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ABSTRACT 

Accurate assessment of spatial variability of soil texture is a significant component of 

agriculture and environmental modeling. Current soil maps lack detail necessary for intensive 

management like precision agriculture. Determining optimal sample sizes for creating detailed 

soil maps is challenging because it is cost and labor prohibitive. In this work, random forest 

models of soil texture were developed using an 80/20 split for training and testing data, 

respectively, for 50 iterations of sample sizes between 10-65. Sixty-nine samples were taken 

from a 40-acre crop field in July 2020 and May 2021 at 0-10, 10-40, 40-70, and 70-100 cm and 

combined with topographic covariates, electromagnetic conductivity (EM31), and spectral 

reflectance data as predictors. R2 and root mean square error (RMSE) varied by soil property and 

depth. A sample size of 35-45 samples represented the variability of soil texture most depth 

increments based on the trends in R2 and RMSE.  
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Importance of soil texture: A Landscape Scale perspective 

Soil serves a major role in facilitating water and nutrient movement in landscapes. 

Detailed characterizations of soil physical properties are critical inputs for modeling 

landscape-scale water table fluctuations and surface runoff. Soil properties also determine 

erodibility potential of the land surface (Wischmeier and Mannering, 1969). Hence, an 

accurate assessment of spatial variability of soil properties is a significant component of 

agriculture and environmental modeling (Shit et al., 2016). Presently, application of high 

spatial resolution sensors and multifaceted modeling can be combined to develop high 

spatial-resolution soil maps (Robinson et al., 2017). Such maps can improve our ability to 

manage soils within landscapes.  

Soil texture is a physical property of soil representing the relative proportions of 

particle sizes for a given soil (i.e., sand, silt, and clay). It is one of the most important 

physical properties of soils and directly affects other critical properties, including 

susceptibility to erosion, drainage, water-holding capacity, organic matter content, the 

capacity for leaching nutrients and pollutants and engineering properties (Stevens, 1992; 

Adugna, 2018).  This abiotic factor also influences the distribution of minerals, organic 

matter retention and microbial biomass (Najmadeen et al., 2010) which explains why it is one 

of the key components for assessing soil quality and the sustainability of agricultural 

management practices (Hassink et al., 1993; Villas-Boas et al., 2016). Spatial distributions of 

soil properties like texture can vary significantly over short distances which can influence 
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water movement, plant productivity, and erosion at field and landscape scales. Ciampalini et 

al. (2012) developed a model for analyzing agricultural landscape evolution and suggested 

that surface soil is currently experiencing rapid evolution due to changes made by climate 

and humans. Human-imposed changes include those implemented by farmers and policy 

decision makers across a range of spatial scales (Verburg et al., 2002; Rounsevell et al., 

2005; Claessens et al., 2009; Ciampalini et al., 2012) while climate-induced changes relate to 

deviations in seasonal distribution of climate factors and in the frequency of extreme events 

predicted by future climate changes (Bernstein et al., 2008; Ciampalini et al., 2012).  

Therefore, knowledge of spatial variation in soil texture is necessary for sustainable soil 

management (Pahlavan-Rad and Akbarimoghaddam, 2018) and soil security (McBratney et 

al., 2014).  

Soil texture plays an important role in nutrient availability for crops and other plants. 

In particular, particle size strongly influences surface area and subsequently cation exchange 

capacity (CEC) such that clayey soils tend to hold more nutrients than soils with more sand 

(Seybold et al., 2005). Najmadeen et al. (2010) collected 25 samples of soil at 9 locations in 

Iraq and analyzed exchangeable cations. Each sample location was random, and collected at 

a 15 cm depth using a 2.5 cm diameter soil auger (Najmadeen et al., 2010).  From the nine 

collected soils, six different textural soil classes (sandy loam, loamy sand, silty loam, silty 

clay loam, loam, and clay loam) were detected. The results of soil textures showed no 

significant effects on concentration of (Mg+2 & Na+) ions and available phosphorus. 

However, high significant differences in Ca+2, HCO3, Cl-, and CaCO3 among different soil 

textures were recorded. This may vary world-wide but demonstrates the importance of soil 

texture for nutrient availability.  
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 Soil texture, in addition to impacting ion retention, also impacts water holding capacity of 

soils (Olorunfemi et al., 2016) and this information is crucial in assessing water requirements 

for irrigation schedules and for the prediction of probable crop responses to irrigation (Abu-

Hamdeh, 2004). Levi (2017) summarized water holding capacity by soil texture class for 

75,736 samples from the National Cooperative Soil Survey (NCSS) pedon database. To 

achieve this, the Rosetta pedotransfer function (PTF) was used to predict water retention for 

NCSS samples in the database. Rosetta input includes sand, silt, clay, bulk density, and 

measured values of water content at field capacity and wilting point (Levi, 2017). The study 

comprehensively evaluated twelve soil textural classes and showed that the water holding 

capacity was strongly dependent on texture with silty soils having the highest capacity 

followed by clays and sands. Consequently, irrigation efficiency is also affected to a large 

degree by the texture of the surface and upper subsoil layers or horizons. When practicing 

irrigation obligations, texture is the first piece of soil information needed when making 

irrigation recommendations (Russell, 1980).  

The texture of soil is also important in interpreting data from soil sensors that in the 

age of precision agriculture, have become crucial for providing insights into agricultural 

processes governing crop growth, carbon storage, soil water, and nutrient use and can help 

with timely and informed decisions for management practices (Najmadeen et al., 2010; Singh 

et al., 2020). The calibration and validation of remotely sensed soil moisture products relies 

on accurate ground data (Rowlandson et al., 2013). For example, soil texture can affect the 

spatial variability of soil moisture dynamics which needs to be quantified using in-situ or 

field sensors for several applications. For instance, the relationship between the signal of 
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electrical conductivity of fields measured using the Electromagnetic conductivity meter (EM) 

and soil moisture varies with soil texture (Kargas et al., 2013; Singh et al., 2020). Kargas et 

al. (2013) used disturbed and undisturbed soil cores to examine how soil texture affects EM 

readings.  In the same study, they also evaluated the impact of soil texture (varying from 

sands to clay) on the calibration of a water content reflectometer sensor, TDR300 (Field 

Scout TDR300, Product manual., 2022). The influence of soil texture led to variability in the 

calibration results for water content where sand had the best results while clay was less 

accurate. A major finding of this study was that the TDR300 had difficultly calibrating, and 

soil EC affected the permittivity values with levels as low as EC <2 dS/m. The relationship 

remained linear up to EC 2dS/m that corresponded to bulk soil EC value of 0.6dS/m. EC 

values >2dS/m was not linear which made the TDR300 calibration problematic. They found 

higher EC values in clay and it was problematic when there was a change in soil temperature 

and leaching after irrigation.  Similar to Kargas et al. (2013), Ponizovsky et al. (1999) 

conducted research on TDR and found an increase in variability in clay content resulted in 

varied moisture content. Their study focused on the influence of quartz sand (particles 

ranging from 0.05 – 2.00 mm) and sand-kaolin mixtures in Ukraine and forest soil samples 

from Moscow. The soils were classified as Eutric Podzoluvisols, Orthic Greyzems, and 

Luvic Chernozems (Unesco, 1987; Ponizovsky et al., 1999). All the samples were taken from 

upper 20 cm of the A horizon. TDR measurements changed in curves for fine-texture 

samples in volumetric content of 0.13 to 0.27. The uncertainty in the measured volumetric 

water content (v) was higher using the factory calibration root mean square difference 

compared to the laboratory calibration for the different soil structures and texture classes 

(Ponizovsky et al., 1999; Kargas et al., 2013; Rowlandson et al., 2013; Singh et al., 2020). 
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The performance of the TDR was affected by soil texture. Although, the Topp and De Loor 

equations did not have fitting parameters and are satisfactory models for coarse-textured soils 

and sand-clay mixtures, in general, the uncertainty in estimation of soil water depth was 

greater than the uncertainty in estimation of soil water depletion by the sensors installed in 

the field, and the uncertainties in estimation of depth and depletion were lower using the 

calibration developed from the undisturbed soil samples (Singh et al., 2020).  

1.2 Spatial variability in soil texture 

Spatial variability in soil texture differs depending on the pedologic and geologic 

forming factors (Bockheim et al., 2014) as well as tillage and other management practices 

(Saleh, 2018). Soil spatial variability refers to soil properties measured at various locations 

that display different values (Mulla and McBratney, 2001; Wendroth et al., 2011). Like other 

soil physical properties, texture is highly variable and exhibits scale dependent spatial 

variability (Wendroth et al., 2011).  

For agricultural purposes, some pertinent questions about soil physical properties are: 

What is the most representative scale of variability and at which scale should we measure? 

Will this vary by major land resource area? How does variability change with scales? 

Traditional soil survey relies on the tacit knowledge of a soil scientist to represent the soil-

landscape relationship with limited information in a timely manner (Bui, 2004). While these 

methods provide a great deal of information for a variety of uses, it is often the case that site-

specific uses such as precision agriculture require more detailed information (Söderström et 

al., 2016). For example, Söderström et al. (2016) mention that no detailed general maps for 

farm level use on topsoil texture are available in Sweden. Each farmer must perform soil 

sampling and pay for the test analysis. This can be expensive and time consuming (Mallarino 



 

6 

and Wittry, 2000).  Traditional methods of soil mapping only cover one third of the land 

mass on earth and this is for scales finer than 1:1000000  (Hartemink et al., 2013). The 

traditional maps are based on geomorphic rules of spatial arrangement of soils and at each 

scale show soil distribution patterns (Gessler et al., 1995; Hartemink et al., 2013). Traditional 

soil maps are often static and are based on obsolete data (Omuto et al., 2012). Furthermore, 

their reproducibility is sometimes challenging, as the metadata are may be unfinished, and 

methods for drawing the maps are often not well documented, as they mainly come from the 

mental model of the soil surveyor who drew them (Arrouays et al., 2020a). In general, the 

soil surveyors restrict polygons that are considered as relatively homogeneous while they are 

based on high categorical levels of various soil classifications and provide limited 

information about the uncertainty of soil attributes (Terribile et al., 2011; Omuto et al., 

2012). Another limitation of traditional soil mapping is that they seldom contain detailed, 

site-specific information. They are not envisioned for use as primary regulatory tools in site-

specific permitting decisions. They are useful for broad regulatory planning and application 

for multiple uses  (Hempel et al., 2008).  

 The small scale at which soil physical property data is needed for agricultural production 

and the sustainable use of soil makes it logistically difficult to sample soil properties at the 

required spatial resolution. It takes time and money to sample soil to produce a good soil 

map. A useful solution to this problem is to identify easily measurable covariates that can be 

used to map the spatial variation in soil physical properties. Spatial predictions of physical 

and hydrological properties with depth at the field-scale are often related to 

microtopography, which can be represented with detailed topographic indices (Mulla and 

McBratney, 2001). The subsurface patterns, however, can be quite challenging to identify 
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with surface reflectance and topographic variables alone. Proximal sensing techniques like 

electromagnetic induction (EM) are useful for identifying subsurface features associated with 

changes in ground conductivity (Daily et al., 2004). Digital soil mapping (DSM) has emerged 

as a powerful tool for such detailed soil mapping. It utilizes relationships between different 

environmental covariates (e.g., digital elevation models, aspect, ECa, spectral imagery, saga 

wetness index) and soil properties (e.g., sand, silt, clay, carbon, nutrients) to provide 

estimates of their spatial distribution. 

 

1.3 Importance of Digital Soil Mapping  

High spatial resolution imagery along with DSM  has helped bridge the classic 

theories of soil science with a state-of-the-art computing age to produce high resolution 

predictive soil maps (Boettinger et al., 2010a). DSM is the generation of geographically 

referenced soil databases based on quantitative relationships between spatially explicit 

environmental data and measurements made in the field and laboratory with the intention of 

predicting soil classes or properties from point data using a statistical algorithm (McBratney 

et al., 2003a; Scull et al., 2003a). It is a useful approach to predict the spatial variability of 

soil properties and reduce the need to aggregate soil information based on a set mapping 

scale (McBratney et al., 2003). This body of work commonly uses Hans Jenny’s state factor 

equation:  

soil=f(cl, o, r, p, t) 

where cl, o, r, p, and t represent climate, organisms, relief, parent material, and time, 

respectively (Jenny, 1941). The clorpt framework has been approximated using various 

environmental spatial data layers to predict soil types and properties based on field 
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observations, which can be expensive and time consuming to obtain (Amundson and Jenny, 

1991). While Jenny’s cloprt model is largely conceptual, it is often used quantitatively. This 

model has been important mainly because it changed the way soils have been studied and 

leading to the development of more empirical models to describe pedogenesis using a 

mathematical approach (Ma et al., 2019).  Not surprisingly, DSM requires a substantial set of 

environmental mapping layers to predict soil characteristics (Sanchez et al., 2009a). The 

approach of DSM has evolved to include the spatial proximity to neighboring soils with the 

introduction of the scorpan spatial prediction function: 

Sc=f (s, c,o,r,p,a,n) + e or Sa=f(s, c,o,r,p,a,n) + e 

where Sc is soil classes and Sa is soil attributes at spatial position x is a function of soil factors 

(s), climate (c), organisms, which include land use, human effects, and management (o), 

relief (r), parent materials (p), age or time (a), spatial position (n), and e is the spatially 

correlated errors (McBratney et al., 2003). The form of f can be a simple linear model to 

more complicated data-mining tools such as regression trees and random forests (Minasny, 

2013). DSM is now recognized as a distinct sub-discipline of soil science (Minasny and 

McBratney 2015). Soil maps are an effective tool for transmitting information about the 

spatial distribution of soil attributes (McBratney, 2015) and most work in DSM is based on 

building numerical models relating field soil observations and some combination of clorpt or 

scorpan factors (McBratney, 2015). 
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1.4 Covariate selection for Digital Soil Mapping 

Choosing the right set of covariates is one of the most important factors that affects the 

accuracy of DSM (Liang et al., 2020). According to Liang et al. (2020), the covariate selection 

knowledge contained in the DSM application is tacit and non-systematic, which means that such 

knowledge is difficult to formalize in clear rules or mathematical equations. It can be a challenge 

for users to know the potential for covariates and their practicability for a specific DSM 

application at hand because the spatial patterns of the same covariate may be different for 

different locations. This can be an issue with users of DSM who may not have enough 

knowledge about the details of soil-landscape relationships, such as hydrologists, ecologists, and 

natural resource managers (Rossiter et al., 2015; Jiang et al., 2016; Dharumarajan et al., 2019; 

Liang et al., 2020). At present, statistical or machine learning methods are the main approaches 

applied to assist users in the selection of covariates for DSM (Liang et al., 2020). Correlation 

plots are good visual aids when selecting covariates because they allow for simple interpretations 

of how specific soil properties are related to covariates.  

Knowledge of general soil forming processes for a given area is very beneficial when 

deciding which covariates to use, but it is also important to recognize that the availability of 

covariates is not the same for all areas. Selecting random covariates may result in a modest 

model performance. Depending on the area and size of the study region, some users apply 

geological maps, parent material maps, satellite bands, and land use maps for larger areas. These 

usually have a higher pixel size ranging from 5 m to 300 m. Samuel-Rosa et al., (2015) 

completed a study in Brazil for a ~ 2000 ha area on the southern edge of the plateau of the 

Parana Sedimentary Basin, Rio Grande do Sul, Brazil to determine if more detailed 

environmental covariates deliver more accurate soil maps. Eight continuous predictor variables 
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representing topography were derived from Light Detection and Ranging (LiDAR), namely 

slope, aspect, flow accumulation, topographic wetness index, stream power index, topographic 

position index, and northernness. For categorical predictor variables, land use cover, soil maps, 

and geologic maps were applied. Soil organic carbon, clay, and effective cation exchange 

capacity were predicted with R2 values for clay ranging from 0.460 to 0.485 using the categorical 

predictor variables. Clay was moderately well predicted using less detailed environmental 

covariates, with small improvement when using the more detailed covariates. Clay was expected 

to have a strong correlation with topography and parent material. A notable observation that 

resulted from their study was that if a low-resolution covariate yields poor predictions, the more 

detailed version has the possibility to make an improvement in the model performance. But 

Eldeiry and Garcia, (2008) found that their low R2 values for soil salinity was due to some 

locations with high soil salinity. In some areas expected to have little biomass, there were weeds 

growing that produced a false indication of high biomass when the image is processed. They 

used Landsat images to help predict their models. Thompson et al., (2001) suggested that model 

performance will most likely show less improvement using more accurate and detailed covariates 

if their less detailed version has already made accurate predictions. Samuel-Rosa et al. (2015) 

concluded that using more detailed covariates resulted in a slight increase in the prediction 

accuracy of models and choosing whether to use more detailed covariates depends on the 

strength of the relationship between the covariates and the soil property being modeled. Also, a 

more precise covariate has a higher potential to improve model prediction when the soil property 

is poorly predicted by its less detailed version. For example, if topographic position index is used 

as a variable, then also using watershed metrics, landforms, and slope position may bring the 

model performance down due to collinearity of the covariates. Collectively these studies support 
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the idea that covariate resolution is scale dependent and cannot always be transferred across 

different biomes. 

Even though the DSM community is increasingly relying on machine learning to handle 

the multitude of covariates, the knowledge aspect of traditional soil mapping is still essential. 

Both approaches capture the elements of the cloprt model (Jenny, 1941) albeit in different ways. 

A wide variety of covariates are used in soil prediction models to represent terrain, surface 

reflectance, and climate with a significant reliance on remotely sensed imagery. One of the 

easiest derived covariates comes from topographic derivatives that are correlated state factors 

and used as main predictor variables. Ma et al. (2019) have indicated that not all soil state factors 

have representative covariates that are exactly related to a particular factor and some covariates 

have implicit or multiple-factor relations. For example, direct estimates of time can be difficult to 

represent in predictive models unless incorporated manually, however, indirect estimates of time 

can be inferred from relative landscape position, surface reflectance, weathering indices based on 

gamma radiometry, or parent material maps (Ma et al., 2019). Even though a researcher may be 

an expert in the landscape of the study site, the selection of  covariates can be biased. To test this 

hypothesis, Brungard et al. (2015) used three different methods of selecting covariates in their 

study: 1) expert soil scientist knowledge that used the covariates in the conditioned Latin 

Hypercube design (cLHS), 2) 113 covariates derived from the digital elevation model (DEM), 

and 3) those covariates that were selected by recursive feature elimination from all available 

covariates. They found that models using all available covariates were as accurate, or slightly 

more accurate (higher κ, lower Brier scores), than models using the covariates selected by soil 

scientists for each area and for soil class prediction, the covariates selected by recursive 

elimination gave accurate model results. They also found that the models the soil scientist 
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selected as covariates had the worst model performance despite being very familiar with the soil-

landscape relationships in the area. When selecting potential covariates for soil property 

prediction, it is best to employ mathematical, statistical, and numerical models to analyze the 

direct or indirect relationship of soil classes and the environment (Ma et al., 2019). Hengl et al. 

(2007b) suggested four types of models for soil class mapping. 

1. Use of pure classification techniques: These are not interpolators and are classified as 

images and remote sensing bands. 

2. Use of multinomial logistic regression: This is a conventional statistical technique and is 

recommended to be used where there are more than two classes. 

3. Interpolation: Point observations to interpolate soil categorical variables are a useful 

technique 

4. Expert knowledge: Use of expert knowledge to work on data preparation of the soil-

landscape combinations.  

1.5 Selection of topographic covariates   

Topography is one of the soil-forming factors as seen in the Hans Jenny clorpt equation 

(Jenny, 1941) and directly or indirectly controls the spatial distribution of physical, chemical, 

and biological soil properties (Florinsky, 2012). It influences soil properties through two main 

physical processes: the gravity-driven lateral migration and accumulation of water and spatial 

differentiation of the temperature regime of slopes (Florinsky, 2016). The influence of 

topography on soil properties can also be influenced by the management or tillage practice in an 

agricultural setting. 

Li et al. (2020) assessed the predictive power of topographic covariates to estimate soil 

properties and processes at Walnut Creek Watershed, Iowa. They examined two types of 
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topographic covariates used in soil property modeling. i.e., primary and secondary according to 

calculation methods. Primary covariates are calculated from elevation and slope, aspect, and 

curvatures and can be split into two categories, local and nonlocal. Local covariates describe 

surface geometry at a given point and nonlocal can be computed with a second-order finite 

difference scheme as relative positions at a selected location (Wilson and Gallant, 2000). 

Secondary covariates describe the spatial variability in processes such as water content 

distribution and soil erosion. (Li et al., 2020).  Zhu et al. (2010) investigated the use of repeated 

EMI surveys, in combination with depth to bedrock and terrain attributes, to improve soil 

mapping in a 19.5-ha agricultural landscape. Results showed that the optimal use of EMI 

depends on the targeted soil properties, landscape characteristics, specific EMI meter and its 

setting, and the timing of the survey. A combination of repeated EMI surveys, depth to bedrock, 

and terrain attributes provided the best mapping of soils in this agricultural landscape and 

doubled the accuracy of map unit purity compared with the existing second-order soil map. 

Recent investigations with ground conductivity meters have shown that electrical conductivity 

measurements using electromagnetic induction have the potential for quick non-invasive soil 

water content measurement (Sheets and Hendrickx, 1995). Mapping spatial distribution of 

average soil property using geophysical instruments such as the EM31 for this project will 

measure bulk soil electrical conductivity and groundwater.  

 

1.6 Scope of Pedometrics and Machine Learning in DSM  

  Applications of machine learning in DSM have increased rapidly in the last 10 years 

(Padarian et al., 2020) and soil science utilizes pedometrics to learn and understand how soil is 

distributed through time and space with data. Pedometrics is a new term coined by A.B. 

McBratney which stems from two Greek words pedos (soil) and metron (measurement) and is 
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defined as “the application of mathematical and statistical methods for the study of the 

distribution and genesis of soils” (McBratney et al., 2018). Machine learning offers many 

advantages for soil prediction, but selecting an appropriate machine learning method for DSM 

can be challenging due to the large number of approaches. Khaledian and Miller (2020) discuss 

machine learning algorithms to identify relationships between soil properties and various 

covariates across landscapes. They reviewed the number of research papers and books on DSM 

using machine learning algorithms (Multiple linear regression (MLR), Cubist, Random Forest 

(RF), k-nearest neighbors (KNN), artificial neural networks (ANN), and support vector 

regression (SVR) and found the number of citations went from 100 to 2100 involving DSM from 

2005 to 2018. All the data was extracted from a keyword search of “digital soil mapping”.  DSM 

has seen a rapid increase in machine learning methods with RF being the most common followed 

by ANN and MLR (Were et al., 2015; Khaledian and Miller, 2020). The application of RF may 

be because it uses “bootstrapping” which decreases the variance and improves the stability of the 

results.  

In response to the increasing demand for information on soil properties for environmental 

modeling, more studies have been shown over the past decade to measure the spatial variability 

of soil properties on a regional to global scale (Grimm et al., 2008; Hengl et al., 2017; Duchesne 

and Ouimet, 2021). These investigations rely on the collection of numerous soil field records 

while developing statistical methods that allow users to calculate consistent and dependable 

spatial predictions of soil properties at spatial scales (McBratney et al., 2003a; Sanchez et al., 

2009b; Duchesne and Ouimet, 2021). The most cutting-edge soil mapping methods involve 

producing predictions using optimal statistical models that define statistical relationships 

between observed soil properties and a set of rasterized environmental covariates that are 



 

15 

relevant to explain the distribution of soil properties in the entire area to be mapped (Malone et 

al., 2017; Hengl and MacMillan, 2019; Duchesne and Ouimet, 2021).  Many studies have 

predicted soil texture for large areas, i.e., 500,000 km2 or more. Duchesne and Ouimet (2021) 

used random forest in their study for spatial variability of soil properties. Their study area was 

583,000 km2 in Canada and included 29,570 soil samples. In their statistical modeling, 

computation of isometric log ratio was done to first transform soil texture fractions and used two 

values for subsequent statistical modeling. Tree based random forest machine learning 

algorithms were used to predict and to fine-tune the model and cross validation was used 

(Duchesne and Ouimet, 2021). The model performance had R2 values of 0.46 and 0.57 and mean 

absolute errors of 0.39 and 0.41.   

The sample size for DSM is another crucial factor that can also have a strong impact on 

DSM accuracy.  For example, Somarathna et al. (2017) and Long et al. (2018) showed that 

prediction accuracy of a modelling method is sensitive to sample sizes. It is because sample sizes 

affect both fitting and prediction of a model (Khaledian and Miller, 2020; Sun et al., 2019). 

Generally, a model based on more samples is more reliable than one based on fewer samples 

(Kuang and Mouazen, 2012). However, sample sizes for DSM cannot increase infinitely, due to 

a limited budget for a soil survey. One example, Lai et al. (2021) had 1861 sample points with a 

grid of 16 km x 16 km in hilly and mountainous areas. Here they were predicting soil organic 

carbon in Guangdong, China with 179,700 km2 as their coverage area. Their bias values reached 

a threshold of 0.07 at a sample size of 800 followed by a trend of lower R2 for larger sample 

sizes. For sample sizes larger than 300, RMSE of each modelling method does not change. 

Modeling selection is more important when sample size is small, whereas larger sample sizes 

tend to result in similar performance regardless of the model. However, when sample sizes are 
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large, e.g., more than 1000, sample sizes have a much greater impact than modelling methods. 

For coverage probability, the modelling methods have a greater impact than the sample sizes. 

Coverage probability refers to the probability that an estimated prediction interval covers the 

corresponding measured value. It measures the accuracy of uncertainty in prediction in terms of 

variance in prediction.  Loiseau et al. (2021) evaluated 8100 points for a total area of 5208 km2, 

corresponding to a density of one profile per 0.64 km2 in the Mayenne region, France. Results 

for sand showed R2 values of 0.37 for ordinary kriging and 0.33 for quantile random forest 

(QFR). R2 for clay percentages for OK random was 0.27 and QFR was 0.26. As for silt R2 , OK 

random was 0.30 and QRF 0.33. The RMSE value for clay was 57% for OK random and QRF. 

Silt RMSE was 83% for QFR and 80% for OK random.  Sand RMSE for OK random was 83% 

and 89% for QFR. The results showed that, with increasing density of observations, OK 

performed as well or even better than QRF, depending on the particle-sized fraction. For silt 

prediction, OK was systematically better than QRF. However, the forecast intervals were much 

larger for OK than for QRF, and OK did not seem to estimate uncertainty correctly. Overall, the 

performance indicators increased with the density of observations with a threshold at about 1 

profile per 2 km2  which suggests that the main limitation of DSM prediction accuracy using 

QRF is the amount of data collected in the field, not the type of calibration sampling strategy. 

(Loiseau et al., 2021). 
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1.7 Research Objectives 

The objectives for this research are to 1) estimate the optimal sample size for determining 

spatially distributed soil texture for a field in the floodplain of the Georgia Piedmont and 2) 

determine the relative importance of different covariates used in the estimation. The optimal 

sample size was determined by the R2 and RMSE for sand, silt, and clay. Machine learning 

techniques specifically, Random Forests (RF) were used to create prediction maps of soil texture 

based on several environmental covariates.  
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CHAPTER 2 

OPTIMIZING SAMPLE SIZE FOR PREDICTING SOIL TEXTURE IN 

A FLOODPLAIN SOIL OF THE GEORGIA PIEDMONT, USA 
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2.1 Abstract 

Soil texture controls crucial processes such as water infiltration, flood extenuation, soil-

plant relationships, and nutrient availability. High spatial resolution images as well as digital soil 

mapping are producing predictive soil texture maps with improved resolution. However, current 

soil databases lack the spatial resolution necessary for precision agricultural management at the 

field scale and determining the optimal sample size is often a challenge in crop fields. The 

objective of this work was to determine the optimal sample size for field soil collection to 

produce accurate predictions of soil texture at multiple depths to 1 m for a 40-acre crop field in a 

Georgia Piedmont floodplain. Soil samples from four depths were collected at 69 locations and 

analyzed for particle size distribution before being combined with environmental covariate data 

using random forest algorithms to predict sand, silt, and clay. Models were developed for 50 

random iterations of varying sample sizes from 10 – 65 to compare the effect of sample size on 

model performance. We determined that 35-45 samples were sufficient for the study area based 

on the trends in R2 and RMSE for sand and clay at 0 – 10 and 40 – 70 cm depths. Results from 

this study suggest a sample density of approximately 1 location per ac provides sufficient 

information for detailed soil texture mapping in the floodplain landscape we evaluated.   

2.2. Introduction 

 Soil properties can express a high degree of spatial variation over short distances which 

can have pronounced impacts on management decisions and modeling efforts that require soil 

information (Franzen, 2018). The degree of spatial variability can also be further challenging to 
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represent for different soil depth increments (Peterson et al., 2019). Variability can result from 

inherent differences produced during soil development, management activities like tillage and 

subsequent erosion, and systematic errors from uneven use of fertilizers and manures (Franzen, 

2018). Current soil maps like those available in the Soil Survey Geographic Database 

(SSURGO) and State Soil Geographic (STATSTGO;  (Soil Survey Staff, 2018) are often of 

insufficient resolution for precision agricultural applications that employ very localized 

management for water and nutrients.  

A variety of covariate data have been used to represent the processes and patterns of soil 

formation ranging from spectral reflectance to topography obtained from sensors on satellites, 

drones, tractors, and even hand-held sensors. For example, Pusch et al. (2021) tested whether 

remote and proximal sensing data could assist in soil property mapping in Brazil through 

geostatistical prediction. They chose two covariates often used to express soil variations—one 

obtained by remote sensing (a short-wave infrared band; SWIR2) and the other by proximal 

sensing (apparent soil electrical conductivity – ECa)—to compare them individually and together 

in a geostatistical interpolation method (kriging with external drift). They found that ECa was a 

more promising covariate than SWIR2 band from orbital imaging. Such proximal sensing can 

identify the soil short-range spatial variability. However, when the soil property variability is 

well explained by the sampling procedure, multivariate geostatistical methods may not improve 

the mapping accuracy (Pusch et al., 2021). Hummel et al. (1996) used two sensors to obtain site-

specific data on factors affecting crop growth and yields, such as nutrient status, weed pressure, 

soil moisture status, landscape position, soil organic matter (SOM) content, soil acidity, and 

depth to a restrictive layer. The sensors used were a single-wavelength, soil catena-dependent 

sensor and a multiple-wavelength, catena independent sensor. Sensor-based estimates of soil 
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properties are usually less accurate than those obtained by lab analyses. Their study was located 

in the Midwestern, USA and they mention how the area has a large coverage of claypan soils. 

Subsequently, mapping of claypan depth has not been practical for production agriculture. In 

order to quantify deep variation over a large area, an automated, preferably non-invasive, 

measurement approach is required (Hummel et al., 1996). However, real-time sensing provides 

much more data with the same amount of effort, and these multiple points can be averaged to 

improve prediction accuracy if calibrated properly.  

DSM provides an opportunity to increase the spatial resolution of existing largescale soil 

survey (e.g., SSURGO). One obvious limitation of the soil survey products is that most are 

polygon-based products that cannot capture spatial resolutions typically needed for site-specific 

applications. The polygons can be converted to raster datasets to facilitate more modeling 

approaches, but often still reflect the same polygonal units as the original maps as in the gridded 

Soil Survey Geographic dataset (gSSURGO). The need to have additional point data for 

improved maps from DSM is clearly recognized (Arrouays et al., 2020a), however, obtaining 

soil data is often limited by time and cost constraints (Arrouays et al., 2020b; Kidd et al., 2020; 

Lagacherie et al., 2020). Therefore, significant effort has been focused on the placement of 

sample locations to overcome the constraints of cost and time for sample collection (e.g., the 

conditioned latin hypercube sample design) (Roudier, 2011). However, the ideal number of 

points required for detailed maps is not always known at local mapping efforts where optimal 

sample size would be utilized. Having 2-3 soil samples per ha (Shannon, 2018; Mohamed, 1996) 

and resolution of 5 m or less for multispectral bands (Chenghai, 2018) and spatial resolution of 

lidar for precision agriculture applications should be between 2 to 5 square meters per pixel with 

a positional accuracy of within 2 meters (Moran, 2000).  
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The number of samples required for spatial modeling is dependent on the prediction 

models being used and the properties of interest. For example, kriging methods that require the 

development of a semi variogram often require a minimum of 50-100 samples for one area 

(Webster and Oliver, 1992; Hengl et al., 2007a; Levi and Rasmussen, 2014) whereas other 

interpolation techniques such as inverse distance weighting can be accomplished with fewer 

points (Zimmerman et al., 1999; Harper, 2006). Machine learning has been applied extensively 

in the DSM literature with some of the most common techniques being RF, support vector 

machines, and other decision tree-based approaches (Rodriguez-Galiano et al., 2015; Brungard et 

al., 2015; Heung et al., 2016; Maxwell et al., 2018). When a design-based approach is used to 

estimate whole-field or within-stratum spatial means and variances, determining the appropriate 

sample size is important for achieving the desired precision and accuracy (Lawrence et al., 

2020). The variability in soil moisture is also a good indicator of variability in soil texture since 

it is controlled by the latter (Gaur and Mohanty, 2013, 2016). Duffera et al. (2007) conducted 

research in the Coastal Plain region of North Carolina using 60 coil cores with a ~ 1 m depth 

with five depth increments. Their study area was 12 ha in North Carolina. Here they split the 

samples into two, first was particle size distribution and second was bulk density, saturated 

hydraulic conductivity, and porosity. They concluded that using just particle size density was the 

best option for spatial variability for management zones and this approach could cover 62% of 

the area. The grids in their study resulted in three soil map units being sampled in approximate 

proportion to their areal extent in the field: Goldsboro, 6.9 ha, n=40; Lynchburg, 3.0 ha, n= 14, 

and Norfolk, 0.95 ha, n=6 (Duffera et al., 2007). For precision agriculture applications, the 

convention is often to grid sample with sample densities of previous studies and have ranged 

from 1-4 samples per ac (Ferguson and Hergert, 2009; Kerry, 2010). Grid sampling can be 
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random, random cluster, or systematic (Wollenhaupt, 1996). Franzen (2018) used grid sampling 

and recommends one sample per hectare in places like Iowa, Illinois, and Indiana. There is high 

variability in these fields due to fertilizer buildup resulting in high soil test values with similar 

recommendations. Because of the uniformity of recommendation, a 2.5-acre grid is acceptable in 

these types of fields. Franzen (2018) mentions that if there is a high variability in the 

recommendation, then a higher sampling density may be required to create an accurate map. 

A lot of effort has been spent on developing algorithms and techniques to estimate the 

spatial distribution of soil texture given the importance of understanding its spatial variability, 

but most studies conclude that results can be improved by altering the sample size used for 

algorithm development. For example, Liao et al. (2013) indicate that their kriged and multiple 

stepwise regression techniques to estimate spatially distributed soil texture in the 

PingduShandong Province of China suffered as a result of inadequate sample size for that 

landscape. In another study over the Southern Great Plains in the U.S., Chang et al., (2003) 

identified the distribution of samples and sample size affected their neural network algorithm 

performance for determining soil texture. Zhang and Hartemink (2021) recommend increased 

sampling density to improve spatial estimates of soil properties. Their study area was 330 ha 

located in southcentral Wisconsin, USA. They measured soil properties at short range variations 

which affected spatial structure variograms. Many studies recognize the influence of sample size 

on spatial prediction models of soil properties, however, an adequate sample size density for 

these efforts lacks consensus. 

   The purpose of this study is to determine the optimal sample size for representing the spatial 

variability in soil texture and distinguish the spatial variability at different depths between 0-100 

cm in a typical floodplain of the Georgia Piedmont that is managed for agricultural use. 
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2.3. Materials and Methods 

2.3.1 Study area  

The study area for this research is a 40-acre crop field located at the University of 

Georgia Iron Horse Farm 14 miles south of Watkinsville, GA (Fig. 1). It sits on a floodplain 

adjacent to the Oconee River in the Piedmont region of Georgia. Near the Oconee River section 

of the field is ~ 134 m and elevation slowly climbs as you go west to 145 m. Geologically, the 

Piedmont is primarily comprised of metamorphic rocks, but includes granitic intrusive bodies. 

These rocks have been weathered to thick saprolite (2-20 m) over much of the region (Frazier, 

2006). The soils of the region have been subject to intensive weathering that dissolved or altered 

almost all primary minerals and left behind a residue of clays containing aluminum and iron 

oxides (Lester and Allen, 1950). Upland soils in the region are classified as Ultisols with red, 

clay-rich subsoils with a low base saturation (Markewich et al., 1990). Alluvial soils in the 

region represent Entisols and Inceptisols with varying thicknesses of sediment from both natural 

and anthropogenic drivers. For example, the Piedmont region has many regions of legacy 

sediment resulting from extensive erosion that occurred over the last 200 years following 

European settlement (Donovan et al., 2015; “Georgia Soil Survey 136 - Southern Piedmont | 

NRCS Georgia,”).  

 The research area (Figure 3) is mapped as having Chewacla, Wehadkee, and Wickham 

soil series (Soil Survey Staff, 2018). Chewacla soils form from alluvial sediments in floodplain 

and classified as Fine-loamy, mixed, active, thermic Fluvaquentic Dystrudepts with a drainage 

class of somewhat poorly drained and flooding frequency and duration that is rare for very brief 

to lengthy periods. The Wehadkee soils are classified as Fine-loamy, mixed, active, nonacid, 

thermic Fluvaquentic Endoaquepts consisting of very deep, poorly drained, and very poorly 
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drained soils on flood plains along streams that drain from the mountains and piedmont. They are 

formed in loamy sediments.  The Wickham series is classified as Fine-loamy, mixed, semiactive, 

thermic Typic Hapludults consisting of very deep, well drained, moderately permeable soils on 

stream terraces in the Piedmont and Coastal Plain. Argillic horizon is present in the Wickham. 

The field is situated at 139 meters above sea level and annual precipitation averages 

~1100 mm  (43 inches) (Suleiman and Hoogenboom, 2007) and mean annual air temperature is 

20-22⁰C  (“Georgia Weather - Automated Environmental Monitoring Network Page,”). 

Elevation is highest in the southwest (Fig.3) corner of the study area, which contributes runoff 

into the lower elevation on the northeast portion of the field closer to the floodplain and the 

influence of the Oconee River. It has historically (1993-2016) been used for hay/pasture as seen 

on Google Earth Pro images from USGS, USDA Farm Service Agency, and Landsat. Tile drains 

were installed in 2015 and are ~80 cm beneath the surface. In June of 2020, soybeans (Glycine 

max) were planted after site preparation that included disking and rototilling which allowed for a 

near bare soil condition for the collection of surface reflectance.  

 

2.3.2 Topographic Covariates  

The internal flow of water in landscapes affects soil texture transformation (Franzen, 

2018).  A digital elevation model (DEM) derived from Lidar obtained from NOAA (National 

Oceanic and Atmospheric Administration) (Conrad et al., 2015) (2012 GA DNR Lidar) was used 

to develop topographic indices using the module of compound analysis in the open-source 

System for Automated Geoscientific Analyses (SAGA) software (Conrad et al., 2015) to 

represent the study area. The spatial resolution of the LiDAR was 1.2 m and all topographic 

covariates also had 1.2 m resolution. Terrain analysis utilize geomorphometric calculations to 
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develop representations of slope, aspect, analytical hill shading, and flow paths (Böhner and 

Selige, 2006). Topographic covariates used in this study included length slope factor, flow path 

length, multi scale topographic position index, topographic position index, saga wetness index, 

digital elevation model, multiresolution index of ridgetop flatness, and multiresolution index of 

valley bottom flatness. A more detailed description of the covariates is provided in Table 2. 

Three topographic covariates, namely flow path length, saga wetness index and 

topographic position index were used in the sample design of this study. Flow path length allows 

for the calculation of several terrain indices from a digital elevation model (Böhner et al., 2001; 

Böhner and Selige, 2006). It calculates average flow path starting at particular point locations. 

This point location points runoff processes and calculates the runoff origin, meaning it calculates 

upstream and downstream flow (Quinn et al., 1991). The SAGA wetness index is based on a 

modified catchment area calculation ('Modified Catchment Area'), which allows for the flow of 

water from one cell to multiple adjacent cells instead of a single cell like a deterministic flow 

algorithm does (e.g., D-8 used in a standard topographic wetness index calculation). As a result, 

it provides a more realistic, higher potential soil moisture compared to the standard topographic 

wetness index calculation (Böhner et al., 2001). The topographic position index is identical to the 

difference to the mean calculation (residual analysis) proposed by Wilson & Gallant (2000). 

Another significant factor is the LS slope factor. The crop field under consideration has tillage, 

rotation, and erosion happening which makes the LS factor a beneficial covariate. According to 

Lu et al. (2020), the availability and precision of topographic data controls the reliability of the 

calculated slope length and slope gradient.   
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2.3.2.1 Spectral Covariates 

 In addition to the topographic covariates derived from Lidar, additional covariates were 

derived from drone images that were obtained three days after planting soybeans to represent 

patterns of soil variability in surface soils. These covariates included visible multi-spectral 

images collected on June 12, 2020. Red and green spectral imagery was collected with a pixel 

with a dimension of 0.01118 m per side. Complications with the blue band precluded its use for 

this study. The field condition was predominantly bare soil, however, soybeans had emerged and 

were approximately 10 cm high. The high-resolution imagery was resampled to 1.2 m with the 

cubic convolution method in ArcGIS to make the resolution consistent with the topographic 

covariates. Red and green bands were combined using a principal component analysis in ArcMap 

on a set of the green and red raster bands and generated a single multiband raster as output 

(Redlands, 2011).  

2.3.2.2 EM-31 

Apparent electrical conductivity of the soil was obtained using an EM-31. Soil apparent 

electrical conductivity (ECa) measured by electromagnetic induction (EMI) has been widely 

used to interpret soil spatial variability. The EM-31 maps geological variations, groundwater 

contaminants or any subsurface feature associated with changes in the ground conductivity using 

an electromagnetic inductive technique that makes the measurements without electrodes or 

ground contact (Dadfar et al., 2011). The EM-31 data was collected on the farm with a fiberglass 

cart so there was no metal to interfere with readings. The instrument is ~ 3 meters long and was 

pulled by a UTV. The EM-31 was used in a single orientation (north-south) for this project such 

that the depth of measurement was up to three meters beneath the ground surface. We collected  
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measurements on March 23, 2021, with south to north transects to capture different soil moisture 

conditions. Field conditions for the day was dry in most areas and was at field capacity. The data 

collected from the EM-31 was used as a covariate for the prediction soil texture mapping of the 

study area. Data from the EM-31 was taken every second with a total of 29,268 data points. 

Inverse distance weighting was used in ArcMap to create the raster.  

 

2.3.3 Sample Design 

Soil samples were collected using a combination of two sampling designs. A conditioned 

Latin Hypercube sample design (cLHS;(Minasny and McBratney, 2006)) algorithm was used to 

identify 50 locations within the study area (Phase 1) and another set of samples was collected 

from 20 separate locations using a transect approach spanning the entire field (Phase 2). The 

sampled points are shown in Fig. 1. The cLHS was implemented using the cLHS package in R 

(Godinho Silva et al., 2015; R Studio Team, 2015) to identify 50 soil sample locations 

representing the spatial variability of microtopography and anticipated soil variability using three 

environmental covariate layers (SAGA wetness index, flow path length, topographic position 

index; Fig. 4 for Phase 1 sampling. The cLHS algorithm has been used for planning field 

sampling surveys in order to understand the spatial behavior of natural phenomena such as soils 

by capturing the variance in a matrix of covariates to improve quantitative prediction of special 

variance. The three covariates were chosen based on their ability to capture spatial patterns of 

slope and hydrological properties (Malone et al., 2019). The sample sets are optimized using 

simulated annealing (Metropolis et al., 1953) through a set of k iterations to represent a Latin 

hypercube. Simulated annealing mimics the controlled cooling process used to reach a global 

optimum. At each iteration k of the simulated annealing, changes are made to the sampling 
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scheme S(k−1) to form a new candidate sampling scheme S(k). An objective function, detailed 

by Minasny and McBratney (2006), assesses how well S(k) represents a Latin hypercube. The 

resulting objective function value, obj(k), is used to compute Mobj(k): 

𝑀𝑜𝑏𝑗(𝑘) = 𝑒(−
∆𝑜𝑏𝑗(𝑘)

𝑇(𝑘)
)    ( 1) 

 

Where Δobj(k) = obj(k) – obj(k-1), The variation in the objective function, and T(k) is the 

current temperature at iteration k, which is decreased by a cooling factor δ every p iterations 

(Roudier et al., 2012).  

 

2.3.5 Soil Sampling and Spatial Predictions 

 At each sampling location, soils were collected from 0-10, 10-40, 40-70, and 70-100 cm 

depths on June 15 and 16, 2020 using a hand auger. Samples at each location were composited in 

a 5-gallon plastic bucket by depth, thoroughly mixed by hand, and a ~500-gram sample was 

retained to represent the depth increment. Soils were air-dried and sieved through a 2-mm screen 

(Fig. 2) prior to analysis with a Beckman Coulter LS 13 320 Particle Size Analyzer (LPSA) to 

determine particle size distribution and percentages of sand, silt, and clay. The air-dried soil 

samples were split using a sample splitter (SP-3, Lewis Center, OH) to obtain a representative 

subsample and reduce bias for laboratory replications. Subsamples of 0.5-gram were weighed 

into 15-ml centrifuge tubes and 5 ml of sodium hexametaphosphate (5% solution) was added 

before shaking for 15 hours at 120 oscillations per minute to disperse the soil particles. After 

shaking, the soil solution in the centrifuge tube was transferred to a 13-ml test tube using 

deionized water and filled nearly to the top. Samples were placed in the LPSA carousel for 

particle size analysis. Two 60-second analyses were averaged for each laboratory replicate with 
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the Polarization Intensity Differential Scattering (PIDS) functionality enabled and sonication 

during analysis (i.e., analytical replicates). Once analysis was completed, the data was saved and 

exported. Two laboratory replicates were analyzed for quality control and a third replicate was 

analyzed for any sample with > 5% differences in either clay or sand from the first two 

replications. 

Measured sand, silt, and clay data determined for each sampling location was combined 

with environmental covariate data to evaluate relationships between covariates and soil texture at 

multiple depths. Pearson correlations were evaluated between covariates and measured point data 

to determine Pearson’s correlation coefficient  using a Row-wise method in JMP (Figs. 6 & 7) 

(JMP®, 2021).  Soil-landscape models for spatial predictions were developed with a random 

forest framework (Gessler et al., 1995) in R (R Studio Team, 2015) using the randomForest (R 

Core Team, 2017) and Caret packages (Max, 2008). Random forest models consist of many 

individual decision trees that act as an ensemble (Breiman, 2001). The ensemble uses multiple 

learning algorithms to obtain better predictive performance than could be obtained from any of 

the constituent learning algorithms alone. A forest that is a set of randomized decision-making 

trees is built and trained based on a bootstrap approach. The trees in the ensemble are built on the 

basis of the principle of recursive partition (Amirian-Chakan et al., 2019). Strobl et al., (2009) 

states the feature space is recursively split into regions containing observations with similar 

response values. The predictions of individual trees are then averaged to give a single prediction 

(Amirian-Chakan et al., 2019). Every decision tree in the forest is trained on a subset of the 

dataset called the bootstrapped dataset. For this model, an 80/20 split was used, meaning 80 

percent was used for training and 20 percent for prediction. Following (Kuhn et al., 2022), k-fold 

cross validation was applied using the caret package to test the model performance. In k-fold 
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cross validation, the data is first divided into k near-equally sized folds. Then k iterations of 

training and validation are performed such that within each iteration a different fold of the data is 

held-out for validation while the remaining k − 1 folds are used for learning (Refaeilzadeh et al., 

2009; Piikki et al., 2021). Cross validation is a statistical method of evaluating and comparing 

learning algorithms by dividing data into two segments: one used to learn or train a model and 

the other used to validate the model. In typical cross validation, the training and validation sets 

must cross over in successive rounds such that each data point has a chance of being validated 

against (Refaeilzadeh et al., 2009). Validation provides information on how well a particular 

model performed in practice and is considered a crucial task associated with any DSM project 

(Piikki et al., 2021).   

2.3.5.1 Evaluating impact of sample size 

The performance of the model was computed from the validation samples by calculating 

the correlation between the observed and estimated values based on the coefficient of 

determination (R2) and root mean square error (RMSE). For each property and depth 

combination (sand, silt, and clay for 4 depths), 50 iterations were run by randomly selecting 

different sub-samples from the dataset for testing the impact of sample sizes on soil texture 

prediction. The sample sizes represented all sequences of 5 between 10-65. Cross validation was 

used to validate the model and R2 and RMSE were calculated for each iteration. R2 of each 

model iteration was computed using a linear model between observed and predicted values with 

the lm function in R (Everitt, 1992; R Core Team, 2017). The R2 is a measure that provides 

information about the goodness of fit of a model. In the context of regression, it is a statistical 

measure of how well the regression line approximates the actual data. The equations below are as 

follows (Johnston et al., 2001):  
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RMSE = √
1

𝑁
∑ [𝑍(𝑋𝑖) − 𝑍̂(𝑥𝑖)]2𝑛

𝑖=1                            (2) 

𝑍̂(𝑥𝑖) is the predicted value, (𝑍(𝑥𝑖) is the observed value, N is the number of values and 

for location i.  

 

R2 = 1- 
𝑆𝑢𝑚 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (𝑆𝑆𝑅)

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 (𝑆𝑆𝑇)
                        (3) 

 

                                                     =1- 
∑(𝑦𝑖−𝑦̂𝑖)2

∑ 𝑦𝑖−𝑦̂)2  

Residual= actual y value – predicted y value 

                                                            Σ= sum  

𝑟𝑖 = 𝑦𝑖 − 𝑦̂𝑖 

The sum squared regression is the sum of the residuals squared, and the total sum of 

squares is the sum of the distance the data is away from the mean all squared. As a percentage, it 

will take values between 0 and 1 (Anderson-Sprecher, 1994).  

 

2.4. Results 

2.4.1. Details of measured soil properties  

Sand, silt, and clay percentages of the measured samples varied considerably for each 

depth (Table 1 and Fig. 5). For presentation of results and discussion, 0-10 and 10-40 cm depths 

are considered shallow and 40-70 and 70-100 cm depths are considered deep.  Additionally, the 

strongest emphasis is on sand and clay for 0-10 and 40-70 cm depths. For shallow depths, clay, 

clay loam, and loam dominated the soil texture while deeper depths ranged from sandy loam, 

loam, clay loam, and more clay dominated than surface soil (Fig. 5). Clay and sand had the 
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widest range of values across all depths with clay having an average 48.4% range and sand 

51.1%. Silt had the lowest range with an average of 37.05% across all four depths.  

Clay percentages increased with depth starting with a mean of 28.3 % at 0-10 cm and 

46.0 % at 70-100 cm. At the 0 – 10 cm depth, clay was moderately skewed (0.80) and 

approximately symmetric for other depths. Clay was the only soil property that had a negative 

skewness at -0.2 and -0.3%. Kurtosis was at 4.1 at 0-10 cm and 1.9 at 70-100 cm depth, making 

it a platykurtic shape for flatter distribution. The range values were high which means there was 

greater variability. It should be noted that high-range values mean a higher standard deviation 

(SD) in clay at all depths. Clay had a larger STD reflecting a wide range of 46-53% values 

indicating notable variability in the field.  

The average sand percentage was between 30.7% at 0-10 cm and 23.6% at a depth of 70-

100 cm. The percentage did not change as much as clay. The skewness increased with depth 

from 0.40 at 0-10 cm to 1.2 at the 70-100 cm depth. Kurtosis for sand for all depths was >3 

indicating a more pronounced peak than clay (leptokurtic shape). Sand had a range starting at 

43.2% at 0-10 cm and slowly increased to 57.9% at 70-100 cm. Sand had higher range values 

than clay and silt and the range values increased with depth. This indicated that sand had the 

greatest variability of all measured soil properties. At the shallow depths (0-10 & 10-40 cm), 

STD was less than that of deeper depths (40-70 & 70-100 cm). Starting at a STD of 9.1% and 

ending with 13.3% reflecting the similar trends in the range.  

Silt had a similar distribution across all depths with an average of 41% at 0-10 cm and 

30.4% at 70-100 cm. The range was at 32.2% at the surface and slowly increased to 41% at 70-

100 cm. Of the three soil properties, silt had the lowest variability in the range for all depths. 

There was also a trend of SD increasing with depth from 6.7% at 0-10 cm to 9.5% at 70-100 cm. 
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The data tended to slowly spread away from the mean values with increasing depth. Kurtosis had 

an average of 3% for silt making it mesokurtic shaped and less varied kurtosis than clay and 

sand. Skewness averaged 0.04% indicating a slight positive skew.  

.  

2.4.2. Relationship of environmental covariates and soil properties 

The ten covariates used for modeling in this study showed diverse degrees of correlation 

with soil properties as seen in Figs. 6 and 7.  At 0-10 cm silt had the strongest correlations with 

covariates whereas clay had the strongest correlations with covariates at the 40-70 cm depth. In 

both scenarios, the elevation and landform had the strongest relationships with measured soil 

texture. Sand had weak relationships between covariates for both depths. At 0-10 cm, clay had 

weak positive correlations with TPI_Landform, DEM, LSF, and FPL. The environmental 

covariates that were negatively correlated, especially TPI_Landform, showed some soil surface 

relationships between shallow depths and topography where the high values of TPI_Landform 

were where the surface silt was high in percentage. High LSF values at ~ 5 and FPL values at 

~150-100 were also where clay percentage was high. The field has an area where the soil is 

saturated most of the time in the floodplain near the Oconee River with less clay and more silt 

(Fig. 1).   

 

 

2.4.3. RF model performance  

 Violin plots showing R2 and RMSE percentages for different sample sizes used for 

prediction are shown in Figures 9-12. Model accuracy was performed using data from the 69 

sample points in the RF model. For this study, the depths of 0-10 and 40-70 cm are discussed in 
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detail to reflect the variability of processes in the soil profile. The 0-10 cm depth is the interface 

between soil and the atmosphere and biosphere and is important for plant establishment whereas 

the 40-70 cm depth better reflects soil texture controls on subsurface moisture dynamics and 

water table fluctuations. Figs. 8, 9, 10, and 11 show the performance of RF models for each 

sample size by representing the distribution of R2 and RMSE for clay and sand percentages. A 

common trend in all predictions was that the R2 increases while RMSE decreases with an 

increase in sample size. The uncertainty in predictions also decreases with an increase in sample 

size. 

2.4.3.1. Clay Performance   

At 0-10 cm, as expected, the lower sample size had the lowest R2 and highest RMSE 

(Figs. 8 and 9). For the sample size of 10, R2 was 0.2 and RMSE of 5%. As the sample size 

increased, the variability of model performance from the 50 random iterations began to decrease. 

At a sample size of 35, the R2 was 0.76 and a RMSE of 3.3%. At 65 samples, the R2 was 0.90 

with an RMSE of 2.3%. For 40-70 cm plots, the R2 was at 0.60 and RMSE at 13%. There were 

outliers for every distribution of model performance indicating that some soil data didn’t perform 

well with covariates. Sample size 35 had an R2 of 0.82 and RMSE of 6%. Sample sizes 40-60 

had a plateau of R2 at 0.88 while sample size 65 has an R2 of 0.92 and RMSE of 3.1%. High LSF 

values at ~ 5 and FPL values at ~150-100 were also where clay percentage was high. 

2.4.4. Sand Performance 

 Sand at 0-10 cm had a wide range of distribution at 10,15, and 20 samples of R2
. The 

RMSE was at 8% at a sample size of 10 and decreased as sample size increased. Sample sizes 15 

and 20 had the most outliers in the plots in R2 and RMSE.  At a sample size of 35, the R2 was 

0.80 an RMSE at 7.8%. At 65 samples, the R2 was 0.93 and RMSE was at 3.1%. The lower 
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performance of the model for sand as compared to clay especially for small sample sizes was due 

to the larger range of the percentage of sand in the field. A smaller sample size may not represent 

the range in its entirety and the decision trees that quantify the relationships between the 

covariates and sand may vary with percentage of sand. 

2.4.5. Variable Importance for RF models 

Variable importance differed by modeled soil property and depth as indicated by the 

increase in (MSE) Mean Decrease Accuracy derived from RF models Figs. 12-15. The results 

are presented for three sample sizes of 20, 35 and 69 that represent sample sizes where the RF 

model performance was poor (20), 35 where the RF model performance showed improvement 

for all three textural class predictions and 69 which was the maximum possible sample size. Clay 

MSE in 0-10 cm of covariate prediction correlated well with the statistical summary as seen in 

Table 1. FPL was the highest predictor in all samples of 20, 35, and 69. Aspect, FPL, SWI, and 

DEM were in the top four of covariate prediction power in 0-10 cm. The predictive power of 

FPL for Clay in 40-70 cm was lowest while DEM was the highest in all three sample sizes of 20, 

35, and 69. The covariates that had the lowest predicting power at 0-10 cm were strongest 

predictors in the 40-70 cm depths like MRVBF, MRRTF, and EM. 

The dominant covariates also changed with sample size for the same soil property and 

depth which indicates that sample size influences the sensitivity of different covariates to soil 

property prediction. At 0-10 cm, FPL is the strongest predictor but at 69 samples, decreases. This 

follows a trend where the strongest predictors at 20 samples decrease as sample sizes get larger. 

For example, FPL and PCA were the strongest predictors for 20 samples at the 0-10 cm depth. 

However, at 35 samples, PCA and SWI were the strongest predictors while at 69 samples, DEM 
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and PCA were the strongest predictors. At 40-70 cm depth, 20 samples had FPL as the strongest 

predictor covariate. At 40-70 cm, FPL and TPI_Landform followed a trend where it was the 

strongest predictor at 20 samples but at 69 samples, they are at the bottom. Another trend was the 

weak predictors (i.e., MRRTF and PCA) increased as samples sizes increased. At 35 samples 

EM was the strongest predictor while at 69 samples, it is the weakest predictor. Finally, 69 

samples had MRRTF as the strongest predictor. 

2.4.6. Spatial variation of properties 

Figs. 12 & 13 show maps of spatial distribution of clay for 0-10 cm and 40-70 cm when 

using sample sizes of 20, 35 and 69 for prediction along with the relative importance of different 

covariates used in the models for different sample sizes. The covariates with the strongest 

predictive power did not vary as much with sample sizes but changed considerably with depth. 

At the 0-10 cm depth, the FPL covariate is the most important predictor of all three sample sizes 

for clay. At the 40-70 cm depth, elevation had the highest predictive power for clay. Elevation 

with < 138 m (Fig.3) has low clay percentages of 20-30% shown in Fig.12. For the 0-10 cm 

depth, model performance increased with sample size from an R2 of 0.51 and RMSE of 7.21 % 

for 20 samples to an R2 of 0.69 and RMSE of 6.14% for 35 samples. The model using all 69 

samples performed very well with an R2 of 0.94 and RMSE of 1.19 %.  

Prediction maps of clay at 40-70 cm showed more spatial variability within the field than 

the 0-10 cm predictions. Areas of the field with low ECa tended to have higher clay percentages. 

Observing the maps created with 20, 35, and 69 samples, there is an area in the lowest portion of 

the field with low clay.  For 40-70 cm depth, DEM is the strongest covariate predictor for all 

three sample sizes. TPI_Landform is also high for 20 and 69 sample sizes and is reflected in the 
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prediction maps by the marked boundaries between high and low estimates. SWI is the next 

strongest predictor for 35 samples. The spatial patterns of 35 and 69 sample sizes are nearly 

identical. As the sample size increases, the percentage of clay scatters most of the northwest 

corner of the field which shows a 40% clay pattern. The map created with 20 samples showed 

large areas of low clay percentage visible on the prediction maps, and these same patterns are 

found on the TPI_Landform covariate. At 40-70 cm depth, model performance increased with 

sample size from an R2 of 0.51% and RMSE of 7.53% for 20 samples. At 35 samples, the R2 is 

0.80 and RMSE of 5.94%. The model using 69 samples performed well with an R2 of 0.88 and 

RMSE at 3.75%.   

Figs.14-15 a-c show maps of spatial distribution of sand for 0-10 and 40-70 cm when using 

sample sizes of 20, 35 and 69 for prediction. Figs. 14-15 d-f show the relative importance of 

different covariates used in the models for different sample sizes. In contrast to clay, the 

covariates with the strongest predictive power for sand vary with both sample sizes and depth.  

Observing DEM, sand tends to be high in percentage as elevation increases as seen in the 

prediction map and DEM covariate. At 0-10 cm depth with sample sizes of 20, 35, and 69, while 

the range of percentage of sand is large within the field, there is little spatial variation. The 

greatest amounts of sand are found in the northern section of the field with percentages ranging 

from 33 - 45%. Unlike clay, sand percentages were lower in the higher elevation areas and 

similarly low in the lowest landscape position in the study area. Topographically, sand had high 

percentages in the washes in the northern section. At 20 samples, FPL and surface reflectance 

(PCA) were the best predictors as covariates. At a sample size of 35, FPL was the strongest 

predictor followed by SWI. TPL_Landform was the lowest predictor covariate. At the 40-70 cm 

depth, there was more variability between the sample sizes. For a sample size of 20, FPL, 
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TPI_Landform, and DEM were the most important covariates, but these same covariates were 

less important for the other sample sizes. One of the reasons why LSF is a poor predictor is 

because it calculates the effect of slope length on erosion and is the ratio of soil loss from field 

slope length. Therefore, FSL is usually a better predictor for surface soils rather than deeper 

soils. SWI was generally not an important variable for predicting sand in this study area. At 35 

samples, ECa was the highest predictor covariate and TPI_Landform being the lowest. Sand 

percentage in spatial patterns decreased from 20 samples. At 69 samples, with a R2 of 0.92 and 

RMSE of 2.8%, majority of sand at 35-40% decreased significant only being found in areas of 

the floodplain and washes. Much of the field remains at 10-25% sand mainly in higher-altitude 

areas. MRRTF and PCA were the two most important predictors for sand at 69 samples at 40-70 

cm. EM and FPL were the least important covariates for sand at 40-70 cm.  

2.5. Discussion 

A literature review of DSM efforts reveals that the quantification of the spatial variability 

of soil texture lacks consensus in terms of the number of samples required for the generation of 

soil texture maps.  There are also a multitude of potential covariates that can be used in this 

effort and depending on the region and scale of study, different covariates have been found to be 

useful. The objective of this study was to evaluate the optimal sample size and suitable 

covariates for a floodplain in the Piedmont region of Georgia. The Georgia Piedmont was chosen 

because it is an essential area of crop production of cotton and tobacco and more. The poultry 

industry is also important in the Piedmont. The research location is a research farm located in the 

Piedmont near a floodplain.  

  I found 35-45 samples is optimal for the 40-acre field in this study based on the 

confidence variability of the violin plots and median R2 and RMSE percentages. This would 

approximate to about one sample per acre or two samples per hectare. The optimal sample size 
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was decided by varying the sample sizes used for prediction until the incremental reduction in 

RMSE from 7% or less and increase in R2 from 0.80 or higher was not very large . Our RMSE 

for 35 samples was 4% at 0-10 cm and 6% for 40-70 cm for clay. RMSE for sand was 4.5% at 0-

10 cm and 7% at 40-70 cm. These RMSE values are comparable to what has been reported in 

previous studies. Liao et al. (2013) had RMSE values of 10.65% and 6.90% for sand using 

kriging and cokriging based on 58 samples. For clay, they reported 5.55% for kriging and 4.74% 

for cokriging. Zhang and Hartemink (2021) used cubist on their study with 99 samples and 

reported smaller RMSE values of 2.67%, 5.20%, 4.00%, and 2.48 g kg-1 for clay, sand, silt, and 

total carbon. A comparison of this work with previous studies indicates that while it is possible 

to get lower RMSE values with more sample sizes, it is not always the case. The performance of 

DSM models is affected by the choice of algorithm for texture prediction, and it is possible to 

achieve lower RMSE using fewer samples if different models are selected.  

The number of samples that we recommend in this study is less than recommendations 

made by Wetterlind (2010) who recommended 1.5 samples per ha. Conversely Lai et al. (2021) 

suggested that a common approach to agricultural sampling is one sample per hectare, which Lai 

et al. (2021) stated that even for a large field of 50 ha would not provide an adequate sample size 

to predict texture. Long et al. (2018) suggests 7.5 samples per ha in their precision agriculture 

study using visible and near-infrared spectroscopy in the 400–2200 nm spectral range to predict 

soil organic carbon (SOC), plant available [Mg, P, K], pH and texture at farm scale.  

While we exhaustively utilized topographic covariates, it is possible that better RMSE 

values could have been achieved by incorporating more spectral covariates obtained from remote 

sensing. Unfortunately, given the scale of our study satellite-based remote sensing products 

utilized in many previous studies were not viable. Liao et al. (2013), used remote sensing data 
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from Landsat ETM with different bands in a low-density sampling area to get better results for 

soil texture. For this study, using Landsat bands as covariates was considered but they were 

found to be too coarse to capture the detailed patterns in the study area. Landsat ETM has a 

spatial resolution of 30 meters while our study site is 40 acres which would make it challenging 

to resample and avoid bias, particularly given the 25- fold difference in pixel size for predictions. 

Hence, the size of the field for which predictions are being made and the desired spatial 

resolution of covariates can limit the use of covariates.  

The spatial distribution of soils in this study site and the dominant covariates can be 

described jointly based on its location on the landscape and land management. The study area 

lies in a floodplain. The surface soil gets mixed seasonally and this could be a result of the high 

clay percentage found in the SW corner and where there are hills. The field has a history of crop 

production and different plowing practices and mixing soils on the surface can lead to 

homogeneous soil texture. Topography also affects soil variability by controlling deposition and 

erosion processes. For this field, finer fractions are usually transported from erosional surfaces 

and accumulate on the deposit surface such that high silt percentage is found in the flood 

plain. The field does have variation in topography where the SW corner of the field is generally 

higher in elevation with clay being exposed near the surface. In the NW corner, the soils tended 

to be drier than the rest of field and this is where a wash runs through depositing sediments. The 

NE corner of the field was closer to the Oconee River with the lowest elevation and experienced 

wetter conditions and intermittent flooding. In the SE section of the filed, there is a hill with 

more exposed clay closer to the surface.   

Irrigation practices such as pivot irrigation are used in the field that can cause water to 

run off in floodplains and drainage areas since the field is hilly in most areas. There is a wash 
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that runs from the northwest side of the field to the east side of the field and clay percentage is 

low in those areas as well. The field is rotated and tilled seasonally. There is a trend where 

deeper depth increases the percentage of clay, except in floodplains and washes. Clay at 0-10 and 

40-70 cm display low percentages at the NE lower floodplain when compared to higher elevation 

areas (Fig. 3) where clay percentage is high. Higher clay percentage may be due to erosion 

exposing the B horizon.  

Comparing our data to SSURGO, the soil series database describes the field with 

Chewacla, Wehadkee, and Wickham. The description is not identical but similar to what we 

predicted. An example is Wickham, which states that the soils are rarely flooded and have high 

clay content, which is the same as that observed in the prediction maps. On shallow soils (0-10 

cm), our predictions are similar to what SSURGO reports. In deeper (40-70 cm) depths, the 

majority of our predictions differ from SSURGO. The spatial variation of soil properties has 

different soil texture percentages in the soil series. 

Floodplain soils are among the most abundant on Earth due to periodic flooding that 

deposits nutrient-rich fine-grained sediments (Burwell et al., 1975; “Nutrient Supply to 

Floodplains | EARTH 111: Water: Science and Society,”). The sediments from the Oconee River 

are deposited in the lower elevation section of the field that is close to the river.  When we 

auguered soil samples in the areas close to the Oconee River, the surface samples were mainly 

silt loam. The soil was sandy and saturated at 100 cm depth. As deposition occurs, usually the 

finer sediment travels and gets deposited as water level decreases. The reason for finding higher 

amounts of silts as compared to sands and clay in the NE corner can be explained by the location 

of the study site within the landscape. Soils on active floodplains receive deposits of new 

alluvium with each flooding episode. The amount of alluvium deposited during each event will 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/floodplains
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vary. Small amounts of material deposited on the soil can be barely noticeable and quickly 

incorporated into the underlying surface horizon, whose rate depends on climate and biota. 

Larger amounts of new alluvium can completely bury underlying soils. This is possibly because 

of the Wehadkee soil series that lies in that area and is dominated by silt at all depths. Silt has 

spatial patterns that match the field topography (Figures 19 & 20) especially in the floodplain 

area that is constantly saturated in the NE section. Silt at 0-10 cm has low percentages in the high 

elevation areas of the field ranging from 0-32%. Chewacla soils are found on flood plains.  They 

are deep and somewhat poorly drained. They have a brown loamy surface layer and subsoil. The 

subsoil also contains masses of gray iron depletions which indicate prolonged periods of 

saturation. 

While collecting samples in the Chewacla region of the field, there were lots of iron 

depletions in the soils. These soils are commonly saturated at depths of 15 cm to 0.61 m  (6-24 

inches) during the wettest months of the year and are subject to flooding. Chewacla soils formed 

in sediments washed from the surrounding uplands. Comparing the RF maps, in the Chewacla 

region, clay is between 10-29% at 0-10 cm and 40-70 cm. Clay content increased with depth. 

This correlates with the Chewacla soil series description provided by USDA. According to 

NRCS (“Natural Resources Conservation Service,”), the Wickham soil series have 2 to 6 percent 

slopes and are rarely flooded. Wickham is found in the Piedmont and Coastal plains in Georgia. 

The Wickham horizons are generally sandy loam at the surface and three Bt layers. When 

observing the RF map where Wickham is located, the majority of the soil texture percent is clay. 

The deeper the depth, the more clay. On the official Wickham soil series description, the 0-15 

cm is fine sandy loam. From 15-91 cm, it is all Bt, meaning mostly clay.  
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Comparing the three-soil series of Chewacla, Weehadkee, and Wickham with 

environmental covariates and RF prediction maps, we found that there are similar patterns 

associated with the soil series. Comparing the RF spatial prediction maps with official series 

description is practically accurate with their descriptions of the soil. For example, for sand at 0-

10 cm with 35 samples, the strongest covariate predictor was PCA. Comparing the PCA pattern 

with the RF map is very similar. But at 40-70 cm for sand, strongest covariate predictor was ECa 

but the RF prediction map does not show any similar patterns with ECa. Clay at 0-10 cm at 35 

samples strongest covariate predictor was FPL. The patterns of FPL have high values in the 

Wickham and that is where the majority of clay is found on the surface of the field. At 40-70 cm 

clay, the strongest covariate predictor was DEM at 35 samples. When comparing the official 

series description for Chewacla that states at 10-152 cm, it is clay dominated which is what the 

RF maps predicted.  

Some limitations with our study were that we sampled by depth and not genetic horizons. 

This could impact our work because soil texture often varies by horizon and specified depth 

sampling may have resulted in averaging of soil from contrasting soil textures. An accurate and 

objective description of the soil profile depends on the identification and exact description of soil 

horizons (Hartemink and Minasny, 2016).  But Hartemink et al., (2020) states that several studies 

have presented short-range variation and within-horizon variation and have stated that a single 

core sampling is not sufficient. Several soil cores within a short distance should be collected to 

capture the short-range variation.  

Another limitation was coarse data was available and it was a challenge to find current 

small-scale resolution for these maps. We had a drone capture imagery of the field for RGB and 

lidar, butcomplications with the data precluded their use in this study.  
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Validation and model accuracy are important when making DSM. There are many 

examples in the literature using machine learning to predict soil attributes with many using 

leave-one-out cross validation (Wadoux et al., 2019). To make sure the RF model was accurate 

we followed some fundamental recommendations for modeling. First, we collected new soil 

samples and analyzed them in the laboratory. This was beneficial for data for the field. Piikki et 

al. (2021) reported out of 188 DSM literature modelling studies, only 13% of the studies used a 

type of probability sampling making unbiased estimations of map accuracy. The remaining 87% 

used soil samples that already have data from multiple samplings. Secondly, we used a robust 

sample design by applying the cLHS algorithm to obtain a full representation of multivariate 

distribution in geographical space. Biswas and Zhang (2018) did a review on sample designs in 

DSM studies and reported out of 95 DSM studies, 15% did not tell any information on their 

sampling design. Furthermore, we applied some knowledge of the field topography and 

geomorphology to help decide what topographic covariates to use in the model as variables. And 

finally, we used cross validation in the model for accuracy using the Caret package in R (Kuhn et 

al., 2022), which automatically employed tuning parameters for the models.   

The choice of sampling design is relevant to the success of a DSM effort. However, it is 

also subjective to the scale of the study. The cLHS sampling design was used in this study for 

sample point locations. The cLHS performed a good sampling design of point collection based 

off the three environmental covariates used within the RF model. This is opposite as to what 

Wadoux et al. (2019) saw in their case study. They stated that cLHS sampling performs worse 

than other sampling designs for mapping with RF. Their study site was big with 23 European 

countries. They also had a sample size of 19,790. They used a freely available soil database 

within the framework of the European Land Use/Cover area frame Statistical Survey (LUCAS). 
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The number of environmental covariates in their study was 197 at 1 km x 1 km resolution. 

Wadoux et al. (2019) does mention that RF benefits from a uniform spread of the sampling 

locations in feature space of the most important covariates and cLHS was the worst of all other 

sampling designs. They mention that further research should be considered for cLHS and 

whether it is good for RF mapping. It is likely that cLHS performs better at creating a sampling 

design in smaller sizes rather than 23 countries. However, larger areas with more points should 

be investigated.  

Regardless of specific improvements with respect to sampling size and sample design 

modeling, other places in the world have limitations regarding sample size and data 

transformation, and incompetence to deal with non-linear relationships as noted in Dash et al. 

(2022). Appropriate strategies need to be considered for obtaining soil maps with higher 

prediction accuracies.  

This study has succeeded in creating digital soil maps of adequate quality and resolution 

of recommended soil texture maps suggesting 2 m or less lidar resolution and multispectral 

bands less than 5 m . Zhang and Hartemink (2021) and Lai et al. (2021) have raised the 

importance of increasing sample sizes to get better results. While this is true, the purpose of this 

study was to find the optimal sample size on a 40-acre farm situated on a floodplain in the 

Piedmont in Georgia. Not much research has been done at this scale in the Georgia Piedmont. 

Ike and Clutter (1968) examined the variability of forest soils in northeast Georgia and suggested 

that careful sample designs and sampling quantities are needed to make spatial soil maps.  

For future work, comparing different models with different sampling design methods 

would be beneficial to compare the prediction accuracy. Remote sensing covariates such as 

surface reflectance bands could be valuable at the small field scale. Sampling by horizon would 
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be beneficial for pedogenesis, classification and microtopography using DSM to see the change 

in other soil properties such as soil organic carbon and pH.  

 

2.6. Conclusions 

 Having accurate soil characterization from a minimum sample size to map spatially 

variable soil properties is necessary for various agricultural and environmental applications. 

Determining an optimal sample size is crucial because soil sampling can be expensive and 

laborious.  Thus, the development of a model that is simplified can translate reliable estimation 

of soil texture with fine resolution. In this study, RF models were developed from validation 

samples by calculating the correlation between observed and estimated values based off R2 and 

RMSE. Fifty iterations were run by selecting various sub-samples from the dataset. Based on the 

models, majority of sample sizes less than 35 had lower R2 and RMSE percentages which for 

clay averaged 0.78 for R2 and 6% for RMSE. Sand RMSE averaged percent was 6.75% and R2 

was 0.74. Models developed with >35 samples had R2 averages with ≥ 0.80 and an average 

RMSE of 5.75% for clay and R2 of ≥ 0.79 and RMSE at 6% for sand. It was determined that the 

optimal sample size for this 40-ac field was 35. In addition to producing a customized sample 

density recommendation for this particular field, results of this study also present a viable 

method for assessing the performance of similar modeling efforts in other locations in the 

Georgia Piedmont. This approach for choosing an appropriate sample size for DSM will benefit 

farmers, stakeholders, and engineers by quantifying the uncertainty that may exist for similar 

mapping activities. Future work should better quantify the potential uncertainty influenced by 

sample size in different landscapes to facilitate better recommendations for developing detailed 

soil property maps to be used in precision agriculture, erosion prediction, watershed modeling, 

and other intensive land uses.  
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2.8 Tables 

Table 1. Summary statistics of measured soil properties by depth.  

    

0-10 cm Clay Silt Sand 

 % % % 

Min 11.8 26.2 11.7 

Max 53.2 58.4 54.9 

Median 27.9 40.4 30.4 

Mean 28.3 41.0 30.7 

Std 8.1 6.7 9.1 

Skewness 0.8 0.3 0.4 

Range 41.4 32.2 43.2 

Kurtosis 4.1 2.7 3.1 

 

10-40 cm Clay Silt Sand 

 % % % 

Min 16.2 21.1 6.6 

Max 62 58.7 53.3 

Median 40.1 35.7 23 

Mean 40.2 36.1 23.6 

Std 11.8 8.5 9.5 

Skewness 0.02 0.5 0.7 

Range 45.8 37.6 46.6 

Kurtosis 2.2 3.0 3.9 

 

40-70 cm Clay Silt Sand 

 % % % 

Min 18.1 17.3 6.6 

Max 70.9 54.8 63.4 

Median 48.9 30.9 19.2 

Mean 45.6 31.2 23.0 

Std 14.5 8.5 12.3 

Skewness -0.2 0.6 1.1 

Range 52.8 37.5 56.7 

Kurtosis 2.0 3.1 3.7 

 

70-100 cm Clay Silt Sand 

 % % % 

Min 16.4 15.7 7.6 

Max 69.8 56.6 65.5 

Median 48.5 29.8 19.6 

Mean 46.0 30.4 23.6 

Std 15.3 9.5 13.3 

Skewness -0.3 0.6 1.2 

Range 53.4 40.9 57.9 

Kurtosis 1.9 3.1 3.7 
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Table 2. Covariates used for the model. Abbreviations for each covariate are given to understand figures of the covariates. References 

are also made to the description.  Covariates with a * represent covariates used in cLHS SD. 

Covariate Description Cited Abbreviation 

Terrain LS Factor Factor that reflects slope length and steepness effects on erosion Boehner, J., Selige, T. 

(2006) 

LSF 

Flow Path Length * The maximum distance of water flow to a location in a catchment  Freeman, G.T. (1991) FPL 

Aspect Aspect identifies the downslope direction of the maximum rate of change in value from 

each cell to its neighbors. 

Brewer, C.A. & 

Marlow, K.A. (1993) 

Aspect 

Topographic Position 

Index *  

An algorithm increasingly used to measure topographic slope positions and to automate 

landform classifications 

Weiss, A.D. (2000) TPI 

Landform 

Saga Wetness Index* The 'SAGA Wetness Index' is, as the name says, like the 'Topographic Wetness Index' 

(TWI), but it is based on a modified catchment area calculation ('Modified Catchment 

Area'), which does not think of the flow as very thin film. As a result it predicts for cells 

situated in valley floors with a small vertical distance to a channel a more realistic, 

higher potential soil moisture compared to the standard TWI calculation.  

Boehner, J., Koethe, 

R. Conrad, O., Gross,

J., Ringeler, A.,

Selige, T. (2002)

SWI 

DEM Digital elevation model. Representation of elevation data to represent terrain USGS DEM 

Multiresolution Index 

of Ridgetop Flatness  

Topographic index designed to identify high flat areas at a range of scales. It 

complements the MRVBF index that is designed to identify areas of deposited material 

in flat valley bottoms. 

Gallant, J.C., 

Dowling, T.I. (2003) 

MRVBF 

Multiresolution Index 

of Valley Bottom 

Flatness  

This index classifies degrees of valley bottom flatness, which may be related to depth of 

deposit. The index can also be used to identify groundwater  

Gallant, J.C., 

Dowling, T.I. (2003) 

MRRTF 

Remote 

Sensing 

Red and Green 

Spectral 

Red and green spectral imagery done by a drone. The PCA is used as a covariate.  PCA 

EM-31 Electromagnetic 

Conductivity 

Electrical conductivity measurements performed on the crop field and used as a 

covariate  

EM 
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2.9. Figures 

 

 

Fig 1. Study location showing soil sample locations. Saga wetness index is shown for variability 

of the research area.  The field has an area in the northeast corner where the soil is saturated most 

of the time in the floodplain near the Oconee River with less clay and more silt.   
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Fig 2. Conceptual diagram of soil sampling approach. 
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Fig. 3.  Map of the field where lower floodplain and upper floodplain are located . Lower 

floodplain   lies in  majority of the Wehadkee with low  elevation . Elevation increases as colors 

on the map change towards a reddish orange in the Wickham area. 
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Fig 4. Map of covariates used in random forest models developed at the Iron Horse farm.
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Fig. 5. Soil texture distribution for all measured soil properties. Shallow soils are mainly clay 

loam and loam. Deeper soils tended to have an increase in clay.  
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Fig 6. Pearson correlation coefficients among covariates and measured soil texture at 0-10 cm.  
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Fig. 7. Pearson correlation coefficients among covariates and measured soil texture at 40-70 cm. 
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Fig. 8. Model performance (R2) over 50 iterations for clay at four depths. 



 

73 

 

Fig. 9. Model performance (RMSE) over 50 iterations for clay at four depths. 
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Fig. 10. Model performance (R2) over 50 iterations for sand at four depths. 
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Fig. 11. Model performance (RMSE) over 50 iterations for sand at four depths. 
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Fig. 12. Predicted clay percentage for 0-10 cm (A, B, C) and variable importance (D, E, F) at 20, 

35, and 69 samples, respectively, for one model iteration at each sample size. A, D= 20 samples, 

B, E= 35 samples, C, F= 69 samples.  

 



 

77 

Fig. 13. Predicted clay percentage for 40-70 cm (A, B, C) and variable importance (D, E, F) at 

20, 35, and 69 samples, respectively, for one model iteration at each sample size. A, D= 20 

samples, B, E= 35 samples, C, F= 69 samples.  
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Fig. 14. Predicted sand percentage for 0-10 cm (A, B, C) and variable importance (D, E, F) at 20, 

35, and 69 samples, respectively, for one model iteration at each sample size. A, D= 20 samples, 

B, E= 35 samples, C, F= 69 samples.  
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Fig. 15. Predicted sand percentage for 40-70 cm (A, B, C) and variable importance (D, E, F) at 

20, 35, and 69 samples, respectively, for one model iteration at each sample size. A, D= 20 

samples, B, E= 35 samples, C, F= 69 samples.  
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Fig. 16. Model performance (R2) over 50 iterations for silt at four depths. 
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Fig. 17. Model performance (RMSE) over 50 iterations for silt at four depths. 
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Fig 18. Predicted silt percentage for 0-10 cm (A, B, C) and variable importance (D, E, F) at 20, 

35, and 69 samples, respectively, for one model iteration at each sample size. A, D= 20 samples, 

B, E= 35 samples, C, F= 69 samples.  
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Fig. 19. Predicted silt percentage for 40-70 cm (A, B, C) and variable importance (D, E, F) at 20, 

35, and 69 samples, respectively, for one model iteration at each sample size. A, D= 20 samples, 

B, E= 35 samples, C, F= 69 samples.   
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Fig. 20. Correlation matrix and p-values of measured sand, silt, clay at 10-40 cm and 

environmental covariates. 
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Fig. 21 Correlation matrix of  cm and p-values of measured sand, silt, clay at 70-100 cm and 

environmental covariates. 
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Fig 22. Clay distribution by depth. 
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Fig. 23. Sand distribution by depth. 
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Fig. 24. Silt distribution by depth. 


