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ABSTRACT
Bluetooth Low Energy (BLE) is a popular wireless communication technology

introduced in Bluetooth 4.0. Devices that leverage this technology include home security
systems, medical devices, and similar apparatuses whose integrity is crucial for people’s safety.
A vulnerable BLE device can cause user privacy leaks and be a steppingstone toward more
severe threats in enterprise environments. This study proposes a BLE sniffer for the enterprise
environment to raise an alarm whenever a nearby vulnerable device is detected. The system
senses vulnerable devices by sniffing advertising packets and fingerprinting device chip models.
Six fitness-tracker device data were used to train two machine learning algorithms targeted to
predict chip models based on advertising packet timing and size information inherent to the chip
hardware. The results show that detecting vulnerable devices and identifying their specific

vulnerabilities based on CVE records is possible, according to the 87.5% accuracy score.
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CHAPTER 1
INTRODUCTION
Bluetooth Low Energy (BLE) is a technology of dominant popularity among Micro
Controller Unit (MCU) devices due to the small amount of energy it requires, the flexibility it
provides, and the capability to work with an application in a smartphone or tablet. It was
designed as a tool for very low power operation and provides over 40 channels in the 2.4GHz
unlicensed ISM radio frequency band for data transmission. According to the Bluetooth SIG
2022 market update, even only single-mode Bluetooth LE devices are over five billion.
Additionally, Bluetooth LE device shipments are forecasted to more than triple growth over the
next five years (Bluetooth Technology Website, n.d.). The increase in popularity of this
technology has also made it more desirable for attackers and data collectors. Devices that
leverage this technology include but are not limited to home security systems, medical devices
such as pacemakers, and similar apparatuses whose integrity is crucial for people’s safety (Yu et
al., 2012). Most devices also collect, hold, and transfer sensitive information. The rapid growth
of the Internet of Things has paved the way for many other new applications and services.
Internet-of-Things (IoT) devices extensively use BLE since it is an easy-to-deploy and cost-
effective low-power wireless solution. However, the increase in BLE devices and the lack of the
discovery of many device models would bring security and management challenges, such as
vulnerabilities and misconfiguration (Zuo et al., 2019). Identifying the characteristics of BLE
devices is an approach that helps detect potentially vulnerable devices in our daily lives.

Fingerprinting is a technique for identifying these devices’ operating systems (OS), applications,



or network services, which has been widely studied for more than 20 years (Zuo et al., 2019). On
the other hand, there are many manufacturers, different device types, and product models,
leading to a large number of fingerprints, and it is hard to keep the fingerprinting updated with
the addition of new devices day by day. Furthermore, existing fingerprinting studies are
generally based on device characteristics information. Zuo et al. (2019) developed an automatic
fingerprinting system using the BLE device’s static UUIDs (Universally Unique Identifier).
However, there are defined UUIDs by the Bluetooth SIG, and multiple devices can use the same
UUID with different chips.

Additionally, BLE devices are identified by a Bluetooth MAC address, and the MAC
address is uniquely allocated to the device by the manufacturer. Therefore, it may seem like a
very convenient piece of data in fingerprinting a device. Although devices with static MAC
addresses, such as the Fitbit Inspire, are still available in the market, The BLE protocols force
devices to randomize their public MAC address for user privacy and bypass to display of a
unique identifier (Jouans et al., 2021). Using MAC address randomization makes MAC
addresses unsuitable data to fingerprint a particular device. Moreover, BLE devices do not
always prefer to share device names and manufacturer ID information since they are non-
mandatory information to be shared in an advertising packet. Since mentioned device
information is not accessible for every BLE device and the variety of devices is increasing day
by day, a novel approach is required to detect nearby vulnerable devices. A vulnerable BLE
device can cause user privacy leaks and even human health threats. They can be a steppingstone
toward more serious threats in enterprise environments.

This study proposes a BLE sniffer for the enterprise environment to raise an alarm

whenever a nearby vulnerable device is detected. The proposed system includes sniffing BLE



device advertising packets, fingerprinting the BLE chip model, unlike BLE device model
fingerprinting, which is a widely used method, vulnerability search based on the device chip
model, alerting authorities to the presence of vulnerable devices.

The approach of this proposed system is to fingerprint BLE device chip models, which
have less variety, based on the timing information of the device advertising packets, instead of
fingerprinting BLE devices whose ever-increasing variety. The fingerprint’s timing information
is due to the inherent hardware property and controller implementation preferences. It is also
argued that focusing on Bluetooth chip models is a more determined approach since there is a
limited number of chip vendors, including Nordic Semiconductor, Infineon Technologies, Texas
Instruments, and the same chip vendor provides the same upstream SDK (Software Development
Kit) for their products. Moreover, different devices could have the same chip model, and this is
another idea that facilitates finding if a device is vulnerable based on the chip model. Based on
this approach, this study captures advertising packets from nearby devices with the sniffing
method and accesses the chip model information using a machine learning models (Decision tree
and K-Nearest Neighbor) with the timing and size information extracted from the packets. This
study shows that creating chip fingerprints based on timing information is possible, and the
machine learning model trained with the time-related information may predict the specific chip
model of a real device. Whether the devices whose chip model information is accessed with the
machine learning method are vulnerable can be easily learned by querying the databases
containing CVE records, such as the CVE list by MITRE Corporation (CVE, n.d.). CVE stands
for Common Vulnerabilities and Exposures and is a database of publicly disclosed information

security issues.



One of the essential future works is designing and implementing a more advanced
machine learning model to identify device chip models. Additionally, the machine learning
models can be trained to predict both chip model and firmware versions to detect vulnerable
devices with 100% confidence. The other is integrating a database containing CVE records
directly to the machine learning project could provide the automatic result of whether a device is
vulnerable.

1.1. Motivation

BLE devices are widely deployed in many fields, including security-sensitive healthcare
applications. However, they are particularly vulnerable. Especially BLE 4.1 and below are
subject to MITM attacks, and it is not fixable (Padgette et al., 2017). Identifying BLE devices’
characteristics could help us detect potentially vulnerable devices. For this purpose, many
fingerprinting methods have been developed. Fingerprinting is an extensively studied technique
for identifying various devices and systems such as computer operating systems (OS),
applications, and network services (Yang et al., 2019). However, these methods are generally in
the direction of creating device fingerprints by detecting the characteristics of the devices. Since
the information such as the MAC address, services, characteristics, device name, and
manufacturer 1D used for fingerprinting the devices are not always accessible, the fingerprinting
methods offered by the existing fingerprinting methods are not always effective enough. For this
reason, reaching the chip model information of BLE devices using the packet timing and size
information that can always be obtained from an active device’s advertising packets will be a
more effective method of detecting if a particular device is subject to any vulnerability.

To this end, after collecting the timing and size information of these devices’ advertising

packets and identifying device chip models using machine learning techniques, the CVEs



database should be queried with the obtained chip model information to see if a particular device
is vulnerable. The main focus of this study is to fingerprint the chip models of devices from the
captured raw BLE packets. The idea of developing a fingerprinting system for BLE chips using
machine learning models will allow device vulnerabilities to be detected more decisively and
easily.
1.2. Outline

This thesis consists of five chapters. The remaining thesis is structured as follows. After
presenting the recent related studies in chapter two, chapter three includes the data and
methodology used in this thesis. The third chapter explains how the data was collected and
manipulated and how the machine learning implementation and database querying were
performed. Chapter four presents and discusses the corresponding results and explains the
vulnerabilities of chip models detected by machine learning models in this study's experimental
work. Finally, the last chapter concludes the thesis, discusses the limitations of this study, and

suggests future works on this topic.



CHAPTER 2
LITERATURE REVIEW

Numerous studies have been implemented to evaluate and improve BLE. These previous
works include case studies to emphasize the importance of BLE device security, identify BLE
devices using various methods and generate various vulnerabilities data. Fingerprinting and
analyzing BLE device characteristics, detecting vulnerable BLE devices, and some experiments
that proved how important it is to detect device vulnerabilities received much attention in the
scientific literature. The literature reviewed throughout this study will be summarized in this
chapter.

According to previous studies, various compromises have been made in Bluetooth Low
Energy communication structure compared to the Bluetooth classic to simplify the low energy
protocol. Some of these compromises were made in packet whitening, channel hopping rate, and
the key exchange protocol since the low-power devices have limited input and computing
capabilities. These decisions made the privacy of the data transmitted in BLE low secure than the
Bluetooth classic. Ryan (2013) provided the first BLE sniffer that is able to monitor packets in
Bluetooth Low Energy. Based on the evaluation of the encryption of the link layer in this study,
it is argued that BLE devices are more vulnerable than Bluetooth Classic devices. In the
following times, many more important studies and findings were made about the privacy and
security of Bluetooth Low Energy devices. According to Kaspersky’s report in 2021, medical
equipment is already being hacked in many hospitals. Patient monitoring videos were watched

illegally, and x-ray machines have delivered dangerously high radiation levels (Bracken, A. B.,



n.d.). Antonioli and Payer (2022) conducted a study on five different vehicle infotainment units
(Bluetooth hardware to exchange data); by attacking those units, an attacker may access sensitive
information about the driver along with the ability to send malicious commands to the unit itself.
The attacker can even remotely control the vehicle using Bluetooth packets since the unit is
connected to the vehicle’s internal Controller Area Network (CAN bus allows microcontrollers
and devices to communicate and transmits the data). Based on another report conducted by
security firm Armis in 2018, on the domain of vulnerable BLE devices, the vulnerability of
Texas Instruments' BLE chips leads to an attacker using the compromised device as a
springboard for further internal attacks. The issue impacts millions of Wi-Fi access points,
accounting for a sizable percentage of hardware used in corporations (Spring, A. T., n.d.).
Before Bluetooth 2.0+EDR (Enhanced Data Rate) pairing process's security feature was
the exchange of a four-digit secret key which is easily guessed and makes it relatively easy to
perform passive and active eavesdropping (Man-In-The-Middle attacks). The introduction of
SSP (Secure Simple Pairing) with Bluetooth 2.1+EDR and the LE Privacy in Bluetooth 4.0 (i.e.,
the first version of Bluetooth LE) decreased the security concerns. However, SSP is still the
standard pairing method many Bluetooth devices use. Albahar et al. (2016) stated in their study
that LE privacy uses the advertisement method for the communication between Bluetooth
devices. This method advanced Bluetooth Security compared to other methods in the field.
However, according to their research, there is still no prevention against all attacks. That means
we are surrounded by many devices that have vulnerability. Therefore, specifying which BLE
devices have vulnerabilities has vital importance. To emphasize the importance of this topic, it
can be said that implementing the BLE protocol in the eHealth sector permits various attacks

because of the lack of authentication and integrity protection among the devices. Yaseen et al.



(2019) presented a novel framework named MARC to analyze BLE security features and
mitigate MITM attacks against medical sensors using Bluetooth Low Energy pairing
mechanisms in the eHealth sector. Their solution to mitigate possible attacks targeting BLE
healthcare sensors focused on Received Signal Strength Indicator (RSSI) level, advertisement
interval, advertised Bluetooth address, and malicious scan requests. They used Texas
Instruments'CC2540 USB dongle to analyze BLE packets in their testbed. As a result, they could
detect attacks and the cloned nodes using Bluetooth low energy characteristics, classes, devices
architecture, security features, pairing methods, and multiple roles at different layers.

On the other hand, the more critical point is detecting vulnerable devices before their
privacy is compromised. Thus, manufacturers and developers can take precautions on various
hardware and firmware. One of the popular studies in detecting vulnerable devices is the
fingerprinting study by Celosia and Cunche. Celosia and Cunche (2019) created fingerprints
using the GATT profile of BLE devices. Based on their dataset, they analyzed the content of a
GATT profile and the potential of these fingerprints to identify several devices uniquely. A
GATT profile is a data structure containing many elements subject to variation between devices
and thus holds potential for fingerprinting. In the light of such information, they considered
handles and UUIDs of services and handles, UUIDs, properties, and values of characteristics to
fingerprint devices. They also showed that the content of a GATT profile, some services, and
characteristics could be exploited to track and infer sensitive information on the user.

Additionally, Zuo et al. (2019) developed a mobile app analysis tool BleScope for
automatic fingerprinting of vulnerable BLE devices with static UUIDs from mobile apps to raise
public awareness of BLE device fingerprinting and uncover these vulnerable BLE devices before

attackers. They showed that an attacker could fingerprint a BLE device with static UUIDs since



there is a flaw in the existing design and implementation of the communication protocols
between a BLE device and a mobile app. In a typical device connection scenario, a device
broadcasts advertisement packets with UUIDs, and by leveraging these UUIDs, a companion app
can identify the device. They also performed a field test and found that among around 6000 BLE
devices, 94.6% of these devices are fingerprintable, and 7.4% of them are vulnerable to attacks.
But these studies have mostly focused on fingerprinting devices from their UUIDs. According to
the approach of this study, device UUIDs may not be helpful to detect a vulnerable BLE device
chip model since many devices can use a defined UUID with different chips. give

In another study, fingerprints were created by applying device features to artificial neural
networks. Yang et al. (2019) proposed an approach to fingerprint 10T devices using neural
networks algorithms because the manual fingerprinting approaches are long-term processes.
Since device manufacturers implement different network systems on their products, they first
explored the features of devices in three network layers: network layer, transport layer, and
application layer. By examining the features of these network protocols and using neural network
algorithms, they generated 12,880 device fingerprints in a fine granularity label. Their
implementation showed that the device fingerprints applied classification can be used to discover
15.3 million network-connected devices and analyze their distribution characteristics. Thus, they
allowed extensive and rapid fingerprinting studies to be conducted. Similarly, this study aims to
train a machine learning model with timing fingerprints of chips and make a broader range of
vulnerable device detection since chip models have a limited variety. Results of another recent
research on fingerprinting BLE chipsets instead of BLE devices found that an attacker could use
unique physical-layer fingerprints to detect hardware imperfections of BLE chipsets on

transmissions of devices. Physical-layer fingerprints can reliably differentiate many kinds of



BLE chipsets. This study of 162 BLE devices concluded that physical-layer identification using
Carrier Frequency Offset (CFO) and 1/Q offset is viable for an attacker to track mobile devices
(Givehchian et al., 2022). It is clearly indicated that the presence of vulnerable BLE chips
threatens user privacy and even physical security.

Neumann et al. (2012) analyzed the performance of network parameters for
fingerprinting wireless devices. In this previous study, network parameters such as transmission
time, frame inter-arrival time, and frame size were compared to show the best performance for
fingerprinting wireless devices. The transmission time performs one of the best parameters
compared to the other network parameters for device identification.

Overall, the review of existing literature revealed a hilarious number of the security risks
of BLE devices. Sensing vulnerable devices can prevent many security problems, especially in
enterprise environments. To detect vulnerable BLE devices, fingerprinting methods were
informed in the review of the literature. Compared to existing studies, this study includes
machine learning models trained with advertising packet timing information collected by sniffing

nearby BLE devices to predict BLE devices’ chip models.
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CHAPTER 3
DATA AND METHOD
The proposed system is to build a BLE sniffer for the enterprise environment to raise an
alarm whenever a nearby vulnerable device is detected. The main focus of this system is to
fingerprint the chip models of devices using only timing and size information collected from the
captured raw BLE packets. The workflow of the proposed system is shown in Figure 3.1. below.
In the system implementation, these steps were followed; the first step is sniffing BLE device
advertising packets and then labeling these packets’ timing and size information. Secondly,
fingerprinting BLE devices’ chip models via machine learning classification algorithms. After
that, device chip models were searched on the vulnerability database for the possible device
vulnerabilities. If a vulnerable device nearby is detected, the system would raise an alarm to
warn the enterprise authorities. This chapter presents different steps taken to gather and
manipulate the data used in this proposed system and provides information on the
implementation to acquire the results.
Figure 3.1.

Proposed System Workflow for Enterprise Environment
.)))
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3.1. Data Gathering

The data analyzed and used in this study were collected by sniffing method from eight

different fitness trackers using the nRF52840 USB Dongle and the nRF Sniffer Tool developed

by Nordic Semiconductor (Nordic Semiconductor, n.d.b). The device manufacturer, device

model, device model number, chip vendor, chip model, and Bluetooth core specification version

information of these devices are listed in table 3.1.

Table 3.1.

List of Devices

Brand Device Model Device Model Chip Vendor Chip Model Core Spec
Name Name Number Version
Fitbit Inspire FB412 Infineon PSoC6 5.0
Garmin  Fenix 3HR - Nordic nRF51822_CE- S110 4.0
Huawei  Honor Band5 CRSB59S - - 4.2
Jawbone UP24 JHO2 Nordic NnRF52840-S140 5.0
Samsung Galaxy Fit SMR370 Dialog DA1469x 5.0

Sony SWR10 - - - 4.0
Xiaomi  MiBand 3 XMSHO5HM  Dialog DA14680 4.2
Xiaomi  Mi Band 4 XMSHO7HM  Dialog DA1469x 5.0

As seen in Table 3.1, eight different peripheral devices were used in the data collection

setup. All these devices are in the fitness tracker category. Six of these devices have five

different chips belonging to Cypress Semiconductor (i.e., Infineon Technologies), Nordic

Semiconductor, and Dialog Semiconductor, the industry's leader chip vendors. Huawei Honor

Band 5 and Sony SWR10's advertising packet data was not included in the study since their chip

model information was not accessed on the Launch Studio, which is the listing search is provided
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by Bluetooth SIG to help find previously qualified designs and declared products (Bluetooth,
n.d.a).
Hardware & Software

In this experimental work, the nRF52840 Dongle introduced by Nordic Semiconductor
has been utilized as sniffing hardware. The nRF52840 Dongle is a small, low-cost USB dongle
using nRF52840 SoC that integrates Bluetooth Low Energy (LE), Bluetooth mesh, Thread,
Zigbee, 802.15.4, ANT, and 2.4 GHz proprietary applications (Nordic Semiconductor, n.d.a).
The nRF52840 Dongle is supported by most nRF Connect for Desktop applications and can be
programmed with the nRF Connect for Desktop's Programmer application. nRF Connect for
Desktop is a cross-platform framework for development applications, and it supports most
operating systems. This tool contains apps for testing Bluetooth Low Energy, monitoring LTE
links, power optimization, programming, etc. (Nordic Semiconductor, n.d.c). Figure 3.2. shows
the user interface of Programmer app v2.3.3 which the Nordic SoCs can be programmed, read,
written, or erased.

Figure 3.2.

Programmer Application GUI

0 Open DFU Bootloader A PROGRAMMER ‘
File
> Rele [
© Clear files
Device ]
o ——

[ ) oW s P
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Another software used for the nRF52840 Dongle to capture advertising packets is the
nRF Sniffer for Bluetooth LE Development tool v4.1.0, also developed by Nordic
Semiconductor. The nRF Sniffer includes Python API that allows scripted use of BLE Sniffer
and real-time display of Bluetooth LE packets. The nRF Sniffer lists all nearby Bluetooth Low
Energy devices that are advertising, providing the Bluetooth address and address type, complete
or shortened name, Received Signal Strength Indication (RSSI), and timing information for each
captured packet. The sniffer consists of three parts where the API replaces the console app as the

controller and hub of communication. The parts of the Sniffer are as shown in Figure 3.3.

Figure 3.3.
The Parts of the Sniffer
) Named Wireshark
Sniffer console app
pipe Wireshark
plugins (dll)
Firmware UART Sniffer API

Source: (Nordic Semiconductor, 2014, p. 2)

The nRF Sniffer for Bluetooth LE software consists of firmware programmed onto a
Development Kit (DK) or dongle and a capture plugin for Wireshark (Wireshark, n.d.) that
records and decodes the captured raw data. Raw data decoded with the Sniffer tool can be
viewed and exported with the Wireshark plugin included in the API. To use the nRF Sniffer
software and view the captured data, the user must have the nRF Connect Programmer and locate
the firmware HEX file for the supported hardware. The nRF Sniffer tool also includes some
Python requirements. The user should have Python v3.6 and Pyserial v3.5 which is a third-party
Python library. The instructions to meet other requirements are clearly stated in the nRF Sniffer

user guide (Nordic Semiconductor, 2021).
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Packet Sniffing Setup

In the packet sniffing setup, a smartphone that has the device applications, the nRF52840
Dongle as a sniffing and scanning hardware with a laptop running sniffing software that is
noticed in the hardware & software part, and eight BLE smartwatches that broadcast advertising
packets as a peripheral device are utilized.
Figure 3.4.

Packet Sniffing Setup

The methodology of this data gathering experiment is as follows. Firstly, each device was
placed in the specified locations, as shown in Figure 3.4. After the nRF52840 Dongle, which was
programmed with the hex file of the Sniffer tool, was connected to a computer via a universal
serial bus (USB) interface, the Wireshark was launched on the computer, and the sniffer scanned
channels (37, 38, 39) continuously. The advertiser and the smartphone were positioned at a close
distance to the nRF52840 Dongle to allow the connection to be established. The device began to
send the advertisements periodically. After packets were captured by the plugin interface of the
nRF Sniffer tool, a connection was established between the advertiser and the smartphone to

collect and analyze varied sizes of device advertising packets' timing parameters. The raw and
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decoded data captured can be viewed simultaneously in the Wireshark. When collecting diverse
types of packets before and after pairing is completed (which results in capturing an average of
6,000 BLE packets per device.), data was recorded and exported from the Wireshark in .csv
format for analysis and manipulation to be used in the machine learning model. The mentioned
steps are repeated for every single device listed in Table 3.1. Explanations of the obtained data
are given below.

Data Description

A BLE device periodically sends a set of consecutive advertising packets. An advertiser
may transmit only its advertising information or payload information within the advertising
packets (Ghamari et al., 2018). In this study, approximately 40,000 advertising packets were
gathered from eight devices with the previously mentioned packet sniffing setup. These packets
contain the advertiser device's broadcasted data, communication between the peripheral and the
central devices, and packet information added by the sniffing tool. The raw data packets were
decoded by the nRF Sniffer tool, and the packet list, packet details, and packet bytes were
displayed on the Wireshark, as seen in Figure 3.5.

The collected packets may contain advertiser device information such as device name,
manufacturer id, chip vendor, Bluetooth specification version, subversion number, 16-bit service
class UUIDs, 128-bit service class UUIDs, device appearance, advertising address, access
address, Bluetooth MAC address, and more. The data may also contain packet information such
as payload size, packet size, packet time, delta time, Received Signal Strength Indication (RSSI),

packet counting, data direction, transmitting channel, PDU type.
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Figure 3.5.

Wireshark Interface
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Due to this study's adopted and advocated approach, only the timing information,
including packet time (start to end) and delta time (end to start), was selected for the machine
learning model inputs to identify if a device is vulnerable. Since the calculated timing
information varies according to the packet and payload size, and this size information is directly
related to the packet transmission time, the packet size and payload size were also included in the
data as the inputs of the machine learning model. The packet size represents the packet length in
bytes, and payload size is the payload length in bytes. The packet time (start to end) is the time
of transmission of the current packet in microseconds, and the delta time (end to start) is the time
in microseconds from the end of the previous data packet to the start of the current packet. It is

the idling time between packet data transmission.
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In addition to the four inputs collected from the devices, the chip model information was
added to the data as the output of the machine learning model. Several semiconductor vendors
offer BLE transceiver chips containing the BLE radio and a full-featured, low-power
microcontroller capable of running the BLE protocol stack and a user-specific application
(Schrader et al., 2016). Therefore, the chip model information indicates which Bluetooth
hardware the BLE device is operating. Thus, as stated in the Bluetooth Core Specification, we
can detect hardware-related vulnerabilities of a device with the chip model information. As seen
in Table 3.1, the packets captured from Sony SWR10, and Honor Band 5 were not included in
the research’s data because of the inaccessibility of their chip model information.

The Bluetooth address, referred to as BD_ADDR in the Bluetooth specification, is an
extended 48-bit Bluetooth MAC address value that uniquely identifies the Bluetooth device. A
Bluetooth device must use this type of address. IEEE offers registries that maintain lists of
unique identifiers under standards and issue unique identifiers to those wishing to register them
(The Institute of Electrical and Electronics Engineers (IEEE), 2017). However, unlike registered
addresses, some developers may assign random addresses for the devices so that the MAC
address may be randomized. For this reason, the Bluetooth MAC address information will not
always be consistent in identifying a device and accessing the chip model. Therefore, the
Bluetooth MAC address information is also excluded from the data.

Despite much information contained in the packets, it has been observed that each
device's device name and company ID information cannot always be accessed with the sniffing
method. For this reason, data related to the device name and company ID are not included in this

study, even though some packets have this information.
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The same UUID can be used by multiple devices having different chip models. This
means that the UUIDs found in the data cannot fully identify the chip model. Considering this
reason, UUID data collected from the Bluetooth devices are not included in the data used for the
machine learning model.

The delta time (start to start) found in the packets was also eliminated since it means the
time delay of the start of the previous data packet to the start of the current packet. In other
words, it is the sum of the packet time and delta time (end to start) which are already existing
timing values in the data.

Considering all these descriptions, the timing info, which is inherent to the chip, and the
size information, which is effective in calculating the timing of packets, were selected to identify
whether a device has hardware-related vulnerabilities. The table 3.2. showing that the timing and
size information of four different chip models belonging to two different chip manufacturers
visibly differ is as follows. The time and size information in microseconds specified in the table
represent typical values resulting from captured the ADV _IND type advertising packets from
four devices.

Table 3.2.

Typical Time and Size Information of Chip Models

Device Model Chip Model Chip Packet Delta Packet Payload
Vendor Time (us) Time (us) Size (byte) Size (byte)

Fenix 3 HR nRF51822 Nordic 344 655 33 52

UP24 nRF52840 Nordic 408 704 27 46

Galaxy Fit DA1469x Dialog 336 129 32 51

Mi Band 3 DA14680 Dialog 376 1124 37 56

19



3.2. Data Manipulating

For the reasons mentioned in the data definition section, two devices' packet data were
deleted from approximately 40,000 packets collected from eight devices. In addition, due to the
reasons mentioned in the study's approach, only timing and size information was separated from
each devices' CSV files containing the data packets. Packet size (bytes), payload size (bytes),
packet time (us), and delta time (us) information of the remaining six devices were combined in
a different CSV file under the headings LengthOfPacket, LengthOfPayload, PacketTime, and
DeltaTime, respectively. Besides, the device chip model numbers found by manually searching
the Launch Studio website, which is the listing search is provided by Bluetooth SIG to help find
previously qualified designs and declared products (Bluetooth, n.d.a), are added to the last
column of the file under the heading ChipModel. Afterward, duplicate lines were deleted. Thus,
the data file was prepared as the machine learning dataset.
3.3. Machine Learning Model

In this study, it was aimed to access the chip model information of a real Bluetooth
device by using only its packet timing and timing-related information. For this purpose, a
common machine learning model, Decision Tree, and K-Nearest Neighbor (KNN) learning
model were used to make chip model predictions. Decision Tree model predicts the value of a
target variable by learning simple decision rules derived from data features, and The KNN
algorithm is an instance-based learning algorithm. Jupyter Notebook was used to apply the
decision tree model to the obtained data. The Jupyter Notebook is a web-based interactive
computing platform, and it allows to run the code in Python language from the browser (Jupyter,
n.d.). With the motivation that information other than timing cannot be used to determine

whether a device is vulnerable or not, the first four features in the dataset described above were
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used for machine learning inputs. The following steps were followed in the implementation of
the model.

First, the dataset was imported in the project created in Jupyter Notebook using the
Pandas Python package. After the rows with null values are cleared with the dropna function, the
first four columns of the imported dataset are assigned as the inputs of the model (x) and the last
column as the model's output (y). Then the dataset was split into random train and test subsets
using the train_test_split method of the Sklearn library. The original dataset is divided into the
training set and test set according to the ratio of 80:20. The models were trained with
approximately 3600 advertising packet data (X_train and y_train). The trained models were
expected to predict device chip models using the timing information of the devices. The accuracy
scores were calculated by comparing the model predictions with the y_test, including exact chip

model information for two machine learning models.
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CHAPTER 4
RESULTS AND DISCUSSION

This chapter presents the machine learning model test results, a brief description of the
performance values, and the results of the querying chip models on the vulnerability database.

Two machine learning algorithms, Decision Tree and K-Neighbors were applied to the
labeled data as described in Chapter 3, where all data collecting setup and methods were
explained. Machine learning algorithms’ results are placed below.

The data used in the training and testing of the machine learning models consist of packet
timing and timing-related information (packet and payload size in bytes) collected by sniffing
method from six different BLE devices. As shown in Table 3.1, since Xiaomi Mi Band 4 and
Samsung Galaxy Fit have the DA1469x chip model produced by Dialog Semiconductor, the
machine learning models were trained with packet timing and timing-related information of five
different chip models. Additionally, four different performance metrics: Accuracy, Precision,
Recall, and F1-score were calculated in this implementation. While the accuracy refers to the
degree of closeness of a measured quality to that quality’s actual value, the precision value,
namely the positive prediction value, calculates the fraction of correct positive identifications.
Recall performance metric describes the portion of correctly identified positives, and F1-score
measures a test’s accuracy considering both precision and recall (Newaz et al., 2020). Table 4.1

shows the precision, recall, F1-score values of the Decision Tree classification model.
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Table 4.1.

Performance Values of Decision Tree Model

Chip Model Precision Recall F1-score
DA1469x 0.89 0.91 0.90
nRF51822 CE- S110 0.94 0.95 0.94
PSoC6 0.72 0.54 0.62
nRF52840-S140 0.61 0.57 0.59
DA14680 0.54 0.58 0.56

Table 4.2 illustrates the precision, recall, F-1 score values of the K-Neighbors model
according to labeled classes, in other words, chip models.
Table 4.2.

Performance Values of K-Neighbors Model

Chip Model Precision Recall F1-score
DA1469x 0.84 0.89 0.87
nRF51822_CE-S110 0.92 0.95 0.93
PSoC6 0.74 0.64 0.69
nRF52840-5140 0.74 0.64 0.69
DA14680 0.63 0.54 0.58

As a result of testing the model trained using the Decision Tree, the accuracy score was
87.5%, whereas the accuracy score of the K-Neighbors classification model was 86%.

This study achieved high accuracy in detecting different types of BLE device chip
models, which is a piece of crucial information to identify device vulnerabilities. One predicted
observation is that chip models with more timing information provided higher performance
values. For instance, nRF51822 CE- S110 by Nordic Semiconductor had approximately 93%

precision, 95% recall, and 94% F-1 scores because there was more captured data for this chip

23



model. In addition, it has been revealed that using the packet time information gives accurate
results even in identifying chip models by the same chip vendor since the data included the
information of different chip models belonging to the same manufacturer.

As machine learning models extracted features from advertising packet timing values, it
is expected that training machine learning models with a wider variety of chip model data will
have a positive impact on the accuracy. To enlarge the dataset, advertising packets can be sniffed
with different firmware versions of existing devices since it affects the timing calculations of a
packet, or the number of devices in the testbed can be increased. To learn whether a BLE device
is vulnerable, the chip models were queried on the public vulnerability database. To build a chip
model vulnerability database, there are two sources available. First is the CVE list by MITRE.
Bluetooth and BLE keywords were searched on that website to collect BLE-related
vulnerabilities, as shown in Figure 4.1. The Launch Studio website, which provides the listing
search by Bluetooth SIG to find qualified designs and products, was used to collect the chip
model details of devices.

Figure 4.1.

Search Results for PSoC 6 (Fitbit Inspire)

NVD

Go to for:

Search CVE List Downloads Data Feeds Update a CVE Record Request CVE IDs
TOTAL CVE Records: 173265

NOTICE: Tr ition to the all CVE bsite at WWW.CVE.ORG is underway and will last up to one year. (details)

NOTICE: Changes coming to CVE Record Format JSON and CVE List Content Downloads in 2022.

Search Results

There are 3 CVE Records that match your search.

Name Description
- 11957 The Bluetooth Low Energy implementation in Cypress PSoC Creator BLE 4.2 component versions before 3.64 generates a random number (Pairing Random) with significantly less
entropy than the specified 128 bits during BLE pairing. This is the case for both authenticated and unauthenticated pairing with both LE Secure Connections as well as LE Legacy
Pairing. A predictable or brute-forceable random number allows an attacker (in radio range) to perform a MITM attack during BLE pairing.

1 The Bluetooth Low Energy (BLE) stack implementation on Cypress PSoC 4 through 3.62 devices does not properly restrict the BLE Link Layer header and executes certain memory
contents upon receiving a packet with a Link Layer ID (LLID) equal to zero. This allows attackers within radio range to cause deadlocks, cause anomalous behavior in the BLE state
machine, or trigger a buffer overflow via a crafted BLE Link Layer frame.

The Bluetooth Low Energy implementation in Cypress PSoC 4 BLE component 3,61 and earlier processes data channel frames with a payload length larger than the configured link
layer maximum RX payload size, which allows attackers (in radio range) to cause a denial of service (crash) via a crafted BLE Link Layer frame.
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The second source was the chip vendors' web pages. Chip vendors mostly share chip
vulnerabilities that influence their products. Figure 4.2. shows that the Dialog Semiconductor
website for shared vulnerabilities and resolutions for their products.

Figure 4.2.

Dialog Semiconductor Webpage for Shared Vulnerabilities

Device SDK Vulnerability Resolution Status/plan

Device vulnerabilities learned as a result of queries made in the vulnerability database are
as follows:

CVE-2019-17518 record shows that DA1469x and DA14680 (Samsung Galaxy Fit, Mi
Band 4, and Mi Band 3) have the BLE implementation imperfection. According to this record,
these devices respond to link-layer packets with a payload length larger than expected, allowing
attackers in radio range to cause a buffer overflow via a crafted packet.

For PSoC 6 chip model, there are three existing vulnerability records. CVE-2020-11957
reveals that PSoC 6 (Fitbit Inspire) generates a random number (Pairing Random) with
significantly less entropy than the specified 128 bits during BLE pairing. A predictable or brute-
forceable random number allows an attacker (in radio range) to perform a MITM attack during

BLE pairing. The second record for PSoC 6 CVE-2019-17061 shows that PSoC 6 allows
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attackers within radio range to cause deadlocks, cause anomalous behavior in the BLE state
machine, or trigger a buffer overflow via a crafted BLE Link Layer frame. Additionally,
according to the CVE-2019-16336 record, PSoC 6 allows attackers (in radio range) to cause a
denial of service (crash) via a crafted BLE Link Layer frame.

For Garmin Fenix 3 HR and Jawbone UP24 fitness trackers, one record is available on
the vulnerability database, CVE-2020-10069. As this record informs, nRF51/52 allows attackers
to trigger the vulnerability by simply sending a connection request with the cleared channel map
field.

As a result, this study demonstrates that by sniffing only the timing information of a BLE
device advertising packet, the chip model information of that device can be accessed, and it can

be determined whether this device has a vulnerability.
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CHAPTER 5
CONCLUSION

This study proposed a sniffer system for fingerprinting the chip models of BLE devices
based on the captured advertising packets for the enterprise environment to raise an alarm
whenever a nearby vulnerable device is detected. The system is built using nRF52840 Dongle as
a sniffer and nRF Sniffer for Bluetooth LE software that can process received raw packets and
display them on Wireshark. Such advertising packets' labeled datasets of five different chip
models are merged, and four input types which are packet size (bytes), payload size (bytes),
packet time (us), and delta time (us), were chosen fed into two basic Machine learning
classification models. The described data set was preprocessed, removing two devices (Honor
Band 5 and Sony SWR10) captured packets. The preprocessed data were used to train two
machine learning algorithms, Decision Tree and k-Nearest Neighbor, and tested with a dataset
consisting of 20% of all data that was split up from the database before training the models. The
maximum results were achieved by the Decision Tree classifier, scoring 87.5%. Machine
learning models provided higher performance values for the chip models with more timing
information.

The results obtained confirm the validity of the proposed machine learning approach,
which can perform accurate BLE device chip model estimation by using only time data of BLE
packets. This was done by using a sniffing process consisting of eight fitness-tracker devices,
gathering data, preprocessing data, training two Machine Learning classification models,

Decision Tree, and k-Nearest Neighbor, for performing chip model estimation. Finally, the
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results highlight that the Decision Tree algorithm works slightly better than the K-Nearest
Neighbor model.
5.1. Limitations

In this study, there were two main limitations. The first limitation was the poor number of
BLE devices. To gather data, real BLE devices must be acquired and only 8 devices have been
studied. Since the number of nearby devices affected the size of the dataset and caused the
training of the machine learning models with a small amount of data for each chip model and the
lack of fingerprinted chip model variety, it can be said that this is the most significant limitation.
However, two ways to enlarge the dataset were discussed in chapter four.

On the other hand, the difficulty of training machine learning models for each firmware
version was the second limitation. Since chip vulnerabilities are defined for different firmware
versions, each firmware version must be trained separately. However, chip vendors generally
update firmware versions when they realized a vulnerability as a resolution. Therefore, the
models must be updated when there is a new firmware version and it burdens training the
machine learning model for each updated firmware version.

5.1. Future Work

In this section, ideas for future works and the development of this study are shared. First,
the manual process after obtaining the chip model information from the machine learning
algorithm can be eliminated. Automated vulnerability database querying by integrating
vulnerability database containing CVE records directly to the machine learning project could
automatically determine whether a nearby device is vulnerable. The second idea is the
performance improvement of machine learning models. The performance improvement can be

achieved by working on the optimization of the labeled data, increasing the data size fed into
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machine learning models, and scaling the data variables. The third future work would be
machine learning model output improvement. In the current work, the ML model outputs chip
model information for four devices and chip model + firmware version information for two
devices. In future work, the ML model can be trained to predict both chip model and firmware
version for all devices to detect vulnerable devices with 100% confidence for the reasons why

explained in the limitations section.
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