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C H A P T E R 1

I N T R O D U C T I O N

This dissertation contains research topics related to virus infection control

and prevention. Specifically, with data from norovirus trials and influenza

vaccine population studies, the natural infection profiles, within host virus

dynamics, the impact of inoculum dose for norovirus infections were in-

vestigated; the immunogenicity of high-dose and standard-dose influenza

vaccine were studied and compared for homologous and heterologous re-

sponses.
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1.1 Summary of Objectives

The primary goal of this dissertation is to explore associations between

amount of virus or antigen exposure with disease and immunological re-

sponses. Research focuses were given to the pathogens of norovirus and

influenza. Totally, there were three questions. First, what is the impact of

norovirus inoculum dose on infection outcomes. Second, how homologous

and heterologous responses of Fluzone high-dose vaccine different from

the standard-dose vaccine. Third, the comparison of associated antibody

decay half-life time between real infections and a novel bivalent norovirus

vaccine candidate.

1.1.1 Chapter 2

Norovirus leads to millions of hospitalizations and hundreds of thousands

of deaths globally (Bartsch et al., 2016; Lozano et al., 2012; Patel et al.,

2008). A better understanding of the role dose might have on important

quantities such as shedding and symptoms can provide useful information

for better outbreak control.

In general, the amount of virus an individual is exposed to plays an

important role in the probability of infection with norovirus. However, the

possible impact of dose on the course of an infection, given that infection

occurred, is relatively unclear.

With data from a human norovirus challenge study, we performed

a secondary analysis using Bayesian mixed effects models. We found

higher levels of norovirus infection dose were associated with more rapid

shedding and symptom onset and increased symptom severity.
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1.1.2 Chapter 3

Norovirus is a public health threat. Its high transmissibility (Atmar et al.,

2008; Atmar et al., 2014) along with lack of norovirus-specific treatments

and the vaccine is contributing its heavy health burden on populations

(Atmar et al., 2011; Bitler et al., 2013; Carling et al., 2009; Isakbaeva et

al., 2005; Johnston et al., 2007; Scallan et al., 2011; Wikswo et al., 2011).

Infections may provide immunity for future infections (Cannon et al.,

2019), and vaccines are possible to mimic that (Bhurani et al., 2018). With

data from a human norovirus challenge study and a vaccine candidate

study, we performed a secondary analysis of kinetics of serum antibodies.
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1.1.3 Chapter 4

Influenza vaccines are widely used to protect humans from influenza infec-

tions. However, the average effectiveness is only around 50% (Centers for

Disease Control and Prevention, 2021).

The high-dose (HD) Fluzone influenza vaccine is provided to the el-

derly population because the standard-dose (SD) version had low immuno-

genicity and protective effect. Although increased dose may lead to im-

proved immunogenicity (Couch et al., 2007; Hilleman, 1958), the role of

vaccine dose toward induction of heterologous immunity (against other

strains) is not well understood.

With data from human volunteers vaccinated with either the SD or HD

Fluzone vaccine during influenza seasons spanning the years 2014-2018,

we performed a secondary analysis using Bayesian hierarchical models.

We found that the HD vaccine led to overall improvement for both ho-

mologous and heterologous immunity. Some exceptions were noted for

heterologous immunity, where the increased dose led to reduced immuno-

genicity.
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2.1 Abstract

Background The amount of virus an individual is exposed to plays an

important role in the probability of infection with norovirus. However, the

possible impact of dose on the course of an infection, given that infection

occurred, is less understood. A better understanding of the role dose might

have on important quantities such as shedding and symptoms can provide

useful information for better outbreak control.

Methods We performed a secondary analysis of data from a human

norovirus challenge study in which individuals were infected with different

doses of virus. Using Bayesian mixed effects models, we report posterior

means and 89% equal-tailed credible intervals of the associations between

dose and several shedding and infection severity outcomes.

Results As the dose increased from 4.8 to 4800 reverse transcription-

polymerase chain reaction (RT-PCR) units, average fecal virus shedding

onset time decreased from 1.4 to 0.8 days and day of virus peak decreased

from 2.3 to 1.5 days. In contrast, duration and total amount of virus shed-

ding did not show a noticeable association with dose. The incubation

period decreased from 1.5 to 0.8 days as dose increased. Two different

symptom scores (modified Modified Vesikari and comprehensive score)

increased from 4.1 and 9.4 in the low dose group, to 5.1 and 17.5 in the

high dose group, respectively.

Conclusions Higher levels of norovirus infection dose were associated

with more rapid shedding and symptom onset and increased symptom

severity. However, there was little association between dose and duration

or amount of virus shedding in either feces or vomit.
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2.2 Introduction

Every year, norovirus leads to millions of hospitalizations and hundreds

of thousands of deaths globally (Bartsch et al., 2016; Lozano et al., 2012;

Patel et al., 2008). In the USA, norovirus is a predominant cause of food-

borne disease responsible for more than 20 million gastroenteritis cases

annually (Scallan et al., 2011). Norovirus is highly infectious (Atmar et al.,

2008; Atmar et al., 2014). Norovirus-specific treatments are unavailable to

patients, and the vaccine for vulnerable populations is developing (Atmar

et al., 2011; Scallan et al., 2011). Aggressive infection-control measures

are needed to reduce disease burden (Bitler et al., 2013; Carling et al.,

2009; Isakbaeva et al., 2005; Johnston et al., 2007; Wikswo et al., 2011).

As is generally the case for any infectious agent, an increase in norovirus

exposure dose tends to increase the infection risk (P. F. Teunis et al., 2008).

Therefore, infection control measures that reduce virus exposure levels can

decrease infection risk. Less is known about the possible impact of dose

on disease outcome, given that infection has occurred. Some evidence

suggests that dose is associated with increased illness (Atmar et al., 2008;

Atmar et al., 2014). To better understand the impact of dose on virus shed-

ding and symptom severity, we performed a secondary analysis of data

from a human norovirus challenge study (Atmar et al., 2011). We found

that while severity of symptoms increases with dose, and onset of shedding

and disease is more rapid, the total amount of shedding does not change

noticeably.
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2.3 Methods

The following sections provide brief descriptions of our methodology. Full

modeling and analysis details, including all data and code needed to repro-

duce our results, are provided in the supplement.

2.3.1 Data

The data came from a human challenge study, which has been described

in detail previously (Ajami et al., 2012; Atmar et al., 2008; Atmar et al.,

2014; Czakó et al., 2012; Kavanagh et al., 2011). In the study, investigators

randomly gave either placebo or norovirus (GI.1 NV) at 4 different doses

(0.48, 4.8, 48, or 4800 RT-PCR units) to 57 healthy individuals (18 to

50 years of age). A total of 21 individuals were infected. One infected

individual was lost to follow-up and thus excluded from our analysis. Only

a single individual in the 0.48 unit dose group became infected. We thus

removed that dose from our main analysis (N = 19). We conducted a

sensitivity analysis including this individual, shown in the supplementary

material.

All individuals stayed in the research center for at least four days (96

hours), and were followed up for at least five additional weeks (Atmar et al.,

2008. The maximum follow-up was 91 days. The study collected samples

of feces and vomit and measured clinical symptoms. As appropriate, for

some of our analyses presented below, we focused on the 96 hours during

which individuals were under clinical observation. For other analyses we

included the full time-series, including data collected after individuals

returned home. We state which data are used for each analysis.
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2.3.2 Overall analysis approach and Implementation

Since this is a secondary data analysis, a strict hypothesis-testing frame-

work using p-values is not suitable. We therefore decided to perform all

analyses in a Bayesian framework. We report all our model results as

posterior mean. To minimize the urge of readers to think about statistical

significance or mis-interpret our reported uncertainty levels as confidence

intervals, we report 89% (instead of 95%) equal-tailed credible intervals

(McElreath, 2020). All analyses were completed using R (Team, 2017 and

the brms package (Burkner, 2017).

For all analyses, we used Bayesian mixed effects models. For the re-

sults shown in the main text, we treated the dose as a continuous variable.

In a sensitivity analysis, we repeated the fitting but treated dose as a cate-

gorical variable (supplementary materials). Detailed method descriptions,

sensitivity analyses, and all data and code required to reproduce the results

are provided in the supplementary materials.

2.3.3 Virus shedding

Virus shedding concentration in samples was measured by either an im-

munomagnetic capture (IMC) RT-PCR assay that provided a qualitative

readout (positive or negative) or real-time quantitative RT-PCR (qRT-PCR),

which provided a quantitative readout in genomic equivalent copies (GEC)

(Atmar et al., 2008. These two methods had limits of detection at < 15,000

GEC (termed LOD1 in the following) and < 40,000,000 GEC (termed

LOD2 in the following), respectively. Therefore, the virus shedding con-

centration could be between zero and LOD1 (negative IMC, negative qRT-

PCR), between LOD1 and LOD2 (positive IMC, negative qRT-PCR), or a

quantitative measurement above LOD2 (positive qRT-PCR). Vomit shed-
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ding data was reported similarly, with either a numeric value, or a positive

or negative readout. We accounted for this censored data structure in our

models (see supplement for details).

The total virus contained in each sample was obtained by multiplying

virus concentration with sample weight for feces (i.e., GEC/g * weight of

feces) or sample volume for vomit (i.e., GEC/ml * volume of vomit). We

calculated each participant’s total amount of virus shedding in feces and

vomit by summing up virus shedding in all samples per participant. We

assessed associations between inoculum dose and total amount of virus

shedding using Bayesian linear mixed effects models.

As an alternative approach to the analysis of the total amount of shed-

ding, we modeled the longitudinal time-series of virus concentration in

feces using a previously developed equation that has been shown to de-

scribe trajectories of acute viral infections well (Holder and Beauchemin,

2011; Li and Handel, 2014). We fitted the trajectories with a Bayesian

non-linear mixed effects model. We sampled from the posterior distribu-

tion to obtain predicted trajectories of virus concentration kinetics. From

these time-series, we computed several summary quantities, namely 1)

virus shedding onset (time at which the trajectory crossed the lower limit

of detection, LOD1); 2) time to peak virus shedding; 3) shedding duration,

defined as the total amount of time at which virus concentration was above

LOD1; and 4) total amount of virus shed, defined as area under the virus

concentration curve.

Vomiting episodes were too few to allow for a time-series analysis sim-

ilar to the one we performed for virus shedding in feces (see supplementary

material for vomit event time-series data).
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2.3.4 Symptoms

The study reported the following symptoms: body temperature, malaise,

muscle aches, headache, nausea, chills, anorexia, cramps, unformed or

liquid feces, and vomiting. Clinical symptoms (except feces and vomit)

were reported as none, mild, moderate, or severe, which we coded as a

score of 0 to 3. For feces, we used a scoring of solid = 0, unformed = 1

and liquid = 2. Vomit was reported as absent or present and scored as 0 or

1.

As outcomes of interest, we considered time to onset of symptoms (in-

cubation period) and two versions of overall symptom scores. We defined

onset of symptoms as the time between inoculation and the first reported

symptom of any type. For the first overall symptom score, we used a

modified Vesikari score (MVS) that was previously applied to measure

norovirus severity (Atmar et al., 2011; Bierhoff et al., 2018; Freedman

et al., 2010; Ruuska and Vesikari, 1990; Shim et al., 2016. The MVS is

a clinical outcome measurement that focuses on fever, diarrhea, vomiting,

doctor visit and treatment. For our study setup, doctor visit was not appli-

cable, we thus removed it from the score, as done previously (Atmar et al.,

2011). Since we did not have information on treatment, we also dropped

that component.

For a second score, which we named the comprehensive symptom

score (CSS), we looked at all symptoms that were reported. For each

symptom, we recorded the highest value that was reported per day. These

daily highest scores for each symptom were added up to produce a daily

comprehensive symptom score. Those daily scores were then added again

for a score covering the first four days (96 hours).
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We assessed associations between dose and these symptom-related

outcomes using Bayesian generalized linear mixed effects models. Details

of score computation, scores for each individual, and model details are

given in the supplement.

2.3.5 Sensitivity analyses

We performed two sensitivity analyses. In one analysis, we treated dose

as categorical instead of as continuous. In the other analysis, we included

an additional infected individual, the only individual who became infected

after exposure to a dose of 0.48 RT-PCR units. Results from these sensi-

tivity analyses show the same overall patterns as those shown in the main

text, and are reported in the supplementary material.

12



2.4 Results

2.4.1 Data description

The overall dataset has been described in detail previously (Ajami et al.,

2012; Atmar et al., 2008; Atmar et al., 2014; Czakó et al., 2012; Kavanagh

et al., 2011. Of the 19 infected individuals included in the main analyses, 6,

7, and 6 individuals received norovirus doses of 4.8, 48, and 4800 RT-PCR

units respectively. Age, sex, and ABO blood groups were generally similar

across dose groups (Table 2.1).

Table 2.1: Description of infected individuals

Characteristics Level Dose 4.8 RT-PCR Units Dose 48 RT-PCR Units Dose 4800 RT-PCR Units

Sample size (N) 6 7 6

Age (Median, IQR) 29.50 [25.50, 34.25] 24.00 [23.00, 32.50] 27.50 [23.75, 29.00]

Sex (N, %) Female 2 (33.3) 4 (57.1) 2 (33.3)

Male 4 (66.7) 3 (42.9) 4 (66.7)

Blood Group (N, %) A 2 (33.3) 2 (28.6) 3 (50.0)

O 4 (66.7) 5 (71.4) 3 (50.0)

2.4.2 Assessing association of total virus shedding with

dose

Total virus shedding in either feces or vomit was computed by summing

values of all samples for each individual. Every infected individual shed

virus in feces, but only a few individuals vomited in each dose group.

Neither virus shedding in feces nor vomit showed any noticeable trend

with dose (Figure 2.1).
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Figure 2.1: Virus shedding in feces or vomit. The straight lines and shaded
regions indicate the mean and 89% credible intervals of the fitted Bayesian
model. Points with circle shape are raw data. A) Cumulative virus shed-
ding in feces during the first 96 hours. B) Cumulative virus shedding in
feces during the full observation period (up to 91 days). C) Cumulative
virus shedding in vomit. Only a few of the infected individuals had vomit-
ing episodes, all within the first 96 hours.

2.4.3 Modeling of virus concentration in feces

The longitudinal virus shedding data in feces and fitted model results are

shown in Figure 2.2 for each individual, and the population-level curves

per dose group are shown in Figure 2.3. Figure 2.4 shows the model-

predicted relationship between dose and 1) time at which virus became

detectable, 2) time of virus peak, 3) shedding duration, and 4) total amount

of virus shed. As the dose increased from 4.8 to 4800 RT-PCR units,

average onset time decreased from 1.4 (89%CI, 1.2 - 1.7) to 0.8 (89%CI,

0.6 - 1) days; and the time of virus peak decreased from 2.3 (89%CI, 2

- 2.6) to 1.5 (89%CI, 1.3 - 1.8) days. There was a slight trend toward

increasing duration of shedding, and no noticeable trend for the total virus

load.
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Figure 2.3: Fitted virus concentration (GEC/g) in feces. The lines show
mean of estimations. The colored areas show 89% equal-tailed credible
interval (CI). A) The fitted curves for 90 days. B) The fitted curves for the
first 7 days.
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Figure 2.4: Model predictions for viral kinetics as a function of inoculum
dose. The lines show mean of estimations. The colored areas show 89%
equal-tailed credible interval (CI). A) Shedding onset (time at which virus
load reaches LOD1). B) Time to virus peak shedding. C) Shedding dura-
tion (amount of time where virus load was above LOD1). D) Total virus
load (area under virus concentration curve).

2.4.4 Assessing association of symptoms with dose

An increase in dose led to an earlier symptom onset and higher symptom

scores, which was more noticeable for the comprehensive symptom score

( 2.5). The incubation period decreased from 1.5 (89%CI, 1 - 2.3) to 0.8

(89%CI, 0.5 - 1.2) days as dose increased. Two different symptom scores

(modified Vesikari and comprehensive score) increased from 4.1 (89%CI,

2.7 - 5.8) and 9.4 (89%CI, 6.7 - 12.6) in the 4.8 RT-PCR unit dose group,

to 5.1 (89%CI, 3.1 - 7.4) and 17.5 (89%CI, 12.2 - 23.9) respectively in the

4800 RT-PCR unit dose group.
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Figure 2.5: Association between dose and symptom scores. The lines show
mean of estimations. The colored areas show 89% equal-tailed credible
interval (CI). Points with circle shape are raw data. A) Incubation period,
i.e., time between infection and onset of first symptoms. B) Severity using
the modified Vesikari score. C) Severity using the comprehensive symptom
score.
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2.5 Discussion

Our analyses allowed us to explore the impact of norovirus inoculum dose

on disease outcomes after infection, an important gap in the existing litera-

ture. We found that while increases in dose were associated with a faster

onset and peak of virus shedding in feces (Figure 2.4 A and B), the total

shedding duration and total amount of virus shedding showed little associ-

ation (Figure 2.1 and Figure 2.4 C and D). Our analysis also showed a

general pattern of accelerated onset of symptoms and increased symptom

severity with higher inoculum dose (Figure 2.5).

While our study provides important insights into the role of dose for

norovirus infections, there are clear limitations. First, the sample size is

small. Second, this is a secondary data analysis, which means that the

findings here are exploratory and need further confirmation, ideally using

larger sample sizes. Larger sample sizes might also allow for stratifica-

tion based on host characteristics, which could yield information regarding

possible interactions between host characteristics and dose-outcome rela-

tionships.

If our findings hold, they suggest that inoculum dose has little impact

on shedding (and thus transmission potential). Thus, while infection con-

trol measures that reduce the exposure levels can lower infection risk, those

measures may have little impact on virus shedding after infection occurs.

However, dose seems to be associated with disease severity. This find-

ing might help explain the mechanisms of several recent norovirus vaccine

candidates. These vaccines have shown limited effectiveness at reducing

infection, but do seem to reduce disease outcomes Atmar et al., 2011;

Bernstein et al., 2015. Perhaps protection induced by current vaccine can-
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didates (assumed to be mainly mediated by antibodies) is not enough to

provide sterilizing immunity and thus prevent infection Handel et al., 2018

but can reduce the effective dose that starts an infection, and thus reduce

symptoms – consistent with our findings here.

To summarize, our results suggest that norovirus infection dose seems

clinically important but does not seem to have an epidemiological impact

on transmission potential.
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3.1 Abstract

Background Norovirus is a public health threat, causing innumerable

hospitalizations and deaths. To assist the ongoing norovirus vaccine devel-

opments, we analyzed the dose-dependent kinetics of norovirus antibodies

acquired from infection and vaccination.

Methods We collected antibodies’ kinetics data from a human chal-

lenge study and a multisite randomized bivalent norovirus candidate vac-

cine study. In both studies, norovirus-specific immunoglobulin G (IgG)

and immunoglobulin A (IgA), and histoblood group antigen (HBGA) block-

ing antibodies were measured. We used Bayesian mixed-effect models to

study potential exponential and power-law decay patterns.

Results In the human challenge study, 19 individuals got infection. As

the dose increased from 4.8 to 4800 RT-PCR units, the peak level of GI.1

HBGA titer decreased from 2380.7 to 620.5; the peak level of GI.1 IgA

value decreased from 291.4 to 199.3 ug/ml; the peak level of GI.1 IgG

value decreased from 859.3 to 395.1 ug/ml. For the half-life time, as the

dose increased from 4.8 to 4800 RT-PCR units, GI.1 HBGA changed from

108.6 to 185.9 days; GI.1 IgA changed from 63.1 to 59.6 days; GI.1 IgG

changed from 81.9 to 102.6 days. In the HV study, as the dose increased

from 5-5 mcg to 150-150 mcg, the peak level of GI.1 HBGA titer decreased

from 4635.7 to 720.6; the peak level of GI.1 IgA value decreased from

1342.2 to 10505.5 ug/ml; the peak level of GI.1 IgG value decreased from

525.1 to 5268.8 ug/ml; the peak level of GII.4 IgA value decreased from

536.3 to 50.2 ug/ml; the peak level of GII.4 IgG value decreased from

121.3 to 41.7 ug/ml. For the half-life time, as the dose increased from 5-5

mcg to 150-150 mcg, GI.1 HBGA changed from 11.5 to 33.3 days; GI.1

IgA changed from 11.5 to 3.5 days; GI.1 IgG changed from 26.8 to 16
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days; GII.4 IgA changed from 13.6 to 111.7 days; GII.4 IgG changed from

222.3 to 356.6 days.

Conclusions We found a higher dose of antigen does not necessarily

lead to a stronger and long-lasting immune response.
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3.2 Introduction

Norovirus is a public health threat, causing innumerable hospitalizations

and deaths globally every year (Bartsch et al., 2016; Lozano et al., 2012;

Patel et al., 2008; Scallan et al., 2011). The high transmissibility (Atmar

et al., 2008; Atmar et al., 2014), along with the lack of norovirus-specific

treatments and the vaccine, is contributing to its heavy health burden on

populations (Atmar et al., 2011; Bitler et al., 2013; Carling et al., 2009;

Isakbaeva et al., 2005; Johnston et al., 2007; Scallan et al., 2011; Wikswo

et al., 2011). Following the success of the rotavirus vaccine, norovirus

vaccines are in development (Bucardo et al., 2014; O’Ryan, 2017; Scallan

et al., 2011).

Human norovirus has three genogroups, I, II, and IV (GI, GII and

GIV) (Glass et al., 2009). The GII.4 genotype caused the majority of

human diseases, but other genotypes are also important (Hoa Tran et al.,

2013; Vega et al., 2014). Therefore, a bivalent vaccine could provide much

more benefits.

Norovirus infections may provide immunity for future infections (Can-

non et al., 2019), and vaccines are possible to mimic that (Bhurani et al.,

2018). Studies suggest that protection of infection may correlate with

blocking antibodies (serum antibodies inhibiting norovirus virus-like par-

ticles binding to H type 1 or H type 3 synthetic carbohydrates), but not

necessary with Immunoglobulin A and G (IgA, IgG) antibodies (Atmar

and Estes, 2012; Johnson et al., 1990; Reeck et al., 2010).

To assist the ongoing norovirus vaccine developments, we collected

serologic antibody data from two studies. One is a norovirus infections

study, and the other is a norovirus candidate vaccine study. We analyzed
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the dose impact of antigen on the kinetics of antibodies and the half-life

time. The purpose of this study is to explore the dose-dependent kinetics

of norovirus antibodies of these two ways of acquired immunity.
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3.3 Methods

The following sections provide brief descriptions of our methodology. Full

modeling and analysis details, including all data and code needed to repro-

duce our results, are provided in the supplement.

3.3.1 Study design

We collected antibodies’ kinetics data from two studies. The first study is

a human challenge study (ClinicalTrials.gov, NCT00138476) (Ajami et al.,

2012; Atmar et al., 2008; Atmar et al., 2014; Czakó et al., 2012; Kavanagh

et al., 2011; Reeck et al., 2010), which we named HC (human challenge

study). In the HC study, 19 participants got infected with norovirus (GI.1

NV) who randomly received inoculum norovirus dose from one level of

GI.1 NV, 0.48, 4.8, 48, 4800 reverse transcription-polymerase chain reac-

tion (RT-PCR) units. We dropped data from the 0.48 RT-PCR dose group

because only one sample size was available.

The second study is a multisite randomized bivalent norovirus can-

didate vaccine study (ClinialTrials.gov: NCT01168401) (Ramani et al.,

2017; Treanor et al., 2014), which we named HV (human vaccination

study). In the HV study, researchers prepared a bivalent virus-like parti-

cles (VLPs) vaccine candidate with genotype GI.1 and GII.4 noroviruses

components with a dose-escalation design (5 ug, 15 ug, 50 ug, or 150

ug of each of the 2 VLP components) and randomly gave one dose to 39

participants twice (28 days apart).

For each study, blood samples were collected at different days for mea-

surements of norovirus-specific immunoglobulin G (IgG), immunoglobu-

lin A (IgA), and histoblood group antigen (HBGA) blocking antibodies
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(Kavanagh et al., 2011; Reeck et al., 2010; P. F. M. Teunis et al., 2016).

In the HC study, samples were taken on day 0, 2nd, 7th, 13th to 15th,

27th to 32th, and 163th to 188th. In the HV study, the samples were

taken on day 0 (pre-vaccination), 7th, 21th, 28th, 35th, 56th, 180th, 393th

post-vaccination.

In addition to the different sampling times, more importantly, study

designs are also different. In the HC study, norovirus was given once at the

beginning of the study. In the HV study, the candidate norovirus vaccine

was given twice at day 0th and 28th.

We aimed to study the decay of antibodies based on the observed kinet-

ics, and then compare the half-life time between norovirus infection and

vaccines across different dose groups.

3.3.2 Immunological decay

In general, antibody decay can be measured by exponential and power-

law models (Cohen et al., 2021; de Graaf et al., 2014; P. F. M. Teunis

et al., 2016). Both models introduce explicit mathematical expressions for

the kinetics of antibodies while preserving biological meaning (P. F. M.

Teunis et al., 2016). The exponential models use the idea of a fixed decay

rate to measure the average speed of waning immunity (de Graaf et al.,

2014). However, heterogeneous antibody decay is possible (Cohen et al.,

2021). Thus, the power-law model with a time dependent decay rate has

been proposed (P. F. M. Teunis et al., 2016). power-law models produce

better fitting results in several studies (Cohen et al., 2021; Zarnitsyna et al.,

2021). In our study, we implemented both models and compared them

with ELPD-WAIC (Vehtari et al., 2017).
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We used Bayesian mixed-effect models to fit both models. We firstly

computed the peak level of antibodies, and then further measured the half-

life time after the peak. All results were summarized by mean and 89%

Equal-tailed credible intervals (ETI). All analyses were completed using

R (Team, 2017). We used brms package (Burkner, 2017) for the Bayesian

multilevel analyses. Detailed method descriptions, and code required to

reproduce the results are given in the supplementary materials.
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3.4 Results

3.4.1 Data description

In the HC study, 19 infected individuals included in the main analyses, 6,

7, and 6 individuals received norovirus doses of 4.8, 48, and 4800 RT-PCR

units, respectively. Data description was presented in Table 3.1. In the

HV study, 39 individuals received candidate vaccines (Table 3.2 to 3.3).
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Table 3.2: Antibody response in human vaccination study (N-samples/N-
patients, mean (IQR)), part I

Antibody Dose-group Day: 0 Day: 7 Day: 21 Day: 28

GI.1 HBGA 5-5mcg 20/10, 41, (12,46) 10/10, 1110, (570,1647) 10/10, 879, (605,979) 9/9, 670, (566,846)

15-15mcg 19/10, 31, (12,33) 10/10, 879, (542,1325) 10/10, 853, (393,1021) 10/10, 600, (332,788)

50-50mcg 19/10, 32, (12,21) 10/10, 993, (255,1655) 10/10, 665, (235,1093) 10/10, 512, (202,713)

150-150mcg 17/9, 17, (12,12) 9/9, 401, (198,450) 9/9, 344, (185,409) 9/9, 286, (154,360)

GII.4 HBGA 5-5mcg 10/10, 59, (12,74) 10/10, 299, (123,390) 10/10, 306, (154,387) 9/9, 242, (103,332)

15-15mcg 10/10, 32, (12,47) 10/10, 503, (145,299) 10/10, 294, (103,265) 10/10, 234, (82,200)

50-50mcg 10/10, 49, (12,78) 10/10, 766, (354,746) 10/10, 454, (261,546) 10/10, 304, (173,326)

150-150mcg 9/9, 95, (25,113) 9/9, 892, (369,1331) 9/9, 460, (274,671) 9/9, 353, (181,437)

GI.1 IgA 5-5mcg 20/10, 14, (3,6) 10/10, 226, (134,307) 10/10, 222, (99,163) 9/9, 214, (78,223)

15-15mcg 19/10, 4, (3,5) 10/10, 492, (130,640) 10/10, 229, (100,164) 10/10, 159, (53,129)

50-50mcg 19/10, 6, (3,3) 10/10, 1331, (239,1339) 10/10, 592, (120,958) 10/10, 414, (80,765)

150-150mcg 17/9, 6, (3,3) 9/9, 1179, (93,1214) 9/9, 582, (125,565) 9/9, 294, (86,289)

GII.4 IgA 5-5mcg 20/10, 25, (4,22) 10/10, 157, (126,179) 10/10, 116, (106,127) 9/9, 125, (103,138)

15-15mcg 19/10, 12, (3,15) 10/10, 246, (60,244) 10/10, 125, (34,182) 10/10, 78, (21,144)

50-50mcg 19/10, 15, (3,3) 10/10, 92, (25,149) 10/10, 64, (4,108) 10/10, 44, (3,66)

150-150mcg 17/9, 12, (3,13) 9/9, 51, (35,63) 9/9, 28, (15,43) 9/9, 21, (9,31)

GI.1 IgG 5-5mcg 20/10, 29, (2,21) 10/10, 282, (77,387) 10/10, 326, (117,471) 9/9, 330, (157,440)

15-15mcg 19/10, 13, (2,19) 10/10, 254, (85,346) 10/10, 204, (75,300) 10/10, 175, (69,263)

50-50mcg 19/10, 30, (4,31) 10/10, 2516, (1253,3250) 10/10, 1695, (1060,2625) 10/10, 1443, (686,2090)

150-150mcg 17/9, 22, (2,24) 9/9, 1804, (233,2545) 9/9, 1580, (449,2500) 9/9, 1088, (378,1975)

GII.4 IgG 5-5mcg 20/10, 47, (10,51) 10/10, 122, (57,116) 10/10, 187, (64,337) 9/9, 191, (64,276)

15-15mcg 19/10, 26, (5,52) 10/10, 158, (67,255) 10/10, 153, (67,253) 10/10, 129, (58,147)

50-50mcg 19/10, 12, (2,12) 10/10, 47, (38,58) 10/10, 39, (28,53) 10/10, 35, (27,46)

150-150mcg 17/9, 22, (4,29) 9/9, 41, (38,60) 9/9, 43, (40,50) 9/9, 40, (34,47)

Table 3.3: Antibody response in human vaccination study (N-samples/N-
patients, mean (IQR)), part II

Antibody Dose-group Day: 35 Day: 56 Day: 180 Day: 393

GI.1 HBGA 5-5mcg 10/9, 621, (376,737) 18/9, 481, (322,635) 9/9, 196, (93,298) 7/7, 136, (82,171)

15-15mcg 9/9, 637, (361,911) 18/9, 353, (180,386) 9/9, 232, (79,303) 9/9, 164, (48,186)

50-50mcg 10/10, 426, (182,660) 18/9, 345, (120,523) 9/9, 168, (65,185) 8/8, 115, (56,151)

150-150mcg 8/8, 351, (185,483) 16/8, 389, (260,441) 8/8, 187, (123,231) 7/7, 111, (67,150)

GII.4 HBGA 5-5mcg 9/9, 229, (120,268) 9/9, 268, (149,200) N/A N/A

15-15mcg 9/9, 211, (94,176) 9/9, 142, (86,177) N/A N/A

50-50mcg 10/10, 332, (162,395) 9/9, 181, (96,225) N/A N/A

150-150mcg 8/8, 322, (154,344) 8/8, 225, (152,224) N/A N/A

GI.1 IgA 5-5mcg 10/9, 192, (47,252) 18/9, 129, (26,93) 9/9, 32, (6,26) 7/7, 37, (8,46)

15-15mcg 9/9, 145, (58,113) 18/9, 67, (13,67) 9/9, 15, (9,20) 9/9, 13, (9,17)

50-50mcg 10/10, 222, (77,322) 18/9, 67, (12,106) 9/9, 13, (8,13) 8/8, 9, (7,13)

150-150mcg 8/8, 234, (82,306) 16/8, 102, (15,68) 8/8, 27, (8,35) 7/7, 25, (7,29)

GII.4 IgA 5-5mcg 10/9, 102, (57,131) 18/9, 83, (47,116) 9/9, 31, (9,45) 7/7, 19, (6,32)

15-15mcg 9/9, 94, (29,171) 18/9, 56, (16,85) 9/9, 22, (8,28) 9/9, 17, (3,24)

50-50mcg 10/10, 37, (4,43) 18/9, 33, (9,41) 9/9, 18, (3,19) 8/8, 16, (3,15)

150-150mcg 8/8, 30, (16,42) 16/8, 23, (13,35) 8/8, 18, (10,23) 7/7, 19, (10,28)

GI.1 IgG 5-5mcg 10/9, 292, (77,498) 18/9, 237, (68,358) 9/9, 57, (24,65) 7/7, 64, (27,105)

15-15mcg 9/9, 185, (72,311) 18/9, 146, (66,201) 9/9, 70, (47,84) 9/9, 56, (44,69)

50-50mcg 10/10, 998, (571,1064) 18/9, 505, (89,700) 9/9, 62, (24,86) 8/8, 36, (21,39)

150-150mcg 8/8, 1159, (633,1765) 16/8, 534, (125,508) 8/8, 81, (71,99) 7/7, 57, (24,80)

GII.4 IgG 5-5mcg 10/9, 162, (69,249) 18/9, 156, (60,161) 9/9, 56, (33,61) 7/7, 46, (14,72)

15-15mcg 9/9, 141, (67,132) 18/9, 99, (59,113) 9/9, 46, (26,60) 9/9, 52, (38,77)

50-50mcg 10/10, 36, (29,41) 18/9, 52, (28,52) 9/9, 31, (7,31) 8/8, 17, (8,28)

150-150mcg 8/8, 43, (33,49) 16/8, 46, (28,57) 8/8, 27, (11,19) 7/7, 31, (15,48)
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3.4.2 Kinetics of serum antibodies

Antibody results of the longitudinal model are shown in Figure 3.1 to 3.3.

Models with the highest ELPD-WACI were best-fit models. In the HC

study, exponential decay models had higher ELPD-WACI than power-law

decay models. However, in the HV study, except for the antibody of GII.4

IgG, power-law decay models had higher ELPD-WACI than exponential

decay models.

Figure 3.1: Fitted longitudinal antibody results in the HC study. The first
row of the panel is the exponential decay model. The second row is the
power-law decay model. The lines show the means of estimations. The
colored areas show 89% equal-tailed credible intervals (CI).
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Figure 3.2: Fitted GI.1 longitudinal antibody results in the HV study. The
first row of the panel is the exponential decay model. The second row is
the power-law decay model. The lines show the means of estimations. The
colored areas show 89% equal-tailed credible intervals (CI).
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Figure 3.3: Fitted GII.4 longitudinal antibody results in the HV study. The
first row of the panel is the exponential decay model. The second row is
the power-law decay model. The lines show the means of estimations. The
colored areas show 89% equal-tailed credible intervals (CI).
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Based on the best fit models, peak level of antibodies, and half-list time

were computed (Figure 3.4 to 3.5).

In the HC study, as the dose increased from 4.8 to 4800 RT-PCR units,

the peak level of GI.1 HBGA titer decreased from 2380.7 (89%CI, 856.4

to 4952.2) to 620.5 (89%CI, 217.9 to 1242.7); the peak level of GI.1 IgA

value decreased from 291.4 (89%CI, 125.2 to 558.6) to 199.3 (89%CI,

83.1 to 380.4) ug/ml; the peak level of GI.1 IgG value decreased from

859.3 (89%CI, 465.8 to 1410.7) to 395.1 (89%CI, 218.4 to 647.2) ug/ml.

For the half-life time, as the dose increased from 4.8 to 4800 RT-

PCR units, GI.1 HBGA changed from 108.6 (89%CI, 64 to 186) to 185.9

(89%CI, 186 to 186) days; GI.1 IgA changed from 63.1 (89%CI, 54 to 74)

to 59.6 (89%CI, 51 to 69) days; GI.1 IgG changed from 81.9 (89%CI, 69

to 99) to 102.6 (89%CI, 82 to 134) days.

In the HV study, as the dose increased from 5-5 mcg to 150-150 mcg,

the peak level of GI.1 HBGA titer decreased from 4635.7 (89%CI, 922.5

to 12638.2) to 720.6 (89%CI, 346.5 to 1378.7); the peak level of GI.1 IgA

value increased from 1342.2 (89%CI, 186.8 to 4805.7) to 10505.5 (89%CI,

549.7 to 37190.5) ug/ml; the peak level of GI.1 IgG value increased from

525.1 (89%CI, 263.6 to 830.9) to 5268.8 (89%CI, 1458.7 to 13554.5)

ug/ml; the peak level of GII.4 IgA value decreased from 536.3 (89%CI,

124.8 to 1611.9) to 50.2 (89%CI, 18.6 to 101.8) ug/ml; the peak level

of GII.4 IgG value decreased from 121.3 (89%CI, 87.9 to 160.3) to 41.7

(89%CI, 29.7 to 56.5) ug/ml.

For the half-life time, as the dose increased from 5-5 mcg to 150-150

mcg, GI.1 HBGA changed from 11.5 (89%CI, 0.5 to 32) to 33.3 (89%CI,

2 to 106.1) days; GI.1 IgA changed from 11.5 (89%CI, 0.4 to 24) to 3.5
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(89%CI, 0.4 to 12) days; GI.1 IgG changed from 26.8 (89%CI, 22 to 34)

to 16 (89%CI, 2.4 to 20) days; GII.4 IgA changed from 13.6 (89%CI, 0.7

to 31) to 111.7 (89%CI, 3 to 393) days; GII.4 IgG changed from 222.3

(89%CI, 151 to 336.1) to 356.6 (89%CI, 249 to 393) days.

Figure 3.4: Fitted peak level of antibodies and half-list time in the HC
study. The lines show means of estimations. The colored areas show 89%
equal-tailed credible intervals (CI).
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Figure 3.5: Fitted peak level of antibodies and half-list time in the HV
study. The lines show means of estimations. The colored areas show 89%
equal-tailed credible intervals (CI).
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3.5 Discussion

We used data from a human challenge and a vaccine candidate study to

explore the impact of norovirus antigen dose on the kinetics of serum

antibodies. We found higher dose not necessary produce higher level of

antibodies or longer half-life time (Figure 3.1 to 3.3). Our analyses also

suggest that serum antibody responses acquired from the candidate vaccine

was weaker than that acquired from infection.

The knowledge of the impact of antigen dose on immune responses is

not explicit. An empirical understanding is that a higher level of antigen

exposure associates with a stronger immune response (Handel et al., 2018).

However, theoretically, observations might be different when the exposure

level is above a threshold. Our study, along with a few previous modeling

and observational studies, suggests that the association between antigen

exposure and the strength of antibodies responses could be non-linear (de

Menezes Martins et al., 2018; Handel et al., 2018).

It is not clear that how the antigen dose impacts the decay of serum

antibodies. One study showed that a lower dose of yellow fever vaccine pro-

vided a similar percentage of seropositivity after eight years (de Menezes

Martins et al., 2018). In our study, the half-life time of antibodies, acquired

from either infection or vaccination, did not depend on the antigen dose.

This study compared the impact of antigen dose on different serum an-

tibodies between infection-associated and vaccination-associated antibody

responses, which had not well explored in previous studies. However, there

are clear limitations. First, the total sample sizes of participants and serum

samples are not large. Second, our study is a secondary data analysis. So

findings here are exploratory and need further confirmation. More serum
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samples, especially in the first month, might provide a more complete

understanding of antibody kinetics.

To summarize, we analyzed the kinetics of serum antibodies induced

by norovirus infection and candidate vaccines. We compared the peak level

and half-life time of antibodies across different dose groups. Our results

show that, for norovirus, a higher dose of antigen does not necessarily lead

to a stronger and long-lasting immune response.
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4.1 Abstract

Background The high-dose (HD) Fluzone influenza vaccine is provided

to the elderly population because the standard-dose (SD) version had low

immunogenicity and protective effect. Although the increased dose seems

to improve homologous protection (against the vaccine strain), the heterol-

ogous protection (against other strains) is not well studied. We set out to

perform a detailed investigation of the differences between SD and HD

vaccines for several recent vaccine years both with respect to homologous

and heterologous antibody immune responses.

Methods We used data from human volunteers vaccinated with either

the SD or HD Fluzone vaccine during influenza seasons spanning the years

2014-2018. We used a Bayesian hierarchical modeling framework to ex-

plore the impact of dose on immune protection as quantified by hemagglu-

tination inhibition titer (HAI). We estimated the additional benefits of HD

compared to SD vaccine by strain-specific and vaccine-specific analyses,

for both homologous and heterologous immunity.

Results We found that the HD vaccine led to overall improvement for

both homologous and heterologous immunity. In the vaccine-strain spe-

cific analyses, across all strains the HD vaccine was associated with a (0.19

(89%CI, -0.1 - 0.44), CI: equal-tailed credible interval) log2 HAI units,

stronger increase in HAI titer following vaccination, with the strongest

impact noted for the H1N1 vaccine component. We also observed that the

HD vaccine overall induced stronger heterologous responses, though there

was noticeable variation across vaccine and test strains. In the per-vaccine

analyses, HD vaccines showed stronger increases in HAI titer following

vaccination against both homologous and heterologous strains, with the

homologous response stronger and less variable (overall increase across 5
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seasons of 0.21 (89%CI, -0.12 - 0.53) log2 HAI units and the heterologous

response showing a reduced and more variable impact (overall increase

-0.01 (89%CI, -0.35 - 0.33) log2 HAI units). These findings were robust

across different ways of quantifying the vaccine response (seroconversion,

post-vaccination titers, and seroprotection).

Conclusions Overall, the HD influenza vaccine was able to induce

better homologous and heterologous antibody immunity. Some exceptions

were noted for heterologous immunity, where the increased dose led to re-

duced immunogenicity. Based on these findings, considering extension of

the HD vaccine to other age-groups, and further dose optimization studies

seem warranted.
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4.2 Introduction

Influenza vaccines are widely used to protect humans from influenza in-

fections, but the average effectiveness is only around 50% (Centers for

Disease Control and Prevention, 2021). In the elderly population, the li-

censed standard-dose (SD) split-inactivated virion vaccine, which includes

15 micrograms of HA antigen for each strain, had low immunogenicity

and protective effect (Grohskopf, 2021). That led to the development of

a high-dose (HD) influenza vaccine, Fluzone HD (Sanofi Pasteur), which

has 60 micrograms of HA for each of the vaccine strains (Falsey et al.,

2009). The increased dose led to better homologous protection (against

the vaccine strain) (Couch et al., 2007; DiazGranados et al., 2013; Diaz-

Granados et al., 2014; Falsey et al., 2009; J. K. H. Lee et al., 2021), thus

was licensed in the US in 2009 and has since been offered to individuals

65+ years of age.

Although increased dose may lead to improved immunogenicity (Couch

et al., 2007; Hilleman, 1958), the role of vaccine dose toward induction of

heterologous immunity (against other strains) is not well understood. As

non-monotone patterns have been reported for various antigens (Campi-

Azevedo et al., 2014; Handel et al., 2018; Regules et al., 2016; Rhodes

et al., 2019), it is for instance plausible that a higher dose might induce a

broader B-cell or T-cell response, thus increasing both strength and breadth

of protection. Alternatively, a higher dose might more strongly induce

dominant B-cell or T-cell responses, which might target an epitope which

may or may not be neutralizing. This immunodominant clones might out-

compete other lineages and thus lead to a narrower response (Angeletti and

Yewdell, 2018). Since there is often a mismatch between vaccine strains

and circulating strains. The actual impact of HD influenza vaccine on
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heterologous protection is a critical question but has not been thoroughly

studied to date.

Maximizing both homologous and heterologous protection will sig-

nificantly benefit the effectiveness of the influenza vaccine and has been

identified as a critical objective in the development of a universal influenza

vaccine (Erbelding et al., 2018; Paules et al., 2018). We considered the

decision of vaccine dose is important to efficacy, side effects, costs and

availability (Couch et al., 2007; Rhodes et al., 2019). To have a dose

optimized vaccine, the impact of dose needs to be carefully determined.

Here, using data of volunteers receiving either SD or HD Fluzone

vaccine across five vaccine seasons, 2014/15 - 2018/19, we compared HAI

responses against 10 vaccine strains and 40 heterologous strains between

HD and SD vaccine dose groups. We found that the HD induced better

homologous and heterologous immunity, with some differences between

H1N1, H3N2 and B strains.
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4.3 Methods

4.3.1 Data source

Our dataset is collected from an ongoing vaccination study in which vol-

unteers who had not yet received an influenza vaccine for the season were

recruited each year before the start of the influenza season. Individuals

65+ years of age were offered a choice between the HD and SD vaccine.

The data analyzed here spans the influenza seasons of 2014/15 - 2018/19.

The HD vaccine was trivalent, while the SD vaccines were trivalent in year

2014 and quadrivalent in the remaining years. The quadrivalent formula-

tion contains an additional B-strain. Biological samples were taken prior

to vaccination and 21-28 days after vaccination. Demographic information

of age, sex and race were also collected. Details of the study and data col-

lection methodology have been described previously (Abreu et al., 2020;

Carlock et al., 2019; Nuñez et al., 2017).

4.3.2 Data processing

The main quantity of interest for our analysis are hemagglutination-inhibition

antibody titers (HAI) pre- and post-vaccination by strains. HAI titers were

measured with the standard dilution assay. The limit of detection (LOD)

in this study was 1:10, values below the LOD were coded as 1:5. Fol-

lowing (Beyer et al., 2004; Ranjeva et al., 2019), we transformed HAI

titer measurements using the relation log2(HAI/5), where HAI was the

dilution level. This lead to a transformation of HAI values onto a range

from zero (LOD) to 12 (maximum reported dilution of 1:20480). Because

the HD vaccine was only available to 65+ years old participants, for our

main analyses we only included SD vaccine recipients 65+ years old. A

sensitivity analysis allowing that includes all age SD recipients (with a
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multivariable model adjusting for age) is shown in the supplement. Since

the trivalent HD vaccine only contained a single B strain, we only retained

the matching B strain information for the quadrivalent SD recipients and

removed the B strain that was not present in both SD and HD formulations

for each season.

4.3.3 Outcome definitions

We quantified the impact of the SD and HD vaccine on HAI titers using

4 different but related outcomes (Beyer et al., 2004; Falsey et al., 2009).

The first two outcomes are on an integer scale (after transformation of titer

as described above), namely 1) titer increase, defined as the difference

between post-vaccination and pre-vaccination titer and 2) post-vaccination

titer. The other two outcomes are categorical versions of the first two out-

comes, namely 3) seroconversion, defined as either a pre-vaccination titer

of 0 (=LOD) with a post-vaccination titer of at least 3 (after transforma-

tion of titer values as described above), or a pre-vaccination titer above

the LOD and a post-vaccination titer that is at least 2 units higher (cor-

responding to a dilution measurement of < 1:10 pre-vaccination and ≥

1:40 post-vaccination or a ≥ 4-fold increase from pre- to post-vaccination

in dilution units) (Falsey et al., 2009), and 4) seroprotection, defined as

a post-vaccination HAI titer of 3 or greater (i.e., an equal or greater 1:40

dilution in the original units), which is generally considered a threshold

for protection (Coudeville et al., 2010).

4.3.4 Statistical analyses

In the descriptive analyses, we report mean and standard deviation for the

continuous outcomes of titer increase and post-vaccination titer and counts

and percentages for the binary outcomes of seroconversion and seroprotec-
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tion. We used a Bayesian hierarchical modeling approach to estimate the

impact of vaccine dose with the recognition of study hierarchical features

(Supplementary material). We additionally included sex, race, age, and

pre-vaccination titer as covariates in our models. We estimated the overall

strain-specific or vaccine-specific impact of vaccine dose and its varia-

tions by multilevel models (Faraway, 2016). For continuous outcomes, we

used a linear model, and for the categorical outcomes we used a logistic

model. The inclusion of pre-vaccination titer as a covariate means that

the models for titer increase and post-vaccination titer as outcomes lead

to mathematically identical dose coefficient estimations and thus we did

not fit the multivariable models for the outcome of post-vaccination titer.

The impact of HD vaccine relative to SD was summarized with median

and 89% equal-tailed credible interval (CI) (McElreath, 2020). Detailed

descriptions of all models, as well as code to run the analyses are provided

in the supplementary material.

In addition to our main analyses, we performed a sensitivity analysis

by adjusting modeling approaches and data. In one analysis, we included

SD recipients of any age with the same multilevel models. We also used

Bayesian generalized linear models for 65+ years old population and 1:1

dose group propensity score matched data (using the nearest neighbor

matching algorithm (Ho et al., 2007/ed)). Results from these sensitivity

analyses are reported in the supplementary material.

4.3.5 Implementation

All analyses were completed using R (R Core Team, 2020). The package

of brms v2.15 (Bürkner, 2018) was used for the Bayesian analysis. R

scripts for all analyses are provided as supplementary materials.
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4.4 Results

4.4.1 Data Description

Our samples span the 2014-2018 influenza seasons. During that time

the HD vaccine was given 197 times, the remaining 157 samples were

from individuals 65+ years who received SD vaccine (Table 4.1). In

both dose groups, most participants were white with similar other de-

mographic characteristics. Over the duration of the study, two H1N1

vaccine strains (H1N1-California-2009 in seasons 2014/15, 2015/16 and

H1N1-Michigan-2015 in 2017/18, 2018/19), four H3N2 strains (H3N2-

Texas-2012 in 2014/15, H3N2-Switzerland-2013 in 2015/16, H3N2-Hong

Kong-2014 in 2016/17 and 2017/18, H3N2-Singapore-2016 in 2018/19)

and four type B strains (B-Brisbane-2008 2015/16, 2016/17, 2017/18,

B-Massachusetts-2012 in 2014/15, B-Phuket-2013 in 2015/16, 2016/17,

2017/18, 2018/19, B-Colorado-2017 in 2018/19) were included in the vac-

cines.

The mean titer increase following vaccination ranged from 0.5 to 3

units, and the post-vaccination titer ranged from 2.4 to 5.6 units. The

percentage of individuals who seroconverted ranged from 9.1% to 78.9%,

and seroprotection ranged from 50% to 100%.
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Table 4.1: Description of the study.

Variables Standard-dose vaccine High-dose vaccine

Sample size (N) 157 197

Age (median, IQR) 68.00 [66.00, 74.00] 70.00 [68.00, 75.00]

Sex, n (%)

- Female 97 (61.8) 137 (69.5)

- Male 60 (38.2) 60 (30.5)

Race, n (%)

- White 123 (78.3) 140 (71.1)

- Black 30 (19.1) 54 (27.4)

- Hispanic 3 ( 1.9) 3 ( 1.5)

- Other 1 ( 0.6) 0 ( 0.0)

H1N1-Michigan-2015 N = 25 (2017, 2018) N = 19 (2017, 2018)

H1N1-California-2009 N = 88 (2014, 2015, 2016) N = 93 (2014, 2015, 2016)

H3N2-Singapore-2016 N = 11 (2018) N = 8 (2018)

H3N2-Hong Kong-2014 N = 47 (2016, 2017) N = 91 (2016, 2017)

H3N2-Switzerland-2013 N = 38 (2015) N = 58 (2015)

H3N2-Texas-2012 N = 53 (2014) N = 39 (2014)

B-Colorado-2017 N = 11 (2018) N = 8 (2018)

B-Phuket-2013 N = 77 (2015, 2016, 2017, 2018) N = 58 (2015)

B-Massachusetts-2012 N = 53 (2014) N = 39 (2014)

B-Brisbane-2008 N = 76 (2015, 2016, 2017) N = 91 (2016, 2017)

The comparison between HD and SD for each seasons on titer increase

had variabilities. HD vaccine overall had higher homologous titer increase,

but lower heterologous responses in 2016 and 2018 seasons.

4.4.2 HD vaccines led to increased strain-specific homol-

ogous responses

Vaccine-strain specific homologous HAI responses following vaccination

with the HD vaccine was stronger compared to the SD vaccine (Figure

4.1). For both of the H1N1 vaccine strains, HD led to a robustly increased

response, indicated in Figure 4.1 by results that are strongly to the right of

the no-effect line. The impact of HD on H3N2 vaccine strains was more
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variable, with the titer increase outcome for the Texas-2012 vaccine even

showing a slightly reduced impact of the HD vaccine, though very close to

the no-effect line. For type B strains, the impact of HD was again robustly

beneficial.

Figure 4.1: The impact of HD vaccine compared to SD on strain-specific,
homologous HAI responses. The median and 89% equal-tailed credible
interval (CI) of the overall effect (HD vs. SD) are shown. The numbers
under each line show the sample size (HD/SD) for that specific strain or
the overall effect size.

4.4.3 HD vaccines led to increased strain-specific heterol-

ogous responses

Heterologous HAI responses also showed a generally stronger impact of

the HD vaccines compared to the SD vaccine excepted H1N1-California-

2009 and H3N2-Singapore-2016 (Figures 4.2 - 4.4). Heterologous re-

sponses had more variabilities, and some strains indicated a negative ef-

fect of the HD. The H1N1-California-2009 HD vaccine had a notice-
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able negative impact on multiple strains. This was very pronounced for

H3N2-Singapore-2016, however the sample size for this vaccine strain

is too small to draw useful conclusions. HD vaccine of H3N2-Texas-

2012 had a negative impact against H3N2-HongKong-1968, HD vaccine

of Massachusetts-2012 had a negative impact against B-Yamagata-1988.

The overall heterologous effect of HD was positive. No trend (e.g., more

or less impact of HD for older strains) was observed.

Figure 4.2: The impact of HD vaccine compared to SD on strain-specific,
heterologous HAI responses. The median and 89% equal-tailed credible
interval (CI) of the overall effect (HD vs. SD) are shown. The numbers
under each line show the sample size (HD/SD) for that specific strain or the
overall effect size. Figures for seroconversion and seroprotection outcomes
show similar results (see supplementary material).
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Figure 4.3: The impact of HD vaccine compared to SD on strain-specific,
heterologous HAI responses. The median and 89% equal-tailed credible
interval (CI) of the overall effect (HD vs. SD) are shown. The numbers
under each line show the sample size (HD/SD) for that specific strain or
the overall effect size.
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Figure 4.4: The impact of HD vaccine compared to SD on strain-specific,
heterologous HAI responses. The median and 89% equal-tailed credible
interval (CI) of the overall effect (HD vs. SD) are shown. The numbers
under each line show the sample size (HD/SD) for that specific strain or
the overall effect size.

4.4.4 HD vaccines led to increased vaccine-specific ho-

mologous responses

Vaccine-specific analyses provided a summarized comparison between

HD and SD for each seasonal vaccine, showing the average impact of dose

across all vaccine strains for a given vaccine. As Figure 4.5 shows, for
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all seasons the HD vaccine led to a robust improved homologous HAI

response against the strains contained in the vaccine.

Figure 4.5: The impact of HD vaccine compared to SD on vaccine-specific,
homologous HAI responses. The median and 89% equal-tailed credible
interval (CI) of the overall effect (HD vs. SD) are shown. The numbers
under each line show the sample size (HD/SD) for that specific strain or
the overall effect size.

4.4.5 HD vaccines led to increased vaccine-specific het-

erologous responses

To determine an overall heterologous response, we considered all heterol-

ogous responses for each strain contained in the vaccine as a whole were

a cluster in the multilevel model. As Figure 4.6) shows, there were more

variabilities benefit in HD vaccines. In 2016 and 2018, the HD vaccine

had lower heterologous responses compared to the SD vaccine.
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Figure 4.6: The impact of HD vaccine compared to SD on vaccine-specific,
heterologous HAI responses. The median and 89% equal-tailed credible
interval (CI) of the overall effect (HD vs. SD) are shown. The numbers
under each line show the sample size (HD/SD) for that specific strain or
the overall effect size.

4.4.6 Further analyses

We performed additional analyses to explore the sensitivity of our results

to variants of model and data. This section provides a brief description,

the full details are provided in the supplementary materials.

Data variant exploration. In the analyses of multilevel models with

data including all age groups, we found similar results. The only major

difference was that no inferior impact of HD in 2018 was found.

Model variant exploration. We conducted non-hierarchical generalized

linear models. Such models ignore the fact that strains within a given

vaccine are shared, and thus consider the response to each strain as fully

independent. It also ignore that some volunteers had repeated vaccinations

across different seasons. As shown in the supplement, we found overall

patterns of HD leading to a stronger HAI response. In strain-specific
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analyses, the credible intervals and the variations between strains were

much wider and stronger, respectively. In vaccine-specific analyses, the

HD vaccine had lower heterologous responses compared to the SD vaccine

in 2018 but not in 2016.

Model and data variant exploration. We conducted non-hierarchical

generalized linear models with 1:1 1:1 dose group propensity score matched

data. The overall benefit of HD vaccines were also observed, and similar

to non-hierarchical generalized linear models with all 65+ years old data.

Interactions between sex and dose. We extracted coefficients of the

variable of sex from models. In parts of strain-specific and vaccine-specific

analyses, we found male had lower titer increase, ORs of seroconversion

and seroprotection than female.
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4.5 Discussion

While vaccines are one of our best tools against infectious diseases, most

vaccines are far from perfect and could be further improved. This is def-

initely the case for influenza, where effectiveness rarely goes above 50%

(Doyle et al., 2021). The hope is that in the not-too-distant future, one

or several universal influenza vaccines will become available that have

induced immunity that is strongly protective and long-lasting, against a

broad range of current and future circulating strains. Optimization of dose

is an important component of overall optimization of such future vaccines.

The HD Fluzone vaccine has previously shown to induce stronger

homologous immunity and protection (Couch et al., 2007; DiazGranados

et al., 2013; DiazGranados et al., 2014; Falsey et al., 2009; J. K. H. Lee

et al., 2021). Here, we set out to analyze this in more detail for multiple

vaccine seasons, and to also determine the impact of dose on heterologous

responses.

We found that overall, HD vaccine induced a stronger HAI response

against both homologous and heterologous strains. Of note, the increase

in titer for the HD was fairly small (less than 0.5. log2 units). Also

worth noting is that for the vaccine-specific analyses, the (categorical)

seroconversion outcome showed a pattern different from the (continuous)

titer increase outcome. This is perhaps not surprising but suggests that in

studies that assess the impact of influenza (or other) vaccines, using only

a single way of defining and measuring vaccine response is not ideal. If

feasible, the use of multiple outcomes, as we have done here, could provide

more robust conclusions.
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The overall impact of HD on heterologous responses was similar to the

results of homologous, but the effect size was small and variations across

strains were obvious. In vaccine-specific analyses, we found HD vaccines

failed to provide additional benefits compared to SD vaccines in 2016 and

2018. Raw data description shown titer increase of HD vaccines in 2016

and 2018 were inferior to SD vaccines. However, sensitivity analyses

only found similar results in 2018. The discrepancies could be partly

explained by the ignorance of repeated measurements in the generalized

linear models. In general, we found that HD may also benefit heterologous

responses, cautions are needed for extrapolating because of the variances.

Our findings come with some caveats. First, this was a secondary data

analysis. Thus our analyses is exploratory, and future confirmatory studies

might be useful. Another important consideration is the fact that our data

comes from an observational cohort, not a clinical trial. Participants 65+

years old were not randomized to receive either HD or SD vaccine, instead

they were allowed to choose. This could have introduced some biases. We

tried to correct for some of them in our multivariable models by adjusting

for factors such as age and pre-existing antibody levels. However, we

did not have information on other possibly important factors, e.g., overall

participant health and pre-existing conditions.

We found that overall, Fluzone HD induces both better homologous

and heterologous HAI responses compared to SD. However, HD might

negatively impact the broad of heterologous HAI responses for individuals

65+ years old.

58



C H A P T E R 5

C O N C L U S I O N

In this chapter, a summary of all research topics in the dissertation is

provided. Specifically, major contributions and future work is highlighted.
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5.0.1 Chapter 2: Analyzing the association between in-

oculum dose and norovirus infection outcomes

We analyzed the impact of norovirus inoculum dose on disease outcomes

after infection with the data from a human challenge study. The dose

dependent norovirus infection outcomes is not well explored before. We

found that while increases in dose were associated with a faster onset

and peak of virus shedding in feces, the total shedding duration and total

amount of virus shedding showed little association. Our analysis also

showed a general pattern of accelerated onset of symptoms and increased

symptom severity with higher inoculum dose.

Our findings suggest that inoculum dose has little impact on norovirus

shedding. Thus, while a strong infection control intervention could reduce

the viruses in the external environment. This effort may only reduce the

norovirus infection risk but have limited impact on transmission potential.

Future large sample size studies are needed to confirm our results.

Explorations on the interactions between host characteristics and dose-

outcome relationships is warranted.

60



5.0.2 Chapter 3: Norovirus antibody kinetics compar-

isons between infection and vaccination

We explored the impact of norovirus antigen dose on the kinetics of serum

antibodies with data from a norovirus human challenge study and a norovirus

candidate vaccine study. We found higher dose not necessary produce

higher level of antibodies or longer half-life time. Our analyses also sug-

gest that serum antibody responses acquired from the candidate vaccine

may weaker than that acquired from infection.

The knowledge of the impact of antigen dose on immune responses

is not explicit. We are also not aware of a conclusion of how the antigen

dose impacts the decay of serum antibodies. Our findings may benefit the

development of norovirus vaccines.

To better explore the kinetics of serum antibodies, future studies could

collected samples more frequently to avoid the missing of potential turning

points.
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5.0.3 Chapter 4: Impact of seasonal influenza vaccine

dose on homologous and heterologous immunity

We compared the high-dose (HD) Fluzone influenza vaccine and the standard-

dose (SD) Fluzone influenza vaccine on homologous and heterologous

immune responses with hemagglutination inhibition titer (HAI) data from

a cohort influenza study. We found that the HD vaccine overall led to

improvement for both homologous and heterologous immunity. However,

for homologous immunity, the HD only provided a small increase on titer

increase. Inferior results of HD also were observed on heterologous immu-

nity.

Most vaccines are far from perfect and could be further improved in-

cluding influenza vaccines. A universal influenza vaccine is one of the

ultimate purposes on influenza outbreak control. Optimization of dose is

an important component in the development of universal influenza vac-

cines.

Future studies should generate better study designs to better control the

interactions between multiple strains contained in the vaccine for explicite

conclusions.
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A P P E N D I X A

A P P E N D I X : A N A LY Z I N G T H E

A S S O C I AT I O N B E T W E E N

I N O C U L U M D O S E A N D

N O R O V I R U S I N F E C T I O N

O U T C O M E S

A.1 Overview

This document contains detailed model description and additional results

from our uncertainty analysis. It also describes how to reproduce all figures

and tables shown in the main text and in this supplement.
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A.2 Analysis of virus shedding

The following sections provide additional details and further results related

to our analyses of virus shedding.

A.2.1 Accounting for limits of detection in virus shedding

The study that produced the data used two different methods to determine

virus concentration in feces (Atmar et al., 2008). The first method was a

quantitative real-time RT-PCR (qRT-PCR) method. This method was able

to detect virus up to a limit of detection of 40× 106 genomic equivalent

copies (GEC). If a sample was below this level (negative qPCR reading),

the sample was retested using an immunomagnetic capture (IMC) RT-PCR

assay. IMC RT-PCR is more sensitive, with a lower limit of detection of

15×103 GEC, but only produces a qualitative positive or negative readout.

We labeled the limit of 15× 103 GEC as LOD1, and 40× 106 as LOD2.

Thus, virus samples have a numeric value if they are above LOD2, are

labeled as positive if they are below LOD2 but above LOD1, and are

labeled as negative if they are below LOD1.

We dealt with these detection limits as follows. If a sample had a

quantitative concentration above 40×106 GEC, we used the numeric value.

If a sample was reported as positive (concentration between 40×106 GEC

and 15 × 103 GEC), we used the geometric mean of those two values

(≈ 7.75 × 105 GEC). Similarly, if a sample was recorded as negative

(concentration below 15×103 GEC), we used the geometric mean of 15×

103 GEC and 1 GEC (≈ 122 GEC).

To compute the total amount of virus shed per shedding event, we

multiplied the virus concentration with the weight of the shed feces (i.e.,
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GEC/g × weight of feces). Finally, for each individual, we summed values

for all shedding events.

Data for vomiting had similar limits of detection. These data were

recorded as either a numeric value above 2,200 GEC, a positive readout

below 2,200 GEC or a negative readout. For the vomiting data, we did not

have information on the limit of detection for the qualitative assay. Based

on a comparison of the two methods (Gilpatrick et al., 2000), we made the

assumption that the LOD for the qualitative assay was a factor of 10 lower,

thus 220 GEC. We then again took the geometric mean of 2,200 GEC and

220 GEC for the positive values (≈ 696 GEC), and 220 GEC and 1 GEC

for the negative values (≈ 15 GEC). All virus concentrations were then

multiplied with total vomit volume (i.e., virus particles/ml × volume of

vomit)), then summed those for each individual. This included making the

additional assumption that 1 gram of vomit equated to 1 milliliter (Kirby

et al., 2016).

To fit the time-series data of fecal virus shedding in our Bayesian non-

linear mixed effects model, we used the built-in approach of ‘brms‘ to

handle censored values and deal with the limits of detection (Bürkner,

2018). In ‘brms‘, the likelihood function uses a cumulative distribution

function for censored data (Gelman et al., 2013).

A.2.2 Modeling total virus shedding

We computed total virus shedding by multiplying virus concentration with

sample weight (feces) or volume (vomit) for each shedding event, and

summing all values for each individual.
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We applied a mixed effects model that investigated associations be-

tween the outcomes (total shedding amount) and inoculum dose. For the

analysis shown in the main text, we assumed a linear relationship between

the log of the dose (xi) and the log of the outcome (yi).

We fitted the same model to each of the 3 outcomes. Those are 1) fecal

shedding during the 96 hours under clinical observation, 2) fecal shedding

including the time at which individuals recorded shedding events at home,

and 3) vomit shedding (which occurred only during the first 96 hours).

The mathematical definition of the model is as follows:

Likelihood:

yi ∼ Normal(µi,σ)

Linear model:

µi = αi +β (xi − x∗)

Adaptive priors:

αi ∼ Normal(δ ,γ)

Fixed priors:

δ ∼ Normal(25,5)

γ ∼ Half-Cauchy(0,2)

β ∼ Normal(0,1)

σ ∼ Half-Cauchy(0,2)

The outcome of interest, yi, is the total amount of virus shedding

(in log units) of individual i. We assumed this value to be normally

distributed with mean, µi, and an overall standard deviation, σ . The

mean was assumed to have an individual-specific component and a dose-
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dependent component. The parameter αi describes the individual-level,

dose-independent expected mean of the outcome for each individual, the

parameter β encodes the potential impact of the dose, xi, that the indi-

vidual i received. To make priors easier to define and interpret, we sub-

tracted the intermediate dose from the dose values, i.e. we set x∗ = log(48).

This adjustment implies that the parameter αi represents the expected total

amount of virus shedding when the inoculum dose is at this intermediate

value. (Without subtraction of x∗, αi would represent total shedding if the

dose was zero, which is biologically not meaningful and makes assigning

reasonable priors more difficult (McElreath, 2020).

Priors are chosen based on what we know about the virus kinetics,

and to ensure prior predictive simulations produce flexible but reasonable

outcomes (McElreath, 2020). Since vomit outcome values were lower

than those for feces, we adjusted the αi prior for this model to have a mean

around 20.

As part of our sensitivity analyses, presented below, we also explored

a model which treats dose as categorical. The following lines in the model

are adjusted accordingly:

Linear model:

µi = αi +βdosei

Adaptive priors:

αi ∼ Normal(0,γ)

Fixed priors:

γ ∼ Half-Cauchy(0,2)

βdosei ∼ Normal(25,5) ,
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In this notation, the parameter βdosei takes on discrete values based on

the dose level of each individual, i. Specifically, the 3 categories are low,

medium, or high dose, corresponding to 4.8, 48, or 4800 RT-PCR units.

A.2.3 Modeling longitudinal virus concentration kinetics

To model the longitudinal time-series of virus concentration in feces, we

used a previously developed equation that was shown to describe virus

time-course in acute viral infections well (Holder and Beauchemin, 2011).

This equation provides a good empirical function to fit the increase, then

decrease of viral load seen in many acute viral infections. The equation

has four parameters and is given by:

V (t) =
2p

e−g(t−T )+ ed(t−T )
.

The outcome of interest is virus load as a function of time, V (t). The

model parameters approximately represent the peak virus load (p), the ini-

tial exponential growth rate (g), the time of virus peak (T ) and the eventual

rate of virus decline (d). (The parameters only approximately map to those

biological quantities, see (Holder and Beauchemin, 2011) for details.)

Since all parameters in the model above need to be positive to achieve

biologically reasonable trajectories for V (t), we rewrote the equation for

our purpose with exponentiated parameters. That is, we assume that the

deterministic portion of the virus load data (on a log scale, denoted below

as µi,t), is described for each individual, i, by

µi,t = log
(

2exp(pi)

e−exp(gi)(ti−exp(Ti))+ eexp(di)(ti−exp(Ti))

)
.
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Since there was a fair amount of variability in the virus load data,

we modeled the outcome using a non-standardized Student-t distribution

instead of a Normal distribution, which provides more robust estimates

in the presence of strong variability (Bürkner, 2018; McElreath, 2020).

Specifically, we model the virus load data as

yi,t ∼ Student-t(k,µi,t ,σ) ,

where the standard deviation (σ ) is modeled with a Half-Cauchy distri-

bution, and the degrees of freedom (k) are modeled with a Gamma distribu-

tion with priors as shown in the equations below. We assumed that each of

the four model parameters of the µi,t equation follow normal distributions,

and can be described by linear models, each with an individual-level inter-

cept parameter and a parameter quantifying the potential impact of dose.

We again modeled the latter for our main analysis as being a linear function

of the log of the dose. As described above, we again subtracted the inter-

mediate dose to make the intercept parameters biologically meaningful.

The model equations are given by:
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Likelihood:

yi,t ∼ Student(k,µi,t ,σ)

Overall time-series equation:

µi,t = log
(

2exp(pi)

e−exp(gi)(ti−exp(Ti))+ eexp(di)(ti−exp(Ti))

)
Parameter equations:

pi = p0,i + p1 · (xi − x∗)

gi = g0,i +g1 · (xi − x∗)

Ti = T0,i +T1 · (xi − x∗)

di = d0,i +d1 · (xi − x∗)

Adaptive priors:

p0,i ∼ Normal(µp,σp)

g0,i ∼ Normal(µg,σg)

T0,i ∼ Normal(µT ,σT )

d0,i ∼ Normal(µd,σd)
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Fixed priors:

µp ∼ Normal(25,5)

σp ∼ Half-Cauchy(0,1)

µg ∼ Normal(3,1)

σg ∼ Half-Cauchy(0,1)

µT ∼ Normal(0,1)

σT ∼ Half-Cauchy(0,1)

µd ∼ Normal(−1,0.5)

σd ∼ Half-Cauchy(0,1)

p1 ∼ Normal(0,1)

g1 ∼ Normal(0,0.5)

T1 ∼ Normal(0,0.5)

d1 ∼ Normal(0,0.5)

k ∼ Gamma(2,0.1)

σ ∼ Half-Cauchy(0,1)
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Values for priors were chosen to be weakly informative, such that prior

predictive simulations produced virus-load trajectories that made biolog-

ical sense, while still allowing for a wide variety of possible trajectories

to be informed by fitting to the data. The peak level of virus concentra-

tion for norovirus in our data and previous studies is broadly in the range

of 1010 to 1014 (Atmar et al., 2008; N. Lee et al., 2007; P. F. M. Teunis

et al., 2015) (around 23-35 in log units). We approximately centered our

prior around those values, while allowing for a broad standard deviation

so that the data will dominate the posterior results. Similarly, the growth

rate, µg, will have a value such that the peak is reached within the first

several days following infection. A Normal distribution with a mean of 3

(in log units) can produce the necessary range of value. Virus is expected

to peak a few days following infection. Thus we chose µT and T1 to have

normal distributions with a spread such that the range of values for exp(T )

is centered around the first few days. The decay rate, µd , needs to allow

for a decline of virus to undetectable levels that can be as fast as a week or

longer than a month. A Normal distribution with log-transformed mean of

-1 can produce such outcomes.

We performed prior predictive simulations to ensure that our priors led

to biologically reasonable time-series trajectories, while also being broad

and flexible enough to let the data dominate the posterior distribution.

For the sensitivity analysis, where we treated dose as a categorical

variable, the dose-associated parameters change and now are assigned

distinct values based on dose category. The following components of the

above model changed, with the rest remaining the same:
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Parameter equations:

pi = p0,i + p1,dosei

gi = g0,i +g1,dosei

Ti = T0,i +T1,dosei

di = d0,i +d1,dosei

Adaptive priors:

p0,i ∼ Cauchy(0,γp)

p0,i ∼ Cauchy(0,γg)

p0,i ∼ Cauchy(0,γT )

p0,i ∼ Cauchy(0,γd)

Fixed priors:

γp ∼ Half-Cauchy(0,1)

γg ∼ Half-Cauchy(0,1)

γT ∼ Half-Cauchy(0,1)

γd ∼ Half-Cauchy(0,1)

p1,dosei ∼ Normal(25,5)

g1,dosei ∼ Normal(3,1)

T1,dosei ∼ Normal(0,1)

d1,dosei ∼ Normal(−1,0.5)

As before, in this categorical analysis, xi is the dose category for indi-

vidual i, and is either low, medium or high.
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A.3 Analysis of symptom outcomes

The following sections provide additional details and further results related

to our analyses of infection symptoms.

We considered three different symptom-related outcomes, namely time

to first symptom onset (incubation period) and two versions of scores that

quantify overall infection severity.

Since individuals were allowed to leave the study center after 96 hours

and average illness duration primarily in the first a few days (Matthews

et al., 2012), we calculated the scores based on records in the first 4 days.

A.3.1 Incubation period

Incubation period, i.e., the time between infection and onset of symptoms,

was directly computed from the data as the time-span between reported

time at which the infection challenge was administered, and the time at

which the first symptom was reported.

A.3.2 Modified Vesikari score (MVS)

The modified Vesikari score (MVS) is a previously defined quantity that

has been used in a modified form by several studies to measure norovirus

severity (Atmar et al., 2011; Bierhoff et al., 2018; Freedman et al., 2010;

Ruuska and Vesikari, 1990). The score has the seven components shown in

Table A.1. For our data set, since volunteers were housed in a healthcare

setting, the health care provider visit component was not applicable, and

we thus removed it from the score calculation (Atmar et al., 2011). Since

we did not have information on treatment, we also dropped that component.

89



This left us with a five-component score, which was computed for each

individual following the rules shown in Table A.1.

Table A.1: Modifi ed vesikari score components

Components Score = 0 Score = 1 Score = 2 Score = 3

C1: Diarrhea duration, days 0 1-4 5 ≥ 6

C2: Maximum number of daily diarrheal stools 0 1-3 4-5 ≥ 6

C3: Vomiting duration, days 0 1 2 ≥ 3

C4: Maximum number of daily vomiting episodes 0 1 2-4 ≥ 5

C5: Maximum recorded fever Not Elevated Moderate Mild Severe

Health care provider visits N/A N/A N/A N/A

Treatment N/A N/A N/A N/A

Table A.3 shows the scores for all 20 volunteers in the study that were

part of our analyses.

Table A.2: Modifi ed vesikari score components

ID Dose C1 C2 C3 C4 C5 Total

1 0.48 0 3 1 1 1 6

2 4.8 0 1 1 1 2 5

3 4.8 0 0 0 1 1 2

4 4.8 1 3 1 1 2 8

5 4.8 0 1 2 1 2 6

6 4.8 0 1 1 0 0 2

7 4.8 0 1 1 0 0 2

8 48 0 1 2 0 0 3

9 48 0 3 1 0 0 4

10 48 1 0 0 0 0 1

11 48 2 1 1 1 1 6

12 48 1 3 1 1 3 9

13 48 0 1 1 1 1 4

14 48 0 3 1 0 0 4

15 4800 0 0 0 0 0 0

16 4800 0 3 1 0 0 4

17 4800 1 3 1 0 0 5

18 4800 0 1 3 1 1 6

19 4800 2 1 3 1 3 10

20 4800 0 1 2 1 2 6
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A.3.3 Comprehensive symptom score (CSS)

In addition to the modified Vesikari score, we defined and computed a

comprehensive symptom score which took all recorded symptoms into

account.

The study reported the following symptoms: body temperature, malaise,

muscle aches, headache, nausea, chills, anorexia, cramps, unformed or liq-

uid feces, and vomiting. Clinical symptoms (except feces and vomiting)

were reported as none, mild, moderate, or severe, which we coded as a

score of 0 to 3. For feces, we used a scoring of solid = 0, unformed = 1,

and liquid = 2. Vomit was reported as absent or present and scored as 0 or

1.

Individuals had their symptoms recorded at different times and frequen-

cies throughout the day. Thus, summing up the recorded scores would have

introduced bias due to different recording frequencies. Thus, we instead

determined the highest score per symptom for each individual per day, and

summed those. This produced a daily total symptom score for each in-

dividual. We then summed those to obtain our comprehensive symptom

score. For example, if one individual had daily total symptom score values

of 5 (1st day), 10 (2nd day), 2 (3rd day), and 0 (4th day), the final total

symptom scores would be 17.

Table A.3 shows the daily and total comprehensive score values for

the 20 individuals, Figure A.1 shows the same information in graphical

form, stratified by dose.

91



Table A.3: Modifi ed vesikari score components

ID Dose Day1 Day2 Day3 Day4 Total

1 0.48 2 7 2 0 11

2 4.8 0 9 2 0 11

3 4.8 1 1 12 3 17

4 4.8 0 8 4 0 12

5 4.8 4 6 7 0 17

6 4.8 0 1 1 1 3

7 4.8 0 2 3 0 5

8 48 1 6 2 0 9

9 48 1 2 7 3 13

10 48 0 0 2 0 2

11 48 1 14 2 0 17

12 48 1 8 2 0 11

13 48 0 9 0 0 9

14 48 0 9 0 0 9

15 4800 1 6 2 0 9

16 4800 1 7 5 0 13

17 4800 0 6 13 2 21

18 4800 0 10 7 0 17

19 4800 1 14 13 3 31

20 4800 7 8 5 0 20
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Figure A.1: Daily comprehensive symptom score stratified by inoculum
dose group.
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A.3.4 Modeling symptom outcomes

The incubation period is positive and not too far from zero (as measured

in days). Thus, to prevent any possible negative outcomes, we assumed

it followed a log-normal distribution. The rest of the model is similar to

those implemented for the total shedding outcomes, with the full model is

given below.

Likelihood:

Yi ∼ Log-Normal(µi,σ)

Linear model:

exp(µi) = αi +β (xi − x∗)

Adaptive priors:

αi ∼ Normal(δ ,γ)

Fixed priors:

δ ∼ Normal(1,5)

γ ∼ Half-Cauchy(0,2)

β ∼ Normal(0,1)

σ ∼ Half-Cauchy(0,2) ,

As we did for the total shedding outcomes, the model was adjusted for

the categorical dose sensitivity analysis as follows.
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Linear model:

exp(µi) = αi +βdosei

Adaptive priors:

α prior: αi ∼ Normal(0,γ)

Fixed priors:

γ ∼ Half-Cauchy(0,2)

βdosei ∼ Normal(1,5)

We used the same overall model structure for the MSV and CSS out-

comes. However, we modeled these outcomes using a Gamma-Poisson

distribution (also called negative binomial distribution) for the likelihood,

since both scores are non-negative integer-valued. The Gamma-Poisson

model allows for additional variance (also called overdispersion) compared

to a Poisson distribution. The variance is determined by the φ parameter,

and the rate λ is similar to the rate of an ordinary Poisson distribution.

We use the customary log-link for λ , and model its functional relationship

with dose as above with an individual-level intercept and a dose-specific

component, linearly dependent on the log of the dose. The model is given

by the following set of equations.
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Likelihood:

yi ∼ Gamma-Poisson(λi,φ)

Linear model:

log(λi) = αi +β (xi − x∗)

Adaptive priors:

αi ∼ Normal(δ ,γ)

Fixed priors:

δ ∼ Normal(1,5)

γ ∼ Half-Cauchy(0,2)

β ∼ Normal(0,1)

φ ∼ Half-Cauchy(0,2)

Values for the prior distributions were again chosen to ensure reason-

able prior predictive results for the outcomes. To model dose as a categorial

variable, we changed the following parts of the model.

Linear model:

log(λi) = αi +βdosei

Adaptive priors:

αi ∼ Normal(0,γ)

Fixed priors:

γ ∼ Half-Cauchy(0,2)

βdosei ∼ Normal(1,5)
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A.4 Results from additional analyses

A.4.1 Vomit events

In each dose group, only a few individuals had vomiting events. Some of

these individuals had multiple vomiting events. Figure A.2 graphically

displays the vomiting event data. The recorded vomiting events were not

sufficient to allow for a time-series analysis similar to the model we applied

to the fecal shedding data.

Figure A.2: Daily comprehensive symptom score stratified by inoculum
dose group.
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A.4.2 Analyses with dose as a categorical variable

The following figures repeat the analyses and results shown in the main

text, but now with dose treated as categorical.

Assessing association of total virus shedding with dose

Figure A.3 shows data and model estimates for total shedding for each

dose category, where low/medium/high indicate dose levels of 4.8, 48, and

4800 RT-PCR units. The overall pattern is similar to the one we found for

the continuous analysis presented in the main text.

Figure A.3: Virus shedding in feces or vomit. The bars show 89% equal-
tailed credible intervals (CI). Points with circle shape are raw data. A)
Fecal virus shedding in the first 96 hours. B) Fecal virus shedding with all
data. C) Vomit virus shedding. The points show mean of estimations.

Modeling of virus concentration in feces

Figures A.4 - A.6 show data and model estimates for the longitudinal time-

series analysis of the virus concentration in feces, with dose now treated as

98



categorical (low, medium, or high). Again, the overall observed patterns

are similar to the ones we found for the continuous analysis presented in

the main text.
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Figure A.5: Fitted virus concentration (GEC/g) in feces. The lines show
means of estimations. The colored areas show 89% equal-tailed credible
intervals (CI). LOD1 and LOD2 represent the two limits of detection. A)
The fitted curves for 90 days. B) The fitted curves for the first 7 days.
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Figure A.6: Model predictions for viral kinetics as a function of inoculum
dose. The points show means of estimations. The bars show 89% equal-
tailed credible intervals (CI). A) Time to detection (above 15,000 GEC).
B) Time to peak. C) Shedding duration (period that virus concentration
above 15,000 GEC). D) Total virus load (area under concentration curve).

Assessing association of symptoms with dose

Figure A.7 shows data and model estimates for the different symptom

outcomes for each dose category. Again, the patterns seen are similar to

those shown in the main text. One difference is that the comprehensive

score only increases for the highest dose group, while the two lower groups

are similar.
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Figure A.7: Estimated dose impact on symptoms. The points show means
of estimations. The bars show 89% equal-tailed credible intervals (CI).
Points with circle shape are raw data.
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A.4.3 Analyses that includes additional very-low dose in-

fected individual

As explained in the main text, the original study also administered a dose of

0.48 RT-PCR units. At that dose level, only a single challenged individual

became infected. We removed this person for the analysis presented in the

main text. However, we also decided to conduct a sensitivity analysis that

re-computes all results shown in the main text, now with the additional

individual included.

Assessing association of total virus shedding with dose

Comparison of this figure with the one shown in the main text shows

overall similar results.

Figure A.8: Virus shedding in feces or vomit. A) Total fecal virus shedding
in the first 96 hours. B) Total fecal virus shedding with all data. C) Total
vomit virus shedding. The lines show means of estimations. The grey
areas show 89% equal-tailed credible intervals (CI). Points with circle
shape are raw data.
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Modeling of virus concentration in feces

As Figures A.9 - A.11 show, the findings remain essentially unchanged

for these outcomes compared to what is shown in the main text.
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Figure A.10: Fitted virus concentration (GEC/g) in feces. The lines show
means of estimations. The colored areas show 89% equal-tailed credible
intervals (CI). LOD1 and LOD2 represent the two limits of detection. A)
The fitted curves for 90 days. B) The fitted curves for the first 7 days.
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Figure A.11: Model predictions for viral kinetics as a function of inocu-
lum dose. The lines show means of estimations. The grey areas show 89%
equal-tailed credible intervals (CI). A) Time to detection (above 15,000
GEC). B) Time to peak. C) Shedding duration (period that virus concen-
tration above 15,000 GEC). D) Total virus load (area under curve).

Assessing association of symptoms with dose

As figure A.12 shows, the association between dose and symptom out-

comes also remains essentially unchanged when including the additional

individual in the analysis.
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Figure A.12: Estimated dose impact on symptoms. The lines show means
of estimations. The grey areas show 89% equal-tailed credible intervals
(CI). Points with circle shape are raw data.

A.4.4 Categorical analyses that includes additional very-

low dose infected individual

Neither the sensitivity analysis treating dose as categorical, nor the sensitiv-

ity analysis including the additional individual in the continuous analysis

showed any discernible differences from the analyses shown in the main

text. We thus decided to omit what would be yet one more sensitivity

analysis of all 20 individuals with categorical dose.
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A P P E N D I X B

A P P E N D I X : N O R O V I R U S

A N T I B O D Y K I N E T I C S

C O M PA R I S O N S B E T W E E N

I N F E C T I O N A N D

VA C C I N AT I O N

B.1 Overview

This document contains detailed model description. It also describes all ad-

ditional supplementary material needed to reproduce all figures and tables

shown in the main text and in this supplement.
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B.2 Accounting for limits of detection

In the human challenge study, the HBGA antibody had a limit of detection

(< 25), and the IgA and IgG had limits of detection with 1.6 ug/ml and

1.4 ug/ml, respectively (Atmar et al., 2014; Kavanagh et al., 2011; Reeck

et al., 2010). We found similar settings of limits of detection in the vac-

cine candidate study because of the same antibody assays to the human

challenge study (Ramani et al., 2017; Treanor et al., 2014). Follow the

setting in previous studies, we coded these values as 12.5, 0.8 ug/ml, and

0.7 ug/ml for analyses (Atmar et al., 2014; Kavanagh et al., 2011; Reeck

et al., 2010).

B.3 Modeling antibodies kinetics

To model the longitudinal time-series of serum antibodies, we used a em-

pirical equation contains two parts. The first part was used to model the

increase of antibody. The second part was used to model the decay.

The equation for the increase of antibody is given by

P

1+ exp
(

G · (t −T )
) .

It is similar to a Sigmoid function (Bacaër, 2011; YIN et al., 2003). The

outcome of interest is the level of antibody as a function of time, y(t). The

model parameters approximately represent the peak level (P), the speed of

growth (G), the timing of middle point of the curve (T ).

All parameters in the model above need to be positive to achieve bi-

ologically reasonable trajectories for y(t), we rewrote the equation with
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exponentiated parameters and assumed that the antibody data (on a log

scale, denoted below as µi,t), is described for each individual, i, by

µi,t =
exp(pi)

1+ exp
(

exp(gi) · (t − exp(Ti))
) .

Since our limited sample size, to account for variability, we modeled

the outcome using a Student-t distribution, which provides more robust

estimates (Bürkner, 2018; McElreath, 2020).

yi,t ∼ Student-t(k,µi,t ,σ) ,

where the standard deviation (σ ) is modeled with a Half-Cauchy dis-

tribution, and the degrees of freedom (k) are modeled with a Gamma dis-

tribution with priors as shown in the equations below.

For the decay part, we implemented two methods, Exponential and

Power-law (Cohen et al., 2021; de Graaf et al., 2014; P. F. M. Teunis et al.,

2016). Both methods were used to study antibody kinetic (P. F. M. Teunis

et al., 2016). The exponential models used a fixed decay rate to measure

the average speed of waning immunity (de Graaf et al., 2014). The Power-

law models has a time depended decay rate (Cohen et al., 2021; P. F. M.

Teunis et al., 2016; Zarnitsyna et al., 2021). The equations of two methods

are given by

Exponential decay: exp
(

D · t
)
,

Power-law decay: t−exp(D),

where the decay rate (D) controls the speed of antibody decay by time

(t).
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We also implemented exponentiated parameters and assumed that the

antibody decay is described for each individual, i, by

exp
(
− exp(di) · t

)
,

t−exp(di),
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Exponential decay model

Likelihood:

yi,t ∼ Student(k,µi,t ,σ)

Ttime-series:

µi,t = log

 exp(pi)

1+ exp
(
− exp(gi) · (t − exp(Ti))

) · exp
(
− exp(di) · t

)
Parameter:

pi = p0,i + p1,dosei

gi = g0,i +g1,dosei

Ti = T0,i +T1,dosei

di = d0,i +d1,dosei

Adaptive priors:

p0,i prior: p0,i ∼ Cauchy(0,γp)

g0,i prior: g0,i ∼ Cauchy(0,γg)

T0,i prior: T0,i ∼ Cauchy(0,γT )

d0,i prior: d0,i ∼ Cauchy(0,γd)

Fixed priors:

γp prior: γp ∼ Half-Cauchy(0,1)

γg prior: γg ∼ Half-Cauchy(0,1)

γT prior: γT ∼ Half-Cauchy(0,1)

γd prior: γd ∼ Half-Cauchy(0,1)

p1,dosei prior: p1,dosei ∼ Normal(0,10)

g1,dosei prior: g1,dosei ∼ Normal(0,10)

T1,dosei prior: T1,dosei ∼ Normal(0,10)

d1,dosei prior: d1,dosei ∼ Normal(0,10)

k prior: k ∼ Gamma(shape = 2, rate = 0.1)

σ prior: σ ∼ Half-Cauchy(0,1),
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Values for priors were chosen to be weakly informative. The peak level

of antibody values in the range of 101 to 105 (Kavanagh et al., 2011; Reeck

et al., 2010; Treanor et al., 2014) (around 2-12 in log units). The growth

rate will have a value such that the peak is reached within the first several

weeks. The half of peak value also should within the first several weeks.

The decay speed needs to allow for a slow decline. Therefore, we used

wide normal distributions for these parameters, with a mean of 0 and a

deviation of 10 (in log units).
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Power-law decay model

Likelihood:

yi,t ∼ Student(k,µi,t ,σ)

Time-series:

µi,t = log

 exp(pi)

1+ exp
(
− exp(gi) · (t − exp(Ti))

) · t−exp(di)


Parameter:

pi = p0,i + p1,dosei

gi = g0,i +g1,dosei

Ti = T0,i +T1,dosei

di = d0,i +d1,dosei

Adaptive priors:

p0,i prior: p0,i ∼ Cauchy(0,γp)

g0,i prior: g0,i ∼ Cauchy(0,γg)

T0,i prior: T0,i ∼ Cauchy(0,γT )

d0,i prior: d0,i ∼ Cauchy(0,γd)

Fixed priors:

γp prior: γp ∼ Half-Cauchy(0,1)

γg prior: γg ∼ Half-Cauchy(0,1)

γT prior: γT ∼ Half-Cauchy(0,1)

γd prior: γd ∼ Half-Cauchy(0,1)

p1,dosei prior: p1,dosei ∼ Normal(0,10)

g1,dosei prior: g1,dosei ∼ Normal(0,10)

T1,dosei prior: T1,dosei ∼ Normal(0,10)

d1,dosei prior: d1,dosei ∼ Normal(0,10)

k prior: k ∼ Gamma(shape = 2, rate = 0.1)

σ prior: σ ∼ Half-Cauchy(0,1),
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Values for priors were chosen similar to the model with exponential

decay.
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B.3.1 Additional results

Figure B.1: Description of serum antibodies in the HC study.
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Figure B.2: Description of serum antibodies in the HV study.
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A P P E N D I X C

A P P E N D I X : I M PA C T O F

S E A S O N A L I N F L U E N Z A

VA C C I N E D O S E O N

H O M O L O G O U S A N D

H E T E R O L O G O U S I M M U N I T Y

C.1 Description of the multi-center cohort study

Our data came from an ongoing vaccination study. In the study, partici-

pants were enrolled before each influenza season. Serum samples were

collected and then tested against multiple strains (either contained or not

contained in the vaccine) for hemagglutination-inhibition (HAI) antibody

titer results at two time points (before and after the vaccination). There-

fore, the sample size of HAI titers was much more than the sample size of

participants (Figure C.1).
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We summarized two special features in the study design (Figure C.2).

First, the influenza vaccine used during this study contained either three

or four strains. Second, before and after the vaccination, each individual’s

serum sample was tested with multiple strains for HAI titer results. So,

for homologous analysis, several vaccine strains’ HAI results may have

correlations because they were taken from the same participant. For het-

erogeneous analysis, multiple HAI titer results came from one participant

such that these results also correlated. As a result, we used multilevel

models. Lastly, some participants were enrolled more than once across the

study seasons, we added another hierarchical setting of random intercept

based on participants ID.

137



Figure C.1: Flow diagram of the multi-center cohort study.
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Figure C.2: The hierarchical features of the study.
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C.2 Main multilevel model

C.2.1 Introduction

There were four outcomes based on transformed titer unite, log2(HAI/5),

namely increase in titer following vaccination, post-vaccination titer, and

the categorical versions of those two outcomes, namely seroconversion

and seroprotection.

We assumed there was an overall impact of vaccine dose (sometimes

also known as an average effect). Because there were multiple strains

and seasons, we further assumed there were variations around the overall

impact by strains or seasons. Therefore, we used multilevel models. We

named the model which estimated an overall impact of vaccine dose and

its variation by strains as the strain-specific model. Similarly, we called the

model which estimated an overall impact of vaccine dose and its variation

by seasons as the vaccine-specific model. In the models, we included the

vaccine dose as the main predictor of interest, with age, sex, race and pre-

vaccination antibody titer levels as covariates. Continuous variables such

as age and pre-vaccination titer were standardized (z-score transformation)

before model fitting.

We used Bayesian approaches to estimate parameters in these multi-

level models. For the two continuous outcomes (increase in titer following

vaccination, post-vaccination titer), we used a linear model. For the binary

outcomes (seroconversion and seroprotection), we used a logistic model.

Because our model includes pre-vaccination titer as a variable, the titer

increase outcome with log2 transformation (post-vaccination titer minus

pre-vaccination titer) and the model of post-vaccination titer outcome (with

log2 transformation) become mathematically equivalent and produce the
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same coefficient estimations for the variable of vaccine dose. Thus, for our

analyses where pre-vaccination titer is part of the model, we only report

one continuous outcome, namely titer increase.

In homologous models, we filtered the data to only have HAI titer

results of the same strain contained in the vaccine (e.g., each row of the

data represented participants who received X vaccine strain and their pre-

and post-vaccination HAI titer of strain X). In heterologous models, we

filtered the data to only have HAI titer results on strains similar to the

vaccine strain but not the same as the vaccine strain. For example, when

we aim to analyze the heterologous response of H1N1 vaccine strain X,

we only keep HAI pre- and post-vaccination titer results of other H1N1

strains of participants who received the vaccine strain X. For H3N2 vaccine

strains X, the HAI titer results came from other H3N2 strains, and for X

strain of influenza B, the HAI titer results came from other B strains (no

subset on lineages).

Models were implemented using the brms package (Bürkner, 2018) in

R (R Core Team, 2020).

141



C.2.2 Model prior setting

Bayesian models need settings of priors. We set our parameter priors

based on our study design. In the study, HAI titers were measured with

the standard dilution assay with a limit of detection (LOD) as 1:10 and

a maximum as 1:20480. After the transformation ("log" 2(HAI/5)), HAI

titers values located within a range from zero (LOD) to 12. Therefore, the

outcome of titer increase may only vary between -12 to 12 log2 HAI units.

For the outcome of seroconversion and seroprotection, because they are

binary outcomes, the target probability only can range from 0 to 1.

We aim to have a relatively flat prior-predictive distribution for our

outcomes. For the outcome of titer increase, we used normal distribution

with mean 0 and standard deviation of 10 (Normal (0,10)) for variable co-

efficients in the model to have a relatively flat prior-predictive distribution

within the range of -12 to 12. By such set, our priors influence the poste-

rior inference weakly (“Prior Choice Recommendations · Stan-Dev/Stan

Wiki”, n.d.). For the outcome of seroconversion and seroprotection, nar-

rower priors for variable coefficients are needed to have a relatively flat

prior-predictive distribution of the probability in the range of 0 to 1 (McEl-

reath, 2020). Therefore, we used Normal(0,1) as the prior distribution for

variable coefficients.
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C.2.3 Models of strain-specific analysis

In strain-specific analyses, we aim to estimate the overall vaccine dose

impact and its variations by each strain. We used random intercepts for

each participant based on IDs (IDs were same across their vaccination

seasons) in both homologous and heterologous models because multiple

strain specific HAI titer results from the same person may be correlated.

In addition, dose-specific random effects for each vaccine strain were also

estimated.

Titer increase homologous model

The code of model setting is: titerincrease 0 + dose + (0 + dose| vac-

cine strains) + scale(age) + race + sex + scale(pre-vaccination titer) + (1 |

participant ID)

With the setting of "dose + (0 + dose| vaccine strains)", we modeled

the overall vaccine dose impact and its variations by each strain. With

the setting of "(1 | participant ID)", we adjust for the correlation among

multiple strain-specific HAI titer results from the same person.

The mathematical forms are presented as below:
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[Likelihood]:

yi j ∼ Normal(µi j,σ
2), i : individual, j : strain

[Linear model]:

µi j = αID[i]

+(DoseHD +DoseHD[ j])I(Dose[i] = HD)

+(DoseSD +DoseSD[ j])I(Dose[i] = SD)

+βsexxsex[i]+βracexrace[i]+βagexage[i]+βpxPre−vaccine titer[i j]

[Fixed priors]:

σ ∼ Half-Cauchy(0,1)

DoseHD ∼ Normal(0,10)

DoseSD ∼ Normal(0,10)

βsex ∼ Normal(0,10)

βrace ∼ Normal(0,10)

βage ∼ Normal(0,10)

βp ∼ Normal(0,10)

[Adaptive prior]:

αID ∼ Normal(0,σ2
α)DoseHD[ j]

DoseSD[ j]

∼ MVNormal

0

0

 ,Svaccine


[Hyper priors]

σα ∼ Half-Cauchy(0,1)

Svaccine ∼ LkjCholesky(1),
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where αID[i] stands for random intercept by participants ID. DoseHD

or DoseSD stands for the overall impact of vaccine dose in HD or SD dose

group. DoseHD[ j] or DoseSD[ j] stands for variations of the overall impact

of vaccine dose in HD or SD dose group by each strain j. xsex[i], xrace[i],

xage[i] stand for variables of sex, race, age of the participant with ID = i.

xPre−vaccine titer[i j] stands for the pre-vaccination HAI titer of strain j from

the sample which was taken from participant i. The prior multivariate nor-

mal distribution (MVNormal) for HD and SD of strain j provided flexibility

on the correlation between HD and SD on the strain j.

Titer increase heterologous model

The settings of the model were the same as the homologous model. The

only difference was the data. In the heterologous model, only heterologous

HAI titers results were used.

The mathematical forms are presented as below:
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[Likelihood]:

(yi j|Vaccine strain = v,v ̸= j)∼ Normal(µi j,σ
2), i : individual, j : strain

µi j = αID[i]

+(DoseHD +DoseHD[ j])I(Dose[i] = HD)

+(DoseSD +DoseSD[ j])I(Dose[i] = SD)

+βsexxsex[i]+βracexrace[i]+βagexage[i]+βpxPre−vaccine titer[i j]

[Fixed priors]:

σ ∼ Half-Cauchy(0,1)

DoseHD ∼ Normal(0,10)

DoseSD ∼ Normal(0,10)

βsex ∼ Normal(0,10)

βrace ∼ Normal(0,10)

βage ∼ Normal(0,10)

βp ∼ Normal(0,10)

[Adaptive prior]:

αID ∼ Normal(0,σ2
α)DoseHD[ j]

DoseSD[ j]

∼ MVNormal

0

0

 ,Svaccine


[Hyper priors]

σα ∼ Half-Cauchy(0,1)

Svaccine ∼ Lk jCholesky(1)
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Seroconversion and Seroprotection homologous model

Most model settings were similar to the titer increase homologous model,

but the model link changed to logit.

The mathematical forms are presented as below:
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[Likelihood]:

yi j ∼ Binomial(n = 1, p = pi j), i : individual, j : strain

logit(pi j) = αID[i]

+(DoseHD +DoseHD[ j])I(Dose[i] = HD)

+(DoseSD +DoseSD[ j])I(Dose[i] = SD)

+βsexxsex[i]+βracexrace[i]+βagexage[i]+βpxPre−vaccine titer[i j]

[Fixed priors]:

DoseHD ∼ Normal(0,10)

DoseSD ∼ Normal(0,10)

βsex ∼ Normal(0,1)

βrace ∼ Normal(0,1)

βage ∼ Normal(0,1)

βp ∼ Normal(0,1)

[Adaptive prior]:

αID ∼ Normal(0,σ2
α)DoseHD[ j]

DoseSD[ j]

∼ MVNormal

0

0

 ,Svaccine


[Hyper priors]

σα ∼ Half-Cauchy(0,1)

Svaccine ∼ LkjCholesky(1)
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Seroconversion and Seroprotection heterologous model

Most model settings were similar to the titer increase heterologous model,

but the model link changed to logit.

The mathematical forms are presented as below:
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[Likelihood]:

(yi j|Vaccine strain = v,v ̸= j)∼ Binomial(n = 1, p = pi j)

i : individual, j : strain

logit(pi j) = αID[i]

+(DoseHD +DoseHD[ j])I(Dose[i] = HD)

+(DoseSD +DoseSD[ j])I(Dose[i] = SD)

+βsexxsex[i]+βracexrace[i]+βagexage[i]+βpxPre−vaccine titer[i j]

[Fixed priors]:

DoseHD ∼ Normal(0,10)

DoseSD ∼ Normal(0,10)

βsex ∼ Normal(0,1)

βrace ∼ Normal(0,1)

βage ∼ Normal(0,1)

βp ∼ Normal(0,1)

[Adaptive prior]:

αID ∼ Normal(0,σ2
α)DoseHD[ j]

DoseSD[ j]

∼ MVNormal

0

0

 ,Svaccine


[Hyper priors]

σα ∼ Half-Cauchy(0,1)

Svaccine ∼ LkjCholesky(1)
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C.2.4 Models of vaccine-specific analysis

In vaccine-specific analyses, we aim to estimate the overall vaccine dose

impact and its variations by each season. We used random intercepts for

each participant based on IDs (IDs were same across their vaccination

seasons) in both homologous and heterologous models because multiple

strain-specific HAI titer results could come from the same person.

We estimated the overall vaccine dose impact with parameters DoseHD

or DoseSD, and its variations for each season with parameters DoseHD[s] or

DoseSD[s] (s stands for season).

Titer increase homologous model

The code of model setting is: titerincrease 0 + dose + (0 + dose | season)

+ scale(age) + race + sex + scale(pre-vaccination titer) + (1 | participant

ID)

With the setting of "dose + (0 + dose| season)", we modeled the overall

vaccine dose impact and its variations by each season. With the setting

of "(1 | participant ID)", we let the model account for that that multiple

strain-specific HAI titer results could come from the same person.

HAI tested strains were same to vaccine strains. The mathematical

forms are presented as below:
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[Likelihood]:

yis ∼ Normal(µis,σ
2)

i : individual, s : season

µi js = αID[i]

+(DoseHD +DoseHD[s])I(Dose[i] = HD)

+(DoseSD +DoseSD[s])I(Dose[i] = SD)

+βsexxsex[i]+βracexrace[i]+βagexage[i]+βpxPre−vaccine titer[i js]

[Fixed priors]:

σ ∼ Half-Cauchy(0,1)

DoseHD ∼ Normal(0,10)

DoseSD ∼ Normal(0,10)

βsex ∼ Normal(0,10)

βrace ∼ Normal(0,10)

βage ∼ Normal(0,10)

βp ∼ Normal(0,10)

[Adaptive prior]:

αID ∼ Normal(0,σ2
α)DoseHD[s]

DoseSD[s]

∼ MVNormal

0

0

 ,Sseason


[Hyper priors]

σα ∼ Half-Cauchy(0,1)

Svaccine ∼ LkjCholesky(1),
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where αID[i] stands for random intercept by participants ID. DoseHD

or DoseSD stands for the overall impact of vaccine dose in HD or SD dose

group. DoseHD[s] or DoseSD[s] stands for variations of the overall impact

of vaccine dose in HD or SD dose group by each season. xsex[i], xrace[i],

xage[i] stand for variables of sex, race, age of the participant with ID =

i. xPre−vaccine titer[i js] stands for the pre-vaccination HAI titer of strain j

from the sample which was taken from participant i in season s. The prior

multivariate normal distribution (MVNormal) for HD and SD in season

s provided flexibility on the correlation between HD and SD in the same

season.

Titer increase heterologous model

HAI tested strains were different from vaccine strains. The mathematical

forms are presented as below:
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[Likelihood]:

yis ∼ Normal(µis,σ
2)

i : individual, s : season

µi js = αID[i]

+(DoseHD +DoseHD[s])I(Dose[i] = HD)

+(DoseSD +DoseSD[s])I(Dose[i] = SD)

+βsexxsex[i]+βracexrace[i]+βagexage[i]+βpxPre−vaccine titer[i js]

[Fixed priors]:

σ ∼ Half-Cauchy(0,1)

DoseHD ∼ Normal(0,10)

DoseSD ∼ Normal(0,10)

βsex ∼ Normal(0,10)

βrace ∼ Normal(0,10)

βage ∼ Normal(0,10)

βp ∼ Normal(0,10)

[Adaptive prior]:

αID ∼ Normal(0,σ2
α)DoseHD[s]

DoseSD[s]

∼ MVNormal

0

0

 ,Sseason


(Hyper-priors)

σα ∼ Half-Cauchy(0,1)

Svaccine ∼ LkjCholesky(1)
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Seroconversion and Seroprotection homologous model

HAI tested strains were same to vaccine strains. The mathematical forms

are presented as below:
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[Likelihood]:

yis ∼ Binomial(n = 1, p = pis)

i : individual, s : season

pis = αID[i]

+(DoseHD +DoseHD[s])I(Dose[i] = HD)

+(DoseSD +DoseSD[s])I(Dose[i] = SD)

+βsexxsex[i]+βracexrace[i]+βagexage[i]+βpxPre−vaccine titer[i js]

[Fixed priors]:

DoseHD ∼ Normal(0,10)

DoseSD ∼ Normal(0,10)

βsex ∼ Normal(0,1)

βrace ∼ Normal(0,1)

βage ∼ Normal(0,1)

βp ∼ Normal(0,1)

[Adaptive prior]:

αID ∼ Normal(0,σ2
α)DoseHD[s]

DoseSD[s]

∼ MVNormal

0

0

 ,Sseason


(Hyper-priors)

σα ∼ Half-Cauchy(0,1)

Svaccine ∼ LkjCholesky(1)
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Seroconversion and Seroprotection heterologous model

HAI tested strains were different from vaccine strains. The mathematical

forms are presented as below:
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[Likelihood]:

yis ∼ Binomial(n = 1, p = pis)

i : individual, s : season

pis = αID[i]

+(DoseHD +DoseHD[s])I(Dose[i] = HD)

+(DoseSD +DoseSD[s])I(Dose[i] = SD)

+βsexxsex[i]+βracexrace[i]+βagexage[i]+βpxPre−vaccine titer[i js]

[Fixed priors]:

DoseHD ∼ Normal(0,10)

DoseSD ∼ Normal(0,10)

βsex ∼ Normal(0,1)

βrace ∼ Normal(0,1)

βage ∼ Normal(0,1)

βp ∼ Normal(0,1)

[Adaptive prior]:

αID ∼ Normal(0,σ2
α)DoseHD[s]

DoseSD[s]

∼ MVNormal

0

0

 ,Sseason


(Hyper-priors)

σα ∼ Half-Cauchy(0,1)

Svaccine ∼ LkjCholesky(1)
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C.3 Further analyses

We performed a number of additional analyses to describe data and ex-

plore the sensitivity of our main results. In the sensitivity analysis, we

included SD recipients of any age. We also used Bayesian generalized

linear models for 65+ years old population. In addition, we used 1:1 dose

group propensity score matched data (using the nearest neighbor matching

algorithm (Ho et al., 2007/ed) with Bayesian generalized linear models as

a sensitivity analysis of both data and modeling approaches. Coefficients

were summarized with median and 89% equal-tailed credible interval (CI)

(McElreath, 2020).
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C.3.1 Description analyses

Strain-specific description

Figure C.3: Homologous pre- and post- vaccination titer. The dashed
horizontal line is the seroprotection criterion. criterion.
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Figure C.4: Heterologous pre- and post- vaccination titer (H1N1-
California-2009). The dashed horizontal line is the seroprotection cri-
terion.
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Figure C.5: Heterologous pre- and post- vaccination titer (H1N1-Michigan-
2015). The dashed horizontal line is the seroprotection criterion.
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Figure C.6: Heterologous pre- and post- vaccination titer (H3N2-Texas-
2012). The dashed horizontal line is the seroprotection criterion.
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Figure C.7: Heterologous pre- and post- vaccination titer (H3N2-
Switzerland-2013). The dashed horizontal line is the seroprotection crite-
rion.
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Figure C.8: Heterologous pre- and post- vaccination titer (H3N2-Hong
Kong-2014). The dashed horizontal line is the seroprotection criterion.
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Figure C.9: Heterologous pre- and post- vaccination titer (H3N2-
Singapore-2016). The dashed horizontal line is the seroprotection cri-
terion.

166



Figure C.10: Heterologous pre- and post- vaccination titer (B-Brisbane-
2008). The dashed horizontal line is the seroprotection criterion.
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Figure C.11: Heterologous pre- and post- vaccination titer (B-
Massachusetts-2012). The dashed horizontal line is the seroprotection
criterion.
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Figure C.12: Heterologous pre- and post- vaccination titer (B-Phuket-
2013). The dashed horizontal line is the seroprotection criterion.

169



Figure C.13: Heterologous pre- and post- vaccination titer (B-Colorado-
2017). The dashed horizontal line is the seroprotection criterion.
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Vaccine-specific description

Figure C.14: Pre- and post- vaccination titer by each vaccine. The top row
is homologous response, the bottom row is the heterologous response
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Repeated vaccinations

Figure C.15: Repeated vaccination description
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C.3.2 Additional results of the main model

This section contains seroconversion and seroprotection heterologous re-

sults, as well as the coefficients of sex in either strain-specific and vaccine-

specific analyses.

Seroconversion and seroprotection heterologous results

Figure C.16: The impact of HD vaccine compared to SD on strain-specific
heterologous seroconversion (H1N1 strains). The median and 89% equal-
tailed credible interval (CI) of the overall effect (HD vs SD) are shown. The
numbers under each line show the sample size (HD/SD) for that specific
strain or the overall effect size.
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Figure C.17: The impact of HD vaccine compared to SD on strain-specific
heterologous seroconversion (H3N2 strains). The median and 89% equal-
tailed credible interval (CI) of the overall effect (HD vs. SD) are shown.
The numbers under each line show the sample size (HD/SD) for that spe-
cific strain or the overall effect size.
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Figure C.18: The impact of HD vaccine compared to SD on strain-specific
heterologous seroconversion (B strains). The median and 89% equal-tailed
credible interval (CI) of the overall effect (HD vs. SD) are shown. The
numbers under each line show the sample size (HD/SD) for that specific
strain or the overall effect size.
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Figure C.19: The impact of HD vaccine compared to SD on vaccine-
specific heterologous seroprotection (H1N1 strains). The median and 89%
equal-tailed credible interval (CI) of the overall effect (HD vs. SD) are
shown. The numbers under each line show the sample size (HD/SD) for
that specific strain or the overall effect size.
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Figure C.20: The impact of HD vaccine compared to SD on vaccine-
specific heterologous seroprotection (H3N2 strains). The median and 89%
equal-tailed credible interval (CI) of the overall effect (HD vs. SD) are
shown. The numbers under each line show the sample size (HD/SD) for
that specific strain or the overall effect size.
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Figure C.21: The impact of HD vaccine compared to SD on vaccine-
specific heterologous seroprotection (B strains). The median and 89%
equal-tailed credible interval (CI) of the overall effect (HD vs. SD) are
shown. The numbers under each line show the sample size (HD/SD) for
that specific strain or the overall effect size
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Impact of sex

We extracted coefficients of the covariate sex in the main model to show

its impact.

Table C.1: The impact of gender in vaccine-specific analyses

Type of outcome Outcome Estimation (Male v.s. Female)

Homologous Titer increase -0.35, 89%CI: -0.53 to -0.16

Heterologous Titer increase -0.19, 89%CI: -0.31 to -0.07

Homologous Seroconversion 0.71, 89%CI: 0.52 to 0.97

Heterologous Seroconversion 0.64, 89%CI: 0.49 to 0.84

Homologous Seroprotection 0.91, 89%CI: 0.59 to 1.43

Heterologous Seroprotection 0.84, 89%CI: 0.64 to 1.1
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C.3.3 Sensitivity analysis

To explore the robustness of the main results, we compared results by using

different data and model approaches.

Multilevel model (including young SD participants)

We first included participants younger than 65 years old into SD group.
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Figure C.22: The impact of HD vaccine compared to SD on strain-specific
homologous responses. The median and 89% equal-tailed credible interval
(CI) of the overall effect (HD vs. SD) are shown. The numbers under each
line show the sample size (HD/SD) for that specific strain or the overall
effect size.
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Figure C.23: The impact of HD vaccine compared to SD on strain-specific
heterologous titer increase (H1N1 strains). The median and 89% equal-
tailed credible interval (CI) of the overall effect (HD vs. SD) are shown.
The numbers under each line show the sample size (HD/SD) for that spe-
cific strain or the overall effect size.
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Figure C.24: The impact of HD vaccine compared to SD on strain-specific
heterologous titer increase (H3N2 strains). The median and 89% equal-
tailed credible interval (CI) of the overall effect (HD vs. SD) are shown.
The numbers under each line show the sample size (HD/SD) for that spe-
cific strain or the overall effect size.
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Figure C.25: The impact of HD vaccine compared to SD on strain-specific
heterologous titer increase (B strains). The median and 89% equal-tailed
credible interval (CI) of the overall effect (HD vs. SD) are shown. The
numbers under each line show the sample size (HD/SD) for that specific
strain or the overall effect size.
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Figure C.26: The impact of HD vaccine compared to SD on strain-specific
heterologous seroconversion (H1N1 strains). The median and 89% equal-
tailed credible interval (CI) of the overall effect (HD vs. SD) are shown.
The numbers under each line show the sample size (HD/SD) for that spe-
cific strain or the overall effect size.
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Figure C.27: The impact of HD vaccine compared to SD on strain-specific
heterologous seroconversion (H3N2 strains). The median and 89% equal-
tailed credible interval (CI) of the overall effect (HD vs. SD) are shown.
The numbers under each line show the sample size (HD/SD) for that spe-
cific strain or the overall effect size.
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Figure C.28: The impact of HD vaccine compared to SD on strain-specific
heterologous seroconversion (B strains). The median and 89% equal-tailed
credible interval (CI) of the overall effect (HD vs. SD) are shown. The
numbers under each line show the sample size (HD/SD) for that specific
strain or the overall effect size.
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Figure C.29: The impact of HD vaccine compared to SD on strain-specific
heterologous seroprotection (H1N1 strains). The median and 89% equal-
tailed credible interval (CI) of the overall effect (HD vs. SD) are shown.
The numbers under each line show the sample size (HD/SD) for that spe-
cific strain or the overall effect size.
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Figure C.30: The impact of HD vaccine compared to SD on strain-specific
heterologous seroprotection (H3N2 strains). The median and 89% equal-
tailed credible interval (CI) of the overall effect (HD vs. SD) are shown.
The numbers under each line show the sample size (HD/SD) for that spe-
cific strain or the overall effect size.
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Figure C.31: The impact of HD vaccine compared to SD on strain-specific
heterologous seroprotection (B strains). The median and 89% equal-tailed
credible interval (CI) of the overall effect (HD vs. SD) are shown. The
numbers under each line show the sample size (HD/SD) for that specific
strain or the overall effect size.
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Figure C.32: The impact of HD vaccine compared to SD on vaccine-
specific analyses. The median and 89% equal-tailed credible interval (CI)
of the overall effect (HD vs. SD) are shown. The numbers under each line
show the sample size (HD/SD) for that specific strain or the overall effect
size. The top row shows homologous responses (A to C), the bottom row
is heterologous (D to F).
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Generalized linear models

We used generalized linear model to estimate the impact of vaccine dose by

pairs of each vaccine strain and HAI tested strain. Therefore, in coefficient

plots, coefficients came from different models.

The impact of HD vaccine compared to SD on strain-specific homolo-

gous response

Figure C.33: The impact of HD vaccine compared to SD on strain-specific,
homologous HAI titer increase. The median and 89% equal-tailed credible
interval (CI) of the overall effect (HD vs. SD) are shown. The numbers
under each line show the sample size (HD/SD) for that specific strain or
the overall effect size.
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Figure C.34: The impact of HD vaccine compared to SD on strain-specific,
heterologous HAI titer increase (H1N1 strains). The median and 89%
equal-tailed credible interval (CI) of the overall effect (HD vs. SD) are
shown. The numbers under each line show the sample size (HD/SD) for
that specific strain or the overall effect size.
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Figure C.35: The impact of HD vaccine compared to SD on strain-specific,
heterologous HAI titer increase (H3N2 strains). The median and 89%
equal-tailed credible interval (CI) of the overall effect (HD vs. SD) are
shown. The numbers under each line show the sample size (HD/SD) for
that specific strain or the overall effect size.
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Figure C.36: The impact of HD vaccine compared to SD on strain-specific,
heterologous HAI titer increase (B strains). The median and 89% equal-
tailed credible interval (CI) of the overall effect (HD vs. SD) are shown.
The numbers under each line show the sample size (HD/SD) for that spe-
cific strain or the overall effect size.
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Figure C.37: The impact of HD vaccine compared to SD on strain-specific
heterologous seroconversion (H1N1 strains). The median and 89% equal-
tailed credible interval (CI) of the overall effect (HD vs. SD) are shown.
The numbers under each line show the sample size (HD/SD) for that spe-
cific strain or the overall effect size
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Figure C.38: The impact of HD vaccine compared to SD on strain-specific
heterologous seroconversion (H3N2 strains). The median and 89% equal-
tailed credible interval (CI) of the overall effect (HD vs. SD) are shown.
The numbers under each line show the sample size (HD/SD) for that spe-
cific strain or the overall effect size.
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Figure C.39: The impact of HD vaccine compared to SD on strain-specific
heterologous seroconversion (B strains). The median and 89% equal-tailed
credible interval (CI) of the overall effect (HD vs. SD) are shown. The
numbers under each line show the sample size (HD/SD) for that specific
strain or the overall effect size.
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Figure C.40: The impact of HD vaccine compared to SD on strain-specific
heterologous seroprotection (H1N1 strains). The median and 89% equal-
tailed credible interval (CI) of the overall effect (HD vs. SD) are shown.
The numbers under each line show the sample size (HD/SD) for that spe-
cific strain or the overall effect size.
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Figure C.41: The impact of HD vaccine compared to SD on strain-specific
heterologous seroprotection (H3N2 strains). The median and 89% equal-
tailed credible interval (CI) of the overall effect (HD vs. SD) are shown.
The numbers under each line show the sample size (HD/SD) for that spe-
cific strain or the overall effect size.
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Figure C.42: The impact of HD vaccine compared to SD on strain-specific
heterologous seroprotection (B strains). The median and 89% equal-tailed
credible interval (CI) of the overall effect (HD vs. SD) are shown. The
numbers under each line show the sample size (HD/SD) for that specific
strain or the overall effect size.
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Figure C.43: The impact of HD vaccine compared to SD on vaccine-
specific HAI responses. The median and 89% equal-tailed credible interval
(CI) of the overall effect (HD vs. SD) are shown. The numbers under each
line show the sample size (HD/SD) for that specific strain or the overall
effect size. The top row shows homologous responses, the bottom row is
heterologous.
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Propensity score matching model

We use the same model setting as the generalized linear model with data

based on propensity score matching. We used 1:1 matching on variables of

age, sex, pre-vaccine titer and race (using the nearest neighbor matching

algorithm (Ho et al., 2007/ed).
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Figure C.44: The impact of HD vaccine compared to SD on strain-specific,
homologous HAI titer increase. The median and 89% equal-tailed credible
interval (CI) of the overall effect (HD vs. SD) are shown. The numbers
under each line show the sample size (HD/SD) for that specific strain or
the overall effect size.
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Figure C.45: The impact of HD vaccine compared to SD on strain-specific,
heterologous HAI titer increase (H1N1 strains). The median and 89%
equal-tailed credible interval (CI) of the overall effect (HD vs. SD) are
shown. The numbers under each line show the sample size (HD/SD) for
that specific strain or the overall effect size.
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Figure C.46: The impact of HD vaccine compared to SD on strain-specific,
heterologous HAI titer increase (H3N2 strains). The median and 89%
equal-tailed credible interval (CI) of the overall effect (HD vs. SD) are
shown. The numbers under each line show the sample size (HD/SD) for
that specific strain or the overall effect size.
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Figure C.47: The impact of HD vaccine compared to SD on strain-specific,
heterologous HAI titer increase (B strains). The median and 89% equal-
tailed credible interval (CI) of the overall effect (HD vs. SD) are shown.
The numbers under each line show the sample size (HD/SD) for that spe-
cific strain or the overall effect size.
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Figure C.48: The impact of HD vaccine compared to SD on strain-specific
heterologous seroconversion (H1N1 strains). The median and 89% equal-
tailed credible interval (CI) of the overall effect (HD vs. SD) are shown.
The numbers under each line show the sample size (HD/SD) for that spe-
cific strain or the overall effect size
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Figure C.49: The impact of HD vaccine compared to SD on strain-specific
heterologous seroconversion (H3N2 strains). The median and 89% equal-
tailed credible interval (CI) of the overall effect (HD vs. SD) are shown.
The numbers under each line show the sample size (HD/SD) for that spe-
cific strain or the overall effect size.
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Figure C.50: The impact of HD vaccine compared to SD on strain-specific
heterologous seroconversion (B strains). The median and 89% equal-tailed
credible interval (CI) of the overall effect (HD vs. SD) are shown. The
numbers under each line show the sample size (HD/SD) for that specific
strain or the overall effect size.
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Figure C.51: The impact of HD vaccine compared to SD on strain-specific
heterologous seroprotection (H1N1 strains). The median and 89% equal-
tailed credible interval (CI) of the overall effect (HD vs. SD) are shown.
The numbers under each line show the sample size (HD/SD) for that spe-
cific strain or the overall effect size.
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Figure C.52: The impact of HD vaccine compared to SD on strain-specific
heterologous seroprotection (H3N2 strains). The median and 89% equal-
tailed credible interval (CI) of the overall effect (HD vs. SD) are shown.
The numbers under each line show the sample size (HD/SD) for that spe-
cific strain or the overall effect size.
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Figure C.53: The impact of HD vaccine compared to SD on strain-specific
heterologous seroprotection (B strains). The median and 89% equal-tailed
credible interval (CI) of the overall effect (HD vs. SD) are shown. The
numbers under each line show the sample size (HD/SD) for that specific
strain or the overall effect size.
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Figure C.54: The impact of HD vaccine compared to SD on vaccine-
specific HAI responses. The median and 89% equal-tailed credible interval
(CI) of the overall effect (HD vs. SD) are shown. The numbers under each
line show the sample size (HD/SD) for that specific strain or the overall
effect size. The top row shows homologous responses, the bottom row is
heterologous.
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