versus native species in this environment are not yet known, these results 

suggest that controlling deer herbivory may not tip the balance of apparent competition balance 

back toward native vegetation, and other restoration efforts are likely needed to control camphor 

invasion and support the native tree and plant community. 
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1. Introduction 

Rapid and ongoing environmental change and additional anthropogenic stress including 

climate change, altered land use, and introduced species can severely alter native tree and plant 

abundance and community structure and dynamics in many forest ecosystems. Two common 

environmental stressors of major concern in many forests in the eastern United States are intense 

herbivory by white-tailed deer (Odocoileus virginianus) and introduction of invasive plant 

species. Both of these stressors pose a threat to native plant and tree communities, and without 

management action, they can alter ecological functions, native plant abundance, composition and 

structure, and biodiversity (Averill et al., 2018).  

In many forests throughout eastern North America, dense populations of white-tailed deer 

have caused major ecological change, affecting native plant communities directly through 

biomass loss and plant and tree mortality (Thyroff et al., 2019; Woolery & Jacobs, 2011), which 

can result in a loss of native plant abundance, reduce tree regeneration and plant establishment 

(Cooper & McCann, 2011; Perrin et al., 2011), and alter community diversity and species 

richness (Averill et al., 2018; Morrison, 2017; Nishizawa et al., 2016).  

One prevalent effect of deer herbivory is its influence on interspecific plant competition 

and resulting community composition through selective herbivory (Averill et al., 2018). Deer 

feeding preferences for different plant species and growth forms can ultimately determine the 

what species can persist and thrive and thus influence successional trajectories (Averill et al., 

2018). Some plant species are preferentially browsed by deer because they are more abundant or 

palatable or have less chemical or physical defenses (Wiegmann & Waller, 2006). Reduced 

abundance and regeneration of browsed plants can allow other less abundant, non-palatable, or 

browse-tolerant species to increase in abundance. Many studies have shown that intense deer 
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herbivory can homogenize the native plant community, reduce plant diversity, and allow for less 

deer tolerant species to persist and dominate (Holmes & Webster, 2011; Kain et al., 2016; 

Nishizawa et al., 2016; Wiegmann & Waller, 2006).  

 Invasive plant species are also a growing concern in many forest ecosystems. Invasive 

plants are non-native or exotic plants that are introduced to a new environment and live outside 

their native range but have now begun proliferating and displacing native plant species (Society 

for Ecological Restoration, 2004). Many invasive plants have traits including rapid growth, 

environmental plasticity, ability to capture resources, and high proliferation and long-distance 

dispersal mechanisms that allow them to easily colonize and outcompete native plants 

(Holzmueller & Jose, 2009; McNeish & McEwan, 2016; Mitchell et al., 2006). Once established, 

invasive plants can threaten native plant abundance and biodiversity by disrupting species 

interactions, influencing ecosystem processes and functions, and shifting ecosystems to an 

alternative state where native plant species cannot persist (Prior et al., 2018; Vitousek et al., 

2007). Invasive trees and shrubs have increasingly become a major threat to many ecosystems 

around the world (Dickie et al., 2014). In comparison to short-lived herbaceous invaders, 

invasive trees and shrubs differ in that they are slower-growing, long-lived, and large (van 

Wilgen & Richardson, 2014), and tend to rely on prolific seed production and dispersal, escape 

from pathogens and herbivores in their home range, and strong competitive traits to dominate in 

new environments (Rejmánek, 2014). Although they may prove easier to control because of their 

visibility, they are notoriously difficult to eradicate, and reducing their spread becomes 

increasingly more expensive compared to other invasive plants because of their size (van Wilgen 

& Richardson, 2014).  
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A range of studies have assessed the role of deer herbivory in mediating the interactions 

between invasive species and native plant communities (Averill et al., 2016). Some studies 

indicate that deer can facilitate invasive success of exotic trees by consuming or causing stress to 

native competitors. Many exotic plants that become invasive have an upper hand over native 

plants because they are better adapted to soil disturbances from deer trampling, their propagules 

are more easily transported by ungulates, or they are not as palatable as native tree and plant 

species, which could release exotic trees from competition (Nuñez et al., 2008; Vavra et al., 

2007). Other studies have observed little to no effect of deer herbivory on invasion success. 

Inconsistencies in the interaction between deer herbivory and invasive trees are common because 

the effects are dependent on the level of biological organization observed (i.e. individual species, 

functional group, diversity), duration of study, and species tolerance to deer browse (Christopher 

et al., 2014; Wright et al., 2019). 

Jekyll Island, GA is a state park that conserves about 65% of the island as natural areas 

while also supporting tourism amenities and a residential community. It contains roughly 650ha 

of maritime forests (Jekyll Island Authority, 2020). Jekyll Island managers (Jekyll Island 

Authority or JIA) are concerned about how environmental stresses like white-tailed deer 

herbivory and invasive plant species can alter the state of their small forests. Of growing concern 

Jekyll Island is camphor (Cinnamomum camphora), an Asian evergreen tree that was once 

introduced to the southeastern United States more than 100 years ago for horticulture. It is 

naturalized on Jekyll Island, but in recent decades, it has begun to proliferate extensively on a 

few areas on the island. Fast-growing and with prolific seed production, camphor may out-

compete native plant species and its establishment raises concerns about native plant 
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composition and biodiversity (Schenk, 2009). However, little is known about the effects of 

camphor on native plant communities especially with the added pressure of deer herbivory. 

JIA is pursuing active restoration to preserve their native plant communities. The JIA 

conservation team began treating mature and juvenile camphor trees with herbicide in 2016 and 

2017. However, camphor seedlings continue to emerge, which raises concerns about how to keep 

camphor under control and preserve the native plant population, especially when native plants 

and tree seedlings are also facing another stress with deer herbivory. It is possible that the 

suppression of native vegetation by deer is allowing camphor to proliferate. However, little is 

known about southeastern maritime forest ecology and dynamics and how restoration strategies 

like excluding deer could alter native plant community composition and structure. Therefore, to 

help JIA conservation staff manage the area for invasive control and native plant diversity 

restoration, we explored whether deer herbivory is affecting camphor seedling regeneration, 

native understory plant abundance, biodiversity, and abundance and diversity of different plant 

growth forms. We conducted a two-year deer exclosure experiment to assess effects of deer 

exclusion on native understory vegetation abundance, native hardwood tree seedling abundance, 

and camphor seedling survival and growth. We hypothesized that deer exclusion will result in 

increased native plant and tree seedling abundance. We also predicted that deer herbivory may 

improve camphor performance by suppressing other native tree and plant species and releasing 

the exotic tree from competition.  

2. Methods 

2.1 Study site 

This study was conducted on Jekyll Island, one of the southernmost barrier islands in 

Georgia. The site is a 10ha mixed oak-pine hammock (N 31.05484367, W 81.41614811) located 
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south of the Jekyll Island Golf Course and is isolated by two paved roads, an unpaved walking 

trail, and a coastal marsh (Figure 4.1). Soils consist of mandarin fine soil at 0-5% slope (Natural 

Resources Conservation Service, n.d.). Adult tree composition is dominated by Pinus (pine) 

species, Quercus virginiana (live oak), Quercus hemisphaerica (laurel oak), Liquidambar 

styraciflua (sweetgum), and Magnolia grandiflora �6RXWKHUQ�PDJQROLD���7KH�VLWH¶V�KHUEDFHRXV�

and shrub layer is dominated by dense saw palmetto (Seneroa repens) that nearly excludes other 

plant species. However, there are distinct clearings without saw palmetto throughout the site, 

each about 3-12m across, that contain little native plant and shrub vegetation. Each clearing 

contains evidence of deer utilization. 
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Figure 4.1. Study site is a 10ha mixed oak-pine forest on Jekyll Island, Georgia (Google Earth 
Pro 7.3.4.8248, n.d.). 
 

 

2.2 Experimental design 

In March 2018, we surveyed the entire site by walking parallel linear transects 5m apart 

to identify clearings in the saw palmetto that were greater than 6m x 6m in size and contained 

less than 5% saw palmetto cover. We found 32 clearings met these criteria. Each clearing had 
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camphor seedlings present and evidence of either an adult or sapling. The clearings contained 

less than 15% shrub and herbaceous vegetation cover and contained plant species typical of a 

maritime forest including Pteridium aquilinum (bracken fern) and Vitis rotundifolia (muscadine 

grape). Each clearing had similar canopy composition typical of a maritime forest including 

Quercus virginiana, Q. hemisphaerica, Liquidambar styraciflua, Magnolia virginiana, and Pinus 

species.  

In April 2018, we randomly selected 22 of the 32 potential clearings as study sites in 

which to establish plots. At each site, we marked a 6m x 6m area for study plots.  We randomly 

chose 11 sites to build deer exclosure fences (2.5m height, 6m x 6m in size) and 11 sites where 

deer would have access, as demonstrated in Figure 4.2. Each site (fenced and unfenced) 

contained a 5m x 5m plot marked by PVC pipes. Each 5m x 5m plot was divided into 25 1m x 

1m subplots, marked by row and column as shown in Figure 4.3. 
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Figure 4.2. The experiment had 22 plots total, including 11 fenced deer exclosures (yellow) and 
11 unfenced plots, open to deer herbivory (pink). They were randomly selected from an 
assortment of 32 clearings, 6m x 6m or larger in size. Each plot is 5m x 5m (Google Earth Pro 
7.3.4.8248, n.d.) 
 

 

2.3 Sampling 

Immediately after fences were built in April 2018, each of the 22 plots were surveyed for 

its baseline vegetation and number of camphor seedlings.  

2.3.1 Vegetation surveys 

For each 1m x 1m subplot, we recorded total and species percent cover. Percent cover 

was recorded as less than 1, 1, 2, 3, 4, 5, then increasing by increments of 5. Within each subplot, 

we also counted the number of native hardwood tree seedlings under 1.5m height. Vegetation 

surveys were repeated in September 2018, May 2019, and May 2020. 
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2.3.2 Camphor seedlings 

To determine camphor seedling abundance, we tagged all camphor seedlings, measured 

their height (cm), and noted if there was mammal or insect damage. Each camphor seedling was 

assigned a camphor ID and (X,Y) coordinates corresponding to its location within the 1m x 1m 

subplot. Each camphor seedling found in April 2018 was tagged using a red flag pinned to the 

ground 10cm below the seedling. All flags were labeled with an aluminum tag and looped with a 

colored zip-tie. Height was measured as the length from the base of the stem to the highest point 

of woody growth.  

We revisited the plots in July 2018, September 2018, May 2019, and May 2020 to note 

camphor seedling survival and remeasure camphor seedlings found in April 2018. For seedling 

survival, seedlings were listed as present if they were present and had living tissue and dead if 

they were present and dead or clearly not found at their location. Seedlings were listed as 

missing if a tag and seedling were found separately without confidence the tag belonged to the 

seedling. This first cohort of camphor seedlings were remeasured for height (cm) and presence of 

mammal or insect damage.  

2.4 Analysis 

Analyses were performed using JMP® Pro 15 (SAS Institute, 2019) and RStudio version 

1.2.5042 (RStudio Team, 2020). 

We first used 1-way ANOVA to determine the effect of fencing treatment on total 

understory plant cover and percent cover of growth forms per plot (averaged across subplots) for 

the April 2018, May 2019, and May 2020 censuses. We categorized native understory vegetation 

into six growth forms: ferns, shrubs, palms, vines, forbs, and grasses or sedges. Other studies 

have also assessed the effects of deer herbivory on plant communities by categorizing them into 
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growth forms, stage-classes, families, and functional groups (Augustine & DeCalesta, 2003; 

Hegland et al., 2013). We then conducted repeated measures ANOVA and Friedman rank sum 

tests on responses that demonstrated a significant difference between fencing treatments in 

Spring 2020 to assess annual variation and the interaction between fencing treatment and year. 

Because individual species data did not conform to ANOVA assumptions, we analyzed fencing 

treatment effects on cover by species using the non-parametric Kruskal-Wallis test for each of 

the three spring censuses. To evaluate the effect of deer exclusion on the change in species 

richness, we counted the total number of species present in each plot, calculated the absolute 

difference in species change over time between plots, and analyzed effects of fencing treatments 

using 1-way ANOVA. 

We used Kruskal-Wallis tests to test the effect of fencing on camphor seedling abundance 

(summed across subplots) and cover for each year. We also performed Friedman rank sum tests 

to evaluate annual variation and the interaction between fencing treatment and growing season 

on camphor abundance. For each plot, we calculated plot-level survival rate and average log 

response ratio of camphor seedling growth over the two year study duration. A Kruskal-Wallis 

test was performed on survival and growth to test for differences between fencing treatments. 

3. Results 

3.1 Effects of deer on native vegetation 

There was no difference in total understory plant cover between fencing treatments when 

plots were established in Spring 2018 (F2,21= 0.7735, p =0.3901). After both the first (Spring 

2019) and second year (Spring 2020), total understory plant cover was higher in fenced plots 

than unfenced plots (Figure 4.3A), and the difference was greater in the second year (F2,21=8.332, 

p=0.010) than the first year (F2,21=3.663, p=0.071). There was also a statistically significant 



132 
 

difference in cover between years (F2,21=29.417, p<0.001) and a significant interaction between 

fencing treatment and year (F2,21=7.337, p<0.001). Although both fencing treatments 

experienced an increase in cover during the first year, fenced plots had higher increase in cover 

by about 63%. After the second year, the difference between fencing treatments became 

increased as total understory plant cover in fenced plots remained about the same and cover in 

unfenced plots decreased slightly.  

When we examined vegetation change by growth form, only vine and forb species 

showed a significant response to fencing treatment after the first and second year (Figure 4.3: B, 

C; Appendix B.1). Both vine  and forb species showed no difference in cover when the 

experiment began in 2018 (p=0.307 and p=0.260, respectively). After one year, fenced plots had 

a higher cover in vine species in fenced plots compared to unfenced plots (p=0.038) but did not 

have a higher cover in forb species (p=0.245). However, after the second year, both vine 

(p=0.027) and forb (0.007) species had higher percent cover in fenced plots than unfenced plots. 

When assessing the difference in percent cover by species within each of these growth forms, 

Vitis rotundifolia (Muscadine grape) accounted for most of the change in vine cover after the 

first (p=0.046) and second year (p=0.040). No one species contributed heavily to an increase in 

forb cover. All other growth forms including ferns, shrubs, palms, and grasses/sedges did not 

show a significant difference between treatments after either year (Appendix B.1). 

Although fencing treatments resulted in a change in total understory plant cover, there 

was no observed effect on native hardwood tree seedling abundance or species richness (Figure 

4.3: E and F). The number of native tree seedlings in both fenced and unfenced plots increased 

after two years but there was no difference between treatments (p=0.751) (Figure 4.3: E). This 

was a result of a heavy increase in Liquidambar styraciflua (sweetgum) seedlings in both fenced 
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and unfenced plots after the second year. However, a Friedman rank sum test performed on the 

effect of fencing treatment (F2,21=1.073, p=0.313), year (F2,21=2.518, p=0.094), and their 

interaction on sweetgum seedling abundance was not significant (F2,21=0.650, p=0.530). After 

two years, average species richness in fenced plots increased by 2.4 species/plot, while unfenced 

plots increased by 4 species/plot, although this difference was not significant (p=0.124) (Figure 

4.3: F).  
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Figure 4.3. Bar plots and box plots summarizing the response of understory vegetation 
variables to deer exclosure treatments. (A) Total understory plant cover (ANOVA, *F2,21=3.663, 
p=0.071; **F2,21=8.332, p=0.010); (B) total vine cover (Kruskal-Wallis, *p=0.038, **p=0.027); 
(C) total forb cover (Kruskal-Wallis, *p=0.007); (D) Vitis rotundifolia cover (Kruskal-Wallis, 
*p=0.046, **p=0.040); (E) native tree seedlings abundance (Kruskal-Wallis, not significant; and 
(F) change in species richness from Spring 2018 to Spring 2020 (ANOVA, not significant). 
Results are considered significant when 0.05 >�ן.  
 

 

3.2 Effects of deer on camphor seedlings 

In Spring 2020, after two years of deer exclusion, camphor seedling cover (p=0.023) and 

abundance (p=0.002) were greater in fenced plots (Figure 4.4: C, D). However, camphor cover 
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and abundance were also greater in fenced plots in at the beginning of the experiment (Spring 

2018 cover: p=0.023, abundance: p=0.026) and one year post-deer exclusion (Spring 2019 cover: 

p=0.009, abundance: p=0.012). A Friedman rank sum test was performed to detect annual 

variation in camphor seedling cover and abundance. For camphor cover, there was a slightly 

significant effect for fencing treatment (F2,21=3.590, p=0.073) and a significant effect of year 

(F2,21=12.896, p < 0.001), but no significant interaction between the two (F2,21=1.606, p=0.214). 

For camphor seedling abundance, there was a significant effect for fencing treatment 

(F2,21=10.179, p=0.005) and year (F2,21=9.752, p < 0.001) but no interaction (F2,21=1.561, 

p=0.223). 

Camphor seedlings in fenced plots demonstrated a greater increase in height (p=0.004) 

and survival (p=0.006) (Figure 4.4: A, B). Camphor seedling growth was more than double in 

fenced plots than unfenced plots, and camphor survival in fenced plots was about four times 

more than unfenced plots. 
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Figure 4.4. Bar plots summarizing Kruskal-Wallis nonparametric tests of fencing 
treatment effects on camphor performance variables. (A) Camphor seedling growth (*p=0.004); 
(B) camphor seedling survival (*p=0.006); (C) camphor seedling abundance for each year 
(*p=0.026, **p=0.012, and ***p=0.002); and (D) camphor seedling percent cover for each year 
(*p=0.023, **p=0.009, ***p=0.017). Results are considered significant when 0.05 >�ן. 

 

 

 

4. Discussion 

4.1 Influence of deer browsing native and invasive vegetation 

We hypothesized that deer would preferentially consume more palatable plants and tree 

species, benefitting less palatable or more browse-tolerant species and potentially influencing 

total species richness. Total understory cover increased in fenced plots after two years of deer 

exclusion, but this was primarily due to a significant increase in vine species cover, specifically 
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Vitis rotundifolia (Figure 4.3). Many vine species such as Smilax spp., Gelsemium sempervirens, 

and Vitis spp. are often consumed by white-tailed deer, especially when other preferred foods 

including hardwood tree seedlings, shrubs, and other flowering plants are absent or in low 

abundance (Arceo et al., 2005; Blair & Brunett, 1980; Broz, 2019; Wright et al., 2002). Vitis 

rotundifolia is a fast-growing, high-climbing perennial that can tolerate a wide range of 

environmental conditions (Andersen et al., 2020). In high light and excluding deer, V. 

rotundifolia may have increased in abundance more quickly than other more slow-growing 

plants such as native tree seedlings and shrubs. Although there was no immediate effect of 

fencing on species richness or cover of most other functional groups and species, our findings of 

positive vegetation response to deer exclusion are consistent with results from other short-term 

studies (Aronson & Handel, 2011; Begley-Miller et al., 2019). 

 Although we did not observe an immediate effect of deer herbivory on the abundance of 

native hardwood tree seedlings, other deer exclosure studies support that intensive browsing can 

significantly reduce the number of tree seedlings (Blossey et al., 2017; Rooney & Waller, 2003; 

Slater & Anderson, 2014). Trees are slow-growing, and recovery following herbivore exclusion 

often takes longer than a few years (Begley-Miller et al., 2019; Bourg et al., 2017), and many 

smaller tree seedlings are likely eaten before they are surveyed (Blossey et al., 2017), which may 

prevent the detection of herbivory effects in short-term studies. We also did not measure 

browsing intensity or individual seedling growth and survival, both of which could have 

provided insight to deer preference on native tree seedlings and resulting effects on their 

performance. For example, Aronson and Handel (2011) found that the mean relative growth rate 

of height and cover for seedings in deer exclosures was about 38% greater than seedlings 

exposed to deer herbivory (Aronson & Handel, 2011). Therefore, deer herbivory at our site could 
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have reduced native tree seedling performance via effects on growth rather than numbers of 

seedlings.  

The camphor tree is allelopathic (Chen et al., 2013; Schenk, 2009) and can be toxic to 

specific ungulates, birds, and other consumers (Chen et al., 2013; Friend, 2006). Camphor has 

also shown to have plasticity in physiological traits such as leaf toughness and surface leaf area 

in response to damage or defoliation (Friend, 2006; Wan & Bonser, 2016). Therefore, we 

anticipated camphor seedlings to be more competitive and more resistant and/or tolerant to deer 

herbivory compared to native plant and tree species. We hypothesized white-tailed deer on Jekyll 

Island would therefore prefer more palatable, native tree and plant species, which could either 

maintain or improve camphor abundance and performance in unfenced plots. However, the 

observed vegetation responses to fencing treatment did not suggest that deer are facilitating 

camphor invasion through competitive release. There was no difference in camphor seedling 

abundance between fencing treatments, and camphor cover, survival, and growth were higher in 

fenced plots where deer were excluded (Figure 4.4).   

4.2 Management Implications 

According to our findings, excluding deer promotes native understory plant abundance 

while also improving camphor performance. Jekyll Island management may need to explore 

restoration efforts other than deer exclusion to reduce camphor performance. A combined 

strategy may be needed, for instance using deer exclosures in target areas to increase native 

plants as well as herbicide application or manual removal of larger camphor seedlings and 

saplings (Catterall, 2016). The camphor tree resprouts heavily after cutting, especially in high 

light conditions, so invasive management should prioritize treating larger stumps to reduce 

FDPSKRU¶V�UHVSURXWLQJ�DQG�FRPSHWLWLYH�DELOLWLHV�(Imaoka et al., 2019).  
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Environmental factors not assessed in this study could also be influencing plant-plant 

interactions and camphor performance. The forest where this study was conducted lies on an 

elevation gradient, and initial measurements indicated that soil moisture content, temperature, 

pH, and other soil characteristics vary with elevation. Understanding which local environmental 

conditions favor the native species and which favor the invasive will help JIA conservation staff 

manage the area for invasive control and native plant diversity restoration. For instance, a study 

in Australia found that camphor seedlings can dominate and exclude native plant and tree species 

in moist areas (Coutts-Smith & Downey, 2006), which is especially important to consider when 

managing maritime forests. Leaf litter depth, which often increases with deer exclusion 

(Bressette et al., 2012; Heckel et al., 2010), can also alter soil fertility and quality, both of which 

could be more or less favorable to specific native and invasive plants (Heckel et al., 2010). 

Furthermore, Jekyll Island has experienced decades of fire suppression, which has led to a heavy 

accumulation of leaf litter in their maritime forests. Fire suppression has been known to promote 

camphor invasion in native plant communities in Florida (Daubenmire, 1990; Laessle, 1958; 

Panetta, 2001), so although it has not been extensively tested, use of controlled burns could 

reduce camphor abundance and allow native understory plants to regenerate. An adaptive 

management plan with burns would help reduce dangerous and stressful leaf litter accumulations 

while also testing whether fire can help control camphor proliferation and/or facilitate native 

vegetation and tree seedlings. 

5. Conclusion 

While we did not observe an immediate recovery in native plant and tree seedling 

abundance and species richness post intensive deer browsing, our data suggest that Vitis 

rotundifolia and camphor benefited from deer exclusion in the short-term. Deer preference and 
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browse severity of specific plant species depends on multiple factors including deer density, deer 

legacy effects, time of year, resource availability, and relative abundance and density of plant 

species (Blossey et al., 2017; Heckel et al., 2010). Therefore, longer-term studies are needed to 

understand which species are likely to benefit more in the long run and to determine if increased 

camphor performance has a negative effect on native plant and tree seedling abundance. 

Nevertheless, these results suggest that controlling deer herbivory may not tip the balance of 

apparent competition balance back toward native vegetation, and other restoration efforts are 

likely needed to control camphor invasion and support the native tree and plant community. 
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CHAPTER 5 

MULTIVARIATE ANALYSES OF NATIVE PLANT COMMUNITY AND EFFECTS OF 

DEER EXCLUSION4 
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Abstract 

Many coastal forest ecosystems are experiencing environmental stresses that could alter 

ecological functions and native plant and tree communities. Two stresses of concern on Jekyll 

Island, a barrier island in Georgia, are intense herbivory by white-tailed deer (Odocoileus 

virginianus) and introduction of invasive plant species. The camphor tree (Cinnamomum 

camphora) was introduced from Asia to the southeastern United States more than 100 years ago, 

and it has become increasingly abundant in maritime forests on Jekyll Island in recent decades. 

Native deer populations have also increased during this period. Furthermore, plant and tree 

communities on Jekyll Island have heterogeneous abiotic microsite conditions that could affect 

growth and survival. Therefore, we sought to explore how local abiotic and biotic environmental 

conditions influenced understory native plant and tree abundance and composition, as well as 

vegetation response to deer exclusion. We established 22 6m x 6m plots in a 10ha maritime 

forest with heavy camphor proliferation, of which 11 were fenced to exclude deer and 11 were 

not. For two years, we recorded total understory vegetation cover, cover by species, and 

abundance of hardwood tree seedlings, and we counted, tagged, and measured height of each 

camphor seedling. We also measured environmental conditions of soil moisture and temperature, 

elevation, leaf litter depth, adult tree composition, and light availability in each plot. We then 

used multivariate analyses to observe how plant community composition varied across the 

heterogeneous landscape, and with deer exclusion over two yars. Plant community composition, 

including abundance of camphor seedlings, varied with environmental conditions and deer 

exclosure, though due to the scale of the study, ecological interpretations of patterns are 

tentative. Still, our findings pointed to the value of using environmental conditions to provide 

helpful contextual information for ecological restoration and invasive species control. 
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1. Introduction 

Many small forest managers seek to preserve and restore native plant and tree 

communities, especially those that are rare or are undergoing rapid environmental change and 

stress. However, effective management and restoration strategies depend on understanding how 

local environmental conditions and biotic interactions influence native plant composition and 

biodiversity. There is plenty of evidence that variations in habitat and microsite characteristics 

including light availability, forest fragmentation and edge effects, and soil composition and 

structure (Hess et al., 2019; Holmes & Webster, 2011; Ozinga et al., 2004) can influence biotic 

and abiotic factors such as plant-plant competition, herbivory, and resource availability, which in 

turn determine the favorability of conditions for a suite of plant species (Stephens & Quintana-

Ascencio, 2015).  

One concept often used to evaluate how environmental conditions and biotic interactions 

influence community assembly and dynamics is the ecological filter theory, which refers to 

metaphorical, hierarchical ³VLHYHV´�RU�³ILOWHUV´ that can promote or prevent establishment and 

persistence of specific species (Kraft et al., 2015; Menninger & Palmer, 2006; Poff, 1997; 

Temperton et al., 2004) (Figure 5.1). After considering regional processes such as initial species 

pool and introduction order, each ecological filter represents abiotic and biotic conditions that 

can influence community structure. The abiotic or environmental filter often includes 

environmental conditions, habitat characteristics, and disturbances regimes that can favor or 

inhibit species growth, survival, and reproduction while the biotic filter incorporates the effect of 

herbivory, competition, and other trophic interactions (Menninger & Palmer, 2006). This 

framework is especially beneficial when planning for restoration because it emphasizes that the 

combination of these filters determines the resistance of an ecosystem to specific restoration 
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activities, and therefore the successional trajectories or community assemblages possible for 

restoration (Temperton et al., 2004).  

 

 

Figure 5.1. General conceptual framework of the ecological filter theory. Regional processes 
and abiotic and biotic ecosystem components influence which species become established, 
persist, and reproduce. Restoration activities can help guide the impact of these filters. 

 

 

Jekyll Island is a state park on the Georgia coast that contains roughly 650ha of maritime 

forests (Jekyll Island Authority, 2020). -HN\OO�,VODQG¶V�PDULWLPH�IRUHVWV�DUH�IDFLQJ�HQYLURQPHQWDO�

stresses that could affect plant-plant competition and microsite conditions, possibly changing the 

trajectory of native plant community composition. The deer population on Jekyll island has not 

fallen below about 30 deer/km2 since 2014, although Georgia Department of Natural Resources 
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advises no more than a population of about 12 deer/km2 to maintain a healthy herd (Jekyll Island 

Authority, 2020). Deer pose a critical constraint on native plant abundance and tree seedling 

establishment and survival to maturity, and thus are a management concern. Another concern of 

the Jekyll Island Authority (JIA), the body responsible for environmental management on the 

island, is invasive plant species, especially camphor (Cinnamomum camphora). Camphor is an 

Asian evergreen tree that was once introduced for horticulture but has now invaded a few natural 

areas on the island. Fast-growing and with prolific seed production, camphor may out-compete 

native plant species and its establishment raises concerns about native plant biodiversity 

(Schenk, 2009). A third concern on Jekyll Island is the ecological consequence of long-term fire 

exclusion, which has led to a thick shrub layer of saw palmetto (Seneroa repens) and a heavy 

accumulation of litter and duff. Fire is a keystone process that maintains forest biodiversity by 

creating fluctuations in resource availability and preventing competitive exclusion (Kerns & 

Day, 2017). Therefore, fire exclusion creates an additional stress for tree species and the 

herbaceous layer that rely on periodic reduction in litter and shrub cover to regenerate and reach 

above the shrub layer (Kerns & Day, 2017). Furthermore, many of the native plant communities 

that are facing these stresses have heterogeneous abiotic microsite conditions including soil 

moisture and temperature, elevation, and light availability²all of which can affect plant growth 

and survival. This heterogeneous environment creates an additional challenge for JIA when 

restoring native plant communities because plants may respond differently depending on their 

local environment and biotic interactions. 

Understanding which local environmental conditions affect which native and invasive 

plant species can help JIA conservation staff manage forests for native plant diversity restoration. 

Therefore, in this chapter, I will evaluate three different research questions. I will first assess 
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whether the variation in plant community composition and biodiversity across a small, camphor-

invaded forest on Jekyll is associated with environmental variables relating to topography, soil 

conditions, and overstory canopy conditions. I will then determine if different environmental 

conditions affect camphor abundance and performance. Because JIA is currently eradicating 

camphor populations and is considering deer exclusion to enhance forest diversity and tree 

regeneration, I will also investigate how excluding deer can change native and invasive plant 

abundance and alter native plant composition across a heterogeneous landscape.  

Research questions: 

x Q1: Is vegetation heterogeneity within the site associated with known environmental 

variables? 

x Q2: Does camphor seedling abundance, growth, or survivorship vary with environmental 

conditions? 

x Q3: Lastly, do we see any shifts in understory composition in response to two years of 

deer exclusion?         

 

2. Methods 

2.1 Study site and experimental design 

This study was conducted on the same study site, array of plots, and vegetation survey 

data as Chapter 4 (Figure 5.2). There were 22 plots, each 6m x 6m, 11 of which were fenced to 

exclude deer in April 2018, and 11 were left unfenced. Vegetation surveys were conducted in 

Spring 2018 (before exclosures were erected), 2019, and 2020. These surveys yielded the 

average cover (%) for each understory species, the number of camphor seedlings, and the 
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number of seedlings for each native tree species in each plot. These values populated the plot by 

species matrix used in multivariate analyses.  

 

 

 

Figure 5.2. The study site is the same one used in Chapter 3. The site generally slopes downhill 
in the direction of the arrow (Google Earth Pro 7.3.4.8248, n.d.). 

 

 

2.2 Environmental factors 

We measured several environmental factors in each plot, as described below. These data 

made up the plot by environmental variable matrix used in multivariate analyses. 

2.2.1 Elevation 

We obtained submeter GPS coordinates for the corner of each 6m x 6m plot, using an 

Archer II handheld computer paired with a Geode GPS receiver (Juniper Systems, Inc). We then 

extraction elevation from 2016 LiDAR digital elevation model for the Southeast coast (NOAA; 
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https://coast.noaa.gov/dataviewer/#/lidar/search) for these coordinates and averaged them to 

determine a representative elevation for each of the 22 plots.  

2.2.2 Soil characteristics 

We recorded litter depth in all 22 plots in April 2018, before the deer exclosures were 

built. We also remeasured leaf litter depth for each plot in May 2020, two years after deer 

exclusion. For each survey, we took measurements in all 1m x 1m subplots in the upper two 

rows (1-2) and lower two rows (4-5) of each plot, excluding the middle row (3) to allow 

movement between subplots (Figure 5.3). We averaged subplot litter depths for each plot. 

 

 

 

Figure 5.3. Leaf litter depth was recorded in all 1m x 1m subplots within the upper two rows (1-
2) and lower two rows (4-5) of each plot, totaling 20 subplots. Subplots that were excluded are in 
grey.  
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In May 2019, May 2020, and May 2021, we recorded soil temperature for each of the 22 

plots using an EC-350 Aquaterr Digital probe. We measured temperature at the center of 3 of the 

4 plot quadrants (Figure 5.4). If there was a tree or plant root at the location, we recorded 

temperature 30cm toward the center of the plot. We then averaged measurements for each year to 

obtain one soil temperature value per plot and compared each year for annual variation in 

temperature. Because there was no change, we used the temperature recorded during May 2019 

when conducting multivariate analyses of our species abundance data. 

In May 2021, we extracted five surface soil samples (about 15cm below duff layer) from 

each plot using a soil probe and emptying them into sterile, 4-oz Whirl-Packs. We extracted one 

sample from the center of the plot and four from the center of each of the four quadrants (Figure 

5.4). If there was a tree or plant root at the location, we extracted a sample 30cm toward the 

center of the plot. To obtain gravimetric soil moisture content, we weighed each wet soil sample, 

air dried bags for 72 hours, dried bags in 48 hours at 105 degrees Celsius, and weighed each dry 

soil sample. We averaged the five soil content measurements for each plot to obtain a final soil 

moisture content estimate. We then extracted 10ml of soil from each of the 5 soil samples per 

plot and combined them to create a composite sample per plot. We sent the 22 composite soil 

samples to the Laboratory for Environmental Analysis at the University of Georgia to determine 

pH, electrical conductivity (EC), and total % soil C and N. 
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Figure 5.4. Plot with quadrants for corresponding soil measurements. Soil temperature 
measurements were taken at the center 3 of the 4 plot quadrants (red). Soil samples were 
extracted from the center of each of the four quadrants and at the center of each plot (5).  

 

 

2.2.3 Canopy characteristics 

For each of the 22 plots, we recorded the number and species of adult trees greater than 

10cm DBH and within 5m of the 6m x 6m plot perimeter (Chen et al., 2019). We noted if each 

tree was living or dead standing, which we defined as a recently-alive tree (within the year) that 

is upright at least 45 degrees above the ground. We categorized each tree into one of the 

following five size classes (DBH, cm): 10-25, 25-50, 50-75, 75-100, and 100-125. For trees that 

were 10, 25, 50, 75, or 100cm DBH exactly, we noted their exact measurements. Then, we 

calculated average basal area (m2) for each plot using the average size class DBH and number of 

trees. 
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We used hemispherical photography (Kodak PIXPRO SP360) and WinSCANOPY 

software (Regent Instruments Inc., 2021) to obtain canopy openness and gap fraction values for 

each plot, which are fraction of open sky unobstructed by vegetation in the canopy above the 

lens in a 3D and 2D dimensional space, respectively. In July 2021, we took three hemispherical 

images per plot: one photo at the center of each plot and randomly chose the center of two 

quadrants diagonal from one another to take the remaining two photos. Each photo was taken at 

1.5m height with one side of the camera consistently oriented north. We took images during 

overcast days and/or during an interval of 90-minutes centered around sunrise or sunset (Sercu et 

al., 2017).  

2.3 Data analysis 

2.3.1 Initial species abundance and composition  

We conducted ordination and other multivariate analyses to assess how different sets of 

environmental conditions influence plant community composition (Leps & Smilauer, 2003).  

To evaluate variation in our species dataset and determine if specific environmental 

conditions or excluding deer contributed to that variation, we used PC-ORD v. 6.0 software 

(McCune & Mefford, 2011) to conduct non-metric multidimensional scaling (NMDS or NMS) 

ordinations. NMDS ordination reduces datasets with multiple variables and samples to fewer 

dimensions on a graph, arranging and grouping those variables and samples according to patterns 

of redundancy and similarity. These patterns are reflected as coordinates that explain how similar 

variables or samples are to one another based on species composition and relative abundance 

(Harms & Hiebert, 2006; Peck, 2016). NMDS does not assume any particular model form (i.e. 

avoids parametric assumptions of normality) and is often used with heterogeneous datasets with 

zero-rich responses within the species matrix (Peck, 2016).  
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To address whether heterogeneity was associated with any known environmental 

variables (Question 1), we first conducted NMDS on the species abundance (percent cover) 

dataset from April 2018²prior to building deer exclosures²based on the Bray-Curtis or 

Sorensen distance measure by plot. Prior to the analysis, rare species occurring only in three 

plots or less were excluded. We also excluded one plot whose deer exclosure fell after the first 

year due to a fallen camphor tree as deer had access to this location for several months. The final 

species dataset from April 2018 contained 27 species or taxa in 21 plots, 10 fenced and 11 

unfenced. We then relativized the species dataset by general relativization to reduce the influence 

of highly abundant of species on the ordination result �.LHáW\N�	�'HOLPDW�������. We ran 

multiple analyses with and without statistical outliers, and they were found to have no significant 

effect on the ordination. We also applied a Monte Carlo randomization test to determine whether 

a better-than-random solution was found for each dataset (Harms & Hiebert, 2006). 

Species abundance patterns were then linked to environmental data using vector biplot 

overlays and Pearson correlations (Gottlieb et al. 2006). The latter can help us infer the relative 

contribution of each environmental variable to the variation that is explained by an ordination 

axis. When environmental variable vectors were overlain on the plot x species ordination, several 

environmental variables were closely aligned with elevation, and elevation had the strongest 

correlation with species and plot locations in the NMDS ordination space. To overcome the 

multicollinearity among predictor variables and better address Question 1, we reduced the 

dimensionality of the environmental variables by conducting a principle components analysis 

(PCA) on environmental data only. PCA ordination reduced the original covarying variables into 

a few orthogonal composite variables that can still capture much of the original variance in the 

dataset �2¶%ULHQ�HW�DO��������. We rotated PCA-derived axes through variance maximization (i.e. 
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varimax rotation) to maximize the association of responses or variance of response loadings 

along each environmental gradient, reducing low correlations and enhancing high correlations 

and allowing improved interpretation of the components (Peck, 2016). We then regressed factor 

loadings with species abundance data from April 2018. To address whether camphor seedling 

abundance or performance varied with environmental conditions (Question 2), we regressed 

factor loadings with initial camphor seedling abundance, survivorship after 2 years, and growth 

after 2 years by plot. We conducted the PCA and axis rotations in IBM SPSS Statistics Version 

28.0.1.1 (IBM, 2022) and linear regressions in RStudio Version 1.2.5042 (RStudio, 2022). 

2.3.2 Community analysis post-deer exclusion 

To initially explore species abundance patterns for May 2020, two years after deer 

exclusion, we conducted two NMDS ordination analyses of the Bray-Curtis dissimilarly matrix 

by plot (Question 3). The first NMDS ordination evaluated species abundance data from May 

2020. Fenced and unfenced plots were grouped separately using biplot overlays. We then 

conducted another NMDS ordination on species abundance data from both years (April 2018 and 

May 2020), also grouping fencing treatments separately using biplot overlays. We applied a 

Monte Carlo randomization test to determine whether a better-than-random solution was found 

for each dataset. 

To directly assess whether there was a shift in understory composition as a result of two 

years of deer exclusion, we performed a one-way factorial permutation-based MANOVA 

(PerMANOVA) procedure on the absolute difference (+5 due to zero-rich data) in species 

abundance between April 2018 and May 2020. PerMANOVA allowed us evaluate the 

differences in species composition and relative abundance among the two fencing treatments 

while accounting for variation among plots. Because PerMANOVAs require balanced group 
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membership or the same number of sample units within each treatment group (Peck, 2016), we 

excluded one plot that was designated as an outlier during an outlier analysis. Therefore, we 

conducted a PerMANOVA on 20 plots (10 fenced, 10 unfenced) that contained 26 species or 

taxa. To assess whether any change in species composition was due to particular plant species, 

we conducted an Indicator Species Analysis (ISA) that assessed the contribution of each species 

relative abundance and frequency to the treatment groups (Dufrêne & Legendre, 1997; Peck, 

2016). Indicator values are the percentage of perfect indication (i.e. IV= 100%) (Selonen et al., 

2011) of whether a species contributed to a change in species composition. We compared the 

highest-ranking plant species in the ISA with non-parametric Kruskal-Wallis tests from Chapter 

4 that tested the effect of deer exclusion on individual plant species abundance to confirm 

species that primarily influenced a change in species abundance and composition. 

3. Results 

3.1 Initial species abundance and composition 

We chose to interpret a significant three-dimensional NMDS solution with a final stress 

of 13.4 after verifying consistency of interpretation among several NMDS solutions. Up to 500 

iterations in three dimensions were ordinated for each dataset, which were run with 250 runs of 

real data and 250 runs of randomized datasets with a stability criterion of 1x106 standard 

deviations in stress over the last 10 iterations. We applied varimax rotation around the centroid. 

The resulting NMDS ordination found that three axes captured 70.8% of the variation 

within the species abundance dataset. The proportion of variance expressed by each ordination 

axis is calculated as a proportion of variation in the reduced matrix relative to that in the original 

data matrix (Peck, 2016). The two axes that captured the most variation were Axis 2 and Axis 3 

at 34.5% and 27%, respectively (Figure 5.5, Table 5.1). Axis 1 captured 8% of the total variation 
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within the dataset. Appendix C.1 contains species abbreviations and their corresponding species, 

genus, or family name. Axis 1 vs. Axis 2 and Axis 1 vs. Axis 3 are presented in Appendices C.2 

and C.3, and all NMDS ordination scores are shown in Appendix C.4. 

 

Figure 5.5. Non-metric multidimensional scaling (NMDS) ordination plot of species abundances 
within sample plot space versus environmental variables. Axis 2 vs. Axis 3 is shown. 
Environmental variables that had at least a weak or moderate correlation (r < 0.3) are shown. 
Species are coded by the first two letters of the genus and species name (e.g. Cinnamomum 
camphora = CiCa) or the first letters of family classes or genus name (e.g. Cypera sp. = 
Cyperaceae family, Pinus sp. = Pinus spp.). Appendix C.1 contains species abbreviations and 
their corresponding species, genus, or family name. 
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Most plots within the site were similar in species composition as they are near one 

another in ordination space, especially along Axis 2, which represented the highest proportion of 

variance that is explained between samples and species. However, two distinct plant 

communities are evident within the second and fourth quadrant. The second quadrant represents 

plant communities dominated by Geranium spp. and few vine, sedge, and grass species including 

Gelsemium sempervirens (Carolina jessamine), Bignonia capreolata (crossvine), sedges within 

the Cyperaceae family, and Oplismenus spp grasses. The fourth quadrant contains high 

abundances of Prunus serontina (black cherry) seedlings and Woodwardia virginica (Virginia 

chain fern).  

These patterns are also present LQ�WKH�LQGLYLGXDO�VSHFLHV¶�3HDUVRQ�FRUUHODWLRQV�ZLWK�

NMDS ordination axes (Appendix C.5). We noted moderate (0.3 < |r| < 0.5) and high (0.5 < |r|) 

correlations as significant associations between species and axis scores (Kent State University, 

2022). Species that demonstrated a moderate correlation with Axis 2, the axis associated with the 

highest variation within the species dataset, included Pteridium aquilinum (Western bracken 

fern), Myrica cerifera (Southern wax myrtle), Vaccinium spp., and Parthenocissus quinquefolia 

(Virginia creeper). Strong correlations with Axis 2 included Vitis rotundifolia (Muscadine 

grape), Pinus spp. seedlings, and Ilex opaca (American holly) seedlings. Many of the same 

species that are found in the second quadrant also demonstrated a moderate or high correlation 

with Axis 2. Species that had a moderate or high correlation with Axis 2 were Toxicodendron 

radicans (poison ivy), Rubus spp., and Pinus spp. seedlings and P. aquilinum, Liquidambar 

styraciflua (sweetgum) seedlings, and Cinnamomum camphora (camphor) seedlings. There were 

also many species that showed a moderate to high correlation with Axis 3. Species with 

moderate correlations included Callicarpa americana (beauty berry), Ilex vomitoria (yaupon 
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holly), Oplismenus spp., Liquidambar styraciflua (sweetgum tree seedlings), and C. camphora 

(camphor tree seedlings). Species with high correlations included a few in the fourth quadrant of 

Figure 5.5 but also Smilax spp. and Cyperaceae spp. 

The NMDS ordination revealed that the heterogeneity within the species abundance 

dataset is partially associated with a few measured environmental variables. Axis 1 was 

significantly associated with elevation, temperature, and leaf litter depth. Axis 2 was also 

significantly associated with elevation, temperature, and leaf litter depth but also significantly 

associated with pH, electrical conductivity (EC), and soil moisture content (SMC). All canopy 

characteristics and total soil % C and N were not found to be associated with any NMDS axis. 

Although Axis 3 explains 27% of the species dataset, no measured environmental variables were 

significantly associated with Axis 3. NMDS ordination results and Pearson correlation 

coefficients of environmental variables with ordination axes are presented in Table 5.1.  

 

 

Table 5.1. Non-metric multidimensional scaling (NMDS) ordination results with Pearson 
correlations of environmental variables. NMDS was conducted on April 2018 species abundance 
data. 
 
Proportion of variance 
represented by each axis R2 

Axis 1 Axis 2 Axis 3 

Increment 0.084 0.354 0.270 
Cumulative 0.084 0.354 0.708 

    
Correlation of 
environmental variables 
with axes 

Axis 1 Axis 2 Axis 3 

Environmental variable ra r2 ra r2 ra r2 
Elevation 0.410* 0.168 0.734** 0.539 -0.020 0 
Temperature 0.601** 0.361 0.483* 0.234 -0.033 0.001 
Leaf litter depth -0.520** 0.271 -0.494* 0.244 -0.120 0.014 
pH -0.205 0.042 0.541** 0.292 0.383* 0.147 
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Electrical conductivity (EC) -0.217 0.047 -
0.540** 

0.292 0.075 0.006 

Soil moisture content (SMC) 0.167 0.028 0.520** 0.271 -0.089 0.008 
Total soil % C 0.169 0.029 0.055 0.003 0.041 0.002 
Total soil % N -0.060 0.004 0.124 0.015 0.221 0.049 
Total basal area 0.262 0.069 0.361* 0.130 0.252 0.063 
Canopy openness 0.048 0.048 -0.291 0.085 -0.309* 0.096 
Gap fraction 0.184 0.034 -0.264 0.070 -0.281 0.079 
Adult tree species richness 0.006 0.079 0.027 0.001 0.133 0.018 
       

a= r, Pearson correlation coefficient 
*= significant association between environmental variable and axis score, moderate correlation 
(0.3 < |r| < 0.5) (Kent State University, 2022) 
**= significant association between environmental variable and axis score, high correlation (0.5 
< |r|) (Kent State University, 2022) 
 

 

Although Axis 1 is significantly associated with three environmental variables, it only 

explains about 8.4% of the total variation within the dataset. Therefore, we focus on the patterns 

demonstrated by Axis 2 vs. Axis 3 in Figure 5.5. Axis 2 is strongly associated with elevation and 

at least weakly associated with temperature, leaf litter depth, pH, EC, SMC, canopy openness, 

and total basal area. Plant species including those in the distinct plant community in the second 

quadrant, Geranium spp., Rubus spp., L. styraciflua (sweet gum), Vaccinium arboreum 

(sparkleberry), and C. camphora are positively associated with higher elevations, higher 

temperatures, lower EC and leaf litter depth, lower soil moisture content, and less acidic soils 

than plant species at lower elevations. Plant species such as ferns W. virginica and Pteridium 

aquilinum, P. serontina, Quercus spp., and Ilex opaca (American holly seedlings) have higher 

abundances at lower elevations. The NMDS presented in Figure 5.5 therefore supports that the 

difference in species composition is strongly correlated with a few known soil characteristics, 

most of which are ecologically related to elevation.  
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The PCA reduced the number of variables within the environmental dataset from 11 to 

three. The component loadings of the environmental variables for the first three PCA-derived 

axes are shown in Table 5.2. Loadings are similar to Pearson correlation coefficients, and we 

interpreted loadings greater than 0.6 �2¶Brien et al., 2004). The first rotated PCA axis was 

mostly driven by elevation and environmental variables often highly associated with elevation: 

soil temperature, soil moisture content, and electrical conductivity. The second and third rotated 

PCA axes were driven by soil chemistry characteristics (i.e. total soil % N and C) and forest 

canopy cover, respectively.  

 

 

Table 5.2. Component loadings, or correlation strengths, of the environmental variables on the 
first three PCA axes. High loadings (greater than 0.6 and marked with * and bolded) were used 
in interpretation and naming of the factors. The names in parentheses demonstrate our 
interpretation of the dominant variables explaining component loading structure �2¶%ULHQ�HW�DO���
2004). 
 
Environmental 
variable 

Component 1 
(elevation) 

Component 2 
(soil chemistry) 

Component 3 
(forest structure) 

Elevation 0.937* 0.035 -0.005 
Temperature 0.777* 0.430 -0.116 
Leaf litter depth -0.317 -0.273 -0.065 
pH 0.118 0.101 -0.155 
Electrical 
conductivity (EC) 

-0.745* 0.280 0.208 

Soil moisture content 
(SMC) 

0.776* -0.518 0.025 

Total soil % C 0.021 0.961* 0.093 
Total soil % N -0.137 0.904* -0.120 
Total basal area 0.588 -0.011 -0.219 
Canopy openness -0.099 -0.015 0.970* 
Gap fraction -0.110 -0.010 0.967* 
Adult tree species 
richness 

-0.019 -0.033 -0.162 
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The spring 2018 species abundance dataset (Appendix C.5) used to conduct the NMDS 

ordination in Figure 5.5 was then regressed with the first three component loading ordination 

scores (Appendix C.6). For Question 1, we found that the strongest environmental gradient (i.e. 

Component 1 or elevation and corresponding environmental variables) is linearly associated with 

Axis 1 (F1,19=9.19, p = 0.007) and Axis 3 (F1,19=4.153, p=0.058). Component 1 is not linearly 

associated with Axis 2 (F1,19= 0.289). We also regressed Component 2 (i.e. soil chemistry) and 

Component 3 (i.e. forest structure) with all three NMDS axes, but none of these combinations 

were significantly linearly associated with one another. Linear equations, R2 values, and p-values 

for each combination are presented in Appendix C.7. 

After log transforming the camphor abundance dataset, we found that the strongest 

environmental gradient (Component 1 or elevation) was significantly linearly associated with 

camphor abundance (F1,19=4.184, p=0.055) (Question 2) (Appendix C.8). However, elevation is 

not significantly linearly associated with camphor survival (F1,19=0.083, p= 0.777) or growth 

(F1,19=0.351, p=0.561). Camphor abundance, survival, and growth are also not significantly 

linearly associated with the second strongest environmental gradient (i.e. Component 2 or soil 

chemistry) or the third strongest environmental gradient (i.e. Component 3 or forest structure) 

(Appendices C.8-C.10) (Question 2). Linear equations, R2 values, and p-values for each 

combination are presented in Appendices C.8-C.10. 

3.2 Plant community response to deer exclusion 

For the first NMDS ordination that explored the difference in fencing treatment within 

species data from May 2020 (Appendix C.11), we chose to interpret a significant two-

dimensional NMDS solution with a final stress of 24.917 after verifying consistency of 

interpretation among several NMDS solutions. Some ordination parameters included: up to 500 
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iterations in two dimensions were ordinated for each dataset, 250 iterations were run with real 

data and 250 with randomized datasets, and a stability criterion of 1x106 standard deviations in 

stress over the last 10 iterations. We applied varimax rotation around the centroid. This 

ordination captured about 47.9% of the variation within the species abundance dataset, of which 

Axis 1 captured 19.7% and Axis 2 captured 28.2%. NMDS ordination (Axis 1 vs. Axis 2) is 

shown in Appendix C.11, and ordination scores are presented in Appendix C.12. 

We used the same parameters from the April 2020 NMDS ordination for the second 

NMDS ordination that explored the difference in species data between fencing treatments from 

both April 2018 and May 2020 (Appendices C.13-C.15). We chose to interpret a significant 

three-dimensional NMDS solution with a final stress of 18.925. This analysis captured about 

59.9% of the variation within the dataset. The two axes that captured the most variation are Axis 

2 and 3 at 16.4% and 33.7%, respectively (Appendix C.15). Axis 1 captured 9.8% of the total 

variation within the dataset. All NMDS ordination scores are shown in Appendix C.16.  

Each NMDS ordination presented in Appendix C.11 and Appendices C.13-15 contain 

many of the same species as the species abundance dataset from April 2018. However, these two 

NMDS ordinations demonstrate that not only is there high variation of species composition 

within each group, but that species composition becomes more distant in ordination space or 

more dissimilar over time for fenced plots versus unfenced plots. This is evident in a shift in the 

centroids of each group in the NMDS ordination in Appendix C.11 and NMDS ordination in 

Appendices C.13-C.15. This pattern is especially evident the NMDS ordination in Appendix 

C.11 for Axis 2, which represents the most variation within that species dataset and in Axes 1 

and 2 for the NMDS ordination in Appendices C.13-C15, which is associated with about 26.2% 

of the variation within the dataset. 
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The PerMANOVA, whose results are in Table 5.3, allows us to more directly address 

Question 3. The test was significant, which points to a difference in species composition between 

fenced and unfenced plots. Thus, there is a shift in species composition after two years of deer 

exclusion. Although there is high variation within treatment groups as presented in Appendices 

C.11 and C.13-C.15, PerMANOVAs are insensitive to heterogeneity in dispersion in balanced 

designs so we can confidently attribute the differences in the group centroids rather than the 

spread of variation within each treatment group (Fahey et al., 2018). The ISA results presented in 

Appendix C.17 suggest that Vitis rotundifolia (muscadine grape) (p=0.037), Toxicodendron 

radicans (poison ivy) (p=0.039), and Rubus spp. (p=0.043) are primarily responsible for the shift 

in species composition. Vine species, along with forb species, are the main contributors of 

change. Although not a statistically significant result, Cinnamomum camphora (camphor tree) 

has a relatively low p-value (p= 0.077) that hints this species may also contribute to the 

difference between fencing treatments.  

 

 

Table 5.3. PerMANOVA results based on Bray-Curtis dissimilarities using the absolute 
difference (+5) in species abundance between April 2018 and May 2020. Evaluation is for 
differences in species between fencing treatments. 
 
Source Degrees  SS MS F p* 
Fencing 1 0.023 0.023 2.929 0.0498* 
Residual 18 0.139 0.008   
Total 19 0.162    

 

 

 Non-parametric Kruskal-Wallis tests from Chapter 4, which also tested the effect of deer 

exclusion on species abundance, confirm that V. rotundifolia (p=0.032), Rubus spp. (p=0.029), 
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and C. camphora (p=0.002) abundances are significantly different in fenced plots compared to 

unfenced plots. These tests do not demonstrate a significant effect of deer exclusion on T. 

radicans (p=0.098). However, the data used was from May 2020 and not the absolute difference 

between species abundance between April 2018 and May 2020. Thus, effect of deer exclusion on 

the absolute difference in T. radicans abundance between the two years may be more 

ecologically significant than statistically significant (p=0.0619).    

4. Discussion 

Through multivariate analyses and ordination techniques, we found that variation within 

the plant community across a small forest on Jekyll Island was associated with a few known 

environmental variables (Question 1). Specifically, there was evidence to support that the 

strongest environmental gradient²elevation²could predict differences in species composition. 

Environmental variables often associated with elevation on this site such as soil moisture content 

(SMC), electrical conductivity (EC), and temperature also contributed to this pattern. This 

environmental gradient also influences camphor abundance but does not have an immediate 

effect on camphor growth and survival (Question 2). Then, we performed additional analyses to 

confirm that two years of deer exclusion led to a significant shift in species composition, which 

was primarily driven by a change in vine species abundance including Vitis rotundifolia 

(Muscadine grape), Rubus spp., and Toxicodendron radicans (poison ivy) (Question 3). A 

change in camphor abundance could have also contributed to this shift. Despite the 

insignificance of the impact of camphor on this change in species composition, camphor still 

increased in abundance and cover within the limited recovery time post-deer exclusion. 

 It is evident that some abiotic components are heavily influencing the presence and 

relative abundance of individual plant species. Plant communities that contain various grass, 
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sedge, and vine species are more commonly found at higher elevations with higher soil 

temperatures and SMC and lower EC, which is often a proxy for salinity. Tree seedlings of 

camphor and Liquidambar styraciflua are also found at higher abundances within these 

communities. This pattern is supported by the fact that many plant and tree species like vines 

species and camphor prefer wetter and warmer sites and are salt-intolerant (J. Wang et al., 2016; 

S. Wang et al., 2017) or are at least moderately sensitive to saline conditions (WateReuse 

Foundation, 2007). However, ferns such as Pteridium aquilinum (Western bracken fern) and 

Woodwardia virginica that also prefer these conditions and have a low salt tolerance (Florida 

Native Plant Society, 2021) were also found at lower elevations. Therefore, other microsite 

conditions measured and those not considered within the analyses could also be influencing plant 

composition. For instance, P. aquilinum and W. virginica can often be found in more acidic soils 

that are rich in organic matter (Florida Native Plant Society, 2021), the former of which is more 

prominent in lower elevations with higher EC. Additionally, a history of long-term fire exclusion 

on the island has led to a a thick shrub layer of saw palmetto (Seneroa repens) and heavy 

accumulation of litter and duff. Studies have shown divergent responses of exotic plant species 

and other opportunist and aggressively competitive species to different disturbance regimes and 

legacies (Kerns & Day, 2017). Prior to reintroducing fire, JIA may need to consider which 

factors related to burn timing, frequency and season, intensity, and severity favor camphor 

seedlings and which favor native plant communities. 

Many studies have found strong associations with topographic or soil characteristics and 

plant community assemblages (Begley-Miller et al., 2019; Bonanomi et al., 2005; Weiher & 

Keddy, 1995), some of which consider these gradients as environmental filters that influence 

establishment and persistence of particular plant species (Baer et al., 2005; de Bello et al., 2013; 
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Hough-Snee et al., 2011). Some of these associations are often reflected in dominant plant traits 

within a community DV�WKLV�HQYLURQPHQWDO�ILOWHU�FRXOG�³UHPRYH´�or reduce species that are 

intolerant to a set of environmental conditions and maintain those that have adequate traits for 

persisting under those conditions (de Bello et al., 2013; Diaz et al., 1998; Keddy, 1992). 

Cingolani et al. (2007) found that plants associated with high resource acquisition (i.e. higher 

surface leaf area (SLA), leaf toughness) often dominated the species pool at elevated soil 

moisture availability as they took advantage at low stress (Cingolani et al., 2007). As this 

gradient shifted to lower soil moisture availability, plants with lower SLA and leaf toughness 

dominated the community. In each case, plants with the most beneficial traits affected their 

SUREDELOLW\�RI�EHFRPLQJ�GRPLQDQW��,QFUHDVHG�VRLO�PRLVWXUH�³ILOWHUHG�RXW´�SODQW�VSHFLHV�ZLWK�

VPDOO��VRIWHU�OHDYHV��DQG�UHGXFHG�VRLO�PRLVWXUH�³ILOWHUHG�RXW´�SODQW�VSHFLHV�ZLWK�ODUJHU��WRXJKHU�

leaves. This filtering of plant species and plant traits through environmental gradients, especially 

soil characteristics, is evident in other studies (de Bello et al., 2013; Venn et al., 2011). Thus, 

plant-soil feedbacks are vital to consider when restoring native plant communities as they are 

driving factors of plant population and community dynamics (Bonanomi et al., 2005).  

The shift in plant community composition following deer exclusion is highly supported 

by other experiments as herbivory often acts as a biotic filter that can alter plant community 

composition (Cingolani et al., 2007; Royo & Carson, 2022; Suzuki et al., 2013). Intensive 

browsing from deer herbivory can promote competitive exclusion of particular plant species by 

reducing the abundance of abundant, palatable species that do not have chemical defenses, 

allowing less palatable plants to increase in abundance (Wiegmann & Waller, 2006). As the 

primary indicator species of this change (i.e. V. rotundifolia, Rubus spp., and T. radicans) are 

fast-growing vines that are often preferred by deer (Warren & Hurst, 1981; Williams & Baxley, 
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2008), their increase was expected in the short-term. Given more time, other slow-growing, 

palatable species including native tree seedlings may also benefit, further diverging the 

successional trajectories of fenced and unfenced plots. The future of the camphor population is 

also dependent on deer preference. Camphor seedlings demonstrated a less significant response 

to herbivory in this study, but earlier results from Chapter 4 indicate that deer reduced camphor 

growth and survival. If deer continue to consume camphor seedlings, we can assume that deer 

may not facilitate camphor invasion if the number of regenerating seedlings remains less than 

those browsed. However, if deer prefer other palatable tree seedlings, vines, forbs, and shrubs, 

then this may shift the balance between camphor-native plant interaction, allowing camphor to 

increase in abundance and competitively exclude other native plants. 

Although the independent effects of abiotic conditions and biotic interactions on plant 

communities are well documented, their interactions as dynamics filters, especially in a site 

experiencing plant invasion, are less explored (Germain et al., 2018). Neglecting to consider both 

the relative roles and interactions of different ecological filters can limit true understanding of 

the underlying mechanisms that shape community assemblages (Chollet et al., 2021). For 

example, legacy effects from past land use, herbivory, and other disturbances could already be 

unfavorable and limiting to some plant species. When faced with additional environmental or 

biotic stresses, these effects can often be overshadowed or not fully realized (Begley-Miller et 

al., 2019; Chollet et al., 2021; Royo & Carson, 2022) and ecosystem recovery could be 

postponed or unsuccessful if the appropriate management strategy is not implemented 

(Temperton et al., 2004). Tree and plant communities on Jekyll Island could be experiencing 

slow recovery due to past intensive herbivory and other ecological stresses including a lack of 

fire. Thus, a more holistic view of restoration that considers environmental-biotic interactions 
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could help inform restoration management by prioritizing sites and determining intensity and 

timing of the intervention.  

5. Conclusion 

Plant and tree communities on Jekyll Island experiencing camphor invasion have 

heterogeneous abiotic microsite conditions that are influencing local composition. As 

multivariate analyses and ordination techniques can help investigate variation in plant 

community composition across environmental gradients, we sought to explore if specific 

environmental conditions are associated with specific plant species or assemblages (Baer et al., 

2005; Leps & Smilauer, 2003). We found that, due to an elevational gradient, soil moisture 

content, electrical conductivity, and temperature are highly influencing presence and relative 

abundance of individual species, including camphor tree seedlings. When we assessed how 

excluding herbivores affects native plant communities, we observed that vine species strongly 

benefitted from two years of deer exclusion, , although camphor seedlings and other palatable 

species may also demonstrate a positive response in the long-term. Although we observed these 

patterns on one site on Jekyll Island, our findings demonstrate that considering both 

environmental conditions and biotic relationships as ecological filters can provide helpful 

contextual information for ecological information and invasive species control.  
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CHAPTER 6 

CONCLUSIONS 

To address management and restoration challenges on Jekyll Island, I used a range of 

methods to begin understanding small forest ecology and the management consequences of 

different tools and restoration efforts. Each chapter explored different approaches to conservation 

and restoration of native tree and plant communities.  

(1) First, we evaluated the relevancy and applicability of forest dynamics models to small 

forest management in Chapter 2. This literature review explored the suitability of 54 existing 

forest dynamics models. Evaluation was based on characteristics of each model using five 

criteria with implications for small forest management: spatial resolution, number of species the 

model can simulate, inclusion of spatial structure, modeling approach, and mechanistic detail. 

While numerous models can be suitable under certain conditions, the review criteria led us to 

conclude that two models offered the broadest versatility and usability for small forest contexts, 

SORTIE and FORMIND. This review can help orient and guide small forest managers like those 

on Jekyll Island who wish to add modeling to their forest management efforts. 

(2) In Chapter 3, we collaborated with JIA and other coastal stewards to use structured 

decision-making to find potential MLO management actions to evaluate the live oak regeneration 

SUREOHP��:H�ILUVW�KHOG�ZRUNVKRSV�WR�LGHQWLI\��WKH�PDQJHUV¶�ORQJ-term objectives and shorter-

term success indicators; spatial and temporal scales of likely management actions; a set of 

potential management options; and data, legal, and resource constraints. We then constructed 

demographic models using empirical data and expert knowledge to estimate parameters for 
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juvenile tree growth and survival rates associated with alternative tree-planting strategies. The 

decision-support tool incorporated the models and associated cost estimates of management 

alternatives in order to project likely outcomes, costs, associated uncertainties, and the degree to 

which alternatives would meet different management objectives. This process ensured that we 

capitalized on diverse understandings and perspectives and that the decision support tool would 

be directly relevant to stewards' values, objectives, and information needs. 

(3) In Chapter 4, we explored the effects of deer on native plant and tree seedling 

abundance to assess whether deer are facilitating the camphor invasion, using an experiment with 

deer exclosures in one of the small forests on Jekyll Island. Deer herbivory was associated with 

decreased native understory vegetation cover but did not have an immediate effect on the 

abundance of native tree seedlings or species richness. Vine species like Vitis rotundifolia 

especially benefitted from excluding deer, yet camphor seedling growth and survival also 

increased when deer were excluded. Although longer-term herbivory effects on camphor versus 

native species in this environment are not yet known, these results suggest that controlling deer 

herbivory may not tip the balance of apparent competition back toward native vegetation, and 

other restoration efforts are likely needed to control camphor invasion and support the native tree 

and plant community. 

(4) Finally, we used multivariate analyses to understand how abiotic and biotic 

environmental conditions like soil moisture, elevation, and adult tree composition affect native 

plant communities and camphor seedlings on Jekyll Island. Because JIA plans to exclude deer 

and eradicate camphor populations, we also assessed how deer exclosures affect native plant 

composition through these analyses. Plant community composition did vary with environmental 

conditions and deer exclosure, though due to the scale of the study, ecological interpretations of 
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patterns are tentative. Still, our findings point to the value of using environmental conditions to 

provide helpful contextual information for ecological restoration and invasive species control. 
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APPENDIX A: CHAPTER 3 SUPPLEMENTARY INFORMATION 

 
 

Appendix A.1. R code for optimization. This code simulates data drawn from a linear-logit 
model of survival and linear model of height growth for Quercus virginiana seedlings. The 
PRGHOV�DUH�SDUDPHWHUL]HG�WR�URXJKO\�UHSODFH�WKH�GDWD�VXPPDULHV�LQ�7K\URII¶V�WKHVLV��&KDSWHUV���
and 3 (E. Thyroff, 2018). 
 
Library(GA) 
 
## DESIGN AND FITNESS TARGET INFORMATION TO PASS INTO FITNESS 
FUNCTION 
## Height at planting (m) 
size0 <- 0.47 
 
## Number of seedlings per treatment group 
##   8 groups ± combinations of overstory condition, herbivory defense, competing vegetation 
defense 
n.group <- 80 
 
## Number of years of observation 
n.years <- 2 
 
## Optimization target 
##   1:2 ± Study 1 (ch 3), clearcut vs no thin (fenced, averaged over veg removal); 
##   3:6 ± Study 2 (ch 2), fenced/annual, fenced/none, not fenced/annual, not fenced/none (all in 
clearcut) 
target <- c(48.37, 30.34, 119.8, 92.28, 37.58, 40.6) / 100 
names(target) <- 
c(³Ch3.ClrCut´,´Ch3.NoThin´,´Ch2.Fncd.Weed´,´Ch2.Fncd.NoWd´,´Ch2.NoF.Weed´,´Ch2.N
oF.NoWd´) 
 
n.samp <- 11 
 
## Construct design matrix 
data <- data.frame(over = gl(2,2*2*n.group), herb = gl(2,2*n.group), comp = gl(2,n.group)) 
design <- model.matrix(~ over + herb + comp + over*herb + over*comp + herb*comp, data) 
 
 
 
## MODEL PARAMETERS 
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## All roughly estimated based on simple manipulations of means in Thyroff thesis 
 
## Mean rates of annual survival and annual growth under ideal conditions: 
##   no overstory, no browse, no competition 
surv0 <- 0.78  ## mean probability of annual survival 
d.ht0 <- 0.380  ## mean height growth (m) per year, conditional on survival 
 
## Additive effects (logit scale) of treatments on annual survival, relative to ideal conditions 
phi.over <- -0.67   ## effect of dense overstory 
phi.herb <- 0   ## effect of herbivory 
phi.comp <- 0   ## effect of competing vegetation 
 
## Additive effects of treatments, relative to ideal, on annual height growth rate (m/yr) 
gam.over <- -0.520   ## effect of dense overstory 
gam.herb <- -0.421   ## effect of herbivory 
gam.comp <- -0.278   ## effect of competing vegetation 
 
## 2-way interactive effects of treatments on annual height growth rate 
gam.over.herb <- 0.5     ## Overstory x herbivory (just a guess « no data to support) 
gam.over.comp <- 0.240   ## Overstory x competing vegetation 
gam.herb.comp <- 0.270   ## Herbivory x competing vegetation 
 
## Individual variation (normal SD) ± only a guess « no data to support 
sd.surv <- 0.3   ## annual survival (logit scale) 
sd.size <- 0.05  ## height (m) 
 
## Collect the parameters into vectors 
# p <- c(phi.over, phi.herb, phi.comp) 
# g <- c(gam.over, gam.herb, gam.comp, gam.over.herb, gam.over.comp, gam.herb.comp) 
# s <- c(sd.surv, sd.size) 
 
 
 
#### FITNESS FUNCTION 
####   FIRST 13 ARGUMENTS ARE VARIABLES TO BE OPTIMIZED, LAST 6 ARE 
DESIGN AND TARGET VARIABLES 
objfn <- function(surv0, d.ht0, 
                  phi.over, phi.herb, phi.comp, 
                  gam.over, gam.herb, gam.comp, gam.over.herb, gam.over.comp, gam.herb.comp, 
                  sd.surv, sd.size, 
                  n.samp, n.group, design, size0, target, prt.sim){ 
 
  ## START FUNCTION 
  ## input: 13 variables (surv0, d.ht0, «, sd.size) 
  ##        and 6 fixed quantities (n.samp, n.group, design, size0, target, prt.sim) 
  ## return: diff 



187 
 

   
  p <- c(phi.over, phi.herb, phi.comp) 
  g <- c(gam.over, gam.herb, gam.comp, gam.over.herb, gam.over.comp, gam.herb.comp) 
  s <- c(sd.surv, sd.size) 
   
  if(prt.sim==1) { 
    cat(³\nDesign values\n -Samples per group: ³, n.group, ³\n -Initial size (m): ³, size0, ³\n´) 
    cat(³\nParameter values\n -Mean survival probability: ³, surv0, ³\n -Mean height growth 
(m/yr): ³, d.ht0) 
    cat(³\n -Survival effects (over, herb, comp): ³) 
    cat(p, sep=´, ³) 
    cat(³\n -Growth main effects (over, herb, comp): ³) 
    cat(g[1:3], sep=´, ³) 
    cat(³\n -Growth interactions (over.herb, over.comp, herb.comp): ³) 
    cat(g[4:6], sep=´, ³) 
    cat(³\n -Individual variation (survival, growth): ³) 
    cat(s, sep=´, ³) 
    cat(³\n\nTarget values\n´) 
    print(target) 
    cat(³\n´) 
  } 
   
  ## Compute treatment group effects 
  surv.eff <- design[,2:4] * matrix(rep(p, n.group*8),ncol=3,byrow=TRUE) 
  grow.eff <- design[,2:7] * matrix(rep(g, n.group*8),ncol=6,byrow=TRUE) 
   
  diff <- rep(NA, n.samp) 
   
  for (k in 1:n.samp){ 
     
    ## Compute individual annual survival probabilities 
    surv <- log(surv0/(1-surv0)) + rowSums(surv.eff) + rnorm(n.group*8, 0, s[1]) 
    surv.p <- 1 / (1 + exp(-surv)) 
    surv.p.m <- surv.p^(1/12)    ## monthly survival 
     
    ## Compute individual annual height growth 
    grow <- d.ht0 + rowSums(grow.eff) + rnorm(n.group*8, 0, s[2]) 
    grow.m <- grow/12          ## monthly growth 
   
    ## Initialize time series of individuals 
    h.t <- matrix(0, nrow=n.group*8, ncol=3)    ## time series of heights 
    h.t[,1] <- size0 
     
    ## Track each each individual through time 
    m <- c(9,14)  ## Period lengths (months) 
    for (t in 2:3){ 
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      ## if height in prior period >0 (alive last period), then draw a survival outcome 
      surv.t <- rbinom(n.group*8,1,surv.p.m^m[t-1]) * (h.t[,t-1]>0) 
     
      ## if survived to this period, then add height growth 
      h.t[,t] <- pmax(0, (h.t[,t-1]>0 & surv.t>0) * (h.t[,t-1] + grow.m*m[t-1])) 
     
    } 
     
    ## Create object for data export 
    out <- data.frame(cbind(design[,2:4], h.t)) 
 
    ## Overstory treatment x competing vegetation treatment at 9 months under no-browse 
(fenced) condition 
    ##   (compare to Thyroff Fig. 3.6) 
    sel <- out[out[,2]==0,] 
    sums1 <- tapply(sel[,5], sel[,1], sum) 
    sel[(sel[,5]>0),5] <- 1 
    counts1 <- tapply(sel[,5], sel[,1], sum) 
    means1 <- sums1/counts1 
    means1[is.na(means1)] <- 0 
 
    ## Herbivory treatment x competing vegetation treatment at 23 months under open overstory 
condition 
    ##   (compare to Thyroff Fig. 2.3) 
    sel <- out[out[,1]==0,] 
    sums2 <- tapply(sel[,6], list(sel[,2], sel[,3]), sum) 
    sel[(sel[,6]>0),6] <- 1 
    counts2 <- tapply(sel[,6], list(sel[,2], sel[,3]), sum) 
    means2 <- sums2/counts2 
    means2[is.na(means2)] <- 0 
     
    if(prt.sim==1){ 
      cat(k,´ ³) 
      cat(means1,sep=´      ³) 
      cat(³    ³, t(means2), sep=´     ³) 
      cat(³\n´)     
    } 
     
    diff[k] <- sum( (matrix(t(rbind(means1, means2[1,], means2[2,])),nrow=1,byrow=TRUE) ± 
target)^2 ) 
     
  } 
 
  diff0 <- median(diff) 
  if(prt.sim==1) cat(³\nMedian distance from target (n =´, n.samp, ³): ³, diff0, ³\n´) 
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  return(-diff0) 
   
  ### END FUNCTION 
} 
 
 
## Test fitness function with these parameter values 
diff <- objfn(surv0, d.ht0, phi.over, phi.herb, phi.comp, gam.over, gam.herb, gam.comp, 
              gam.over.herb, gam.over.comp, gam.herb.comp, sd.surv, sd.size, 
              n.samp, n.group, design, size0, target, prt.sim=1) 
 
 
 
 
 
 
 
 
 
Appendix A.2. R code for seedling transition matrix model. This model simulates data drawn 
from a linear-logit model of survival and a linear model of height growth for Quercus virginiana 
VHHGOLQJV��7KH�PRGHOV�DUH�SDUDPHWHUL]HG�WR�URXJKO\�UHSODFH�WKH�GDWD�VXPPDULHV�LQ�7K\URII¶V�
thesis, Chapters 2 and 3. 
 
## MODEL SETUP 
## Height at planting (m) 
size0 <- 0.47 
 
## Number of seedlings per treatment group 
##   8 groups ± combinations of overstory condition, herbivory defense, competing vegetation 
defense 
n.group <- 80 
 
## Number of years of observation 
n.years <- 5 
 
## To simulate all treatments, set trt.sel=NA 
##   Otherwise, specify treatment as 0/1 triplet: (canopy closed=1, unfenced=1, unweeded=1) 
trt.sel <- NA 
trt.sel <- c(0,1,1) 
 
 
## MODEL PARAMETERS 
##  13 parameter values loaded into a vector, then named in order in the lines below 
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## Initial estimates 
##  These are roughly estimated based on simple manipulations of means in Thyroff thesis 
x <- c(0.78,     ## mean probability of annual survival 
       0.380,    ## mean height growth (m) per year, conditional on survival 
       -0.67,    ## (survival) effect of dense overstory 
       0,        ## (survival) effect of herbivory 
       0,        ## (survival) effect of competing vegetation 
       -0.520,   ## (growth) effect of dense overstory 
       -0.421,   ## (growth) effect of herbivory 
       -0.278,   ## (growth) effect of competing vegetation 
       0.5,      ## (growth) overstory x herbivory (just a guess « no data to support) 
       0.240,    ## (growth) overstory x competing vegetation 
       0.270,    ## (growth) herbivory x competing vegetation 
       0.3,      ## (variation) annual survival (just a guess « no data to support) 
       0.05)     ## (variation) height growth (m) (just a guess « no data to support) 
 
## Solution from optimization 
load(file=´GA_n.samp=101,n.group=80,pop=100,iter=1000.Rdata´) 
x <- GA@solution 
 
 
## Mean rates of annual survival and annual growth under ideal conditions: 
##   no overstory, no browse, no competition 
surv0 <- x[1]  ## mean probability of annual survival 
d.ht0 <- x[2]  ## mean height growth (m) per year, conditional on survival 
 
## Additive effects (logit scale) of treatments on annual survival, relative to ideal conditions 
phi.over <- x[3]   ## effect of dense overstory 
phi.herb <- x[4]   ## effect of herbivory 
phi.comp <- x[5]   ## effect of competing vegetation 
 
## Additive effects of treatments, relative to ideal, on annual height growth rate (m/yr) 
gam.over <- x[6]   ## effect of dense overstory 
gam.herb <- x[7]   ## effect of herbivory 
gam.comp <- x[8]   ## effect of competing vegetation 
 
## 2-way interactive effects of treatments on annual height growth rate 
gam.over.herb <- x[9]     ## Overstory x herbivory 
gam.over.comp <- x[10]    ## Overstory x competing vegetation 
gam.herb.comp <- x[11]    ## Herbivory x competing vegetation 
 
## Individual variation (normal SD) 
sd.surv <- x[12]  ## annual survival (logit scale) 
sd.size <- x[13]  ## height (m) 
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## Collect the parameters into vectors 
p <- c(phi.over, phi.herb, phi.comp) 
g <- c(gam.over, gam.herb, gam.comp, gam.over.herb, gam.over.comp, gam.herb.comp) 
s <- c(sd.surv, sd.size) 
 
## Construct design matrix 
data <- data.frame(over = gl(2,2*2*n.group), herb = gl(2,2*n.group), comp = gl(2,n.group)) 
design <- model.matrix(~ over + herb + comp + over*herb + over*comp + herb*comp, data) 
 
## Compute treatment group survival effects, and individual annual survival probabilities 
surv.eff <- design[,2:4] * matrix(rep(p, n.group*8),ncol=3,byrow=TRUE) 
surv <- log(surv0/(1-surv0)) + rowSums(surv.eff) + rnorm(n.group*8, 0, s[1]) 
surv.p <- 1 / (1 + exp(-surv)) 
 

## Compute treatment group height effects, and individual annual height growth 
grow.eff <- design[,2:7] * matrix(rep(g, n.group*8),ncol=6,byrow=TRUE) 
grow <- d.ht0 + rowSums(grow.eff) + rnorm(n.group*8, 0, s[2]) 
 
## Identify rows indicating focal treatment, extract corresponding rows from input data 
if(is.na(trt.sel[1])){ sel <- rep(1,n.group*8) } else { sel <- apply(trt.sel==design[,2:4],1,prod) } 
surv.p <- surv.p[(sel==1)] 
grow <- grow[(sel==1)] 
 
## Histograms of individual-level survival probability and growth increment 
hist(surv.p, main=paste0("Survival probability, trt.sel = ", toString(trt.sel))) 
 
hist(surv.p, main=paste0("Survival probability of open canopy,browse protection,  
                         and suppressed understory vegetation                         "), 
     xlab="Probability of survival") 
hist(grow, main=paste0("Growth increment, trt.sel = ", toString(trt.sel))) 
 
 
## Initialize time series of individuals 
h.t <- matrix(0, nrow=sum(sel==1), ncol=n.years+1)    ## time series of heights 
 
h.t[,1] <- size0 
 
## Initialize matrix to store height achievement probabilities at each year 
##  (1.5, 2.0, 2.5 m thresholds) 
h.thresh <- c(1.5, 2.0, 2.5) 
alive.at.height <- matrix(0, nrow=n.years+1, ncol=3) 
colnames(alive.at.height) <- paste("Ht(m) ", h.thresh, sep="") 
rownames(alive.at.height) <- paste("Year ", (0:n.years), sep="") 
 
## Track each each individual through time 



192 
 

namestring <- "Time.0" 
for (t in 2:(n.years+1)){ 
 
  ## if height in prior year >0 (alive last year), then draw a survival outcome 
  surv.t <- rbinom(length(surv.p),1,surv.p) * (h.t[,t-1]>0) 
 
  ## if survived to this year, then add height growth 
  h.t[,t] <- pmax(0, (h.t[,t-1]>0 & surv.t>0) * (h.t[,t-1] + grow)) 
   
} 
 
 
## Plot histograms by year 
for (t in 2:(n.years+1)){ 
 
  namestring <- cbind(namestring, paste0("Time.",t-1)) 
   
  hist(h.t[,t], main=paste0("Height, trt.sel = ", toString(trt.sel),", year ",t-1), 
       xlim=c(0,ceiling(max(h.t))), ylim=c(0,nrow(h.t))) 
   
  alive.at.height[t,] <- colSums(outer(h.t[,t], h.thresh, '>')) / length(surv.p) 
   
} 
 
## Print probability of achieving height thresholds at each year 
cat("\nProbability of achieving height at each year (trt.sel =", toString(trt.sel), ")\n") 
print(alive.at.height) 
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Appendix A.3. A-D: Estimates of sapling survival for each stock-light availability 
combination. Estimates are elicited from one stakeholder, Clint Gawron, Landscape 
Superintendent at the Jekyll Island Authority. Survivorship estimates include average or most 
likely scenario, highest realistic scenario, and lowest realistic scenario. Average or most likely 
scenario was used to determine the most effective and most desirable management alternative 
prior to evaluation of uncertainty.  
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Appendix A.4. Cost estimate assumptions ($). Costs are initially estimated by establishment 
unit (18m x 18m) but can be scaled up to reduce cost of some bulk items. All information is 
elicited from stakeholders unless noted from Forestry Suppliers or The Home Depot. 
 

A) Overstory treatment (removal by individual adult tree). Maximum number of trees that 
can be removed/establishment unit is 5. 

a. None²$0 
b. Jekyll Island staff felling and removing²$500  
c. Independent contractor felling and removing²$2500 
d. Independent contractor felling and Jekyll Island staff removing²$1575 
e. Forestry whole-sale²$0 

B) Tree type purchased 
a. Larger sapling at 4-inch DBH and 100 gallons²$800/tree 
b. Smaller sapling at 1 ¾ inch-2 inch DBH and 15 gallons²$100/tree 

i. Assumption is that protective plastic tree wrapping will be purchased to 
deter deer rubbing. The Home Depot: $5.48/ 4in. x 20ft. that can wrap up 
to 4 small saplings. 

c. Seedling at 12-18 inches tall²$1/tree for first 1000, $0.70/tree for 1000+ 
C) Staff and volunteer labor/hour options: 

a. $40/hour 
b. $20/hour 
c. $0/hour (volunteer) 

D) Watering intensity estimates (sapling only) 
a. Man-hours to water saplings for each watering option 

i. Water buffalo²at least 5 hours/year (8 minutes/tree/bout. If planting in 
November, 2 bouts/month November-March. About 4 bouts/week April-
October.) 

ii. Gravity-fed pump²at least 10 hours/year (16 minutes/tree/bout. If 
planting in November, 2 bouts/month November-March. About 4 
bouts/week April-October.) 

b. Planting gel--$87.50/10-lb bag, Forestry Suppliers 
i. 1 ounce used/ 5 gallons of tree volume. 

1. 15 gallons = 3 ounces 
2. 100 gallons = 20 ounces 
3. Cost can be reduced if using for multiple establishment units. 

c. Additional efforts to retain moisture such as mulch or leaves are assumed at no 
additional cost. 

E) Planting time (man-hours)/tree type purchased. Seedling options include browse 
protection and no browse protection.  

a. Larger sapling 
i. Will require 4 staff members or volunteers. Time to plant = 1 hour. 

b. Smaller sapling 
i. 1 person, time to plant = 1 hour 

ii. 2 people, time to plant = 30 minutes 
c. Seedling 

i. No browse protection 
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1. 1 person, seedlings planted per hour= 10 
2. 2 people, seedlings planted per hour= 20 
3. 3 people, seedlings planted per hour= 30 
4. 4 people, seedlings planted per hour= 40 
5. 5 people, seedlings planted per hour= 50 

ii. Browse protection²planting includes applying cages to individual tree 
seedling 

1. 1 person, seedlings planted per hour = 4 
2. 2 people, seedlings planted per hour = 8 
3. 3 people, seedlings planted per hour = 12 
4. 4 people, seedlings planted per hour =16 
5. 5 people, seedlings planted per hour = 20 

F) If browse protection, cost of materials: Forestry Suppliers.  
a. 5LJLG�VHHGOLQJ�SURWHFWRU�WXEH���¶¶�[���¶¶�� 

i. $281/pack of 150 cages when ordering 1-3 packs 
ii. $259/pack of 150 cages when ordering 4-9 packs 

iii. $242/pack of 150 cages when ordering 10+ packs 
b. Protex pro/gro VROLG�WXEH�WUHH�SURWHFWRU����¶¶�� 

i. $3.75/1-199 protectors 
ii. $3.50/200-399 protectors 

iii. $3.25/400+ protectors 
c. Tubex tree shelter:  

i. $26.95/pack of 5 (1-9 packs) 
ii. $23.25/pack of 5 (10+ packs) 

G) If vegetation control, cost of materials: 
a. $60/gallon on average for glyphosate, assuming a maximum of 2 gallons/EU 
b. Materials that are assumed not costly: herbicide backpack and sprayers, clippers, 

mowers, and other supplies for manual removal 
H) If vegetation control, man-hours (or minutes) for application: 

a. Spraying herbicide: 
i. 1 person- 15 minutes 

ii. 2 people- 7.5 minutes 
iii. 3 people- 3.75 minutes 
iv. 4 people- 1.875 minutes 
v. 5 people- 0.9375 minutes 

b. Manually removing vegetation:  
i. 1 person- 1.5 hours 

ii. 2 people- 45 minutes 
iii. 3 people- 30 minutes 
iv. 4 people- 15 minutes 
v. 5 people- 7.5 minutes 
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Appendix A.5. Management alternatives on utility contours for each individual stakeholder and 
island. Alternatives are labeled according to scenarios A-P in Table 3.5, and each line segment 
corresponds to the minimum and maximum range of cost estimates possible for a single 
management alternative (i.e. no effect on ecological outcome but could increase cost in overstory 
tree removal or extensive labor). A-E: Contour plots that contain utility information for each 
individual stakeholder interviewed from Jekyll Island. Pairings of B-C and D-E demonstrate 
utility values for the same stakeholder but at sites that have different public visibility and 
accessibility. F-G: Aggregated contour plots that contains utility information for all stakeholders 
from Jekyll Island. This pairing demonstrates utility values for the same island but at sites that 
have different public visibility and accessibility. H-I: Contour plots that contain utility 
information for one stakeholder interviewed from Sapelo Island. This pairing demonstrates the 
utility values for the same person but at sites that represent different MLO habitat value.  
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APPENDIX B: CHAPTER 4 SUPPLEMENTARY INFORMATION 

 
Appendix B.1. ANOVA table for the effects of deer on total understory percent cover and percent cover by growth form in April 2018 
before plots and exclosures were established, May 2019, and May 2020 and change in number of species present between April 2018 
and May 2020. 
 

 Spring 2018 Spring 2019 Spring 2020 

Source df SS MS F-ratio p-
value 

df SS MS F-ratio p-
value 

df SS MS F-ratio p-
value 

Total 
understory 
percent 
cover 

               

Fencing 
treatment 

1 29.650 29.650 0.7735 0.390 1 748.453 748.453 3.663 0.071* 1 1948.543 1948.540 8.332 0.001* 

Error 19 728.322 38.333   19 3881.924 204.312   19 4443.410 233.860   
Total 20 

 
757.972    20 4630.377    20 6391.953    

Total fern 
cover 

               

Fencing 
treatment 

1 3.324 3.324 0.071 0.793 1 14.315 14.315 0.081 0.779 1 142.013 142.013 0.956 0.341 

Error 19 890.804 46.884   19 3342.781 175.936   19 2822.079 148.53   
Total 20 894.128    20 3357.100    20 2964.09    
Total shrub 
cover 

               

Fencing 
treatment 

1 12.796 12.796 0.991 0.332 1 44.353 44.353 1.247 0.278 1 88.045 88.0493 1.487 0.238 

Error 19 245.331 12.912   19 675.927 35.575   19 1124.779 59.199   
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Total 20 258.126    20 720.280    20 1212.823    
Total palm 
cover 

               

Fencing 
treatment 

1 0.728 0.728 0.068 0.797 1 0.390 0.390 0.023 0.882 1 0.310 0.310 0.021 0.886 

Error 19 203.178 10.694   19 327.000 17.211   19 278.468 14.656   
Total 20 203.905    20 327.389    20 278.778    
Total vine 
cover 

               

Fencing 
treatment 

1 17.966 17.966 1.079 0.312 1 456.170 456.169 4.890 0.040* 1 1085.173 1085.17 5.149 0.035* 

Error 19 316.320 16.648   19 1773.155 93.324   19 4004.346 210.76   
Total 20 334.285    20 2229.324    20 5089.519    
Total forb 
cover 

               

Fencing 
Treatment 

1 0.163 0.163 0.0879 0.770 1 0.075 0.075 0.013 0.9096 1 6.434 6.434 10.721 0.0040
* 

Error 19 35.248 1.855   19 107.952 5.682   19 11.404 0.600   
Total 20 35.411    20 108.027    20 17.838    
Total 
grasses/sed
ges cover 

               

Fencing 
Treatment 

1 1.0178 1.0178 1.261 0.276 1 1.558 1.558 1.206 0.2859 1 1.306 1.306 1.209 0.2854 

Error 19 15.340 0.807   19 24.557 1.293   19 20.531 1.081   
Total 20 16.358    20 26.115    20 21.837    
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APPENDIX C: CHAPTER 5 SUPPLEMENTARY INFORMATION 

 
Appendix C.1. Species abbreviations and their corresponding species, genus, or family name. 
 
Species 
Abbreviation 

Classification Species, genus, or family name 

OnSe Species Onoclea sensibilis 
WoVi Species Woodwardia virginica 
PtAq Species Pteridium aquilinum 
MyCe Species Myrica cerifera 
CaAm Species Callicarpa americana 
VaAr Species Vaccinium arboreum 
Vaccin sp Genus Vaccinium 
IlVo Species Ilex vomitoria 
Arecac sp Family Arecaceae 
PaQu Species Parthenocissus quinquefolia 
Smilax sp Genus Smilax 
GeSe Species Gelsemium sempervirens 
ViRo Species Vitus rotundifolia 
ToRa Species Toxicodendron radicans 
Rubus sp Genus Rubus 
Gerani sp Genus Geranium 
Poacea sp Family Poaceae 
Oplism sp Genus Oplismenus 
Cypera sp Family Cyperaceae 
IlOp Species Ilex opaca 
Quercu sp Genus Quercus  
Persea sp Genus Persea 
Pinus sp Genus Pinus 
LiSt Species Liquidambar styraciflua 
PrSe Species Prunus serotina 
BiCa Species Bignonia capreolata 
CiCa Species Cinnamomum camphora 
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Appendix C.2. Non-metric multidimensional scaling (NMDS) ordination plot of species 
abundances within sample plot space versus environmental variables. Axis 1 vs Axis 2 is shown. 
Environmental variables that had at least a weak or moderate correlation (r2 = 0.16 as the cutoff) 
are shown. Species are coded by the first two letters of the genus and species name (e.g. 
Cinnamomum camphora = CiCa) or the first letters of family classes or genus name (e.g. Cypera 
sp. = Cyperaceae family, Pinus sp. = Pinus spp. 
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Appendix C.3. Non-metric multidimensional scaling (NMDS) ordination plot of species 
abundances within sample plot space versus environmental variables. Axis 1 vs Axis 3 is shown. 
Environmental variables that had at least a weak or moderate correlation (r2 = 0.16 as the cutoff) 
are shown. Species are coded by the first two letters of the genus and species name (e.g. 
Cinnamomum camphora = CiCa) or the first letters of family classes or genus name (e.g. Cypera 
sp. = Cyperaceae family, Pinus sp. = Pinus spp. 
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Appendix C.4. NMDS ordination scores (3 axes) for species abundance data from April 2018. 
 
Plot Axis 1 Axis 2 Axis 3 
11a -0.9101 0.4963 0.2512 
12 -0.1766 -0.6387 0.0164 
14 -1.7381 -0.0587 -0.2601 
15 -0.2102 -0.5192 -0.1961 
22 1.1088 -0.5263 -0.6413 
24a 0.1150 0.3250 -0.5834 
29 0.2443 -0.3243 0.1989 
30a 0.7070 0.4252 0.4937 
8 0.1419 0.1335 0.2237 
11b -0.4977 -0.2463 0.1870 
17 -0.5164 0.0364 0.5477 
21 -0.3752 -0.3253 -0.9865 
24b 0.3996 0.8450 0.3123 
25 0.1812 0.5685 -0.5485 
27 0.0719 -0.1867 -0.4836 
28 0.4112 0.2449 -0.8999 
30b 0.7908 0.1197 0.4823 
32 0.5020 0.2847 0.7943 
33 0.4117 -0.0329 1.0608 
37 -1.1846 0.7641 0.0411 
7 0.5234 -1.3849 -0.0100 

 
 
 
 
Appendix C.5. Pearson correlations with non-metric multidimensional scaling (NMDS) 
ordination axes. NMDS was conducted on April 2018 species abundances. 
 
 Axis 1 Axis 2 Axis 3 
Species ra r2 ra r2 ra r2 
OnSe 0.211 0.045 -0.01 0 -0.547** 0.299 
WoVi 0.112 0.013 -0.249 0.062 -0.547** 0.299 
PtAq -0.423* 0.179 -0.509** 0.259 -0.249 0.062 
MyCe 0.453* 0.205 0.141 0.020 -0.206 0.042 
CaAm -0.124 0.015 0.177 0.031 -0.316* 0.100 
VaAr 0.273 0.075 0.588** 0.346 0.007 0.000 
Vaccin sp 0.305* 0.093 0.147 0.022 0.238 0.057 
IlVo -0.072 0.005 0.135 0.018 -0.468* 0.219 
Arecac sp 0.275 0.075 0.253 0.064 -0.145 0.021 
PaQu 0.491* 0.241 -0.062 0.004 -0.270 0.073 
Smilax sp -0.155 0.024 0.053 0.003 0.535** 0.286 
GeSe -0.065 0.004 0.401* 0.161 0.336* 0.113 
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ViRo 0.578** 0.334 -0.027 0.001 -0.224 0.050 
ToRa -0.190 0.036 0.371* 0.137 0.420* 0.176 
Rubus sp -0.149 0.022 0.431* 0.185 0.277 0.077 
Gerani sp -0.061 0.004 0.717** 0.515 0.207 0.043 
Poacea sp 0.070 0.005 0.136 0.019 -0.504** 0.254 
Oplism sp -0.016 0.000 0.754** 0.569 0.435* 0.189 
Cypera sp -0.028 0.001 0.604** 0.365 0.509** 0.259 
IlOp 0.618** 0.382 -0.122 0.015 -0.138 0.019 
Quercu sp -0.257 0.066 -0.275 0.076 -0.213 0.046 
Persea sp 0.201 0.040 0.052 0.003 -0.736** 0.541 
Pinus sp 0.586** 0.343 0.339* 0.115 0.172 0.030 
LiSt -0.018 0.000 0.598** 0.358 0.343* 0.117 
PrSe 0.099 0.010 -0.231 0.053 -0.528** 0.279 
BiCa 0.054 0.003 0.600** 0.360 0.054 0.003 
CiCa -0.037 0.001 0.582** 0.339 -0.405* 0.164 

a= r, Pearson correlation coefficient 
*= significant association between species and axis score, moderate correlation (0.3 < |r| < 0.5) 
(Kent State University, 2022) 
**= significant association between species and axis score, high correlation (0.5 < |r|) (Kent State 
University, 2022) 
 
 
 
 
Appendix C.6. The ordination scores for the first three axes extracted from polar ordination 
analysis on environmental variables by plot.  
 
Plot Factor 1 Factor 2 Factor 3 
11a 1.09789 1.07089 -0.09759 
12 1.59461 -1.36890 1.24041 
14 0.84536 0.66667 -0.20531 
15 0.87016 -0.84766 -1.13598 
22 0.55899 0.59455 0.09692 
24a -1.23298 1.35434 0.36186 
29 -0.86412 0.32113 0.16703 
30a -0.85570 -0.52943 -2.61511 
8 0.41724 2.33296 -0.52955 
11b 0.96009 0.07244 -1.02976 
17 0.08047 -0.19791 -0.84353 
21 1.60235 -1.24365 0.85186 
24b -1.57711 -0.89871 0.22472 
25 0.16943 -0.16472 0.94007 
27 0.59418 0.07847 0.07963 
28 -0.43297 -0.24961 0.86086 
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30b -1.04459 1.25757 1.80815 
32 -0.86405 -1.54294 0.80190 
33 -1.32450 -1.02862 -1.05904 
37 0.40015 0.50484 -0.51333 
7 -0.99491 -0.18171 0.59581 
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Appendix C.7. A-F: The first three factor loadings from the PCA-derived ordination of 
environmental variables linearly regressed with the three NMDS ordination axes. NMDS 
ordination was conducted on April 2018 species abundance data. A-C: Factor 1 (elevation) vs 
NMDS 1-3, D-F: Factor 2 (soil chemistry) vs NMDS 1-3, G-I: Factor 3 (forest structure) vs 
NMDS 1-3. Linear equations, R2 values, and p values (* = significant p value, <= 0.06) are 
presented on their corresponding graph. 
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Appendix C.8. A-C: The first three factor loadings from the PCA-derived ordination of 
environmental variables linearly regressed with initial camphor seedling abundance: (A) 
elevation, (B) soil chemistry, and (C) forest structure. Linear. Linear equations, R2 values, and p 
values (* = significant p value, <= 0.06) are presented on their corresponding graph.  

 
 
 
 
Appendix C.9. A-C: The first three factor loadings from the PCA-derived ordination of 
environmental variables linearly regressed with camphor survivorship: (A) elevation, (B) soil 
chemistry, and (C) forest structure. Linear. Linear equations, R2 values, and p values (* = 
significant p value, <= 0.06) are presented on their corresponding graph. 
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Appendix C.10. A-C: The first three factor loadings from the PCA-derived ordination of 
environmental variables linearly regressed with camphor growth (log response ratio): (A) 
elevation, (B) soil chemistry, and (C) forest structure. Linear equations, R2 values, and p values 
(* = significant p value, <= 0.06) are presented on their corresponding graph.  
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Appendix C.11. Non-metric multidimensional scaling (NMDS) ordination plot of May 2020 
spring abundance, after two years of deer exclusion²fenced=1 (10 plots) vs unfenced=0 (10 
plots). Axis 1 vs 2 is shown. Species are coded by the first two letters of the genus and species 
name (e.g. Cinnamomum camphora = CiCa) or the first letters of family classes or genus name 
(e.g. Cypera sp. = Cyperaceae family, Pinus sp. = Pinus spp. 

 
 
 
 
 
 
 
 
 
 



210 
 

Appendix C.12. Final ordination scores for NMDS ordination in Appendix B.11 (Tables 1 and 
2). There are 27 species within 21 plots (10 fenced, 11 unfenced). Ordination explains about 
47.9% of variance within the dataset. Percent variance explained by each axis is expressed in 
parenthesis next to corresponding axis. 
 
Table 1. Final ordination scores by plot. 
Plot   Axis 1 (19.7%)   Axis 2 (28.2%) 
11a          1.22262     0.27484 
12          -0.52421     0.22642 
14           1.09373     0.66300 
15           0.37046    -0.17273 
22          -0.81556     0.37485 
24a         -0.13900     1.39159 
29          -0.05181    -0.06026 
30a         -0.44356    -0.43591 
8           -1.07525     0.00334 
11b          0.62934     0.30059 
17           0.95088    -0.13437 
21           0.37838     0.90883 
24b          0.37454    -1.19579 
25          -0.96107     0.74847 
27           0.06421     0.34133 
28          -0.30744     0.76017 
30b          0.01735    -0.87226 
32          -0.40703    -0.88625 
33          -0.58893    -1.32676 
37           1.19549    -0.19315 
7           -0.98318    -0.71595 
 
 
Table 2. Final ordination scores by species. 
Species     Axis 1 (19.7%)   Axis 2 (28.2%) 
S20chubf    -0.65737     0.44995 
S20medf     -0.49193    -0.15890 
S20ptaqf    -0.40522    -0.32544 
S20myrt     -0.56568     0.18813 
S20beaut    -0.42800     0.21980 
S20vaar      0.58466     0.79189 
S20vasp      0.42755     0.40608 
S20ilvo     -0.46044     0.05069 
S20palm      0.38414     0.28124 
S20vacrp    -0.09756     0.97212 
S20smil      0.48467     0.01765 
S20caje      0.85329     0.20057 
S20viro     -0.43058     0.46147 
S20tora     -0.30250     0.17947 
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S20rubus     0.03412     0.64729 
S20geran     1.04469    -0.02724 
S20fforb    -0.62357    -0.71662 
S20grspp     0.71383     0.31034 
S20petal     1.11384     0.24624 
S20wisp      0.51684     0.56370 
S20sedge     1.08402     0.23587 
S20ilop     -0.13529     0.89142 
S20que      -0.02089    -0.19503 
S20pers     -0.13976     0.22579 
S20pinus     0.03998     0.01329 
S20list      1.00427     0.08632 
S20prse      0.49710     0.04538 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



212 
 

Appendix C.13. Non-metric multidimensional scaling (NMDS) ordination plot of species 
abundance in April 2018 and May 2020, both fenced and unfenced plots. Axis 1 vs 2 is shown. 
Species are coded by the first two letters of the genus and species name (e.g. Cinnamomum 
camphora = CiCa) or the first letters of family classes or genus name (e.g. Cypera sp. = 
Cyperaceae family, Pinus sp. = Pinus spp. 
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Appendix C.14. Non-metric multidimensional scaling (NMDS) ordination plot of species 
abundance in April 2018 and May 2020, both fenced and unfenced plots. Axis 1 vs 3 is shown. 
Species are coded by the first two letters of the genus and species name (e.g. Cinnamomum 
camphora = CiCa) or the first letters of family classes or genus name (e.g. Cypera sp. = 
Cyperaceae family, Pinus sp. = Pinus spp. 
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Appendix C.15. Non-metric multidimensional scaling (NMDS) ordination plot of species 
abundance in April 2018 and May 2020, both fenced and unfenced plots. Axis 2 vs 3 is shown. 
Species are coded by the first two letters of the genus and species name (e.g. Cinnamomum 
camphora = CiCa) or the first letters of family classes or genus name (e.g. Cypera sp. = 
Cyperaceae family, Pinus sp. = Pinus spp. 

 
 
 
 
 
Appendix C.16. Final ordination scores for NMDS ordinations in Appendix B.13-15 (Tables 1 
and 2). There are 25 species within 21 plots (10 fenced, 11 unfenced) at two points in time 
(April 2018 and May 2020). Ordination explains about 59.9% of variance within the dataset. 
Percent variance explained by each axis is expressed in parenthesis next to corresponding axis. 
 
Table 1: Final ordination scores by plot. 
Plot  Axis 1(9.8%)  Axis 2 (16.4%)   Axis 3 (33.7%) 
11aA        -0.30795    -0.38787    -0.91436 
12A          0.29407     0.17953    -0.19219 
14A         -0.07943     0.32551    -1.57089 
15A         -0.63027     0.39376    -0.07370 
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22A          0.60375     0.40036     0.88019 
24aA        -0.54147     0.12432     0.48852 
29A         -0.29396    -0.22878     0.14618 
30aA         0.03693    -0.84195     0.21459 
8A          -0.01749    -0.18132     0.48192 
11bA        -0.61972    -0.06076    -0.18801 
17A         -0.06090    -0.56096    -0.73539 
21A         -0.33287     1.09302     0.00916 
24bA        -0.79999    -0.75377     0.27981 
25A         -0.87778     0.17778     0.41800 
27A         -0.16850     0.30743     0.09512 
28A         -0.46027     0.38328     0.57544 
30bA         0.11330    -0.71079     0.29846 
32A         -0.10884    -0.92924     0.48119 
33A         -0.56401    -0.81265     0.74340 
37A          0.06009    -0.15902    -1.23308 
7A           1.40609     0.18535    -0.08037 
11aB         0.45393    -0.18776    -1.17393 
12B          0.68080     0.22145    -0.28276 
14B          0.12372     0.46705    -1.17651 
15B         -0.29985     0.56325    -0.31792 
22B          0.97770     0.44823     0.60324 
24aB         0.35946     1.32435    -0.03314 
29B          0.68838    -0.14823    -0.02795 
30aB         0.56154    -0.52197     0.37673 
8B           0.37936    -0.03411     0.88816 
11bB        -0.64493     0.30363    -0.58181 
17B         -0.09071    -0.06231    -0.64459 
21B         -0.41400     0.83307     0.00119 
24bB        -0.76398    -0.78088     0.04183 
25B          0.05541     0.75965     0.74082 
27B          0.28343     0.68469     0.11641 
28B          0.62942     0.77492     0.27795 
30bB         0.27082    -0.91052     0.36453 
32B          0.02597    -0.63546     0.66379 
33B         -0.61570    -0.58252     1.03268 
37B         -0.40698    -0.13629    -0.97651 
7B           1.09545    -0.32350    -0.01618 
 
Table 2: Final ordination scores by species. 
Species Axis 1(9.8%)  Axis 2 (16.4%)   Axis 3 (33.7%) 
chubf        0.76717     0.49078     0.53564 
medf         0.88709     0.09312     0.02849 
ptaq         0.31079    -0.31510     0.39915 
myrt         0.10872     0.54100     0.29220 
beaut        0.66218     0.23909    -0.15483 
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vaar        -0.14371     0.62975    -0.77836 
vasp        -0.07096     0.44014    -0.33381 
ilvo         0.40069     0.21290     0.41107 
palm        -0.30357     0.44061    -0.17990 
vacrp        0.17120     0.67671    -0.03023 
smil        -0.02170    -0.23420    -0.33417 
caje         0.31662    -0.11756    -0.90140 
viro         0.24871     0.41158     0.28452 
tora         0.19807    -0.01569    -0.05611 
rubus        0.22526     0.25584    -0.43664 
geran       -0.06145     0.00673    -1.24087 
grspp        0.41955     0.18728    -0.06194 
petal        0.02273    -0.00291    -1.14287 
sedge       -0.12686     0.04258    -1.06940 
ilop         0.21266     0.80622     0.16156 
que          0.20258    -0.13329     0.10478 
pers         0.21413     0.27215     0.07037 
pinus        0.11635     0.02287    -0.08745 
list        -0.08339    -0.00911    -0.86469 
prse         1.01135     0.13489    -0.14716 
 
 
 
 
 
 
Appendix C.17. Indicator values (IV) (%) for the two fencing treatments (fenced and unfenced). 
Significant IV are in bold with *. Indicator values derived from same matrix used to conduct 
PerMANOVA²absolute difference (+5) n species abundance between April 2018 and May 
2020. No indication = 0, perfection indication = 100. Significant p value (*) indicates the 
proportion of randomized trials with indicator value is equal to or exceeding the observed 
indicator value. Species that have relatively large IV values for one group versus the other and 
where p < 0.05 are generally the most responsible for the observed differences in that group. 
 
 
Species 

Indicator value for 
fencing treatment 

 
P value 

Fenced Unfenced 
Onoclea sensibilis 61 39 0.283 
Woodwardia virginica 50 50 0.728 
Pteridium aquilinum 

 

60 40 0.114 
Myrica cerifera 51 49 0.499 
Callicarpa americana 58 42 0.162 
Vaccinium arboreum 49 51 0.866 
Vaccinium spp. 50 50 0.440 
Ilex vomitoria 53 47 0.685 
Arecaceae spp. 51 49 0.885 
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Parthenocissus quinquefolia 51 49 0.402 
Smilax spp. 51 49 0.444 
Gelsemium sempervirens 51 49 0.267 
Vitus rotundifolia 73 27 0.037* 
Toxicodendron radicans 52 48 0.039* 
Rubus spp. 54 46 0.043* 
Geranium spp. 50 50 0.938 
Poaceae spp. 50 50 0.797 
Oplismenus spp. 50 50 0.705 
Cyperaceae spp. 50 50 0.927 
Ilex opaca 51 49 0.286 
Quercus spp. 52 48 0.304 
Persea spp. 51 49 0.482 
Pinus spp. 50 50 0.131 
Liquidambar styraciflua 50 50 0.989 
Prunus serotina 50 50 0.930 
Cinnamomum camphora 53 47 0.077 

 
 
 
 


