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ABSTRACT 

Metabolomics is a multidisciplinary field with a wide range of applications from 

basic science to translational medicine. The small molecules it can detect are direct 

measurements of cellular function and can aptly describe physiological states and/or 

pathologies even in the absence of phenotypes. The larger the number of identified 

metabolites, the greater the scope and detail of the metabolic network uncovered. However, 

metabolomics is limited in the number of metabolites it identifies and their function in a 

metabolic network. Metabolite identification is technically challenging, with most 

metabolomics studies relying on chemical standards and metabolite spectral databases that 

represent only but a small fraction of the metabolites that can be detected (predominantly 

using mass spectrometry and nuclear magnetic resonance spectroscopy; MS and NMR). 

Thus, novel strategies are needed for de novo structural elucidation of unknown 

metabolites. Here, I describe two critical developments to overcome this challenge. First, 

a method capable of generating ample quantities of a reference material (RM) of any matrix 

type that is robust to changes over the course of time. Currently there are no easily available 



 

metabolomics RMs for the model organism Caenorhabditis elegans therefore, we 

generated the first metabolomics C. elegans RM. Second, using this RM as a pivotal 

element, I developed an experimental design that uses semi-preparative fractionation to 

integrate liquid chromatography (LC)-MS and NMR, two analytical platforms challenging 

to integrate, and yet essential for the confident identification of metabolites. Metabolomics 

alone, is necessary but not sufficient to derive mechanistic insight into the interactions of 

the metabolites it measures with other biomolecules. This functional characterization has 

been traditionally achieved through biochemical and genetic approaches that strongly rely 

on model organisms. Using the bacterium Salmonella enterica, I demonstrate that 

metabolomics can provide a wider view the metabolic effects of 2-amino acrylate (2AA) 

stress, while carefully planned media supplementation experiments confirmed and 

expanded on the damage to serine hydroxymethyltransferase and the ensuing effects on the 

measured metabolites. The complementarity of these three approaches helps addressing 

two longstanding challenges in metabolomics: metabolite identification and determining 

their role in the organism; ultimately expanding the tools needed to tackle the complexity 

of metabolism. 
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CHAPTER 1 

INTRODUCTION 

‘Omics’ technologies are defined as data driven approaches that aim at the 

comprehensive measurement of all the respective elements in a given biological system. 

Genomics, transcriptomics and proteomics measure DNA, RNA and proteins, with each 

aiming to comparatively assess changes that can be attributed to disease states, external 

stressors, genetic mutations, among others.1 Similarly, metabolomics aims to measure the 

totality of metabolites, small chemical compounds with a molecular weight lower than 

1500 Dalton.2 These small molecules, once described as “simple” substrates of biochemical 

reactions at the end of the central dogma cascade, have far-reaching biochemical effects 

contributing to regulation at all levels of metabolism (Fig. 1.1).3  

An organism’s metabolism consists of countless complex and interconnected 

biochemical reactions that result in physiological response(s) and/or subsequent behavioral 

traits(s) (phenotype).4 These reactions are modulated by fluctuating environments and 

internal mechanisms that lead to metabolic changes structured to respond to both internal 

and external stimuli. The collection of all metabolites, that act as precursors, activators, 

intermediates, inhibitors, products and substrates of numerous cellular processes (from 

signaling to energy production) constitute the metabolome and depicts the physiological 

state of an organism.3-5 For this reason, metabolomics has aptly linked differences in the 

metabolome to perturbed metabolic pathways,6 disease states,7, 8 physiological processes,9 

as well as a proxy for enzyme regulation and genetic variation.4, 10, 11 The metabolome is a 
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dynamic and sensitive molecular phenotype quickly changing and adapting to internal and 

external stimuli, and as such, metabolomics applications have been steadily growing for 

the past two decades (Fig. 1.2), spanning  numerous disciplines with direct applications to 

real world problems.12 Despite the scientific community enthusiasm and successful 

applications, its full potential is still limited by technical challenges as well as a vast 

number of biochemical reactions and respective metabolites that remain unknown.  

Herein, I describe the methodologic workflow of a metabolomics experiment step-

by-step. The strengths of this framework, limitations and nuances are raised in light of the 

work detailed in the following chapters.  

Chapter 2 describes a novel method to generate a RM for metabolomics from any 

biological source. These materials are critical to ensure standardized, reproducible, high-

quality data and have been considered a critical challenge in the field, that ultimately 

increase the confidence of the biological interpretation and translational applications of 

metabolomics findings.  

Chapter 3 builds up on the outputs of chapter two. The approach detailed in this 

chapter harnesses elements from several disciplines and combines them, using RMs as a 

pivotal element to develop an experimental design capable of generating essential data for 

metabolite identification. This challenge has been a long-standing bottleneck for 

metabolomics’ outputs, stemming from the challenging integration of analytical 

instrumentation, essential to derive chemical structures of measured metabolites. This 

chapter sets a clear path towards addressing this gap in knowledge with exciting 

possibilities for downstream applications.  
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Chapter 4 details the application 1H NMR metabolomics to uncover global 

metabolic shifts that occur in the bacterium Salmonella enterica ridA mutant and considers 

these findings to complement the current biochemical model describing the effect of 2-

amino acrylate (2AA) stress in S. enterica. Metabolomics experiments often lack in the 

mechanistic and functional understanding of the measured metabolites. Thus, this approach 

illustrates the powerful integration of metabolomics with biochemistry/genetics 

methodologies to overcome this limitation, ultimately deepening our understanding of the 

metabolism and biochemical reactions. 

Finally, Chapter 5 comprises of a summary of my work presented here providing a 

coherent connection between chapters and future perspectives of the methods developed.   
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Figure 1.1. Central Dogma of Molecular Biology. The canonical flow of information 
from DNA to metabolism where the regulation and cascade of information flows from top 
to bottom. Both curved arrows and two-sided arrows indicate regulation from resulting 
elements of downstream processes. External factors affect all levels of metabolism. At the 
last level the vast number of biochemical reactions and their byproducts induce a 
phenotype.13 
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1.1 Metabolomics 

Metabolomics is a transdisciplinary field. At its core relies on analytical chemistry 

technology to measure and identify small molecules. Developments to automate and 

improve analytical instrumentation, drove the most commonly used platforms to high-

throughput status capable of generating datasets of unprecedented volume.4, 14, 15 Mass 

Spectrometry (MS) in tandem with Liquid Chromatography (LC), Gas Chromatography-

MS and Nuclear Magnetic Resonance (NMR) spectroscopy (Fig. 1.2) are the most 

prevalent analytical platforms and while LC-MS accounts for much of this growth, each 

technology has its own advantages and disadvantages.16  In addition to the technological 

limitations, metabolites occupy a diverse chemical space and wide concentration ranges, 

creating technical challenges that make it impossible to characterize the metabolome in its 

entirety with a single analytical platform.17 

Figure 1.2. Analytical technology trends in metabolomics. A) PubMed search results 
for metabolomics articles are represented by black dots. Blue bars represent number of 
publications matching the search terms “metabolomics” and “mass spectrometry”. Red 
bars represent search terms “metabolomics” and “NMR”. B) Illustrates the distribution of 
analytical platforms as percentage of studies deposited to Metabolomics Workbench. All 
data were obtained Oct. 10, 2020. Reprinted with permission from Anal. Chem. 2021, 93, 
1, 478–499. Copyright © 2020 American Chemical Society.16 
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Agnostic to the technology used, metabolomics studies follow the same standard 

structure and can generally be described in six sequential steps (Fig. 1.3): i) experimental 

design, ii) sample production/collection, iii) sample preparation, iv) data acquisition, v) 

data processing, and vi) data analysis.18 The aim of the following section is not to 

comprehensively and exhaustively review each step, methods, techniques and materials, 

since the list would be too large for a single document, but to provide a background to the 

subsequent chapters and the challenges and limitations I have faced, and to certain degree 

overcome. 

 

 

 

 

 

 

 

 

 

Figure 1.3. Generic metabolomics workflow steps. The process runs from left to right. 
At each step non-exhaustive examples of technical variance are listed. Experimental 
design overarches all the steps while quality controls and RMs can provide input at each 
step. 
 
1.1.1 Experimental design 

 The design or planning stage is the critical step for a successful metabolomics 

experiment. This pre-experiment process ensures that the final analytical output is 

appropriate to answer the biological question at hand through statistical inference.19 All the 
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possible parameters at each of the above-mentioned steps are considered; from the number 

and type of biological samples required and extraction protocols, to the most suitable 

analytical platform, and the controls used throughout. Pilot studies are often ideal to 

determine these parameters as well as sample numbers in light of the expected biological 

effect size and technical variance.20 In addition, cost, sample logistics, throughput, and 

instrument type have considerable weight on designing a metabolomics experiment. 15, 21, 

22 

 The fast-paced-ever-changing nature of the metabolome makes it challenging to 

predict, plan and control for variance external to the biological system. A vast number of 

dynamic variables can impact the analytical readout and obscure or confound the true 

biological effect under investigation. For this reason, Quality Assurance and Quality 

Control (QA/QC) measures are critical for a successful experiment.23 Quality management 

systems have deep historical roots in manufacturing and industrial production where it was 

developed and implemented to ensure the products met the required specifications.24  

In metabolomics, QA/QC are critical to generate high quality data and reproducible 

results.25 Succinctly, QA can be considered a framework of systematic processes put in 

place to ensure the quality of the analysis (e.g., standardized protocols, training, reporting, 

instrument calibrations and maintenance) often arching beyond a study, laboratory and 

even institution. QCs are measurement specific; they are often materials that can provide a 

metric/criterion of performance and, can be used to identify and measure unwanted 

variance of sources external to a single study or means of comparison between studies, 

instrument and laboratories.23, 25 Part of the experimental design is determining the most 

appropriate QC for the study at hand and ensuring the QA processes are complied with.  
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The diversity of the possible configurations a metabolomics study can take, makes 

the QC selection process challenging and difficult to standardize particularly in respect to 

the available instrumentation, sample type and importantly the aims or goals of the study. 

The latter allows to broadly classify metabolomics experiments as either targeted or 

untargeted.23  

 The aims of the experiment are deeply connected to the type of QCs used. Targeted 

studies work in similar ways to well-established analytical assays of testing laboratories 

(e.g., forensic, drug testing, biomedical), where the study aims to investigate the effects of 

a panel or group of known metabolites. The metabolites of interest, or closely related 

compounds, are generally procured as pure chemical standards (or mixtures of pure 

chemicals) to generate calibration curves and derive the respective concentrations in the 

samples.23, 26 In addition, these can be isotopically labeled and added pre-analysis to the 

study samples to define quality criteria for the analytical process and the unambiguous 

identification of the unlabeled metabolite.27 In contrast, untargeted metabolomics is not 

limited by a select number of known compounds, measuring as many metabolites as 

possible and leveraging semi-quantitative comparisons between study samples to 

determine biologically relevant features that are then identified post- data acquisition.  

Because these metabolites are selected from the data analysis without a priori knowledge 

of their relevance, untargeted metabolomics is often useful to generate novel hypothesis or 

highlight previously unknown relationships between metabolites and the study 

conditions.19, 22, 23, 28, 29  
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1.1.2 Sample production/collection 

The most common QA practice associated with generating samples for 

metabolomics is randomization. The concept of experimental randomization was made an 

essential component of experimental design by R.A. Fisher in the early 1920’s, while 

working at the Rothamsted Experimental Station, a major center for ecological and 

agricultural research. Fisher posited that experimental design and statistical analysis go 

hand-in-hand, and that randomly assigning treatments to the agricultural plots was the only 

valid way to measure the true error (or variance) associated with the fields that had received 

the same treatment. Previous experiments fell short to rigorously measure (and to correct) 

this variance, introducing experimenter bias to the treatment layout and ultimately deriving 

misleading conclusions.30, 31 Because of the metabolome fast and dynamic response, 

unrandomized experiments can incorrectly associate metabolic shifts from extraneous 

factors to study conditions. Randomization allows for these effects to be distributed over 

all the study samples and therefore allowing for between conditions and between samples 

variances to be aptly calculated.19, 23, 25 

This approach still remains a key experimental consideration, especially in plant 

metabolomics, where field experiments require careful planning, time and considerable 

resources to ensure that samples of different experimental groups represent (as best as 

possible) the varying environmental conditions.32 Similarly, this concept is transferable to 

any biological sample, from microbial cultures, where environmental factors can be 

carefully controlled, to human samples where controlled experiments are extremely hard 

to implement. Nevertheless, every experiment will have some form of external factor (i.e., 

collection time/order, container type, temperature, processing speed, storage time, operator 
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capacity, etc.) of unknown magnitude. Appropriate QA and QC allow for these effects in 

the final measured metabolite concentration to be quantified and adjusted accordingly. 19 

 

1.1.3 Sample preparation 

 Following sample collection/production, the integrity of the sample must be 

maintained until analysis. Flash freezing after collection with liquid nitrogen 

(approximately -196 OC) is a popular and logistically feasible method, suitable for storage 

and transport.18 These low temperatures, prevent metabolic changes by increasing the 

activation energy necessary for both enzymatic and non-enzymatic reactions.33 However, 

the succeeding steps after collection are often incompatible with such low temperatures, 

and in such cases, samples can be kept cold with ice (0 OC) or dry-ice (-79 OC). Other 

alternatives such as the addition of organic solvents, can effectively quench metabolism, 

but because of the metabolome diversity solvent-metabolite reactions are possible and 

difficult to determine its effects.34, 35 

 Sample preparation or sample extraction refers to the process of separating the 

small molecules of interest from proteins, cellular structures and other larger biological 

molecules in the biological sample.32, 34, 36-39 To effectively carry this process out and 

reduce extraction variability, it is important that cells and/or tissues (unnecessary for 

biofluids) are broken down into small particles. This usually requires a mechanical force 

(i.e., bead-beating, pestle and mortar, etc.) at low temperatures, and often combined with 

organic solvents to denature and precipitate proteins and macro-molecules. For both 

biological fluids and homogenized materials, a sequential high-speed centrifugation 

separates the metabolites in solution from the remnants of the sample. 18, 34, 36, 37 
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This simplified description of the sample extraction method misrepresents the 

complexity and vast number of possible parameters that have a dramatic effect on the 

number and intensity of the measured metabolites (e.g., extraction time, solvent to sample 

amount ratio, temperature, centrifuging speed, analyte concentration method, etc.).2, 40 Due 

to the metabolite’s large physicochemical properties, no single extraction protocol is 

capable of extracting all chemical classes into a single extractant.41 Despite this diversity, 

metabolomics extraction methods can be broadly classified as targeting polar or non-polar 

metabolites. Under these two categories, the methanol-water solvent system and the Bligh 

and Dyer methods have been used as templates to a wide range of modifications for specific 

applications and adjusted to different polarity ranges.36, 38, 39, 41, 42 These modified methods, 

aside niche applications, generally favor simplicity (especially for non-polar extractions 

where a single-phase extraction is preferred), efficiency and reproducibility while 

maximizing the number of metabolites extracted.39, 40, 43 A soon to be published manuscript 

detailing the optimization of some elements of this parameter space has been spearheaded 

by Brianna Garcia, et al. in our laboratory, of which I was a contributing author to its 

development. 

Given the large effect of the extraction protocol on the analytical readout, and the 

large number of possible protocols, these optimal criteria pose a significant analytical 

challenge to standardize. Thus, the onus to determine quality criteria for individual 

metabolites is on the selection of appropriate QCs. For targeted metabolomics, the effort is 

placed pre-analysis, determining concentration ranges, extraction efficiencies, matrix 

effects and instrument performance so that QA criteria can then provide a high degree of 

precision and accuracy to the analytes that fall within the QA thresholds.23, 25, 44 
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For untargeted approaches, it is difficult (nearing impossible or monetarily 

prohibitive) to attain the same level of analytical scrutiny as there are no pre-determined 

metabolites, respective QA criteria, defined limits of quantification nor the identity of the 

yet-to-be-determined metabolites of interest. Thus, effective untargeted QC materials need 

to represent the entirety of the sample under investigation. This gave rise to the 

development of pooled QCs,45 where a small aliquot from every sample in the study is 

combined, mixed and divided into identical replicates that could undergo the same 

processes as the study samples. Through multiple measurements of the identical material, 

it becomes possible to characterize the precision of the measurements and the magnitude 

of variance originating from the analytical process.23 Despite being extremely popular, and 

useful, these materials have significant limitations in terms of metabolite coverage, 

logistics and sustainability.46 

Metabolomics experiments invariably rely on statistical testing to determine the 

significance of metabolite changes between the study conditions. With a large dynamic 

range of metabolite concentrations, an equally vast range of effect sizes is expected. Thus, 

higher number of samples per condition results in better estimation of the population size 

and structure, and therefore better statistical inferences.20 However, large sample sizes push 

the boundaries of the number of samples that can effectively processed and analyzed.47 

Typically, the rate limiting step is at the sample processing stage requiring the study 

samples to be divided into smaller groups that are then logistically feasible to process. 

Despite following detailed standard operating protocols (SOPs), these smaller batches of 

samples will always undergo slightly different and unique set of conditions that are outside 

of the operator control and generate unique batch effects. Pooled QCs in these instances 
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are difficult to prepare and often inadequate to account for the variability across batches.46 

This problem has been highlighted by the metabolomics community as a main challenge 

of the field48 and is further discussed, together with novel alternatives in Chapter 2.  

 

1.1.4 Data acquisition 

The selection criteria for the analytical platform to be used is often dictated by the 

instrument available and respective expertise. However, with the growing availability of 

commercial metabolomics service providers and university core facilities that can offer 

multiple platforms; cost per sample, metabolite coverage, reproducibility and limits of 

quantification become important considerations.49 Because the analytical platform to be 

used has repercussions throughout the entire metabolomics workflow, sample specific 

characteristics (i.e., sample size, number of samples, collection and storage, etc.) can also 

dictate the most suitable platform, in addition to the metabolite class of interest to the 

biological question at hand (i.e., polar, non-polar, aminoacids, nucleic acids, sugars, lipids, 

etc.). Samples with limited biomass or low metabolite extraction yield and/or the 

metabolites of interest are low level metabolites, sensitivity is a major decision factor; 

while epidemiologic studies with several thousands of samples favor analytical robustness 

and reproducibility. Amongst the wide selection of analytical chemistry detectors, NMR 

and MS have been the predominant technologies in metabolomics (Fig. 1.2). Throughout 

my thesis, I will focus specifically on NMR and LC-MS as two orthogonal and 

complementary analytical platforms, each with their own advantages and disadvantages.2, 

15-17, 29 The following background for these two platforms and considerations for 

metabolomics will highlight concepts further discussed in the coming chapters. 
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NMR:  

Nuclear Magnetic Resonance spectroscopy, a non-destructive technique, relies on 

an external magnetic field to align magnetically active nuclei excited with a radiofrequency 

wavelength pulse that on returning to ground state, generate an NMR signal. This signal or 

resonance is indicative of the chemical environment of the nuclei in a molecule. The 

simplest NMR experiment of a single compound yields a spectrum that details (i) the 

distinct environments of each nucleus in a molecule as a chemical shift, (ii) the number of 

the same nucleus in the sample as a peak of proportional area, and (iii) the nucleus 

relationship with neighboring interacting nuclei that can split the signal into smaller 

patterns known as multiplets.50 Thus, the collection of peaks (or features) in an NMR 

spectrum can provide not only atomic level detail about the chemical structure of a 

molecule but also quantification without the requirement of calibration curves or matched 

chemical standards. Despite the extremely useful information that can be drawn from other 

magnetically active nuclei (e.g., 15N, 13C, 31P, etc.), metabolomics predominantly measures 

hydrogen resonances (1H) due to their high natural abundance (99.98%), prevalence in 

organic molecules. 51, 52 

After metabolite extraction, NMR samples are required to be solubilized in 

deuterium-containing solvents. Deuterium atoms (2H) in solution serve as a reference to 

control the magnetic field in the sample (lock) and because the spectrometer is set to 

measure 1H resonances, the large amplitude features that would arise from undeuterated 

solvents are reduced. Deuterated water (D2O), methanol-d4 (MeOH-D4) and chloroform 

(CDCl3) are usual solubilizing solutions depending on the extraction solvent system and 

the target metabolites polarity.52, 53 In addition, metabolites that contain acidic or basic 
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groups can be affected by pH especially in aqueous solutions, resulting in chemical shift 

changes. Therefore, sodium or potassium phosphate salts are added as pH buffers to 

minimize chemical shift changes that are detrimental for metabolomics analyses 53 

To obtain an NMR spectrum, the spectrometer needs to receive a set of instructions 

and parameters of how the data is generated and collected. This set of instructions is termed 

pulse sequence. For metabolomics four main pulse sequences are routinely used to collect 

one-dimensional 1H NMR profiles of biological samples: noesypr and PURGE,54 are 

sequences that are intended to minimize the resultant large resonances from solvents, 

particularly useful in mixed D2O/H2O solutions and, CPMG and PROJECT,6 which define 

parameters that allow to remove/minimize unwanted broad signals originating from co-

solvated macromolecules. The detailed composition and design of these pulse sequences 

are beyond the remit of this document. However, these have been optimized and designed 

to generate high quality metabolite profiles of complex biological samples in less than 10 

min per sample. The fast acquisition times paired with temperature-controlled 

autosamplers and fast sample exchange, allow for 1000s of samples to be analyzed without 

interruption, with very small (if any) reduction in instrument performance. These 

advantages make NMR spectroscopy high-throughput and highly reproducible, thus, 

particularly appealing for long-term, large-scale metabolomics studies. 2, 16, 49, 51, 52 

In respect to the quantification of metabolites, NMR limit of detection (LOD) is 

highly dependent on a number of factors: the strength of the magnetic field, the type of 

probe, the volume, diameter and type of tube, the type of sample/matrix as well as the 

spectrometer itself and acquisition parameters have a significant effect on the intensity of 

the observed peak.55 As such it is not straightforward to assign a general lowest 
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concentration for NMR metabolomics. However, as long as the feature is detected and 

above the baseline it can be quantified as the dynamic range of NMR is unrivaled to any 

other analytical platform used in metabolomics even at its lowest intensities.16 Nonetheless, 

it is customary in our lab to prepare pure chemical standards above 100 µM in a 600 MHz 

magnet with a 5mm NMR tube, to ensure complete characterization of all 1H chemical 

shifts. One of the biggest challenges of NMR is spectral overlap in complex mixtures. The 

large number of features that originate from biological samples create overlapping regions 

that are difficult to quantify.51, 52 Several pre-analysis methods have been developed to 

reduce this overlap which have been shown to work for specific applications but have not 

become standard NMR metabolomics practices.43, 56 An alternative to experimental 

methods to simplify spectra, is the development of pulse sequences capable of removing 

peaks multiplicity (decoupling). Despite being an attractive approach there are still 

concerns over implementation, increase of acquisition time, reduction of peak intensities 

and peak broadening and the loss of structural information codded into the multiplet 

patterns.57, 58  

All things considered, NMR has unique advantages over other platforms and 

remains a powerful analytical technique for metabolomics showing a steady increase in the 

number of publications over the past decade (Fig. 1.2). A more in-depth discussion of NMR 

applications, strengths and limitations are further discussed in the following sections and 

chapter 3. 
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LC-MS: 

 A high-resolution LC-MS profile of a metabolomics sample typically contains 

thousands of spectral features. This large swath of data is only possible due to the physical 

separation of the analytes by LC and the high detection sensitivity of the mass 

spectrometer.2 The separation of analytes by LC relies on the equilibrium achieved between 

two immiscible phases, the liquid phase and the stationary phase. The transfer of the 

analytes between these two phases is driven by the chemical properties of the mobile phase, 

often a mixture of solvents with different physicochemical properties that changes in 

composition over the course of time (i.e., gradient) and a stationary phase, colloquially 

termed LC column, that is typically commercially available with varying dimensions and 

physicochemical  properties.26, 28, 39 As the analytes interact with each of the phases, driven 

by their specific chemical properties (i.e., size, polarity, charge, etc.) they get retained 

differently, start separating from each other and leave the system at different times aided 

by a constant flow of mobile phase and respective system pressure. This exit timing, or 

elution, can be measured in time and is normally referred to as retention time.59  

The liquid output of the LC and the gaseous and ionized requirement for MS inputs 

was a major scientific challenge for several decades. These incompatibilities were finally 

overcome with the development of several LC to MS interfaces. Of note to metabolomics, 

the electrospray ionization interface (ESI) is considered a soft ionization method that favors 

the stability of the resulting ionized analytes by minimizing molecular fragmentation pre- 

mass analysis.60 The ESI atomizes the LC liquid eluate into a fine spray that is then 

converted into gas phase ions by an electric field from a high voltage current. However, 

the charge applied to transform metabolites into positive or negative charged species and 
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atomize the liquid droplets also induces other ions in solution to bind to metabolites 

creating adducts (denoted as M+, molecular ion, and the corresponding adducts (e.g., 

[M+Na]+, [M+K]+, [M+NH4]+, etc.)).61 This well-documented consequence of the 

ionization process has implications in metabolite identification and quantification, which 

led to the development of several computational methods to correct or mitigate this effect, 

post- data collection. 62 

 Succinctly, the general schematic of a mass spectrometer consists of an inlet, an 

ionization source, a mass/ion analyzer and a detector. In hyphenated systems, the inlet and 

ionization source are often one and the same, where the sample introduction and ionization 

are carried out by the type of interface. From here the ions travel into the mass analyzer 

and are sorted according to their mass and charge. As these ions reach the detector a signal 

is generated that encodes the mass to charge ratio (m/z, which can be converted into 

molecular weight) and respective intensity proportional to the number of ions detected at a 

specific chromatographic retention time.2, 61, 63 The collection of these three elements over 

the course of the length of an LC run, constitute an LC-MS chromatogram where the 

retention time and m/z pair constitute a singular feature. It is often said that MS enables 

the detection of picomolar (10−12) metabolite concentration as an example of its high 

sensitivity, even though in routine metabolomics studies, such low concentrations of a 

compound are difficult to measure due to background and matrix effects. The LOD for MS 

(including sample preparation) with most cases ranges from micromolar (10-6) to 

nanomolar (10-9) concentrations at its minimum. 64 

 LC-MS systems are highly customizable to the analytes of interest. The extraction 

method and the LC conditions are intrinsically linked and drive the selectivity and 
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resolution of the chromatographic separation. Extracted non-polar metabolites are typically 

paired with Reverse Phase (RP) chromatographic conditions, whereas polar extractions are 

paired with HILIC chromatographic conditions (hydrophilic interaction liquid 

chromatography). These can vary both in terms of mobile phase composition, gradient, 

time and type of stationary phase chemistry that have a wide range of commercially 

available columns for different applications.2, 15, 36, 60, 65 However, variations of these setups 

are common, particularly for intermediate polar/non-polar analytes where either stationary 

phase or solvent systems (or both) can be adapted to the separation goals.  

 With respect to the mass spectrometer, different configurations of the four generic 

elements described above give rise a wide variety of commercially available options. Of 

note to metabolomics, High-Resolution instruments (benchtop time-of-flight and orbitrap) 

have been increasingly popular providing accurate mass measurements that bring an 

additional layer of information for metabolite identification in the form of elemental 

formulas and (in some cases) isotopic distributions.66 However, due to its high sensitivity, 

the LC only effectively separates a fraction of the number of metabolites detected, which 

means that simultaneous detection of ions at the same retention time can lead to the 

misrepresentation of the number of ions present (ion suppression).67 

The large number of possible configurations of LC-MS platforms depending on the 

application is incredibly appealing, however it also makes standardization challenging. 

Both targeted and untargeted LC-MS metabolomics rely heavily on QCs. These aim to 

address contaminants originating from solvents and containers, chromatographic 

performance reduction (columns have limited number of separations due to matrix effects), 

and small changes in the mass accuracy inherent to the detector. These additional 
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considerations, often require that large-scale LC-MS studies to be run in batches adding 

complexity to data analysis and focus on appropriate QCs.23 Nonetheless, LC-MS is a 

powerful platform, particularly for secondary metabolites which are often present at low-

levels and would otherwise be difficult to detect. Additional discussion of LC-MS 

limitations and strengths is addressed in following sections and chapter 3. 

 

1.1.5 Data processing 

 Data generated from either LC-MS or NMR instrumentation is generated as a 

signal. A considerable number of steps are needed to transform this signal into usable 

metabolomics data. For NMR there are a number of available software both commercial 

(i.e., TopSpin, Mnova, ACDLabs, etc.) and, freely available (i.e., NMRpipe68, ccpNMR69, 

etc.). NMR data after collection are transformed by a mathematical process (a Fourier 

Transform, FT) from the time domain (time the nuclei take to return to equilibrium) to a 

frequency domain which generates a spectrum. This process was first applied to NMR in 

the 1960s and was extremely laborious, but it is now automatic, parameter free and almost 

instantaneous requiring only the click of a button.70 Additional data processing steps 

(phasing, apodization and baseline correction) unlike the FT operation require operator 

input and assessment to maximize the amount of information from each spectrum. 71 

The alignment of these spectra from multiple biological measurements in a 

metabolomics study is critical, and as such, two operations are routinely carried out: 

referencing, an operation relying on an internal standard (or known metabolite feature) 

common to all samples that is set at the same chemical shift axis coordinate (i.e., Sodium 

trimethylsilylpropane-sulfonate at 0 1H ppm),71 and alignment, an operation that uses 



 21 

specialized mathematical algorithms to detect and correct slight deviations of individual 

features across all spectra (e.g., pH changes, etc.).72 Following spectral and peak alignment, 

peak picking is a common process to extract peak heights or areas but has some limitations 

that can result in poor statistical outcomes. In collaboration with Dr. Michael Judge a 

former Edison lab colleague, we developed a computational workflow to improve and 

curate peak quantification, while providing a metric for alignment for every peak across all 

spectra in a study (available at https://github.com/artedison/Edison_Lab _Shared_ 

Metabolomics_UGA). The result of all these processing steps is a datamatrix where each 

row represents the intensities of a single spectrum for each column that represents  the same 

chemical shift across all the spectra in a study. 

Similar to NMR, LC-MS processing relies on software to carry out a considerable 

number of processing steps to reach a format where data can be used for statistical analysis 

and compound identification. Because of the larger number of LC-MS instrument vendors, 

there is a considerable number of available options, which has been thoroughly debated by 

the community in respect to the consequences to standardization (particularly of data 

formats and processing steps).73 Nonetheless, open source, freely available and community 

supported options remain available and popular (e.g., MZmine,74 XCMS,75 MS-DIAL,76 

etc.).  

Succinctly, LC-MS metabolomics data processing consists of four distinct steps: (i) 

peak-picking/detection, (ii) alignment, (iii) adduct removal and (iv) isotope pattern 

extraction.32, 74 These steps are a product of significant development, each having a wide 

range of different methods and algorithms, and as such, their inner workings are beyond 

the scope of this document. Nonetheless, these steps are critical and have dramatic effects 
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on metabolite detection and quantification, and therefore, the statistical inferences that can 

be drawn. Furthermore, the large number of parameters for each of the steps are highly 

dependent on the user expertise, the type of sample, the instrument used and the metabolites 

of interest, making data processing challenging to standardize.77 QCs can be used to 

benchmark and define processing outcomes, but these need to be well 

characterized/quantified, which are generally matrix specific and relatively expensive (e.g., 

SRM1950 NIST human plasma,78 credentialed E. coli cell extracts,62 QC TruQant from 

IROA technologies, etc.) and therefore difficult to apply to every study. 

Independent from the analytical platform of choice, data processing has a 

significant effect of the final outcomes, and as such accurate and detailed records of 

parameters and individual steps is to be reported alongside data and respective analysis 

outputs.44 

1.1.6 Data analysis 

Metabolomics studies invariably measure more metabolites than number of 

samples. Because of this data structure with more variables than observations, traditional 

univariate methods alone are not suitable to identify differences between the study 

conditions in the numerous spectral features.79 Thus, multivariate methods such as PCA 

(principal component analysis) and PLS-da (partially least squares discriminant analysis), 

are effective at handling these matrices, and therefore, widely adopted for metabolite 

profiling.2, 16 These methods use linear decompositions to collapse all the measured 

variables in each spectrum into a single set of coordinates, while retaining much of the 

variance from the original data ( Fig. 1.4). This output dramatically improves the ability to 
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represent the differences (or lack of) between samples and between the biological 

conditions under investigation. These mapped coordinates, or score plots, are most useful 

to visualize the variation between samples of the same group that form a single cluster, and 

between groups forming separate clusters, as well as to quickly assess the analysis 

performance from the various QC samples.80  

Despite either method generating similar decompositions, PCA scores plots are 

agnostic to the study conditions and provide an unbiased representation of variance and 

dimensionality reduction which is useful for QA/QC. PLS-da tend to be less descriptive of 

the dataset variance as they require the class membership of each sample as an input 

(supervised), thus, introducing a bias in the dimensionality decomposition (Fig. 1.4b). 

However, the introduction of class membership to the PLS-da algorithm allows to better 

expose the separation between conditions and better estimate the contributing elements by 

loading plots and VIP scores.81 These provide a measure of each variable’s importance 

based on the percentage variation explained by the model and compared to the original 

data. The assumptions drawn from PLS-da need to be carefully weighted and cross-

validated to reduce the potential to overestimate their importance. 80, 81 The Q2 and R2 

values are typical metrics used to indicate the model fit and the of model consistency (Fig. 

1.4c), however, to test the validity of the class separation of the model permutation tests 

are required.79, 80  
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Figure 1.4. Multivariate analysis. The data used to generate the plots above was the 
output of a random number generator between 0 and 1. The datamatrix consisted of 10 
rows (observations/samples) and 100 columns (variables/metabolites). The first five 
datapoints were assigned to red and the second five datapoints assigned to blue. Each 
colored point represents one row of the data matrix and 95% confidence interval 
represented by the shaded circle of the same color. Panels A and B correspond to the PCA 
and PLS-da scores plots respectively. Panel C illustrates the cross-validation outputs Q2 
and R2 with the number of components chosen. 
 

 Despite protocols clearly defining the amounts of material per sample slight 

discrepancies are unavoidable and readily observed as differences in total peak intensities 

between samples. Normalization is a data transformation method carried out pre 

multivariate analysis to minimize/correct these small differences. A wide variety of 

normalization methods have been used in metabolomics studies (e.g., PQN,82 total area, 

integral, median, etc.) and their performance is highly dependent on the 

concentration/dilution differences between samples.71, 83  

Often used immediately after normalization, scaling (also known as equalizing) is 

a data transformation method that aims at minimizing the magnitude differences between 

the spectral features of interest across the whole dataset.71, 75 Because of the large dynamic 

range of the metabolome, different metabolites can have orders of magnitude difference 

between their concentrations. Multivariate models give more weight and higher rank to 
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high-concentration metabolites which doesn’t necessarily mean they are more important 

for the biological question at hand. A variety of scaling transformations are commonly used 

(average based, dispersion based or non-linear) to adjust the magnitude of each peak across 

all samples (i.e., a column of a datamatrix), to be as similar as possible to the neighboring 

peaks, while keeping their variance the same (which is not always the case).84 Both scaling 

and normalization transform the data so that multivariate models can highlight candidate 

features of biological relevance that are then tested for significance using univariate 

methods (e.g., ANOVA, Student’s t test etc.).85 Because one sample contributes to a large 

number of variables, multiple-comparison corrections (Bonferroni,86 false discovery rate,85 

etc.) ensure that metabolites are not significantly different between groups just by random 

chance alone.87 These data analysis methods (and other variations) allow to focus the 

efforts of metabolite identification and annotation to a manageable number of select 

metabolites that are relevant for the biological question at hand as it would be unrealistic 

to identify the hundreds to thousands of metabolites present in each spectrum in one single 

study.85  

It is reasonable to infer that these approaches are far from perfect. The never-ending 

efforts to control and understand the sources of undesired variance are often insufficient. 

The way data are collected, data processing steps, multivariate methods and data 

transformations have limitations and assumptions which change from metabolite to 

metabolite and highlight the need of appropriate QC materials that can address these 

variations to ensure that the effort for the following metabolite identification steps are 

focused on relevant metabolites.  
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Finally, metabolite identification is difficult. Database matching facilitates fast 

spectral annotation, but it has limitations, while identification of unknown metabolites is 

costly, in time, effort and demands expertise.52, 66, 88, 89 Once these metabolites are 

identified, strategies to better understand the function and role of metabolites in the 

biological system are needed. The detailed mechanistic understanding of the function and 

role of metabolites is not adequately addressed by metabolomics alone but can be derived 

by integrating metabolomics with well-established biochemistry/genetics experimental 

designs.5, 9 The following three sections introduce these concepts in more detail and will 

inform the remaining chapters of this document.  

 

1.2 Reference materials in untargeted metabolomics 

The focus of untargeted metabolomics is to (i) detect the maximum number of 

features, (ii) determine patterns of features relevant to the biological question, (iii) 

minimize the sources of variance outside of the biological conditions and (iv) identify the 

biologically relevant features. As detailed above, these four goals are intrinsically 

connected with the QA/QC system, but more importantly rely on QCs to ensure that these 

findings are translated into real world applications and advance our understanding of 

biology.23 

 As previously introduced, QCs are materials or physical samples that measure the 

performance of various metabolomics steps. Extraction blanks and solvents blanks are 

effective QCs to determine contaminants but fail to address extraction variance, matrix 

effects and batch effects. For this purpose, materials that comprehensively represent the 

study samples such as pooled QCs are preferred.23, 45 However, these are not always 
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possible to generate (especially in large-scale experiments), are difficult to reproduce and 

have limited applications beyond a single study failing to act as a link between different 

studies and analytical platforms (Fig. 1.5a ).46 Alternate materials that can address these 

limitations are RMs. The general concept of these materials can be broad, often getting 

denominations based on their characterization, contents or application (i.e., certified, 

synthetic, biological, calibration, validation, etc.). 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. Reference Materials in metabolomics. A) represents a non-exhaustive list of 
different applications for RMs. Each horizontal panel represents comparisons beyond a 
single study or experiment. B) Classification of the different types of RMs, synthetic and 
matrix-base. Specific examples of each type of RM can be found inside the colored 
triangles. From top to bottom the different types of RMs are in order of their specificity to 
the study biological samples (matrix). In the opposite direction lists the same materials in 
respect to their ability to be traced to a certified chemical standard. Panel B) is a figure I 
created for the manuscript Lippa, K.A., […], Wilson, I., Ubhi, B.K., 2021, Reference 
Materials for MS-based Untargeted Metabolomics and Lipidomics: Review by mQACC, 
Metabolomics, Metabolomics. I am a contributing author to this manuscript which has been 
accepted but not yet released.90 
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The official definition from the ISO 2016, 17034 Section 3.3 states that a RM is  “a 

material, sufficiently homogeneous and stable with respect to one or more specified 

properties, which has been established to be fit for its intended use in a measurement 

process”. Thus, Reference Material is a generic term. The term “properties” can be a 

quantitative or qualitative measurement (e.g., presence or pre-defined amount of a 

substances). Its uses may include the calibration of an instrument or method, or an 

assessment of performance (e.g., system suitability) or/and a quality control. In other 

words, RMs include CRMs (certified reference materials) that are highly characterized 

RMs supplied with a certificate of analysis,78 synthetic-based reference standards, solutions 

and standard mixtures, and Reference Library (RL) products that are also comprised of 

high purity standards (Fig. 1.5b). It also includes pooled QC samples despite their short-

lived use, which are further distinguished from QCRMs that are available for long-term 

reference uses and can be defined as adequate materials to measure technical variance, 

instrument harmonization and comparison, benchmark analyses and, to develop novel 

methods.23, 48, 78, 90  

 CRMs are the gold standard for metabolomics, where considerable effort is made 

to identify and quantify individual metabolites, as well as to define expiry dates and storage 

stability. This, however, is reflected in their cost and matrix specificity. Alternatively, 

matrix specific, lower-cost QCRMs can be produced in-house to initially address QA/QC 

needs, however production and sampling variability limit their applicability and long-term 

use. A significant challenge in design of RMs is a recognized need for contiguous supply 

of stable, matrix-specific materials which is addressed and further expanded by chapter 2.  
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1.3 Metabolite identification 

Metabolomics has made significant contributions to science that have translated 

into real world applications.12, 91, 92 Part of its appeal to the scientific community is the 

ability to identify novel compounds of biological significance. However, the pace at which 

the field can identify new metabolites is slow and a limiting factor on the impact of 

metabolomics as a field.22, 93 Unlike its “omics” precedents, transcriptomics and 

proteomics, that have linear combinations of elements (four base pairs and 20 aminoacids 

respectively), can be sequenced and their structure can be predicted, metabolites have an 

incredible diversity and an even larger number of possible structural combinations of the 

same number of atoms which makes analytical measurements capable of capturing thiss 

information and predictions a significant challenge (i.e., glucose molecular formula, 

C6H12O6, generates 496 known chemical structures; chemspider.com).  

Therefore, the determination of a metabolite structure (depending on its 

complexity) can require various analytical measurements that can determine the type and 

number of atoms present but also how thesy are connected to one another. This has long 

been a difficult problem, even pre- modern metabolomics, where chemists relied on a large 

number of measurements (from physical properties to analytical measurements) from 

numerous different sources (i.e., infrared, ultraviolet, Raman, NMR spectroscopy, MS, 

etc.) to derive the chemical structure of unknown chemicals. With technological 

developments, the quality and detail of the structural information drawn from these 

analytical techniques has greatly improved, especially NMR and MS technologies which 

were once considered difficult, not very specific and of lower value have now become 

essential.94 Moreover, the structural information now encoded by NMR and MS spectra 
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alone is sufficient for searching and retrieving matching spectra to spectral databases of 

known chemical standards. This provides a fast and automated tentative identification of a 

large number of metabolites present in biological samples. 95 

Metabolite database annotation by 1D NMR can be done by determining the 

features that correspond to a single metabolite and then using these features to query 

against one or several NMR spectral databases. This processes is a common practice in 

NMR spectroscopy but also challenging, particularly for complex metabolomics one-

dimensional (1D) spectra.96 A method of particular note to this process is the statistical 

method STOCSY97 (statistical total correlation spectroscopy). This post-acquisition 

statistical method takes advantage of the collinearity between features of the same 

molecule. As the concentration of a metabolite of interest changes from spectra to spectra 

it is possible to measure the relationship between features as a correlation coefficient. 

Because there is an inherent variance structure to the dataset, features of the same 

compound will have high correlation values (>0.9) whereas other features not belonging to 

the same molecule will have lower correlation values (<0.75). Therefore, it is possible to 

use high correlation and high covariance values for each feature as indicators of belonging 

to the same molecule. Albeit useful, because STOCSY works from collected data, it is 

dependent on the variance of each peak, baseline, phasing and overlap leading to potential 

false relationships and missed features. 97, 98 

Spectral matching of 1D spectra is a common practice particularly since the launch 

of the commercial platform Chenomx (Chenomx Inc.). This software allows for 1D spectra 

to be matched, quantified and adjusted to a database of known reference standards collected 

at different pH and at different magnetic field strengths. However, with both these 
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approaches annotation of features is challenging because of spectral overlap. However, the 

NMR metabolomics overlap problem observed in 1D spectra is significantly reduced with 

2D experiments while also providing additional structural information, thus, also stronger 

evidence of the identity of the metabolite of interest.49, 99 

In metabolomics the usually collected experiments that provide this added level of 

structural information are HSQC (heteronuclear single quantum coherence) and TOCSY 

(total correlation spectroscopy). HSQC experiments are fundamental for metabolite 

identification giving insight into the chemical structure of metabolites and reduce spectral 

overlap. HSQC spectra measure correlations between directly bonded 1H-13C nuclei and 

introduce the carbon chemical shift as a second dimension providing remarkable 

resolution. This greatly increases the specificity of the spectra and modified versions of 

HSQC pulse sequence can further distinguish CH2 from CH and CH3 features, particularly 

helpful for de novo structural identification.51, 99 However, this experiment relies on the 

low natural 13C abundance and long acquisition times are needed to collect high-quality 

data. Thus, it is not practical to collect these experiments in every sample of a 

metabolomics study, as such, to minimize the number of samples that require 2D analysis, 

our lab customarily uses pooled QC samples providing a good representation of the 

metabolites present in a study.  

However, an HSQC experiment on its own does not inform how (and if) carbons 

are connected to one another. For this, the TOCSY spectra provides important 

complementary information. 1H-1H TOCSY experiments measure 1H in two dimensions, 

but also the correlation between 1H in the same molecule. This correlation comes in the 

form of additional peaks along both dimensions of the spectra. The identification of these 
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connected 1H nuclei can be directly mapped on to the HSQC spectra 1H dimension and the 

chemical structure of an unknown compound can start being assembled. Furthermore, these 

two experiments are the minimum prerequisite for the online resource COLMAR42, 88, an 

incredibly powerful tool that allows for the quick and semi-automated annotation of 

metabolomics samples.   

COLMAR allows for spectra to be directly imported onto the webserver, which 

then generates a peak list that is matched against several different databases providing a 

matching score and fitting criteria. This annotation method removes the need to 

deconvolvve individual metabolites and searches peak lists to find patterns of peaks from 

known metabolites. However, user input is still required to validate the annotations as 

differences in acquisition parameters, magnet strength and sample pH as well as 

metabolites with few discerning features can lead to misannotations.52  

These experiments are only but a subset of the number of NMR experiments that 

can provide unique complementary structural information. For example, HMBC 

(heteronuclear multiple bond correlation) experiment is a common experiment for 

structural elucidation that is rarely reported in NMR metabolomics studies. It generates 

further complementary data that help connect different spins-systems that are separated by 

two or three bonds apart. However, the biggest challenges for NMR metabolite 

identification is the low sensitivity of experiments that measure natural abundance 13C, 

acquisition time, 1H resonances overlap and interpretation expertise.49 

LC-MS metabolite identification relies on retention time, accurate mass and 

fragmentation pattern. As introduced before, high resolution MS provide additional 

information to the identity of the metabolite of interest, but to achieve high degree of 
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confidence these values need to match a chemical standard under the same experimental 

conditions.44 The accurate mass from an experiment can generate one or more molecular 

formulas scaling in number with the size of the metabolite but reducing with the accuracy 

of the mass measurement.66, 100 Even with a known unique elemental formula, it is still not 

possible to narrow down to a single compound. Multiple chemical structures are possible 

form one elemental formula, that yet again, increase in number with the size of the 

molecule of interest.100 Tandem MS (MS2) data is generally collected to further reduce this 

number of possibilities. These experiments use high collision energies to break the parent 

ion into smaller fragments with respective m/z and intensities, that can then be used to 

match against spectral libraries.93  

MS-based databases have grown over the past decade increasing in coverage. 

However, these are still limited and further complicated by the different instrumentation, 

collision energies and matching algorithms.95 In fact, very few metabolomics studies in 

recent years have identified more than 20% of the detected features which has motivated 

the development of in silico/predicted fragmentation patterns as a means to increase that 

number.101 However, there are still concerns over the accuracy of the predictions, but they 

are expected to improve with the development of novel methods.102 

Matching experimental data to databases entries relies on similarity metrics to 

define the criteria and rank of the annotation. However, different database depositories as 

well as peak detection and deconvolution software adopt a wide variety of different 

algorithms that perform differently. As such, the same data searched against the same 

libraries can generate different results. Mass spectral database search is fast and outputs a 

large number of annotated features, which can be hard to verify or validate. Thus, there is 
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a need to develop novel approaches that outperform current methods to increase the 

confidence of the annotation and cater for metabolites that only fragment into a small 

number of ions or between spectra that have been collected in different instruments and/or 

with different parameters.  

To definitively identify a compound of interest several sources of complementary 

data are historically required, and arguably, purification and determination of its covalent 

structure is mandatory.89 However, this is highly dependent on the complexity of the 

metabolite of interest. As such, the Chemical Analysis Working Group (CAWG) of the 

Metabolomics Standards Initiative (MSI)44 devised a minimum reporting requirement and 

respective classification for the identification of metabolites in metabolomics studies. After 

several adjustments since its inception in 2007,103 current guidelines define metabolite 

identification confidence as five different levels form (0) strong evidence of the metabolite 

identification to (4) weak evidence: (0) full 3D structure (1) identified compounds, (2) 

putatively annotated compounds, (3) putatively characterized compounds, and (4) 

unknown compounds.44  

To an extent, the level of confidence is paired with the level of difficulty for each 

category. Level zero requires additional experiments, different analytical platforms and 

specific methods to achieve stereochemistry determination and is rarely carried out in 

metabolomics. Slightly less effort is required for level 1 identifications, where two 

orthogonal analytical techniques of both the metabolite of interest and a chemical reference 

standard need to be carried out under identical analytical conditions within the same 

laboratory. This level is easily achieved by targeted metabolomics studies, where chemical 

standards dictate the measured metabolites and can provide orthogonal information as to 
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the identity of the metabolite. Retention time, accurate mass, fragmentation pattern, 

isotopic composition can be matched in the case of LC-MS studies, whereas for NMR, 

experiments that offer complementary and orthogonal 13C and 1H data are sufficient to 

validate the identity of a metabolite.  

All database spectral matching annotations that use a single method fall within level 

two.44 Thus, most untargeted metabolomics studies that do not rely on chemical standards, 

will ever only achieve level one annotations unless deemed critical to carry out further 

analysis for structural elucidation of an unknown metabolite or confirmation of the 

metabolite annotation. The latter is generally less likely, and often reliant on database 

metrics outputs to satisfy an annotation requirement to proceed with a biological 

interpretation. Despite the progress that has been made, there is a need not only to improve 

compound annotation confidence but also strategies that allow for faster and accurate 

identification of novel metabolites. Further discussion and details of methods that can 

address these needs can be found in chapter 4. 

 

 

 

1.4 Integrating model organisms, genetics and biochemistry with metabolomics 

 Metabolomics experiments provide a valuable global view of the metabolic 

network. The larger the number of metabolites identified, the larger the scope and detail of 

metabolism that is possible to observe.4 However, this global view lacks the understanding 

of how these metabolites interact with other biomolecules within a metabolic network.3, 5 

For this purpose, biochemistry and genetics research have a long history of testing and 
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defining detailed models of specific biochemical reactions. Naturally, the combination of 

these two disciplines facilitates detailed mechanistic insights into specific biochemical 

reactions, while also their relationship to neighboring pathways and metabolites that were 

not previously thought to be connected (Chapter 4). In addition, because the metabolome 

is the closest measurement to cellular function, it can define molecular phenotypes 

specially in studies where no other behavior is observed (e.g., growth, motility, etc.).104 

 The natural complementarity between these approaches relies heavily on 

experimental design and validation of metabolomics findings by biochemical models 

ultimately maximizing the output of both approaches. Much of what is known about 

metabolism has been carried out by classical biochemistry and genetics methods that 

greatly rely on model organisms’ short generation times, easy manipulation, and fast 

response to systematic perturbations. These traits become even more apparent in model 

microorganisms, of which the bacterium Escherichia coli is likely to be the most well-

studied model organism. Surprisingly, out of 40,880 metabolomics publications (PubMed: 

“metabolomics” between 2012 and 2022) only 307 entries were returned with the similar 

search parameters for E. coli (PubMed: “E.coli” and “metabolomics” between 2012 and 

2022). The similarly well studied organism C. elegans also returned a meek 197 entries.  

This highlights the outstanding opportunities in model microorganism 

metabolomics research. The wealth of information known for these microorganisms, such 

as fully sequence genomes and repositories of annotated biochemical reactions and 

pathways (i.e., EcoCyc, YeastCyc, etc.) as well as genetic stock centers for numerous 

organisms that maintain, catalogue and readily distribute different strains and mutants at 

reasonable costs, are appealing benefits not only for metabolomics but also for the 
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integration of biochemical experiments with metabolomics approaches.16, 89 In addition, 

These resources and organism traits allow to generate replicates with very low genetic 

variability (often isogenic) and can be grown under well-defined and strictly controlled 

growth conditions. These qualities are particularly appealing for metabolomics leading to 

analytical measurements of replicates low in variance improving downstream statistical 

analyses, and growth inputs can be defined to help inform quantitative models of 

metabolism. 105, 106 

As introduced earlier, metabolomics relies on materials capable of detecting and 

quantifying technical variance. The motivation for Chapter 2 was the lack of a C. elegans 

RM for metabolomics studies. A RM of a model organism reference genotype opens the 

possibility to a systematic metabolome annotation focusing community efforts and 

validating findings. Because of the large diversity of the metabolome and the large 

combinatorial possibilities of the building blocks of a metabolite it is hard to predict the 

composition of a metabolome and the detected features that are yet to be identified.  

Model organisms can again be an added value for metabolomics. Annotated 

genomes and defined biochemical reactions can be used to define and validate expected 

metabolites. While conserved metabolic pathways can be used to extrapolate findings to 

other organisms and/or species, classical biochemical methodologies can provide 

important new targets of investigation in pathways of interest homologous to human 

biology and biomedicine.107 

The complementarity between model organisms, biochemistry/genetics methods 

and metabolomics can address longstanding problems in metabolomics from metabolite 

identification to determining their role in metabolism, but not without challenges, and 
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surely a long-term community driven effort is needed, but it is undoubtedly made harder 

without a common RM.  
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CHAPTER 2 

LONG-TERM METABOLOMICS REFERENCE MATERIAL* 

* Gouveia, G. J.;  Shaver, A. O.;  Garcia, B. M.;  Morse, A. M.;  Andersen, E. C.;  Edison,
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permission from the publisher.



 53 

FOREWORD 

 This chapter is reprinted from Gouveia, G. J.;  Shaver, A. O.;  Garcia, B. M.;  Morse, 

A. M.; Andersen, E. C.;  Edison, A. S.; McIntyre, L. M., Long-Term Metabolomics 

Reference Material. Anal Chem 2021, 93 (26), 9193-9199, and is available at 

https://pubs.acs.org/doi/10.1021/acs.analchem.1c01294. The following work was carried 

out as part of an NIH metabolomics Common fund project titled “Genetics and quantum 

chemistry as tools for unknown metabolite identification” (1U2CES030167-01). The 

motivation for this work was driven by the senior authors Arthur S. Edison and Lauren M. 

McIntyre. My contribution to this work consisted of: (i) generate E. coli and C. elegans as 

well as develop and optimize protocols to run and maintain the bioreactors, (ii) storage, 

handling and preparation of the produced material, (iii) NMR experimental design, (iv) 

bacteria sample preparation for NMR analysis, (v) generation of the C. elegans reference 

material (vi) all NMR data processing, (vii) all data analysis (viii) results interpretation and 

figures and writing the draft versions, and finally (ix) manuscript submission, addressing 

reviewers comments and resubmission. The collaborators roles were as follows: Arthur S. 

Edison and Lauren M. McIntyre reviewed, edited, responded to reviewers and defined the 

direction and goals of the work. Amanda O. Shaver carried out C. elegans NMR sample 

preparation and C. elegans NMR analysis. Brianna M. Garcia aided in the experimental 

design and result interpretation, Alison M. Morse wrote the SECIM analysis steps, Erik C. 

Andersen provided expertise, advice and guidance on growing bacterial and C. elegans 

cultures as well as final draft feedback. The supplementary materials in the chapter were 

added to Appendix A. 
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ABSTRACT 

 The use of quality control samples in metabolomics ensures data quality, 

reproducibility and comparability between studies, analytical platforms and laboratories. 

Long-term, stable and sustainable reference materials (RMs) are a critical component of 

the QA/QC system, however, the limited selection of currently available matrix matched 

RMs reduce their applicability for widespread use.  

To produce a RM in any context, for any matrix that is robust to changes over the 

course of time we developed IBAT (Iterative Batch Averaging meThod). To illustrate this 

method, we generated 11 independently grown E. coli batches and made a RM over the 

course of 10 IBAT iterations. We measured the variance of these materials by NMR and 

showed that IBAT produces a stable and sustainable RM over time. This E. coli RM was 

then used as food source to produce a Caenorhabditis elegans RM for a metabolomics 

experiment. The metabolite extraction of this material, alongside 41 independently grown 

individual C. elegans samples of the same genotype, allowed us to estimate the proportion 

of sample variation in pre-analytical steps. From the NMR data, we found that 40% of the 

metabolite variance is due to the metabolite extraction process and analysis and 60% is due 

to sample-to-sample variance.  

The availability of RMs in untargeted metabolomics is one of the predominant 

needs of the metabolomics community that reach beyond quality control practices. IBAT 

addresses this need by facilitating the production of biologically relevant RMs and 

increasing their widespread use. 
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INTRODUCTION 

 Biological reference materials are needed to compare metabolomics data across 

multiple instruments, studies and batches. Whenever there are more samples collected than 

can be processed in a single ‘run’ there is added unwanted variation that if captured can be 

modeled and removed, leading to more powerful tests.1  

 Readily available long-term biologically relevant reference materials (RMs) 

represent a critical component to achieve reproducibility.2, 3 Commercially available RMs 

and standard reference materials (SRMs) address some of these needs, but can be expensive 

to purchase, offer limited quantities, matrix diversity, and have an expiration date.3 The 

National Institute of Standards and Technology (NIST) has a long history of producing 

biofluid-based SRMs to facilitate standardization and improve comparability and 

reproducibility of analytical measurements. These SRMs are trademarked Certified 

Reference Materials (CRMs) and specifically designed to provide certified metabolite 

levels that serve strict objectives (i.e., calibration, method validation, measurement 

accuracy).4-6  

Pooled quality control (QC) samples produced from experimental samples are 

valuable as they capture instrument variation within the experiment, but have limited value 

in comparing across experiments, or in  synthesizing results from large experiments.7, 8 The 

individual variation intrinsic in subjecting biological material to extraction and 

quantification is not captured by pooled samples or by chemical standards made after 

extraction. There is a recognized need for matrix specific stable RMs that can be used to 

compare data across long-term studies with multiple batches or across different laboratories 

and instrumention.9  
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Homogeneous and stable materials that are fit for purpose are reference materials 

(as per the International Vocabulary of Metrology-VIM).10 RM does not require a 

metrologically valid metabolite quantification (certification) and should be straightforward 

to produce and maintain. For untargeted metabolomics, additional criteria for a RM are 

important. Namely, it should (i) be made from the same biological matrix as the 

experimental samples, (ii) have a profile that is as complex as the experimental samples, 

(iii) be sustainably produced over time and (iv) facilitate the annotation of known and 

unknown compounds. 

The proteomics community devoted substantial effort to the development and 

application of RMs, which greatly improved standardization and reproducibility in the 

field.4, 9 The metabolomics community has highlighted the need for RMs as part of the 

development of resources and practices to measure, detect and prevent unwanted pre-

analytical and instrumental variation.2, 3, 5, 8, 11 

Here we introduce IBAT (Iterative Batch Averaging meThod) that can be used to 

create a stable RM produced over time in any context. The concept is straightforward: 

multiple small batches of starting material are produced and aliquoted, and then pooled to 

generate the RM. A stable and long-lasting RM can be generated by repeating the process 

over time, as illustrated in Fig 2.1.  

IBAT results in a RM that (i) is robust to changes over time, (ii) minimizes variance 

between batches of RM, (iii) can be used over the course of large-scale experiments, (iv) 

can be made with a small amount of constant effort and smaller storage space, (v) can be 

applied to any organism or biological matrix of interest and (vi) can be used for evaluation 

of multiple sources of variation at multiple points in a metabolomics experiment. To 



 57 

illustrate IBAT, we made and characterized a Caenorhabditis elegans reference material. 

C. elegans eats bacteria, which is also subject to variation over time, so to make a stable 

C. elegans RM, we first needed to make an Escherichia coli RM that can be fed to C. 

elegans. This two-step IBAT shows the flexibility of the approach, and in the Discussion 

section we outline strategies to apply IBAT to create other RMs of interest to metabolomics 

researchers.  

 

Figure 2.1: Iterative batch average method (IBAT). Batches of material are represented 
by columns (same-colored squares and letters). Rows represent homogeneous aliquots 
from each batch. Examples of sequential batch combinations are rows shaded from blue to 
purple. Right panel illustrates the IBAT generated pools from individual batches. IBAT is 
only limited by the number of individual batches produced and can be adjusted to the 
number of aliquots required and to any material. 
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RESULTS 

Production and analysis of an IBAT E. coli as a food source for C. elegans  

For this RM, we used a bioreactor to generate large quantities of bacteria in each 

batch, but the principle holds on a smaller scale with flasks and a shaker/incubator. We 

grew 11 different 2 L bioreactor batches (columns in Fig. 2.1) that each produced an 

average of 84 g of bacterial paste. Each batch was then aliquoted into 60-90 tubes (rows in 

Fig. 2.1) containing 1 g each, with mixing to maintain homogeneity of the aliquots. 

We combined single aliquots from five different batches for this E. coli RM, such that each 

tube of IBAT RM contained the same amount of material. The first IBAT sample was made 

by combining batches A-E (columns in Fig. 2.1), the second IBAT sample combined 

batches B-F, etc. When we reached the end of the 11 batches (G-K with 11 batches), the 

next IBAT sample was made from H-K and an aliquot of A (Fig. 2.1). A similar IBAT 

process was applied to C. elegans, as described below. We compared the 10 different E. 

coli IBAT samples (Table 2.1) with individual replicates from all 11 batches. The 33 

samples from 11 individual batches of E. coli and 30 IBAT samples were analyzed by 

nuclear magnetic resonance (NMR) spectroscopy.  
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Figure 2.2: A) Untargeted full resolution 1H NMR profile of E. coli and spectral 
expansion between 6.8 and 7.2 ppm. NMR spectra in grey or orange correspond to IBAT 
or individual batches, respectively. B) Radial plot representing the coefficient of variation 
(CV) for annotated metabolites using the same colors. The length of spokes corresponds to 
the CV of each metabolite. C) Each data point represents the mean centered peak height in 
each sample. Experimental IBAT samples are depicted in orange and individual batches in 
grey. Cyan data points represent simulated metabolite peak heights per number of averaged 
batches. Light grey shaded areas represent +/- one standard deviation from the mean. Iva 
– isovalerate, Leu – leucine, Val – valine, Ile– isoleucine, 3 Hba – 3-hydroxybutyrate, Lac 
– lactate, Cad – cadaverine, AcOH – acetate, Glu– glutamate, Met – methionine, Asp – 
aspartate, Bet – betaine, Rib – ribose, Ura – uracil, Fum – fumarate, Tyr – tyrosine, Phe – 
phenylalanine, Niacin – nicotinic acid and Form – formate. 
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Table 2.1: List of individual batches pooled together for each stable food source 
iteration. This process follows the same methodology described in fig 2.1. 

IBAT 
iterations 

1 2 3 4 5 6 7 8 9 10 

Combined 
individual 

batches 

A to 
E 

B to 
F 

C to 
G 

D to 
H 

E to 
I 

F to 
J 

G to 
K 

H to 
A 

I to 
B 

J to 
C 

 

The 33 samples from 11 individual batches of E. coli and 30 IBAT samples were 

analyzed by nuclear magnetic resonance (NMR) spectroscopy. The IBAT method reduces 

variance between different tubes of RM. The NMR spectra for these samples are nearly 

identical, with a very low variance (Fig. 2.2a). The variance here is due to extraction and 

quantification. In contrast, the variance between the 33 individual spectra is much larger, 

reflecting a combination of biological variance and technical variance.  

To quantify variance, we selected 19 metabolites that we could identify, were 

present in all the samples, were consistent between replicate measurements, with clear 

individual peaks enabling accurate quantification of individual metabolites. The coefficient 

of variation (CV – standard deviation/mean) was calculated separately for each metabolite 

within each group (Fig. 2.2b, Supp. Table 2.1). Similar to the overlaid NMR spectra (Fig. 

2.2a), the CV was lower for IBAT generated samples (between 0.19 and 0.91) than for 

individual samples (0.36 to 1.26). Using the Fligner-Killeen12 test for homogeneity of 

variances for each of the selected metabolites showed significantly different variances 

between IBAT produced samples and individual batch samples (p value < 0.05) except for 

betaine (p value = 0.21). The IBAT process depends on pooling batches. We used the 

individual batch data to simulate the IBAT process. We generated 10 iterations for 
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combining 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 individual batches to generate an IBAT compliant 

RM. We used the individual data to estimate the mean centered peak heights and respective 

standard deviations (Sd) for our 19 metabolites. The variance (10 iterations) decreases as 

the number of batches used increases (Fig. 2.2c). (Fig. 2.1 and Table. 2.1). This is consistent 

with the predictions of Spearman-Brown.13, 14 

 

Production and application of a C. elegans PD1074 reference material: 

 To create an IBAT C. elegans RM, we used a 2 L bioreactor and fed the worms the 

E. coli RM. Each batch of the bioreactor produced between 40-60 million mixed-stage 

worms. These were harvested and aliquoted into 20-30 tubes so that every tube contained 

2 million worms. These were then frozen at -80 ºC. After three bioreactor batches, we 

combined one aliquot from each batch for a total of 6 million batch-averaged worms. This 

was divided into 30 aliquots of C. elegans RM with 200 thousand worms each and refrozen 

until use (Fig. 2.3). 
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In a metabolomics experiment there are three main sources of variation: the sample 

material itself, the extraction, and data acquisition (supp. Fig 2.1). An experimental sample 

will encompass all three of those sources. The IBAT RM reduces the sample material 

variation, pooled samples average over both the sample variance and the extraction 

variation. We compared the C. elegans RM to 41 independent samples of the same strain 

(PD1074).15 These individual samples were prepared in three sets of two extraction blocks. 

For each set an equimolar pool was formed from all individual samples, for three pools. 

 
Figure 2.3: Schematic overview of the C. elegans reference material production. The 
reference strain PD1074 nematodes were seeded from cryo-preserved stocks and fed an 
E. coli RM (supplementary methods). Harvested material from each bioreactor was 
washed, aliquoted and stored. Aliquots from each reactor iteration were combined to 
produce a stable C. elegans reference material. This material can be divided into different 
sized aliquots according to the downstream application needs.  
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One C. elegans RM aliquot was included in each extraction block. In NMR data collection, 

one block was analyzed per each run. We selected 26 annotated features that were common 

to all samples and computed pairwise standardized Euclidean distances (SED) for each 

sample (Fig. 2.4). The distances between samples in the IBAT material reflect instrument 

variability (pools) and extraction variability. The distances between individual sample data 

include extraction and instrument variability but also sample variability. 

 

  

Figure 2.4: Boxplots of pair-wise standardized Euclidean distances. Each boxplot 
represents the distribution of distances from one sample to all the other samples of the same 
group. Mean and median distances for each sample are indicated by markers. Blue colored 
boxplots represent PD1074 samples that were processed in each block. The three pooled 
PD1074 samples were created from the samples in blocks 1+2, 3+4 and 5+6 respectively. 
C. elegans RM samples were generated using IBAT and processed alongside the PD1074 
samples, one per each block.  
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The mean and median distances, minimum and maximum values and sample 

distribution for each of these groups allow us to estimate the variability from these different 

sources of variation. The individual PD1074 samples, which include all three sources of 

variation, have the largest variability with mean values from 25.5 to 54.1 and the min/max 

of 8.19 and 66 (blocks 1 through 6 in Fig. 2.4). The IBAT samples, representing the 

extraction and technical variance, have a smaller range of mean distances (28.2 to 38.7) 

and min/max values of 21.3 and 44.8. As expected, the pooled individual PD1074 samples 

representing differences in the manual preparation and instrumentation between sets, have 

the smallest range with the respective boxplot bounds between 31.4 and 33.  

 

DISCUSSION AND CONCLUSION 

 The IBAT process reduces the growth and sampling contributions to variance by 

creating a common source of material from which homogeneous aliquots are produced. 

The advantage here is that instead of producing a single large batch, which will have its 

own challenges in achieving homogeneity, material is continuously generated over time, 

with each iteration using only small amounts of new material, thus capturing small changes 

over time while having minimal variance between experiments. This minimal variance can 

be theoretically predicted as a function of the number of distinct batches combined and the 

variance between the continuously produced material or, estimated from empirical data 

(Fig. 2.2c) to take into account the overlap between iterations. The IBAT process is flexible 

and can be adjusted to production throughput, the type of material, the quantities produced 

the degree of variance reduction, and the metabolomics technology.  
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 We demonstrated this concept for two different types of matrices, E. coli and C. 

elegans. However, the method is general and can be applied to any biological matrix. In 

non-model systems studies it is common to use human plasma or urine or commercially 

available materials that are aliquoted from a single large batch and frozen. But when a 

batch runs out, shifting to a new external standard will often not be comparable to the prior 

standard. IBAT can be used by making pools from different batches of material as 

illustrated in Figure 2.1. New batches can be incorporated over time, and this will minimize 

the change in the RM over time. Similar strategies can be used with diverse applications 

such as plants or cultured mammalian cells for biotherapeutics. In these scenarios the main 

issue is minimizing the freeze thaw cycles and so, the size of the initial aliquots for future 

blending must be planned. 

 A RM of the same biological matrix as the study samples together with a carefully 

planned experimental design can be used to determine the magnitude and variance in the 

extraction, a major source of variation in metabolomics experiments.3, 16 It can also 

facilitate comparison among separate experiments. The IBAT can then be used to separate 

the extraction variance from the sample-to-sample variance in the individually grown and 

processed samples, as demonstrated here. The individual C. elegans samples are 

genetically identical to the RM. Variance in metabolite intensities were larger as a result of 

sample variation during growth, handling, storage and sampling, added to the technical 

variation in extraction and data acquisition. The pooled individual C. elegans PD1074 

samples minimizes the sample and extraction variance by averaging over both samples and 

extractions and reflects only the variation in the analytical measurement (which is low for 

NMR) and the pooling strategy. By processing the experimental replicates and RM 
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aliquots, one can independently estimate the contribution of the metabolite extraction step 

to individual metabolite variation. The IBAT C. elegans RM samples can be used to 

estimate variance due to extraction. We find that 40% of the total variance as estimated by 

the variation between individually grown, extracted and quantified samples is due to 

extraction variance and analysis and of that variance ~15% is due to technical variation.   

IBAT increases the efficacy of QA/QC and is expected to improve the performance of 

biological reference materials by allowing estimation of process-derived variance 

including facilitating studies across multiple labs. Finally, the cost of using an IBAT 

process should be lower than acquiring a single large batch of reference material thus 

enabling labs to amortize the process over time while maintaining the stability of the 

material and facilitating comparison of experiments conducted months or years apart. 

 

METHODS 

E. coli individual batches production and storage:  

 In order to produce a stable and consistent C. elegans food source, batches of E. 

coli HT115 were grown in bioreactors (Biostat, Sartorius) using standardized protocols 

(Supplementary methods). A total of 11 batches were produced and each batch was divided 

into approximately 60-90 aliquots, flash frozen and stored at -80 oC. Each aliquot was 

comprised of 2 mL of bacterial suspension (1 g of wet bacterial paste and OD600 ranging 

from 17.5 to 24).  
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NMR sample preparation of E. coli IBAT and individual batches:  

 All 33 individual batch samples and 30 IBAT generated samples were prepared for 

NMR analysis. Approximately 200 µL of 0.7 mm silica beads (BioSpec products) were 

added to each of the 63 samples. These were homogenized at 1800 rpm for 300s (FastPrep 

96 - MPBIO) and centrifuged at 20,000 x G for 15 minutes. From each sample, 450 µL of 

supernatant were transferred to a new tube and 150 µL of deuterated water were added 

(D2O, D, 99.9%, Cambridge Isotope Laboratories). Each sample was vortex-mixed for 1 

min before transferring into 5 mm SampleJet NMR tubes. Details of NMR acquisition and 

spectra processing can be found in the supplementary methods. 

 

NMR sample preparation of C. elegans samples: 

 For the NMR analysis six IBAT RM aliquots were prepared for alongside 41 

individual samples of the C. elegans strain PD1074 that were grown according to our 

previously published method.15 Each of these samples contained approximately 200,000 

nematodes. All samples were previously flash frozen and then lyophilized until dry. 

Approximately 200 µL of 1 mm Zirconia beads (BioSpec products) were added to each dry 

sample and homogenized at 1800 rpm for a total of 270 seconds (FastPrep 96 - MPBIO). 

The samples were then delipidated by adding 1 mL of cold (-20 oC) isopropanol (Optima, 

LC/MS Grade, Fisher Scientific) and left overnight (12 hours) at -20 oC after a 20 min 

resting period at room temperature. The supernatant was removed after being centrifuged 

for 30 min at 20,000 x G and 1 mL of cold (4 oC) 80/20 methanol/water (Optima, LC/MS 

Grade, Fisher Scientific) was added to the remaining contents. The tubes were shaken for 

30 min at 4 oC and centrifuged at 20,000 x G for 30 minutes. The methanol/water 
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supernatant was transferred to new tubes and these were vacuum dried using a CentriVac 

benchtop vacuum concentrator (Labconco). The extracts were reconstituted in 45 μl of 

deuterated (D2O, D, 99.9%, Cambridge Isotope Laboratories) 100 mM sodium phosphate 

buffer (mono- and dibasic; Fisher BioReagents) containing 0.11 mM of the internal 

standard DSS (sodium 2,2-dimethyl-2-silapentane-5-sulfonate, D6, 98%; Cambridge 

Isotope Laboratories) at pH 7.0 and vortex mixed for <1 min prior to transfer into 1.7 mm 

SampleJet NMR tubes. The three pooled PD1074 samples were created by adding together 

6 μl from the samples in each NMR run (12, 14 and 15 samples respectively), after having 

been reconstituted in the internal standard containing NMR solvent. Details of NMR 

acquisition and spectra processing can be found in the supplementary methods. 

 

Data analysis: 

 Following acquisition and processing, spectra were imported into Matlab 

programing software (MATLAB, MathWorks, R2019a). Using a toolbox developed in-

house and available at (https://github.com/artedison/Edison_Lab_Shared_ 

Metabolomics_UGA) the following was carried out: plotting, referencing, baseline 

correction, alignment (CCOW17) and solvent peaks removal. Feature detection (peak 

picking) was automated using a combination of an in-house peak picking function and 

binning algorithm18 to extract peak heights. Data were exported for Bland-Altman analysis, 

to select features that are in agreement between its replicates (cut-offs used: sample flag of 

0.2, feature flag of 0.05 and residual of 3), and pairwise Standardized Euclidean Distances 

(SED) analysis using the SouthEast Center for Integrated Metabolomics Tools 
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(SECIMTools)19. Coefficient of variation calculations (CV), variance, %variance and 

Fligner-Killeen test were carried out in Matlab. 

 

Data availability 

 All raw and processed data, along with detailed experimental NMR and data 

analysis methods, are available under project identifier PR001106 at the Metabolomics 

Workbench (www.metabolomicsworkbench.org). The data can be accessed directly via its 

project doi: 10.21228/M8R395. Metabolomics Workbench is supported by NIH grant U2C-

DK119886.  

 

Supporting information 

 Additional methods detailing the bioreactor production of both C. elegans and E. 

coli, making an E. coli reference material, NMR acquisition and processing, database 

matching procedures, metabolite summary table and a figure detailing the sources of 

variance.  

 

Acknowledgement 

Research reported in this publication was supported by the National Institutes of 

Health under Award Number 1U2CES030167-01. The authors would like to thank Dr. 

David Blum and Ron Garrison from the Bio-expression and Fermentation Facility at the 

University of Georgia for training and advice using the Bioreactors and Pamela Kirby at 

the Edison Lab for assistance with material handling and storage logistics.  



 70 

REFERENCES 

1. Cochran, W. G. a. C., G.M. , Experimental Design. 2nd edition ed.; New York, 

1957. 

2. Dunn, W. B.;  Broadhurst, D. I.;  Edison, A.;  Guillou, C.;  Viant, M. R.;  Bearden, 

D. W.; Beger, R. D., Quality assurance and quality control processes: summary of a 

metabolomics community questionnaire. Metabolomics 2017, 13 (5). 

3. Broadhurst, D.;  Goodacre, R.;  Reinke, S. N.;  Kuligowski, J.;  Wilson, I. D.;  

Lewis, M. R.; Dunn, W. B., Guidelines and considerations for the use of system suitability 

and quality control samples in mass spectrometry assays applied in untargeted clinical 

metabolomic studies. Metabolomics 2018, 14 (6), 72. 

4. Paulovich, A. G.;  Billheimer, D.;  Ham, A. J.;  Vega-Montoto, L.;  Rudnick, P. A.;  

Tabb, D. L.;  Wang, P.;  Blackman, R. K.;  Bunk, D. M.;  Cardasis, H. L.;  Clauser, K. R.;  

Kinsinger, C. R.;  Schilling, B.;  Tegeler, T. J.;  Variyath, A. M.;  Wang, M.;  Whiteaker, 

J. R.;  Zimmerman, L. J.;  Fenyo, D.;  Carr, S. A.;  Fisher, S. J.;  Gibson, B. W.;  Mesri, 

M.;  Neubert, T. A.;  Regnier, F. E.;  Rodriguez, H.;  Spiegelman, C.;  Stein, S. E.;  Tempst, 

P.; Liebler, D. C., Interlaboratory study characterizing a yeast performance standard for 

benchmarking LC-MS platform performance. Mol Cell Proteomics 2010, 9 (2), 242-54. 

5. Phinney, K. W.;  Ballihaut, G.;  Bedner, M.;  Benford, B. S.;  Camara, J. E.;  

Christopher, S. J.;  Davis, W. C.;  Dodder, N. G.;  Eppe, G.;  Lang, B. E.;  Long, S. E.;  

Lowenthal, M. S.;  McGaw, E. A.;  Murphy, K. E.;  Nelson, B. C.;  Prendergast, J. L.;  

Reiner, J. L.;  Rimmer, C. A.;  Sander, L. C.;  Schantz, M. M.;  Sharpless, K. E.;  Sniegoski, 

L. T.;  Tai, S. S.;  Thomas, J. B.;  Vetter, T. W.;  Welch, M. J.;  Wise, S. A.;  Wood, L. J.;  

Guthrie, W. F.;  Hagwood, C. R.;  Leigh, S. D.;  Yen, J. H.;  Zhang, N. F.;  Chaudhary-

Webb, M.;  Chen, H.;  Fazili, Z.;  LaVoie, D. J.;  McCoy, L. F.;  Momin, S. S.;  Paladugula, 

N.;  Pendergrast, E. C.;  Pfeiffer, C. M.;  Powers, C. D.;  Rabinowitz, D.;  Rybak, M. E.;  

Schleicher, R. L.;  Toombs, B. M.;  Xu, M.;  Zhang, M.; Castle, A. L., Development of a 

Standard Reference Material for metabolomics research. Anal Chem 2013, 85 (24), 11732-

8. 



 71 

6. Simon-Manso, Y.;  Lowenthal, M. S.;  Kilpatrick, L. E.;  Sampson, M. L.;  Telu, 

K. H.;  Rudnick, P. A.;  Mallard, W. G.;  Bearden, D. W.;  Schock, T. B.;  Tchekhovskoi, 

D. V.;  Blonder, N.;  Yan, X.;  Liang, Y.;  Zheng, Y.;  Wallace, W. E.;  Neta, P.;  Phinney, 

K. W.;  Remaley, A. T.; Stein, S. E., Metabolite profiling of a NIST Standard Reference 

Material for human plasma (SRM 1950): GC-MS, LC-MS, NMR, and clinical laboratory 

analyses, libraries, and web-based resources. Anal Chem 2013, 85 (24), 11725-31. 

7. Han, W.; Li, L., Evaluating and minimizing batch effects in metabolomics. Mass 

Spectrom Rev 2020. 

8. Peng, J.;  Chen, Y. T.;  Chen, C. L.; Li, L., Development of a universal metabolome-

standard method for long-term LC-MS metabolome profiling and its application for 

bladder cancer urine-metabolite-biomarker discovery. Anal Chem 2014, 86 (13), 6540-7. 

9. Bunk, D. M., Design considerations for proteomic reference materials. Proteomics 

2010, 10 (23), 4220-5. 

10. Metrology, J. C. f. G. i., International vocabulary of metrology - Basic and general 

concepts and associated terms. VIM 2012,  (200). 

11. Beger, R. D.;  Dunn, W. B.;  Bandukwala, A.;  Bethan, B.;  Broadhurst, D.;  Clish, 

C. B.;  Dasari, S.;  Derr, L.;  Evans, A.;  Fischer, S.;  Flynn, T.;  Hartung, T.;  Herrington, 

D.;  Higashi, R.;  Hsu, P. C.;  Jones, C.;  Kachman, M.;  Karuso, H.;  Kruppa, G.;  Lippa, 

K.;  Maruvada, P.;  Mosley, J.;  Ntai, I.;  O'Donovan, C.;  Playdon, M.;  Raftery, D.;  

Shaughnessy, D.;  Souza, A.;  Spaeder, T.;  Spalholz, B.;  Tayyari, F.;  Ubhi, B.;  Verma, 

M.;  Walk, T.;  Wilson, I.;  Witkin, K.;  Bearden, D. W.; Zanetti, K. A., Towards quality 

assurance and quality control in untargeted metabolomics studies. Metabolomics 2019, 15 

(1), 4. 

12. Conover, W. J.;  Johnson, M. E.; Johnson, M. M., A Comparative Study of Tests 

for Homogeneity of Variances, with Applications to the Outer Continental Shelf Bidding 

Data. Technometrics 1981, 23 (4), 351-361. 



 72 

13. Brown, W., Some Experimental Results in the Correlation of Mental Abilities1. 

British Journal of Psychology, 1904-1920 1910, 3 (3), 296-322. 

14. Spearman, C., Correlation Calculated from Faulty Data. British Journal of 

Psychology, 1904-1920 1910, 3 (3), 271-295. 

15. Amanda O. Shaver, G. J. G., Pamela S. Kirby, Erik Andersen, Arthur S. Edison, 

Culture and assay of Large-Scale Mixed Stage Caenorhabditis elegans Population. JOVE 

- J. Vis. Exp 2020, e61453. 

16. Liu, Q.;  Walker, D.;  Uppal, K.;  Liu, Z.;  Ma, C.;  Tran, V.;  Li, S.;  Jones, D. P.; 

Yu, T., Addressing the batch effect issue for LC/MS metabolomics data in data 

preprocessing. Sci Rep 2020, 10 (1), 13856. 

17. Tomasi, G.;  van den Berg, F.; Andersson, C., Correlation optimized warping and 

dynamic time warping as preprocessing methods for chromatographic data. Journal of 

Chemometrics 2004, 18 (5), 231-241. 

18. Sousa, S. A. A.;  Magalhães, A.; Ferreira, M. M. C., Optimized bucketing for NMR 

spectra: Three case studies. Chemometrics and Intelligent Laboratory Systems 2013, 122, 

93-102. 

19. Kirpich, A. S.;  Ibarra, M.;  Moskalenko, O.;  Fear, J. M.;  Gerken, J.;  Mi, X.;  

Ashrafi, A.;  Morse, A. M.; McIntyre, L. M., SECIMTools: a suite of metabolomics data 

analysis tools. BMC Bioinformatics 2018, 19 (1), 151. 

 
 
  



 73 

 

 

CHAPTER 3 

A METABOLITE FRACTION LIBRARY APPROACH FOR IMPROVED 

ANNOTATION IN UNTARGETED METABOLOMICS ACROSS ANALYTICAL 

PLATFORMS* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Gouveia, G.J., Garcia, B.M., Asef, C.K., Shaver, A.O., Borges, R.M., Leach III, F.E., 
Fernández, F.M., Amster, I.J, Edison, A.S. Increasing confidence: Building a Fraction 
Library for Untargeted Metabolomics. To be submitted to Analytical Chemistry 
 



 74 

FOREWORD 

 This chapter details the collaborative work of Goncalo J. Gouveia (GJG) and 

Brianna M. Garcia (BMG). The motivation for this work was driven by the senior author 

Arthur S. Edison. This work will be published, with Goncalo J. Gouveia and Brianna M. 

Garcia as joint co-first authors. All the non-overlapping steps detailed below that were 

carried out by either BMG or GJG, were all part of cross platform training and skill 

development. My contribution to this work as a co-first author consisted of: (i) 

experimental design aided, (ii) carry out metabolite extraction, (iii) design, test and validate 

the HPLC fractionation, (iv) prepare the fractions for further analysis, (v) analyze and 

process all the NMR data (vi) metabolite identification by NMR, (vii) NMR fraction data 

analysis and integration with LC-MS data (viii) generating figures and writing manuscript 

draft. BMG contribution as a co-first author consisted of: (i) validate and develop the 

sample extraction protocol, (ii) advise and define HPLC methods for fractionation, (iii) 

prepare the fractions for LC-MS analysis, (iv) analyze and process all LC-MS data, (v) 

metabolite identification by LC-MS, (vi) LC-MS fraction data analysis and integration with 

NMR data (vii) generating figures and writing manuscript draft. The senior authors roles 

were as follows: Arthur S. Edison, Franklin E. Leach III, I. Jonathan Amster reviewed, 

edited, and defined the direction and goals of the work. Carter K. Asef provided the 

metabolomics study data to relate the fractionated data to, Amanda O. Shaver generated 

the individual PD1074 samples that were used to make the RM, Facundo M. Fernández 

and Ricardo M. Borges provided advice and intellectual contributions to the analysis. 
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ABSTRACT 

 Fractionation methods to purify and concentrate extracts containing a compound of 

interest have been widely used in natural products research. However, applying this 

approach to untargeted metabolomics is still a considerable challenge, in part, due to the 

number of metabolites under investigation and limited sample availability. Nonetheless, 

fractionation of metabolomics samples has the potential to improve compound annotation 

by reducing spectral overlap and concentrating metabolites. Further, it can bridge the 

sensitivity gap between nuclear magnetic resonance (NMR) spectroscopy and liquid 

chromatography-tandem mass spectrometry (LC-MS/MS), two analytical platforms often 

difficult to integrate, and yet essential for the annotation of metabolites. Herein, a semi-

preparative fractionation approach is used on a Caenorhabditis elegans reference material 

(RM) to generate 100 concentrated 30-second fractions. Fractions were split approximately 

100:1 between NMR and LC-MS/MS, respectively, and compared with spectral databases 

(SIRIUS, GNPS, and COLMARm). Putative annotations with the same InChIKey and 

fraction numbers were merged into a combined table containing their respective similarity 

and matching scores. Five fractions were analyzed as proof of concept. Seven annotations 

were matched (score >0.7) across four different database query methods (SIRIUS, GNPS, 

HSQC, and TOCSY). An additional 14 putative annotations were obtained when the search 

space was expanded to annotations with similarities scores < 0.7. A total of 31 (NMR) and 

49 (LC-MS/MS) putative annotations were shown to be platform-dependent with no 

overlap between technologies. This approach demonstrates that spectral matching has 

limitations and is highly platform and metabolite dependent. However, the creation of a 

metabolite fraction library allows for multiple complementary analytical measurements on 
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a simplified fraction of a complex matrix, increasing key experimental outcomes such as 

S/N, database coverage, and annotation confidence. 

 

INTRODUCTION 

 Metabolomics is the investigation of the structure and activity of biogenic small 

molecules, or metabolites, and attempts to relate changes in their concentrations to specific 

phenotypes or disease states. The measurement of metabolites provides fundamental 

insights into biochemical pathways; however, it requires the confident identification and 

quantification of metabolites. Mass spectrometry (MS) and nuclear magnetic resonance 

(NMR) spectroscopy are the two most powerful analytical methods used in metabolomics 

research. Both platforms can detect individual molecular species within a complex 

biological matrix while providing unique and complementary chemical structure 

information. To date, metabolomics has primarily relied on the separate application of LC-

MS/MS and NMR. The combination of these platforms has been shown to increase overall 

metabolome coverage, increase the accuracy of metabolite annotation, and provide 

validation of metabolite changes.1-4 However, for either analytical technology used, 

detection alone does not always lead to the unambiguous identification of metabolites.5  

 Metabolite annotation and identification by LC-MS/MS has widely been 

accomplished by de novo identification or database searching, where fragments in a tandem 

mass spectrometry dataset (MS2 spectra) are assigned to a structure or matched against 

standard spectral libraries. However, the large-scale annotation of metabolites presents 

additional challenges. Electrospray ionization (ESI), one of the most common MS 

interfaces employed for metabolomics, results in the generation of multiple signals that can 
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be attributed to a single molecule of interest. This ionization method generates protonated, 

deprotonated, and neutral loss ions, as well adducts (e.g., sodium, potassium, ammonium, 

etc.) and oligomeric or fragment species. Additionally, the presence of artifacts and 

contaminants further necessitates methods to distinguish biologically relevant and 

artifactual features.6, 7 As a result, these mass spectra are complex and a considerable 

challenge to efficiently resolve and identify.  

 Accurate mass measurement of a compound permits the determination of its 

chemical formula, but the number of molecular structures with the same formula (isomers) 

grows with the molecular weight.8 To distinguish between isomeric species, tandem MS 

data collection is required where the fragment masses are used as fingerprints for the 

identification of specific structures. However, metabolites similar in structure or molecules 

producing a low number of fragment ions can be difficult or impossible to distinguish by 

LC-MS/MS alone.9  

 These fingerprints are also used to compare against reference data hosted in mass 

spectral databases (e.g., HMDB,10 NIST,11 METLIN,12 MassBank,13 etc.). Additionally, 

both MS1 and MS2 data can be used to create molecular networks. These networks expand 

beyond database matching by connecting related molecules by their spectral similarity 

(GNPS-feature based molecular networking14) thereby increasing annotation confidence 

and providing new avenues to elucidate unknown structures. Database interfaces and 

software (GNPS,15 SIRIUS,16 etc.) use different metrics (cosine, Jaccard/Tanimoto,17, 18 

etc.) to quantify the similarity between experimental spectra and database reference 

spectra. This allows for a fast putative annotation of a large number of MS2 spectra and 

their corresponding MS1 features. However, both experimental and known compound 
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fragmentation patterns stored in databases can be collected using a wide range of different 

fragmentation methods, detector types, collision energies and acquisition parameters 

resulting in incorrect or poor metabolite annotations. 

 Metabolite annotation by NMR can be accomplished by pattern matching, similar 

to MS, or by determining the resonances (or groups of resonances) that belong to an 

individual compound. These resonances or spectral fingerprints can then be used to query 

against one or several NMR spectral databases (e.g., BMRB,19 HMDB,10 NMRShiftDB,20 

etc.). The latter approach heavily depends on the quality of the spectral deconvolution often 

requiring additional NMR experiments.5 In contrast, spectral peak pattern matching, relies 

solely on peak-picked spectra. The resulting chemical shifts are used to search for peak 

patterns that match reference databases peak lists. 21 COLMARm, a free online resource 

uses HSQC (heteronuclear single quantum coherence) and TOCSY (total correlation 

spectroscopy) spectra to query several NMR spectral databases.22  

 Unlike MS database similarity matching, COLMAR uses three scoring criteria for 

metabolite identification: (i) a matching ratio from 0 to 1 represents the fraction of 

experimental features that match the available reference, (ii) the average difference 

between 1H and 13C chemical shifts of experimental and database, and (iii) a uniqueness 

score, represented as a fraction of the number of unique compound-specific HSQC features 

(that do not overlap with other database hits) over the number of features that are matched. 

 The accuracy and reliability of the database matching relies on the peak picking 

method used23 for the reference and experimental spectra as well as a variety of factors 

including: the correct chemical shift annotation of the reference compound, the presence 
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of impurities and artifacts, the pH of the sample, the signal-to-noise ratio of the 

experimental spectra, and its respective resolution and complexity.21, 24 

 Regardless of the analytical platform used, the confident annotation of metabolites 

continues to be a major challenge in the field. Nonetheless, the growth of publicly available 

databases has greatly improved metabolite annotation, despite low level metabolites, 

biologically modified xenobiotics, and chemically complex metabolites still being 

underrepresented and limited by the insufficient number of available chemical standards. 

Currently, the Human Metabolome Database (HMDB) contains over 250k metabolite 

entries from a wide variety of biospecimens, however only <5% of these metabolites have 

been experimentally collected.10  

 The expansion of these databases is time- and labor-intensive and the number of 

submitted reference spectra has been declining in recent years.10 Thus, in silico MS (e.g., 

HMDB, CFM-ID,25 CSI:FingerID,26 MS-FINDER,27 etc.) and NMR (HMDB, 

NMRShiftDB20, etc.)28, 29 computational methods have been developed from curated 

literature searches and the ~110 million chemical structures in public chemical databases 

(e.g., PubChem, ChemSpider, etc.) to predict ESI MS2 spectra as well as 1H and/or 13C 

chemical shifts. Generating MS2 and/or NMR in silico predictions for structures can come 

at a large computational cost. While the quality of in silico generated data is improving, 

these calculations follow a normal distribution resulting in a small number of low and high-

quality predictions, and a large number of average accuracy predictions.30,8 Additional 

research is still needed to improve accuracy and rearrangement reactions that remain 

underestimated. However, the addition of in silico predictions to a metabolite annotation 

workflow can significantly reduce the chemical space gap present in current experimental 
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databases such as enzymatic transformations, exogenous compounds, or chemical 

artifacts.27,28 

 Similar to metabolomics, natural products chemistry (NP) strives to identify 

molecules of interest from complex biological samples. Despite this commonality, NP 

routinely uses a biological activity of interest (e.g., antibacterial, anti-inflammatory, etc.) 

to narrow down the number of molecules of interest. This approach requires large amounts 

of starting material that are separated by chromatography and collected at different time 

intervals. Depending on their activity, the collected fractions are subsequently isolated 

and/or purified for analytical characterization by NMR, MS, X-ray crystallography, etc. 31 

As such, this fractionation method is challenging for metabolomics owing to (i) the amount 

of effort necessary (time and resources) for the identification of a large number of features, 

and (ii) the overarching goal of untargeted metabolomic studies precludes the use of 

bioactivity guided or targeted separation. Furthermore, metabolomics studies heavily rely 

on statistical analysis favoring more replicates over larger quantities and are difficult to 

translate to preceding or succeeding studies, as such, additional purification and 

characterization for every study would be cost prohibitive.  

 Without large quantities of the starting material, these methods typically result in a 

decrease in metabolite concentration posing issues for metabolite identification and limited 

by the instrument’s sensitivity. Methodologies to overcome the described challenges 

associated with the fractionation of metabolomics samples have the potential to greatly 

improve compound annotation.  

 Here, we detail an approach to create a metabolite fraction library (mFL) of 

complementary analytical spectra (LC-MS/MS and NMR) collected from simplified and 
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concentrated fractions. These fractions were generated from a semi-preparative scale 

HPLC separation of a metabolite rich C. elegans reference material (RM) that was also 

used as a QC sample in an ongoing metabolomics study. The method described herein 

showed reduced spectral overlap for NMR spectroscopy and increased metabolite 

concentrations. The latter reduced the sensitivity gap between NMR and LC-MS/MS, a 

common impediment to the integration of these technologies.32 This library consists of both 

analytical data and archived aliquots of each fraction that will serve as a resource for future 

experiments containing the same RM. The analytical data collected facilitates fast and 

confident metabolite annotation, while archived aliquots can be used for additional 

analytical measurements (i.e., ion mobility and Fourier transform ion cyclotron resonance 

mass spectrometry). This multistep approach accelerates the systematic annotation of the 

C. elegans metabolome and addresses a considerable and longstanding bottleneck in the 

field of metabolomics.  
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METHODS 

 

Metabolite Fraction Library (mFL) Workflow  

The steps carried out to make and analyze the mFL are illustrated in Fig 3.1. An in-

depth description of the C. elegans reference extraction, semi-preparative fractionation, 

fraction concentration, data acquisition, processing, and analysis, and database matching 

can be found in the Supplemental Methods. 

 

 

 

Figure 3.1: Workflow for the pipeline starting from the preparation of the C. elegans 
IBAT RM through to metabolite annotation by LC-MS/MS and NMR (1D and 2D) and 
ending with the assessment of annotations made through various database matching 
software effectively bridging LC-MS/MS and NMR for metabolite annotation with 
increased confidence. 
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C. elegans reference material preparation 

 To generate the RM used for fractionation 10 vials, each containing approximately 

200,000 frozen and lyophilized nematodes (grown and stored using the LSPC method33), 

were selected from different batches according to the iterative batch averaging method 

(IBAT).34  

 

Metabolite extraction 

 The RM was homogenized by bead beating under low temperatures. A fine 

homogenate was then extracted with 100% isopropanol (IPA) (chilled to -20°C) and left at 

room temperature for 30 minutes prior to a 12h extraction period at -20°C. The supernatant 

was transferred to a single tube, labelled “non-polar extract” and lyophilized in a Centrivap 

(Labconco) at room temperature until completely dry. The dry non-polar supernatant was 

stored at -80°C, and not included for analysis. The remaining pellet was mixed with 80:20 

methanol:water (MeOH:H2O) for polar analyte extraction. This polar fraction was vortex 

mixed for 30 minutes at low temperatures and the resulting supernatant was transferred to 

a single tube dried and stored at -80°C. 

 

Semi-preparative HPLC fractionation  

 The polar extract was reconstituted in a total of 800 µL of 50/50 MeOH/H2O. A 

total of six 90µL sample injections were separated using an Agilent 1260 infinity with an 

XBridge BEH Amide OBD Prep Column, 130Å, 5 µm, 10 mm X 250 mm HILIC column. 

The eluents were collected at 30 sec interval for a total of 100 fractions using a MeOH/H2O 

solvent system. After fractionation, four 100 µL aliquots from each fraction were 
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transferred into LC-MS vials. These vials and the remaining fraction tubes containing 10 

mL each were placed in a Centrivap at room temperature until dry and stored at -80°C. In 

addition, a standard AA mixture (Sigma AA-S-18) was fractionated and analyzed under the 

same conditions. 

 

NMR data collection 

HPLC polar eluents were reconstituted in 70 µL of deuterated water, containing 

0.11 mM DSS (sodium 2,2-dimethyl-2-silapentane-5-sulfonate) as an internal standard and 

transferred into 1.7 mm NMR tubes (SampleJet, Bruker). These were then loaded onto a 

SampleJet automated sample changer and kept at 6°C. One-dimensional (1D) 1H NMR 

spectra for each fraction and blanks were collected on a Bruker NEO 800MHz equipped 

with a 1.7mm TCI cryoprobe. Two-dimensional (2D) 1H-1H TOCSY, 1H-13C HSQC 

experiments were collected on select fractions (f32, f36, f39, f41, f42, f51, f55, f57) on a 

Bruker advance 600MHz with a TCI cryoprobe.  

 

NMR database matching and 2D spectral annotation 

 HSQC and TOCSY experiments were separately matched to databases using the 

“HSQC query” and “TOCSY query” methods in COLMAR for the above listed fractions. 

HSQC, TOCSY and HSQC-TOCSY experiments from the unfractionated sample were 

used for spectral matching using COLMARm22. Matching chemical shift cutoffs of 0.04 

and 0.3 ppm were used for 1H and 13C, respectively for all methods and queries. All data 

were processed using NMRPipe. 35 Manual spectral annotation and visualization was 

carried out using a combination of MNova (version 14.2.0) and NMR View J36. 
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LC-MS/MS data collection 

All 100 dry HPLC polar fraction aliquots for LC-MS/MS were reconstituted in 200 

µL 80/20 ACN/H2O and separated using a Vanquish UHPLC (ThermoFisher Scientific) 

equipped with a Waters Acquity UPLC BEH Amide column (2.1 x 150 mm, 1.7 µm particle 

size). A solvent system and gradient matching that used for the HPLC fractionation was 

used for separation. Gradient details and MS parameters and settings can be found in the 

Supplemental Methods. 

 

LC-MS/MS database matching 

LC-MS/MS data was processed using SLAW.37 Data were blank filtered using a 

10x sample-to-blank ratio using MATLAB where the intensity of each feature was retained 

if the feature had an intensity 10 times greater than the average intensity across all solvent 

blanks, reconstitution solvent blanks, and the first/last five fractions. MS2 data were 

exported as an .mgf file. SIRIUS16 + CSI:FingerID26 was used to generate elemental 

formulas, in silico predicted fragmentation trees, and conduct database matching using the 

.mgf file. GNPS was used to create feature based molecular networking using the MS1 data 

matrix and .mgf file outputs from SLAW.14, 15 Similarity scores for GNPS (modified cosine) 

and SIRIUS (Jaccard17 - Tanimoto18) were exported and used for downstream analyses.  

 

Comparison of LC-MS/MS and NMR database annotations 

The results from the independent LC-MS/MS (GNPS and SIRIUS) and NMR 

(COLMAR) database matching platforms were combined to investigate the overlap 

between the complementary methods. In order to compare the results, metabolite names 
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and/or database identifiers provided by each software were used to generate InChIKeys 

using the Chemical Translation Service.38 The top ranked database matches (similarity 

score > 0.7) from GNPS, SIRIUS, and COLMAR (TOCSY and HSQC separate queries) 

were then compared using a subset of five fractions for preliminary analysis (f32, f36, f39, 

f41, and f42). Using an in-house MATLAB script, individual matrices were matched by 

planar InChIKeys and fraction number, generating a merged data matrix containing both 

LC-MS/MS and NMR data. A consensus chemical name list was obtained using the “Query 

Chemical Identifier Resolver” from the “Webchem” R package.39 Putative annotations 

were transformed into a logical vector to determine the presence of each annotation within 

the different platforms. The UpsetR40 package was used to generate an Upset plot of the 

putative annotations across platforms, and ClassyFire41 was used to classify and organize 

annotated compounds into 11 different possible levels of categorization.  

 

Relating metabolomics data to mFL data. 

LC-MS/MS and NMR data was collected on 42 samples of the same strain 

(PD1074) and sample generation method (LSCP) as the RM each containing approximately 

200,000 nematodes. These datasets were used as starting point to relate metabolomics 

features detected in differently collected datasets to the mFL. Of the 42 NMR spectra 

collected, one sample was excluded as an outlier. The remaining 41 processed 1D 1H NMR 

spectra were imported into MATLAB. The statistical total correlation spectroscopy 

(STOCSY)42 analysis was used to obtain highly correlated features from a peak of interest. 

These chemical shifts were then used to create a covariance matrix and determine the 

fractions with the highest covariance values. Similarly, LC-MS/MS spectra were collected 
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on the 42 individual PD1074 samples and 12 pooled samples under identical 

chromatographic conditions. The use of HPLC to generate the fractions resulted in a 

retention time (RT) shift between the two datasets, however the elution order of metabolites 

was maintained. In order to relate features from each study, data matrices for the PD1074 

samples and fraction library were aligned using the metabCombiner43 R package (Table 

3.1).  

 

Table 3.1. Combined table output from metabCombiner. Individual C. elegans strain 
PD1074 LC-MS/MS features (id_PD1074) from an unpublished study were aligned to 
features in the mFL (id_FL). The mass-to-charge (mz), retention time (rt), and abundance 
measure (Q) are shown for each feature. Alignment scores as generated and shown in the 
grey column (scores) where scores < 0.5 are highlighted in red text. The alignment rank 
for each feature is shown as an additional metric.   
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RESULTS 

Fractionation concentrates metabolites and reduces NMR spectral overlap  

The concentrated polar extract of the IBAT C. elegans RM was fractionated using 

a semi-preparative scale HPLC that generated 100 fractions collected at 30 seconds 

intervals. From each fraction approximately 10 mL were aliquoted for NMR analysis and 

dried down. Each fraction was reconstituted in D2O and analyzed by 1D NMR, introducing 

 

Figure 3.2. A) Unfractionated 1H NMR spectra of the C. elegans reference strain PD1074. 
B) Stacked plot of fraction library spectra for fractions f46 to f59. Each spectrum (row) 
corresponds to a 1D NMR 1H spectra of a single fraction. The chemical shift range was 
selected to highlight the sugar region, which is a highly overlapped region of the spectrum. 
Yellow and red colored spectra indicate the fractions where the respective intensities of 
trehalose and glucose are at their maximum. Colored features in the grey spectra indicate 
lower intensity glucose and trehalose features in other fractions.  C) Fractions f51 and f57 
in red and yellow illustrate each spectrum distinct profiles and the trehalose and glucose 
prominent features. Highlighted sections illustrate the regions in panel D) zoomed insets. 
D) Colored boxes illustrate the zoomed insets of glucose and trehalose anomeric protons. 
Signal to noise ratios (S/N = peak height/mean square root of the baseline) were calculated: 
trehalose peak 1007 and 4673 for the unfractionated and fraction f57 spectra; glucose peak 
59.24 and 274 for the unfractionated and fraction f51 spectra. 
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a new dimension to the data, the fraction number (Fig 3.2b). Depending on the elution time 

of each metabolite, neighboring fractions can contain the same metabolite (Fig 3.2b, 

features shown in red at 5.187 and 4.639 ppm). The repeated injection, separation and 

collection of the chromatographic eluents allowed for the concentration of each fraction. 

Figure 3.2b shows the fractionated data for f46 to f59 focusing on the highly overlapped 

spectral region highlighted in Figure 3.2a (3.5-5.5 ppm). Chemical shifts related to 

carbohydrates trehalose and glucose are shown in yellow and red and are present in varied 

abundance across f49-f51 and f57-f58, respectively. Fractions f51 and f57 had the highest 

concentration of glucose and trehalose, respectively, and are shown in Figure 3.2c. 

Comparisons of the anomeric proton resonances at 5.226, 5.187, and 4.639 ppm in the 

unfractionated material and f51 and f57 are shown in Figure 3.2d.  

The fractionation starting material contained approximately 2 million nematodes 

that were extracted to a final volume of 800 µL. A total of 540 µL were injected and 

separated which is equivalent to 1.35 million nematodes. The theoretical maximum for the 

increase in concentration in the fractions is 6.75 times more than the unfractionated spectra 

containing 200,000 nematodes. This theoretical value is consistent with the calculated 

signal-to-noise (S/N) ratios 4.6 times between the fractionated features compared to the 

unfractionated material.  

We used COLMAR to putatively annotate the unfractionated material and f51 and 

f57 using HSQC and TOCSY 2D NMR experiments. The matching criteria for trehalose 

and glucose in the unfractionated material was 1 but with a uniqueness score of 1/7 for 

trehalose and a combined 1/14 for glucose indicating most features were highly overlapped. 

44 In fraction f57, trehalose received a similarity score of 5/7 and in f51 glucose was 
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annotated with a score of 9/14 demonstrating an increase in annotation confidence through 

the separation of otherwise overlapping resonances. 

 

NMR annotation of features in each fraction 

 Two-dimensional (2D) NMR experiments were collected for 8 fractions. As a proof 

of concept, 1H-13C HSQC and 1H-1H TOCSY of fractions f32, f36, f39, f41, and f42. were 

used for COLMAR’s “TOCSY Query” and “HSQC Query” database matching methods. 

Results for f51, f57, and f58 were collected at a later date and used solely for identification 

of trehalose and glucose and not included in the below described database matching steps. 

For these five fractions we obtained metabolite names, matching ratios and uniqueness 

scores as well as BMRB or HMDB metabolite identifiers. A total of 365 unique metabolites 

were annotated with matching scores ranging from 0.01 to 1. The TOCSY query alone 

generated 284 metabolite annotations for all 5 fractions, while the HSQC query generated 

the remaining 81 annotations. The highest number of annotations came from fraction f42 

queries (171), followed by fraction f41 (65 annotations), f36 (57), f32 (43) and finally f39 

with 29 annotations. 

 

LC-MS/MS annotation of features in each fraction 

 After fractionation, 100 µL of each fraction was aliquoted for LC-MS/MS analysis. 

HILIC LC-MS/MS data in positive mode was exported as an .mgf file and deconvoluted 

data matrix from SLAW.37 A total of 2,312 MS1 features were present in the LC-MS/MS 

fraction dataset after blank filtering (10x). In line with the NMR fractions, a new dimension 
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of data was created by this process using the combination of mass-to-charge (m/z), RT, and 

fraction number for each feature.  

 Elution profiles of features in adjacent fractions can be matched between LC-

MS/MS and NMR where the abundance of a feature across fractions is mapped (Fig 3.3). 

MS2 data collected from each fraction generated a total of 584 MS2 scans that were used 

in GNPS FBMN15. These data generated a molecular similarity network where each MS2 

scan is color coded by the fraction where it is detected (Fig 3.4). In addition, we obtained 

putative annotations for each MS2 scan from two independent platforms, GNPS and 

SIRIUS (SIRIUS16+CSI:FingerID26). SIRIUS also produced elemental formulas and in 

silico fragmentation trees as additional outputs. Both methods generate annotation lists by 

querying selected databases and calculate similarity scores using different metrics. GNPS 

provided 102 database matches to database reference standards. SIRIUS was able to 

 

Figure 3.3: Overlaid traces of the peak height (a.u.) corresponding to chemical shift 0.9529 
from 1D 1H NMR (red) and m/z-RT pair 132.1019-7.37min from LC-MS/MS (blue) across 
all 100 fractions. 
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calculate 581/584 elemental formulas, and a total of 395 MS2 scans were matched to 

putative annotations. Elemental formulas and therefore database matches were 

undetermined for features 207, 291, 313, and 314 . 

 

 

 

 

 

Figure 3.4: A) GNPS FBMN of HILIC LC-MS/MS data displaying nodes where the 
number of connections is > 2. Each node is color coded using a donut plot where each color 
corresponds to a specific fraction (shown in the key below) and the portion of that color 
within the donut plot represents the intensity of that feature across all 100 fractions. B) 
Zoomed in region corresponding to the orange square in panel A. The yellow box displays 
a region where multiple features (represented as unique numbers within each donut plot) 
are matched to the same database entry. These features can serve as future targets for 
annotation confirmation and unknown elucidation using the fraction library. 



 93 

Annotation coverage by NMR and LC-MS/MS  

Individual matrices were matched by planar InChIKeys and fraction number, to generate a 

merged data matrix containing both LC-MS/MS and NMR data. An UpSet plot displaying 

the number of unique and overlapping putative annotations is shown in Figure 3.5. A total 

of 30 annotations were matched between at least two independent methods (i.e., HSQC 

and TOCSY queries, GNPS and SIRIUS, HSQC and GNPS, etc.). LC-MS/MS and NMR 

had a total of 49 and 31 uniquely annotated metabolites, respectively. Seven annotations 

were matched between LC-MS/MS and NMR, with four annotations having matched to 

HSQC, TOCSY, and GNPS and three annotations matching all four platforms. A total of 

87 putative annotations were made for these 5 fractions using either HILIC positive mode 

MS spectra, NMR spectra or both. 
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Figure 3.5. UpSet plot representing the number of unique putatively annotated metabolites 
in fractions f32, f36, f39, f41 and f42 across two different analytical platforms (NMR and 
LC-MS/MS) and different annotation methods (SIRIUS, GNPS, COLMAR HSQC query, 
and TOCSY query). Top ranked database candidates and a cutoff score of 0.7 for 
matching/similarity criteria were used for each method. The height of each bar illustrates 
the number of unique and overlapping metabolites annotated for each method indicated by 
the colored dots along the same column. The horizontal black line and number above 
adjacent columns detail the sum of those columns. The bottom left bar chart represents the 
horizontal sum of the number of metabolites identified by each individual method.  

 

 ClassyFire41 was used to classify and organize the compounds annotated in         

Figure 3.5. Annotations within the five investigated fractions were organized into seven 

SuperClasses. The percentage of the 49 and 31 annotations individually determined by LC-

MS/MS and NMR, respectively, and the seven overlapping annotations that fall into each 

of the SuperClasses determined by ClassyFire were calculated and shown in Figure 3.6. 

Organic acids and derivatives had the highest cumulative percentage (32.2%) with 4.6% of 

these annotations overlapping with LC-MS/MS and NMR. Lipid and lipid-like molecules 
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showed the second highest cumulative percentage (20.7%); however, the majority (18.4%) 

were only annotated by LC-MS/MS. Interestingly, benzenoids showed a very small percent 

coverage (10.3%), however, the majority of these annotations were from NMR alone 

(6.9%) highlighting the benefits of NMR spectroscopy for the annotation of these stable 

ring structures. The structures for all 87 annotations were compiled into a spreadsheet and 

examined.  

 

Bridging NMR and LC-MS/MS for database matching 

 To expand the search space beyond only top ranked database hits, a similar 

approach was used on the collective sum of putative annotations from each platform 

regardless of similarity score. A total of 21 matches between LC-MS/MS and NMR were 

 
 

Figure 3.6. Radar plot of annotated metabolites. Each vertices represents a compound 
superclass determined by ClassyFire. The percentage of annotations that fall within each 
superclass by LC-MS/MS and NMR individually are shown in orange and blue, 
respectively. The seven overlapping LC-MS/MS and NMR annotations (Figure 3.3) are 
displayed in white. Percentage increases from 0% at the inner web to a maximum of 20% 
at the outer edge.  
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identified within the five investigated fractions (Table 3.2). The seven top ranked database 

matches shown in Figure 3.5 were also identified when using the expanded search space. 

 For duplicate matches (same MS scan number and annotation) the highest similarity 

and matching scores were used. The intensity of a feature (m/z and RT pair for LC-MS/MS 

and a single chemical shift for NMR) for each annotation was extracted across all fractions. 

The maximum intensity fraction was recorded as an additional layer of complementarity 

between the two platforms. NMR features that could not be matched between the database 

spectra and the respective fraction spectra determined by the maximum MS intensity were 

defined as “undetermined”.  

 The list of fractions for each MS2 scan was obtained from GNPS-FBMN based on 

the corresponding MS1 feature intensities. From the 21 annotations only 16 correspond to 

unique MS2 scans and 17 to unique compounds. 3-aminoisobutyric acid, gamma-

aminobutyric acid and 2-aminobutyric acid all have the same scan number. The isomers Ile 

and Leu share the same scan number with high confidence scores for both GNPS and NMR, 

however a second scan for Ile has been matched in both GNPS and SIRIUS but with a 

relatively low score and maximum intensity at fraction f39. Phe and Trp have high NMR 

matching ratios in both TOCSY and HSQC queries as well as consistently high similarity 

scores for SIRIUS and GNPS. Val and betaine NMR annotations were made from spectra 

f42, but their maximum intensities were determined at fractions f44 and f48 respectively 

and a 1D overlay of the database spectra were visually matched. Choline has high similarity 

scores for MS but lower NMR matching ratios. Ala-Ala has consistent low scores, and the 

database NMR spectra was generated by HMDB spectral prediction. All other annotations 

were matched to experimentally collected database spectra. 
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Table 3.2. List of putative annotations that are matched between NMR and LC-MS/MS 
and are detected in the same fraction. TOCSY and HSQC searches were done separately 
using different methods within the COLMAR web server. The cross-platform matches were 
carried out using InChIKeys. The maximum height for a particular m/z-RT combination 
was calculated from MS1 data. For NMR, a feature is selected according to the overlap 
between the 1D database standard and the fraction spectrum specified by the MS 
maximum. The intensities at that chemical shift in each fraction were then used to calculate 
the maximum intensity point. The similarity scores and matching ratios were obtained from 
MS2 and respective 2D NMR experiments. Asterisks represent the seven features in Figure 
3.5 that were annotated by both LC-MS/MS and NMR. 
 

Scan 
(MS2) 

identifier 

Putative 
Annotation 

SIRIUS 
similarity 

score 

GNPS 
similarity 

score 

TOCSY 
query 

matching 
ratio 

HSQC 
query 

matching 
ratio 

Fraction 
Number(s) 

(MS) 

Fraction(s) 
@ max 

intensity 
(MS) 

Fraction(s) @ 
max intensity 

(NMR) 

36 Inosine n/a 0.959 n/a 0.63 42,41 42 undetermined 

287 3-aminoisobutyric 
acid* 0.500 0.729 0.33 1 41, 42 42 undetermined 

287 gamma-
aminobutyric acid 0.477 n/a 1 1 42,  41 42 42 

287 2-aminobutyric 
acid 0.489 0.540 0.33 n/a 42 42 undetermined 

290 Choline 0.942 0.989 n/a 0.67 36, 38, 37 36 undetermined 

314 Betaine* n/a 0.967 n/a 1 44, 48, 46, 45, 
41, 47, 42 48 48-1D annot. 

confirmation 

314 Valine n/a 0.111 0.83 1 44, 48, 46, 45, 
41, 47, 42 44 44-1D annot. 

confirmation 

320 2-amino-1-
phenylethanol n/a 0.521 0.33 n/a 42, 41 42 undetermined 

353 Isoleucine* n/a 0.910 n/a 1 42, 39, 41 41 42 
353 Leucine n/a 0.910 1 1 42, 39, 41 41 41 
354 Isoleucine* 0.290 0.468 1 1 42, 39, 41 39 42 

393 
4- 

guanidinobutyric 
acid 

0.895 0.780 0.33 0.67 39 39 undetermined 

404 gamma-
aminobutyric acid n/a 0.155 1 1 42, 46, 41 42 42 

426 Valine 0.289 n/a 0.83 1 43, 44, 42, 41, 
87, 45, 47 44 44-1D annot. 

confirmation 

426 5-aminopentanoic 
acid 0.234 n/a 0.2 n/a 43, 44, 42, 41, 

87, 45, 47 44 undetermined 

452 Alanine-alanine 0.410 n/a 0.25 n/a 42, 32, 39 42 undetermined 
454 Carnitine* 0.939 0.959 0.33 0.75 41, 36, 39 40 undetermined 

459 Phenylalanine* 0.951 0.986 1 1 42, 32, 36, 41, 
42, 41 42 42 

500 Carnitine 0.621 0.911 0.33 0.75 40, 39, 41, 47, 
36 40 undetermined 

512 Glycil-leucine 0.591 0.303 0.2 n/a 39, 41, 42 41 undetermined 
535 Tryptophan* 0.970 0.795 0.67 1 39, 41, 42 41 41 
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Experimental datasets can be related back to the mFL to increase throughput for future 

annotations 

 A driver peak at 0.9529 ppm was selected for STOCSY analysis using 41 

unfractionated individual PD1074 samples from a metabolomics study (Figure 3.7a). A 

total of 81 datapoints had a correlation to the driver peak that was larger than 0.95 (Figure 

3.7b). These chemical shifts were extracted and used to query the fraction library. The 

covariance of these features in the fraction library was calculated and represented as a 

matrix in Figure 3.7C. Fractions f41-f42 showed large covariance for those chemical shifts. 

NMR spectra from the corresponding fractions (Fig 3.7d) were then compared to spectral 

databases for metabolite annotation and validated with 2D NMR experiments (Fig 3.8).19  

 Similarly, LC-MS/MS spectra were collected on 42 individual and 12 pooled 

PD1074 samples from the same metabolomics study described above. R package 

metabCombiner was used to align the dataset (Table 3.1) with features identified in the 

mFL based on their RT, m/z, and intensity (Q). All but two of the unique MS2 identifiers 

shown in Table 3.2 were matched to MS1 features in the PD1074 dataset showcasing how 

this approach can link disparately collected LC-MS/MS datasets when chromatography 

and/or elution order is maintained. Of the 14 aligned MS2 features shown in Table 3.1, six 

received alignment scores less than 0.5 and require additional confirmation. 
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Figure 3.7. A) Full resolution spectra of the C. elegans reference strain PD1074 from a 
metabolomics study are represented as an inset. The blue square highlights the region of 
interest displayed by the spectra in blue. The feature of interest corresponds to an 
overlapped Leu feature at 0.953 ppm. B) STOCSY output highlighting the correlated 
features to the driver peak in panel A calculated from the PD1074 spectra in a study. C) 
Covariance matrix calculated using the fractionated spectra only. Features with a 
correlation above 0.95 from the STOCSY output were used to obtain fraction peak heights 
and calculate the fractions covariance. Yellow and green squares indicate the fractions 
where those features are prominent. D) Individual spectra from each fraction identified 
by the covariance matrix. 
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Figure 3.8. Leu NMR annotation confirmation. The spectra in green were downloaded 
from BMRB from a Leu chemical standard at concentration of 100mM and pH of 7.4 on a 
600MHz magnet. The spectra in red correspond to fraction number 41 and were collected 
on a 600Mhz magnet in our laboratory.  The intensities of the features were adjusted for 
visualization.  
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DISCUSSION AND CONCLUSION 

Fractionation increases concentration and decreases spectral overlap of NMR spectra 

while retaining features 

 Due to their narrow line widths and ubiquitous presence in organic molecules, 1H 

resonances generate information rich NMR spectra, but are also hard to interpret because 

of the overlap between features. Methods to reduce overlap at the sample preparation stage 

have been developed but generate artifacts, require previous knowledge of the metabolites 

present within the sample, or considerably reduce metabolite coverage.45-47 Two-

dimensional NMR experiments markedly reduce this overlap but require longer acquisition 

times. 1H-1H homonuclear experiments are particularly attractive, as they retain much of 

the same information as a 1D 1H spectra but also retain considerable overlap. 1H-13C 

heteronuclear experiments provide unrivaled separation of signals because of the added 

carbon dimension. However, while capable of dramatically increasing annotation 

confidence, the low sensitivity of these experiments is a limiting factor even with long 

acquisition times to compensate for the low natural abundance of 13C. Furthermore, some 

overlap still exists, especially for compounds that share similar structures, often making 

the structural elucidation of a molecule of interest difficult if not impossible. Thus, there is 

a need for alternate approaches that can reduce spectral overlap and simultaneously 

increase concentrations for metabolite annotation and identification.  

 Preparative scale separations have been predominant in other fields to address these 

limitations but are still not routine practice in untargeted metabolomics experiments. The 

lack of large quantities of material and connecting elements between studies are the biggest 

challenges. However, matrix matched RMs provide the necessary conditions to overcome 
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these limitations. The diversity of commercially available RMs is limited, and in-house 

materials often lack stability and longevity. An alternative to commercially available RMs 

is IBAT, a logistically simple method developed by the authors that generates, a long-term, 

stable RM of any matrix.34  

 Here, we have demonstrated how a RM and fixed-time interval fractionation can 

improve the S/N of NMR spectra and improve metabolite annotation. Peak overlap is 

particularly problematic for resonances of similar structures. The 1H resonances of sugar 

rings are a good example of a problematic region (Fig 3.2). These structures generate 1H 

resonances between 3.5-6 ppm and are common to all monosaccharides, oligosaccharides, 

polysaccharides and other carbohydrate derivatives. Glucose and trehalose are typical 

sugars found in C. elegans and their anomeric resonances are readily noticeable indications 

of their presence in complex mixtures. Database matching relies on the matching ratio 

between experimental and database spectra, and the uniqueness of a spectral match. As 

mentioned above NMR relies on multiple features to define a compound and because of 

overlap, the matching ratios for sugars are typically high, and their uniqueness scores low. 

 This is illustrated by the unfractionated COLMARm scores for glucose and 

trehalose. However, the separation highlighted in Figure 3.2 increased those uniqueness 

scores and therefore the confidence in their previously ambiguous annotation. Furthermore, 

the intensity of each feature is dependent not only on the metabolite concentration but also 

on the number of 1H resonances that generate the signal. This translates into some features 

that may not be detected out of a whole molecule, and therefore, fail to provide sufficient 

detail to annotate a compound of interest confidently. Low intensity features and overlap 
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are detrimentally additive and a common occurrence in NMR database matching. As such, 

fractionation methods can significantly improve NMR annotation and database matching.  

 

Bridging NMR and LC-MS/MS with database matching to improve annotation 

 Database matching is fast and allows for a large number of features to become key 

elements of the biological question under investigation. As such, incorrect annotations can 

lead to misinterpretation of biological findings that are reported and propagated throughout 

the scientific literature until proven wrong. To ensure higher metabolite annotation 

confidence and transparent reporting, the Metabolomics Standards Initiative implemented 

guidelines for quantifying annotation confidence into four different levels, from best (1) to 

worst (4): (1) identified compound, (2) putatively annotated compound (3) putatively 

characterized compound classes and (4) unknown compounds. As defined, and later 

modified to address developing technologies, 48 level 1 requires a minimum of two 

independent and orthogonal data confirmations relative to an authentic compound analyzed 

under identical experimental conditions. Thus, all database spectral matching annotations 

that rely on a single analytical platform fall within level 2. 49 Thus, most untargeted 

metabolomics studies that do not rely on chemical standards, will only ever achieve level 

1 annotations if they’re deemed critical to carry out further analysis for structural 

elucidation of an unknown metabolite or confirmation of the metabolite annotation. The 

latter is generally less likely, and often reliant on database metric outputs to satisfy an 

annotation requirement to proceed with a biological interpretation.  

 The level 1 requirement for orthogonality ensures validation. Current practices for 

LC-MS/MS untargeted metabolomics entail the use of several spectral matching services 
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to provide an additional level of confidence on the annotation. However, the problem 

becomes more complex. With different matching algorithms and different metabolite 

coverage, what criteria is deemed acceptable for a metabolite annotation? Here, we have 

used both GNPS and SIRIUS similarity score cut-offs of 0.7 to determine the overlap 

between the two methods. As described previously, each of these methods uses a different 

scoring metric to quantify similarity (from 0 to 1, where 1 represents the highest level of 

similarity between experimental and library spectra), however both methods use the same 

data, and so do not meet the orthogonality criteria. A total of 37% of the features annotated 

in five individual fractions were in common between the two methods (Fig 3.5) effectively 

expanding the number of annotations by querying against different databases. However, it 

becomes increasingly hard to determine whether one-sided annotations are due to coverage 

or inherent to the matching method (i.e., matching algorithm, quality of the spectra, etc.) 

and even harder when the matching ratios disagree (>0.7 and <0.7). Nonetheless, high 

concordant matching ratios across two analytical instruments, satisfy the orthogonality 

requirements, and provide stronger indication of the correct identification of the feature of 

interest to the extent of the limitations of both methods and the metabolite chemical 

properties.  

 This complementarity is well illustrated by Phe (Table 3.2), which had scores >0.95 

in all categories. Using NMR data, it was possible to completely match all the reference 

standard spectral features to the fraction library data, however this is time consuming and 

not always possible or feasible for a large number of molecules. This annotation was also 

confirmed by LC-MS/MS using an amino acid standard which was fractionated and 

analyzed in the same manner as the complex mixture. The same validation method was 
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used to confirm the annotation of gamma-aminoisobutyric acid (GABA), although its MS 

based similarity scores were bellow passing grade (<0.4). GABA was matched as a possible 

annotation by LC-MS/MS to two individual MS2 scan numbers (287 and 404), of which 

scan 287 showed matches to 3-aminoisobutyric acid (BAIB), GABA, and 2-aminobutyric 

acid (AABA) further showcasing the complexity of MS-based annotation, especially when 

dealing with isomers with very similar fragmentation patterns that differ mainly in 

intensity. Based on the NMR similarity score and maximum fraction shown in Table 3.2, 

GABA looks like a promising annotation for MS2 scan 287, however spike-in experiments 

with a commercially available standard are needed to definitively confirm this to a level 1 

annotation and identify scan 404 as a misannotation.  

 Conversely, the annotation of choline shows high confidence scores in LC-MS/MS 

with a score >0.9 for both GNPS and SIRIUS but is met with a lacking NMR score resulting 

from a single feature in the experimental HSQC spectrum. The choline HSQC reference 

spectrum consists of a strong singlet at 3.195 ppm, corresponding to the nine equivalent 1H 

of the three methyl groups, and two low intensity peaks at 3.514 and 4.053 ppm of the CH2 

groups. The low-level peaks in the fraction spectrum are too low level to be detected even 

after concentration which leaves the annotation of choline solely reliant on a single peak 

which is not specific enough to confirm the annotation by NMR alone. Further increase in 

concentration would be required with additional semi- preparative HPLC injections and 

subsequent combination of eluting fractions for metabolites with low intensity features  or 

low concentration. 

 Cross-platform analysis of the same fixed-time interval fractionation provides an 

unexpected layer of confidence. Because eluting metabolites can be collected over more 
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than one fraction, the resulting change in intensity, if matched, adds further evidence of 

concordant annotations. This is illustrated by several examples in Table 3.2 (i.e., GABA, 

betaine, Phe, Trp) but furthermore, can also help discern between isomers. Leu and Ile 

represented by two entries of the same MS2 scan number (353) with a maximum intensity 

at f41 and a second MS2 scan (354) with a maximum intensity at fraction f39. MS2 

fragmentation does not readily distinguish these isomers; however, manual inspection of 

the chromatograms revealed baseline separation using HILIC separation methods. These 

isomers are easily differentiated by NMR as shown in Fig 3.7. Their corresponding 

maximum intensities demonstrate the correct Leu annotation for scan 353 and a 

misannotation of Ile for scan number 354. The missing Ile LC-MS/MS annotation was 

manually investigated and determined to stem from the dynamic exclusion settings used 

for DDA, showcasing the variability introduced through instrument specific parameter 

settings. An amino acid standard mixture was fractionated and confirmed the RT, ,m/z, and 

fraction number of both features in the mFL , confirming their identity and elution order. 

Interestingly the discrepancy between NMR and MS platforms and their complementarity 

is well illustrated in Figure 3.5.  

 A total of 31 matches were unique to NMR that were not annotated by LC-MS/MS. 

However, these MS data are highly restricted by the chromatography and polarity of the 

measurements (HILIC positive mode) which is not the case for NMR. Nonetheless, there 

is a clear consistent trend in the class of analytes measured by both platforms (Fig 3.6). 

Lipid and lipid like molecules are mostly detected by LC-MS/MS. This is consistent with 

lipids being historically hard species to analyze by NMR in metabolomics due to their 

repeating structures and overlapping resonances, but to certain extent misconstrued as 
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recently demonstrated,50 and can be further improved with fractionation strategies. 

Additionally, molecules with intermittent oxygen and nitrogen atoms also showed higher 

coverage by LC-MS/MS which can leverage fine isotopic structure and fragmentation for 

identification. As expected, small organic acids and derivatives are the most overlapped 

class of molecules between the two platforms while also the most abundant class detected 

by NMR. As additional 2D NMR spectra are collected on fractions the true 

complementarity and uniqueness of each platform will be better elucidated. However, a 

benefit of the fraction library is the ability to query these fractions and collect data on an 

as-needed basis as discoveries and hypotheses are made.  

 

Experimental datasets can be related back to the mFL for rapid annotation 

 To effectively relate study features of interest to the mFL it is necessary to devise 

methods that can circumvent the manual search and comparison between mFL and a 

metabolomics study. STOCSY is a well-established method to extract resonances that 

belong to the same molecule,51 however, it is limited by the variance of the dataset and 

peak overlap that can lead to ambiguous results with high rate of missed or falsely selected 

features. Unlike LC-MS/MS, that utilizes the paired combination of m/z and RT to create 

a unique identifier for a compound of interest, NMR relies on multiple chemical shifts to 

define a compound. A single NMR feature can easily be overlapped with other features in 

a complex matrix making it extremely difficult to associate to a single compound. 

However, high correlation thresholds from STOCSY (>0.85) help reduce the number of 

possible candidate features from the whole spectra. We demonstrated that this filtered list 

of chemical shifts can then be leveraged to identify fractions where the majority of features 
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belonging to that molecule covary. This approach enables NMR resonances that belong to 

the same molecule to be identified, not solely on statistical correlations, but now as well 

on the added dimension of ‘fraction number’, creating a unique identifier similar to m/z 

and RT for LC-MS/MS studies. This approach is scalable and allows for 100’s of spectra 

in the FL to be queried semi-automatically without prior knowledge of the compound’s 

identification. Similarly, peak lists from reference standards or computational predictions 

can be used in this pipeline to identify fractions where that compound is present and 

validate the match using 2D experiments or previously collected data. 

 Herein, LC-MS/MS data was collected using a similar separation method as that 

used for the fractionation process. While this approach does not further separate 

metabolites in the chromatographic dimension, it does allow for metabolites to be matched 

and queried between metabolomics experiments and the fraction library. A shift in RT was 

observed for metabolites (Table 3.1), but the elution order of metabolites remained 

consistent. This allows for computational methods, such as metabCombiner described by 

Habra et al., to align features between disparately acquired LC-MS/MS metabolomics data 

using m/z, RT, and relative abundance similarities (Table 3.1). The use of orthogonal 

separation methods can be an added benefit; however, this necessitates the use of retention 

indexing between divergent chromatographic methods or the use of RT prediction, which 

requires large training datasets and therefore significant additional instrument time and 

benchwork.52-54 

 Data-dependent acquisition (DDA) LC-MS/MS was used for the collection of MS2 

data and database matching. However, the increased concentration provided through the 

fractionation process coupled with low volume requirements for MS provides additional 



 109 

avenues to be explored. For example, coupling a matched LC-MS/MS separation followed 

by ion mobility separation (IMS) would allow individual datasets to be RT-matched to the 

fraction library while simultaneously improving the separation of the LC-MS/MS data and 

decreasing complexity. More importantly for the structural elucidation process, this 

approach would provide highly complementary structural information in the form of 

collisional cross section measurements (CCS) that can then be compared to machine 

learning-based approaches for CCS prediction.55, 56 

 The ability to relate features identified in the fraction library to separately collected 

metabolomics datasets was showcased here using an IBAT RM. One clear limitation of this 

approach is that a metabolite of interest may not be present in the RM. In this event, a 

feature of interest identified in the LC-MS/MS dataset can undergo the typical targeted 

isolation and/or purification with the added guidance of the adjoining features in the 

fraction library, reducing the usual effort needed to select the optimal fraction. 

Furthermore, the advantage of a RM is that it reflects the matrix effects of the study 

samples, as such, high overlap between the RM and the study samples metabolome is 

expected. While this approach can be used on any material that is regularly included in 

metabolomics studies, the inclusion of a RM presents many additional benefits. Creating a 

fraction library of a RM ensures the variation in the measured features is kept low and 

consistently detected in every study. Over the course time and multiple experiments, using 

different methods and instrumentation, it is possible to achieve a systematic annotation of 

a RM. In addition, features of non-biological origin (i.e., plasticizers, impurities, artifacts, 

etc.) that are often laboratory specific can be appropriately annotated and removed prior to 

statistical analysis. Finally, fractions can be analyzed by multiple analytical methods (i.e., 
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ion mobility, direct infusion MS, high resolution MS (HRMS) and/or different 

chromatographic conditions) as well as further concentrated by repeating the fractionation 

process or targeting a specific metabolite for isolation/purification. Therefore, the effort 

required to elucidate an unknown metabolite present in the mFL is only carried out once 

and used throughout future studies.  

 While an IBAT RM is critical for the fractionation to be cost effective for 

metabolomics studies, alternative materials can be used. Human biofluid studies, for 

example, often rely on large quantities of procured (commercially or sourced) urine or 

plasma samples that are regularly included in multiple studies over time and therefore are 

fit for purpose to create a mFL. These materials can be used to generate an IBAT RM, 

thereby prolonging the stability of the material, and improving management logistics. The 

approach detailed here is well suited as an annotation resource and continuously evolving 

library, as demonstrated for laboratories that lack semi-scale equipment.32  

 We have demonstrated that spectral matching has limitations and that these are 

highly platform dependent and even more so metabolite dependent. The creation of a mFL 

allows for multiple analytical measurements to be made on a simplified fraction of a 

complex matrix, increasing both S/N and database coverage through the use of 

complementary technologies. The effort required to generate a mFL is outweighed by the 

benefits of being able to leverage the information rich spectra and confirmed annotations 

in downstream experiments through the inclusion of the same sample type (i.e., IBAT RM 

or commercially purchased biofluid). Additionally, the generation of archived concentrated 

aliquots of each fraction facilitates additional analytical measurements that can further 

overcome these limitations by orthogonalizing database matching, and therefore increasing 
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the confidence of the annotations. This library has the potential to serve as a long-standing 

resource that can increase the turnaround time from analytical measurement to confident 

annotation, as well as improve unknown metabolite identification through the inclusion of 

molecular networking and computational predictions (concepts to be demonstrated in an 

upcoming publication).  
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CHAPTER 4 

1H NMR METABOLOMICS CORROBORATES SERINE 

HYDROXYMETHYLTRANSFERASE AS THE PRIMARY TARGET OF 2-

AMINOACRYLATE IN A RIDA MUTANT OF SALMONELLA ENTERICA.* 

* Gouveia GJ*, Borchert AJ*, Edison AS, Downs DM. Proton Nuclear Magnetic
Resonance Metabolomics Corroborates Serine Hydroxymethyl-transferase as the Primary 
Target of 2-Aminoacrylate in a ridA Mutant of Salmonella enterica. mSystems. 2020 Mar 
10;5(2):e00843-19. doi: 10.1128/mSystems.00843-19. PMID: 32156800; PMCID: 
PMC7065518. Copyright 2020 American Society for Microbiology. *co-first authors 
Reprinted with permission from publisher.
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FOREWORD 

This chapter is reprinted from Borchert AJ, Gouveia GJ, Edison AS, Downs DM. 

Proton Nuclear Magnetic Resonance Metabolomics Corroborates Serine Hydroxymethyl-

transferase as the Primary Target of 2-Aminoacrylate in a ridA Mutant of Salmonella 

enterica. mSystems. 2020 Mar 10;5(2) : e00843-19 and is available at https://journals 

asm.org/doi/10.1128/mSystems.00843-19. The motivation for this work was driven by the 

senior authors Diana M. Downs and Arthur S. Edison. My contribution to this work as a 

co-first author consisted of: (i) develop the experimental design in conjunction with 

Andrew J Borchert, (ii) carry out metabolite extraction for the samples and media, (iii) 

design the NMR run order, (iv) setup and run the NMR analysis, (v) process the NMR data 

(vi) carryout data post-processing steps, (vii) metabolomics data analysis (viii) metabolite

identification and generating metabolomics figures and writing the metabolomics sections 

of the draft, and finally (ix) addressing reviewers comments upon request. The steps carried 

above were carried out as a part of Dr. Borchert training in metabolomics, as such, most of 

those steps were carried out with his help. In addition, Dr. Borchert contribution was as 

follows: (i) generation of bacterial cells and separation and quenching of media and 

bacterial pellets, (ii) spearhead the design of the experiment, (iii) biochemical interpretation 

of the metabolomics data (iv) construct the biochemical model figures, growth curves plots 

and figures, (v) wrote most of the draft and finally manuscript submission and addressed 

reviewers’ comments. The senior authors roles were as follows: Arthur S. Edison and Diana 

M. Downs reviewed, edited, responded to reviewers and defined the direction and goals of

the work. Supplemental materials can be found in APPENDIX C. 
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ABSTRACT 

The reactive intermediate deaminase RidA (EC: 3.5.99.10) is conserved across all 

domains of life and deaminates reactive enamine species. When S. enterica ridA mutants 

are grown in minimal medium, 2-aminoacrylate (2AA) accumulates, damages several 

pyridoxal 5’-phosphate (PLP)- dependent enzymes, and elicits an observable growth 

defect. Genetic studies suggested that damage to serine hydroxymethyltransferase (GlyA), 

and the resultant depletion of 5,10-methelenetetrahydrofolate (5,10-mTHF), was 

responsible for the observed growth defect. However, the downstream metabolic 

consequence from GlyA damage by 2AA remains relatively unexplored. This study sought 

to use untargeted 1H NMR metabolomics to determine whether the metabolic state of a S. 

enterica ridA mutant was accurately reflected by characterizing growth phenotypes. The 

data supported the conclusion that metabolic changes in a ridA mutant were due to the 

IlvA-dependent generation of 2AA, and that the majority of these changes were a 

consequence of damage to GlyA. While many of the shifts in the metabolome of a ridA 

mutant could be explained,  changes in some metabolites were not easily  modeled, 

suggesting that additional levels of metabolic complexity remain to be unraveled.  

 

IMPORTANCE 

Accumulation of the reactive enamine intermediate, 2-aminoacrylate (2AA), elicits 

global metabolic stress in many prokaryotes and eukaryotes by simultaneously damaging 

multiple pyridoxal 5’-phosphate(PLP)-dependent enzymes. This work employed 1H NMR 

to expand our understanding of the consequence(s) of 2AA stress on metabolite pools and 

effectively identify the metabolic changes stemming from one damaged target: GlyA. This 
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study shows that nutrient supplementation during 1H NMR metabolomics experiments can 

disentangle complex metabolic outcomes stemming from a general metabolic stress. 

Metabolomics shows great potential to complement classical reductionist approaches to 

cost-effectively accelerate the rate of progress in expanding our global understanding of 

metabolic network structure and physiology. To that end, this work demonstrates the utility 

in implementing nutrient supplementation and genetic perturbation into metabolomics 

workflows as a means to connect metabolic outputs to physiological phenomena and 

establish causal relationships. 

 

INTRODUCTION  

The metabolic state of the cell at a given time reflects the cumulative result of inputs 

to the system of cellular metabolism that include but are not limited to, transcription, 

translation, enzyme activity, metabolic flux. Deconvoluting the role of a specific cellular 

process in this complex network requires both global and local knowledge, acquired by the 

integration of multidisciplinary approaches 1, 2. Metabolomics approaches have been 

successful in accelerating the elucidation of complex metabolic and physiological states of 

an organism and help complement  biochemical and genetic approaches that can require 

significant resources and time 1, 3-7. Metabolomics provides the benefit of providing a 

snapshot of all metabolic changes in a system without requiring that these shifts produce 

an observable (growth) phenotype. Integration of large metabolomics datasets with 

reductionist biochemical genetic analyses is advantageous, since the former allows 

detection of underlying metabolic shifts caused by genetic or environmental perturbation, 

while data from the latter provides biological relevancy to frame conclusions. The RidA 
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paradigm of endogenous metabolic stress provides an opportunity to explore the utility of 

integrating metabolomics analysis with the biochemical genetic approaches that have 

defined the framework of this stress.  

Pyridoxal 5’-phosphate (PLP)-dependent a,b-eliminases generate reactive enamine 

species as important reaction intermediates from amino acid substrates. A subset of these 

a,b-eliminases release reactive enamine intermediates into the cellular milieu. The reactive 

intermediate deaminase, RidA, catalyzes the deamination of free enamine species. 2-

aminoacrylate (2AA) is a reactive enamine species generated from L-serine by the 

biosynthetic serine/threonine dehydratase (IlvA; EC: 4.3.1.19) 8. The absence of RidA in 

S. enterica allows the 2AA produced by IlvA to accumulate and damage multiple other

PLP-dependent enzymes, generating a number of detectable mutant phenotypes 8-11. 

Relevant to this study, serine hydroxymethyltransferase (GlyA; EC: 2.1.2.1) is the most 

physiologically significant target for 2AA damage in S. enterica, since its damage causes 

a growth-limiting reduction in 5,10-methylenetetrahydrofolate (5,10-mTHF) 12. 

Importantly, exogenous glycine can bypass the 5,10-mTHF limitation and restore growth 

by allowing 5,10-mTHF production via the glycine cleavage complex (GCV). IlvA is 

subject to allosteric control by L-isoleucine, thus exogenous L-isoleucine restores growth 

to a ridA mutant by preventing 2AA generation 13-15. Therefore, isoleucine and glycine 

supplements provide mechanistically distinct means to restore full growth to an S. enterica 

ridA mutant. With the former, the 2AA stress is eliminated, and with the latter, one impact 

from the stress is circumvented. A summary of the RidA paradigm for S. enterica is 

provided in Figure 4.1. 



 125 

 

Figure. 4.1 RidA paradigm of 2-aminoacrylate stress in S. enterica. Biosynthetic 
serine/threonine dehydratase (IlvA) catalyzes the β-elimination of l-serine to generate the 
reactive enamine 2-aminoacrylate (2AA). The activity of IlvA is prevented via allosteric 
inhibition by l-isoleucine. 2AA is hydrolyzed to pyruvate by the reactive intermediate 
deaminase A (RidA). In the absence of RidA, 2AA accumulates and can damage a number 
of PLP-dependent enzymes. The most physiologically sensitive target of 2AA damage in S. 
enterica grown in minimal glucose medium is serine hydroxymethyltransferase (GlyA), as 
judged by nutrient supplementation (9, 12). GlyA is responsible for the reversible transfer 
of the hydroxymethyl from serine to tetrahydrofolate (THF), generating glycine and 5,10-
methylenetetrahydrofolate (5,10-mTHF). The glycine cleavage complex (GCV) can 
further catabolize glycine, generating additional 5,10-mTHF. 

 

Damage to GlyA by 2AA perturbs glycine and 5,10-methylenetoetrahydrofolate 

(5,10-mTHF) synthesis, but the extent of the changes to the global metabolic network 

caused by this perturbation is less clear. In this study, untargeted proton nuclear magnetic 

resonance (1H NMR) metabolomics and nutrient supplementation was used to dissect the 

global metabolic consequences associated with the accumulation of 2AA, extending those 
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deduced from past growth studies. 1H NMR, was used to measure the endogenous and 

exogenous (e.g. spent culture media) metabolomes of S. enterica wild-type and ridA mutant 

strains in various media. The strengths of NMR-based metabolomics, including simple 

sample preparation, broad chemical coverage, confident chemical assignments, and 

straightforward quantification of metabolites, benefited this study 7, 16-18. The data showed 

a clear metabolic ‘fingerprint’ associated with an S. enterica ridA mutant grown in minimal 

glucose medium. Significantly, addition of isoleucine to the growth medium restored the 

‘fingerprint’ to that of the wild-type strain. Further, addition of glycine to the growth 

medium almost completely moved the ridA ‘fingerprint’ back to that of wildtype, 

suggesting that the primary impact of 2AA stress is via damaged GlyA. Importantly, this 

conclusion could not be reached from biochemical genetic data alone.  Overall, this work 

demonstrates the potential for appropriate metabolomics experiments, in combination with 

biochemical genetic insights, to dissect perturbations to the metabolic network and isolate 

systems and subsystems impacted by these perturbations.  

 

RESULTS AND DISCUSSION  

Metabolic shifts in a ridA mutant are a consequence of IlvA-dependent 2AA generation.  

In a S. enterica ridA mutant, 2AA accumulates and damages a number of PLP-

dependent enzymes, causing a mild growth defect in minimal glucose medium (Fig. 

4.2A,B). Both the metabolome and transcriptome of a ridA mutant differ from a wild-type 

strain grown in minimal medium 19, 20. The growth phenotypes associated with a S. enterica 

ridA mutant result from the accumulation of 2AA, and all RidA orthologs described to date 

share enamine/imine deaminase activity 8, 11, 21, 22. Other functions for RidA have been 
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proposed, including a role as a translational inhibitor/ribonuclease 23-26 or a molecular 

chaperone 27-29. Because of the potential for multiple functions for this protein, it was 

important to determine whether the metabolic restructuring of a ridA mutant was caused 

by 2AA accumulation. The endogenous and exogenous metabolomes of a ridA mutant 

(DM3480) were compared to those obtained for the isogenic parental strain (DM9404, 

wild-type) in multiple growth conditions using untargeted 1H NMR metabolomics. 

Principle component analysis (PCA) showed clear visual separation of the metabolomes 

(both exogenous and endogenous) from the ridA mutant and wild-type strains grown in 

minimal glucose medium, consistent with the growth difference between the two strains 

(Fig. 4.2C-F).  

In a S. enterica ridA mutant grown in minimal glucose medium IlvA acts as the 

dominant, if not sole, generator of 2AA 8. L-isoleucine allosterically inhibits IlvA, lowering 

activity, reducing production of 2AA, and restoring wild-type growth to the ridA mutant 8 

(Fig 4.2A). Presence of L-isoleucine in the medium will therefore eliminate any metabolic 

effects that are the consequence of 2AA accumulation. The endogenous and exogenous 

metabolomes of ridA and wild-type strains grown in the presence of 1 mM exogenous L-

isoleucine were not distinguishable based on PCA analyses (Fig 4.2C, E). These data 

supported the conclusion that differences found in the metabolomes of the strains in 

minimal medium were the result of 2AA accumulation. This result was the first to 

demonstrate that the elimination of detectable ridA mutant phenotypes was mirrored by the 

restoration of metabolite balance. Significantly, this conclusion reinforced that a valid 

interpretation of the system had been obtained by the biochemical genetic analyses reported 

previously. 
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Figure. 4.2 Isoleucine and glycine restore growth and metabolic stability to a ridA 
mutant. S. enterica wild-type and ridA mutant strains were grown at 37°C in minimal 
glucose (11 mM) medium. Supplementation of the medium with 1mM L-isoleucine (A) or 
1mM glycine (B) restored wild-type growth to a ridA mutant. Data are means from three 
biological replicates, where error bars represent the 95% confidence intervals. OD650, 
optical density at 650 nm. Principle component analysis (PCA) score plots show separation 
of endogenous (C and D) and exogenous (E and F) metabolite profiles for S. enterica wild-
type and ridA mutant strains following 16 h of growth in minimal glucose medium at 37°C. 
Metabolomes obtained from growth with supplementation with isoleucine (C and E) or 
glycine (D and F) are shown. Colored ellipses represent the 95% confidence intervals for 
each group. 
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Bypassing the one-carbon starvation in a ridA mutant eliminates most, but not all, 

metabolic changes.  

When 2AA accumulates in an S. enterica ridA mutant, it damages multiple PLP-

dependent enzymes by covalently modifying PLP in the active site. One of the target 

enzymes is GlyA, whose activity is reduced to ~20% of wild-type in minimal glucose 

medium 9, 12. GlyA catalyzes the transfer of the hydroxymethyl group from L-serine 

substrate to THF, forming glycine and 5,10-mTHF (Fig. 4.1). Damage of GlyA by 2AA 

causes the growth defect of a S. enterica ridA mutant in minimal medium, resulting in its 

designation as the most physiologically sensitive target in this organism 9, 12. Addition of 

glycine to the medium restores growth of a ridA mutant since 5,10-mTHF can be generated 

from glycine by the glycine cleavage system (GCV) and bypasses the need for GlyA 12 

(Fig 4.1; Fig 4.2B). Growth of a ridA mutant in the presence of glycine was expected to 

restore a subset of the ridA metabolome back to that of wildtype. Further, the metabolites 

in this subset would define the metabolic subsystem that was perturbed by the reduction or 

lack of GlyA-dependent formation of glycine/5,10-mTHF.  With this logic, the 

metabolomes of strains grown with glycine were used to distinguish between the metabolic 

effects resulting from 2AA-dependent damage of GlyA and those resulting from other 

2AA-dependent perturbations. PCA analysis showed that, when the cells were grown in 

the presence of 1 mM glycine, the endogenous metabolome of the ridA mutant strain was 

no longer be distinguishable from that of the wild-type (Fig 4.2D). Surprisingly, these data 

indicated that the majority of the metabolic perturbations, at least those detected by 1H 

NMR, in the endogenous metabolome of a ridA mutant strain were downstream effects of 

the damage to GlyA. Consistently, PCA analysis of the external metabolome of a ridA 
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mutant grown with glycine and the corresponding metabolome from wild-type showed an 

obvious decrease in the separation of metabolic signatures, although the separation was not 

eliminated, as it was with isoleucine.  

In total, the data in Figure 4.2 supported the conclusions that (i) 1H NMR 

metabolomics detected a molecular signature unique to an S. enterica ridA mutant strain, 

(ii) the deviation in molecular signatures between ridA and wild-type strains was dependent 

upon the generation of 2AA by IlvA, and (iii), the metabolic consequences of 2AA-

dependent GlyA damage dominated the differences detected between the ridA and wild-

type strains. The latter conclusion suggests metabolomic data did not detect all metabolic 

changes present, possibly due to (i) lack of spectral resolution and/or sensitivity in the data 

set, or  (ii) a limited impact other targets (i.e., IlvE) had on the overall metabolic profile.   

 

2AA stress influences amino acid metabolism and mixed acid fermentation.  

In total, sixteen endogenous and ten exogenous metabolites were identified from 

the NMR spectra and their patterns were considered in the context of S. enterica physiology 

(Supplementary Material File S1). Partial least squares discriminant analysis (PLS-DA) 

scores plots were used to identify the specific metabolic pathways perturbed by 2AA stress 

and further understand the metabolic differences between ridA mutant and wild-type strains 

when grown in minimal medium (Fig. 4.3A,C). Variable importance in projections (VIP) 

scores were determined for all NMR features in the endogenous and exogenous datasets 

that contributed most to the PLS-DA separation in the first component (Supplementary 

Material File S2) 30. From these data, VIP plots were created with the identified metabolites 

that contributed to separation of endogenous (Fig. 4.3B) and exogenous (Fig. 4.3D) 
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metabolomes. Importantly, the VIP score reported in these plots represent the average of 

VIP scores taken from all the features comprising a given metabolite. VIP scores > 1 

indicated that elevated threonine, valine, N-acetyl putrescine, glutamine, phenylalanine, 

alanine, glutamate, and pyruvate, and diminished ethanolamine, formate, putrescine, and 

coenzyme A (CoA) drove PLS-DA separation of ridA endogenous metabolomes (Fig. 

4.3B). Similarly, VIP analysis revealed that elevated lactate, valine, putrescine, 2-

isopropylmalate, and acetyl-phosphate, and diminished formate, uracil, and 2-

aminobutyrate, drove PLS-DA separation of ridA exogenous metabolomes (Fig. 4.3D). In 

total, these data indicated that metabolites in amino acid metabolism and mixed acid 

fermentation were largely responsible for the separation of the metabolomes, as determined 

by PLS-DA analysis. Integration of peaks corresponding to all identifiable metabolites and 

comparison by Student’s unpaired two-samples t-test showed that 12 of 16 endogenous 

metabolites and 8 of 10 exogenous metabolites were significantly altered in a ridA mutant 

strain (q-value < 0.1, Supplementary Material File S4.3, Fig. 4.4).  

Integration of the peaks described above from the samples grown in minimal 

glucose medium supplemented with isoleucine showed that concentrations of the altered 

metabolites were restored to wild-type levels. (Supplementary Material File S4.3, Fig. 4.4). 

The only exception was of the abundance of exogenous uracil, which was 3.1-fold lower 

in a ridA mutant compared to wild-type following growth in minimal glucose medium, but 

appeared 1.3-fold elevated when grown in minimal glucose medium containing isoleucine. 

This discrepancy might be a consequence of the fact that the doublet integrated to define 

uracil concentration was poorly resolved in three of the ridA samples from growth with 

isoleucine (data not shown). Nonetheless, isoleucine clearly reversed the metabolic shifts 
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observed for a ridA mutant grown in minimal glucose medium. These results further 

supported the conclusion from the PCA plots that the metabolic perturbations detected with 

1H NMR were the consequence of IlvA-dependent 2AA stress. 

Figure.4.3 Partial least-squares discriminant analysis (PLS-DA) highlights separation 
of metabolomic profiles. PLS-DA score plots show clear separation by PLS component 1 
of wild-type (n=10, blue) and ridA mutant (n=10, red) endogenous (A) and exogenous (B) 
metabolite samples following growth in minimal glucose medium. Variable importance of 
projection (VIP)scores were plotted for the metabolites that contributed significantly (VIP 
of <1) to separation by PLS-DA component 1 for endogenous (C) and exogenous (D) 
samples. VIP scores were determined as the average from all peak VIP scores belonging 
to the given metabolite. Metabolites colored blue were elevated in wild-type samples, while 
those colored red were elevated in ridA mutant samples. 
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CoA limitation in a ridA mutant is captured by untargeted 1H NMR metabolomics. 

During growth on minimal glucose medium, S. enterica derives most of its one-

carbon units from serine via generation of 5,10-mTHF by the PLP-dependent enzyme, 

GlyA 31. GlyA activity is decreased more than five-fold in a ridA mutant, when compared 

to wild-type, as a result of damage by 2AA 9. The constraint on GlyA activity leads to 

significantly decreased CoA (3-fold) in a ridA mutant, since the biosynthesis of CoA 

involves the 5,10-mTHF-dependent enzyme 3-methyl-2-oxobutanoate 

hydroxymethyltransferase (PanB; EC: 2.1.2.11) 9. Gratifyingly, the untargeted 

metabolomic experiments herein captured the lowered CoA levels in a ridA mutant (Fig. 

4.4). Furthermore, addition of glycine to the growth medium eliminated the difference in 

CoA levels between the ridA mutant and wild-type (Fig. 4.4).  



 134 

 

Figure. 4.4 Significantly altered metabolites under different conditions. Fold change 
differences between ridA mutant and wild-type strains were calculated for both 
intracellular metabolites (A) and external metabolites (B). Red circles indicate higher 
abundance in ridA mutants, blue circles indicate high abundance in the wild type, and gray 
circles indicate no significant (q value of <0.1) difference in metabolite abundance between 
ridA mutants and wild-type samples. q values represent false discovery ratecorrected P 
values according to the Benjamini-Hochberg method (51). Colored asterisks, with 
corresponding “BD” q value designation, specify that a fold change was not determined, 
since the feature in ridA (blue) or both (gray) groups was below the detection (BD) limit 
for multiple samples. 
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2AA-dependent decrease in 5,10-mTHF generates additional metabolic effects.  

Glycine supplementation eliminated most of the metabolic shifts observed for a 

ridA mutant, supporting the conclusion that these changes were a consequence of the 

constrained function of GlyA. The metabolites restored to wild-type levels included all of 

the endogenous metabolites of known identity: valine, threonine, glutamine, N-acetyl 

putrescine, phenylalanine, glutamic acid, alanine, ethanolamine, acetic acid, CoA, 

putrescine and formic acid (Fig. 4.4A), as well as exogenous 2-isopropylmalic acid, 

putrescine, acetyl-phosphate, and formic acid (Fig. 4.4B). While the majority of metabolic 

pools were restored to balance, a few exogenous metabolites were not, notably valine and 

uracil. The discrepancy between ridA mutant and wild-type valine and uracil content was 

partially reduced (p-value <0.01) following the addition of exogenous glycine (5.0-fold 

higher to 1.4-fold higher and 3.1-fold lower to 1.5-fold lower in the ridA background for 

valine and uracil, respectively), suggesting that the state of 5,10-mTHF was partially 

responsible for the concentration shift (Supplementary Material File S3, Fig. 4.4).  

A ridA mutant accumulated less endogenous formic acid and acetic acid than the 

wild-type strain. The finding that these trends were eliminated by the presence of glycine 

in the growth medium suggested a model in which CoA limitation triggered a shift in flux 

through mixed acid fermentation (Fig. 4.5). During mixed acid fermentation, pyruvate-

formate lyase (PflB: EC: 2.3.1.54) uses CoA and pyruvate as substrates for the production 

of formate and acetyl-CoA, which is further processed to acetate 32. A bottleneck in CoA 

biosynthesis would reduce PflB-dependent formation of formate and downstream 

production of acetate. The accumulation of pyruvate during late exponential phase growth 

in a ridA mutant is consistent with this model 9. An increase in endogenous pyruvate in a 
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ridA mutant was suggested by the PLS-DA model; however, the increase did not meet the 

threshold for statistical significance (q-value = 0.12 ) and thus was not discussed 

(Supplementary Material File S3). Two molecules of pyruvate are used during valine 

synthesis, and in Klebsiella aerogenes pyruvate accumulation increases valine production 

33, 34. The increase in endogenous and exogenous valine and exogenous 2-isopropylmalic 

acid, which is formed from an intermediate in valine biosynthesis, in a ridA mutant is 

eliminated by growth in glycine (Fig. 4.4B).  Therefore, the increase in valine and 2-

isopropylmalic acid content may indicate that overflow pyruvate in a ridA mutant is 

diverted toward valine synthesis (Fig. 4.4, Fig. 4.5). 
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Figure. 4.5 Working model for metabolic outcomes resulting from 5,10-mTHF 
limitation. 2AA-dependent damage of GlyA in a ridA mutant of S. enterica causes a 
glycine/5,10-mTHF limitation. The 5,10-mTHF limitation leads to a downstream decrease 
in CoA, altering flux through CoA-dependent mixed acid fermentation. In this working 
model, accumulated pyruvate is rerouted toward branched-chain amino acid (BCAA) 
biosynthesis. The metabolites on the left side of the cell schematic are altered by an 
unknown, but glycine/5,10-mTHF-dependent, mechanism. Metabolites colored blue are 
elevated in the wild type, and those colored red are elevated in the ridA mutant. The purple 
pathway represents the effect of supplemented glycine in restoring endogenous 
glycine/5,10-mTHF levels. Metabolites that are boldfaced and italicized were not detected 
by 1H NMR. Compounds listed outside the rounded rectangle represent metabolites 
detected by 1H NMR in the growth medium. 
 

 

CONCLUSION 

The untargeted 1H NMR metabolomics approach used here exposed the global 

metabolic consequences of eliminating RidA from S. enterica. Both endogenous and 

exogenous metabolomes were assessed and among the multitude of features visualized, 16 
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endogenous and 10 exogenous metabolites were confidently identified. Multivariate 

analysis by PCA and PLS-DA showed a clear difference between the metabolomes of a 

ridA and wild-type strain grown in minimal medium. Importantly, the PLS-DA models 

revealed a 'fingerprint' for a ridA metabolome and the high Q2 scores from cross-validation 

showed that these models effectively captured the metabolic separation between the two 

groups. A VIP score cutoff  >1 was used to identify metabolites contributing to separation 

of the respective ‘fingerprints’. Findings from VIP analysis agreed well with the findings 

from univariate analysis of the 1H NMR dataset, as only endogenous pyruvate had a VIP 

score >1 but did not differ significantly by univariate analysis (q-value > 0.1) and only 

endogenous acetate differed significantly by univariate analysis but failed to meet a VIP 

score  > 1. Altogether, these data indicated the two PLS-DA models, without the need for 

orthogonal signal correction 35, accounted for most identifiable and significantly altered 

metabolites and effectively separated wild-type metabolomes from those associated with 

ridA mutants.  

The 1H NMR analyses of strains grown in medium containing isoleucine 

demonstrated that concentration shifts of metabolites between the ridA and wild-type 

strains are due to the IlvA-dependent generation of 2AA. This result significantly extended 

our understanding of the  influence of 2AA on the metabolic network of a ridA mutant by 

showing the restoration of all metabolic feature discrepancies, including those that were 

not associated with a detectable growth phenotype.  The growth defect of a ridA mutant is 

a consequence of damage to GlyA by 2AA 9, 12. The 1H NMR data showed decreased PCA 

separation between wild-type and ridA mutant metabolomes, when the damage to GlyA 

was bypassed by glycine addition to the medium. The glycine-dependent restoration of 
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wild-type levels for 12/12 endogenous and 4/8 exogenous identifiable metabolites 

supported a metabolic model connecting GlyA damage by 2AA to shifts in mixed-acid 

fermentation and BCAA metabolism, as depicted in Figure 4.5. The 1H NMR data found 

metabolic differences that were not easily modeled as a consequence of lowered 5,10-

mTHF or CoA. Further dissection of the network generating these changes could 

incorporate the supplementation of growth medium with pantothenate, which restores CoA 

levels but not 5,10-mTHF levels 9.   

Since fewer metabolites are present in spent media samples, the spectra associated 

with the exogenous metabolome had less spectral overlap. Media samples also did not 

require homogenization or methanol extraction, making their processing more expedient 

and straightforward. Therefore, analysis of exogenous samples may offer a high-

throughput and simplified way to continue characterization of the RidA paradigm. Such 

simplified and expedited analysis would be particularly useful during time-course 

experiments or studies containing more genetic backgrounds and/or media conditions, 

where dozens to hundreds of samples may be required.  

Overall, the combination of 1H NMR metabolomics and relevant nutrient 

supplementation was successful in expanding the RidA/2-aminoacrylate paradigm in S. 

enterica and in making first steps toward delineating downstream consequences of GlyA 

damage from metabolic effects independent of glycine/5,10-mTHF perturbation. 

Historically, metabolomics approaches have been valuable in identifying correlations to 

generate hypotheses/models; however, the design of metabolomics experiments to act as a 

high-throughput means of testing these models and identifying mechanistic/causal 

relationships is a nascent field 36, 37. The RidA system provides an interesting case-study in 
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refining the experimental approach of metabolomics studies to include genetic 

manipulations and nutrient supplementations as a means to probe the underlying factors 

contributing to the metabolic shifts observed following a perturbation. The study herein 

highlighted, i) the benefit of  using spent growth medium as an initial proxy for metabolome 

differences, and (ii) the value of nutritional supplementation as a way to help define 

metabolic sub-networks. If applied to the study of complex metabolic systems, these 

approaches have the potential to contribute to understanding how a network responds to 

perturbation, and drive our understanding of gene function and the physiological impact of 

various cellular components. 

 

MATERIALS AND METHODS 

 

Bacterial strains, chemicals, and media.  

Strains used in this work are derivatives of Salmonella enterica subsp. enterica 

serovar Typhimurium str. LT2. Construction of the ridA null mutant (DM3480, 

ridA3::MudJ1734) is described elsewhere 38, 39. The wild-type strain used in this work 

(DM9404) is an LT2 derivative isogenic to the ridA mutant. Rich medium was Difco 

nutrient broth (NB) (8 g/L) supplemented with 5 g/L NaCl. No-carbon E medium (NCE) 

containing 1 mM MgSO4 40, trace metals 41, and 11 mM D-glucose was the designated 

minimal medium. Minimal medium was supplemented with 1 mM L-isoleucine or 1 mM 

glycine, as indicated. All chemicals were purchased from the Sigma-Aldrich Chemical 

Company (St. Louis, MO). 
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Generation of cell pellets and spent media. 

Ten biologically independent wild-type and ridA mutant cultures were grown 

overnight in NB medium shaking at 37 °C and used to inoculate (1% inoculum) 250 mL 

non-baffled flasks holding 125 mL of medium. Each culture inoculated one each of the 

three media types (minimal medium, minimal medium with 1 mM L-isoleucine, and 

minimal medium with 1 mM glycine), for a total of 60 flasks. Flasks were randomly 

arranged in an Innova®44 incubator and cultures allowed to grow 16 h at 37 °C, shaking 

at 180 RPM. Cultures were chilled 5 min on ice and then harvested by centrifugation at 

7,000 x G for 10 min at 4 °C. The supernatant was decanted, with 10 mL transferred to 

sterile 15 mL conical tubes and flash-frozen using liquid nitrogen for downstream analysis 

of external metabolites. Cell pellets were transferred to sterile 15 mL conical tubes after 

resuspension in 10 mL ddH2O, prior to a second pelleting at 7,000 x G for 10 min at 4 °C. 

The supernatant was decanted and pellets were flash-frozen using liquid nitrogen and 

stored at -80 °C. 

Preparation of growth medium samples. 

Spent media from each bacterial culture was lyophilized (VirTis Benchtop K) for 

48 h. Once dry, each lyophilized sample was reconstituted in 150 µL of 100 mM sodium 

phosphate buffer (Cambridge Isotope Laboratories), pH 7.0, containing 1/3 mM DSS (4,4-

dimethyl-4-silapentane-1-sulfonic acid, Cambridge Isotope Laboratories) as an internal 

standard. Each sample was centrifuged at 20,000 X G for 30 min and 50 µL of supernatant 

was transferred by a Bruker SamplePro liquid handler into 1.7 mm SampleJet NMR tubes 

(Bruker Biospin). 
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Metabolite extraction from bacterial pellets.  

Each frozen bacterial pellet was thawed on ice and 1 mL of ice cold 80/20 

methanol/water together with approximately 200 mL of 0.7mm silica beads (BioSpec 

products). Homogenization was carried out using a FastPrep 96 (MPBIO).  The samples 

and extraction blanks went through three cycles of homogenization at 1800 rpm for 300 s 

each. At the end of each cycle samples and controls were centrifuged at 20000 x G for 30 

min. Each supernatant was transferred to a new tube and 1 mL of ice-cold methanol/water 

added to the original tubes before each new cycle. The combined supernatants from each 

cycle were pooled and concentrated overnight using a CentriVap Benchtop Vacuum 

Concentrator (Labconco) down to 0.1 mL. The samples were then diluted with 0.5 mL of 

methanol/water and transferred into 0.6 mL centrifuge tube and concentrated to dryness. 

The extracts were reconstituted in 150 µL of deuterated 100 mM sodium phosphate buffer 

containing 1/3 mM of the internal standard DSS (d6 4,4-dimethyl-4-silapentane-1-sulfonic 

acid) at pH 7.0 and vortex mixed for 5 min. Each sample was centrifuged at 20000 x G for 

30 min and transferred by a Bruker SamplePro liquid handler into 1.7 mm SampleJet NMR 

tubes. Extraction blanks were prepared following the same procedure except the biological 

material was replaced with an equal volume of water. Solvent blanks consisted of the 

reconstituting NMR buffer (deuterated sodium phosphate buffer with DSS). 

 

Acquisition and processing of NMR data.  

One-dimensional 1H NMR spectra for each sample and blanks were acquired using 

an optimized PROJECT (periodic refocusing of J evolution by coherence transfer) pulse 

sequence 42 on an Avance III HD 600 MHz Bruker NMR spectrometer equipped with a 
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TCI cryoprobe and a Bruker SampleJet autosampler cooled to 5.6 °C. During acquisition, 

32,768 complex datapoints were collected for the FID, using 64 scans with 16 additional 

dummy scans. The spectral width was 20 ppm. A Fourier transform (FT), a polynomial 

baseline correction of order 3, a 2 Hz line broadening and phase correction were applied to 

each spectrum. 

Two-dimensional 1H-1H total correlation spectroscopy (TOCSY), 1H-13C 

heteronuclear single quantum correlation (HSQC) and 1H-13C HSQC–total correlation 

spectroscopy (HSQC–TOCSY) experiments were collected on pooled samples, composed 

from a small aliquot of each study sample, for metabolite identification. During acquisition, 

all three experiments were collected for 32 scans and an additional 16 dummy scans, with 

512 and 1,024 datapoints recorded on the direct and indirect dimensions respectively and, 

a spectral width of 200 ppm for 13C and 12 ppm for 1H. A 90 ms mixing time was used for 

both HSQC-TOCSY and TOCSY experiments. All spectral processing was carried out 

using NMRpipe 43. Spectra referencing, baseline correction, and statistical analysis were 

carried out using in-house Matlab (Mathworks, R2019a) scripts which are publicly 

available. (https://github.com/artedison/Edison _Lab_ Shared_ Metabolomics_UGA).  

 

Compound identification/database matching.  

All three two-dimensional experiments were used for spectral matching against the 

BBiorefcode library using COLMARm 44 using a chemical shift cutoff of 0.03 and 0.3 ppm 

for 1H and 13C respectively. A total of 9 exogenous and 16 endogenous metabolites that 

could be integrated without overlapping features in their respective 1D 1HNMR spectra 

were identified. A confidence level ranging from 1 to 5, was assigned to each metabolite 
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(Supplementary Material File S1) as described elsewhere 45. Briefly this scale is defined 

as: (1) putatively characterized compound, (2) matched reported 1D spectra, (3) matched 

reported HSQC spectra, (4) matched reported HSQC and HSQC-TOCSY spectra, and (5) 

validated by spiking putative compound into sample. 

Statistical analysis. 

The data were normalized using probabilistic quotient normalization (PQN) and 

range-scaled before multivariate statistical analysis 46, 47. The principal component analysis 

(PCA) scores were calculated using the NIPALS algorithm 48. The partial least squares 

discriminant analysis (PLS-DA) using the SIMPLS algorithm was conducted with a 5-fold 

cross-validation and 30 permutations 49. Goodness of prediction (Q2) for the PLS-DA 

model was obtained and the model was  used to identify features that differed between the 

wild-type and ridA mutant for both endogenous and exogenous datasets 50. Univariate 

statistics were performed using PQN-normalized 1D 1H NMR data for metabolites whose 

features could be integrated without the presence of overlapping features.  Student’s t-test 

with a Benjamini-Hochberg false discovery rate (FDR)-correction 51 was used to determine 

metabolites that differed significantly (q-value < 0.1) between wild-type and ridA mutant 

samples. All raw and processed data are available on the Metabolomics Workbench 

(www.metabolomicsworkbench.org), along with detailed experimental NMR and 

statistical analysis methods. 
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CHAPTER 5 

CONCLUSION AND FUTURE DIRECTIONS 

Metabolite identification and QA/QC in untargeted metabolomics are critical 

aspects to generate reproducible and confident outputs as the unknown chemical space yet 

to be determined can significantly impact in our understanding of metabolism and/or 

translational applications to human health. Current challenges derive from a combination 

of instrumentation and methodological limitations. Thus, the presented work increments 

the tools necessary to address these challenges and improve metabolomics outputs: (i) the 

development of materials capable of integrating data collected from multiple studies, 

analytical instruments, and laboratories, (ii) novel experimental designs that facilitate 

metabolite identification and (iii) the integration of metabolomics with biochemistry and 

genetic approaches that increase our understanding of metabolism.  

A PERSPECTIVE ON IBAT APPLICATIONS 

Any material can be made into a RM with IBAT.1 The method is simple but requires 

some logistic organization. A simple spreadsheet can be used to track and record the IBAT 

process, but this requires direct user input and becomes difficult to manage or query and 

has no integration with collected analytical data. A software or automated system that can 

calculate and inform which aliquots and how many are to be combined for the next iteration 

based on the variance of each individual batch would be a significant development. 

Furthermore, historical individual batches analytical data can be used to define quality 
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criteria for acceptance into the IBAT process. This system together with a record of 

metadata associated with each batch can create a multivariate quality control system, 

similar to that used in pharmaceutical industry. These integrated data become a rich 

resource to answer questions of metabolite stability, process deviations, non-conformant 

batches, IBAT RM variance trends over the course of time and allows to better characterize 

the IBAT generated RM and its respective metabolites. 

The community has noted the utility of RMs through numerous publications,1-7 

think-tanks8 and workshops, and is a prominent feature of this dissertation. However, a 

reference material for a model organism provides additional opportunities beyond the 

commonly discussed large-scale studies, reproducibility or inter-laboratory comparisons.  

Current model organism repositories house and distribute genetic references 

strains, natural strains and mutants that are extremely well-characterized with defined 

phenotypic traits and growth conditions, population dynamics and fully sequenced genome 

sequences (specially for the genetic references). Yet, despite the well-established 

infrastructures they do not offer metabolomics RMs which are much in need. The variance 

reduction properties of IBAT rely on regularly spaced, small batches and does not need 

specialized equipment or large-scale storage, which would be ideal for genetic repositories 

and in line with their routine daily operations. A common source of material has the 

potential to consolidate metabolite identifications efforts. Because of the incredibly diverse 

composition of an organism’s metabolome, it is impossible to capture its entirety with a 

single extraction method or a single instrument. Thus, various methods have been 

developed to measure subsets of the metabolome. These efforts are often specific to a set 

method and a particular sample, grown under specific conditions which are difficult to 
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generalize and consolidate. However, a RM designed for the community would consolidate 

the metabolite identification efforts over the course of time. Additionally, open access data 

repositories can house these data they are reused, easily validated and incremented by 

different analytical methodologies, reducing redundant community efforts and accelerate 

the systematic metabolome annotation of a single organism. 

 

METABOLOMICS FRACTION LIBRARY FUTURE DIRECTIONS 

 Metabolite identification in complex biological matrices is difficult due to a 

multitude of reasons, particularly for untargeted metabolomics that strongly rely on 

databases of chemical reference standards. The quality of the collected spectra is a product 

of numerous variables, from the type of matrix, pH and the physicochemical properties of 

the metabolite to the type of instrument and parameters used, which then influence the 

accuracy of the database matching. The work in chapter 3 aims to improve and assess this 

process.  

The fractionation reduces spectral overlap and concentrates metabolites which 

helps to generate better quality data but most importantly it creates a common sample that 

can be measured using different complementary analytical techniques, specifically LC-MS 

and NMR. These provide orthogonal information that allows to annotate features from 

metabolomics studies confidently, but other analytical techniques are also possible. Further 

chromatographic separation can additionally separate or even isolate metabolites of 

interest. Fourier transform ion cyclotron resonance mass spectrometry (FTICR) is also a 

particularly appealing complementary measurement due to its high mass accuracy. Direct 

infusion FTICR of simplified fractions alleviates the need for hyphenated chromatography 
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to simplify spectra, often an issue in these experiments. The high mass accuracy reduces 

the number of possible chemical structures from a single formula. This becomes 

particularly beneficial when integrating NMR and MS together for the structural 

elucidation of unknown molecules.  

The SUMMIT9 approach developed by the Bruschweiler lab takes advantage of this 

synergy and predicts NMR spectra from molecular formulas that are matched against 

chemical standards. The application of this approach to the metabolite fraction library has 

the potential to create a semi-automated pipeline for unknown metabolite identification. 

Chemical formulas derived from the fraction LC-MS data can generate candidate chemical 

structures, but the number of candidate structures can become considerably high. 

Additional methods like, FTICR and collisional cross section measurements from ion 

mobility experiments, can further reduce this number so that it is computationally feasible 

to predict NMR spectra which are then matched against the NMR fraction data.  

Computational methods to predict analytical measurements are increasingly 

improving their accuracy and reducing the computational burden needed for these complex 

calculations. Our collaborators have recently demonstrated a reduction in the overall 

computational time by 2 orders of magnitude for NMR chemical shifts of a set of 

molecules, while still producing good agreement with experimental observations.10 These 

computational chemistry tools are undoubtedly an asset for metabolomics workflows, 

especially for metabolite identification and increasing the scope of current databases. This 

approach was the motivation for NIH funded project “Genetics and quantum tools for 

unknown metabolite identification” that funded the work in chapters 2 and 3. The work 
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demonstrated in these chapters are the building blocks for this unknown metabolite 

identification pipeline which is still ongoing and soon to be published.  

FINAL REMARKS OF METABOLOMIC AND BIOCHEMICAL/GENETIC 

APPROACHES 

The large repertoire of mutant model organisms that can be purchased and/or 

created facilitates the design of experiments that inform targeted nodes along a pathway of 

interest. Together with carefully planned biochemical experiments and metabolomics 

measurements, relevant metabolites previously not thought to be connected can be 

associated with a specific gene, particular pathway and/or enzyme of interest.11  

A metabolite fraction library is useful for identifying metabolites, but it is also a 

powerful resource with applications beyond metabolite identification. Because NMR is a 

nondestructive technique, it means that concentrated and simplified extracts of a complex 

biological matrix can be reused and reanalyzed under different circumstances. One of the 

exciting applications discussed in our lab is the potential for this material to be used as 

screening panels to determine protein-metabolite targets. Pharmaceutical drug discovery 

methods routinely use a number of available NMR methods that can effectively determine 

these interactions and respective dissociation constants,12, 13 providing exciting insight into 

metabolite roles in biochemical reactions.  

Similar to natural products chemistry activity assays, these extracts can also be used 

to carryout additional experiments to derive loss of function mechanisms and/or phenotype 

rescue experiments, similar to the work illustrated in chapter 4. The metabolomics data 

provide a global perspective into the metabolic network. This network can adapt to both 
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internal and external disruptions generating potential new targets for additional 

experiments. The metabolite rich fractions can then help confirm these targets and validate 

mechanisms, but also provide novel ways to identify metabolic modulators that can 

circumvent disruptions.14  

These three projects have metabolomics as a common link and more importantly 

inform and improve each method. These have been paradigm shifting approaches 

embraced by the Edison lab and will surely continue to improve and evolve generating 

valuable insights into metabolism. 
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APPENDIX A 

SUPPLEMENTARY INFORMATION FOR CHAPTER 2 

SUPPLEMENTARY METHODS 

Bioreactor production of Escherichia coli: 

Cultures of E. coli were started from frozen stocks kept at -80 oC. A streak plate with LB 

media and agar (LB broth, Miller – Novagen, agar, Bacto BD) was made under standard 

aseptic conditions and incubated for 32 hours at 37 oC. A single colony was transferred to 

20 mL of Terrific Broth (TB - Fisher BioReagents) and placed in a shaker incubator for 24 

hours at 37 oC and 250 rpm. A contamination control LB plate was then streaked under 

aseptic conditions and incubated overnight. This liquid culture was the starting inoculum 

for a bioreactor (Biostat A, Sartorius) containing 2 L of TB with 30 mL of glycerol (EMD 

millipore). The bioreactor was under automated control of temperature, dissolved oxygen, 

pH (37 oC, 30% and 7.5 respectively) and constant mixing (500 rpm). After 42 hours 

growth an OD600 measurement was taken, and the bioreactor harvested into 500 mL 

centrifuge bottles and centrifuged for 30 min at 10,000 x G. The supernatant was discarded 

and the pellet process repeated two more times with deionized water and finally the 

centrifuged pellets were combined, weighed and reconstituted in M9 minimal media1 to a 

concentration of 0.5 g/mL. Aliquots from this material were then made so that each tube 

contains 1 g (wet weight) of material by an automated pipetting robot (Andrew Robot – 

Andrew Alliance), with continuous mixing, flash frozen in liquid Nitrogen and stored at -
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80 oC. Making a stable food source for C. elegans growth: Individual batches of E. coli 

were produced as described above. Six aliquots from 10 different individual bacterial 

batches were thawed on ice and pooled together as substrate for one C. elegans batch. For 

optimal C. elegans growth, a total of 60 bacterial aliquots were required to achieve a ratio 

of 3% (w/v)2 of substrate to volume of media in a 2 L bioreactor (Biostat, Sartorius). IBAT 

was used to create two additional batches of food, each containing 60 aliquots from 10 

batches where, for each iteration, aliquots from one individual batch were removed, and 

new individual batch aliquots added. Growing C. elegans in bioreactors: Similar to the E. 

coli bioreactor process a starting inoculum of C. elegans was first made. This was a 

population of worms collected from a large scale culture plate as described previously.3 

Approximately 2 million worms were washed with M9 media and added to the bioreactor 

(Biostat A, Sartorius) containing 2 L of K-media1 and the stable food source created above. 

The Bioreactor was under automated control of temperature, dissolved oxygen, pH (20 oC, 

10% and 7 respectively) and constant mixing (150 rpm). Two daily OD600 measurements 

were taken to monitor the amount of available food and the nematodes counted under the 

microscope to account for overcrowding. The bioreactor was harvested when food was 

below 0.5% w/v (calculated from OD600 measurements) and/or nematode density was 

above 30,000 individuals/mL. The harvested culture was then divided into 500 mL 

centrifuge bottles and centrifuged for 20 min at 5,000 x G and 4 oC. The supernatant 

discarded, and the wash process repeated two more times with M9 media and a final 

reconstitution with deionized water. The contents of each bottle were combined, and three 

1 mL aliquots taken to count the number of nematodes3. The material was then aliquoted 

into 15 mL centrifuge tubes by an automated pipetting robot (Andrew Robot – Andrew 
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Alliance), with continuous mixing, each containing approximately 2,000,000 nematodes, 

flash frozen in liquid Nitrogen and stored at -80 oC.  

NMR data acquisition and processing: 

One-dimensional 1H NMR spectra were acquired using moesypr1d with pre-saturation 

during relaxation delay and mixing time on an Avance III HD 600 MHz Bruker NMR 

spectrometer equipped with a TCI cryoprobe and a Bruker SampleJet autosampler cooled 

to 5.6 °C. During acquisition, 32,768 complex datapoints were collected for the FID, using 

64 scans with 4 additional dummy scans. The spectral width was 20 ppm. A Fourier 

transform (FT), a polynomial baseline correction of order 2, a 0.5 Hz line broadening and 

phase correction were applied to each spectrum using NMRPipe processing software.4 

Two-dimensional 1H-1H total correlation spectroscopy (TOCSY- dipsi2esfbgpph), 1H-13C 

heteronuclear single quantum correlation (HSQC - hsqcedetgpsisp2.3) and 1H-13C HSQC–

total correlation spectroscopy (HSQC–TOCSY - hsqcdietgpsisp.2) experiments were 

collected on both C. elegans and E. coli samples for metabolite identification. During 

acquisition, all three experiments were collected for 32 scans and an additional 16 dummy 

scans, with 512 and 1,024 datapoints recorded on the direct and indirect dimensions 

respectively and, a spectral width of 200 ppm for 13C and 12 ppm for 1H. A 90ms mixing 

time was used for both HSQC-TOCSY and TOCSY experiments. All spectral processing 

was carried out using NMRPipe 5. Compound identification/database matching: All two-

dimensional experiments were used for spectral matching against the BBiorefcode library 

using COLMARm6 and a chemical shift cutoff of 0.03 and 0.3 ppm for 1H and 13C 

respectively. Metabolites that could be quantified without overlap and were consistent 
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between replicates in their respective 1D 1HNMR spectra were selected to be identified. 

From the E. coli samples 19 features were annotated to metabolites and 26 in the C. elegans 

samples. A confidence level ranging from 1 to 5 (Supplementary Table 2.1), was assigned 

to each metabolite as described elsewhere 7. Briefly this scale is defined as: (1) putatively 

characterized compound, (2) matched to reported 1D spectra, (3) matched to reported 

HSQC spectra, (4) matched to reported HSQC and HSQC- spectra, and (5) validated by 

spiking putative compound into sample. 

Supplementary Table 2.1a: Table of metabolites isolated features that were common to all 
for E. coli samples. 
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Supplementary Table 2.1b: Table of metabolites isolated features that were common to all 
for C. elegans samples. 
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Supplementary Figure 2.1: General metabolomics workflow from sample generation to 
instrument analysis. Non-exhaustive examples of pre-analytical technical variance at each 
step of the metabolomics process. 
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APPENDIX B 

SUPLEMENTAL MATERIAL FOR CHAPTER 3 

 

SUPPLEMENTAL METHODS  

Chemical and reagents 

All reagents were LC/MS grade. Water (H2O), methanol (MeOH), isopropanol (IPA), and 

acetonitrile (ACN) were purchased from Fisher Scientific (OptimaTM). Formic acid was 

purchased from Honeywell Fluka Chemicals. Ammonium formate and ammonium acetate 

(Optima® LC/MS) were purchased from Fisher Chemical. Reagents were stored in 5% 

hydrochloric acid (HCl) washed and solvent rinsed glassware. Deuterated water D2O, D, 

99.9%; and DSS sodium 2,2-dimethyl-2-silapentane-5-sulfonate, D6, 98% were purchased 

from Cambridge Isotope Laboratories). 

 

C. elegans reference material preparation 

To generate the reference material used for fractionation 10 vials each containing 

approximately 200,000 frozen and lyophilized nematodes (grown and stored as described 

elsewhere1), were selected according to the IBAT method.2 The material from these vials 

was combined, mixed with a spatula and aliquoted into five separate 15 mL glass vials.  

 

 

 



169 

Metabolite extraction 

To each 15mL glass vial 400 μL of 1 mm zirconia beads were added and homogenized at 

1800 oscillations/min for 90 seconds in a FastPrep-96 (MPbio) homogenizer. This step was 

repeated three times with a 1min resting period in dry ice to prevent overheating. After 

homogenized, 3 mL of 100% IPA chilled to -20°C was added to each vial in three 

increments of 1000 μL and vortex mixed for approximately 30s after each addition. The 

vials were left at room temperature for 30 min prior to a 12h extraction period at -20°C. 

The vials were then centrifuged at 20,800 x G and 4°C for 30 minutes. The supernatant 

was transferred to a single tube, labelled “non-polar extract” and  placed in a Centrivap 

(Labconco) at room temperature until completely dry together with the five pellet-

containing vials. The dry non-polar supernatant was stored at -80°C and 3 mL of cold 80:20 

MeOH:H2O were added to each of the remaining five vials for polar analyte extraction. 

This polar fraction was vortex mixed for 30 minutes at 4°C. The tubes were then 

centrifuged at 20,800 x G and 4°C for 30 minutes and the supernatant was transferred to a 

single tube. This polar fraction was placed in a Centrivap at room temperature until dry and 

stored at -80°C. 

Semi-preparative HILIC HPLC fractionation 

The polar extract was reconstituted in a total of 800 µL of 50/50 MeOH/H2O. The vial was 

vortex mixed for 10 min and centrifuged at 20,800 x G and 4°C for 30 minutes. The 

supernatant was transferred into a high recovery LC-MS vial which was then used for a 

total of six injections into an Agilent 1260 infinity for the fractionation process. Three 50 

µL injections were carried out to equilibrate the column pre fractionation. An XBridge 
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BEH Amide OBD Prep Column, 130Å, 5 µm, 10 mm X 250 mm, was used with a flow 

rate of 3.5mL/min to separate the analytes and collect fractions at 30 second intervals for 

a total of 100 fractions after DAD detection using a Foxy Jr. fraction collector. The mobile 

phase composition consisted of Solvent A, 95% ACN and 5% H2O and Solvent B 80% 

ACN and 20% H2O using the following linear gradient program:  0.0-2 min 100% A; 2-5 

min 96% A; 5-10 min 95% A; 10-15 min 85% A; 15-18 75% A; 18-21 min 65% A; 21-26 

min 55% A; 26-32 min 53% A and 32-38 min 35% A for a total run oof 45 min plus five 

minutes of solvent switch to starting conditions. No fractions were collected during an 

additional equilibrium of 5 min at 100% A between injections.  

The non-polar fractionation was also carried out, but the data was not used in this 

manuscript  and not described further. After fractionation, four 100 µL aliquots from each 

fraction and each chromatography were transferred into LC-MS vials. These vials and the 

remaining fraction tubes containing approximately 10 mL for NMR analysis were placed 

in a Centrivap at room temperature until dry and stored at -80°C. 

 

One-dimensional NMR analysis 

The HPLC polar elutants were reconstituted in 70 µL of D2O, containing 0.11 mM DSS as 

an internal standard and transferred into 1.7 mm NMR tubes (SampleJet, Bruker). These 

were then loaded onto a SampleJet automated sample changer and kept at 6°C. One-

dimensional (1D) 1H NMR spectra for each fraction and blanks were collected using the 

pulse sequence noesypr1d on a Bruker NEO 800MHz equipped with a 1.7mm TCI 

cryoprobe. During acquisition, 32,768 complex data points were collected using 128 scans 

with four additional dummy scans. The spectral width was 20 ppm. In addition, 
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immediately after each 1D acquisition, a two-dimensional (2D) J-resolved spectrum was 

collected using the Bruker pulse program jresgpprqf. A total of  8,192 and 40 points were 

collected using four scans, 16 dummy scans, and spectral widths of 20 and 0.13 ppm. 

Following data acquisition, the 1D data were Fourier transformed using NMRPipe3. 

Further processing consisted of an exponential line broadening of 2 Hz, automatic zero fill 

baseline and manual phase correction.  

Two-dimensional NMR analysis 

Two-dimensional 1H-1H total correlation spectroscopy (TOCSY; dipsi2esfbgpph), 1H-13C 

heteronuclear single quantum correlation (HSQC; hsqcedetgpsisp2.3) and 1H-13C HSQC-

total correlation spectroscopy (HSQC-TOCSY; hsqcdietgpsisp.2), experiments were 

collected on select fractions. During acquisition, all three experiments were collected for 

128 scans and an additional 16 dummy scans, with 512 and 1,024 data points recorded on 

the direct and indirect dimensions, respectively, and a spectral width of 200 ppm for 13C 

and 12 ppm for 1H. A 90-ms mixing time was used for both HSQC-TOCSY and TOCSY 

experiments. All spectral processing was carried out using NMRpipe3. 

Database matching and 2D spectral annotation 

The above three 2D data were used for spectral matching against the COLMARm4 database 

using matching chemical shift cutoffs of 0.04 and 0.3 ppm for 1H and 13C, respectively. In 

addition, HSQC only and TOCSY only queries were carried out using the same threshold 

criteria. Spectral annotation and visualization was carried out using a combination of 

MNova (version 14.2.0) and NMR View J5. 
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Hydrophilic Interactive Liquid Chromatography (HILIC) methods 

Dried polar extracts were resuspended in 200 μL of 80/20 ACN/H2O for LC-MS/MS. Polar 

extracts were separated using a Vanquish (ThermoFisher Scientific), fitted with a Waters 

Acquity UPLC BEH Amide column (2.1 x 150 mm, 1.7 µm particle size). The compounds 

were eluted with the following gradient: 80:20 H2O:ACN with 10 mM ammonium formate 

and 0.1% formic acid (mobile phase A) and 100% ACN with 0.1% formic acid (mobile 

phase B) using the following gradient program: -5.0 min 95% B; 0.0-0.5 min 95% B; 8.0-

9.4 min 40% B; 9.5-11.0 min 95% B. A curve 5 value was set for -5.0 and 0.0 minutes, a 

curve 6 at 0.5 min, curve 7 at 8.0 min, and a curve 6 for the remainder of the gradient. The 

flow rate was set at 0.400 mL min-1. The column temperature was set to 40°C, and the 

injection volume was 2 µL. 

 

HILIC Mass spectrometer settings and methods 

A Q Exactive HF (ThermoFisher Scientific) equipped with a HESI ion source was used for 

all mass spectrometry data collection. The mass spectrometer was run in full MS mode at 

a resolution of 240,000 (at m/z 200) for the duration of the chromatographic gradient. An 

automatic gain control (AGC) target of 1e5 was set with a maximum injection time of 150 

ms. A tune file with the following source conditions was used for positive and negative 

mode: spray voltage (+) 3000, spray volage (-) 2800, capillary temperature: 275°C, sheath 

gas: 50, aux gas: 13, spare gas: 4.0, max spray current: 100, probe heater temperature: 

425.0°C, and S-Lens RF level: 50. A m/z scan 70-1050 was used. Calibration was 

conducted using ThermoFisher Pierce™ Negative Ion Calibration Solution and Pierce™ 

LTQ Velos ESI Positive Ion Calibration Solution prior to the collection of negative and 
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positive mode data, respectively.  A stepped normalized collision energy [(N)CE] was used 

for MS2 data collection. MS2 resolution was set to 30,000 at m/z 200. An AGC target of 

5e4 was set with a maximum injection time of 50 ms and a minimum AGC target of 8.00e3. 

A loop count of 5 was set with an isolation window of 1.0 m/z. (N)CE was set to 10, 30, 

and 50. Dynamic exclusion was set to 10 s. 

 

SLAW 

LC-MS/MS data was processed using SLAW (https://github.com/zamboni-lab/SLAW).6 

SLAW is a scalable and self-optimizing processing workflow for untargeted LC-MS. Meta-

analysis data was processed using 12 pooled samples of the C. elegans laboratory reference 

strain PD1074 for optimization of the ADAP7 peak picking algorithm and alignment. A 

filtering threshold of 1.0 was set for the fraction of detection in QC samples for a feature 

to be kept (frac_qc). This ensured features were stable and present in all pooled PD1074 

QCs. The optimized parameter file was then used to process the fraction library dataset.  

Gap filling (output_format ms1) was turned off (value: data matrix) in the fraction library 

due to the nature of the fractionation process and expectation for missing values for features 

across many individual fractions. Data was blank filtered using a 10x sample-to-blank ratio 

using MATLAB where the intensity of each feature was retained if the feature had an 

intensity 10 times greater than the average intensity across all solvent and reconstitution 

blanks and the first/last five fractions in at least one sample.  
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metabCombiner 

Feature tables from the meta-analysis and C. elegans fractionation were combined using 

metabCombiner.8 

(https://bioconductor.org/packages/release/bioc/html/metabCombiner.html) 

Each blank filtered and deconvoluted data matrix containing a column with a unique 

identifier served as inputs. Scoring metrics parameters are used to determine the weight of 

m/z (A), RT (B), and peak intensity (C) between the two data sets. Scoring parameters were 

set to A = 70, B = 15, and C = 0 for analysis.  

GNPS 

A molecular network was created with the Feature-Based Molecular Networking (FBMN) 

workflow9 on GNPS (https://gnps.ucsd.edu).10 The mass spectrometry data were first 

processed with SLAW6 and the results were exported for FBMN analysis. An .mgf file, 

MS2 quantification table containing mass-to-charge (m/z), retention time (RT), and peak 

height (PH) across fractions, and a meta-data table relating file names to fraction numbers 

were used as inputs. MATLAB was used to filter the quantification table. Feature PHs were 

set to zero if the intensity of that feature was less than 1/5th the maximum peak intensity. 

This was used to remove noise across fractions and to allow for visualization of the 

presence of features across fractions in Cytoscape.11 The data was filtered by removing all 

MS2 fragment ions within +/- 17 Da of the precursor m/z. MS2 spectra were window 

filtered by choosing only the top 6 fragment ions in the +/- 50 Da window throughout the 

spectrum. The precursor ion mass tolerance was set to 0.005 Da and the MS2 fragment ion 

tolerance to 0.005 Da. A molecular network was then created where edges were filtered to 
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have a cosine score above 0.7 and more than 1 matched peaks. Further, edges between two 

nodes were kept in the network if and only if each of the nodes appeared in each others 

respective top 10 most similar nodes. Finally, the maximum size of a molecular family was 

set to 100, and the lowest scoring edges were removed from molecular families until the 

molecular family size was below this threshold. The spectra in the network were then 

searched against GNPS spectral libraries.10, 12 The library spectra were filtered in the same 

manner as the input data. All matches kept between network spectra and library spectra 

were required to have a score above 0.7 and at least 1 matched peak. The DEREPLICATOR 

was used to annotate MS2 spectra.13 The molecular networks were visualized using 

Cytoscape software.11 Pie charts were used for visualization, using a modulated color 

scheme with fraction numbers chosen as the displayed attribute.  

 

SIRIUS 

SIRIUS 4.0 was used for LC-MS/MS molecular formula identification (SIRIUS14), 

network-based improvement of SIRIUS molecular formula rankings (ZODIAC), 

metabolite annotation (CSI:FingerID15), and compound class prediction (CANOPUS16, 17). 

The .mgf output from SLAW was used to input all MS1 and MS2 data. Within the graphical 

user interface (GUI) the Orbitrap was selected as the instrument type with a MS2 MassDev 

(ppm) set to five. A total of 10 candidates with one candidate per ion was used for SIRIUS, 

with [M+H]+, [M+K]+, and [M+Na]+ as possible ionizations. The default elements 

allowed in the molecular formula were used. Default values for ZODIAC18 were used for 

analysis, and CSI:FingerID was set to search all included databases using [M+H]+ as the 

fallback adduct. No input parameters are required for CANOPUS.  
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Fraction analysis 

Using a toolbox developed in-house (MATLAB MathWorks, R2019a), the polar fractions 

spectra were referenced at 0.00 ppm using DSS. Spectral correlation analysis STOCSY 19 

was used to determine features highly correlated to the same driver peak and native Matlab 

covariance function was used to calculate the covariance matrix. Data visualization and 

data handling tools and functions are available from the Edison Lab toolbox at 

https://github.com/artedison/Edison_Lab_Shared_Metabolomics_UGA.  

Colmar unique HMDB and BMRB identifiers were converted into InChIKeys using the 

Chemical Translation Service.20  

Using MATLAB, individual matrices were matched by planar InChIKeys and fraction 

number for SIRIUS, GNPS and COLMAR outputs. Planar InChIKeys consist of the first 

14 characters of an InChIKey. These solely encode the molecular connectivity of each 

InChIKey. A consensus chemical name list was obtained using the “Query Chemical 

Identifier Resolver” from the “Webchem” R package. 
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Supplemental Figure S4.1.1H NMR spectra for endogenous samples. (A) 
Endometabolome overlaid spectra of wild-type samples (n = 10, blue) and ridA mutant 
samples (n = 10, red) after growth in minimal medium. Expansions from 0 to 4.5 ppm (B) 
and 5 to 9.5 ppm (C) of the mean spectra obtained from wild-type and ridA endogenous 
samples following growth in minimal medium containing isoleucine and minimal medium 
containing glycine are also provided. The water region was removed and not displayed (4.7 
to 4.8 ppm). Annotations: 1, CoA; 2, valine; 3, threonine; 4, alanine; 5, putrescine; 6, acetic 
acid; 7, glutamic acid; 8, ethanolamine; 9, N-acetyl-putrescine; 10, uracil; 11, 
phenylalanine; 12, formic acid. 
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Supplemental Figure. S4.2. 1H NMR spectra for exogenous samples. (A) Exometabolome 
overlaid spectra of wild-type samples (n = 10, blue) and ridA mutant samples (n = 10, red), 
grown in minimal medium. Expansions from 0 to 4.5 ppm (B) and 5 to 9.5 ppm (C) of the 
mean spectra obtained from wild-type and ridA exogenous samples following growth in 
minimal medium containing isoleucine and minimal medium containing glycine are also 
provided. The residual water resonance between 5.1 and 5.7 ppm (due to proton exchange 
with large amounts of formic acid) was removed during processing. Annotations: 1, 
isopropylmalic acid; 2, valine; 3, lactic acid; 4, putrescine; 5, acetic acid; 6, acetyl 
phosphate; 7, uracil; 8, formic acid. 
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Supplemental figure S4.3. Spectral distortions for samples grown with isoleucine at the 
uracil region. (A) Exometabolome overlaid spectra expansion from 5.76 ppm to 7.7 ppm 
of wild-type (n = 10, blue) and ridA mutant (n = 10, orange) samples following growth in 
minimal medium containing isoleucine. (B) Expansion from 7.58 to 7.66 ppm illustrates 
the uracil peak used for integration. Distortions of the doublet peak shape are noted for a 
portion of the wild-type samples. In addition, alignment artifacts create peak shape changes 
for a portion of the ridA samples. These two factors contribute to the area under the curve 
calculation. 
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Supplemental Table. S4.1. Endogenous metabolites identified by 1H-NMR in pellet 

samples with confidence levels. 

 

Supplemental Table. S4.2. Endogenous metabolites identified by 1H-NMR in pellet 

samples with confidence levels. 
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Supplemental Table S4.3. VIP scores for endogenous PLS-da component 1. 
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Cont. Supplemental Table S4.3. VIP scores for endogenous PLS-da component 1. 
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Cont. Supplemental Table S4.3. VIP scores for endogenous PLS-da component 1. 
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Supplemental Table S4.3. VIP scores for endogenous PLS-da component 1. 
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Supplemental Table S4.4. VIP scores for exogenous PLS-DA plot component 1 
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Cont. Supplemental Table S4.4. VIP scores for exogenous PLS-DA plot component 1 
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Cont. Supplemental Table S4.4. VIP scores for exogenous PLS-DA plot component 1 
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Supplemental Table S4.5. Endogenous metabolites integration values and descriptive 

statistics. 

Supplemental Table S4.6. Exogenous metabolites integration values and descriptive 

statistics. 


