
Efficacy of Deep Neural Networks in Natural Language Processing

for Classifying Requirements by Origin and Functionality: An

Application of BERT in System Requirements

by

Jesse Mullis

(Under the Direction of Beshoy Morkos)

Abstract

Given the foundational role of system requirements in design projects, designers can bene�t from

classifying, comparing, and observing connections between requirements. Manually undertaking these

processes, however, can be laborious and time-consuming. Previous studies have employed Bidirectional

Encoder Representations from Transformers (BERT), a natural language processing model, to automat-

ically analyze written requirements. Yet, it remains unclear whether BERT can capture the nuances that

di�erentiate requirements. This work evaluates BERT’s performance on two requirement classi�cation

tasks executed on �ve system design documents. First, a BERT model is �ne-tuned to classify require-

ments according to their originating project. A separate BERT model is then �ne-tuned to classify each

requirement as either functional or nonfunctional. The former model receives a Matthews correlation

coe�cient (MCC) of 0.95, while the latter receives an MCC of 0.82. This work then explores the appli-

cation of BERT’s requirement representations to identify similar requirements and predict requirement

change.

Index words: [Design Automation, Requirements Management, Natural Language Processing,

BERT]
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Chapter 1

Introduction

Engineering designers rely on requirements to document, understand, and ful�ll stakeholder needs. Fol-

lowing the general framework of content-based recommendation systems [1], research in the �eld of re-

quirement engineering seeks to create systems for requirement retrieval [2, 3]. The challenge in �nding

relevant design information is emphasized by the tremendous amount of digitized data available across

domains [4]. Consequently, automated procedures are preferred to laborious manual searches. Require-

ment engineers express a speci�c interest in the retrieval of requirements for their use in applications

including requirement tracing [3], linking [5], reuse [6], and change prediction [7]. Addressing these re-

quirements management challenges is crucial to project success, particularly when developing complex

systems. This work seeks to investigate the e�cacy of Bidirectional Encoder Representations from Trans-

formers (BERT), a deep neural network, for representing requirements in a format suitable for automated

analysis. The resulting representations have potential applications in requirements reuse and change pre-

diction.

The reuse of requirements is especially necessary when designing new product variations that are

unlikely to change the solution principle and instead only adapt the embodiment to new requirements

and constraints. In this design method, known as adaptive design, the functional structure can be modi-

�ed by variation, addition, or omission since the general structure is well-known [8]. An adaptive design

approach, commonly employed for complex, custom systems [9], necessitates identi�cation of similar re-
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quirements across di�erent projects. For example, the Mars 2020 Perseverance Rover has many system

requirements that overlap with its predecessor, the Mars Science Laboratory Curiosity Rover. With each

project containing at minimum hundreds of requirements, designers may strain to identify similarities

across the requirement corpus, leading to missed opportunities for reuse.

Though requirement elicitation occurs early in the design process, requirements often do not remain

permanent throughout design projects. Requirement change propagation is a common phenomena that

occurs when an alteration to one requirement necessitates the subsequent change of other requirements.

Such change propagation can lead to unexpected project delays and expenses. Consequently, designers

and stakeholders stand to bene�t greatly from tools that can predict requirement change propagation

ahead of time [10]. Previous research has shown that change propagation can be e�ectively predicted by

the semantic and syntactic similarity of written requirements, where requirements’ similarity is propor-

tional to the likelihood of change propagating from one requirement to another [11]. However, previously

proposed methods for measuring requirement similarity are computationally expensive and fail to cap-

ture a su�ciently detailed language representation. Advances in natural language processing (NLP) have

led to the introduction of models, like BERT, that could improve requirements management practices.

Namely, BERT can project textual requirements into a continuous vector space conducive to com-

puter analysis. The resulting vector representations are known as language embeddings [12]. Because of

its utilization of transfer learning, BERT comes prepackaged with a highly developed understanding of

natural language that can be �ne-tuned to speci�c requirements management tasks. Previous studies have

applied BERT to requirements [13, 14, 15, 16], but it has yet to be shown whether BERT can reliably recog-

nize variations in requirements that occur between industry projects. It is also unknown whether BERT

can distinguish between types of requirements, i.e., functional requirements (FRs) and nonfunctional

requirements (NFRs), within industry projects. Therefore, this work looks to answer the following re-

search questions:

• RQ1: Can BERT’s requirement embeddings di�erentiate across requirements documents?

• RQ2: Can BERT’s requirement embeddings di�erentiate between FRs and NFRs?

2



• RQ3: Do embeddings from BERT �ne-tuned on requirement classi�cation tasks yield better re-

sults in requirements management applications than general-language embeddings?

Figure 1.1 displays a map of this research and indicates where each research question is addressed in the

overall process. The research questions are investigated using a dataset of 1,303 requirements sourced from

�ve mechanical design documents. Three of the documents come from private industry and detail the

design of various manufacturing equipments, while the remaining two documents are publicly available

and detail the design of subsystems for the Square Kilometer Array (SKA). To answer RQ1, a BERT

model is �ne-tuned for a "parent document classi�cation (PDC)" task, where its objective is to classify

requirements according to the project they came from. Then, to answer RQ2, a separate BERT model

is �ne-tuned for a "functional classi�cation (FC)" task with the objective of classifying requirements as

either FRs or NFRs.

After evaluating each model’s performance, potential applications of the resulting requirement em-

beddings are explored; embeddings from the PDC BERT model are used to identify similar requirements

both at the document and individual requirement level, while embeddings from the FC BERT model

are applied to predict requirement change in two of the design projects. To answer RQ3, the results are

compared to those produced by a Sentence-BERT (SB) model trained to create sentence embeddings for

general language. Beyond testing BERT’s ability to su�ciently represent requirements, this work deter-

mines whether �ne-tuning on requirement classi�cation yields higher quality requirement embeddings

than a general-language SB model.
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Chapter 2

Background

2.1 Overview

To begin, this work should be placed in its greater context as the next piece in a progression of engineer-

ing requirements research from the MODE2L (Manufacturing Optimization, Design, and Engineering

Education Lab) Group and its predecessors. This lineage stems from the creation of the Automated Re-

quirement Change Propagation Prediction (ARCPP) tool, which predicts requirement change by exam-

ining relationships derived from higher-order design structure matrices (DSMs) [17]. The initial work

was motivated by a lack of formal reasoning in requirements management tools [18] and was developed

through multiple industry-sponsored projects with applications in management [19] and manufacturing

[20]. Prior to the introduction of ARCPP, engineering change prediction had only been considered at

the component, rather than the requirement, level. A subsequent study reveals that requirement relation-

ships can be extracted from text using part-of-speech tagging and a bag-of-words method [11], opening

the door for further language-based studies of requirements; later investigation suggests that requirement

change is best predicted through the physical (noun), rather than the functional (verb), domain [21, 22, 23].

An alternative change prediction approach relying on complex network centrality metrics was found to

yield results similar to those generated by the ARCPP tool [24]. The need for change prediction tools was

rea�rmed by studies that link continuous requirement evolution with success in capstone design projects
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[25, 26, 27]. Though requirement change was established as unavoidable and necessary, further research

was required to determine its origins [28]. One study helps designers to prepare for change by employing

machine learning to characterize requirement change volatility, which describes the behavior a require-

ment exhibits due to an initial change [29]. Additional work supports earlier �ndings that NFRs behave

distinct from FRs throughout the design process [30]. To further investigate ideal requirement groupings,

another study experiments with dividing requirements into sets based on topics extracted through Latent

Dirichlet Allocation [31]. This current work intends to extend those mentioned by evaluating the ability

of NLP’s deep neural network models (here, BERT serves as an ambassador for all such models) to rep-

resent and automatically analyze engineering requirements for applications such as change prediction.

Should these models prove as capable at requirements management tasks as they are with typical NLP

tasks, then exciting new opportunities become available for the engineering requirement research com-

munity. For example, automated requirement text analysis could support current research that explores

the use of FRs and NFRs to identify excess in modular systems [32, 33, 34].

The following background sections examine the �elds of engineering requirements and NLP as per-

tains to the creation and applications of requirement embeddings generated by BERT models �ne-tuned

on requirement classi�cation tasks. Section 2.2 focuses on design requirements, their management, and

existing research on requirement classi�cation, requirement similarity, and requirement change predic-

tion. Then, Section 2.3 reviews research that has led to BERT, a state-of-the-art NLP model. Finally, Sec-

tion 2.4 provides a summary of the �ndings and existing gaps.

2.2 Design Requirements

In engineering settings, requirements are the purpose, goals, constraints, and criteria associated with a

design project [11]. Requirements serve as the primary mode of communication and documentation of

stakeholder needs and play a role in each stage of the design process, from project conception to comple-

tion. Unsurprisingly, they have been found to greatly impact a project’s overall success [8]. Designers have
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consequently developed methods, such as those detailed in seminal design books [8, 35], to systematically

elicit, compose, and manage requirements.

Preferably, designers form requirements as testable, unambiguous statements that bound a design

space for allowable solutions [36]. Requirements should not, however, be so particular as to result in

overspeci�cations that introduce complexity and unnecessary features [37]. Throughout a design project,

requirements undergo the processes of elicitation, speci�cation, validation, and veri�cation [38]. Require-

ments elicitation describes the process in which designers consult stakeholders to identify apparent and

latent stakeholder needs. During the speci�cation phase, designers re�ne the appropriate requirements

into explicit, testable statements. In the validation phase, designers and stakeholders review requirements

for "consistency, completeness, and correctness" [39]. The involvement of both designers and stakehold-

ers in the validation process ensures mutual agreement prior to committing further resources to product

design. Finally, requirements veri�cation entails proving, through methods such as inspection, modeling,

or expert review, that requirements have been ful�lled [40]. E�ective use of requirements in each stage of

the design process necessitates that requirements follow a particular structure.

Though the particulars of requirement formats do, and indeed should [41, 42], vary from industry

to industry and project to project, requirements typically follow the same basic pattern. Designers most

often express requirements as imperative statements containing the verbs "shall," "should," or "will." Ap-

pendix C in the NASA Systems Engineering Handbook [43] includes a checklist of recommendations

for writing a good requirement. The checklist suggests that designers use "shall" for explicit requirements,

"should" for goals, and "will" for facts or declarations of purpose. Following are some more of the hand-

book’s recommendations:

• Requirements should be stated positively (e.g., use "shall" instead of "shall not") with correct gram-

mar and spelling.

• Requirements should convey one thought with a single subject and predicate.

• Inde�nite pronouns, ambiguous words, and unveri�able terms should be avoided.
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• Consistent terminology should be used throughout the document.

These recommendations describe a grammar for e�ective communication through requirements. Other

guidelines, such as the "Guide for Writing Requirements" by the International Council on Systems Engi-

neering [44] and "Simpli�ed Technical English" by the AeroSpace and Defense Industries Association of

Europe [45], establish this grammar in further detail. Commercial software packages, like QRA’s QVscribe1

and IBM’s Requirement Quality Assistant2, o�er automatic assessments of requirement quality based on

the previously mentioned industry-standard requirements guides. The existence of these guides and the

associated software packages suggests the following:

1. Requirements follow a set of rules that distinguish them from generic written text.

2. Properly formed requirements are instrumental to the later requirements management process.

Based on these observations, a logical conclusion is that the representations used for requirement analy-

sis should not be general language representations, but should instead be tailored speci�cally to require-

ments. It remains unclear whether modern NLP models, like BERT, can capture the nuances that dis-

tinguish requirements between and within engineering projects. Prior to reviewing representations in

Section 2.3, this section will further explore requirements management, including the two challenges this

work seeks to address: requirement similarity and requirement change prediction.

2.2.1 Requirements Management

Proper requirements management is critical to a project’s successful completion [46]. Here, "require-

ments management" refers to activities that support the eliciting, documenting, validating, tracing, an-

alyzing, and verifying of requirements. The House of Quality (HOQ) is a popular and well-established

design framework made popular by Hauser and Clausing’s article in the Harvard Business Review [47].

The HOQ provides several useful insights for requirements management. First, the HOQ de�nes rela-

tionships between stakeholders’ desired attributes and the elicited technical requirements. Establishing
1https://qracorp.com/qvscribe
2https://www.ibm.com/products/requirements-quality-assistant
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these relationships validates whether requirements do indeed describe a solution space agreeable with the

stakeholder desires. A HOQ may indicate requirements that satisfy one or multiple desired attributes,

while simultaneously detracting from the ful�llment of other stakeholder desires; such requirements

may require additional attention, modi�cation, or even elimination. Similarly, the HOQ indicates inter-

requirement relationships, where the ful�llment of some requirements may coincide with, or contest, the

ful�llment of others. Lastly, the HOQ aids in requirements veri�cation by documenting target values for

each technical requirement.

While the HOQ remains a relevant framework, many designers today rely on software packages such

as IBM DOORS3 or Jama4 to manage requirements. These packages can represent requirement depen-

dencies through a hierarchy while also keeping track of "metadata," which is any pertinent data aside from

the requirement text itself. Metadata may include things like an author, date, reason of origin, or method

of veri�cation, and allows designers to trace all aspects of a requirement from project conception to com-

pletion. A downside of proprietary softwares when compared to the methods proposed in this paper,

however, is their cost and inability to adapt source code to meet project-speci�c needs. More importantly,

these commercial software packages do not supply a means of automatically identifying opportunities

for requirements reuse; Jama, for example, o�ers a way to reuse content from previous projects, but it

remains the designer’s responsibility to determine which requirements should be reused. QVscribe pro-

vides requirement similarity analysis that could prove useful in this regard if it were able to evaluate re-

quirement similarity across projects. Instead, the current implementation limits similarity assessments to

requirements in the same project. It can also be di�cult to use commercial software to track the impact

of requirement changes. After a change occurs to one requirement, the software examines dependencies

and �ags related requirements for review. The dependencies, however, must be manually input by the

designer. Establishing dependencies is not only time consuming, but also subjective; in some scenarios

change may propagate between requirements that the designer initially considered to be independent. To
3https://www.ibm.com/products/requirements-management
4https://www.jamasoftware.com
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fully address requirements reuse and change, designers require tools in addition to the existing commer-

cial software.

2.2.2 Classifying Requirements

Though the HOQ and requirements management software emphasize the need to examine requirements

relationships, they do not categorize these relationships themselves. Rather, they rely on designers to sort

requirements into groups, with the broadest two groups being FRs and NFR. Distinguishing between

FRs and NFR is a crucial step in requirements management. Not only do FRs appear earlier in the elici-

tation process than their nonfunctional counterparts [8], but they also pose di�erent challenges and have

varying e�ects on project success [25]. This paper follows Shankar’s de�nition of FRs as "what a product

must do, be able to perform, or should do" [30]. While there is broad agreement on this de�nition of

FRs, there is no such consensus for the de�nition of NFRs [48]. Chung et al. attempt to de�ne NFRs

through a list of "-ilities" (e.g., compatibility, reliability) [49]. Other descriptors not ending in "ility," such

as legal, operational, and security, can also be grouped under NFRs [50]. In order to maintain a binary,

generalizable classi�cation of requirements, this work considers NFRs to simply be any requirement that

is not a FR.

The process of manually sorting requirements is time-consuming and labor-intensive, especially in

complex systems with hundreds, if not thousands, of requirements. Several works attempt to automati-

cally classify requirements with machine learning. Kurtanović and Maajel use a support vector machine

model to classify requirements as FRs or NFRs using lexical features [50]. They use the PROMISE NFR

dataset [51] containing 625 student-generated requirements mixed with user requirements extracted from

online reviews. They achieve a precision and recall of around 92% for classifying FRs and NFRs and pre-

cision of 93% and recall of 90% when further classifying NRFs into usability, security, operational, and

performance requirements. Similar works apply other machine learning approaches to the PROMISE

dataset, including convolutional neural network (CNN) [52, 53] and BERT [13]. Of the studies men-

tioned, a �ne-tuned BERT model yields the best results, with an F1 score of 92%. A limitation to these

10



studies, however, is that student-generated requirements from the PROMISE NFR dataset may not rep-

resent industry-standard requirements. Additionally, the dataset and the research built upon it are geared

toward software requirements and may not generalize to mechanical design requirements.

Akay and Sang-Gook bridge this gap between automated requirement classi�cation and mechanical

design; they use the generative pre-trained transformer model [54] to create a synthetic dataset of 91,259

mechanical design requirements labeled as FRs or design parameters [55]. They then use BERT to create

requirement embeddings that are fed to a support vector machine for classi�cation. Though an impressive

accuracy of 99.1% is achieved on a test set, the model is not validated on an authentic set of requirements.

Even though the synthetic requirements are mechanical in nature, they may not re�ect the nuances of

industry requirements. Therefore, a study is needed to verify the ability of advanced NLP models, like

BERT, to classify a diverse set of requirements gathered from industry. It should also be noted that re-

quirements can be split into other useful groups based on system architecture or domains of expertise

(e.g., electrical, chemical, mechanical, software, etc.). In the design of large, complex systems, grouping

requirements in these fashions helps to allocate requirements and resources to the appropriate team. Re-

searchers continue to search for optimal groupings; Chen et al., for example, explore requirement clusters

autonomously generated from latent topics [31]. A work�ow for �ne-tuning BERT to classify industrial

requirements into FRs and NFRs could later be applied to other types of requirement classi�cation. Ad-

ditionally, �ne-tuning BERT for requirement classi�cation tasks may yield requirement representations

that could prove useful in other tasks, like identifying similar requirements and predicting requirement

change.

2.2.3 Identifying Similar Requirements

In the design of mechanical systems, adaptive design, where "one keeps to known and established solu-

tion principles and adapts the embodiment to changed requirements," and variant design, where "the sizes

and arrangements of parts and assemblies are varied within the limits set by previously designed product

structures," both necessitate the need to identify similar requirements [8]. As systems become increasingly
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complex, there is greater incentive to build upon previous solutions through adaptation and reuse. Exist-

ing research has recognized the need for utilizing previous design data, but largely ignores requirements

reuse. For example, Schubert et al. addressed the need for Computer-Aided Design and Failure Mode and

E�ects Analysis models that can be more e�ciently reused, but do not address how the corresponding

requirements could be identi�ed across projects [56]. While Yang et al. proposed a model for creating

variant designs that satisfy changing customer requirements, they provide no evaluation of the similarity

between existing and emerging requirements [57]. Though there exists a need to identify similar require-

ments within adaptive and variant design of mechanical products, the majority of research investigating

requirements similarity comes from the �eld of software engineering.

Within software engineering, NLP approaches are applied to compute requirements’ semantic sim-

ilarity. Consequently, advances in requirements similarity research have largely coincided with advances

in NLP. The framework proposed by Mihany et al. computes a similarity percentage for requirements

documents based on shared words [6]. Other works explore the use of term frequency - inverse document

frequency as well as latent semantic indexing [58, 59]. Rajpathak et al. create a novel semantic similarity

model that examines multi-phrase terms to identify "High," "Low," or "No Link" relationships between

requirements [5]. More recent works employ neural network models to create links between software

requirements. For example, Guo et al. applied two recurrent neural network (RNN) architectures, long

short-term memory (LSTM) [60] and gated recurrent unit [61], to replace previously state-of-the-art trac-

ing methods [62]. The T-BERT framework then outperforms the RNN approach by applying a BERT

model that has undergone both intermediate training and �ne-tuning to associate natural language arti-

facts with corresponding programming language artifacts [15]. Abbas et al. evaluated the underlying as-

sumption that semantic similarity relates to software similarity; they compared several di�erent language

models’ evaluation of semantic similarity and found BERT’s results to have the highest correlation with

actual software similarity [16]. The BERT model used, though, is an SB model, trained to produce gen-

eral sentence embeddings. Previous work has shown that requirements documents di�er from generic

text in terms of structure and terminology [63], so a model trained to represent requirements speci�cally
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is preferred. The success of an SB model motivates this work’s investigation of a BERT model �ne-tuned

speci�cally to distinguish between requirements.

2.2.4 Requirement Change Prediction

In the context of mechanical design, an engineering change is de�ned as "an alteration made to parts,

drawings or software that have already been released in the product design process" [64]. Figure 2.1 illus-

trates an example of an engineering change noti�cation (ECN), which is the document used to commu-

nicate and track the details of a change, such as its initiated date, cause, and the a�ected requirements

[11]. While changes are inevitable and necessary to enhance designs or allow them to address new needs,

they often come at the expense of delays and additional costs. Design projects are especially hampered

by engineering change propagations, where implementing design changes results in the need for subse-

quent, unanticipated changes [65]. Designers have responded to this challenge by developing methods of

predicting engineering change propagation.

Clarkson et al. [66] introduced the Change Prediction Method (CPM) for anticipating change prop-

agation using DSMs. CPM relies on designers to manually de�ne DSMs that indicate the likelihood and

potential impact of an initial change propagating to other components. The model then computes a risk

of change propagation based on the likelihood and impact DSMs. A case study applying this model to

product design at Westland Helicopters indicated its ability to predict changes not evident from direct

dependencies between components, even in the design of a complex mechanical system. A downside of

CPM, however, is that designers must manually create the likelihood and impact DSMs, a process which

requires extensive time and labor and relies on subjective designer input. Lee and Hong [67] remodel

CPM as a Bayesian network capable of learning propagation probabilities from a prior distribution and

empirical data, but their model still relies on experts to specify the network structure and estimate the

initial prior distribution. A further limitation of these approaches is that they operate on the component

level, while changes may occur prior to component speci�cation.

13



Figure 2.1: Example Engineering Change Noti�cation [11].

In contrast, work by Morkos et al. implements change prediction at the requirement level using

higher-order DSMs [17]. Higher-order DSMs track requirement relations beyond direct relationships.

For example, if requirement "A" has a direct relationship with requirement "B," and requirement "B" has

a direct relationship with requirement "C," then requirement "A" has a second order relationship with re-

quirement "C". Identifying relationships of order three and higher follows the same logic. The reliance on

higher-order DSMs allows the model to predict change propagations that could not be identi�ed by �rst

order relationships alone, which are the most obvious to human designers. A follow-up study compared

three methods of identifying requirement relationships: manual, linguistic, and neural-network-based

[11]. Though the presented linguistic approach provides the greatest accuracy in change prediction, it re-

quires a labor-intensive process for tagging the desired parts of speech. Further work suggests that the
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accuracy of change prediction depends on whether requirements are linked through functional or non-

functional relationships [22]. A model able to automatically represent semantic relationships while also

distinguishing functional and nonfunctional relationships, such as BERT �ne-tuned on the FC task, may

present an opportunity for improved requirement change prediction.

2.3 Language Representations in Vector Space

Written language is perhaps humanity’s most powerful tool for communication. People can use it to pre-

cisely represent, or at the very least describe in detail, just about anything. Since written text’s inception,

people have acquired massive collections of text ranging from scienti�c documents in university libraries

to 280 character opinions on Twitter. All of this data presents an opportunity for analysis. Useful in-

formation such as an article’s topic composition or �uctuations in public opinion can be extracted di-

rectly from text, and while humans can reliably discern a text’s topic or an author’s sentiment, it can be

labor-intensive to manually perform this analysis for each document in a large corpus. Modern comput-

ers and machine learning algorithms seem to have the potential to perform this analysis autonomously

and quickly (relative to a human counterpart). An issue arises, however, in representing language in ways

that can be interpreted by a computer while still retaining the same information as the original text.

Statistical language models based on N-grams were, up until the mid-2000s, the dominant models

used for NLP tasks. These models determine the probability of a sequence of words based on the con-

ditional probability of each word occurring after the previous N-1 words; bigrams (N=2) only take the

previous word into account, while trigrams (N=3) take the two previous words into account. Conditional

probabilities are computed by counting the number of occurrences of the N length sequence within a

corpus and then normalizing it by the number of other sequences in the corpus that begin with the same

N-1 words. Though models generally perform better with higher N, diminishing returns for increased

computational complexity usually limit N to 5. The relative simplicity of the N-gram approach allows

for models to be trained on large corpora: in 2006 Google released a set of 5-grams obtained from a cor-

pus with over 1 trillion words [68]. Even with models of this scale, however, N-grams are limited in that
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new sequences of words are constantly generated. They o�er no way to apply generalizations from a train-

ing corpus to a test set containing novel sequences. In short, N-grams fail to su�ciently capture meaning

from language.

Another approach is to represent text as vectors of real numbers. These vectors are known as language

embeddings, and are conducive to computer analysis. Most commonly, embeddings are produced at the

level of tokens, which are de�ned as "an instance of a sequence of characters in some document that are

grouped together as a useful semantic unit for processing" [69]. It is also possible to create embeddings

for entire sentences [70], paragraphs [71], or documents [72]. A simple method for creating word embed-

dings is to use one-hot encodings, where a vector has an entry corresponding to each word in a vocabu-

lary. Each word could be encoded by setting its associated entry equal to one and all other entries equal

to zero. Though intuitive, this method is obviously ine�cient for representing a language’s entire vocab-

ulary. Further, one-hot encodings do not capture the semantic or syntactic relationships between words,

which are crucial for model generalization; rather, these encodings project words into a space where each

word is equidistant and orthogonal to every other word in the vocabulary. An improvement would be an

embedding method that projects language in a continuous space where distances between embeddings

are representative of semantic and syntactic relationships. In a well known example of such a space, per-

forming "King - Man + Woman" using each word’s embedding should result in a vector very near to the

embedding of "Queen" [73]. The following section in the literature review will be dedicated to exploring

methods of generating such language embeddings.

2.3.1 Creating Embeddings

Researchers have long sought to create language embeddings using neural network architectures [74].

Bengio et al. use a feedforward neural network with a linear projection layer and a non-linear hidden

layer to prove that language embeddings obtained from neural network architectures yield superior re-

sults when compared to other language modeling methods, like the once popular N-gram [75]. A down-

fall of this particular neural network architecture, and those built upon it, is that its complexity makes it
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impractical for training on large corpora. Work by Mikolov et al. allows for up-scaling by introducing two

new architectures implemented in a model called word2vec: one that trains using CBOW and another

that relies on continuous skip-gram [76]. The word "continuous" in each of these approaches indicates

that they represent language in a continuous vector space as opposed to discrete N-gram spaces. Figure 2.2

displays both the CBOW and skip-gram architectures. Both approaches rely on local word co-occurances,

meaning that they derive a word’s representation based on its neighboring words. Using the CBOW ap-

proach, the neural network’s training task is to predict a word given a range of words from its history

(i.e., words to its left) and words from its future (i.e., words to its right). The example in Figure 2.2 shows

CBOW using two history words and two future words. The ordering of the history and future words

has no in�uence on the model’s prediction, hence the name, "bag-of-words". The skip-gram approach

operates in reverse; given a particular word, its training task is to predict words from a range of history

and future words. Since the model only predicts one word at a time, a single input word will yield as many

training examples as the number of selected history and future words. In Figure 2.2, for example, each of

the four output history and future words would constitute a separate training example. The examples are

sampled for training according to the distance between the input word and the output word; the greater

the distance between the words, the less the example will be sampled for training.

Figure 2.2: CBOW and Skip-gram Architectures for Word2Vec [76].
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Either the CBOW or skip-gram approach can be used to build a word2vec model that can then be pre-

trained on a large corpus to produce embeddings for each word in the corpus vocabulary. An alternative

to word2vec’s neural network approach that relies on local co-occurances is the global vectors for word

representation model [77], which builds word representations using global word co-occurances with a

weighted least squares objective. Once trained though, these models produce context-independent em-

beddings, meaning that the same word is always represented with the same vector, regardless of the con-

text in which it appears. The Transformer architecture, introduced by Vaswani et al., resolves this issue

through its self-attention mechanism, which creates context-dependent embeddings [78]. The contex-

tual embeddings produced by self-attention deal with long-term dependencies better than the alternative

LSTMs used in Embeddings from Language Models [79]. The creators of the Transformer intended to

use it for machine translation applications, so it is composed of an encoder and decoder in the original

setup. Researchers have since realized the power of each transformer component in other NLP applica-

tions, with the creation of the Generative Pre-trained Transformer [54] from transformer decoders, and

BERT [80] from transformer encoders. This work relies on BERT to classify requirements and then ex-

tracts the resulting contextual requirement representations for use in downstream applications.

2.3.2 Bidirectional Encoder Representations from Transformers (BERT)

Upon its introduction, BERT demonstrated state-of-the-art results on various NLP tasks that include

question answering, named-entity recognition, and, most important to this work, sequence classi�cation

[80]. The original BERT model comes in two sizes: BERTBASE, with 12 transformer encoder layers and

12 attention heads for a total of 110M parameters, and the massive BERTLARGE, with 24 transformer en-

coder layers and 16 attention heads for a total of 340M parameters. The encoder layers each contain a

multi-headed attention mechanism and a feed-forward neural network. Each head of the attention mech-

anism projects a word embedding into a di�erent contextual representation space before weighting and

combining the representations into a new, balanced embedding [78]. The use of many layers allows BERT

to develop a sophisticated understanding of language. A problem with models of this scale, however, is
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the shear amount of data and computational resources required for training. This obstacle is overcome

through transfer learning, which is formally de�ned as follows: "given a source domain Ds and learning

task TS , a target domain DT and learning task TT , transfer learning aims to help improve the learning

of the target predicting function fT (·) in DT using the knowledge in DT and TT , where DS 6= DT , or

TS 6= TT " [81]. In other words, transfer learning involves training a model on a convenient task that im-

proves the model’s performance on a di�erent task for which training is less convenient. In BERT’s case

this involves pre-training on unsupervised tasks to develop a general language understanding that can

later be �ne-tuned for a particular supervised task, which requires a labeled dataset. Speci�cally, BERT

undergoes unsupervised pre-training on a "masked language model" task and "next sentence prediction"

task applied to a corpus of 3,300M words. The masked language model task involves randomly replacing

a word in an input sequence with a special token, designated "[MASK]" and then training the model to

predict the replaced word. This task, adapted from the Cloze procedure [82], trains BERT to create word

embeddings based on bidirectional context (i.e., based on both words to its left and its right), whereas

previous transformer-based models were trained with a "next word prediction" task that could only con-

sider a unidirectional context (i.e., either words to its right or to its left). The next sentence prediction task

then involves inputting two sentences and having the model predict whether the two sentences occurred

alongside one another in the source text. This task bene�ts BERT’s performance when later �ne-tuned

to sentence-level tasks.

Figure 2.3 displays the BERT pipeline. To input a text sequence into the model, each word is �rst

converted to a standard WordPiece embedding [83]. The embeddings are then run through BERT to

create contextual embeddings that are used for the desired task. Most BERT implementations come pre-

trained "out of the box" and can then be �ne-tuned with a labeled dataset. The �ne-tuning process ad-

justs all model parameters to match outputs for given inputs, and requires signi�cantly less data than pre-

training; one of the datasets used to �ne-tune BERT in the original paper is smaller than the pre-training

dataset by a factor of one million [80]. Publicly available labeled datasets, such as the Stanford Question

Answering Dataset [84], exist for common tasks. Alternatively, users can �ne-tune the model with a cus-
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Figure 2.3: Pre-training and Fine-tuning BERT [80].

tom dataset. When �ne-tuned for sequence classi�cation, BERT uses a special token, designated "[CLS]"

(which stands for "classi�cation") and appended to the beginning of each input sequence, to represent

the whole sequence for an output classi�cation layer. The [CLS] token embedding only contains useful

information after the model undergoes �ne-tuning; otherwise, the [CLS] token embedding cannot be

considered an adequate representation of the entire sequence. Alternatively, representations for entire

sequences can be generated using Sentence Transformers5, which trains BERT and other Transformer-

based models speci�cally to create sequence embeddings.

2.4 Summary

Existing studies demonstrate that BERT, a state-of-the-art NLP model, can be a valuable tool for require-

ments management. In particular, BERT has shown promising results for requirement classi�cation and

evaluating requirement similarity. However, it remains unclear whether the BERT’s requirement embed-

dings can distinguish between requirements from di�erent engineering projects. It also remains unclear
5https://www.sbert.net/index.html
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whether BERT can reliably distinguish between FRs and NFRs within engineering projects. This work

seeks to provide clarity on both of these issues by �ne-tuning BERT on two classi�cation tasks: PDC,

which classi�es according to project, and FC, which classi�es according to functionality. The perfor-

mance of the �ne-tuned models will indicate BERT’s ability to di�erentiate requirements between and

within diverse sets of design documents. Further, this work investigates how the �ne-tuned model’s [CLS]

requirement embeddings perform in comparison to general-language SB sequence embeddings when ap-

plied to requirements management applications.
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Chapter 3

Research Methods

3.1 Overview

This chapter explains each step in the research map presented in Figure 1.1. The chapter begins with a

review of the requirements dataset used in this work. Then, Section 3.3 explains how requirements are la-

belled for the PDC task, where requirements are classi�ed according to their originating project, and the

FC task, where requirements are classi�ed as either functional or nonfunctional. Section 3.4 presents the

procedure for �ne-tuning BERT on the requirement classi�cation tasks as well as the Matthews correla-

tion coe�cient (MCC) used to evaluate model performance. Section 3.5 details the process of extracting

and analyzing embeddings from the �ne-tuned BERT models. Then, Section 3.6 explains the steps for

identifying similar requirements using the PDC [CLS] embeddings, and Section 3.7 describes an appli-

cation of the FC [CLS] embeddings for predicting requirement change propagation. Finally, Section 3.8

presents an alternative BERT model that will serve as a comparison to the models �ne-tuned for require-

ment classi�cation.
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3.2 Review of the Requirement Corpus

Three of the dataset’s �ve requirements documents come from private industry and have undergone pre-

vious analyses [11, 17, 23, 24, 31]. Project 1 involves creating a production line for threaded pipes, Project 2

focuses on the design of manufacturing equipment for exhaust gas �aps, and Project 3 entails the design

of industrial textile equipment. Projects 4 and 5 are publicly available requirements documents for design-

ing subsystems of the SKA1, the world’s largest radio telescope. Project 4 describes the design of a dish

element, while Project 5 describes an artifact responsible for correlating and beamforming. Though this

work does not claim this dataset to be a perfectly representative sample of all system requirements, the

dataset seems diverse enough to provide, at the very least, an indication of BERT’s ability to distinguish

requirements in general.

Table 3.1: Dataset Statistics.

Project Number of
Requirements

Avg. Words Per
Requirement Vocabulary Size

1 350 19.7 1000

2 159 25.1 1379

3 214 27.6 1043

4 289 29.7 1342

5 291 40.6 1554

Total 1303 28.4 3765

1https://www.skatelescope.org/key-documents/
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Table 3.1 displays statistics for each project’s requirements document as well as statistics for the corpus

as a whole. In total, the dataset contains 1,303 requirements with an average length of 28.4 words and a vo-

cabulary size (i.e., the number of unique words) of 3,765. Project 2 has the fewest number of requirements,

with 159, while Project 1 has the most requirements, with 350. Project 1 also contains the shortest require-

ments, whereas Project 5 contains the longest, on average. Similarly, Project 1 has the smallest vocabulary,

and Project 5 has the largest.

3.3 Creating Labeled Datasets

Fine-tuning BERT for sequence classi�cation requires a labeled dataset. A "sequence" is whatever string

of text must be labeled (e.g., a movie review or a tweet); here, each requirement is considered a sequence

and must be labeled for both classi�cation tasks. The labeled datasets follow a tabular structure where

each row is assigned to a requirement. A "Requirements" column contains the requirement text and a

"Label" column contains the corresponding label. As will become evident, the e�ort required to provide

labels di�ers substantially between the two requirement classi�cation tasks.

3.3.1 PDC Task

To �ne-tune BERT for PDC, each requirement must be labeled accordingly. All requirements from

Project 1, for example, are provided a label of "Doc1," and so on. Providing these labels is trivial; if each

document has a corresponding Excel spreadsheet or Pandas DataFrame (tabular data structure in Python)

where each row contains a requirement, then labeling simply involves appending a new column with the

document name in each cell. While the ease of labeling is an advantage of this classi�cation task, this label-

ing scheme strictly prevents the �ne-tuned model from generalizing to requirements documents outside

of the training dataset. The model here is only trained on �ve documents, meaning it can only output

labels for those �ve documents. If presented with a requirement from a sixth document, for instance, the

�ne-tuned model would incorrectly provide a label for one of the �ve training documents.
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3.3.2 FC Task

To create the dataset for FC �ne-tuning, each requirement is manually labeled as either "functional" or

"nonfunctional". As covered in Section 2.2.2, the distinction between these classes is not always clear,

so one individual’s labels may di�er from another’s. Therefore, some preliminary analysis is required to

verify the assigned labels. As a reminder, the following de�nitions are used in this work to di�erentiate

between FRs and NFRs:

• FR: "what a product must do, be able to perform, or should do [30]"

• NFR: all requirements other than FRs

Though the NFR de�nition is admittedly weak when compared to alternative de�nitions, it is used here

to create a binary classi�cation task that encompasses all requirements. The primary researcher provided

labels for all 1,303 requirements in the dataset. A breakdown of the labels is presented in Table 3.2. In total,

around 70% of the dataset requirements are labeled as nonfunctional. Document 5 has the most balanced

distribution, with a near 50/50 split between functional and nonfunctional, while Document 2 has the

least balanced, containing a single FR.

Table 3.2: Label Counts for FC Task.

Project FRs NFRs

1 123 227

2 1 158

3 42 172

4 81 208

5 144 147

Total 391 912
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To verify these labels, a strati�ed, randomly generated, 10% sample of the dataset was labeled inde-

pendently by two other individuals, both of whom work in the same lab as the primary researcher. These

individuals were sent an email that explains the labeling task and provides the requirement sample. A copy

of the instructions can be found in Appendix F. Only a sample is used for comparison due to the extensive

labor required to label the entire dataset. Strati�ed random sampling ensures that the sample maintains

the same document proportions as the overall dataset. Cohen’s kappa statistic [85] is then used to evaluate

inter-rater reliability between the primary researcher and each individual. Unlike percent agreement, the

kappa statistic, κ, takes into account the possibility that raters may agree by chance. Equation 3.1 displays

the Cohen’s kappa statistic formula, where P (a) is the actual agreement among raters, and P (e) is the

expected agreement due to chance.

κ =
P (a)− P (e)
1− P (e)

(3.1)

Here, the kappa statistic is computed using the Scikit-learn package [86]. Evaluating the �rst and

second individual’s labels against the primary researcher’s labels results in Cohen’s kappa statistics of 0.73

and 0.82, respectively.

Table 3.3: Interpretation of Cohen’s Kappa Statistic [87].

Value of Kappa Level of Agreement

0 – 0.19 None

0.20 – 0.39 Minimal

0.40 – 0.59 Weak

0.60 – 0.79 Moderate

0.80 – 0.89 Strong

0.90 – 1.00 Almost Perfect
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Table 3.3 presents McHugh’s interpretations of the kappa statistic [87]; these interpretations do not

exactly align with those proposed by Cohen, but are used here since they are more conservative than Co-

hen’s. Following McHugh’s interpretations, the computed statistics show a moderate and a strong level

of agreement. Out of the 130 total requirements in the sample, the �rst individual’s label did not match

the primary researcher’s label for 15 requirements, and the second individual’s label did not match for

10 requirements. Taking a closer look at the requirements where the labels did not match, some contain

both functional and nonfunctional aspects. Consider the following requirement from Document 4:

"It shall be possible to locate two Dishes with centre-to-centre spacing of 30 meters without any

possibility of collision."

Though this requirement seems to describe a function for locating two dishes, it could instead be

interpreted as focusing on the speci�cations or reliability of the function, rather than on the function it-

self. Regardless of ambiguities, the kappa statistics indicate general agreement on the distinction between

FRs and NFRs, suggesting that the primary researcher’s labels follow a coherent pattern. This work’s

results will indicate whether �ne-tuned BERT can replicate the labeling pattern. The model �ne-tuned

on the FC task should be able to generalize to requirements documents outside of the training set, since

any given de�nition of functional and nonfunctional is universal across requirements documents. The

exact de�nitions of functional and nonfunctional may vary, but the results from this dataset will indicate

BERT’s general ability to distinguish requirement functionality.

3.4 Fine-Tuning for Requirement Classi�cation

Once labeled, the datasets are shu�ed and split as follows: 80% of the requirements are allocated as a

training set and the remaining 20% are reserved as a test set. The training set is further broken down

into 90% for training and 10% for validation. Similar to BERT’s pre-training corpus, the requirement text

does not undergo pre-processing (e.g., removal of stopwords) other than tokenization, where words are

split into the "subtokens" that comprise BERT’s pre-trained vocabulary. Subtokens are typically pieces
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of words and are the basic units of language that BERT represents with embeddings. Additionally, the

class labels are converted into integers ranging from zero to [number_of_classes] − 1 (e.g., a parent

document label of "Doc 1" becomes "0"). This work uses the "bert-base-uncased" ("uncased" signi�es that

letter casing is ignored) model in the Hugging Face [88] implementation of BERT for Sequence Classi�-

cation. This particular model consists of 12 encoder layers, 12 self-attention heads, and an embedding size

of 768. Fine-tuning the model for each requirement classi�cation task occurs over three epochs of the 937

test set examples with a batch size of 16, AdamW optimizer with a learning rate of 2e-5, warmup ratio of

0.1, and weight decay of 0.01. During training, the model updates parameters to minimize cross-entropy

loss, which maximizes the probability of correct classi�cation. This procedure has a total runtime of 124

seconds for the PDC task and 97 seconds for the FC task when executed in a Google Colaboratory ses-

sion equipped with a 16GB NVIDIA P100 GPU. While the stated hyperparameters fall into the ranges

recommended by BERT’s creators, optimal values will vary depending on the dataset and may require

adjustment when �ne-tuning on a di�erent set of requirements documents.

3.4.1 Evaluating Classi�cation Performance

This work relies on the MCC metric to evaluate the performance of the �ne-tuned models. The MCC

evaluates model performance across all classes, even with varying class sizes [89]. Given that both require-

ment classi�cation tasks have an unbalanced dataset (i.e., varying number of samples in each class), the

MCC is more informative than simple performance metrics, like accuracy. An MCC of one indicates

perfect prediction, while an MCC of zero indicates prediction equivalent to random guessing. Equation

3.2 displays the MCC formula for the binary classi�cation case, where x contains the true class labels, y

contains the predicted class labels, Cov(x, y) is their covariance, and tp, tn, fp, and fn are, respectively,

the number of true positives, true negatives, false positives, and false negatives within y.

MCCb =
Cov(x, y)

σx · σy
=

tp · tn − fp · fn√
(tp + fp)(tp + fn)(tn + fp)(tn + fn)

(3.2)
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Equation 3.2 indicates that the MCC is equivalent to measuring the correlation between x and y [90];

in fact, MCC is simply a special case of the Pearson correlation coe�cient. While Equation 3.2 su�ces

for the FC task, the PDC task has �ve classes and requires the general multiclass calculation shown in

Equation 3.3, where K is the number of classes, s is the number of total samples, c is the number of

correctly predicted samples, pk is the number of times class k was predicted, and tk is the number of

times class k truly occurred.

MCCm =

s · c−
K∑
k=1

pk · tk√
(s2 −

K∑
k=1

p2k)(s
2 −

K∑
k=1

t2k)

(3.3)

Here, MCC is computed by setting it as the default evaluation metric in the Hugging Face implementa-

tion of BERT. The model then automatically returns MCC whenever it processes a test set. It should be

noted that while the MCC provides a useful, single-number evaluation of model performance, it does

not capture all of the information contained in a confusion matrix, which contains counts of correct and

incorrect predictions for each class. Therefore, confusion matrices are provided in addition to the MCC

for each requirement classi�cation task. MCC provides an easily interpretable evaluation of performance,

while the confusion matrix provides a more detailed, but less concise, performance evaluation.

3.5 Obtaining and Analyzing Requirement Embeddings

After �ne-tuning on a requirement classi�cation task, BERT has learned requirement-speci�c embed-

dings that may prove useful in requirements management applications. This section explains the applied

methodology for extracting and analyzing embeddings from the �ne-tuned models. The embedding anal-

ysis consists of a visualization of the embedding space followed by a numeric evaluation of requirement

relationships.
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3.5.1 Extracting Embeddings from Fine-Tuned Models

As covered in Section 2.3.2, BERT’s [CLS] token embedding represents an entire input sequence prior

to classi�cation. Logically, BERT attempts to learn the [CLS] embedding that yields the highest perfor-

mance on the given �ne-tuning task. Provided the �ne-tuned model yields acceptable classi�cation perfor-

mance, the [CLS] embedding must contain information useful for making judgments about the input

sequence. In the model resulting from the parent PDC task, the [CLS] embedding could be an advanta-

geous representation for distinguishing requirements between projects, while the [CLS] token from the

FC model could similarly be an e�ective representation of requirement functionality.

Extracting the [CLS] embeddings from the �ne-tuned models is relatively straightforward using the

Hugging Face implementation of BERT. This implementation has an option to return hidden states

along with the model’s predicted labels. "Hidden states" refer to the initial WordPiece embeddings as well

as the outputs from each of BERT’s transformer encoder layers. The Hugging Face documentation indi-

cates the size of each layer’s hidden states to be [batch_size, sequence_length, hidden_size]. The last layer

contains the �nal [CLS] embedding used for classi�cation. To obtain this embedding, each requirement

in the dataset is individually input into the �ne-tuned model, which then outputs the hidden states cor-

responding with the requirement. The last layer (13th for BERTBASE since initial WordPiece embeddings

are included) of the hidden states is selected, then the �rst item in the batch (the batch_size here is one

since requirements are input individually), then the �rst item of the sequence (the [CLS] token is always

appended to the beginning of each sequence). Following this procedure for each requirement yields a set

of [CLS] embeddings for the entire dataset.

3.5.2 Analyzing Requirement Relationships

The [CLS] embeddings extracted from the �ne-tuned models are not easily interpretable as vectors with

length of 768. To provide a general idea of the embedding spaces, dimensionality reduction techniques are
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�rst applied to visualize the embeddings. Then, requirement relationships are quanti�ed by comparing

embeddings with the cosine distance metric.

Visualizing Requirement Relationships

T-distributed stochastic neighbor embeddings (t-SNE) are used here to project the [CLS] vector, of di-

mension 768, into two-dimensional space for visualization. It is important to note that t-SNE plots do

not preserve Euclidean distance between data; rather, the t-SNE algorithm minimizes a cost function,

displayed in Equation 3.4, equal to the Kullback-Leibler divergence, KL, of the joint probabilities of

the original data, P , and the two-dimensional projections, Q. Here, pij is the joint probability between

points xi and xj according to a Gaussian distribution representing the high-dimensional space and qij

is the joint probability between points yi and yj according to a Student-t distribution representing the

two-dimensional space. The procedure for computing pij and qij is not presented here but can be found

in Appendix A of the original t-SNE paper by van der Maaten [91].

C = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

(3.4)

Minimizing this cost function using gradient descent algorithms results in two-dimensional embed-

dings that re�ect general trends in the higher-dimensional data. However, the cost function is not convex,

so results may vary slightly for di�erent initializations. This work relies on the Scikit-Learn [86] implemen-

tation of t-SNE, which automatically applies principal component analysis, a dimensionality reduction

technique, as a preprocessing step to improve the quality of the resulting embeddings. Hyperparameters,

such as perplexity and learning rate, are kept at their default values.

Quantifying Requirement Relationships

Cosine similarity is commonly used to represent two vectors’ relationship, and is applied here to deter-

mine a requirement’s nearest neighbors in the [CLS] embedding space. Results from a nearest neighbors
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search are easier to interpret with positive-valued distances, so cosine similarity is converted to cosine dis-

tance. The conversion involves simply subtracting cosine similarity from one. Whereas cosine similarity is

bounded by [−1, 1], cosine distance is always a positive number bounded by [0, 2]. Equation 3.5 presents

the formula for cosine distance, where A and B are two vectors with angle, θ, between them.

cosine distance = 1− cos(θ) = 1− A · B
‖A‖‖B‖

(3.5)

It should be noted that cosine similarity, and by extension cosine distance, are not "true" metrics

since they do not satisfy the triangle inequality. However, cosine distance is preferred to alternatives like

Euclidean distance for several reasons. First, cosine similarity is more commonly used within NLP. For

example, the SB model uses a cosine similarity loss function when �ne-tuned to compute semantic textual

similarity [92]. In the embedding space, relative angles generally seem to capture text similarity better

than magnitudes. Further, it has been shown that Euclidean distance becomes less meaningful in higher-

dimensional spaces [93]. Lastly, cosine similarity’s �xed boundaries make it more readily interpretable

than unbounded distance metrics that could become in�ated by arbitrary scaling.

3.6 Identifying Similar Requirements

Since the BERT model �ne-tuned for PDC has developed [CLS] embeddings speci�cally designed to dis-

tinguish between requirements from di�erent documents, these embeddings could provide a measure of

the similarity between project requirements. The rationale here is that BERT will place similar require-

ments in similar areas in the [CLS] embedding space. There are no ground-truth similarity measures for

this dataset, so the �ndings will be evaluated against intuition as well as results computed with a semantic

textual similarity SB model. Similarity is observed at two levels: the document level and the individual

requirement level. The document-level analysis could aid designers in evaluating the overlap between

projects as a whole, while a requirement-level similarity search could identify speci�c opportunities for

the reuse of design solutions.
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3.6.1 Similarity of Requirements Documents

To begin exploring similarity at the document level, all embeddings are visualized in a t-SNE plot that is

color-coded to re�ect each requirement’s parent document. This visualization should provide some indi-

cation as to how well the [CLS] embeddings can distinguish between parent documents and which par-

ent documents are most similar to one another. The similarity amongst documents is further explored by

measuring the cosine distance between the average [CLS] embedding of each document’s requirements.

Averaging the [CLS] embeddings for all requirements in a document produces a single, document-level

embedding that is presumed to represent the project as a whole.

3.6.2 Requirement Similarity Search

To �nd similar requirements individually, the [CLS] embedding for a requirement of interest is input to

the Facebook Arti�cial Intelligence Similarity Search (Faiss) [94] algorithm, which then searches among

the set of [CLS] embeddings of all other requirements. Requirements with the same parent document as

the requirement of interest are omitted from the search since the objective is to identify similar require-

ments in other projects that could be reused. Here, the cosine distance metric is used to �nd the three

nearest neighbors to the query requirement. The Faiss algorithm in particular is used because of its abil-

ity to e�ciently search for nearest neighbors among dense, high-dimensional vectors. Though it does not

directly support searches based on cosine similarity, Faiss does support inner product searches. By �rst

normalizing the [CLS] embeddings by their magnitude (i.e., placing them all on the unit sphere), the in-

ner product search becomes equivalent to a cosine similarity search. Results are then presented in terms

of cosine distance.

3.7 Predicting Requirement Change Propagation

As reviewed in Section 2.2.4, requirement change can be predicted by requirements’ semantic similarity.

It has also been established that change propagates di�erently among FRs than it does among NFRs. The
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[CLS] embeddings obtained from BERT �ne-tuned for FC not only represent requirements’ semantic

meaning, but also their functionality. Therefore, these [CLS] embeddings could be used in a process that

builds upon previous research by predicting change according to functional and nonfunctional relation-

ships. Documented ECNs from Projects 2 and 3 are used to explore whether the FC [CLS] embeddings

can predict requirement change. Each ECN lists the requirements that it a�ects; requirements e�ected by

an initial ECN are used to predict which requirements will be a�ected by subsequent ECNs. Here, the

FC [CLS] embedding of the initially a�ected requirement is used as a query, and all remaining require-

ments in the document are sorted according to their cosine distance from the query requirement. The

Faiss algorithm is used to perform this sorting by setting the search’s number of nearest neighbors equal

to the number of requirements in the document. A requirement’s location in the sorted list is referred to

as its ranking. If this procure is capable of predicting requirement change, then requirements a�ected by

future ECNs should be highly ranked. For comparison, the results are assessed against those generated

with SB embeddings given the same ECNs.

3.8 Obtaining SB Embeddings

The [CLS] embeddings generated from BERT �ne-tuned for requirement classi�cation have been formed

speci�cally to represent textual requirements for the assigned classi�cation task. The application of the

[CLS] embeddings to downstream tasks, such as identifying similar requirements and predicting change

propagation, is inspired by the transfer learning paradigm; in the same way that BERT’s pre-training

tasks give it a general language understanding useful for downstream tasks, it is hypothesized that the

requirement classi�cation tasks give BERT a speci�c understanding of requirements that could improve

its performance in later requirements management applications. To test this hypothesis, the performance

of the [CLS] embeddings generated by the �ne-tuned models is compared to that of an SB model, which

is a type of Sentence Transformer model. Though it may seem logical, the �ne-tuned [CLS] embeddings

cannot simply be compared to their values prior to �ne-tuning since they do not meaningfully represent

the input sequence at that stage. The Sentence Transformer models are based on work that trains BERT
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to create embeddings speci�cally for sequences of text, rather than individual tokens [92]. The particular

model used here is "multi-qa-distilbert-cos-v1," which is built on DistilBERT (a smaller, distilled version

of BERT) and �ne-tuned on a dataset of 215M question-answer pairs to identify, via cosine similarity, text

relevant to a given query. Since both requirements management applications rely on textual similarity,

this SB model should serve as a good baseline for judging the performance of the [CLS] embeddings.
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Chapter 4

Results

4.1 Overview

Section 4.2 presents the results of BERT �ne-tuned on the PDC task. Then, the resulting [CLS] embed-

dings are applied to identify similar requirements at the document level in Section 4.2.2 and at the indi-

vidual requirement level in 4.2.3. Both of these sections also include a comparison to results generated by

the SB model. Section 4.3 presents the results of BERT �ne-tuned on the FC task, and Sections 4.3.2 and

4.3.3 apply the resulting [CLS] embeddings to predict requirement changes documented in ECNs from

Projects 2 and 3. The change prediction results are also compared to those generated by the SB model.

4.2 BERT Fine-Tuned for PDC

Table 4.1 displays training and validation metrics for each epoch of training. The training loss is computed

on the training set, while the validation loss and MCC are computed on the validation set, which is held

out from training and used to track model performance on data outside the training set. As a reminder,

training and validation loss are computed via a cross-entropy loss function, which is standard for classi-

�cation tasks. Table 4.1 indicates that both the training and validation loss decrease with each additional
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epoch, while the MCC increases, indicating model improvement on the PDC task.

Table 4.1: PDC Training Metrics.

Epoch Training Loss Validation Loss MCC

1 1.307 0.835 0.719

2 0.610 0.342 0.952

3 0.323 0.232 0.976

Table 4.2 presents a confusion matrix that indicates the �ne-tuned model’s performance on the test

set. The model’s predicted parent document for each requirement is indicated along the matrix columns,

while the actual parent documents are indicated along the rows. With perfect performance, the predicted

parent document would always match the actual parent document, and all o�-diagonal values in the ma-

trix would be equal to zero. The correctly classi�ed requirements are indicated along the matrix diagonal

in green, and the misclassi�cations, at o�-diagonals, are indicated in red. With the exception of the four

Document 2 requirements that were misclassi�ed as Document 4 requirements, the confusion of one

parent document for another only occurs in quantities of one or two requirements. The model’s classi�-

cation performance on a particular document can be understood through precision and recall. Precision

indicates, as a percentage, how often the model is correct when it predicts a speci�c class label. Precision

can be calculated down a column by dividing the number highlighted in green by that column’s total.

Recall indicates, also as a percentage, how often a model can correctly predict the class label when given

examples from a particular class. Recall can be calculated along a row by dividing the number highlighted

in green by that row’s total. The model has its lowest precision, 91%, for Document 4, and its lowest recall,

84%, for Document 2. Both Documents 2 and 5 have perfect precision, while Document 4 has perfect re-

call. The �ne-tuned model’s overall performance is evaluated with MCC, which is calculated to be 0.95.

This score is associated with very high correlation between predicted labels and actual labels [95] and sug-
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gests that the �ne-tuned model can reliably distinguish requirements from di�erent documents.

Table 4.2: Confusion Matrix for PDC BERT Model on Test Set.

Predicted Parent Document

Doc1 Doc2 Doc 3 Doc4 Doc5 Totals

A
ct

ua
lP

ar
en

tD
oc

um
en

t

Doc1 69 0 0 1 0 70

Doc2 1 36 2 4 0 43

Doc3 2 0 30 0 0 32

Doc4 0 0 0 58 0 58

Doc5 0 0 0 1 57 58

Totals 72 36 32 64 57 261

4.2.1 Exploration of the PDC Embedding Space

Equipped with a model �ne-tuned on the PDC task, [CLS] embeddings of all requirements in the dataset

can now be retrieved from the model’s hidden states. The [CLS] embeddings are visualized as a t-SNE

plot in Figure 4.1, where requirements are colored according to their true parent document label. It is

important to note that since the entire dataset is included, misclassi�cations among the training and val-

idation set are now evident; these misclassi�cations are absent from the confusion matrix in Table 4.2,

which only includes results for the test set. Despite misclassi�cations, the model manages to form a clus-

ter for each document. The Document 1 cluster contains requirements from Documents 2 and 3, and the

Document 2 cluster contains requirements from Documents 1 and 3. Overall, Documents 1 and 5 appear

to be the most distinct from one another, while Documents 3 and parts of Documents 2 and 4 have some

overlap. The overlap might consist of requirements that address a similar topic, such as safety regulations,

within each document.
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DOC2
DOC3
DOC4
DOC5

Figure 4.1: t-SNE Plot of [CLS] Embeddings Obtained from PDC Task.

To investigate the embedding space further, heatmaps, shown in Figure 4.2, of cosine distance matri-

ces for [CLS] embeddings are generated. Requirements are generally organized by topic within require-

ments documents, so the heatmaps could indicate sections of topical overlap between documents. In

Figure 4.2a each row and column of the matrix corresponds with a requirement, which are in order be-

ginning with Document 1’s �rst requirement and ending with Document 5’s last requirement. The cell

colors within the symmetric matrices represent the cosine distance between each pair of requirements.

The boundaries between each document are roughly identi�able by the �ve large, dark squares along the

matrix diagonal. Documents 1, 2, and 3 appear to form a set of requirements fairly distinct from Doc-

ument 4 and further yet from Document 5. Lightly colored squares, visible in the lower left and upper

right corners of the matrix, indicate Document 1 and Document 5 to have the greatest cosine distance

between one another. An interesting feature of the colormap is the dark band visible towards the end of

Document 4, roughly between rows 945 and 1008.

39



(a) Heatmap for Complete Dataset.

(b) Heatmap for Document 4.

Figure 4.2: Heatmaps of Cosine Distances Between PDC [CLS] Embeddings.
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The requirements in this band appear to di�er from the rest of Document 4’s requirements; out of

all the requirements in Documents 4 and 5, this band contains the requirements that are closest to those

from Documents 1, 2, and 3. For a more detailed look at this band, Figure 4.2b displays a cosine distance

matrix of Document 4 requirements only. Note that Figure 4.2b’s color scale is recalibrated from that

shown in Figure 4.2a to emphasize details. Here, the band is shown to contain around 55 requirements,

ranging approximately from row 215 to row 270. According to the section headings in the original PDF

version of Document 4, the majority of requirements in this range pertain to "Repair and Replacement,"

"Manufacturing Data Packs," "Packaging, Handling & Transportation," and "Safety and Security." These

topics contrast those seen in the rest of Document 4, which is mainly composed of technical speci�cations

related to the function and operation of the SKA’s dish element. Conversely, these topics seem to overlap

with those frequently found in Documents 1, 2, and 3, which all detail the production of manufacturing

equipment. Overall, this exploration of the parent document embedding space has shown that while each

document’s requirements are represented distinctly, their distance from one another can indicate topical

overlaps.

Comparison with SB Embedding Space

The SB embedding space is explored here to make evident the di�erences between the parent document

embedding space and that of a model trained to create embeddings for general text sequences. Figure 4.3

displays a t-SNE plot of the complete dataset using embeddings generated by the SB model. Documents

appear clustered, though not as distinctly as they are in Figure 4.1. Documents 1, 2, and 3 form a larger

cluster, which includes some requirements from Document 4 as well. Once again, Document 5 emerges

as the most distinct document.

A heatmap of the cosine distance matrix is shown in Figure 4.4. In contrast to the range of distances

shown in Figure 4.2a, the SB embeddings place requirements almost equidistant to one another. There

are exceptions, however, in groups of requirements located close to one another in Documents 1 and 5.

Upon close inspection, faint lines can be seen that approximately mark the transition from Document
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Figure 4.3: t-SNE Plot of Documents in SB Embedding Space.

Figure 4.4: Heatmap of Cosine Distances Between SB Embeddings.
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3 to Document 4 as well as the transition from Document 4 to Document 5. In all, the SB embeddings

do appear to capture patterns that di�erentiate requirements between documents, but to a lesser degree

than the [CLS] embeddings extracted from the PDC model.

4.2.2 Document Level Similarity

Based on the presented exploration, it is clear that the parent document model’s [CLS] embedding space

di�erentiates between requirements documents. This section applies the [CLS] embeddings to quantify

the cosine distance between documents. Representations for documents as a whole are obtained by av-

eraging the [CLS] embeddings for all requirements in a document. A cosine distance matrix is shown

in Table 4.3 for the averaged embeddings of all �ve documents. Documents 2 and 3 are separated by the

smallest cosine distance of 0.62, while Document 1 is the next nearest to Documents 2 and 3 with cosine

distances of 0.79 and 0.65, respectively. Documents 3 and 4 have the closest remaining relationship with

a cosine distance of 0.86. Document 5 is the most distinct, with cosine distances of at least 1.0 separating

it from all other documents. Documents 1 and 5 are separated by the most signi�cant observed distance

of 1.39.

Table 4.3: Cosine Distance Between Averaged PDC [CLS] Embeddings.

Doc1 Doc2 Doc 3 Doc4 Doc5

Doc1 0 0.79 0.65 1.02 1.39

Doc2 0.79 0 0.62 0.88 1.16

Doc3 0.65 0.62 0 0.86 1.22

Doc4 1.02 0.88 0.86 0 1.00

Doc5 1.39 1.16 1.22 1.00 0
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As previously stated, there is no ground-truth to evaluate the results against, but there does appear

to be sound backing for a couple of high-level observations. First, Projects 1, 2, and 3 are closer to one

another than they are with Projects 4 and 5. This relative proximity is expected since Projects 1, 2, and 3

all describe the design of manufacturing equipment. Next, even though Document 5 is widely separated

from all documents, it is closer to Document 4 than it is to Documents 1, 2, and 3, which makes sense

given that Documents 4 and 5 originate from the SKA project. It is surprising, however, that despite

coming from the same project, Documents 4 and 5 are separated by a cosine distance of 1.00. A potential

explanation for such a large distance is that individual subsystems may have little relation or interaction

in the design of a system as immense and complex as the SKA. In fact, Document 4 makes no mention

of the correlator and beamformer described in Document 5. Searching Document 5 for the dish element

described in Document 4 reveals that it was mentioned in only 4 of the 289 requirements. The band of

requirements discussed in Section 4.2.1 may be partly responsible for Document 4 being further from

Document 5 than expected and closer to Documents 2 and 3. A possible cause for Document 5 being so

distinct from other documents, in general, is that it explicitly states its product’s name, "CSP_Mid.CBF,"

in every requirement, while other documents only mention product names in some of their requirements.

In all, this procedure for computing document similarity appears to re�ect logical relationships between

requirements documents while also unveiling similarities that may not be immediately obvious to a de-

signer reviewing documentation.

Comparison to SB Results

The same document-level similarity analysis is performed with the SB embeddings for comparison. The

cosine distance matrix for the documents’ averaged embeddings is displayed in Table 4.4. The cosine

distances computed with the SB embeddings are generally lower than those computed with the PDC

model’s [CLS] embeddings. The smallest cosine distance, with a value of 0.26, is observed between Doc-

uments 1 and 2 as well as Documents 2 and 3. Documents 1 and 3 are the next closest, with a cosine dis-

tance of 0.26. Document 5 is once again the most distinct and is separated from Documents 1, 2, and 3 by
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roughly the same amount, with cosine distances of 0.72, 0.73, and 0.70, respectively.

Table 4.4: Cosine Distance Between Averaged SB Embeddings.

Doc1 Doc2 Doc 3 Doc4 Doc5

Doc1 0 0.26 0.32 0.58 0.72

Doc2 0.26 0 0.26 0.42 0.73

Doc3 0.32 0.26 0 0.57 0.70

Doc4 0.58 0.42 0.57 0 0.52

Doc5 0.72 0.73 0.70 0.52 0

The general trends observed in Table 4.4 remain mostly consistent with those observed in Table 4.3.

Documents 1, 2, and 3 are once again closer to each other than to Documents 4 and 5. Additionally, Doc-

ument 4 is the closest of all documents to Document 5. Some departures from the previously observed

patterns are evident, such as Document 2, rather than Document 3, being closest to Document 4. While

the SB embeddings do appear to capture many of the same document relationships as the PDC [CLS]

embeddings, they create less distinction between documents. Without designating each document a par-

ticular area in the embedding space, it is unclear whether a computed distance is re�ective of document

relationships or simply due to chance.

4.2.3 Requirement Level Similarity

In this section, the PDC [CLS] embeddings are applied to identify similar requirements individually.

Figure 4.5 demonstrates the search pipeline, which relies on the FAISS algorithm, with an example search

from the dataset. For this example, the input requirement was selected from Project 3 since it is the most

centralized, with an average cosine distance of 0.84 to the remaining documents. Searching from a central-

ized project should yield relevant results. The input requirement in the example speci�es a safety feature
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for ease of lubrication. The search algorithm returns three requirements from Document 2. With a cosine

distance of 0.36, the nearest requirement declares that wiring must satisfy the relevant safety regulations.

The following result, with a cosine distance of 0.38, states that perishable tooling should be easy to re-

move and install. Also with a cosine distance of 0.38, the �nal result states that equipment should have an

ergonomic design. Ergonomics is typically considered a subcategory of safety, with its purpose being to

reduce injuries that may develop over long periods of work. As indicated by the highlighted text in Figure

4.5, the �rst and third results relate to the safety aspect of the input requirement, while the second result

relates to the input through the concepts of removal and ease of maintenance.

This example demonstrates this procedure’s ability to search multiple documents and �nd related

requirements. The relevance of some results is not always initially obvious, but further inspection can re-

veal relationships that designers may �nd useful. However, requirements are sometimes unique to their

project, and searches may fail to produce relevant results at all. The relevance of results depends on the

span of projects that comprise the dataset. If the projects are closely related, searches �nd more relevant

requirements than they could with vastly di�erent projects. The relationship between projects plays an

especially prominent role since the PDC BERT model embeds requirements with the objective of dis-

tinguishing parent documents. There could be similar requirements in other documents that are not

considered simply because those documents are further from the input requirement’s parent document.

For example, all three results in Figure 4.5 come from Project 2. While it is possible that Project 2 actually

contains the three requirements most similar to the input requirement, it could also be the case that only

Project 2 requirements are returned due to Document 2’s proximity to Document 3.

Comparison to SB Results

Using the same input requirement, a similarity search is conducted via the SB embeddings instead of the

PDC [CLS] embeddings; the search results are displayed in Figure 4.6. The �rst two results belong to

Document 4 and are separated from the input by cosine distances of 0.33 and 0.40, respectively. Both

relate explicitly to safety, with the �rst indicating the need to mark hazardous equipment appropriately
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FAISS

The Supplier's equipment and system shall Req:[Doc: 3]

All machine wiring
1 Req:[Doc: 2, Dist: 0.36]

must conform to NFPA 79.

Replacement and/or

2

Req:[Doc: 2, Dist: 0.38]
maintenance of all perishable tooling shall be designed 
to permit ease of removal and installation utilizing 
minimum tools and technical skills.

At all times, if feasible,

3

Req:[Doc: 2, Dist: 0.38]
all equipment shall be designed around ergonomic 
guidelines for improved operator comfort and 
performance, constructed using industry workmanship 
standards for operator ergonomics. 

be designed for maximum personnel safety including, but not 
limited to, the following: Ability to lubricate components and 
equipment without the removal of guards.

PDC [CLS] Embedding Space

PDC [CLS] Embedding Space

Figure 4.5: Requirement Similarity Search in PDC [CLS] Embedding Space.
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FAISS

The Supplier's equipment and system shall Req:[Doc: 3]

Equipment that, when

1

Req:[Doc: 4, Dist: 0.33]
improperly operated or handled, may jeopardise the 
safety of personnel or result in a hazardous situation, 
shall be clearly marked to such effect.

Equipment shall comply

2

Req:[Doc: 4, Dist: 0.40]
with the safety requirements of BS EN IEC 60950. 
NOTE: This includes electric shock, energy related 
hazards, fire, heat related hazards, mechanical hazards, 
radiation and chemical hazards. 

3

Req:[Doc: 2, Dist: 0.45]

be designed for maximum personnel safety including, but not 
limited to, the following: Ability to lubricate components and 
equipment without the removal of guards.

SB Embedding Space

SB Embedding Space

Replacement and/or
maintenance of all perishable tooling shall be designed 
to permit ease of removal and installation utilizing 
minimum tools and technical skills.

Figure 4.6: Requirement Similarity Search in SB Embedding Space.
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and the second specifying a particular safety regulation that must be satis�ed. The third result comes from

Document 2 and was also returned in the previous search; its separation from the input requirement has

increased from 0.38 to 0.45. The results as a whole have a greater range of cosine distances from the input

than those shown in Figure 4.5, suggesting that the SB embeddings represent individual requirements

more distinctly than the PDC [CLS] embeddings. The SB embedding results also include requirements

from two documents as opposed to a single document, which may indicate a more balanced search across

the entire dataset. Overall, the two embedding types return comparable results in this case, but the SB

embeddings consider requirement similarity alone, while the PDC [CLS] embeddings appear to return

similar requirements from similar documents.

4.3 BERT Fine-Tuned for FC

In this section, the focus shifts from the PDC task to the FC task. First, a BERT model is �ne-tuned on

the FC task. Table 4.5 displays training and validation metrics for each epoch of �ne-tuning. As expected,

the training loss decreases for each epoch as the BERT model learns the FC task. After the third epoch,

however, the validation loss increases slightly, and the MCC decreases slightly. Small �uctuations like

these are to be expected, but care must be taken to avoid over�tting if the number of training epochs is

further increased above three.

Table 4.5: FC Training Metrics.

Epoch Training Loss Validation Loss MCC

1 0.390 0.268 0.825

2 0.181 0.116 0.940

3 0.080 0.144 0.921
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The confusion matrix displayed in Table 4.6 indicates the �ne-tuned model’s performance on the test

set. As a reminder, counts for the model’s predicted requirement labels are indicated along the matrix

columns and counts for the actual labels are indicated along the rows. Out of the 185 NFRs, the model

correctly labeled 179 for a recall of 97%; out of the 76 FRs, the model correctly labeled 63 for a recall

of 83%. In terms of precision, the model receives scores of 93% for NFRs and 91% for FRs. The overall

performance is summarized by an MCC of 0.82. While this MCC is lower than the PDC model’s score

of 0.95, it still indicates high correlation between the predicted labels and the actual labels [95]. Though

the model may misclassify requirements more often than is preferable, the results clearly indicate that

BERT can be �ne-tuned to distinguish between FRs and NFRs.

Table 4.6: Confusion Matrix for FC BERT Model on Test Set.

Predicted Label

Nonfunctional Functional Totals

A
ct

ua
lL

ab
el

Nonfunctional 179 6 185

Functional 13 63 76

Totals 192 69 261

4.3.1 Exploration of the FC Embedding Space

The [CLS] embeddings are extracted from the FC BERT model and visualized in a t-SNE plot shown in

Figure 4.7. FRs and NFRs form distinct clusters, with a thin bridge connecting the two. The FR cluster

could be considered two smaller clusters, while the NFRs are one sprawling cluster. To get an alternative

view of the FC [CLS] embedding space, a cosine distance heatmap is shown in Figure 4.8. Once again,

requirements are input beginning with Document 1’s �rst requirement and ending with Document 5’s

last requirement. Bands within the heatmap re�ect the observation that FRs and NFRs typically occur

in groups within requirements documents.
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Functional
Nonfunctional

Figure 4.7: t-SNE Plot of [CLS] Embeddings Obtained from FC Task.

Figure 4.8: Heatmap of Cosine Distances Between FC [CLS] Embeddings.
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Comparison with SB Embedding Space

For comparison, a t-SNE plot for the SB embeddings is shown in Figure 4.9. Note that this t-SNE plot is

equivalent to the one shown in Figure 4.3, except the coloring is changed to indicate FRs and NFRs rather

than documents. The plot shows no clear distinction between NFRs, which span the embedding space,

and FRs that exist in disconnected groups. The concentration of FRs in particular areas could be due to

relying on a speci�c de�nition for FRs, but not for NFRs; only requirements that describe functionality

are labeled as FRs, while all other requirements are lumped together as NFRs. Overall, any recognizable

requirement clusters in the SB embedding space appear more indicative of parent document relationships

than functional ones.

Functional
Nonfunctional

Figure 4.9: t-SNE Plot of FRs and NFRs in SB Embedding Space.

Additionally, none of the patterns shown in Figure 4.8 are especially discernible in the SB embedding

heatmap previously displayed in Figure 4.4. The observations made while exploring embedding spaces

indicate the SB embeddings to be more re�ective of the PDC model’s embeddings than the FC model’s

embeddings.
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4.3.2 Predicting Change in Project 2

This section applies the extracted FC [CLS] embeddings to predict requirement change in Project 2. Us-

ing the embedding of a changed requirement as a query, all remaining requirements are sorted according

to their embedding’s cosine distance from the query; the closer a requirement is to the query, the more

likely it is to experience change propagation. ECNs, shown in Table 4.7, provide documentation of re-

quirement changes throughout the project. For the sake of brevity, speci�c requirements are referred to

in the following sections as "R" followed by their requirement ID. The need to change a given require-

ment is predicted using past requirement changes. In this work, all previously changed requirements are

considered change initiators, and all requirements downstream from an initiator are considered change

recipients. For example, from the perspective of ECN03, R9.3.7 is a recipient and R9.2.3.1 is an initiator

of change, and from the perspective of ECN04, R9.3.10 is a recipient and R9.3.7 and R9.2.3.1 are both

initiators. Though initial changes do not always propagate, industry members have con�rmed the ECNs

presented in this work to be the result of change propagation.

Table 4.7: Project 2 Approved ECNs.

ECN Requirements A�ected

01 R9.2.3.1

03 R9.3.7

04 R9.3.10

Results are displayed in Table 4.8. Ranking refers to a recipient’s position in a list of requirements

that is sorted according to similarity with the initiator, and depth re�ects the percentage of the sorted list

that must be read before arriving at the recipient. For example, computing depth among all requirements

involves dividing a ranking by Project 2’s total number of requirements. All of the recipients investigated
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happen to be NFRs, so the results include ranking and depth among NFRs only in addition to ranking

and depth among all project requirements. Project 2 contains only one FR, so ranking and depth remain

nearly equivalent whether the FR is omitted or not. The row of the initiator that best predicts a recipient

is highlighted for clarity. As the only initiator that can be used to predict R9.3.7, R9.2.3.1 yields a ranking

of 33 and depth of 21%. R9.2.3.1 also best predicts change propagation to R9.3.10, with a ranking of 24

and depth of 15%.

Table 4.8: Project 2 Change Prediction Results with FC [CLS] Embeddings.

Recipient Initiator
Among All Requirements Among NFRs

Ranking Depth Ranking Depth

R9.3.7 R9.2.3.1 33 21% 33 21%

R9.3.10
R9.2.3.1 24 15% 23 15%

R9.3.7 51 32% 50 32%

Comparison to SB Results

For comparison, Table 4.9 presents the SB embeddings’ change prediction results. The SB embeddings

achieve overall higher rankings and depths ("higher" meaning smaller in magnitude and therefore more de-

sirable for change prediction), indicating a greater aptitude for change prediction than the FC [CLS] em-

beddings. Most notably, the SB embeddings perfectly rank R9.3.10 as the most likely recipient of change

initiated by R9.3.7. This contrasts with the FC [CLS] embedding results that instead claim R9.3.10 to

have a stronger relationship with R9.2.3.1, with a ranking of 24. Further, Table 4.9 indicates that SB em-

beddings predict both recipients with a depth of at most 10% for all initiators, while the lowest depth

achieved by the FC [CLS] embeddings is 15%. In comparing results from both sets of embeddings, it
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becomes clear that the SB embeddings are preferable to the FC [CLS] embeddings for predicting require-

ment change in Project 2. The presumed strength of the FC [CLS] embeddings is their ability to consider

functionality while predicting change; this feature is of little use in Project 2, which contains a single FR.

Table 4.9: Project 2 Change Prediction Results with SB Embeddings.

Recipient Initiator
Among All Requirements Among NFRs

Ranking Depth Ranking Depth

R9.3.7 R9.2.3.1 15 9% 15 9%

R9.3.10
R9.2.3.1 16 10% 15 9%

R9.3.7 1 < 1% 1 < 1%

4.3.3 Predicting Change in Project 3

The application of requirement embeddings for change prediction is also explored in Project 3. Com-

posed of 20% FRs and 80% NFRs, Project 3 is more balanced than Project 2, so it should reveal the merit

of considering functionality while predicting change. Table 4.10 displays the analyzed Project 3 ECNs.

Table 4.10: Project 3 Approved ECNs.

ECN Requirements A�ected

01 R2.5.8 – R2.1.2 – R2.9.2 – R2.1.14

07 R2.1.14 – R2.2.6

11 R2.7
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The change prediction results obtained with the FC [CLS] embeddings are displayed in Table 4.11.

Note that R2.1.14 is ignored as a recipient in ECN07 since it is also one of the change initiators a�ected

by ECN01. Of the �ve initiators in ECN01, R2.5.8 is found to be the best predictor of downstream change

in the recipient, R2.2.6, with a depth of 26% among all requirements and 31% among NFRs. The other

analyzed recipient, R2.7, is best predicted by R2.9.2, with a depth of 49% among all requirements and

58% among NFRs. For each result, there are improvements in ranking when analyzed among NFRs, but

search depth among NFRs increases compared to search depth among all requirements. Removing FRs

has only a minor impact on ranking while reducing the list of considered requirements by 42. Maintaining

a nearly equivalent ranking in a shorter list produces the observed increase in search depth.

Table 4.11: Project 3 Change Prediction Results with FC [CLS] Embeddings.

Recipient Initiator
Among All Requirements Among NFRs

Ranking Depth Ranking Depth

R2.2.6

R2.5.8 56 26% 53 31%

R2.1.2 76 36% 76 44%

R2.9.2 137 63% 131 76%

R2.1.14 79 37% 76 44%

R2.7

R2.5.8 134 63% 129 75%

R2.1.2 157 73% 150 87%

R2.9.2 105 49% 99 58%

R2.1.14 151 71% 144 84%

R2.2.6 156 73% 151 88%
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Comparison to SB Results

Once again, the change prediction results generated with the FC [CLS] embeddings are compared to

those produced by the SB embeddings, shown in Table 4.12. Each recipient is best predicted by a di�er-

ent initiator from those shown in Table 4.11. With a nearly perfect ranking and search depth of 1% and

2% among all requirements and NFRs, respectively, recipient R2.2.6 is best predicted by R2.1.14. Predict-

ing recipient R2.7 proves to be a greater challenge, with R2.5.8 yielding the best depths of 31% among all

requirements and 30% among NFRs. Though the prediction of R2.7 is the least successful of all SB em-

bedding predictions in Projects 2 and 3, it still remains better than the FC [CLS] embedding prediction

of R2.7.

Table 4.12: Project 3 Change Prediction Results with SB Embeddings.

Recipient Initiator
Among All Requirements Among NFRs

Ranking Depth Ranking Depth

R2.2.6

R2.5.8 79 37% 62 36%

R2.1.2 13 6% 12 7%

R2.9.2 72 34% 47 27%

R2.1.14 3 1% 3 2%

R2.7

R2.5.8 66 31% 52 30%

R2.1.2 128 60% 99 58%

R2.9.2 90 42% 62 36%

R2.1.14 86 40% 64 37%

R2.2.6 97 45% 76 44%
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The SB embedding results exhibit the opposite pattern of the FC [CLS] embedding results: search

depth among NFRs is frequently less than search depth among all requirements. Removing FRs from

the list of considered requirements can be interpreted as eliminating "noise" from the change prediction

search. An improvement in ranking after removing FRs is to be expected, as at least some FRs are likely to

be ranked ahead of the recipient. The improvement in search depth, however, signi�es that when consid-

ering all requirements, enough FRs were ranked ahead of the recipient to obscure its ranking with respect

to other NFRs. That is, removing FRs from Project 3’s change prediction search improves the relevance

of results, albeit by a small amount. Designers may bene�t from separating FRs and NFRs before con-

ducting a change prediction search to capture the most relevant results. If it is evident that change could

only propagate to either FRs or NFRs, as is the case in Projects 2 and 3, then only those requirements

should be included in the change prediction search.

Overall, the SB embeddings clearly outperform the FC [CLS] embeddings when applied to change

prediction in Projects 2 and 3. However, the noted improvement in search depth among NFRs suggests

that a combination of the two models may be ideal: �rst, requirements could automatically be classi�ed

as FRs or NFRs with the FC BERT model, and then SB embeddings could predict change in either set

of requirements to yield the most relevant results.
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Chapter 5

Discussion

5.1 Addressing Research Questions

Having completed each step in the research map presented in Figure 1.1, the acquired results and observa-

tions are used to answer this work’s three research questions.

RQ1: Can BERT’s requirement embeddings di�erentiate across requirements documents?

Based on the MCC of 0.95 achieved on the PDC task, this work demonstrates that BERT can indeed

di�erentiate across requirements documents. By obtaining a nearly perfect MCC, BERT proves its ability

to identify the nuances that distinguish and relate requirements documents. Even though its pre-training

corpus does not contain requirements, transfer learning allows BERT to be �ne-tuned to recognize the

semantic and syntactic patterns speci�c to requirements documents.

RQ2: Can BERT’s requirement embeddings di�erentiate between FRs and NFRs?

With an MCC of 0.82 computed for the FC task, this work indicates that BERT can also di�erentiate

between FRs and NFRs, further demonstrating the level of detail contained in BERT’s requirement repre-

sentations. Not only can BERT recognize inter-document requirement patterns, but also intra-document

requirement patterns. The successful classi�cation results at these two levels of granularity suggest that

BERT is suitable for a broad range of requirements management applications.
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RQ3: Do embeddings from BERT �ne-tuned on requirement classi�cation tasks yield bet-

ter results in requirements management applications than general-language embeddings?

This research question does not have a clear yes or no answer; the relative performance of BERT’s �ne-

tuned embeddings depends on both the �ne-tuning task and the particular requirements management

application. Therefore, this question is addressed by considering how the PDC and FC models’ [CLS]

embeddings compare to the SB embeddings in each of the presented applications.

When computing similarity at the document level, the PDC [CLS] embeddings appear to have an ad-

vantage over the SB embeddings. The PDC [CLS] embeddings represent each document distinctly and

exhibit clearly recognizable patterns between them, only some of which are re�ected in the SB embed-

dings. Conversely, the SB embeddings are better equipped to perform requirement similarity searches, as

they represent individual requirements distinctly and search across the entire dataset, whereas the PDC

[CLS] embeddings tend to search only among the document closest to the query requirement’s docu-

ment.

In every explored instance of change prediction, the SB embeddings yielded better predictions than

the FC [CLS] embeddings. As noted at the end of Section 4.3.3, however, in some cases the most relevant

results are produced by using the two models in tandem; the FC BERT model groups requirements into

FRs and NFRs, and then a similarity search is performed within a group via SB embeddings. It should

be noted that this approach relies on designers to anticipate which group, either FRs or NFRs, is most

likely to be a�ected by an initial change.

In summary, the embedding performance depends on how well the �ne-tuning task relates to the re-

quirements management application. For instance, the SB embeddings are generated by a model that is

�ne-tuned speci�cally to represent general-language sequences for similarity searches, while the PDC and

FC [CLS] embeddings are extracted from models that are �ned-tuned only to recognize certain types of

similarity, i.e., similarity based on parent document and similarity based on functionality. Consequently,

the SB embeddings yield superior performance in both applications that involve a similarity search among

requirements. The SB embeddings fail to outperform the PDC [CLS] embeddings when computing
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document similarities, however, because the PDC task speci�cally requires the BERT model to learn em-

beddings that distinguish documents. This work’s recommendation is to use general-language sequence

embeddings, such as those produced by the SB model, in requirements management applications unless

su�cient labeled data exists to �ne-tune a model for the exact desired application.

5.2 Impact on Design Research and Practice

With respect to design research, this work rea�rms the �ndings of previous studies that have applied

transformer-based models to analyze design requirements. Having veri�ed such models’ ability to create

detailed requirement embeddings, this work motivates future studies to further explore �ne-tuning on

requirements management tasks. Currently, one of the greatest challenges for researchers in computa-

tional design is the lack of publicly available, labeled requirements datasets. Aside from intellectual con-

tributions, this work contributes to the design research community by releasing a portion of its labeled

dataset. Though the remaining documents used in this work cannot be released, Documents 4 and 5 (580

requirements combined) labeled for the FC task are available on GitHub1.

This work’s potential impact on design practice is envisioned through a theoretical scenario. Recall

the period in the COVID-19 pandemic when there was a shortage of ventilators. Several companies with

little relevant experience expressed a desire to begin producing ventilators. Such a company would bene�t

from determining which of its previously completed projects have the greatest overlap with ventilator de-

sign. After analyzing the design documentation, a transformer-based model could promptly rank projects

according to similarity, allowing the company to get a quick start based on existing work. Once the com-

pany begins designing, their inexperience manifests in the need for many ECNs throughout the design

process. Rather than repeatedly scanning through an entire requirements document for potential change

propagation paths, a designer could use a transformer-based model to generate a sorted list of most likely

change recipients, allowing more time to make the necessary preparations for any potential future change.

Though idealized, this scenario provides a glimpse of how automated requirements management tools
1https://github.com/jessemullis/SKA_docs_ForNF
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built on transformer-based models could empower designers to maximize their agility while minimizing

unnecessary costs and delays.

5.3 Limitations

Several limitations must be addressed to put this work’s contributions into context. First, this work’s

dataset is not veri�ed to be representative of all system requirements. Additionally, the dataset is large

when compared to available collections of system requirements, but remains dwarfed by other �ne-tuning

datasets. For instance, the SB model is �ned-tuned on 215M examples. Increasing this work’s dataset by at

least an order of magnitude could improve generalizability. The PDC and FC tasks also vary in their po-

tential to create generalizable models. A model trained on the PDC task is only applicable to documents

included in its training dataset; the model’s task is to classify requirements according to the documents

it was trained on and those documents only. Since all requirements can be classi�ed as FRs or NFRs,

models trained on the FC task can generalize, but only if de�nitions of FRs and NFRs remain consistent.

Finally, it may prove di�cult to exactly replicate this work’s results, even with the same dataset. Prior to

�ne-tuning, some of BERT’s parameters are randomly initialized and there is no guarantee that models

will approach the same optimum. Several models were �ne-tuned throughout this work and each yielded

slightly di�erent results, though the general patterns remained consistent.
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Chapter 6

Conclusion and Future Work

The immense potential for NLP in requirements management applications has long been established.

Yet, no previous work has determined whether state-of-the-art NLP models, like BERT, can su�ciently

represent and distinguish requirements. Using a diverse set of 1,303 requirements sourced from �ve sys-

tem design projects, this work con�rms that BERT can di�erentiate between requirements according to

both parent document and functionality. After �ne-tuning BERT on the PDC and FC tasks, the mod-

els’ requirement-speci�c [CLS] embeddings are compared to general-language SB embeddings in require-

ments management applications. Namely, this work applies requirement embeddings to compute simi-

larity and predict change. The PDC [CLS] embeddings outperform the SB embeddings for identifying

document-level similarity, but the SB embeddings are superior for requirement-level similarity searches

and change prediction.

This work supports the development of automated requirements management tools that rely on NLP

models. With NLP’s rapid progression in recent years, language embeddings have become increasingly

capable of automatically revealing relationships between documents and requirements. These relation-

ships can be unexpected and may guide designers to uncover patterns that would be missed otherwise.

Though similarity and change prediction searches may not always produce relevant results, automated

requirements management tools are not meant to replace humans entirely; rather, these tools’ purpose is

to provide suggestions that can be pursued or ignored at a designer’s discretion.
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Two branches of future work are suggested: one that investigates requirement embeddings and one

that explores their applications in requirements management. To further examine requirement embed-

dings, future work could compare embeddings from each of BERT’s layers, as it remains unclear which

is most informative. Additionally, BERT is only one of many transformer-based models, so future work

may involve comparing BERT’s requirement embeddings with those generated by alternative models,

such as MPNet [96]. To further investigate requirements management applications, a study that gathers

human evaluations of requirement similarity within the dataset would provide a baseline for judging a

model’s requirement similarity analysis. While this work compared whole documents by averaging their

requirements’ embeddings, other methods of representing documents may be preferable. Finally, the SB

embeddings yielded promising change prediction results that future work could build upon by consider-

ing the joint e�ect of multiple change initiators.
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Appendix A

Code for Fine-tuning Bert on PDC
Task

# Make sure GPU is equipped
gpu_info = !nvidia -smi
gpu_info = ’\n’.join(gpu_info)
if gpu_info.find(’failed ’) >= 0:

print(’Not connected to a GPU’)
else:

print(gpu_info)

# Install transformers package in colab session
!pip install transformers

# Link colab to Google drive
from google.colab import drive
drive.mount(’/content/drive’)

# Get labeled data
import pandas as pd
import glob

data_path = "/content/drive/MyDrive/data/Doc_labeled_requirements"
data_files = glob.glob(data_path + "/*. xlsx")

for x in range(len(data_files)):
print(data_files[x])

df = pd.concat ((pd.read_excel(f,usecols="A,B") for f in data_files),
ignore_index=True)

print(df.groupby(’Label’).count())
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print(df)

# Get lists of requirements and their labels.
requirements = df.Requirements.tolist ()
labels = df.Label.map({’Doc1’:0, ’Doc2’:1, ’Doc3’:2, ’Doc4’:3, ’Doc5’:4}).

tolist ()

from sklearn.model_selection import train_test_split

# Partition into train and test sets
train_requs , test_requs , train_labels , test_labels = train_test_split(

requirements , labels , random_state =500, test_size =.2, stratify=labels)

# Further partition train set into train and evaluation sets
train_requs , val_requs , train_labels , val_labels = train_test_split(

train_requs , train_labels , random_state =501, test_size =.1, stratify=
train_labels)

from transformers import BertTokenizerFast
tokenizer = BertTokenizerFast.from_pretrained(’bert -base -uncased ’)

# Tokenize
train_encodings = tokenizer(train_requs , truncation=True , padding=True)
val_encodings = tokenizer(val_requs , truncation=True , padding=True)
test_encodings = tokenizer(test_requs , truncation=True , padding=True)

# Prepare datasets
import torch

class RequDataset(torch.utils.data.Dataset):
def __init__(self , encodings , labels):

self.encodings = encodings
self.labels = labels

def __getitem__(self , idx):
item = {key: torch.tensor(val[idx]) for key , val in self.encodings

.items()}
item[’labels ’] = torch.tensor(self.labels[idx])
return item

def __len__(self):
return len(self.labels)

train_dataset = RequDataset(train_encodings , train_labels)
val_dataset = RequDataset(val_encodings , val_labels)
test_dataset = RequDataset(test_encodings , test_labels)
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# Install datasets package to load metrics
!pip install datasets

# Fine -tune
import numpy as np
from transformers import BertForSequenceClassification , Trainer ,

TrainingArguments
from datasets import load_metric

metric = load_metric("matthews_correlation")

def compute_metrics(eval_pred):
predictions , labels = eval_pred
predictions = np.argmax(predictions , axis =1)
return metric.compute(predictions=predictions , references=labels)

training_args = TrainingArguments(
output_dir=’./ results ’, # output directory
evaluation_strategy=’epoch’, # set evaluation for each epoch
num_train_epochs =3, # total number of training epochs
per_device_train_batch_size =16, # batch size per device during

training
per_device_eval_batch_size =16, # batch size for evaluation
learning_rate =2e-5, # learning rate for AdamW optimizer
warmup_ratio =0.1, # ratio of training data to use for

warmup of learning rate scheduler
weight_decay =0.01 , # strength of weight decay
logging_dir=’./logs’, # directory for storing logs
logging_strategy=’epoch’,

)

model = BertForSequenceClassification.from_pretrained("bert -base -uncased",
num_labels =5)

trainer = Trainer(
model=model , # the instantiated Transformers
model to be trained
args=training_args , # training arguments , defined
above
train_dataset=train_dataset , # training dataset
eval_dataset=val_dataset , # evaluation dataset
compute_metrics=compute_metrics

)

trainer.train ()

# Run model on test set
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import numpy as np
predictions = trainer.predict(test_dataset)
preds = np.argmax(predictions.predictions , axis=-1)

# Compute MCC
from sklearn.metrics import matthews_corrcoef as mcc
mcc_test_labels = [label for label in test_labels]
mcc_preds = [label for label in preds.tolist ()]

print(mcc_preds)
print(mcc_test_labels)
print(mcc(mcc_test_labels ,mcc_preds))

# Get confusion matrix and classification report
from sklearn import metrics
print(metrics.confusion_matrix(test_labels , preds))
print(metrics.classification_report(test_labels , preds , target_names =[’

Doc1’, ’Doc2’, ’Doc3’, ’Doc4’, ’Doc5’]))

# Save a trained model , configuration and tokenizer using ‘save_pretrained
() ‘.

import os

output_dir = ’./ model_save/’

# Create output directory if needed
if not os.path.exists(output_dir):

os.makedirs(output_dir)

model_to_save = model.module if hasattr(model , ’module ’) else model #
Take care of distributed/parallel training

model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)

!cp -r ./ model_save/ "/content/drive/MyDrive/models/
BERTdocumentclassification"
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Appendix B

Code for Computing Similarity
with PDC [CLS] Embeddings

# Make sure GPU is equipped
gpu_info = !nvidia -smi
gpu_info = ’\n’.join(gpu_info)
if gpu_info.find(’failed ’) >= 0:

print(’Not connected to a GPU’)
else:

print(gpu_info)

# Install transformers package in colab session
!pip install transformers

# Link colab to Google drive
from google.colab import drive
drive.mount(’/content/drive’)

# Get data
import pandas as pd
import glob

data_path = "/content/drive/MyDrive/data/Doc_labeled_requirements"
data_files = glob.glob(data_path + "/*. xlsx")
df = pd.concat ((pd.read_excel(f,usecols="A,B") for f in data_files),

ignore_index=True)
print(data_files)
print(df.groupby(’Label’).count())
requirements = df.Requirements.tolist ()

# Load pretrained tokenizer and model
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from transformers import BertForSequenceClassification , BertTokenizerFast
import torch

model_dir = "/content/drive/MyDrive/models/BERTdocumentclassification"

tokenizer = BertTokenizerFast.from_pretrained(model_dir)
model = BertForSequenceClassification.from_pretrained(model_dir ,

output_hidden_states=True)

if torch.cuda.is_available ():
device = torch.device("cuda")

model = model.to(device) # Copy model to GPU

# Get [CLS] embeddings
def requirement_to_embedding(model ,tokenizer ,requirement):

input = tokenizer(requirement , padding=True , truncation=True ,
return_tensors="pt")

input = input.to(device) # copy input to GPU

output = model (** input) # run model without labels to get logits &
encoded layers

hidden_states = output.hidden_states
embedding = hidden_states [12][0][0] # each layer has output of size (
batch_zize ,sequence_length ,hidden_size); here we are getting the [CLS]
token from the final layer

embedding = embedding.detach ().cpu().numpy()
return embedding

# Make embeddings array
import numpy as np

embeddings = [requirement_to_embedding(model ,tokenizer ,requirement) for
requirement in requirements]

embedd_array = np.stack(embeddings)

embedd_array.shape

# Create distance matrix between averaged doc embeddings
from sklearn.metrics.pairwise import cosine_distances

Doc1_index = df[df[’Label’]==’Doc1’].index.tolist ()
Doc2_index = df[df[’Label’]==’Doc2’].index.tolist ()
Doc3_index = df[df[’Label’]==’Doc3’].index.tolist ()
Doc4_index = df[df[’Label’]==’Doc4’].index.tolist ()
Doc5_index = df[df[’Label’]==’Doc5’].index.tolist ()
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Doc1_embedd = embedd_array[Doc1_index ,:]. copy()
Doc1_mean = np.mean(Doc1_embedd ,axis =0)
print(Doc1_mean.shape)

Doc2_embedd = embedd_array[Doc2_index ,:]. copy()
Doc2_mean = np.mean(Doc2_embedd ,axis =0)

Doc3_embedd = embedd_array[Doc3_index ,:]. copy()
Doc3_mean = np.mean(Doc3_embedd ,axis =0)

Doc4_embedd = embedd_array[Doc4_index ,:]. copy()
Doc4_mean = np.mean(Doc4_embedd ,axis =0)

Doc5_embedd = embedd_array[Doc5_index ,:]. copy()
Doc5_mean = np.mean(Doc5_embedd ,axis =0)

mean_embedds = np.vstack ([Doc1_mean ,Doc2_mean ,Doc3_mean ,Doc4_mean ,
Doc5_mean ])

doc_similarity = cosine_distances(mean_embedds)
print(doc_similarity)

# Install faiss
!pip install faiss
!pip install faiss -gpu

# Prep for search
import faiss
from sklearn.preprocessing import normalize

res = faiss.StandardGpuResources () # allocate single GPU

# create array of embeddings to search
other_embedds = np.vstack ([ Doc1_embedd ,Doc2_embedd ,Doc4_embedd ,Doc5_embedd

])
norm_embedds = normalize(other_embedds ,norm=’l2’) # normalize embeddings

to unit sphere

# create corresponding df of requirements
query_df = df[df[’Label’]==’Doc3’].copy().reset_index ()
other_df = df[df[’Label’]!=’Doc3’].copy().reset_index ()

# build index
index_flat = faiss.IndexFlatIP(norm_embedds.shape [1]) # build flat CPU

index
gpu_index_flat = faiss.index_cpu_to_gpu(res , 0, index_flat) # make it a

GPU index
gpu_index_flat.add(norm_embedds) # add requirement embeddings

80



# Conduct requirement similarity search
nn = 5 # number of nearest neighbors

print(query_df.iloc [128 ,1])
query = normalize(Doc3_embedd [128]. reshape (1,-1),norm=’l2’) # normalize

query vector so that inner product returns cosine similarity
print(query_df.shape)

print(other_df.shape)
print(norm_embedds.shape)
print(’’)

D,I = gpu_index_flat.search(query.reshape (1 ,768), k=nn) # perform search

for i in range(I.shape [1]):
result_i = I[0,i] # get row number for result
# print(result_i)
print(’Cosine Distance: %.2f’ % (1 - D[0,i]))
print(’Docmument: {}’.format(other_df.iloc[result_i ,2])) # display
parent document of result

print(’Requirement: {}’.format(other_df.iloc[result_i ,1]))
print(’’)
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Appendix C

Code for Fine-tuning Bert on FC
Task

# Make sure GPU is equipped
gpu_info = !nvidia -smi
gpu_info = ’\n’.join(gpu_info)
if gpu_info.find(’failed ’) >= 0:

print(’Not connected to a GPU’)
else:

print(gpu_info)

# Install transformers package in colab session
!pip install transformers

# Link colab to Google drive
from google.colab import drive
drive.mount(’/content/drive’)

# Get labeled data
import pandas as pd
import glob

data_path = "/content/drive/MyDrive/data/ForNF_labeled_requirements"
data_files = glob.glob(data_path + "/*. xlsx")
df = pd.concat ((pd.read_excel(f,usecols="A,B") for f in data_files),

ignore_index=True)
df = df.loc[(df.Label == ’functional ’) | (df.Label == ’nonfunctional ’)] #

get rid of entries without the correct labels
print(df.groupby(’Label’).count())
print(df)
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# Get lists of requirements and their labels.
requirements = df.Requirements.tolist ()
labels = df.Label.map({’functional ’:1, ’nonfunctional ’:0}).tolist ()
print(labels)

from sklearn.model_selection import train_test_split

# Partition into train and test sets
train_requs , test_requs , train_labels , test_labels = train_test_split(

requirements , labels , random_state =500, test_size =.2)

# Further partition train set into train and evaluation sets
train_requs , val_requs , train_labels , val_labels = train_test_split(

train_requs , train_labels , random_state =501, test_size =.1)

from transformers import BertTokenizerFast
tokenizer = BertTokenizerFast.from_pretrained(’bert -base -uncased ’)

# Tokenize
train_encodings = tokenizer(train_requs , truncation=True , padding=True)
val_encodings = tokenizer(val_requs , truncation=True , padding=True)
test_encodings = tokenizer(test_requs , truncation=True , padding=True)

# Prepare datasets
import torch

class RequDataset(torch.utils.data.Dataset):
def __init__(self , encodings , labels):

self.encodings = encodings
self.labels = labels

def __getitem__(self , idx):
item = {key: torch.tensor(val[idx]) for key , val in self.encodings

.items()}
item[’labels ’] = torch.tensor(self.labels[idx])
return item

def __len__(self):
return len(self.labels)

train_dataset = RequDataset(train_encodings , train_labels)
val_dataset = RequDataset(val_encodings , val_labels)
test_dataset = RequDataset(test_encodings , test_labels)

# Install datasets package to load metrics
!pip install datasets
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# Fine -tune
import numpy as np
from transformers import BertForSequenceClassification , Trainer ,

TrainingArguments
from datasets import load_metric

metric = load_metric("matthews_correlation")

def compute_metrics(eval_pred):
predictions , labels = eval_pred
predictions = np.argmax(predictions , axis =1)
return metric.compute(predictions=predictions , references=labels)

training_args = TrainingArguments(
output_dir=’./ results ’, # output directory
evaluation_strategy=’epoch’, # set evaluation for each epoch
num_train_epochs =3, # total number of training epochs
per_device_train_batch_size =16, # batch size per device during

training
per_device_eval_batch_size =16, # batch size for evaluation
learning_rate =2e-5, # learning rate for AdamW optimizer
warmup_ratio =0.1, # ratio of training data to use for

warmup of learning rate scheduler
weight_decay =0.01 , # strength of weight decay
logging_dir=’./logs’, # directory for storing logs
logging_strategy=’epoch’,

)

model = BertForSequenceClassification.from_pretrained("bert -base -uncased")

trainer = Trainer(
model=model , # the instantiated Transformers
model to be trained
args=training_args , # training arguments , defined
above
train_dataset=train_dataset , # training dataset
eval_dataset=val_dataset , # evaluation dataset
compute_metrics=compute_metrics

)

trainer.train ()

# Run model on test set
import numpy as np
predictions = trainer.predict(test_dataset)
preds = np.argmax(predictions.predictions , axis=-1)
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# Compute MCC
from sklearn.metrics import matthews_corrcoef as mcc
mcc_test_labels = [label for label in test_labels]
mcc_preds = [label for label in preds.tolist ()]

print(mcc_preds)
print(mcc_test_labels)
print(mcc(mcc_test_labels ,mcc_preds))

# Get confusion matrix and classification report
from sklearn import metrics
print(metrics.confusion_matrix(test_labels , preds))
print(metrics.classification_report(test_labels , preds , target_names =[’

Nonfunctional ’, ’Functional ’]))

# Save a trained model , configuration and tokenizer using ‘save_pretrained
()‘

import os

output_dir = ’./ model_save/’

# Create output directory if needed
if not os.path.exists(output_dir):

os.makedirs(output_dir)

model_to_save = model.module if hasattr(model , ’module ’) else model #
Take care of distributed/parallel training

model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)

!cp -r ./ model_save/ "/content/drive/MyDrive/models/
BERTfunctionalclassification"

85



Appendix D

Code for Predicting Change with
FC [CLS] Embeddings

# Make sure GPU is equipped
gpu_info = !nvidia -smi
gpu_info = ’\n’.join(gpu_info)
if gpu_info.find(’failed ’) >= 0:

print(’Not connected to a GPU’)
else:

print(gpu_info)

# Install transformers package in colab session
!pip install transformers

# Get requirements
import pandas as pd

data_path = "/content/drive/MyDrive/data/ForNF_labeled_requirements"
data_file = data_path + "/J_Doc1_ForNF.xlsx"
df = pd.read_excel(data_file ,usecols="A,B")
requirements = df.Requirements.tolist ()

# Load pretrained tokenizer and model
from transformers import BertForSequenceClassification , BertTokenizerFast
import torch

model_dir = "/content/drive/MyDrive/models/BERTfunctionalclassification"

tokenizer = BertTokenizerFast.from_pretrained(model_dir)
model = BertForSequenceClassification.from_pretrained(model_dir ,

output_hidden_states=True)
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if torch.cuda.is_available ():
device = torch.device("cuda")

model = model.to(device) # Copy model to GPU

# Get embeddings
def requirement_to_embedding(model ,tokenizer ,requirement):

input = tokenizer(requirement , padding=True , truncation=True ,
return_tensors="pt")

input = input.to(device) # copy input to GPU

output = model (** input) # run model without labels to get logits &
encoded layers

hidden_states = output.hidden_states
embedding = hidden_states [12][0][0] # each layer has output of size (
batch_zize ,sequence_length ,hidden_size); here we are getting the [CLS]
token from the final layer

embedding = embedding.detach ().cpu().numpy()
return embedding

# Create embedding array
import numpy as np

embeddings = [requirement_to_embedding(model ,tokenizer ,requirement) for
requirement in requirements]

embedd_array = np.stack(embeddings)

embedd_array.shape

# Install faiss
!pip install faiss
!pip install faiss -gpu

# Prep for search
import faiss
from sklearn.preprocessing import normalize

res = faiss.StandardGpuResources () # allocate single GPU

norm_embedds = normalize(embedd_array ,norm=’l2’)

# build index with all requirements
index_flat = faiss.IndexFlatIP(norm_embedds.shape [1]) # build flat CPU

index
gpu_index_flat = faiss.index_cpu_to_gpu(res , 0, index_flat) # make it a

GPU index
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gpu_index_flat.add(norm_embedds) # add requirement embeddings

# Search among all requirements in document
nn = df.shape [0] # number of nearest neighbors

# ECN01
requ_01a = 137
print(df.iloc[requ_01a ,1])
print(df.iloc[requ_01a ,0])
print(’’)

requ_01b = 16
print(df.iloc[requ_01b ,1])
print(df.iloc[requ_01b ,0])
print(’’)

requ_01c = 75
print(df.iloc[requ_01c ,1])
print(df.iloc[requ_01c ,0])
print(’’)

requ_01d = 19
print(df.iloc[requ_01d ,1])
print(df.iloc[requ_01d ,0])
print(’’)

# ECN07
requ_07a = 19
print(df.iloc[requ_07a ,1])
print(df.iloc[requ_07a ,0])
print(’’)

requ_07b = 24
print(df.iloc[requ_07b ,1])
print(df.iloc[requ_07b ,0])
print(’’)

# ECN11
requ_11 = 97
print(df.iloc[requ_11 ,1])
print(df.iloc[requ_11 ,0])
print(’’)

query_07 = norm_embedds [[requ_01a ,requ_01b ,requ_01c ,requ_01d ],:]. copy()
D_07 ,I_07 = gpu_index_flat.search(query_07.reshape (4 ,768), k=nn) # perform

search
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# find ranking of 07a for each requirement in ECN01
all_ranks_07b = []
all_dists_07b = []
for i in range(I_07.shape [0]):

ranks_07b = np.where(I_07[i] == requ_07b) # find rank of requirement in
search array

dists_07b = 1 - D_07[i,ranks_07b] # find distance of requirement in
distance array

all_ranks_07b.append(ranks_07b [0][0])
all_dists_07b.append(dists_07b [0][0])

print(all_ranks_07b)
print(all_dists_07b)
print(’’)

query_11 = norm_embedds [[requ_01a ,requ_01b ,requ_01c ,requ_01d ,requ_07b ],:].
copy()

D_11 ,I_11 = gpu_index_flat.search(query_11.reshape (5 ,768), k=nn) # perform
search

# find ranking of 11 for each requirement in ECN07
all_ranks_11 = []
all_dists_11 = []
for i in range(I_11.shape [0]):

ranks_11 = np.where(I_11[i] == requ_11) # find rank of requirement in
search array

dists_11 = 1 - D_11[i,ranks_11] # find distance of requirement in
distance array

all_ranks_11.append(ranks_11 [0][0])
all_dists_11.append(dists_11 [0][0])

print(all_ranks_11)
print(all_dists_11)

# Split FRs and NFRs prior to search

# get indeces for both classes
func_index = df[df[’Label’]==’functional ’]. index.tolist ()
nonfunc_index = df[df[’Label’]==’nonfunctional ’]. index.tolist ()

# sepparate functional embeddings from nonfunctional
func_embedds = norm_embedds[func_index ,:]. copy()
nonfunc_embedds = norm_embedds[nonfunc_index ,:]. copy()

# create corresponding df of requirements
func_df = df[df[’Label’]==’functional ’].copy().reset_index ()
nonfunc_df = df[df[’Label’]==’nonfunctional ’].copy().reset_index ()
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# skip functional since change only propagates to NFRs here
# index_flat_func = faiss.IndexFlatIP(func_embedds.shape [1]) # build flat

CPU index
# gpu_index_flat_func = faiss.index_cpu_to_gpu(res , 0, index_flat_func) #

make it a GPU index
# gpu_index_flat_func.add(func_embedds) # add functional requirement

embeddings

# D_func ,I_func = gpu_index_flat_func.search(query.reshape (1 ,768), k=nn) #
perform search

index_flat_nonfunc = faiss.IndexFlatIP(nonfunc_embedds.shape [1]) # build
flat CPU index

gpu_index_flat_nonfunc = faiss.index_cpu_to_gpu(res , 0, index_flat_nonfunc
) # make it a GPU index

gpu_index_flat_nonfunc.add(nonfunc_embedds) # add nonfunctional
requirement embeddings

nn = nonfunc_df.shape [0] # search all nonfunctional requirements

# find ranking of ECN07b requirement among nonfunctional requirements for
ECN01

D_07_nonfunc ,I_07_nonfunc = gpu_index_flat_nonfunc.search(query_07.reshape
(4 ,768), k=nn) # perform search

nonfunc_requ_07b = nonfunc_df.index[nonfunc_df[’index ’] == requ_07b ].
tolist ()[0] # find corresponding index in nonfunctional dataframe

print(nonfunc_df.loc[[ nonfunc_requ_07b ]])

nonfunc_ranks_07b = []
nonfunc_dists_07b = []
for i in range(I_07_nonfunc.shape [0]):

ranks_07b = np.where(I_07_nonfunc[i] == nonfunc_requ_07b) # find rank of
requirement in search array

dists_07b = 1 - D_07_nonfunc[i,ranks_07b] # find distance of requirement
in distance array

nonfunc_ranks_07b.append(ranks_07b [0][0])
nonfunc_dists_07b.append(dists_07b [0][0])

print(nonfunc_ranks_07b)
print(nonfunc_dists_07b)
print(’’)

# find ranking of ECN11 requirement among nonfunctional requirements for
ECN07
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D_11_nonfunc ,I_11_nonfunc = gpu_index_flat_nonfunc.search(query_11.reshape
(5 ,768), k=nn) # perform search

nonfunc_requ_11 = nonfunc_df.index[nonfunc_df[’index’] == requ_11 ]. tolist
()[0] # find corresponding index in nonfunctional dataframe

print(nonfunc_df.loc[[ nonfunc_requ_11 ]])

nonfunc_ranks_11 = []
nonfunc_dists_11 = []
for i in range(I_11_nonfunc.shape [0]):

ranks_11 = np.where(I_11_nonfunc[i] == nonfunc_requ_11) # find rank of
requirement in search array

dists_11 = 1 - D_11_nonfunc[i,ranks_11] # find distance of requirement
in distance array

nonfunc_ranks_11.append(ranks_11 [0][0])
nonfunc_dists_11.append(dists_11 [0][0])

print(nonfunc_ranks_11)
print(nonfunc_dists_11)
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Appendix E

Code for Obtaining SB Embeddings

# Install sentence transformers package
!pip install -U sentence -transformers

# Link colab to Google drive
from google.colab import drive
drive.mount(’/content/drive’)

# Get data
import pandas as pd
import glob

# Load requirements with functional label and append document label
data_path = "/content/drive/MyDrive/data/ForNF_labeled_requirements"
data_files_func = glob.glob(data_path + "/*. xlsx")
print(data_files_func)

df_Doc1 = pd.read_excel(data_path + "/J_Doc1_ForNF.xlsx",usecols="A,B")
df_Doc1[’Document ’] = ’Doc1’

df_Doc2 = pd.read_excel(data_path + "/J_Doc2_ForNF.xlsx",usecols="A,B")
df_Doc2[’Document ’] = ’Doc2’

df_Doc3 = pd.read_excel(data_path + "/J_Doc3_ForNF.xlsx",usecols="A,B")
df_Doc3[’Document ’] = ’Doc3’

df_Doc4 = pd.read_excel(data_path + "/Doc4_ForNF.xlsx",usecols="A,B")
df_Doc4[’Document ’] = ’Doc4’

df_Doc5 = pd.read_excel(data_path + "/Doc5_ForNF.xlsx",usecols="A,B")
df_Doc5[’Document ’] = ’Doc5’
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df = pd.concat ([df_Doc1 ,df_Doc2 ,df_Doc3 ,df_Doc4 ,df_Doc5],ignore_index=True
)

print(df.groupby ([’Label’,’Document ’]).count())
print(df)

# Create embedding array
from sentence_transformers import SentenceTransformer
import numpy as np
from sklearn.preprocessing import normalize

requirements = df.Requirements.tolist ()
model = SentenceTransformer(’sentence -transformers/multi -qa-distilbert -cos

-v1’)
embeddings = model.encode(requirements)
embedd_array = np.stack(embeddings)
print(embedd_array.shape)
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Appendix F

Provided Instructions For
Labeling FRs and NFRs

In the “Label” column, please enter “functional” or “nonfunctional” for each of the requirements. The
requirements are sorted according to the document they came from (indicated by the “Document” col-
umn).

For guidance, use the following de�nition of functional requirements: “what a product must do, be able
to perform, or should do.” All other requirements are considered nonfunctional here. Requirements
related to the following subjects are commonly classi�ed as nonfunctional: “reliability, security, accuracy,
cultural factors, and other descriptors that do not necessarily describe actions that must be taken by the
system.”

Here are some examples:

Functional
- The system shall send a veri�cation email to a user whenever he/she registers for the �rst time.
- The seatbelt shall secure the passenger to their seat.
- The bicycle suspension shall absorb energy from rocky terrain.

Nonfunctional
- Emails shall be sent with a latency no greater than 12 hours.
- The seatbelt shall satisfy all local and federal regulations.
- The bicycle frame shall not fail within 10,000 hours of normal use.
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