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Abstract

In this work, we explore the effect of various dopant candidates in multiple defect centers in

the nonlinear optical material potassium niobate (KNbO3) by means of ab initio calculations.

We employ Density Functional Theory (DFT) to model different transition metal defect

complexes within KNbO3 and explore trends in the band structures and projected densities

of states to make qualitative predictions about the optical and infrared response of these

systems. We also perform a detailed study of Fe as a substitutional impurity on both K and

Nb sites in different local environments and ionization states and make detailed assignments

of defect center levels reported in the experimental literature. Using DFT, we can explore a

rather large number of dopant candidates and defect complexes identifying promising systems

for deeper study. We have begun exploring the application of the GW approximation to some

of these systems, using results for the pure phases of KNbO3 as a baseline. While limitations

in computational time and resources prevent the extensive use of GW on doped systems,

we discuss these limitations and present viable alternative routes of study for extending this

methodology.

Index words: Density Functional Theory, GW Approximation, Nonlinear Optics,
Defects, Photorefractive Effect



Ab initio studies of dopant-defect complexes in KNbO3

by

E. G. Suter

B.S., University of Georgia, 2014

A Dissertation Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Athens, Georgia

2022



© 2022

E. G. Suter

All Rights Reserved



Ab initio studies of dopant-defect complexes in KNbO3

by

E. G. Suter

Major Professors: Steven P. Lewis and William M. Dennis

Committee: Dean R. Evans
Heinz-Bernd Schüttler

Electronic Version Approved:

Ron Walcott
Vice Provost for Graduate Education and Dean of the Graduate School
The University of Georgia
May 2022



Acknowledgments

Foremost, I would like to extend my sincerest gratitude to my advising professors, Dr.

Steven Lewis and Dr. William Dennis. Your guidance, knowledge, and advice have been

there when I most needed them. I will never forget the myriad acts of kindness, patience, and

consideration that you have both shown. Nor will I forget the deluge of puns and witticisms

we’ve shared. I am proud of the researcher I’ve become under your mentorship and could

not have asked for a better advising duo.

I would also like to thank the members of my committee, Dr. Heinz-Bernd Schüttler and

Dr. Dean Evans. Dr. Schüttler, you have given me many useful lessons in my undergraduate

career and your curiosity and keen questions made my oral exam extremely fruitful. Dean,

I am incredibly grateful for the amazing opportunity of attending the COLLA and for your

insights as an experimentalist which have helped me view where my work might fit in to the

body of knowledge and helped shape the researcher I want to become.

I would also like to extend my thanks to the University of Georgia Department of Physics

and Astronomy. The professors here have given me a breadth of knowledge I will take with me

wherever I go. I also wish to profusely thank the staff of the Georgia Advanced Computing

Resource Center, and in particular to Shan-Ho Tsai. Doubtless the research within this

dissertation was only possible by her and the staff’s herculean efforts in keeping the server

racks running.

And finally, I would like to thank my family and friends. Your love and encouragement

throughout this process are responsible for why I have been able to complete this task at

iv



all. You have given me strength when I felt fearful, support when I felt uncertain, and your

unerring confidence in me has pushed me to be better than I thought myself capable. It fills

me with pride, joy, and wonder to have been fortunate enough to have you in my life.

v



Table of Contents

Page

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Material parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Photorefractive Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Techniques and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 The GW Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Effects of Transition Metal Dopants on the Electronic Structure of KNbO3 56

3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Copyright Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Investigation of Fe Defect Centers in KNbO3 . . . . . . . . . . . . . . . . 77

4.1 Defect Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

vi



4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 GW Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Summary, Conclusions, and Future Directions . . . . . . . . . . . . . . . . 115

Appendix A: Proof of the Hohenberg-Kohn Theorems . . . . . . . . . . . . . 121

Appendix B: Exchange-Correlation Functionals . . . . . . . . . . . . . . . . . 124

B1 Local Density Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B2 Generalized Gradient Approximation . . . . . . . . . . . . . . . . . . . . . . 126

B3 Beyond LDA and GGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Appendix C: Quantum Espresso Details . . . . . . . . . . . . . . . . . . . . . 129

C1 Executables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

C2 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Appendix D: BerkeleyGW Details . . . . . . . . . . . . . . . . . . . . . . . . . 133

D1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

D2 Executables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Appendix E: On the GW Approximation . . . . . . . . . . . . . . . . . . . . . 145

E1 Equation of Motion for G . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

E2 Derivations of Hedin’s Equations . . . . . . . . . . . . . . . . . . . . . . . . 147

E3 Self-consistency in the GW approximation . . . . . . . . . . . . . . . . . . . 148

E4 Feynman Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

vii



E5 Bubble Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

E6 Open Oyster Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

E7 Ring Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

viii



List of Figures

1.1 Picture demonstrating (a) The arrangement of atoms in the ideal ABX3 cubic

perovskite structure, (b) The atomic arrangement in the more complicated

A2BB′X6 rock salt double perovskite structure, and (c) the many elements

which can be utilized to form perovskite structures. Figure reproduced with

permission from Bartel et al. [2] . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Ferroelectric phase transitions of KNbO3. Note that the displacements from

one phase to the next are exaggerated here for clarity. . . . . . . . . . . . . . 4

ix



1.3 Demonstration of the photorefractive process. Interference of two beams

within the bulk of a crystal (schematically shown in (e)) generates a sinusoidal

intensity pattern along a dimension of the crystal, arbitrarily chosen as the z

axis here (shown in (a)). Electrons in the material are preferentially excited at

the constructive interference fringes, leaving behind positively charged donor

ions, and creating a sinusoidal electron density pattern (b). The photo-excited

electrons, now mobile in the crystal, migrate to areas of lower potential. This

diffusion current is related to the gradient of the electron density, and thus

the current follows a cosine pattern (c). Upon migration, the electrons, now

trapped on acceptor sites or chemical features, produce a space-charge elec-

tric field which is phased-shifted with respect to the initial interference pattern

(d). This space-charge field then induces a change in the material’s refractive

index via the Pockels effect (f). This refractive index modulation, also phase-

shifted from the interference pattern, is frozen into the crystal as long as the

electrons remain trapped. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Example showing how the use of an ionic core potential may smooth out the

wavefunction of a valence electron within the cutoff radius. Note the matching

of the all-electron (blue dashed line) wavefunction and pseudo-wavefunction

(red solid line) beyond the cutoff radius. . . . . . . . . . . . . . . . . . . . . 34

2.2 A flowchart demonstrating the logic of attaining a self-consistent electron

density in DFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 A representation of how the PES and IPES processes probe occupied and

unoccupied states of the material. The exact energies of these types of exci-

tations are due to complicated many-body effects. . . . . . . . . . . . . . . . 41

x



2.4 A generic scheme of a many-body excitation. The main peak is referred to as

a quasi-particle excitation. The smaller peak is referred to as a satellite peak

and arises due to other types of collective excitations which occur in response

to the main excitation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 A general diagram of how the G0W0 scheme works. Using the DFT eigen-

values and wavefunctions, the exchange portion of the self-energy (ΣX) can

be approximated. The wavefunctions and eigenvalues are also used to con-

struct the irreducible polarizability, χ0. The dielectric function can then be

generated and subsequently the screened Coulomb interaction, W is approxi-

mated. Then the Kohn-Sham eigenvalues are used as an initial value for the

quasiparticle energies to generate the correlation part of the self-energy ΣC.

The quasiparticle eigenvalue equation can then be solved and iterated until

self-consistency is reached in the quasiparticle energies. . . . . . . . . . . . . 53

3.1 (a) Defect structure rendered in a single orthorhombic cell of KNbO3. The

cyan spheres are K, the green spheres Nb, the red spheres O, and the single

orange sphere is the dopant species. The O atom with the cross-hair and

yellow outline is the site of the vacancy. The arrows show the a, b, and

c crystallographic axes of the cell. (b) Diagram of energy level splitting in

the case where the crystal field splitting ∆cf is the dominant perturbation.

The occupation scheme of Cr+3 is demonstrated. (c) Diagram of energy level

splitting in the case where the exchange splitting ∆ex is dominant instead.

The occupation scheme of Fe+3 is demonstrated (d) exchange and crystal-

field splitting energies as determined by barycenters of peaks in pDOS for

the uncoordinated oxygen vacancy (UOV) and coordinated oxygen vacancy

(COV) models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xi



3.2 Non spin-polarized band structure and projected density of states for pure

orthorhombic KNbO3. The red line indicates the Fermi level, conventionally

placed in the center of the band gap for semi-conducting systems. . . . . . . 63

3.3 Spin-up (top) and spin-down (bottom) band structures and pDOS for KNbO3:Ti

(left) and KNbO3:V for the coordinated vacancy model. The red line indicates

the Fermi level as determined by density of states integration . . . . . . . . . 65

3.4 Spin-up (top) and spin-down (bottom) band structures and pDOS for KNbO3:Cr

for the uncoordinated vacancy (left) and coordinated vacancy (right) models.

The red line indicates the Fermi level as determined by density of states inte-

gration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Spin-up (top) and spin-down (bottom) band structures and pDOS for KNbO3:Mn

for the uncoordinated vacancy (left) and coordinated vacancy (right) models.

The red line indicates the Fermi level as determined by density of states inte-

gration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Spin-up (top) and spin-down (bottom) band structures and pDOS for KNbO3:Fe

for the uncoordinated vacancy (left) and coordinated vacancy (right) models.

The red line indicates the Fermi level as determined by density of states inte-

gration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7 Spin-up (top) and spin-down (bottom) band structures and pDOS for KNbO3:Co

for the uncoordinated vacancy (left) and coordinated vacancy (right) models.

The red line indicates the Fermi level as determined by density of states inte-

gration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.8 Spin-up (top) and spin-down (bottom) band structures and pDOS for KNbO3:Ni

for the FN (left) and coordinated vacancy (right) models. The red line indi-

cates the Fermi level as determined by density of states integration . . . . . 71

xii



4.1 Reproduction of a diagram from Basun et al. [48] showing proposed energy

level diagrams inferred from their results, in the spirit of work done by Zgonik

et al. [90]. The left part of the diagram shows proposed energy levels and

occupations in crystal which were grown and poled, but not reduced. The

right part shows the proposed changes to occupations induced by reducing

the crystal after growth and poling. The FeX+ – V levels shown here refer to

the Fe atom in an X+ charge state in a complex with a vacancy. The dashed

lines represent Fe2+/3+[Nb] levels proposed by Zgonik et al.. The VO level is

taken from the work of Biaggio et al. [91]. Reprinted figure with permission

from [Basun et al., Physical Review B, 93, 094102 2016.] Copyright (2016) by

the American Physical Society. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 A demonstration of the effect of jellium compensation on a band structure.

Both systems are Fe3+ substituting on a Nb site. In the left panel we show

the band structure of the system when charge compensated by an O vacancy

as far away in the supercell as possible. In the right panel we show the band

structure when the system is externally charged and compensated by a jellium

back ground. Though qualitative differences do exist between the two, we see

that the use of a jellium background produces the same charge state of the

dopant and behavior of the impurity bands. . . . . . . . . . . . . . . . . . . 80

xiii



4.3 Visualizations of the (a) Fe[Nb], (b) Fe[K] – VK, and (c) Fe[Nb] – VO de-

fect complexes studied in this work. Each panel only displays the nearest O

neighbors of the dopant ion, with small red spheres representing the O atoms,

and the orange sphere representing the Fe atom. In cases where a vacancy

is present, either a blue or purple sphere has been added which indicates the

approximate location of the O vacancy or K vacancy, respectively. White

arrows indicate the direction of displacement of each of these atoms in going

from the equilibrium structures with the Fe in the 2+ state to those with Fe

in the 3+ state and are scaled for visibility in each case separately, though

relative lengths of arrows for any panel do correspond to the amount of dis-

placement of the ion. In panel (b), the apparent octahedral coordination is

not accidental. This is explained in the relevant section of the text. . . . . . 82

xiv



4.4 A schematic representation of several configuration coordinate diagrams. Panel

(a) shows the radiative transition of an electron from the ground state to an

excited vibrational state of the system at a different configuration coordinate.

The electron then nonradiatively de-excites to the new ground state of the

perturbed system, and then radiatively recombines to an excited vibrational

state of the unperturbed structure, though now emitting a lower frequency

photon than it absorbed, demonstrating what is known as a Stokes shift in

its spectrum. Panel (b) shows a system where the electron transitions to a

vibrational state of the perturbed system, nonradiatively relaxes to the new

ground state and is then thermally excited to another vibrational state of the

new perturbed system. Due to over lap in the wavefunctions of this thermally

excited state and a vibrational excited state of the unperturbed structure, this

electron may transition to the excited state of the unperturbed system and

relax to the previous ground state, demonstrating absorption, but now with

thermally activated nonradiative relaxation. Panel (c) shows another nonra-

diative relaxation pathway. In this case, the vibrational ground state wave-

function of the perturbed system overlaps with a vibrational excited state of

the unperturbed system, and the electron may absorb a photon, relax to the

perturbed ground state and then transition to the vibrational excited state of

the unperturbed system without need of an intermediate thermal excitation. 84

4.5 Band structure and pDOS of the Fe[Nb] complex with the Fe ion (left) in a

3+ charge state and (right) in a 2+ charge state. For each charge state, the

atomic positions are those of the respective equilibrium structure. The top

and bottom panels show the spin-up and spin-down quantities, respectively.

The dashed red line indicates the position of the Fermi level as determined by

integration of the density of states. . . . . . . . . . . . . . . . . . . . . . . . 85

xv



4.6 Band structure and pDOS of the Fe[K] – VK complex with the Fe ion (left) in

a 3+ charge state and (right) in a 2+ charge state. For each charge state, the

atomic positions are those of the respective equilibrium structure. The top

and bottom panels show the spin-up and spin-down quantities respectively.

The dashed red line indicates the position of the Fermi level as determined by

integration of the density of states. . . . . . . . . . . . . . . . . . . . . . . . 87

4.7 Band structure and pDOS of the Fe[Nb] – VO complex with the Fe ion (left) in

a 3+ charge state and (right) in a 2+ charge state. For each charge state, the

atomic positions are those of the respective equilibrium structure. The top

and bottom panels show the spin-up and spin-down quantities respectively.

The dashed red line indicates the position of the Fermi level as determined by

integration of the density of states. . . . . . . . . . . . . . . . . . . . . . . . 88

4.8 (a) A redrafted version of the energy level diagram reproduced from the work

of Basun et al. [48]. In this version, the assignments made by Basun et al. are

placed in a single pane and have been ordered by defect complex. Error bars

which are present in the original figure are excluded here for clarity. (b) A

diagram summarizing the excitations that we expect is based upon the band

structures with Fe3 in different defect complexes. Energies presented here have

been scaled by the factor deduced in the previous study (1.4) which brings

the DFT bandgap in line with the experimental values. In that chapter, the

factor was deduced by comparison of the bandgap of the pure system. The

doped supercells exhibit slight closing of the band gap compared to the pure

system, hence why the sums of transition energies are slightly less than the

experimental band gap. We color-code the assignments we make based on

this pane with the assignments shown in (a). For the Fe[Nb] – VO complex,

because the unoccupied, spin-down eg state is not strictly speaking below the

conduction band, we place it at the conduction band edge. . . . . . . . . . . 91

xvi



4.9 Configurational coordinate diagrams for each of the defect complexes with

Fe in the 3+ charge state. In each panel, Q represents our configurational

coordinate, with Q = 0 corresponding to the respective defect complex in

the equilibrium configuration stabilizing Fe in the 3+ state. Q = 6 then

corresponds to the equilibrium configuration which stabilizes Fe in the 2+

state, however, we charge the supercell such that Fe should assume a 3+

ionization state. The energy scales have been shifted with respect to the

valence band maximum of the pure system. . . . . . . . . . . . . . . . . . . . 93

4.10 A phonon dispersion curve for cubic KNbO3. The existence of imaginary

phonon frequency eigenvalues indicates that the structure is unstable against

vibrations of this mode, which may be stabilized by a transition to the ferro-

electric tetragonal phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 A graph demonstrating convergence of the polarizability for G,G′ = 0 at a

single point in the Brillouin zone for the pure phases. Panel (a) shows this

curve for the cubic system, panel (b) the curve for the tetragonal system, and

panel (c) the curve for the orthorhombic system. Panels (b) and (c) have a

quite different scales, indicated in their units. . . . . . . . . . . . . . . . . . 101

5.2 Convergence behavior of the calculated Γ point band gap for the pure phases

of KNbO3. Panel (a) shows the convergence for the cubic system, panel (b)

shows it for the tetragonal system, and panel (c) shows it for the orthorhombic

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 The quasi-particle corrected band structure of cubic KNbO3. The DFT bands

collected with the GGA are displayed as dashed blue lines. The GW corrected

values are shown as red dotted lines . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 The quasi-particle corrected band structure of tetragonal KNbO3. The DFT

bands collected with the GGA are displayed as dashed blue lines. The GW

corrected values are shown as red dotted lines . . . . . . . . . . . . . . . . . 105

xvii



5.5 The quasi-particle corrected band structure of orthorhombic KNbO3. The

DFT bands collected with the GGA are displayed as dashed blue lines. The

GW corrected values are shown as red dotted lines . . . . . . . . . . . . . . 106

D1 A chart demonstrating the workflow for GW calculations within the Berke-

leyGW code suite. Necessary inputs and created outputs are shown for each

of the 4 main executables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

E1 A Feynman diagram known as a bubble diagram. . . . . . . . . . . . . . . . 151

E2 A Feynman diagram known as an open oyster diagram. . . . . . . . . . . . . 152

E3 A Feynman diagram known as a ring diagram. . . . . . . . . . . . . . . . . . 153

xviii



List of Tables

1.1 Table of lattice parameters for the pure phases of KNbO3 . . . . . . . . . . . 5

3.1 Transition energies of impurity features predicted by scaling method. Behav-

ior as either an acceptor or donor state is determined by occupations (position

below or above the Fermi level). Barycenters of the pDOS peaks were cal-

culated for distinguishable features in order to compensate for the artificial

dispersion introduced by interactions of the dopant with its periodic images. 73

xix



Chapter 1

Introduction

Ferroelectrics represent an important class of materials whose technological use covers

a broad range of applications including as capacitors, sensors, actuators, transducers, and

energy harvesters. Recent discoveries of useful ferroelectric materials for possible device

fabrication has reinvigorated the field [1]. Ferroelectric materials often also offer a variety

of nonlinear optical applications such as harmonic generation and electrooptic modulation.

These materials are characterized by the presence of a spontaneous macroscopic electric

dipole moment present in the crystal. Given that this dipole moment is temperature depen-

dent, all ferroelectric materials thus exhibit pyroelectricity as well. Similarly, the nature of

the spontaneous polarization comes from the relative displacement of ionic centers within

the crystal, rendering ferroelectric materials piezoelectric as well. The technological possi-

bilities these materials open is only truly realized when considering the capacity to adjust or

engineer the properties of interest. In materials science, this is largely done either through

the discovery of new materials with the desired properties or, more pragmatically, by tuning

the properties of known materials. It is this latter procedure that our work focuses on.

Potassium niobate (formula KNbO3) is a member of the diverse family of perovskite ma-

terials, all of which have the ABX3 stoichiometry. Perovskite materials have demonstrated

numerous industrial applications including catalysis [3], superconductivity [4], colossal mag-

1



Figure 1.1: Picture demonstrating (a) The arrangement of atoms in the ideal ABX3 cubic
perovskite structure, (b) The atomic arrangement in the more complicated A2BB′X6 rock
salt double perovskite structure, and (c) the many elements which can be utilized to form
perovskite structures. Figure reproduced with permission from Bartel et al. [2]

netoresistance [5], and linear and nonlinear optical switching [6]. As demonstrated in Fig.

(1.1), the incredible breadth of properties available to the perovskite family comes, in part,

from their extensive compositional variety. Study of the formability of possible perovskites

has centered largely around analysis of the Goldschmidt tolerance factor [7]:

t =
1√
2

(rA + rX)

(rB + rX)
(1.1)

Here, rA, rB, rX are the ionic radii of the constituent atoms. In an ideal cubic perovskite

structure, twice the B–X bond length is equal to the unit cell edge and twice the A–X bond

length is equal to the face diagonal of the cubic cell. Thus, assuming a bond distance to

be the sum of the two ionic radii, the Goldschmidt factor would be unity for an ideal cubic

perovskite. Experimental data indicates that most ideal cubic perovskite materials occur

with a t value in the range of 0.8 – 0.9 with distorted perovskites occurring in a wider range

of values. Thus, the Goldschmidt factor does not represent a uniform stability criterion and

other models predicting formability of perovskite compounds have been proposed [8, 9].

The ideal perovskite structure belongs to the cubic space group Pm3̄m. This cubic struc-

ture has the A cations located at the vertices of the cubic cell (and thus 8-fold coordinated
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with the X anions), the B cations located at the body center (and thus 6-fold coordinated

with the X anions), and the anions (O in the case of oxide perovskites) placed at the midpoint

of each of the faces of the cell. This forms an anionic octahedral complex about the B-site

cation with A-site cations lying in the interstices of the octahedra. The tilting, stretching,

or rotation of these BX6 complexes, depicted in Fig. 1.1 (a) and (b), are a major structural

factor in the manifestation of the possible ferroelectric and nonlinear optical properties of

the crystals.

At temperatures below the Curie temperature, which varies for each perovskite species,

some perovskite crystals experience structural phase transitions. These transitions can be

accompanied by either asymmetrical distortions of the octahedral units or relative displace-

ments between the anionic cages and the cations. In these cases, a spontaneous dipole

moment may develop in the unit cell, rendering the crystal ferroelectric. The exact nature

of these transitions remains something of an open question. A model espoused by Cochran

[10] holds that certain unstable vibrational modes, or soft modes, of the crystal structure

are stabilized by a transition to a structure of lower symmetry with a finite dipole moment.

Other theories propose that some ions or groups of ions, disordered in the high-temperature

phase, become ordered in a low-temperature ferroelectric phase [11].

KNbO3 experiences a set of displacive, ferroelectric phase transitions as the crystal is

cooled. These include a tetragonal phase from 500 – 710 K, an orthorhombic phase from 220

– 500 K, and a rhombohedral phase below 220 K. The structures of these phases are shown

in Fig. 1.2. In going from the cubic to the tetragonal phase, a small displacement occurs,

squeezing the octahedral unit along one of the cubic axes, with a relative shift in the opposite

direction of the enclosed Nb ion, leading to a ferroelectric dipole along a [001] cubic axis.

Upon transition to the orthorhombic state, the Nb ion displaces along the [011] direction

relative to the cubic axes. This displacement leads to a doubling of the unit cell relative to

the cubic structure. The transition to the rhombohedral state involves the displacement of

the Nb ion along the [111] axis of the original cubic cell [12, 13]. Given that the orthorhombic
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Figure 1.2: Ferroelectric phase transitions of KNbO3. Note that the displacements from one
phase to the next are exaggerated here for clarity.

structure is the stable phase at room temperature, it is the phase of largest practical interest

and will be the focus of this dissertation.

1.1 Material parameters

We discuss and specify here some of the research concerning the material parameters of

KNbO3. We begin with examining how well the Generalized Gradient Approximation (GGA)

under standard Kohn-Sham Density Functional Theory (DFT) approximates the structural

parameters (lattice parameters and atomic displacements from equilibrium) of the phases of

KNbO3. In Table 1.1, structural parameters for each of the phases of KNbO3 are reported.
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Phase
Structural Parameters
(Theoretical)

Structural Parameters
(Experimental)

Percent Error

Cubic a = 4.026 Å a = 4.000 Å 0.0065%

Tetragonal
a = 3.993 Å
c/a = 1.055

a = 3.9937 Å
c/a = 1.0165

0.018% in a
3.79% in c/a

Orthorhombic
a = 3.983 Å
b/a = 1.454

c/a = 1.463

a = 3.971 Å
b/a = 1.4347

c/a = 1.4407

0.3% in a
1.35% in b/a

1.55% in c/a

Rhombohedral
a = b = c = 4.024 Å
α = β = γ = 89.913

a = b = c = 4.016 Å
α = β = γ = 89.818

0.2% in a
0.1% in α

Table 1.1: Table of lattice parameters for the pure phases of KNbO3

In our calculations of these parameters, the Nb atoms are frozen at their ideal locations,

while the rest of the crystal is allowed to relax both the ionic coordinates and the lattice

parameters themselves.

As can be seen in the table, compared to experimental results, most parameters tend to

fall within the 1 – 2% error as expected of the GGA. We find a slightly higher percent error

for the c/a parameter of the tetragonal structure, which is of some interest. This may be

a manifestation of the so-called supertetragonality reported by Bilc et al., [14] ascribed to

the exchange energy contribution of the GGA. However, all lattice parameters of practical

importance (i.e. those of the orthorhombic structure) fall within the expected error range

of Kohn-Sham DFT.

The strong dielectric and optical responses of KNbO3 have been studied for quite some

time. As early as 1973, Wiesendanger [15] performed a thorough investigation of the di-

electric, piezoelectric, and elastic constants of single-domain KNbO3 crystals and used these

measurements to estimate its electrooptic coefficients. Later, Fukuda et al. [16] also explored

these properties and Uematsu [17] in the same year measured dispersion curves and temper-

ature dependencies of the refractive indices of orthorhombic KNbO3. Later, Zgonik et al.
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[18] used these results along with new measurements to determine the relevant parameters

for electro- and acousto-optical applications. Zysset et al. [19] and Biaggio et al. [20] con-

ducted deeper investigations of the refractive indices for the purposes of nonlinear optical

applications. This body of evidence all demonstrates that KNbO3 exhibits large electro-

optic coefficients, photoconductivity, and high nonlinear optical susceptibilities, making it

promising for many optical applications.

1.2 Photorefractive Effect

One of the more intriguing optical properties of KNbO3 is known as the photorefractive ef-

fect. It is an interesting nonlinear optical phenomenon which relies on the photoconductivity

and electro-optic nature of a material. We present here an abbreviated track of developments

in the field of photorefractive studies. A more in-depth discussion is undertaken in the book

by Solymar et al. [21].

The field of photorefractives traces its origin to the 1966 study by Ashkin et al. [22]. In

that study the authors noted the optically-induced modulation of the index of refraction in

samples of lithium niobate (LiNbO3) and lithium tantalate (LiTaO3). Refractive index modu-

lations had also been observed that same year in potassium tantalate-niobate(KTaxNb1−xO3),

albeit that paper focused on the different possible applications of KTaxNb1−xO3. One year

later, Chen [23] published a paper specifically concerning these modulations, which in the

case of potassium tantalate-niobate occur only in the presence of a laser and a DC electric

field. That paper noted that the photorefractive response, which was then still unlabeled,

distorts the shape and polarization of the laser beam and can prohibit second-harmonic gen-

eration. Chen termed the effect “optical damage”, given its deleterious effects on the other

nonlinear optical applications of the material. It was also in this paper that Chen noted

that those observations could be explained by the generation of an electric field produced by
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charge accumulation around the impinging beam and proposed what would turn out to be

a qualitative description of the mechanism of the photorefractive effect.

Numerous applications for the “damage” were conceived of rapidly [24, 25], and

new photorefractive materials discovered very quickly thereafter: Bi4Ti3O3 [26] in 1968,

Sr0.75Ba0.25Nb2O3 [27] in 1969, and BaTiO3 [28] in 1970. Huignard and Micheron [29] dis-

covered the photorefractive effect in the materials Bi12SiO20 and Bi12GeO20 in 1976, and in

the same year, Günter et al. [30] introduced KNbO3. Much later Glass et al. [31] and Klein

[32] discovered the effect in GaAs and InP.

The early and middle 1970s also saw growth of the understanding of the mechanisms

of the effect, with Amodei [33] determining that diffusion can be responsible for the effects

in LiNbO3, albeit the model employed was not able to describe the maximum achievable

space charge field. A year later Amodei and Staebler [34] investigated the significance of

the diffusion and applied fields and their respective phases. A further development on the

theoretical front was made by Glass et al. [35] who explained the asymmetric photocurrents

in lithium niobate as the result of local asymmetries of Nb-Fe2+ distances. Many more

developments were made throughout the middle and late 1970s, but the equations of the

formalism were firmly established in a pair of papers that only gradually made their way out

of Kyiv. The two papers by Kukhtarev et al. [36, 37] are, by and large, considered the best

theoretical foundation for the field. Discussion of the effect is left to the next section where

we examine in broad strokes the actual dynamics of the photorefractive effect.

1.2.1 Dynamics

The photorefractive effect relies on a combination of a material’s photoconductive nature

along with exhibition of the nonlinear Pockels effect. The underpinning process involved is

the continual photo-excitation, migration, and eventual trapping of charge carriers. When

two beams of appropriate wavelengths are made to interfere within a photorefractive crystal,

photo-excitation will occur preferentially at the bright fringes of the interference pattern.
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Depending on the occupation of the states within a given crystal, electrons or electron holes

may be excited, which we then use to describe those states as either donor or acceptor

states. For our purposes in this section we shall assume only electrons as carriers, with the

knowledge that there is some symmetry between electron and hole behavior, though the

details are necessarily more complicated than just a change of sign.

As the sinusoidal interference pattern is established, electrons excited from donor states

in the material create a spatial distribution of excited carriers which matches the interference

pattern. This will generate a carrier concentration gradient along which excited carriers will

preferentially diffuse from the bright fringes to the dark fringes of the interference pattern,

leaving behind ionized donor centers.

These electrons will travel some mean distance according to their lifetime within the

material before recombining with the valence band or acceptor states from which they can be

re-excited and travel once more. At steady state, the distribution of photo-excited electrons

(being trapped at chemical centers in the dark fringes) and the ionized donors, will generate

a spatially modulated distribution of positive and negative charge within the bulk of the

crystal, aptly termed a space-charge field. This space-charge field will be π
2
radians out of

phase with the interference pattern. The electro-optic nature of the material will locally

alter its refractive index in the presence of a local electric field. The space-charge field will

thus induce a spatially modulated refractive index hologram, which will in turn also be out

of phase with the initial interference pattern. The information contained in the interference

of the two beams is thus frozen into the crystal, and can be read out with a separate beam.

This process is depicted graphically in Fig. 1.3.

The ability to write and read volume holograms into a crystal has obvious applications as

non-volatile memory storage. Depending on the dark conductivity of the crystal, holograms

can last from milliseconds to months without significant decay. These holograms can also

easily be erased by uniform light exposure. However, many applications exist beyond holo-

gram storage [38]. As the grating builds up, the interfering lasers can themselves diffract off
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Figure 1.3: Demonstration of the photorefractive process. Interference of two beams within
the bulk of a crystal (schematically shown in (e)) generates a sinusoidal intensity pattern
along a dimension of the crystal, arbitrarily chosen as the z axis here (shown in (a)). Electrons
in the material are preferentially excited at the constructive interference fringes, leaving
behind positively charged donor ions, and creating a sinusoidal electron density pattern (b).
The photo-excited electrons, now mobile in the crystal, migrate to areas of lower potential.
This diffusion current is related to the gradient of the electron density, and thus the current
follows a cosine pattern (c). Upon migration, the electrons, now trapped on acceptor sites or
chemical features, produce a space-charge electric field which is phased-shifted with respect
to the initial interference pattern (d). This space-charge field then induces a change in the
material’s refractive index via the Pockels effect (f). This refractive index modulation, also
phase-shifted from the interference pattern, is frozen into the crystal as long as the electrons
remain trapped.

of the hologram which can result in the transfer of power from one of the beams to the other,

depending on the sign of the charge carrier. This is a process known as two-beam coupling.

Photorefractive materials can be used to make phase-conjugating mirrors [39] which can

correct for aberrations along a beam path, given that the distortion is relatively constant.

The unique nature of the grating buildup can also be exploited to pick out only features with

some time dependent change associated to them, generating so-called novelty filters which
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track only changes to an image rather than an image itself. The various applications of this

process have distinct demands, however. For example, some applications may require short

build-up times for photorefractive gratings while others may require long grating lifetimes.

Thus, levers of control for the various photorefractive figures of merit are desirable when

considering practical device manufacture.

1.2.2 Important parameters

A key factor in the evolution of the photorefractive effect is the charge generation rate,

given by:

g = (βt + sI)(ND −ND+) =
ηqαI

~ω
(1.2)

In this expression, βt is the rate of thermal generation of charge carriers, s is the excitation

cross-section, ηq is the quantum efficiency, α is the absorption constant, I is the intensity of

the optical field, and ND/ND+ are the number densities of the unionized and ionized donors,

respectively. Extending from this, the key equation governs the time evolution of the ionized

donor concentration, where for simplicity, we will ignore the thermal generation rate:

∂ND+

∂t
= sI(ND −ND+)− γRnND+ , (1.3)

where γR is the rate of recombination of the charge carrier and n is the charge carrier

concentration. The solutions to Eq. (1.3) are presented in terms of combinations of the

primary electric fields governing the behavior of the photorefractive effect which are given

by:

ED =
kBTK

e
, EM =

γRNA−

µK
=

Λ

2πµτe
, Eq =

(
eNA−

εsK

)
(1− NA−

ND

) (1.4)

where, K = 2π/Λ is the wave vector of the grating, e is the electronic charge, kB is the

Boltzmann constant, T the temperature, γR is the electron recombination rate, µ is the
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electron mobility, τe is the electron lifetime, εs is the static dielectric constant of the material,

andNA− andND are the concentrations of ionized acceptor states and unionized donor states,

respectively.

The field ED is referred to as the diffusion field; EM is known as the drift field, the field

which pushes a charge carrier through a grating wavelength in the charge carrier’s lifetime;

and Eq is known as the saturation field, describing the largest space-charge field which can

be achieved. Depending on the properties of the crystal, a photovoltaic field may also be

present, with a contributing effect to the migration of the charge carriers.

Eq. 1.3 can be linearized and solved in various limits, but more in-depth discussion goes

beyond our scope here. The purpose of this discussion is to introduce the many parameters

which can be altered or tuned to affect the various photorefractive figures of merit. In

particular, it can be readily seen that the trap density plays a vital role in determining

the saturation field. The trap density also affects not only the likelihood of excitation,

but also the likelihood of recombination. What is less apparent, but nevertheless true, is

that understanding the nature of the trap states introduced by any particular defect can be

difficult to determine experimentally.

1.2.3 Importance of Doping

It should be emphasized that the presence of mid-gap states, introduced by either defects

in the material (intrinsic defects) or the presence of dopants (extrinsic defects), is vital to

the processes which drive the photorefractive effect. While robust gratings can be generated

using purely valence band to conduction band transitions [40], precise tuning of the photore-

fractive performance of materials in this way is limited by intrinsic material properties and

can still be influenced by the presence of intrinsic defects. In particular, the high photore-

fractive sensitivities [18] observed in nominally pure KNbO3 (band gap value of ≈ 3.3 eV

[41]) requires the use of UV light in order to excite charge carriers.
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Research on extending the spectral response of KNbO3 into the visible and IR regimes has

largely centered around experimental observations that doping of the crystal melt with tran-

sition metals has noticeable effects on the absorption spectrum of KNbO3 crystals [42–45].

Many experiments have demonstrated the substantial effects that dopants can have on the

ferroelectric properties of other oxide systems [46, 47]. However, the precise chemical nature

of these defect complexes is poorly understood, with opinion varying on the charge state and

location of the transition metal, as well as whether charge-compensating mechanisms such

as vacancies are important or dominant [48]. Additionally, the inclusion of dopants often

comes with trade-offs in other photorefractive figures of merit, such as grating rise time and

photorefractive gain [49–52].

Chemical intuition may give some insight into which dopants could introduce useful

states into the host material, but precise characterization of the nature of the resultant de-

fect complexes may not always be straightforward and may require complex characterization

techniques in order to determine key parameters. Given the vast experimental possibil-

ity space formed by the consideration of different host materials, dopants to be included,

dopant concentrations, growth methods, post-growth treatments, and even co-doping pro-

cedures, cost and practicality requires experimentalists to be very discerning in the use of

their resources.

In this regard, ab initio calculations offer a tantalizing means of exploring different possi-

bilities quite cost-effectively, by comparison. The wide availability of large computing clusters

and important algorithmic improvements has driven the monetary cost and wall-clock times

of first principles calculations down dramatically. Properly executed Density Functional

Theory (DFT) calculations can offer a means of examining band structures of defects with

various occupation schemes, modeling different charges states that may be realized experi-

mentally. The use of DFT methods and, to lesser extent, post-DFT methods at higher levels

of theory to begin this program of theoretical exploration for enhanced photorefractives is

the main focus of this dissertation.
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The organization of this dissertation is as follows. Chapter 2 provides an introduction

and background on the computational methods used, Density Functional Theory and the

GW approximation, Chapter 3 covers a strategy for identifying promising dopant candidates

using DFT, Chapter 4 presents a study of defect complexes of Fe-doped KNbO3, Chapter

5 presents preliminary GW studies of pure phases of KNbO3 and presents the challenges in

applying this method to larger systems, and Chapter 6 presents the larger conclusions of

this dissertation.
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Chapter 2

Techniques and Methods

2.1 Density Functional Theory

The development of DFT follows a trajectory which extends from some of the earliest

quantum chemistry formalisms which sought to calculate electron wavefunctions from first

principles. The following background information on DFT is covered very fully by Jorge

Kohanoff [53] and a reader interested in a deeper understanding of the DFT information

presented in this chapter is directed to that text.

2.1.1 The Full Many-Body Hamiltonian

For a system of N electrons and P atomic nuclei, the full many-body Hamiltonian takes

the form
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ĤMB = −
N∑
i=1

~2

2me

∇2
i +

e2

2

N∑
i=1

N∑
j 6=i

1

|ri − rj|

−
P∑
I=1

~2

2MI

∇2
I +

e2

2

P∑
j=1

P∑
J 6=I

ZIZJ
|RI −RJ |

− e2

N∑
i=1

P∑
I=1

ZI
|ri −RI |

+ Vexternal.

(2.1)

In Eq. (2.1), the lower case indices refer to electrons in the system and the upper case indices

refer to the nuclei of the system. The sets of coordinates {ri} and {Ri} denote the electronic

and nuclear coordinates respectively, where we implicitly include the spin coordinate σi or

σI in the set of positions. ZI refers to the nuclear charge of atom I.

The first line of Eq. (2.1) is then read as the sum of the kinetic energies of the electrons

and the sum of the Coulombic electron-electron interaction. Similarly, the second line of

Eq. (2.1) then refers to the kinetic energies of the nuclei and the Coulomb potential of the

nucleus-nucleus interactions. The final line then consists of the Coulomb interaction of the

electrons with the nuclei as well as any external potentials the system may be subjected

to (e.g. laser fields, static electric fields, etc.). External potentials such as laser fields will

obviously play an important role when considering things like excitation within the system,

however for the purposes of this discussion the system is assumed to be under no external

potential.

Eq. (2.1) demonstrates quite expressly that the study of real materials from a fully

quantum mechanical description quickly runs into the problem of intractability. In principle,

the Hamiltonian of Eq. (2.1) could be used to solve the time-independent Schrödinger

equation

ĤMBΨn({ri}, {RI}) = ξnΨn({ri}, {RI}), (2.2)
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where Ψn({ri}, {RI}) is the full many-body wavefunction, containing all information re-

garding properties of the system, and ξn is the energy eigenvalue for the many-body state

indexed by n. The full wavefunction is dependent on the set of electronic coordinates and the

set of nuclear coordinates (including spin) and must be anti-symmetric under exchange of

electronic degrees of freedom and either symmetric or anti-symmetric under exchange of nu-

clear degrees of freedom depending upon whether the nuclear spin is integer or half-integer.

Eq. (2.2) depends on 3(N + P ) coordinates, which presents an important computational

bottleneck for calculating all Ψn when N and P are large, given that the calculation of

the many-body wavefunction scales exponentially with this factor. Further complicating the

calculation of the full many-body problem is the Coulombic interaction of the electrons,

which couples their motions and thus the many-body wavefunction cannot be represented

as a product of single-electron states (i.e. the problem cannot be split into independent

equations). The Coulomb interaction is also too strong to be treated perturbatively.

Given this intractability, the introduction of well-controlled approximations that retain

the essential physics of the many-body problem is necessary. One such means of simplifying

the problem is the Born-Oppenheimer approximation [54]. Proposed by Max Born and J.

Robert Oppenheimer in 1927, it proposes that one can decouple the nuclear and electronic

motions. This is motivated by the masses of the nuclei being much larger than those of the

electrons (a proton is ∼2000 times the mass of an electron). Under the assumption that they

are experiencing the same forces, the kinetic energies of the nuclei become negligible in com-

parison to those of the electrons and can be ignored in the calculation of the wavefunctions.

The kinetic energy contribution due to the nuclei will be a constant value and can be added

back to find the total energy of the system. The electron dynamics occur on a much shorter

time scale than the nuclear dynamics. Using the Born-Oppenheimer approximation we may

represent the total many-body wavefunction as a product of the nuclear and the electronic

wavefunctions
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Ψn({ri}, {RI}, t) =
∑
n

Θn({RI}, t)Φn({ri}, {RI}), (2.3)

where Θn is the wavefunction describing the properties of the nuclear subsystem and Φn is

the equivalent for the electronic system. Importantly, the dependence on the set of nuclear

coordinates enters the electronic wavefunction parametrically while all of the explicit time

dependence of the wavefunction resides in the nuclear wavefunction. For any evolution

in the set of nuclear coordinates, {RI}, the electronic wave function will depend on the

instantaneous set of nuclear coordinates. The Born-Oppenheimer approximation thus allows

us to completely decouple the nuclear and electronic degrees of freedom.

It is worth discussing cases where the Born-Oppenheimer approximation breaks down.

Perhaps the most famous example is the so-called “avoided crossing” of two energy levels.

In simplest terms, the “no-level-crossing” theorem states that two energy levels linked by

a perturbation do not cross as the strength of the perturbation is varied. For molecular

systems, this manifests during chemical reactions where the molecule passes through a tran-

sition state, that is, a strong perturbation from one atomic configuration to another. During

such avoided crossings, the coupling between the nuclear and electronic motions becomes

too large to ignore, and the Born-Oppenheimer approximation is no longer valid.

However, assuming that the approximation remains valid, we can focus on the electronic

wavefunction, Φn({ri}, {RI}) which satisfies the time-independent Schrödinger equation of

the form:

ĥeΦn({ri}, {RI}) = εn({RI})Φn({ri}, {RI}), (2.4)

with εn({RI}) defining energies of the electronic states for a given nuclear configuration.

The electronic Hamiltonian in Eq. (2.4) is given by
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ĥe = T̂ + V̂ee + V̂ext
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= −1

2

N∑
i=1

∇2
i +
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i<j

1

|ri − rj|
+

N∑
i=1

vext(ri),

(2.5)

where Hartree units have been adopted (~ = me = e = 4π
ε0

= 1). The terms in Eq. (2.5) are

the kinetic energy of the electrons, the electron-electron interaction and the electron-nuclear

interaction respectively. In going from the second to third lines, we have adjusted the sum

and coefficient in the V̂ee term to avoid double counting the Coulombic interactions of the

pairs of electrons, and we have described the electron-nuclear interaction as an external

potential which the electrons experience. We emphasize that this external potential is for an

instantaneous, frozen-in, nuclear configuration. On the time scale of the electronic motion,

the nuclear motion is completely ignored. Thus, the electronic wavefunction is assumed to

follow the nuclear dynamics and track adiabatically to its ground state governed by this

Hamiltonian, whose external potential is determined by the specific nuclear configuration.

In determining the many-electron wave function Φn({ri}, {RI}) we re-emphasize two

issues that were briefly mentioned before. As with all fermion wavefunctions, Φn must be

anti-symmetric with respect to exchange of any two electron coordinates. That is,

Φn(r1, r2, ...ri, ...rj, ...rN) = −Φn(r1, r2, ...rj, ...ri, ...rN). (2.6)

This exchange effect must be obeyed by the electron wavefunctions and is therefore an

essential feature that any formalism must reproduce. A more complicated effect comes from

the fact that the Coulomb interaction correlates the motion of all of the electrons. It is for

this reason that we cannot disentangle the many-body wavefunction as a product of single-
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electron wavefunctions. In order to proceed with calculating these functions, we will require

the formalisms developed by Walter Kohn and Lu Jeu Sham [55].

2.1.2 The Hohenberg-Kohn Theorems

The approximation in Eq. (2.3) allows us to focus on the electronic portion of the many-

body problem. This is extremely valuable given that knowledge of the ground state electronic

wavefunction gives access to numerous important properties of the system: equilibrium

lattice parameters and atomic positions, relative stabilities of different structures, elastic

properties, dielectric properties, phonon modes, polarizations, etc.

As previously mentioned, the many-body electronic wavefunction depends on the 3N

coordinates of the electrons in the system (neglecting the implicit 3P coordinates of the

nuclei). One essential idea in the formation of DFT is the idea that we can reframe the

problem of calculating this complicated function with its many degrees of freedom as instead

focused on solving for the electron density. The ground state electron density has instead

just 3 degrees of freedom, i.e. the three Cartesian directions.

The electronic Hamiltonian in Eq. (2.5), along with the electronic many-body state |Φ〉

yields an energy of the state

E =
〈Φ|ĥe|Φ〉
〈Φ|Φ〉

≡ 〈ĥe〉 = 〈Φ|T̂ + V̂ee + V̂ext|Φ〉

=

∫
1

∫
2

...

∫
Nd3r1d

3r2...d
3rNΦ∗[−1

2

N∑
i=1

∇2
i +

N∑
i<j

1

|ri − rj|
+

N∑
i=1

vext(ri)]Φ,

(2.7)

recognizing that

〈Φ|Φ〉 =

∫
d3rρ(r), (2.8)
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we can identify that an electronic wavefunction can be used to define the electron density

distribution, ρ(r) in equation (2.8). This allows us to re-write the external potential term

in (2.7) as

〈Φ|V̂ext|Φ〉 =
1

N

∫
d3rvext(r)ρ(r), (2.9)

where N is the number of electrons in the system.

This allows us to further re-write the total energy of the electronic system as

E = 〈T̂ 〉 + 〈V̂ee〉 + 〈V̂ext〉

E = 〈T̂ 〉 + 〈V̂ee〉 +

∫
d3rvext(r)ρ(r)

E = 〈T̂ 〉 + 〈V̂ee〉 + Vext[ρ],

(2.10)

where Vext[ρ] is a functional of the electronic density. If we can re-write the first two terms

similarly as functionals of the ground state electronic density, then our mapping of the 3N

degrees of freedom of the wavefunction to the 3 degrees of freedom of the electron density

will be complete. This mapping of the ground-state electronic many-body wavefunction

problem onto the problem of determining the ground-state electron density distribution is

facilitated by two extremely powerful mathematical theorems discovered by Pierre Hohenberg

and Walter Kohn in 1964 [56]. The Hohenberg-Kohn theorems form the bedrock of the

formalism of DFT and are discussed here.

Hohenberg-Kohn Theorem I: The external potential of a system of interacting par-

ticles is uniquely determined by the ground-state electron density, apart from an additive

constant.

The implication of the theorem is that the electronic Hamiltonian is completely determined

(aside from a constant additive term) given a particular external potential (i.e. atomic

configuration). Thus, a corollary to the theorem is that the many-body wavefunctions for

20



all states are completely determined with only the ground-state density. The proof of this

theorem is given in Appendix A. Although difficult to prove in the other direction (see the

V representability problem [57]), the power of this theorem lies in the fact that given a par-

ticular external potential in which the electrons reside (i.e. the atomic configuration of the

material of interest), there is one and only one ground-state electron density. So the only

a priori knowledge that is necessary to calculate the ground-state electron density, and all

subsequently determined properties, is just the knowledge of the atoms involved and their

geometry.

Hohenberg-Kohn Theorem II: For any given external potential, a functional of energy

in terms of the particle density can be defined. The functional attains its minimum only at

the ground-state density

The importance of the second Hohenberg-Kohn theorem comes from the corollary that since

the energy of the system can always be written as a functional of the density, we are then

capable of ensuring that we can find the ground-state density by means of a variational

search for the global minimum of the functional. The proof of this theorem is also detailed

in Appendix A. Its importance can be demonstrated quite straightforwardly. The theorem

guarantees that we may always write the energy of a system like so:

EHK[ρ] = 〈Φ[ρ]|ĥe|Φ[ρ]〉

= 〈Φ[ρ]|T̂ + V̂ee|Φ[ρ]〉 +

∫
d3rvext(r)ρ(r)

= FHK[ρ] +

∫
d3rvext(r)

≥ E[ρ0] = E0 = 〈Φ[ρ0]|ĥe|Φ[ρ0]〉.

(2.11)

The last line in Eq. (2.11) emphasizes that the ground-state wavefunction (and the den-

sity it subsequently determines) is the state which minimizes the energy functional. Perhaps

the most important facet of this expression is the term FHK[ρ]. This term is a universal func-
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tional, true for all systems of interacting electrons, independent of the potential in which they

sit. While this universal functional exists in principle, the second Hohenberg-Kohn theorem

provides no means of constructing it. It is important to note here that the operators T̂ and

V̂ee are the true, fully interacting, kinetic energy and electron-electron interaction operators,

whose forms are not perfectly known. To take full advantage of these powerful theorems,

Kohn and Sham provided a powerful ansatz that results in the modern incarnation of DFT

as we know it today.

2.1.3 Kohn-Sham Ansatz

The central idea behind the Kohn-Sham ansatz is that the complicated many-body in-

teractions are what prevent straightforward descriptions of the operators in the universal

functional. If a system of non-interacting electrons could be generated with the same ground-

state density as the real system, their description would be much easier. A key realization

of Kohn and Sham in their seminal work of 1965 [55] was that the wavefunction of a system

of non-interacting electrons can be easily expressed as a Slater determinant of one-electron

orbitals. This non-interacting system of electrons would obey a Hamiltonian of the form

ĥKS =
N∑
i=1

[
− ~2

2m
∇2
i + vR(ri)

]
, (2.12)

with N, the total number of electrons and vR being a potential designed to account for the

various interactions among the electrons, as well as the interactions of the electrons with the

nuclei and any other external fields. The kinetic energy here contains no effects of correlation.

That is to say, it is not the true kinetic energy of the real system. We recognize that the

electrons of this fictitious system interact only with this reference potential.

This Hamiltonian yields an energy functional of the form

EKS[ρ(r)] = TR[ρ(r)] +

∫
d3rρ(r)vR(r), (2.13)
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with a density constructed similarly to Eq. (2.9), but now with the single-electron orbitals

φ(r) of the non-interacting system

ρ(r) =
N∑
i=1

|φi(r)|2, (2.14)

and the kinetic energy of equation (2.13) begin expressed as

TR = −1

2

N∑
i=1

〈φi|∇2|φi〉. (2.15)

In order for this non-interacting system to be of use, it must be ensured to have the same

ground-state density as the real system. This is guaranteed by the second Hohenberg-Kohn

theorem if EKS[ρ] ≥ EKS[ρ0] = E0, the equality being valid only if the density is the true

ground-state density, i.e. ρ = ρ0. Therefore the functional derivative of EKS[ρ] must vanish

at this density. Taking the functional derivative of EKS[ρ] under the constraint that the

density gives the correct number of electrons we obtain

δ

δρ(r)

[
EKS[ρ̃] − µR

∫
drρ(r)

]
ρ=ρ0

= 0,

resulting in the expression,
δTR

δρ(r)
+ vR = µR,

(2.16)

where the Lagrange multiplier of the constraint, µR, is interpreted as the chemical potential

of the electrons in the reference system.

We now need to apply this same procedure to the energy functional of Eq. (2.11). The

previously discussed, non-interacting kinetic energy TR presents a useful idea: the assumption

that the non-interacting part of this operator (which can be easily written down under

largely sensible approximations) will capture the essential physics of the system while the

part due to the complicated many-body interactions may be combined into another term

23



which can then be separately approximated. We can similarly approach the electron-electron

interaction. The central approximation for the non-interacting part is known as the Hartree

approximation. It is the electrostatic energy of a system of electrons that all interact with an

average potential produced by the entire collection of them. This assumes that each electron

interacts with the field without perturbing it and it takes the mathematical form

EHartree[ρ] =
1

2

∫ ∫
d3rd3r′

ρ(r)ρ(r′)

|r − r′|
. (2.17)

This approximation does not account for effects arising from electron-electron repulsion,

but a deeper error is that any electron interacts with the average potential that it also plays

a role in producing. Any individual electron thereby unphysically interacts with itself.

By separating out the non-interacting contributions from the operators which make up

the universal functional, all uncertainty about the form of the many-body interactions can

be incorporated into a single term, dubbed the exchange-correlation term (which will be

discussed in more detail later). The functional of Eq. (2.11) can now be written under the

Kohn-Sham ansatz as

E[ρ] = TR + EHartree[ρ] +

∫
d3rvext(r)ρ(r) + EXC[ρ]. (2.18)

We now minimize the functional by setting its functional derivative (with respect to the

electron density) to zero to obtain

δ

δρ(r)

[
E[ρ] − µR

∫
drρ(r)

]
ρ=ρ0

= 0, (2.19)

resulting in the expression,

δTR
δρ(r)

+ vext(r) +

∫
dr′

ρ(r′)

|r − r′|
+ vXC = µ, (2.20)
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where again, µ here represents the chemical potential of the electrons, albeit now in the real

system. We have also introduced the term vXC = δEXC

δρ(r)
which is the potential term that

captures the effects of exchange and correlation.

Asserting that no charge flow occurs between the real and auxiliary systems allows us to

equate the chemical potentials in expressions Eq. (2.20) and Eq. (2.16). After very simple

manipulation we get:

vR = vext(r) +

∫
dr′

ρ(r′)

|r − r′|
+ vXC, (2.21)

which establishes the form of the reference potential for the auxiliary Kohn-Sham system.

We can thus write down the total energy of a system of non-interacting electrons as

E[ρ] = − ~2

2m

∑
i

〈φi|∇2
i |φi〉 +

∫
drρ(r)vext(r) +

e2

2

∫ ∫
drdr′

ρ(r)ρ(r′)

|r − r′|
+ EXC[ρ]. (2.22)

Importantly, to recover the true total energy of the system, the Coulombic interaction

between the nuclei of the specific atomic configuration must be accounted for. However,

this represents a constant, as the atomic configuration is frozen in. We are now equipped

to proceed with the minimization of this energy functional to find the ground-state electron

density, or rather the minimization with respect to the single-electron Kohn-Sham orbitals

{φi}. We re-frame this minimization problem via the Rayleigh-Ritz theorem [58], which

allows us to equivalently treat it as the solution to an eigenvalue problem of the following

form:

[
−1

2
∇2 + vext(r) +

∫
dr′

ρ(r′)

|r − r′|
+ vext(r)

]
φi(r) = εKS

i φi(r). (2.23)

Equations (2.23) form a set of coupled, nonlinear, Schrödinger-like equations called the

Kohn-Sham equations. The eigenvalues εKS
i are known as the Kohn-Sham eigenvalues and

correspond to the Lagrange multipliers of the corresponding minimization problem. It is to
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be noted that these eigenvalues should not be confused with the excitation spectrum of the

real system. These are the energies of the non-interacting reference system and thus, while

the ground-state electron density of the real system is accurately represented, excitation is

not adequately described by a system whose particles cannot, by design, interact.

An even more important point to recognize is that the single-electron wavefunctions {φi}

define the density by ρ(r) =
∑
i

|φi|2, and thus, referring to Eq. (2.23) we see that the

equation both depends upon the density, and aims to solve for the wavefunctions which

define the density. Thus the Kohn-Sham equations must be solved self-consistently. This

aspect will be discussed in more detail later.

The Kohn-Sham equations represent the final incarnation of the Kohn-Sham ansatz.

To summarize, the Kohn-Sham ansatz makes use of the two Hohenberg-Kohn theorems to

approach the intractability of the many-body problem. One extremely simplifying insight of

the Kohn-Sham ansatz is that the universal functional predicted in the second Hohenberg-

Kohn theorem can be broken into non-interacting and many-body interacting contributions.

Then, with suitable approximations to the exchange-correlation functional (to be discussed in

the next section), a non-interacting system of electrons could be constructed which interact

via an appropriate reference potential. Then by the first Hohenberg-Kohn theorem, this

system and the true system will experience the same external potential and will subsequently

have the same ground-state electron density. By transforming the minimization problem into

a set of Schrödinger-like equations, the Kohn-Sham equations can be then be solved self-

consistently to find the ground-state density of the system.

2.1.4 Exchange-Correlation Functional

If the true form of the exchange-correlation functional in Eq. (2.22) were known, Kohn-

Sham theory would be an exact theory. In practice, however, the form of the exchange-

correlation functional comprises the largest approximation of the Kohn-Sham process. As
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demonstrated in its name, the exchange-correlation energy accounts for the two most com-

plicated and fundamental effects of exchange and correlation of the electronic motion.

Demonstrated earlier in Eq. (2.6), the exchange phenomenon concerns the Fermionic

nature of the electrons. According to the Pauli Exclusion Principle, the wavefunction for

a Fermionic system must be anti-symmetric under the exchange of any pair of particle la-

bels. This condition means that an allowed many-body wavefunction must vanish if any two

Fermions have the same set of spin and spatial coordinates (particles can share the same spa-

tial coordinates if they are of opposite spin states). This also restricts the space of possible

wavefunctions that the Kohn-Sham formalism should be able to find. The Pauli Exclusion

Principle also results in an effective repulsive force between electrons. This is because elec-

trons of like spin are forbidden from obtaining the same spatial coordinates, meaning they

spend more time, on average, separated from one another. Given that the Coulombic inter-

action between electrons is repulsive, this effective increase in average distance means that

the population of like-spin states is favored given that they will incur less Coulombic repul-

sion and will subsequently be lower in energy. The energetic difference between the like-spin

and opposite-spin states is commonly referred to as the “exchange energy” even though it is

ultimately Coulombic in origin. The exchange energy has an exact form given orthonormal

wavefunctions:

Eex = −e
2

2

∑
σ

∫ ∫
drdr′

δσσ′|
∑
i

φσ∗i (r)φσi (r′)|2

|r − r′|
. (2.24)

Calculations of a single electron system reveal that the EXC is equal in magnitude to

the Hartree energy, producing the extremely fortunate side effect of canceling the spurious

self-interaction introduced in the Hartree approximation. However, the approximations of

the Local Density Approximation (LDA), to be discussed, in general do not perfectly cancel

the self-interaction.

The phenomenon of correlation is much less intuitively described. Rather than a quan-

tum mechanical effect, correlation is essentially a classical effect. The Coulombic repulsion of
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electrons with one another produces an obvious tendency of electrons to stay away from one

another. In effect, each electron can be thought of as inducing a dearth of electrons in its im-

mediate vicinity as it moves around. While an in-depth explanation of correlation is beyond

the scope of this dissertation, correlation may also be thought of as a deeply complicated

coupling of every electron’s motion with any others with which it locally interacts.

An alternative interpretation of this term is that the presence of an electron with a

particular spin-state at some point in space will cause all other like-spin electrons to interact

with a so-called “exchange hole” at that point in space. We can express this as a Hartree-like

term which accounts for the average interaction of all other like-spin electrons with their

respective exchange-holes:

Eex−hole =
e2

2

∫
drρ(r)

∫
dr′

ρex−hole(r
′)

|r − r′|
. (2.25)

The effects of exchange and correlation are combined to produce a form for the EXC term

EXC[ρ] = e2

∫
drρ(r)εXC([ρ], r) = e2

∫
drρ(r)

∫
dr′

ρ̃XC(r, r′)

|r − r′|
, (2.26)

with the exchange-correlation hole density, ρ̃XC, being similar in nature to the density intro-

duced in the previous equation.

The last points to be addressed in the formalism are the actual approximations used to

model the EXC term. Eq. (2.26) is useful from a conceptual point of view, but provides no

practical means of calculating the energy. The most straightforward energy functional used

in modern solid-state calculations is the LDA. In the LDA, small volumes of the material are

assumed to have approximately uniform electron density. The exchange-correlation energy

of this uniform volume of electron density is then assumed to be equivalent to that of a

homogeneous electron gas with the same density. That is,

EXC[ρ] = e2

∫
drρ(r)εHEG

XC [ρ(r)]. (2.27)
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The εHEG
XC term has been calculated to great accuracy via quantum Monte-Carlo methods.

At first glance, this approximation is quite crude. The LDA inherently models exchange and

correlation as local effects, even though the true effects are non-local. However, the LDA

has been shown to work quite well when compared to experiment. LDA reproduces lattice

constants within about 1–2% of experimental results, while bulk moduli are too large by

about 30%. These errors are found to be systematic. The approximation of the exchange-

correlation energy causes the resulting charge densities to be somewhat more homogenized

than might otherwise be expected, hence bond lengths are typically shorter, resulting in the

discrepancy with experiment. In the limit of strongly-correlated materials it fairs less well,

but for a wide variety of systems, the LDA produces remarkably useful results.

A first attempt to rectify some of the error introduced by the simplifications of the

LDA is provided by the Generalized Gradient Approximation (GGA). Here, the exchange-

correlation energy is calculated incorporating terms which depend on the local inhomogeneity

of the density, that is, powers of the gradient of the charge density are used to parametrize

the energy

EXC[ρ] = e2

∫
drρ(r)εXC[ρ(r),∇ρ(r)]. (2.28)

While the GGA takes a logical first step towards addressing some of the short falls of

the LDA, it does not provide systematically better results. The charge densities tend to be

over-localized which results in bond lengths being systematically overestimated. However,

both functionals have been shown to provide good results over a wide breadth of important

systems. A more in-depth discussion of these functionals, their parameterizations, and other

useful functionals is found in Appendix B.
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2.1.5 Practical Implementation Details

With the formalism of DFT now firmly established, we concern ourselves in this section

with the tools required to practically implement the theory in order to calculate properties

of real systems.

Basis Sets: The representation of any wavefunction will require a suitable basis set

onto which the components of the wavefunction will be projected. For crystal materials, the

periodic nature of the potential v(r) = v(r + R), with R being a real-space lattice vector

in the Bravais lattice, implies that a natural choice of basis sets would be plane waves.

In periodic potentials, the wavefunctions of electrons take the form of Bloch states, that

is, plane waves which can be broken down as the product of a lattice-periodic function and

a phase factor whose value depends on the dot product of the crystal momentum of the

electron and its real-space position vector.

φn,k(r) = eik·run,k(r) (2.29)

We will require the Kohn-Sham functions to take the form of Bloch states, which are

characterized now by two indices, n, being the state label or band index of the electron and,

k the crystal momentum vector of the electron in reciprocal space which will be a wave vector

in the first Brillouin zone. Since un,k(r) has the same periodicity of the lattice, it lends itself

to a natural expansion as a Fourier series. We can make a further useful observation that

the Bloch functions in different cells of the crystal will be related by a phase factor,

φn,k(r + R) = eik·Rφn,k(r), (2.30)

ergo, the probability densities of states in different unit cells will be the same, meaning we

can calculate the properties of the entire crystal simply with knowledge of a single unit cell.

The expansion of the periodic parts of the Bloch wavefunctions into Fourier series takes

the form
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un,k(r) =
∑
G

Cn,k(G)eiG·r, (2.31)

where G represents a reciprocal-space lattice vector, defined with respect to the real-space

lattice by G ·R = 2πj, with j an integer. We may use this expression to expand the full

Bloch wavefunctions in this same basis like so

φn,k(r) =
∑
G

Cn,k+G(G)ei(k+G)·r. (2.32)

In principle, an infinite number of these Fourier terms is required to describe the electronic

orbitals perfectly. However, the contributions from plane waves of high kinetic energies

decrease exponentially. So the series expansion may be truncated by choosing a sufficiently

high energetic cutoff, and only including plane waves with kinetic energy less than this chosen

cutoff:

∣∣∣∣~2(k + Gmax)

2m

∣∣∣∣ ≤ Ecut. (2.33)

Eq. (2.33) can also be thought of as describing a manifold of G-vectors whose extent

about a given k-point determines the number of planes waves used in the representation

of the wavefunction for that k-point. Thus, different points in the Brillouin zone will have

different numbers of plane waves representing them.

The cutoff allows us to represent the electron wavefunctions as precisely as necessary,

with a means of systematically improving the representation by simply increasing the cutoff

energy. The validity of a particular choice of Ecut can be established through total energy

calculations of a system of interest. The cutoff energy can be increased until the total energy

results are within acceptable precision. The intrinsic tradeoff between computational cost

and simulational accuracy is thus tailored to the need of any particular study.

While other basis sets may be used, each comes with their own features and drawbacks.

The plane wave basis is desirable for its (in principle) completeness and for the fact that it
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makes the calculation of energy and its derivatives much less cumbersome than with some

other basis sets.

k-space sampling: Bloch’s theorem, which helped us find a useful expansion for the

electron wavefunctions, introduces an index which labels the crystal momenta, wave vectors

(k) in the first Brillouin zone. There are, however, infinite k-points in reciprocal space.

However, we need not sample every k-point in the Brillouin zone, since the wavefunctions of

k-points sufficiently close to one another are very similar. Thus, we can achieve results over a

representative sample of k-points and that will be capable of representing the wavefunctions

across most of the Brillouin zone. One of the most famous means of generating a k-point

grid which optimally samples the Brillouin zone was devised by Monkhorst and Pack [59].

In this scheme, a generic function, f , to be integrated over the Brillouin zone is expressed as

f(r) =
Ω

(2π)3

∫
BZ

dkf̃(k) =
∑
j

wj f̃(kj)e
i(k·r), (2.34)

with f̃(k) being the Fourier transform of f , and the BZ limit in the integral refers to some

mesh of points in the Brillouin zone. The factor Ω is the volume of the real-space unit

cell and the factors wj are factors whose weight sums up to unity. However, the number

of relevant k-points may be further reduced by exploiting the point-group symmetry of the

lattice. With this consideration

f(r) =

P (nj)∑
j=1

w′j f̃(kj), (2.35)

where P (nj) is a number of points within the irreducible wedge of the Brillouin zone that

depends on the point symmetry of the crystal. Here the modified weights now reflect the

ratio of the group of the individual k-point to that of the full group. The density of the

resulting k-point mesh plays a role in determining the accuracy of the reference potential

in the Kohn-Sham scheme. The chosen k-mesh may also be validated by examining the

convergence of the total energy of the system with increasing density.
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Pseudopotentials: While modeling every electron in a system is possible, it is neither

computationally efficient nor rigidly necessary. Many of the electrons in the system are core

electrons, which reside very close to their parent nucleus. These electrons are largely chem-

ically inert, playing no major direct role in chemical bonding, but they are also extremely

computationally inefficient to represent in a plane-wave basis. The short wavelengths of the

core electrons’ wavefunctions require many Fourier terms in order to be adequately repre-

sented and doing so for every core electron in a system would be wasting resources on a

rather static part of the problem.

To continue using the plane wave basis, an alternate way to represent these electrons is

desired. Given that our interest lies almost exclusively in the valence electrons, we may think

to combine the core electrons and the parent nucleus into an ionic core. This pseudo-nucleus

must then produce a potential which interacts with the valence electrons to produce the cor-

rect all-electron behavior of the wavefunction beyond a certain cutoff radius from the atomic

center. The pseudo-wavefunction then represents an eigenfunction of a pseudo-Hamiltonian

which reproduces exactly the eigenvalues and behavior of the true wavefunction (beyond

a certain radius) but which is nodeless and smooth within that radius. The chosen cutoff

radius needs to be varied based on the angular momentum channel of a particular valence

electron. This pseudo-wavefunction is then much more easily represented by fewer Fourier

terms in our plane wave expansion and produces the correct behavior in the region of inter-

est, alongside the huge computational savings of no longer needing to simulate the individual

core electrons. Fig. (2.1) gives a good representation of the mechanics of pseudopotentials.

Two main methods of pseudopotential generation vary the conditions of the pseudo-

wavefunction within the cutoff radius. The somewhat more standard group of norm-

conserving pseudopotentials require that norm of the true and pseudo-wavefunctions be

identical within the cutoff radius, leading to the boundary condition:

1

Rl
AE(ε, rc)

[
dRl

AE(ε, rc)

dr

]
rc

=
1

Rl
PS(ε, rc)

[
dRl

PS(ε, rc)

dr

]
rc

, (2.36)
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Figure 2.1: Example showing how the use of an ionic core potential may smooth out the
wavefunction of a valence electron within the cutoff radius. Note the matching of the all-
electron (blue dashed line) wavefunction and pseudo-wavefunction (red solid line) beyond
the cutoff radius.

with Rl
AE,PS being the all-electron or pseudopotential values of the radial parts of the wave-

functions for angular momentum channel l. These pseudopotentials deliver high accuracy

and demonstrate a remarkable amount of transferability, that is to say the pseudopoten-

tials are generated to match all-electrons calculations for a reference system and are then

expected to hold for other slightly different chemical environs. As a tradeoff, these pseu-

dopotentials require quite high cutoff energies to produce such accurate results. Ultrasoft

pseudopotentials, on the other hand make use of the fact that there is technically no need

for the norm-conserving constraint and one can generate a pseudo-wavefunction with good

accuracy and transferability requiring much lower cutoff energies. However, their creation
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involves the use of a so-called augmentation charge which makes their use in some types of

calculations of material properties slightly more cumbersome.

The pseudopotentials used throughout this dissertation are of the norm-conserving va-

riety and are generated by the Vanderbilt method. Moving forward, we will continue to

reference what are actually pseudo-wavefunctions as simply wavefunctions unless the dis-

tinction between the two is necessary.

Self-consistency: As mentioned in our discussion of the Kohn-Sham ansatz, the refer-

ence potential which is used to calculate the electronic wavefunctions, which in turn define

the electronic density, depends itself on the set of electronic wavefunctions, being a functional

of the electronic density. This problem is resolved by using a self-consistent scheme, i.e. one

whose input is an educated guess and whose output is either consistent with the input, or

refined until consistent with the input.

One means of approach requires the direct minimization of Eq. (2.22) with respect to

the set of electronic wavefunctions using a technique such as the conjugate gradient method.

This involves choosing a trial single-particle wavefunction and minimizing the contribution

of this state to the total energy while maintaining its orthogonality with all other states.

A more widely used technique is instead to opt to solve the system of eigenvalue equations

presented by Eq. (2.23). After expanding the wavefunctions in the plane wave basis, these

equations take the form:

∑
G′

[
~2

2m
|k + G|δGG′ + Ṽext(G−G′) + ṼHartree(G−G′) + ṼXC(G−G′)

]
Cn,k+G′

= εn(k)Cn,k+G,

(2.37)

where tildes signify the Fourier transform of the corresponding term.

With all the mechanisms hitherto discussed, the self-consistent electron density takes the

form:
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ρ(r) =
∑
k∈BZ

wk

Nk∑
n=1

f (k)
n |φn(k)(r)|2, (2.38)

with Nk the number of electronic states occupied at that k-point, f (k)
n is the occupation

number of the particular state indexed by n and k, all of which are weighted by the factors

wk introduced in Eq. (2.35). Eq. (2.37) can then be rendered as a large matrix whose

number of elements depends on the chosen cutoff energy, k-point mesh, and number of

states to be calculated, n. By diagonalizing this matrix, eigenfunctions and eigenvalues

can be computed, the former being able to be combined in order to yield the calculated

density. The general outline of the procedure goes as follows: we begin with a trial electron

density. This is usually approximated as a simple superposition of normal atomic orbitals.

The reference potential of the Kohn-Sham scheme is then calculated for this density. This

establishes the matrix to be diagonalized (for the given choice of calculation parameters)

which is then used to generate eigenvalues and eigenfunctions of the Kohn-Sham system.

The electronic density is built from these eigenfunctions and this density is checked against

the input density. If they agree within an established tolerance, then that density is the

self-consistently found ground-state density of the Kohn-Sham system, which can then be

identified with the real system and from which material parameters can be extracted. If

the input and output densities disagree, then a new trial density is constructed based on a

mixing of the prior iteration’s output and the current iteration’s output. The new density

is then used as input, and the cycle is repeated until self-consistency is reached. A diagram

of this process is included in Fig. (2.2).

In this work, the DFT code of choice was Quantum Espresso [60]. It is a well-tested,

open-source code suite that is interoperable with other useful solid-state physics code-bases.

The details of its computational schema and workflows are documented in Appendix C.
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Yes

No

Figure 2.2: A flowchart demonstrating the logic of attaining a self-consistent electron density
in DFT.

2.1.6 Limitations

DFT has proven itself to be a remarkable and robust tool for materials science exploration.

With only knowledge of the chemistry and geometry of a crystal as input parameters, DFT

offers a significantly less expensive way to model or explore new materials than other quantum

chemistry methods. Inexpensive core hours and large computational facilities have made ab

initio calculations possible for an ever-wider range of systems. While Kohn-Sham DFT

has more than earned its reputation, the formalism is not all-encompassing. The variety

of exchange-correlation functionals, while well-motivated and sensibly executed, still do not

provide a completely systematic way to improve on the form of the universal functional. This

can hardly be considered a limitation of DFT itself, but the lack of systematically improving

the largest approximation within its framework leaves researchers with a variety of different
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functionals to test on systems of interest. Some fare generally better than others for certain

classes of materials, but this still presents a certain element of empirical study. Functionals

could, at some level, be designed and tuned to fare better for one class of materials or

another, but this dilutes the true ab initio, predictive nature of the method.

More glaringly at the heart of DFT is that it is a ground-state theory. The Kohn-

Sham formalism gives the eigenvalues and eigenfunctions of the fictitious reference system,

which through the graces of the two Hohenberg-Kohn theorems, are designed to produce a

density that coincides with the ground-state density of the real system. No such guarantee

is promised for excited states of the system. This precludes a large class of interesting

phenomena, such as optical activity and charge-carrier dynamics, from being fully studied

at this level. It is well-known that standard DFT underestimates the bandgap of semi-

conductor systems by as much as 50%. While qualitative trends about e.g. mid-gap states

and such can be examined, quantitative predictions about excitation spectra and the like

are beyond the scope of standard DFT. Some systems also present pathologically for DFT.

NiO is a material that was notoriously difficult given that it was known empirically to be

a semi-conductor, but due to some aspects of the formalism, DFT calculations routinely

predicted it as metallic. While workarounds such as the Hubbard U correction (and other

advances along that vein) managed to alleviate some of these pathologies, they did so at the

cost of introducing some amount of empirical judgment to the process.

Additionally, pure systems are often not of much experimental interest, as defects and

impurities are almost unavoidable. Intentionally doped systems are often much more fertile

grounds of exploration for experimentalists seeking to manipulate materials for application.

As such, the periodic boundary conditions, which allow us to make powerful use of the

Bloch theorem in DFT, work against us somewhat when it comes to modeling these types

of systems. In order to accurately model an isolated defect in a system, a large supercell

of the material must be used such that the defect is screened from interacting too strongly

with its periodic replicas. While increases in computational resources can help abate this
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problem to some extent, the calculations still scale like N3, where N is representative of the

number of electrons in the study, before considerations for basis set size and such are taken

into account. This makes study of very large systems still computationally difficult.

All of this is not to say that DFT cannot deliver extremely useful results, from both

theoretical and experimental perspectives. In addition to the wealth of knowledge that even

standard DFT can offer about a material, post-DFT methodologies exist which use the

Kohn-Sham results as a stepping stone to apply higher levels of theory. One such powerful

method is known as the GW approximation, which is discussed in the next section.

2.2 The GW Approximation

While necessary to make progress on the essential aspects of the many-body problem, the

assumptions of the Kohn-Sham ansatz involve us solving a problem of many non-interacting

electrons. To move to higher levels of theory, we need to re-include the interactions in

a formally sound way. Moving past these assumptions of standard DFT is the primary

means of calculating the dynamics of excited states in materials. In this regard, the GW

approximation is a well-founded post-DFT method which may give us access to important

experimental quantities [61].

2.2.1 Connection to Spectroscopy

Spectroscopy, in its various forms, is one of the most fundamental means of studying

physical phenomena. We introduce some common applications of spectroscopy used in solid-

state physics. This background will be used to establish the nuances of many-body states

and excitations whose description necessitate this higher level of theory.

• Photoemission Spectroscopy: In photoemission spectroscopy (PES), laser light is used

to excite an electron from a bound state within the material into an unbound state

where it is ejected from the material. With knowledge of the work function, here
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labeled Φ, control over the energy of the input light (hν, with ν being the frequency

of the light), and a measurement of the resulting kinetic energy of the electron Ek, the

energy of the initial bound state of the emitted electron can be reconstructed using:

IPs = −εs = hν − Ek − Φ (2.39)

Here IPs refers to the ionization potential, defined as the energy required to remove

the electron from the state s of the neutral material. εs is the corresponding energy

value of that bound state and since PES probes the occupied state, this energy must

be less than the Fermi level, which can be set to zero (as done here) for convenience.

It is worth noting that the IP is defined to be a positive quantity always.

• Inverse Photoemission Spectroscopy: The inverse process (IPES), involves the same

quantities, however now an electron with controlled kinetic energy is used to probe the

unoccupied states of the material. The electron is injected into the sample and at some

time later undergoes a radiative transition into a lower energy state, emitting a photon

of energy hν. Knowing the work function of the material, the initial kinetic energy of

the electron, and now measuring the energy of the emitted photon, the energy of the

state that the electron ultimately falls into can be reconstructed in a similar manner

as to Eq. (2.39)

− EAs = εs = Ek − hν + Φ (2.40)

EAs is a quantity known as the electron affinity and is defined as the energy needed

to detach an electron from a negatively charged species; hence, its mathematical form

as the negative of the energy eigenvalue of the state εs. Given that IPES is probing

the unoccupied states of the material, the value of εs will be at least that of the Fermi

level. In contrast to the IPs, the EAs can be positive or negative depending on whether
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the state the electron ends up in is bound or unbound. EAs is negative for an unbound

final state.
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Figure 2.3: A representation of how the PES and IPES processes probe occupied and un-
occupied states of the material. The exact energies of these types of excitations are due to
complicated many-body effects.

Fig. 2.3 gives a good schematic of these processes. It emphasizes that these types

of excitations are fundamentally different from single-particle excitations. PES and IPES

involve probing the response of the entire system of electrons to either the excitation of

one electron out of the material, or the presence of an extra electron in the material. We

immediately see the important role of many-body effects. It is not simply that we can study

the dynamics of how one electron behaves; we are, in fact, concerned with how the entire

system of electrons responds to a change in the electron density.

In PES experiments, the experimentally observed quantity is the probability that an

electron is emitted with a kinetic energy, Ek, in a given time interval, which manifests as the

measured photocurrent in the material upon exposure to light. This photocurrent is related
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in a complicated manner to the intrinsic spectral function of the system which is given by

the imaginary part of the single-particle Green’s function:

A(r, r′, ω) =
1

π
ImG(r, r′, ω) sgn(EF − ω). (2.41)

We do not concern ourselves here with the details of the mathematical relationship be-

tween the photocurrent and the spectral function, as it is yet not rigidly formulated.

2.2.2 The Green’s Function

The single particle Green’s function, G in Eq. (2.41), represents the probability that the

creation of a particle at a point r at some point in time, is correlated with the annihilation

of that particle at another point r′ at some later point in time. This process can be thought

of as the propagation of the particle from its point of creation to its point of annihilation.

Hence, the alternative name for the Green’s function as the propagator. Understanding of

the propagator is vital to our discussion here and will be covered in more detail later. A

useful resource which provides significant background on the topic of GW calculations can

be found in the work by Golze et al. [62].

The creation and annihilation processes alluded to in the concept of the propagator

correspond to the excitations of different many-body states. The transition energies of

equations (2.39) and (2.40) are the removal and addition energies, respectively, of an electron

from one of these states

εs = E(N) − E(N − 1, s),

Ψs(r) = 〈N − 1, s|Ψ̂(r)|N〉,
(2.42)

for εs < EF. Here Ψ̂(r) is an operator which annihilates a particle at point r with Ψ(r) being

the associated transition probability between the N and N − 1 many-body states. These
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many-body states, |N, s〉, are the many-body eigenstates of the N -electron Hamiltonian such

that ĤMB|N, s〉 = E(N, s)|N, s〉, E(N, s) being the corresponding energy eigenvalue of the

state. In the context of a general PES experiment, Eq. (2.42) shows the understanding of

these states quite simply. The state |N〉 describes the ground-state of the N -electron system.

In the presence of photoexciting light, an electron is removed from the system, transitioning

to an N − 1 electron state by removing an electron from some particular valence band, s.

We can build up an analogous expression for the IPES situation via:

εs = E(N + 1, s) − E(N),

Ψs(r) = 〈N |Ψ̂(r)|N + 1, s〉,
(2.43)

for εs ≥ EF. Now, for an IPES experiment, we conceptualize the neutral N-body system

transitioning to the N + 1 state with the addition of the electron, now in some other,

unoccupied band s. In both cases, the interest is in calculating the response of the system of

electrons to either the absence of an electron from the group, or to the presence of another

electron.

Having already introduced the concept of the Green’s function, we can solidify the intu-

ition built by equations (2.42) and (2.43) with the precise definition of the Green’s function:

G(r, σ, t, r′, σ′, t′) = −i
〈
N
∣∣∣T̂ [Ψ̂(r, σ, t)Ψ̂†(r′, σ′, t′)]

∣∣∣N〉 , (2.44)

with σ representing the spin-state of the electron, and the Hermitian adjoint of the annihi-

lation operator Ψ̂† being instead a creation operator. T̂ is the time-ordering operator which

arranges the operators such that the operator acting at an earlier time stands to the right

and acts on the ground-state ket |N〉. However, the definition of G allows for both time

orderings, (t > t′) or (t < t′). With the creation operator standing to the right, G describes,

as discussed previously, the propagation of an electron from one point in space and time to
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another point in space at some later time. If instead, the other time ordering is assumed,

then the process now describes the creation of a hole at one space-time point which propa-

gates backward in time to the other point in space. An important point to be made is that

taking Eq. (2.44) with argument (r) for both operators, at infinitesimally different times,

yields a density of the many-body system akin to Eq. (2.9).

The Fourier transform of the Green’s function in equation (2.44) turns the time argument

into an energy difference and reveals more about the importance of the Green’s function:

G(r, r′, ω) = lim
η→0+

∑
s

Ψs(r)Ψ∗s(r
′)

[
Θ(εs − EF)

ω − (εs − iη)
+

Θ(EF − εs)
ω − (εs + iη)

]
, (2.45)

which is referred to as the Lehman representation of the Green’s function. Eq. (2.45)

assumes that we have summed over the spin degrees of freedom in the definition of G in Eq.

(2.44). η here is an infinitesimal factor which allows for the poles of the Green’s function

to be calculated via contour integration. Θ is the Heaviside function, which is unity for

positive arguments and zero for negative arguments, and enforces the time ordering of any

creation/annihilation process. The Lehman representation of the Green’s function allows

us to identify the many-body excitations in equations (2.42) and (2.43) with the poles of

the single-particle Green’s function. Additionally, the Lehman representation allows us to

examine the spectral function in Eq. (2.41). In its diagonal form it becomes:

A(r, r, ω) =
1

π
ImG(r, r, ω) sgn(EF − ω)

=
∑
s

Ψ(r)Ψ∗(r)δ(ω − εs).
(2.46)
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2.2.3 The Quasi-particle Picture

Eq. (2.46) has the form of a many-body density of states. Yet the excitations of the

real system do not present as precise delta function peaks. A generic excitation pattern is

displayed in Fig. 2.4. In this fiqure, the distinct peak is attributed to a particle-like state,

but with finite width. This broadening comes about as the sum of many delta functions,

close in energy, merging to form this so-called quasi-particle peak. The smaller peak away

from the main peak is referred to as a satellite whose presence in the quasi-particle spectrum

is an essential feature of the process.

We can motivate the thinking about quasi-particle excitations by considering a system

of particles whose two-body interaction is turned on adiabatically. The spectral function of

the non-interacting system will consist purely of delta function peaks and the many-body

states will be characterized by the action of a single creation or annihilation operator. The

wavefunctions and associated energies of particles in this system will be eigenfunctions and

eigenvalues of a single-particle Hamiltonian.

With the interaction turned on, these states are no longer single-particle eigenstates.

The matrix elements of the spectral function contributing to a feature will involve transition

amplitudes from states which no longer vanish. These contributions can combine into a

definable peak centered around one of these single-particle eigenvalues and when this occurs

it appears as a broadening of the original, delta-like peak and is referred to as a quasi-particle

excitation. This propagation of the extra particle can also excite other collective excitations

(plasmons, phonons, magnons, etc.) in the medium which are responsible for the satellite

peak in the characteristic spectrum in Fig. (2.4).

The width of the quasi-particle peak is associated with the lifetime of the excitation τ .

The broadening of the peak is associated with a renormalization factor, symbolized by Z,

of the weight relative to the non-interacting peak. A quasi-particle peak then assumes an

approximate shape:
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Figure 2.4: A generic scheme of a many-body excitation. The main peak is referred to as a
quasi-particle excitation. The smaller peak is referred to as a satellite peak and arises due
to other types of collective excitations which occur in response to the main excitation.

Ass(ω) ≈ 1

π

∣∣∣∣ Zs
ω − (εs + iΓ)

∣∣∣∣ . (2.47)

Quasi-particle energies are not eigenvalues of the full many-body Hamiltonian. The

poles of the Green’s function in equation (2.45) lie exclusively along the real axis whereas

quasi-particle excitations carry a complex component to them as well. The real part of

the quasi-particle energy is associated with the actual energy of the excitation, while the

imaginary component, Γ = 2
τ
is inversely related to its finite lifetime.

Examining the real-space perspective will give us important insight which will play into

the actual implementation of the GW approximation. With a system of N interacting

electrons, the repulsive nature of the two-body Coulombic interaction keeps the electrons

relatively separated. The addition (or removal) of another electron into this system now
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sees the N electrons moving to accommodate this extra electron (or hole). The additional

particle carries with it a cloud of locally opposite charge because the N electrons will always

move to screen the charge, either getting closer to the extra charge in the case of a hole or

moving away from the extra charge in the case of an extra electron. In either case, the extra

particle and its polarization cloud are deemed the quasi-particle. The feedback between the

extra particle and the perturbation it causes in its surroundings is termed the self-energy

and will be a central focus of the GW approximation.

2.2.4 Hedin’s Equations

The Green’s function formalism is a powerful tool for calculating various response quan-

tities of a system. We have introduced several of the important pieces of this formalism

already, and relegate further details of the general formalism to Appendix E.

In 1965, Lars Hedin expanded the Green’s function and the self-energy term in powers of

the screened Coulomb interaction [63]. This leads to a set of coupled, closed-form integro-

differential equations which now bear his name. We will arrive at these equations by a

perturbative approach. The intuition for this approach is quite straightforward.

The starting block to build upon would be the non-interacting propagator, usually sym-

bolized by G0. This is easy to envision, as it involves the particle created in the system

propagating unperturbed to the point where it is eventually annihilated. Harkening to the

Feynman path integral picture, we must consider all possible paths the particle can take to

reach its final point. Each of these paths consists of various interactions which can disrupt

the particle. In the case of an electron propagating through a solid, one huge family of

these perturbations will be the two-body Coulombic interactions it experiences with other

electrons in the medium. However, these perturbations can actually get arbitrarily complex,

and all types must be included in the sum to get the true, fully interacting propagator.

A full understanding of this concept requires a more in-depth understanding of Feynman

diagrams, however, a full review goes far beyond the purview of this chapter and we relegate
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a more complete exposition to Appendix E. We instead focus here on the essential points

necessary to understand Hedin’s equations and subsequently the GW approximation to them.

The self-energy, mentioned briefly at the end of the previous section, is the actual quantity

of interest in the GW approximation. It contains all of the exchange and correlation effects

which will generate the true, interacting propagator. We encapsulate this effect in the

definition of the fully interacting propagator:

G(1, 2) = G0(1, 2) +

∫
d(3, 4)G0(1, 3)Σ(3, 4)G(4, 2). (2.48)

We have introduced a more streamlined notation in Eq. (2.48). The numerals now stand

for an entire set of coordinates such that 1 = {r1, t1, σ1}. Eq. (2.48) is the Dyson equation

and we see that G appears recursviely within its own definition. We could re-insert the

definition of G ad infinitum to get ever-higher orders of the series. In principle, this process

needs to be iterated to infinite order to be perfectly accurate. Obviously this is impossible,

and so the series must be truncated at some point. Hedin’s approach to doing this can be

conceptualized as taking all Feynman diagrams of a characteristic shape, referred to as a

diagram’s “topology”, and renormalizing them into a single approximate object.

In doing so, we “dress” the interaction with the approximate total effect of a family of

processes and replace an infinite number of Feynman diagram objects with a single object.

There is no information lost in this procedure, but the details of the approximated objects

become encoded in the energy dependence of the renormalized object.

A more thorough examination of Hedin’s derivation is undertaken in Appendix E, but

here we state the end result of Hedin’s formalism:
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P (1, 2) = −i
∫
d(3, 4)G(4, 2)G(2, 3)Γ(3, 4, 1)

W (1, 2) = v(1, 2) +

∫
d(3, 4)v(1, 2)P (3, 4)W (4, 2)

Σ(1, 2) = i

∫
d(3, 4)G(1, 4)W (1+, 3)Γ(4, 2, 3)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
d(4, 5, 6, 7)

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3).

(2.49)

The equations in (2.49) are Hedin’s equations. The function P is the reducible polariz-

ability, W is the screened Coulombic interaction, Σ is the self-energy, and Γ is known as the

vertex function.

The polarizability is a familiar quantity, describing the development of dipoles in the

material in response to an electric field. As such, this is an important quantity in describing

the dynamics of the polarization cloud of the additional charge. The chief insight of Hedin

was to use the term W , the screened Coulomb interaction, instead of the bare interaction

in the description of the many-body problem. Screening effects, usually very strong in

polarizable materials, reduce the magnitude of the Coulomb interaction and thus facilitates

the perturbative expansion we’ve discussed. Σ, as mentioned earlier, becomes the quantity

of focus in Hedin’s formulation. It captures all the effects of exchange and correlation and in

principle must be non-local and energy dependent, though these points are discussed more

deeply later. Γ is perhaps the most difficult to conceptualize. It is a structure which, in

the Feynman diagram picture, connects two points of propagation at internal times with

an interaction. This can be done with or without internal structure to the vertex itself,

but again, these details are relegated to Appendix E. The vertex function depends on three

coordinate sets, and thus is also the most difficult to calculate.
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Taken together with Eq. (2.48), Hedin’s equations become closed. We combine the Hedin

equations with several other auxiliary equations to form a full picture of how these equations

can be linked together. We present them here:

χ(1, 2) = χ0(1, 2) +

∫
d(3, 4)χ0(1, 3)v(3, 4)χ(4, 2)

=
〈
N
∣∣∣T̂ [δn̂(1)δn̂(2)]

∣∣∣N〉 ,
ε−1(1, 2) = δ(1, 2) +

∫
d(3)v(1, 3)χ(3, 2),

(2.50)

where ε−1 is the inverse of the dielectric function, which quantifies the electrical response

of the material. χ is, in constrast to P , the irreducible polarizability, so called because it

cannot be broken down into smaller, composite Feynman diagrams of the same topology.

Here δn̂(1) = n̂(1) − n(1) represents the fluctuation of the density about its average value,

with n̂ being a number operator. We can use these two expressions to re-write the screened

Coulomb interaction as follows

W (1, 2) =

∫
d(3)ε−1(1, 3)v(3, 2). (2.51)

The frequency dependence of the screened Coulomb interaction is quite important. The

process of screening involves the rearrangement of charges in order to minimize their inter-

action. This time difference dependence, manifesting equally as a frequency dependence, is

what allows the system to respond to the extra charge and generate the quasi-particle. Han-

dling this frequency dependence can be done fully, but approximations for it are discussed

in Appendix D.

An interpretation of the effect of Hedin’s equations is useful here. The polarizability

equation describes the creation of electron-hole pairs. Their interaction is captured by the

vertex function, which depends upon the change in potential induced by the creation of the
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particle pair. The polarizability determines the dielectric function, which in turn determines

the screened Coulomb interaction. The self-energy then describes the energy of the created

particle pair due to its interaction with the environment.

Despite the steps taken to reduce the number of Feynman diagrams calculated, Hedin’s

equations are still formidable to solve. Recognizing this, Hedin suggested the GW approxima-

tion. By taking the approximation Γ(1, 2, 3) = δ(1, 2)δ(1, 3), the equation for the self-energy

then becomes Σ = iGW where the approximation scheme derives its name. This leaves us

with the set of equations which form the heart of the GW approximation.

G(1, 2) = G0(1, 2) +

∫
d(3, 4)G0(1, 3)Σ(3, 4)G(4, 2)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3)

χ0(1, 2) = −iG(1, 2)G(2, 1)

W (1, 2) = v(1, 2) +

∫
d(3, 4)v(1, 3)χ0(3, 4)W (4, 2)

Σ(1, 2) = iG(1, 2)W (1+, 2).

(2.52)

In equation (2.52), a coordinate with a + superscript represents the same space and

spin coordinates, but infinitesimally advanced in time, that is 1 = {r1, σ1, t1} and 1+ =

{r1, σ1, t1 + η} with η being infinitesimal.

With the simplification to the vertex function, the theory describes a system of non-

interacting quasi-particles. We can still use these quasi-particle results to build even higher-

level interactions, such as describing excitonic behavior. This involves solutions of what is
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known as the Bethe-Salpeter equation whose discussion is limited to Appendix D where it

is presented as the means by which GW methods can calculate absorption spectra.

2.3 Implementation

The GW equations introduced in the previous section seem to lend themselves to a self-

consistent scheme similar to what occurs in DFT. However, this presents both computational

and theoretical difficulties. A straightforward expansion of the self-energy in terms of the

screened interaction is not guaranteed to converge. Additionally, there is no prescription for

how and at what stage in the self-consistent cycle the vertex should be updated.

In practice, a fully self-consistent GW scheme does not seem to generally improve the

experimental agreement [64–66] over non-self-consistent applications. Fully self-consistent

schemes are also significantly more expensive to execute. In this dissertation, we use exclu-

sively what are known as single-shot GW calculations.

2.3.1 Single-shot GW

Single-shot GW, also known as the G0W0 method, is perhaps the most widely used GW

scheme. It is also the simplest. The general schema of the G0W0 is shown in Fig. (2.5)

We begin with an effective single-particle eigenvalue equation, known as the quasi-particle

equation:

ĥMF(r)ψsσ(r) −
∫
dr′vMF

σ (r, r′)ψsσ(r′) +

∫
dr′Σσ(r, r′, σsσ)ψsσ(r′) = εsσψ(r), (2.53)

with

ĥMF
σ = −1

2
∇2 + vext + vH + vMF

σ . (2.54)

52



DFT: {𝜖!"#} and {𝜓!"#} Calculate exchange 
self-energy: Σ!"

𝜀 𝜔 = 1 − 𝑣𝜒$ 𝜔𝑊$
% 𝜔 = 𝜀&' 𝜔 𝑣 − 𝑣

QP iterations begin:

𝜖!( = 𝜖!"#

Calculate correlation self-energy:

Σ!% 𝜖!( =
𝑖
2𝜋/

)

0𝑑𝜔
𝜓!"#𝜓)"# 𝑊$

% 𝜔 𝜓)"#𝜓!"#

𝜖!( + 𝜔 − 𝜖)*+ ± 𝑖𝜂

Solve QP equation:

𝜖! = 𝜖!"# + Re Σ!% 𝜖!( + Σ!, − 𝑣!,%

Are QP energies 
converged?

Outputs

Yes

No

𝜖!( = 𝜖!

Calculate irreducible polarizability:

Calculate dielectric function:
𝜒$ 𝜔 = /

-

.//

/
0

12.//

7
𝜓-"#∗𝜓0"#𝜓0"#∗𝜓-"#

𝜔 − 𝜖0"# − 𝜖-"# + 𝑖𝜂

!−
"4
56"7

56∗"7
56"4

56∗

#$ %7
56& %4

56 & '(

Calculate screened Coulomb:

Figure 2.5: A general diagram of how the G0W0 scheme works. Using the DFT eigenval-
ues and wavefunctions, the exchange portion of the self-energy (ΣX) can be approximated.
The wavefunctions and eigenvalues are also used to construct the irreducible polarizability,
χ0. The dielectric function can then be generated and subsequently the screened Coulomb
interaction, W is approximated. Then the Kohn-Sham eigenvalues are used as an initial
value for the quasiparticle energies to generate the correlation part of the self-energy ΣC.
The quasiparticle eigenvalue equation can then be solved and iterated until self-consistency
is reached in the quasiparticle energies.

The superscript MF refers to the mean-field, in our case DFT, quantities. Here vMF
σ is

the DFT level exchange-correlation potential, with the spin channel given in the index σ,

vH is the Hartree potential, and vext is the external potential all as discussed in the section

on DFT. The solutions to equation (2.53) yield the quasi-particle wavefunctions {ψsσ} and

the quasi-particle energies {εsσ}. These solutions can only be obtained after making our
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approximations to solve for the self-energy. We examine the GW self-energy in the frequency

domain:

Σσ(r, r′, ω) =
i

2π

∫
dω′eiω

′ηGσ
0 (r, r′, ω + ω′)W0(r, r′, ω′). (2.55)

We now need to generate the non-interacting propagator and the screened Coulomb

interaction. The initial, non-interacting propagator is created using the set of wavefunctions,

{φ0
sσ}, generated by Kohn-Sham DFT:

Gσ
0 (r, r′, ω) =

∑
m

φ0
mσ(r)φ0∗

mσ(r′)

ω − ε0mσ − iη sgn(EF − ε0mσ)
. (2.56)

The screened Coulomb interaction is slightly more involved. Its form under the random

phase approximation (RPA), as indicated previously in Eq. (2.51) relies on the inverse of

the dielectric function and the Coulomb potential. The dielectric function is found by:

ε(r, r′, ω) = δ(r, r′) −
∫
dr′′v(r, r′′)χ0(r′′, r, ω), (2.57)

and the irreducible polarizability given by:

χ0(r, r′, ω) = − i

2π

∑
σ

∫
dω′Gσ

0 (r, r′, ω + ω′)Gσ
0 (r, r, ω), (2.58)

which simplifies to [67, 68]:

χ0(r, r′, ω) =
∑
σ

occ∑
i

cond∑
a

{
φ0∗
iσ(r)φ0

aσ(r)φ0∗
aσ(r′)φ0

iσ(r′)

ω − (εaσ0 − ε0iσ) + iη
− φ0

iσ(r)φ0∗
aσ(r)φ0

aσ(r′)φ0∗
iσ(r′)

ω + (εaσ0 − ε0iσ)− iη

}
.

(2.59)

Eq. (2.59) is known as the Adler-Wiser expression. In it, the sum over i runs over

occupied states and a includes some number of unoccupied states. In principle, the sum over

a should be infinite, but we will return to this point later.
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The effects of exchange and correlation are usually separated as two contributions to the

self-energy. The correlation part is represented as:

Σc
σ(r, r′, ω) =

i

2π

∫
dω′Gσ

0 (r, r′, ω + ω′)W c
0 (r, r′, ω′),

where W c
0 is defined by:

W c
0 (r, r′, ω) = W0(r, r′, ω) − v(r, r′),

(2.60)

and the exchange part can be represented as [69]:

Σx
σ(r, r′) =

i

2π

∫
dω′eiω

′ηGσ
0 (r, r′, ω + ω′)v(r, r′)

= −
occ∑
i

φ0
iσ(r)φ0∗

iσ(r′)v(r, r′).
(2.61)

While an exponential factor is technically necessary to close the contour integration of

the Eq. (2.60), the screened Coulomb interaction dies off quite quickly and the limit η → 0+

can be taken before the integration.

It should be noted that while we have referred to G0 as the non-interacting Green’s

function, this is technically only true if calculated using a non-interacting Hamiltonian. In

practice, our G0 is constructed considering at least the Hartree interaction. The mean-field

Kohn-Sham single-particle wavefunctions turn out to be a good starting point to a true,

interacting propagator and thus, when referring to G0 in this work, we will consider it to be

this starting point.

There are many computational details that need to be discussed for a full picture of the

complexities that are involved in a GW calculation. However, they are also tied to the code

suite used. In all studies here, we’ve used the BerekeleyGW code package [70]. These details

are relegated to Appendix D, where we discuss details of BerkeleyGW.

55



Chapter 3

Effects of Transition Metal Dopants on

the Electronic Structure of KNbO3

As discussed in Chapter 1, the breadth of properties of KNbO3 is the result of an in-

terplay of structures in the cationic and anionic sublattices of its various phases. However,

given the risk of the sample cracking upon cooling, the series of structural transitions not

only makes growing large boules of the crystal difficult, but also complicate defect charac-

terization techniques such as electron paramagnetic resonance (EPR), which work best at

low temperatures.

Considering the expense and effort involved in growing crystals of KNbO3, a deep and

fundamental understanding of the specific defect complexes and their chemical nature can

provide helpful insight to experimentalists in the physical, chemical, and materials sciences,

allowing them to focus on the most promising systems. To this end, first-principles calcu-

lations present a cost-effective way to narrow down the field of candidate dopant materials

and predict the likelihood of different defect complexes.

To the extent that DFT calculations can be used to predict how a given defect complex

model affects the band structure of a material, this study is a “first pass” at examining

which dopants (under the specific models considered here) might be useful for the purposes
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of extending the spectral response range of KNbO3. More stringent quantitatively accurate

calculations of these systems under higher levels of theory can then be undertaken to more

accurately predict quantitative properties of the top candidates.

In this chapter, we calculate band structures within DFT for KNbO3:X – VO (where X

= Ti, V, Cr, Mn, Fe, Co, Ni and VO represents an oxygen vacancy) to examine defect states

introduced into the band gap by a given transition metal under two types of defect models.

The rest of the chapter is organized as such: Section II introduces our methods and the

defect models in detail, Section III presents our results and analysis of the band structures

and the preliminary viability of a given dopant for visible and IR response applications, and

Section IV summarizes our conclusions and compares our predictions to experimental results

with outlook toward the next chapters.

3.1 Methodology

For this study, we employ DFT under the generalized gradient approximation (GGA), as

implemented in the Quantum Espresso distribution (version 6.2) [60]. All pseudopotentials

used are of the optimized norm-conserving Vanderbilt (ONCV) variety [71, 72].

We investigate the orthorhombic structure. In order to perform calculations of the doped

systems, we created a 2× 2× 2 supercell containing 80 atoms. The pure supercell was then

relaxed to establish lattice parameters (reported in Chapter 1) and equilibrium positions for

all atoms. For this supercell, relatively tight convergence of the total energy of the supercell

(up to ∼10 mRy) was achieved using a kinetic energy cutoff of 150 Ry and a charge density

cutoff of 600 Ry. Additionally it was determined that a 4 × 4 × 4 Monkhorst-Pack [59]

k-point grid was enough to obtain converged total energies of the pure supercell to within a

∼1 mRy level. We find that our lattice parameters differ from experimental results by less

than 1.5%, [12, 13] which is within the expected accuracy of Kohn-Sham DFT. Calculations

on the doped systems included a small smearing of the occupation levels (convolution with
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a Gaussian of width 0.02 Ry) in order to account for the small, but non-negligible metallic

characteristic imparted by the dopants. All doped systems were treated in the calculation

as spin polarized.

To ascertain possible magnetic ground states of these systems, QE allows one to bias

the magnetization of a given atomic species at the start of the calculation. This allows

the calculation to explore the magnetic subspaces of the possible electron densities. The

self-consistent DFT cycle proceeds as normal, but now the code also seeks to minimize

the magnetization of the cell in addition to minimizing the energy of the electron density.

To ensure that we are finding the true ground states of the systems presented, we ran

self-consistent calculations with a fully polarized dopant atom, that is, setting the starting

magnetization to its maximum value, as well as a calculation with this value set to zero.

That is, we explore the minimization process from both the most polarized case and the least

polarized case. In all cases, we find that either both starting points find electron densities

with identical magnetizations and total energies, or that the biased starting magnetization

results produce a density with a lower total energy than the unbiased starting point. We

present results derived from the fully polarized starting point.

3.1.1 Defect Models

While the exact origin of the IR sensitivity introduced by 3d transition metals remains

an open question [48], one prevailing idea is that the transition metals preferentially occupy

Nb sites within the crystal [73, 74]. It is generally thought that at this substitution site

the dopants assume a 3+ charge state partly on the basis that their atomic radii in this

charge state are closer to that of Nb+5, which should minimize stress on the cell and lead to

a more favorable formation energy. Given this assumption, the removal of an oxygen atom

in the cell would free two electrons which would presumably bind on the dopant to attain

the 3+ charge state [75]. An O vacancy is thus invoked as one possible mechanism of charge

compensation. Though other centers are certainly thought to be at play in many samples
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[76, 77]. The band structures presented later support the assertion that Cr, Mn, Fe, Co, and

Ni all exist in the predicted 3+ charge state.

In the models tested here, we examine a substitution of Nb with Ti, V, Cr, Mn, Fe, Co,

and Ni (i.e., the 3d transition metals). We then examine the band structures and projected

densities of states when we induce the charge-compensating O vacancy in either the first

coordination shell of O atoms around the dopant (depicted in Fig. 3.1 (a)) or in a shell

that is as far away from the dopant as possible in the supercell. The former model we refer

to as the coordinated vacancy model whereas the latter we call the uncoordinated vacancy

model. We note that in this latter model, the distance between the dopant and the vacancy

is ∼7.5 Å which can hardly be considered totally isolated, but is the best that can be done

in a 2× 2× 2 supercell. Fortunately, KNbO3 has a high static dielectric constant [78] which

significantly reduces the electrostatic interaction between periodic replicas. In both models,

after the defect is introduced, the atoms are again allowed to relax in response to the presence

of the defect.

Our models aim to represent the effects of the dopants when the charge-compensating

vacancy either does or does not disturb the crystal field locally surrounding the dopant. The

expected effects of this disturbance will be examined in the next subsection.

3.1.2 Expected Trends

As shown in Fig. 3.1(b) and (c), an important factor in determining the population

energetics of the dopant 3d states involves considerations of the local crystal field experienced

by the dopant ion. In particular, the geometry of the surrounding chemical environment

introduces an electrostatic perturbation which modifies the position of the dopant states. A

dopant ion surrounded by an ideal oxygen octahedron will experience a crystal-field splitting

of the d orbitals and the five degenerate 3d states will split into a degenerate pair of eg

states and a degenerate triplet of t2g states. In the doped KNbO3 orthorhombic structure,

the oxygen octahedron is distorted relative to that of the ideal cubic phase due to the dopant
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at the Nb site undergoing a displacement along a dihedral of the octahedron. This implies

that the above model of the crystal-field splitting is not strictly correct here, as the sets of

symmetry-split defect states will not be exactly degenerate. A second, and as will be shown

below, larger perturbation is the exchange splitting, whereby the Coulomb cost of pairing

two electrons will make the filling of states with a single spin more energetically favorable,

as this configuration will tend to keep the electrons more spatially separated.

The variation of the crystal field and exchange splittings across the 3d row is shown in

Fig. 3.1 (d). In this figure the crystal-field splitting, ∆cf , was determined by calculating the

barycenters of the eg and t2g manifolds and subtracting, while the exchange splitting, ∆ex,

was determined by calculating the barycenters of the spin-up and spin-down 3-d manifolds

and subtracting. As can be seen in Fig. 3(c), the crystal-field splitting only varies slightly

across the 3-d row with a minimum at Fe3+ due to the close matching of the ionic radius of

Nb5+ with that of Fe3+ and its adjacent neighbors in the row [79]. In contrast, the exchange

interaction varies more strongly across the 3-d row, with a maximum at Fe3+ as expected

because of its high spin configuration [80, 81]. As can be seen in Fig 3(c), the detailed

interplay of the crystal-field and exchange splitting results in exchange being the dominant

interaction with the notable exception of Cr3+. Given the [Ar]4s03d3 (less than half-full)

electron configuration of Cr3+, this effect does not impact the population energetics of the

KNbO3:Cr states.

3.1.3 Approximation to Actual Transition Energies

The single-particle electron states determined in standard Kohn-Sham DFT are the eigen-

states of the fictitious non-interacting Kohn-Sham system, not the real physical system. As

such, the excited states should not be expected to properly represent the excitation dynam-

ics of the real systems. A fairly crude approximation to the actual excitation energies is

performed here by assuming that a scaling relationship exists between the calculated and

experimental band gap of KNbO3 and that this scaling holds for the calculated and experi-
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Δcf > Δex
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Δex

Δex > Δcf 

Δex 
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Δcf 

(d) 

Figure 3.1: (a) Defect structure rendered in a single orthorhombic cell of KNbO3. The cyan
spheres are K, the green spheres Nb, the red spheres O, and the single orange sphere is the
dopant species. The O atom with the cross-hair and yellow outline is the site of the vacancy.
The arrows show the a, b, and c crystallographic axes of the cell. (b) Diagram of energy
level splitting in the case where the crystal field splitting ∆cf is the dominant perturbation.
The occupation scheme of Cr+3 is demonstrated. (c) Diagram of energy level splitting in the
case where the exchange splitting ∆ex is dominant instead. The occupation scheme of Fe+3 is
demonstrated (d) exchange and crystal-field splitting energies as determined by barycenters
of peaks in pDOS for the uncoordinated oxygen vacancy (UOV) and coordinated oxygen
vacancy (COV) models

mental impurity states as well. This approximation is somewhat reminiscent of the familiar

“scissor operator” sometimes used in the literature. However, the scissor operator opens the

band gap via a rigid shift in the conduction band relative to the valence band. The choice of

where in the band gap to act the scissor operator is thus somewhat arbitrary and applying

it to these systems would subsequently shift the impurity bands around arbitrarily. Our
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current procedure does not generate a relative shift between the valence, conduction, or any

impurity bands but merely scales them all according to the empirical band gap.

Using the value of Eg,exp = 3.3 eV for the experimental band gap and Eg,calc = ELU−EHO

= 2.3 eV for the calculated band gap (determined as the difference in energy between the

lowest unoccupied state and the highest occupied state of the pure system), a ratio Rg =

Eg,exp/Eg,calc = 1.4 is obtained.

Given the high dopant concentration realized in these calculations, impurity bands, which

would be expected to be extremely flat in experimental conditions, exhibit significant dis-

persion in these band structures due to interaction with their periodic replicas. The high

dielectric constant of KNbO3 is expected to significantly dampen long-range electrostatic

interactions. This suggests that the unit cell size chosen for reasons of computational ex-

pense is sufficient. In analyzing these features, we find that the dispersion does not appear

to affect the occupation scheme of any of the defect complexes. Hence, we feel it is sufficient

for present purposes simply to calculate the barycenters of these states (or clusters of nearly

degenerate states) using the pDOS information to approximate the position of the expected

perfectly flat bands in an infinite supercell. These barycenters represent the average energy

of the band as determined by integrating the state energies within an energy range capturing

the feature of interest, weighted by the pDOS, and then normalized by the total number of

states within the energy range. Upon applying the scaling factor Rg to these barycenters, the

result was subtracted from the relevant band edge (conduction band edge for donor states

and the valence band edge for acceptor states) to yield the approximated excitation energies

reported later in Table II.

3.2 Results

The band structure and projected density of states (pDOS) of pure orthorhombic KNbO3

are shown in Fig. 3.2. They reveal that the valence band of KNbO3 largely arises from O-
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Figure 3.2: Non spin-polarized band structure and projected density of states for pure or-
thorhombic KNbO3. The red line indicates the Fermi level, conventionally placed in the
center of the band gap for semi-conducting systems.

2p states while the conduction band arises from the Nb-4d states, with some evidence of

hybridization between the two sets of orbitals. This agrees with most explanations in the

literature that the Nb-O bonds in KNbO3 exhibit some covalence [82].

3.2.1 Ti and V

Presented here together are the results for KNbO3:Ti and KNbO3:V (see Fig. 3.3) both

for the coordinated vacancy model. Given that these two dopants present the least useful

changes to the band structure of the pure material we devote only a small amount of time

to their discussion.
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For the case of KNbO3:Ti, the 3-d impurity states introduced are well above the band gap

and thus present no viable means of extending the spectral range of KNbO3. The presence

of Ti induces partial occupation of the conduction band of KNbO3 as indicated by the Fermi

level, rendering the material metallic. This is perhaps unexpected considering conventional

wisdom which would see a Ti substitution on Nb as donating a hole to the valence band. It

is worth noting that the significant self-interaction error in DFT-GGA due to the localized d

states of Ti may result in erroneous prediction of this metallic state, but the action of Ti as

a hole dopant relies on Ti in a formal 4+ charge state. Thus, our coordination of this dopant

with an O vacancy may be responsible for the divergence from this expectation. Given this

behavior, even higher levels of theory are not expected to change these states enough to

consider Ti3+ a viable dopant for photorefractive applications in the visible or IR regimes.

The KNbO3:Ti supercell yields an absolute magnetization of 0.0 Bohr magneton (µB) for

the coordinated vacancy and 0.25 µB for the uncoordinated vacancy case.

In the case of KNbO3:V, we see two degenerate states lying just below the conduction

band with a less distinct peak of V-d character appearing in the conduction band. We

identify these as the set of t2g states while recognizing the presence of some V-d character

diffusely present in the conduction band. In similar fashion to Ti, the presence of V shifts

the Fermi level to the edge of the conduction band, rendering the material metallic within

DFT-GGA. However, the Fermi level here appears to be pinned to these impurity bands.

V should be capable of substituting isovalently on a Nb site. While not entirely apparent

from the figure, the peaks in the V-d pDOS also show significant presence of O-2p character

indicating some degree of hybridization between the impurity orbitals and the oxygen atoms

nearby. It is possible that higher levels of theory applied to these results would actually

result in shifts of the impurity states somewhere into the band gap. However, given that

they occur so close to the conduction band edge already, those shifts are not expected to

bring these states into the visible or IR regimes. The KNbO3:V supercell yields an absolute

magnetization of 2.37 µB for both the uncoordinated vacancy and coordinated vacancy cases.
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Figure 3.3: Spin-up (top) and spin-down (bottom) band structures and pDOS for KNbO3:Ti
(left) and KNbO3:V for the coordinated vacancy model. The red line indicates the Fermi
level as determined by density of states integration

3.2.2 Cr

Cr doping has been demonstrated to significantly affect the optical properties of other

oxide systems [83] and is expected to represent a strong candidate for KNbO3. The main

impurity states of interest in KNbO3:Cr (see Fig. 3.4) are a cluster of three nearly degenerate

t2g states located about mid-gap that occur only in the spin-up band structures. Comparing

these features to those in the band structures of KNbO3:Ti and KNbO3:V, it is evident that

increasing nuclear charge seems to shift the cluster of t2g states to lower energy, as expected.

Because these states are below the Fermi level, they may be useful as electron donors. Com-

parison of the uncoordinated and coordinated vacancy models reveals that the coordination

of the O vacancy with the Cr impurity shifts an eg state just barely down in energy out of the
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Figure 3.4: Spin-up (top) and spin-down (bottom) band structures and pDOS for KNbO3:Cr
for the uncoordinated vacancy (left) and coordinated vacancy (right) models. The red line
indicates the Fermi level as determined by density of states integration

conduction band. One noticeable effect of the local vacancy is that it results in a re-ordering

of the t2g states. Comparing to the uncoordinated vacancy model, it is apparent that one

of the least dispersive t2g states becomes more energetically favorable relative to the most

dispersive t2g state. Given that the position of the cluster is practically the same across

these two models in KNbO3:Cr, this re-ordering likely arises from the perturbation of the

crystal field since the coordinated vacancy further breaks the symmetry of the octahedron.

The KNbO3:Cr supercell yields an absolute magnetization of 3.34 µB for the coordinated

vacancy case and 3.38 µB for the uncoordinated vacancy case.
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Figure 3.5: Spin-up (top) and spin-down (bottom) band structures and pDOS for KNbO3:Mn
for the uncoordinated vacancy (left) and coordinated vacancy (right) models. The red line
indicates the Fermi level as determined by density of states integration

3.2.3 Mn

The band structure of KNbO3:Mn (see Fig. 3.5) becomes quite complex. While the useful

impurity features from an experimental point of view appear in the spin-up band structures,

we observe the beginnings of more noticeable Mn 3-d features in the conduction bands of

the spin-down band structures. The 3d character of these spin-down features is reminiscent

of the diffuse character present in the dopants examined above; however, particularly in the

uncoordinated vacancy model, peaks in the pDOS indicate that more localized bands are

beginning to present. Examining the spin-up features we notice that the set of occupied t2g

states present in the previous systems decreases in energy such that it occurs just barely

above the O-2p states making up the valence band. These states, while not useful as midgap
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states, may still be useful as trap states. Lying higher in energy, the eg states straddle the

Fermi level in each model. In the coordinated vacancy model, the separation of the two

eg states is increased, shifting the lower lying state closer to the valence band edge. The

band re-ordering discussed in the results of KNbO3:Cr is more difficult to examine here. The

cluster of t2g states exhibits significant overlap with states of O-2p character and it is difficult

to identify the most and least dispersive bands from the figure. However, by examining the

norm of the wave functions of these bands, it is confirmed that re-ordering of the t2g states

due to the coordinated oxygen vacancy does occur in KNbO3:Mn as well, though it is more

complicated than a simple switching of two states. The KNbO3:Mn supercell yields an

absolute magnetization of 4.22 µB for the coordinated vacancy case and 4.24 µB for the

uncoordinated vacancy case.

If this occupation scheme would persist at higher levels of theory, it would indicate dual

acceptor/donor states in the system. The presence of both types of defect states would make

possible both electron and hole excitations. In the context of photorefractive applications,

the simultaneous presence of electrons and holes as charge carriers can generate competing

gratings in the material thereby weakening the photorefractive response. Thus Mn may be

useful in more specialized applications where both electron and hole gratings are desired.

3.2.4 Fe

KNbO3:Fe (see Fig. 3.6) demonstrates a significant change in the band structures ob-

served so far. It is the first system where impurity gap states occur in the spin-down band

structures of our models. In particular, the impurity states in the spin-up band structures

are just above or within the valence band, rendering them less suitable for the purposes of

visible/IR photorefractivity. Examining the spin-down band structures, we note that the sep-

aration between the eg and t2g states seems to decrease relative to previous dopants. While

the impurity states in the conduction band are difficult to distinguish, peaks in the pDOS

plots seem to show a similar trend across the uncoordinated and coordinated vacancy models
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Figure 3.6: Spin-up (top) and spin-down (bottom) band structures and pDOS for KNbO3:Fe
for the uncoordinated vacancy (left) and coordinated vacancy (right) models. The red line
indicates the Fermi level as determined by density of states integration

as before, one eg state being more strongly affected by the presence of the vacancy than the

other. We similarly recognize that continuation of the trend of the most and least dispersive

t2g bands re-order under the presence of a nearest-neighbor oxygen vacancy. The cluster of

t2g states in the spin-down midgap are unoccupied, indicating that Fe may introduce accep-

tor states viable for extending the spectral response of KNbO3 via hole conduction. The

KNbO3:Fe supercell yields an absolute magnetization of 5.06 µB both vacancy cases.

3.2.5 Co

KNbO3:Co (see Fig. 3.7) shows another noticeable difference from previous systems. Of

immediate note is that there is a significant difference in the Fermi level between the two
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Figure 3.7: Spin-up (top) and spin-down (bottom) band structures and pDOS for KNbO3:Co
for the uncoordinated vacancy (left) and coordinated vacancy (right) models. The red line
indicates the Fermi level as determined by density of states integration

models. This is a consequence of the band re-ordering pattern that has been established thus

far. In KNbO3:Co however, the near-degeneracy of the t2g states is significantly disrupted,

even in the uncoordinated vacancy model. The system supports the occupation of the lowest-

lying t2g state, but given that the lowest lying state switches from the most dispersive state (in

the uncoordinated vacancy model) to the least dispersive state (in the coordinated vacancy

model), the Fermi level noticeably shifts as well. However, this shift of approximately 0.23

eV is very similar to the energetic dispersion of the band, which is approximately 0.3 eV.

Additionally, in the coordinated vacancy model the presence of the vacancy seems to shift all

of the relevant impurity states down in energy relative to the uncoordinated vacancy model.

Given the spread of impurity states across the band gap, it is likely that the introduction of
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Co as a dopant will introduce viable acceptor/donor states. The precise shift of these levels

under higher levels of theory is difficult to predict, however. The KNbO3:Co supercell yields

an absolute magnetization of 4.11 µB for the coordinated vacancy case and 4.13 µB for the

uncoordinated vacancy case.

3.2.6 Ni
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Figure 3.8: Spin-up (top) and spin-down (bottom) band structures and pDOS for KNbO3:Ni
for the FN (left) and coordinated vacancy (right) models. The red line indicates the Fermi
level as determined by density of states integration

The general Coulombic trend of impurity states lowering in energy with increasing dopant

atomic number continues in KNbO3:Ni (see Fig. 3.8). The useful impurity features are only

exhibited in the spin-down band structures. Interestingly the two lowest t2g states are

occupied and fall well into the valence band. As with KNbO3:Mn, the reordering of the t2g

states across the two models is difficult to examine given that the two states in question are

within the valence band. Examination of the norms of the wave functions for these bands also
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confirm that this reordering does occur as well. The unoccupied eg states in KNbO3:Ni fall

relatively deep within the band gap. These states along with the highest t2g state, which is

also unoccupied, may represent a useful set of acceptor states for establishing photorefractive

gratings via hole conduction. The KNbO3:Ni supercell yields an absolute magnetization of

3.13 µB for the coordinated vacancy case and 3.14 µB for the uncoordinated vacancy case.

3.3 Discussion

Shown in Table 3.1 are the predicted transition energies of the identified impurity 3d

states calculated using the scaling procedure discussed above. They are further identified

with their nature as an acceptor or donor state as determined by the occupations indicated

by the bands structures presented in the previous section. For the purposes of extending the

spectral response of KNbO3 into the visible and IR regimes, transition energies from 2.8 eV

to approximately 1.7 eV could be considered viable. Given this range, most of the dopants

studied here present at least one state that could extend the spectral response of KNbO3.

Based on the pure number of viable states available it would appear Co and Ni present as

perhaps the best candidates at first glance.

3.3.1 Limitations

Several limitations ought to be emphasized lest readers over interpret the quantitative

predictions. As stated earlier, Kohn-Sham DFT lacks the theoretical basis to accurately

calculate excited states. The same shortcoming which prevents the accurate prediction of

semiconductor band gaps also affects the energy (and possibly the occupations) of impurity

states. Secondly, localized d orbitals can be subject to self-interaction and localization

error [84], which can affect their energies and occupations. Corrections to these localization

errors, such as the introduction of a Hubbard U parameter can likely help abate some of

these issues [85]. The Hubbard U correction, in principle, introduces an extra term in
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Impurity Scaled Transition Energy (eV)
Uncoordinated Vacancy Coordinated Vacancy
Spin up Spin down Spin up Spin down

Cr 1.1 (Donor) –
0.97 (Donor)
3.1 (Acceptor)

–

Mn
2.9 (Donor)
1.9 (Donor)
2.8 (Donor)

–
3.1 (Donor)
2.3 (Donor)
2.9 (Acceptor)

–

Fe
3.2 (Donor)
2.8 (Donor)

2.5 (Acceptor) 2.6 (Donor)
2.3 (Acceptor)
2.7 (Acceptor)

Co 1.7 (Donor)
1.2 (Acceptor)
1.3 (Acceptor)
2.0 (Acceptor)

2.2 (Donor)

1.9 (Donor)
0.86 (Acceptor)
1.1 (Acceptor)
1.7 (Acceptor)
2.1 (Acceptor)

Ni 3.2 (Donor)

3.1 (Donor)
0.59 (Acceptor)
1.9 (Acceptor)
2.2 (Acceptor)

3.2 (Donor)

3.3 (Donor)
0.59 (Acceptor)
1.5 (Acceptor)
2.02 (Acceptor)

Table 3.1: Transition energies of impurity features predicted by scaling method. Behavior
as either an acceptor or donor state is determined by occupations (position below or above
the Fermi level). Barycenters of the pDOS peaks were calculated for distinguishable features
in order to compensate for the artificial dispersion introduced by interactions of the dopant
with its periodic images.

the Kohn-Sham Hamiltonian to account for the on-site Coulomb interaction responsible for

the correlation-induced gap in strongly correlated materials. In effect, this term penalizes

inaccurate occupation of the states in question. This parameter is, however, often introduced

only in a semi-empirical sense in that it is adjusted to open the band gap to the experimental

value or to achieve a desired occupation of problematic highly-localized orbitals. While there

exist methods of determining the appropriate value of the U parameter self-consistently [86,

87], they were not implemented here given that the systems under study did not exhibit
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partial occupation of the d orbitals. Examination of the band structures produced in this

study show occupations of the relevant dopant d orbitals consistent with the intuition of the

model, thus, it was deemed that the extra computational complexity and expense involved

in the introduction of a Hubbard U correction would not provide sufficient improvement to

these results to warrant the additional time and resources.

Hybrid functionals are another means to open the band gap from its DFT value [88].

These functionals, which include some empirically chosen percentage of exactly calculated

exchange energy, have demonstrated very good results in a wide variety of materials. This

added precision comes with a drastic increase in computational cost however, and while its

effect on the band gap is well-demonstrated, there is no a priori reason that it should be

expected to affect the occupation of these d orbitals.

Given the aim of our methodology in this study, which is to examine a suite of dopant

defect complexes with as little computational expense as possible to get qualitative trends,

we find that well-converged GGA results are an adequate starting point to examine these

trends for the defect complexes studied here. We emphasize that this may not be a “one size

fits all” approach and that methods such as those mentioned above may be useful to take

into consideration for other systems.

It should also be addressed that strongly correlated materials are characterized by a

correlation-induced opening of an energy gap at the Fermi level and the presence of satellite

structures within the electronic spectrum. As with most exchange-correlation functionals in

Kohn-Sham DFT, the GGA is not capable of describing these phenomena. Further calcula-

tions capable of accounting for correlation-related phenomena, under the GW approximation

for example, can be undertaken for promising systems. These more sophisticated and com-

putationally expensive methods build perturbatively on Kohn-Sham DFT results such as

those collected here.

Additionally, photorefractive models involve complicated rate equations that rely on var-

ious complicated parameters. Cross-sections of the various excitations, the density of trap
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states, recombination rates and hole and electron mobilities all play into the solutions of

these equations and our calculations do not address these issues. Here, we have considered

only one charge compensating mechanism.

The size of our supercell was also chosen in an attempt to balance the computation cost

of these calculations with some degree of accuracy. Larger supercells could be employed to

further reduce the interactions of periodic replicas of the defect complexes. However, the use

of larger supercells can be difficult to justify when GW calculations are the ultimate end,

given that the scaling of those calculations can be prohibitive for large system sizes. Finally,

our scaling method implemented here provides a fairly simplistic mechanism to deal with the

DFT errors in excited states. As such, we caution against over interpreting the quantitative

results. The goal of this study was to examine trends and identify candidate systems for

deeper investigation.

3.4 Conclusions

Our results indicate that for these two relatively simple models of charge-compensated de-

fect complexes in doped KNbO3, trends can already be observed in the occupation, splitting,

and energetics of impurity states as the atomic number of the dopant is altered across the

3d row of transition metals. We find that the distribution of these impurity states changes

quite systematically across the 3d row. As the atomic number of the dopant is increased, the

impurity states are gradually pulled down in energy. The relative effects of exchange split-

ting and crystal field splitting are seen to affect the ordering and spin state of impurity gap

states. We also observe that a coordinating oxygen vacancy can influence the local lattice

geometry significantly, which can affect the local crystal field, evidenced by the reordering

of some of the t2g states. These results also qualitatively exclude Ti and V as useful dopants

for the purposes of IR response. While quantitatively accurate statements about optical

response (and furthermore photorefractive response) cannot be made at this level of theory,
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our results do indicate that Cr, Fe, Co, and Ni all stand out as distinctly interesting can-

didate dopants, albeit in different spectral regions and with different donor/acceptor state

behaviors, and therefore photorefractive applications.

3.5 Copyright Information

Reproduced from: E. G. Suter, Mohua Bhattacharya, Steven P. Lewis, and William

M. Dennis, Journal of Applied Physics 131, 023102 (2022); with the permission of AIP
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Chapter 4

Investigation of Fe Defect Centers in

KNbO3

The nature and behavior of defect complexes in KNbO3 is the subject of continuing debate

[73, 74, 76, 89]. In particular, the behavior of defects in different charge states can be vital

to experimental applications of this material. Of particular relevance to the photorefractive

effect is whether these different charges states exhibit donor or acceptor behavior as this will

subsequently relate to the effective trap density and dark conductivity in a material. Both

of these factors can greatly impact the photorefractive performance as a high effective trap

density can result in larger photorefractive gain and a high dark conductivity will contribute

to a shorter grating lifetime. Thus, obtaining a fundamental and detailed understanding

of adjacent valence states of dopant-defect complexes is another opportunity to leverage

the power of ab initio methods to help inform experimental designs. In this chapter we

explore such a methodology that extends the capabilities offered by surveys such as the one

described in the previous chapter to investigate a range of experimentally relevant, complex

defect centers in multiple physically occurring ionization states. In particular, it has been

shown that doping KNbO3 with Fe can dramatically increase the photorefractive speed and

sensitivity increasing its efficacy for two-beam coupling applications [48]. This improvement
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in photorefractive performance can be effected by using a reduction treatment that converts

a fraction of the Fe3+ ions to Fe2+ state. In this chapter, we study Fe as a substitutional

impurity on both K and Nb sites in different local environments (defect complexes) and

ionization states.

4.1 Defect Complexes

The 2016 results by Basun et al. [48] indicated three possible defect complexes in KNbO3,

a lone Fe substituting on a Nb site (Fe[Nb]), an Fe substitution on a Nb site with a coordi-

nating O vacancy (Fe[Nb] – VO), and an Fe substitution on a K site with a nearest-neighbor

K vacancy (Fe[K] – VK). One result of that study is a schematic energy level diagram they

propose to explain the effects of reduction treatments on the optical properties of the crystal,

reproduced here as Fig. 4.1.. They remark that while both substitution-vacancy complexes

are possible, their work supports the Fe[K] – VK complex as the dominant photorefractive

center.

In this study, we employ the DFT-based methodology below to assign each of the defect

states in Fig. 4.1 in order to more fully flesh out this picture. We consider all defect

complexes with Fe in a 2+/3+ charge state transition only, as the literature indicates this

is the predicted most relevant photoactive center for photorefractive purposes.

4.2 Methodology

Much of the methodology used to investigate the Fe doped systems of interest to this

chapter has been described in Chapters 2 and 3. Below we describe briefly two additional

techniques that have been used to gain additional insight.
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Figure 4.1: Reproduction of a diagram from Basun et al. [48] showing proposed energy level
diagrams inferred from their results, in the spirit of work done by Zgonik et al. [90]. The
left part of the diagram shows proposed energy levels and occupations in crystal which were
grown and poled, but not reduced. The right part shows the proposed changes to occupations
induced by reducing the crystal after growth and poling. The FeX+ – V levels shown here
refer to the Fe atom in an X+ charge state in a complex with a vacancy. The dashed lines
represent Fe2+/3+[Nb] levels proposed by Zgonik et al.. The VO level is taken from the work
of Biaggio et al. [91]. Reprinted figure with permission from [Basun et al., Physical Review
B, 93, 094102 2016.] Copyright (2016) by the American Physical Society.

4.2.1 Addition of a Jellium Background Charge

Upon identifying candidate systems of interest, investigating the behavior of valence

states adjacent to the initially enforced state can be undertaken by doping the unit cell with

additional charges and determining the occupation of impurity states by inspection of the

band structures, as performed in the previous chapter. The introduction of extra charge into

a cell with periodic boundary conditions causes a divergence in the electrostatic energy. This

can be mitigated by introducing a compensating jellium background equal and opposite of

the included charge. In this way, we can dope extra electrons or holes into the unit cell and

examine on which atomic site they prefer to localize by examining how the occupations of

impurity states in the band structure change with respect to the Fermi level.
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Figure 4.2: A demonstration of the effect of jellium compensation on a band structure. Both
systems are Fe3+ substituting on a Nb site. In the left panel we show the band structure
of the system when charge compensated by an O vacancy as far away in the supercell as
possible. In the right panel we show the band structure when the system is externally charged
and compensated by a jellium back ground. Though qualitative differences do exist between
the two, we see that the use of a jellium background produces the same charge state of the
dopant and behavior of the impurity bands.

In Fig. 4.2 we compare band structures for an Fe3+ on the Nb site with a second-nearest

neighbor charge compensating O vacancy with a Fe3+ on a Nb site with a compensating

jellium background charge. As can be seen in Fig. 4.2, the two band structures are nearly

identical showing that use of a compensating jellium background charge provides an excellent

proxy for non-local charge compensation models.

Again, we use GGA exchange correlation functionals with optimized norm-conserving

Vanderbilt pseudopotentials. Quantum Espresso is again our tool of choice, albeit we now

use version 6.6, which was released after the previous work was completed. We also employ
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supercells constructed similarly to those of the previous chapter, that is 2×2×2 supercells

of the pure orthorhombic structure relaxed to established equilibrium lattice parameters.

That structure is then defected and subsequently the ions are allowed to relax to respond

to the defect complex and any additional charge introduced, establishing equilibrium atomic

positions. All other convergence parameters (kinetic energy cutoff, charge density cutoff,

k-point grid, and Gaussian convolution width) are the same as in the previous study.

4.2.2 Configuration Coordinate Diagrams

A system of atoms with a dopant in a given valence state will, by necessity have a different

set of equilibrium atomic positions than an otherwise identical system with the dopant in a

different valence state. The electron density will respond to the presence of “extra” holes or

electrons, relative to the system with the other valence state, and the atomic configuration

will subsequently respond to the altered electronic density, as implied by the first Hohenberg-

Kohn Theorem. The two systems will also display different electronic excitation levels. These

levels will also be linked in some sense, given that excitation to or from an impurity state in

one charge state will result in a change of the charge state of the dopant.

One useful construction to visualize the interplay between these sets of electron energy

levels is through configuration coordinate diagrams. In this formalism, the electronic levels

are coupled to the states of a harmonic oscillator and each electronic energy level depicted as

a harmonic oscillator potential with a ladder of quantum harmonic oscillator states param-

eterized by a generalized coordinate, Q. For the case of oxide perovskites, the configuration

coordinate is usually taken to be the breathing mode of the oxygen octahedron. In this

chapter, we will consider equilibrium structures for defect complexes in two different charge

states. As can be seen in Fig. 4.3, for the Fe[Nb] and Fe[Nb] – VO, this will correspond

quite well to a mode related to the motion of the oxygen octahedron, though it will not be

a perfect mode coordinate. This will also correspond to a type of mode coordinate in the

Fe[K] – VK complex but with a different geometry of nearest neighbors about this site. We
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note that while the A site cation in a cubic oxide perovskite would be cubically coordinated

with 8 O atoms, our relaxations indicate that Fe displaces relative to this ideal position to

push it into a more octahedral coordination. This significant change in geometry results in

the Fe ion having its 5 nearest neighbors as O atoms which form an octahedral complex

around it, albeit with an apical oxygen “missing”.

(a) (b) (c)

Figure 4.3: Visualizations of the (a) Fe[Nb], (b) Fe[K] – VK, and (c) Fe[Nb] – VO defect com-
plexes studied in this work. Each panel only displays the nearest O neighbors of the dopant
ion, with small red spheres representing the O atoms, and the orange sphere representing
the Fe atom. In cases where a vacancy is present, either a blue or purple sphere has been
added which indicates the approximate location of the O vacancy or K vacancy, respectively.
White arrows indicate the direction of displacement of each of these atoms in going from the
equilibrium structures with the Fe in the 2+ state to those with Fe in the 3+ state and are
scaled for visibility in each case separately, though relative lengths of arrows for any panel do
correspond to the amount of displacement of the ion. In panel (b), the apparent octahedral
coordination is not accidental. This is explained in the relevant section of the text.

Consider the case of an Fe atom substituting on a Nb site. If for instance, the Fe assumes a

3+ charge state, then the energy of the Fe-3d impurity states introduced into this system can

be thought of as a set of parabolae whose minima all occur at the set of atomic coordinates

82



corresponding to the equilibrium configuration of the system. Perturbing these coordinates

means that the ground state electronic wavefunction of the unperturbed system will no longer

be the lowest energy state, hence the displacement from the minimum of the parabola. In

this case, the set of parabolae corresponding to the electronic levels of the system with the Fe

ion in a 2+ charge state will have their minima occurring at the corresponding equilibrium

atomic configuration. Thus, plotting the energy against this configuration coordinate gives

us a picture of how charge transfer processes from one valence state to another may occur.

Configuration coordinate diagrams are useful tools for describing strongly coupled

electron-phonon systems, such as transition metal ions with 3d electrons, like our target

systems here. Qualitatively, configuration coordinate diagrams provide an explanation for

the “Stokes shift” between absorption and emission spectra. Given accurate enough configu-

ration coordinate parameters, vibronic sideband spectra (with Pekarian line shapes) can be

calculated [92]. Configurational coordinate diagrams can also be used to determine nonradia-

tive relaxation pathways as shown schematically in Fig. 4.4. In addition, if the configuration

coordinate diagrams are constructed for different ions, they can also be used to explore and

characterize metal to metal [93] and metal to ligand charge transfer transitions [94].

To construct these sorts of diagrams via ab initio methods we use the following method.

We first find the equilibrium structures for a defect complex in two adjacent charge states,

in this work Fe3+ and Fe2+. The configurational coordinates for these equilibrium structures

are denoted Q0 and QN , respectively. We then create N − 1 intermediate structures by

linearly interpolating between these two sets of coordinates to generate a sequence Qi =

Q0, Q1, Q2, . . . , QN , which becomes our generalized coordinate. In this work we use N = 6.

For each value of Qi we calculate both the band structure and pDOS for both the 3+ and

2+ ionization states. This allows us to confirm whether or not the predicted occupation

scheme is being achieved and, by extension, the charge state of the dopant. With this data

for each structure, we can extract the electronic energy levels at a high-symmetry point in

the Brillouin zone, the Γ-point for instance, and plot these energies against our configuration
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Figure 4.4: A schematic representation of several configuration coordinate diagrams. Panel
(a) shows the radiative transition of an electron from the ground state to an excited vi-
brational state of the system at a different configuration coordinate. The electron then
nonradiatively de-excites to the new ground state of the perturbed system, and then ra-
diatively recombines to an excited vibrational state of the unperturbed structure, though
now emitting a lower frequency photon than it absorbed, demonstrating what is known as
a Stokes shift in its spectrum. Panel (b) shows a system where the electron transitions to
a vibrational state of the perturbed system, nonradiatively relaxes to the new ground state
and is then thermally excited to another vibrational state of the new perturbed system. Due
to over lap in the wavefunctions of this thermally excited state and a vibrational excited
state of the unperturbed structure, this electron may transition to the excited state of the
unperturbed system and relax to the previous ground state, demonstrating absorption, but
now with thermally activated nonradiative relaxation. Panel (c) shows another nonradiative
relaxation pathway. In this case, the vibrational ground state wavefunction of the perturbed
system overlaps with a vibrational excited state of the unperturbed system, and the electron
may absorb a photon, relax to the perturbed ground state and then transition to the vi-
brational excited state of the unperturbed system without need of an intermediate thermal
excitation.
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coordinate (now labeled by Qi). We then choose to linearly interpolate between these points

as a guide to the eye.

4.3 Results

4.3.1 Fe[Nb]

(a) (b)

Figure 4.5: Band structure and pDOS of the Fe[Nb] complex with the Fe ion (left) in a 3+
charge state and (right) in a 2+ charge state. For each charge state, the atomic positions are
those of the respective equilibrium structure. The top and bottom panels show the spin-up
and spin-down quantities, respectively. The dashed red line indicates the position of the
Fermi level as determined by integration of the density of states.

Fig. 4.5(a) shows the band structure and pDOS of the Fe[Nb] system with the Fe in a 3+

charge state, with the atomic positions at their corresponding equilibrium positions. Given

the position of the Fe-3d states with respect to the Fermi level, we can confirm that Fe is,

in fact, in a 3+ charge state. In the spin-up band structure we notice an occupied, slightly

dispersive eg state positioned just above the valence band. The crystal-field split partner to

this eg state lies within the valence band almost exactly at the band edge. The pDOS plots

indicate that these eg states may be hybridized to some extent with the O-2p states which
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make up the majority of the valence band. Examining the spin-down band structure, we

see a cluster of three unoccupied, nearly-degenerate t2g states within the band gap, though

positioned closer to the conduction band edge. We see also from the projected densities of

states that the spin-down eg states are situated well within the conduction band, though the

sharpness of the peaks indicates they are quite localized.

In examining panel (b) of Fig. 4.5 we notice that the inclusion of an extra electron,

along with the relaxation to the equilibrium atomic positions, raises the energies of all Fe

3d states. In the spin-up distribution, we notice that the eg states increase in energy. The

more dispersive eg state in the 3+ case remains occupied, but now its partner state emerges

completely from the valence band. Evidenced by the spin-up pDOS, we now find a t2g state

at the valence band edge. A somewhat more drastic change is shown in the spin-down band

structure. All but the lowest-lying spin-down t2g states are pushed into the conduction band,

with this lowest state now falling just below the Fermi level, indicating its occupation, and

hence the Fe 2+ charge state. The Fermi level itself is also pushed up to just barely cut

through the bottom of the conduction band.

4.3.2 Fe[K] – VK

Fig. 4.6 shows the band structure of the Fe[K] – VK complex with the Fe ion in a

3+ charge state at its equilibrium coordinates. Contrary to the previous complex, we see

no midgap impurity states in the spin-up band structure. The presence of an eg band in

the valence band can be inferred from the pDOS and by the pattern established with the

previously investigated systems.

The spin down structure reveals two interesting features. The first is a triplet set of

unoccupied t2g states. As discussed above, despite K sites being cubically coordinated with 8

O atoms in the ideal perovskite structure, the relaxation of the system tends to prefer placing

the Fe dopant into a system bearing some resemblance to the octahedral coordination with 5

of the nearest neighbor O atoms. The near degeneracy of the t2g states indicates that in this
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(a) (b)

Figure 4.6: Band structure and pDOS of the Fe[K] – VK complex with the Fe ion (left)
in a 3+ charge state and (right) in a 2+ charge state. For each charge state, the atomic
positions are those of the respective equilibrium structure. The top and bottom panels show
the spin-up and spin-down quantities respectively. The dashed red line indicates the position
of the Fermi level as determined by integration of the density of states.

system, the exchange splitting is a relatively weak perturbation compared to the crystal field

splitting. Above the t2g states in energy we observe a pair of eg states close to the conduction

band edge. One of these eg states exhibits significantly more dispersion than the other, a

pattern which appears in our previous study as well. It can be seen that the barycenter of

this line falls quite close to its partner eg state, however, which further supports that the

exchange splitting effect is significantly weaker than the crystal field effect in this system.

The band structures of the complex with the Fe in the 2+ charge state (shown in panel

(b) of Fig. 4.6) exhibit similar behaviors to the previous complex. In the spin-up band

structures we see the two nearly degenerate eg states now placed just above the valence band

edge. The spin-down band structures again show the effect of the presence of the extra

electron (and relaxation) as forcing the eg and t2g states up in energy, but now the t2g states

are not moved completely into the conduction band. The lowest lying spin-down t2g state is
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situated well below the conduction band with the Fermi level lying between this state and

the next higher t2g state.

4.3.3 Fe[Nb] – VO

(a) (b)

Figure 4.7: Band structure and pDOS of the Fe[Nb] – VO complex with the Fe ion (left)
in a 3+ charge state and (right) in a 2+ charge state. For each charge state, the atomic
positions are those of the respective equilibrium structure. The top and bottom panels show
the spin-up and spin-down quantities respectively. The dashed red line indicates the position
of the Fermi level as determined by integration of the density of states.

Fig. 4.7(a) shows the band structure and pDOS of the Fe[Nb] – VO in a 3+ charge state,

again at the equilibrium structure for this charge state. As with the isolated substitution

case, we see in the spin-up band structure an occupied, dispersive eg state lying just above

the valence band, with another eg state within the valence band but very close to the edge.

The spin-down band structure becomes slightly more interesting. We see another triplet of

unoccupied t2g states close to the conduction band edge. The splitting between these states

is markedly more significant than in the case with the isolated substitution. Discussed in

the previous chapter, this arises due to the additional perturbation of the octahedral crystal

field induced by the nearest neighbor oxygen vacancy. The presence of this oxygen vacancy
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also brings a higher lying eg state just barely to the edge of the conduction band. This

band is present in the Fe[Nb] complex by inspection of the pDOS, but is buried within the

conduction band in that case. Given that the largest difference between the two calculations

is the coordination of the O vacancy with the Fe atom, we can safely infer that this eg state

is strongly affected by the crystal field splitting.

In going from the 3+ charge state to the 2+ charge state of the Fe[Nb] – VO complex

(band structures in panel (b) of Fig. 4.7), we see similar trends as what occur through

this transition in the isolated substitution case. The spin-up eg states remain occupied and

increase in energy. The lower-lying eg is again lifted out of the valence band, with a spin-up

t2g again present at the edge of the valence band edge. The presence of the extra electron

again forces most of the spin-down states Fe-3d into the conduction band with the Fermi

level positioned just within the conduction band. Again, the lowest lying spin-down t2g is

occupied, but now appears to barely stay below the conduction band edge.

4.4 Discussion

4.4.1 Assignment of Impurity Levels

Examination of the band structures presented in the previous sections can be used to

assign possible transition processes that may occur. The occupied eg state in the spin-up

band structure of the Fe[Nb] complex can thus be interpreted as a possible deep donor state,

given its occupation. An electron in this state may be excited to the conduction band by

a photon of sufficient energy, ionizing the dopant to a 4+ charge state, which aligns quite

well with the intuition for this level presented in Fig. 4.1. Additionally, a lower-energy

excitation of say, an electron in the valence band, to the unoccupied spin-down t2g states for

this system would see the system reduced from the 3+ ionization state to the 2+ ionization

state. This largely matches the predictions of the literature [48, 95] which indicate that

Fe3+/2+ transitions are largely responsible for increases in the photorefractive gain, as they
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provide more viable charge donor and acceptor states, respectively. The possibility of intra-

ion exchange is low given that the only possible process would involve a spin-flip of the

charge carrier, forbidden for direct photon-mediated processes.

Assignment of impurity levels are performed with the aid of the Fig. 4.8. This figure

shows a redrafted version of the figure by Basun et al. in panel (a) compared with a similar

figure depicting the level assignments from the current work. Since the level positions were

calculated using DFT, the exact energies of the states are inaccurate, however the relative

positions of the states are qualitatively reliable.

The state highlighted in blue in panel (a) of Fig. 4.8, denoted Fe3+/4+[Nb] was assigned

by Basun et al. as an Fe ion on a Nb site, which can be in either a 3+ or 4+ ionization

state. This level is directly comparable to the state highlighted in blue in panel (b), which

is caused by an Fe ion substituted on a Nb site with nonlocal charge compensation denoted

Fe3+[Nb]. It is an occupied, spin up, eg state denoted by |eg, ↑〉O.

The state highlighted in pink in panel (a) denoted Fe2+/3+[Nb] was assigned by Zgonik

et al. [90] as an Fe ion on a Nb site, which can be in either 2+ or 3+ ionization state. This

level is directly comparable to the state highlighted in pink in panel (b), which is induced

by an Fe ion substituted on a Nb site with nonlocal charge compensation as above. It is an

unoccupied, spin down, t2g state denoted by |t2g, ↓〉U.

The state highlighted in red in panel (a) denoted Fe2+/3+ − V was assigned by Basun

et al. as an Fe ion on either a K or Nb site (though their results support the K site) near

either a K or O vacancy, which can be in either a 2+ or 3+ ionization state. This level is

directly comparable to the state highlighted in red in panel (b), this is one of two states due

to an Fe ion substituted on a K site next to a K vacancy with additional nonlocal charge

compensation denoted Fe3+[K] − VK. It is an unoccupied, spin down, t2g state denoted by

|t2g, ↓〉U. Note that for the Fe3+[K]−VK defect complex there is no |eg, ↑〉O within the band

gap as this state has been depressed to a position below the valence band edge.
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Figure 4.8: (a) A redrafted version of the energy level diagram reproduced from the work
of Basun et al. [48]. In this version, the assignments made by Basun et al. are placed in
a single pane and have been ordered by defect complex. Error bars which are present in
the original figure are excluded here for clarity. (b) A diagram summarizing the excitations
that we expect is based upon the band structures with Fe3 in different defect complexes.
Energies presented here have been scaled by the factor deduced in the previous study (1.4)
which brings the DFT bandgap in line with the experimental values. In that chapter, the
factor was deduced by comparison of the bandgap of the pure system. The doped supercells
exhibit slight closing of the band gap compared to the pure system, hence why the sums
of transition energies are slightly less than the experimental band gap. We color-code the
assignments we make based on this pane with the assignments shown in (a). For the Fe[Nb]
– VO complex, because the unoccupied, spin-down eg state is not strictly speaking below the
conduction band, we place it at the conduction band edge.
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The state highlighted in green in panel (a) denoted VO was assigned by Biaggio et al.

[91] as a shallow trap state arising due to an O vacancy. This feature is only observable in

the reduced samples studied by Basun et al. We believe that we can assign this level to the

state highlighted in green in panel (b), induced by an Fe ion substituted on a Nb site with a

nearest neighbor O vacancy denoted Fe3+[Nb]−VO. It is an unoccupied, spin down, eg state

denoted by |eg, ↓〉U. This state lies just above the lowest point of the conduction band, but

as can be seen from the band structure and pDOS in Fig. 4.7, this state is (i) nondispersive,

(ii) highly localized, and (iii) would possibly appear as a sharp absorption feature below the

main conduction band edge. It is also possible the position of this state may relax to a lower

energy when occupied. An investigation of this effect provides partial motivation for the

topic of the following section.

The Fe3+[Nb] − VO has |eg, ↑〉O and |t2g, ↓〉U states at positions very similar to the

Fe3+[Nb]. Given the strong electron-phonon coupling associated with Fe3+ ions and the

resulting broad absorption and emission features, it thus may be difficult to distinguish

these levels using optical spectroscopy.

4.4.2 Configurational Coordinate Diagrams

In this section, we construct and examine DFT-generated configuration coordinate dia-

grams of each dopant complex with Fe in the 3+ charge state.

In Fig. 4.9, we show our configurational coordinate diagrams (CCD) for the defect

complexes. In each of the panels of that figure, the color coordination of the levels has been

organized to match as precisely as possible the assignments made in Fig. 4.8. Grey curves

represent energy eigenvalues either coming from the valence bands, largely consisting of O-2p

bands, or eigenvalues coming from conduction band states, primarily Nb 4-d based.

While normal CCDs model the states as harmonic, of important note here is that in some

cases a parabola is an imperfect fit to the configurational coordinate data. This is because (i)

the presence of anharmonicity in the atomic bonds of the material will cause the harmonic
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(b) (c)(a)

Figure 4.9: Configurational coordinate diagrams for each of the defect complexes with Fe in
the 3+ charge state. In each panel, Q represents our configurational coordinate, with Q = 0
corresponding to the respective defect complex in the equilibrium configuration stabilizing Fe
in the 3+ state. Q = 6 then corresponds to the equilibrium configuration which stabilizes Fe
in the 2+ state, however, we charge the supercell such that Fe should assume a 3+ ionization
state. The energy scales have been shifted with respect to the valence band maximum of the
pure system.

oscillator approximation to break down (ii) our choice of configurational coordinate is not

a perfect mode coordinate and (iii) the change in the band structures with respect to the

configurational coordinate can cause significant changes to the ordering of the band energies

which makes the unambiguous assignment of an individual state in a manifold difficult, and

(iv) the possibility of impurity levels experiencing an avoided crossing. Having examined

the parabolic fits to these levels, we opted instead for a linear interpolation to guide the eye

rather than invite over-interpretation of the data here.

93



Panel (a) of Fig. 4.9 shows the CCD of the Fe3+[Nb] complex. The blue curves in this

panel are representative of the change of the occupied, spin-up eg state, while the pink states

are the unoccupied, spin-down t2g states. The green states are indicated here given that their

designation according to our level assignments is the same as the correspondingly colored

state assigned to the VO level in the case of Fe3+[Nb] – VO complex. We do not show them

in Fig. 4.8 given their position within the conduction band.

Of immediate note is that the minimum of the occupied spin-up eg states occurs at

Q ≈ 2, 3 for the upper and lower spin-up eg states, respectively. This is indicative that the

calculated configurational coordinate is not a perfect mode coordinate as discussed above.

In order to double check the consistency of the spin-up eg states, we use a Quantum Espresso

post-processing utility that enables us to plot the contribution of selected atomic wavefunc-

tions to the pseudo-charge density. That is, we can map out the norm of the wavefunctions

contributing to a specific band. Using this information, we confirm that the nature of each of

these bands is consistent across each structural step. That is to say, their bonding structure

with respect to the local O atoms stays the same.

The unoccupied t2g states exhibit a much simpler Q dependence, In particular, these

states decrease in energy as Q increases. This relaxation is expected given that the lowest

t2g state becomes occupied when another electron is introduced into the system.

Panel (b) of Fig. 4.9 shows the CCD of the Fe3+[K] – VK complex. For this defect center

the occupied, spin-up eg states are situated within the valence band and are therefore not

highlighted in this diagram. The red-colored curves represent the triplet of unoccupied t2g

Fe-3d states. The higher doublet of eg states is color-coded in pink given in accordance with

Fig. 4.8. Similar to the Fe3+[Nb] complex, the unoccupied states decrease in energy as Q

increases, again this relaxation is expected given that the lowest t2g state becomes occupied

when another electron is introduced into the system.

Panel (c) of Fig. 4.9 shows the CCD of the Fe3+[Nb] – VO complex. Similar to the case

of the Fe3+[Nb] complex, the blue curves in this panel are representative of the change of the
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occupied, spin-up eg states, while the pink states are the unoccupied, spin-down t2g states.

The unoccupied spin-down eg states are depicted in green. Also similar to the case of the

Fe3+[Nb] complex, the minimum of the occupied spin-up eg states occurs at Q ≈ 3.

Of particular interest is the behavior of the unoccupied spin-down eg states. The lower of

these states lies at the edge of the conduction band at Q = 0, while the upper of these states

lies within the conduction band. As Q increases from zero, both of these levels decrease

in energy, so that both lie within the band gap at Q = 6. The unoccupied spin-down eg

states can therefore act as deep/shallow acceptors. Furthermore, since these acceptor states

are associated with the Fe3+[Nb] – VO complex, the number of these states will increase as

the number of O vacancies increase since the probability of finding an O vacancy adjacent

to a Fe3+[Nb] increases accordingly. We therefore assign the VO acceptor level reported by

Biaggio et al. to a |eg, ↓〉U state, though its observation may depend significantly on the

local geometry of the complex.

4.4.3 Limitations

While our method shows promising first results, we note some key limitations and outline

some possibilities for refinement below.

A first and foremost limitation is that the localization of extra charge onto the dopant

site is by no means guaranteed in any system. We expect tight convergence parameters may

help this, but if charge fails to localize appropriately, extensions such as Hubbard U methods

may be necessary to enforce the desired occupation of the dopant atom. Also of import is

that reasonably-sized supercell calculations are likely to incur some amount of dispersion

in these impurity bands as interactions with periodic replicas can only be eliminated in

a truly infinite supercell. As mentioned in the previous chapter, we are fortunate in this

regard considering that KNbO3 has a relatively high dielectric constant which helps screen

the dopants from their images. If the material of interest incurs strong enough dispersion in
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the impurity bands, the energy levels of a specific high-symmetry point in the Brillouin zone

may give different configuration coordinate diagrams.

Related to this issue is that it can be important to assign some index to each of these

bands and keep this index consistent across different configurations. As discovered in the

last chapter, significant enough distortion of the local symmetry around a dopant site can

cause certain bands to reorder. Given that advancing our configuration coordinate will

certainly involve some distortion of the local symmetry in the lattice, attention must be paid

to this issue if the diagrams are to be accurate to states of a specific character. This can

be done by mapping out the orbital structures of the bands of interest and verifying that

their shape stays consistent across the configuration coordinate, or, when it changes, that

the corresponding energy is re-indexed accordingly. This process is, however, painstaking

and, at the current state, requires human inspection.

As mentioned above, the lack of a true mode coordinate may also negatively impact the

results of the method. It may be possible to overcome this, however, if one can be identified.

While not pursued in this work, the calculation of phonon properties of these systems would

yield a set of stable vibrational modes. Taken together with the knowledge of how the

system coordinates change in going from one equilibrium configuration to another, it may be

possible to project out which vibrational modes contribute most strongly to the change in

configuration, and from this deduce a more rigidly defined configurational coordinate. High

quality phonon calculations within DFT are well-established in the literature [96]. In Fig.

4.10 we show a phonon dispersion curve for cubic KNbO3. The calculations to extract this

dispersion curve also produce the necessary data to visualize the phonon modes at various

points within the Brillouin zone. Using the displacement patterns akin to those gather in

Fig. 4.3 along with the breakdown of different vibration modes, it should be possible to

associate a given displacement pattern with some linear combination of vibrational modes,

which could lead to a more well-defined configurational coordinate.
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Figure 4.10: A phonon dispersion curve for cubic KNbO3. The existence of imaginary phonon
frequency eigenvalues indicates that the structure is unstable against vibrations of this mode,
which may be stabilized by a transition to the ferroelectric tetragonal phase.

Finally, the approximation of a given energy level as being harmonic with respect to the

configuration coordinate may not strictly be obeyed. Anharmonicity in the response of a

particular bond may cause a parabolic fit to be inadequate to describe the energy level. Going

beyond this and including some types of anharmonic corrections is in principle possible, but

the additional complications of identifying which bands undergo such anharmonicity and

fitting such anharmonic factors systematically may be beyond the scope of such a method.

4.5 Conclusions

It has been demonstrated in the literature that KNbO3 doped with Fe in different sub-

stitutional sites and different charge states can dramatically enhance that host material’s
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photorefractive properties by modifying the effective trap density and dark conductivity. In

this chapter, we have performed a detailed study of Fe as a substitutional impurity on both

K and Nb sites in different local environments and ionization states. In this chapter, we

describe a methodology which may prove useful in the examination of defect complexes in

adjacent charge states. The structural origin of the differences between electronic energy

levels of ions in different ionization states can play an important role in determining their

nature as acceptor or donor states. Of equal interest is how the acceptor or donor nature of

these states may evolve under the relaxation to or from the equilibrium structure of an adja-

cent charge state. Our proposed methodology allows for the exploration of these differences

at an ab initio level, which can be vital for guiding explorations of novel materials.

A useful technique within DFT to vary the ionization state of an ion is to introduce an

extra charge into a cell which is compensated by an equal and opposite jellium background

charge. We have demonstrated that band structures for an Fe3+ on the Nb site with a

second-nearest neighbor charge compensating O vacancy and an Fe3+ on a Nb site with a

compensating jellium background charge exhibit nearly identical band structures showing

that use of a compensating jellium background charge provides an excellent proxy for non-

local charge compensation models.

We calculate band structures and pDOS for Fe3+ on a Nb site with non-local compensa-

tion, Fe on a Nb site with a nearest-neighbor O vacancy as charge compensation and Fe on

a K site, with a nearest-neighbor K vacancy plus additional non-local charge compensation.

In addition, the band structures and pDOS for the corresponding Fe2+ are calculated. This

data can be used to assign the defect states reported by Basun et al., Biaggio et al. and

Zgonik et al.

This work has also demonstrated the ability of DFT calculations to add to the interpre-

tation of experimental data. While it does not produce reliable energies for these levels, the

qualitative behaviors of impurity states can be discerned. This allows us to potentially aid
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experimentalists in the assignment of defect levels, giving clues about aspects such as the

symmetry of the impurity levels.

In order to investigate how these defect energy levels change their position under elec-

tronic excitation, we construct configurational coordinate diagrams for each of the states

of interest. The specific configurational coordinate, Q, is defined by a linearly interpolated

path between a given ion’s 3+ equilibrium position and its 2+ equilibrium position. The

limitations of this approach are discussed.

The method in its current form is seen to produce physically reasonable configurational

coordinate curves for many of the states studied. However, in the case of Fe3+[Nb] it predicts

that the |eg, ↑〉O states are stabilized at some intermediate values of Q. This could either be

indicative of a poor choice of configurational coordinate as is discussed above, or it may be

an artifact of an avoided crossing of the two levels.

Of particular note is the Fe3+[Nb]−VO defect complex which exhibits unoccupied, spin-

down eg states whose position relative to the conduction band edge may identify it as the

VO level in Fig. 4.1. Examining the band structure of the Fe3+ ion forced into the Fe2+

equilibrium coordinates sees these levels relax away from the conduction band edge, placing

them more appropriately in line with the corresponding level in Fig. 4.1.

Clearly some limitations of our results are also inherent to the fact that we are limited

in our supercell size. However, we believe that we have demonstrated the potential of the

method to aid in the interpretation of experimental data. While more case studies are neces-

sary to properly generalize the method and refinements are certainly necessary to develop a

more systematic way of identifying the appropriate configurational coordinates for candidate

systems, the results presented here speak to a proof of concept which is worth testing on

other systems of experimental interest.
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Chapter 5

GW Calculations

Going beyond standard Kohn-Sham DFT requires the consideration of many-body effects.

This chapter focuses on the use of the BerkeleyGW (BGW) code suite to analyze the effects

of many-body interactions in KNbO3 systems. We begin with a preliminary study on the

cubic, tetragonal, and orthorhombic phases of KNbO3.

5.1 Preliminary Results

The pure phases of KNbO3 are useful testing grounds as a preface to applying the GW

approximation to doped systems of KNbO3. The unit cells for the pure phases are quite

small and can be used to establish convergence parameters, the effects of the many-body

corrections on the host band structures, as well as providing a baseline of the computational

expense necessary to apply these corrections to supercell systems.

5.1.1 Convergence Procedure

As mentioned in Appendix D, the convergence procedure for GW calculations is signifi-

cantly more complicated than for standard DFT calculations. The two main components of

these types of calculations consist of calculating the dielectric function and then using this to
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calculate the energetic corrections to individual states. Separately, these are accomplished

by the epsilon.x and sigma.x executables of the BGW suite. These two steps need to be

individually converged.

Figure 5.1: A graph demonstrating convergence of the polarizability for G,G′ = 0 at a
single point in the Brillouin zone for the pure phases. Panel (a) shows this curve for the
cubic system, panel (b) the curve for the tetragonal system, and panel (c) the curve for the
orthorhombic system. Panels (b) and (c) have a quite different scales, indicated in their
units.

Appendix D explains that the inclusion of a number of unoccupied bands (or equivalently

in the epsilon calculation, an energetic cutoff for the screened Coulomb interaction) acts as

the primary convergence parameter for the dielectric function which is calculated over a

specified grid of points in the Brillouin zone. For each Brillouin zone point, epsilon.x

calculates the irreducible polarizability over a set of partial sums with respect to the number

unoccupied states included. This provides one metric of convergence. Displayed in Fig. (5.1)

is a graph showing this convergence behavior for a Brillouin zone point in cubic KNbO3. By

examination of all such graphs for all Brillouin zone points, we find that the dielectric function

converges very rapidly in each of the pure systems with the inclusion of approximately 100
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Figure 5.2: Convergence behavior of the calculated Γ point band gap for the pure phases of
KNbO3. Panel (a) shows the convergence for the cubic system, panel (b) shows it for the
tetragonal system, and panel (c) shows it for the orthorhombic system.

unoccupied states. This information can prove useful in determining appropriate convergence

for the supercell, should it follow similar trends.

The convergence of the sigma.x calculation relies not only on the appropriate conver-

gence of the previous steps, but also on the number of unoccupied states included in its own

summation as well as the energetic cutoff for the screened Coulomb interaction. Unlike in

the epsilon.x step, these two parameters are independent. In practice, one must set the

cutoff energy, vary the number of included virtual bands and observe the convergence in

some physical quantity. Then the cutoff energy must be altered, the number of included

virtual states varied over the same range, and the convergence of the same physical quan-

tity observed once more. In our case, the band gap is used as the physical quantity to be

converged.

Fig. (5.2) demonstrates the necessity of this convergence scheme. The figure shows

the behavior of the band gap in cubic, tetragonal, and orthorhombic KNbO3. Each curve
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exhibits a monotonic increase with respect to the number of included virtual states, but each

curve converges to different values. The amount of error is then considered based on the

tightest parameters used, that is, the highest cutoff with the largest number of virtual states.

Using a cutoff energy that is too low can yield false convergence, and thus this behavior is

important to investigate for each system of interest. This process is, however, by nature of

needing to do these calculations multiple times quite expensive in terms of computational

resources and wall-clock time. Thus, having some idea of reasonable convergence parameters

may conserve significant computational resources.

Fig. 5.2 (a) also demonstrates the diminishing returns of increasing these convergence

parameters. Calculating the quasi-particle corrections for cubic KNbO3 with a screened

Coulombic cutoff of 80 Ry and including approximately 2000 virtual states requires approx-

imately 50% more total RAM and increases the necessary wall-clock time by a factor of

approximately 4 as compared to running the calculation with a screened Coulombic cutoff

of 40 Ry with the same number of virtual states. However, the difference in the calculated

band gaps of these two schemes is only 0.021 eV, or an error of 0.6% with respect to the

tighter convergence scheme. If we consider a 1% error as tolerable, we can reduce this fur-

ther to a cutoff of 40.0 Ry including only about 1500 bands. Following this same procedure,

we determine that the tetragonal and orthorhombic systems also reach 1% error with these

values.

A key capacity offered by GW calculations is the application of quasi-particle corrections

to DFT level band structures, producing quasi-particle band structures. While these band

structures still do not account for electron-hole interactions, they can be expected to correct

impurity levels to energies affording closer agreement with experiment. These can provide

us with more accurate insights into the validity of promising defect models, with only mini-

mal cost beyond application of the standard single-shot GW approximation. Quasi-particle

corrected band structures can be considered as the next step in an in-depth examination of
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any given defect complex. These types of band structures are demonstrated for the pure

KNbO3 phases in the following section.

5.1.2 Initial Quasiparticle Results

The calculation of the self-energy operator over a sparse grid of point in the Brillouin

zone can be used to interpolate the quasi-particle correction to a finer grid of k-points. In

particular, this interpolation can be done over the high-symmetry path of the band structure

calculation to generate quasi-particle corrected band structures.

X M R X

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

En
er

gy
 (e

V)

GGA
GW

Figure 5.3: The quasi-particle corrected band structure of cubic KNbO3. The DFT bands
collected with the GGA are displayed as dashed blue lines. The GW corrected values are
shown as red dotted lines

Fig. 5.3 shows the effects of the quasi-particle corrections on the band structure of cubic

KNbO3. This figure focuses on the energy window containing the band gap. We notice in

this regime that the valence band edge is largely unaffected by the corrections, though with

some small shift downward in energy for some bands. The conduction bands, however, shift
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Figure 5.4: The quasi-particle corrected band structure of tetragonal KNbO3. The DFT
bands collected with the GGA are displayed as dashed blue lines. The GW corrected values
are shown as red dotted lines

quite rigidly upward. We see that the band gap at the Γ point opens from a DFT value of

1.97 eV to a value of approximately 3.4 eV, in much better agreement with values found in

experiment, which range from 3.16 – 3.24 eV [97–99]. Examination of bands outside of the

chosen window shows that deeper occupied states tend to be corrected downward in energy,

while nearly all unoccupied states are shifted upward.

Fig. 5.4 shows the quasi-particle band structure of the tetragonal KNbO3 system. We

notice very similar trends as occurs in the cubic system. The valence band edge remains

minimally corrected with deeper occupied states correcting downward in energy and the

unoccupied states correcting upward. We find that the Γ point band gap opens up from a

DFT derived value of 2.47 eV to a value of 4.07 eV, also much closer to experimental values,
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Figure 5.5: The quasi-particle corrected band structure of orthorhombic KNbO3. The DFT
bands collected with the GGA are displayed as dashed blue lines. The GW corrected values
are shown as red dotted lines

ranging from 3.08 – 3.30 eV [99, 100]. It is interesting to note that the GW approximation

appears to significantly overcorrect the band gap.

In Fig. 5.5 we see the quasi-particles band structure of the orthorhombic structure. The

trends observed in the cubic and tetragonal systems appear to hold well for the orthorhombic

system as well. The valence band edge remains minimally corrected with the Γ point gap

opening up largely due to the upward shift of the conductions bands. The DFT band gap of

2.5 eV opens to a value of 4.02 eV. This also compares favorably with experimental values

ranging from 3.15 – 3.3 eV [99, 101, 102]. We notice that once again the GW overestimates

the band gap.
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The value of quasi-particle band structures at this level is largely limited to establishing

intuition for these calculations and observing the trends of GW effects. However, the results

of our self-energy corrections agree quite well with those of Schmidt et al. [103] who applied

GW corrections under the Vienna Ab Initio Simulation Package (VASP) to the pure phases

of KNbO3. Of note is that we find slightly lower values of the GW correction to the cubic

and orthorhombic direct band gaps compared to their results. Schmidt et al. conclude that a

scissor operator is adequate to describe the effect of the GW corrections on the pure systems

of KNbO3 however, there is no guarantee that this assumption will remain true for doped

system.

5.2 Future Directions

5.2.1 Necessity of larger computational resources

These initial results provide significant insight into the computational expense of using

the GW approximation for the supercells necessary to model defected systems. In going

from an orthorhombic unit cell to a defected supercell, we add approximately 70 atoms (the

exact number depending on the particular vacancies introduced for charge compensation)

but must also consider that our entire computational load is further increased considering

that we must use spin-polarized calculations to account for the metallic characteristic of any

considered dopants.

Importantly, scaling up GW calculations to apply to supercell calculations is unfeasible

with our current resources. The calculation of the dielectric function for the orthorhombic

system with a screened Coulomb cutoff of 90.0 Ry and including 2500 virtual states required

approximately 1300 GB of total execution RAM running for approximately 57 wall clock

hours. While this execution time is quite variable depending on the processors employed, the

memory required is fixed. By comparison, the epsilon.x calculation of an Fe-doped supercell

system with a screened Coulomb cutoff of 80.0 Ry and including 2000 virtual states requires
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on the order of 120,000 GB of RAM, an approximately 90-fold increase in computational

cost. This step is largely memory-limited. These calculations can be parallelized over the

individual k-points and calculated as resources become available.

The calculation of the self-energy operator, on the other hand, is largely time limited. For

the orthorhombic structure, with a screened Coulomb cutoff of 80.0 Ry and including 2000

virtual bands, the sigma.x executable requires approximately 126 GB of RAM. Comparison

with the supercell calculation is unavailable, given the expense of the preceding calculation.

However, assuming that a similar scaling exists between the epsilon.x and sigma.x steps

of the orthorhombic structure and the supercell, we can infer a cost on the order of 12,000

GB of total RAM necessary for the self-energy calculations of the supercell system. These

calculations can similarly be split per k-point in the specified grid, making this step much

more approachable from a memory-usage standpoint. This step is instead largely time-

limited. Again, timing for this step is somewhat unreliable as the quality of processor

involved will vary the wall-clock time significantly.

Compared to either of the preceding steps, the interpolation to a quasi-particle corrected

band structure is largely negligible. In moving forward bringing these calculations to scale, we

need to consider means of making the first two steps computationally tenable. The first step

to doing this for the epsilon.x calculation may be loosening the convergence criteria slightly.

We can ostensibly build timing curves from a calculation using a screened Coulomb cutoff of

20.0 Ry and including up to 1500 virtual states which decreases the computational cost by

a factor of approximately 12, requiring approximately 9,800 GB of RAM. Starter grants for

the Expanse system (of the San Diego Supercomputer Computer) under the Extreme Science

and Discovery Environment (XSEDE) program have a maximum limit of 50,000 hours. The

Expanse cluster contains 728 nodes using AMD EPYC 7742 processors. Each of these nodes

contains 128 cores each with a RAM limit of 256 GB. This type of calculation would require

the dedication of 39 full nodes of the Expanse system, using the starting grant hours to run

the calculation for 10 hours. This would be an important step in establishing the time to
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completion that a more fully converged calculation would require, that is, establishing the

amount of resources a future grant would need to request.

5.2.2 Solving BSE for doped systems

The quasi-particle eigenenergies and wavefunctions calculated via epsilon.x and sigma.x

are the basis for the even more complicated task of diagonalizing the Bethe-Salpeter equa-

tion (BSE) to find excitonic eigenenergies and wavefunctions. The computational resources

required for this step increase significantly, hence its reservation as future step of the inves-

tigation. However, these types of calculations would provide spectral data this is the most

directly relevant to experimentalists.

As discussed in Appendix D, the calculation of absorption spectra in the BGW code

is done in two parts. The first part consists in the use of the kernel.x executable, which

calculates the interaction kernel of the BSE over a coarse grid of k-points. This step of the

absorption calculation requires the dielectric function calculated by epsilon.x, as well as the

wavefunction information. The second step is performed by the absorption.x executable

which interpolates the results from the coarse k-point grid, to a finer grid and subsequently

diagonalizes the BSE. This step relies on the output of kernel.x as well as the wavefunction

information for the fine and coarse grids, and additionally the use of the quasi-particle

corrected eigenenergies output by a sigma.x calculation. In addition to the convergence

criteria of each of the previous steps, absorption.x also depends on the densities of the fine

and coarse grids, and the number of bands included for each of those grids.

The cost of an absorption calculation for the orthorhombic structure totals 14,400 GB

of RAM, putting the cost of a supercell calculation well beyond the realm of computational

tractability without even greater supercomputer resources. But these may require significant

“proof of concept” examples in order to justify these sorts of expenses.
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5.2.3 Alternative ab initio approaches

Given the expense of GW calculations demonstrated here, alternative investigation meth-

ods may be useful for future studies. While the specific applicability of each of these methods

to KNbO3 has not been examined in-depth, we present brief examinations of their benefits

and difficulties here.

5.2.3.1 Hubbard U

Highly localized orbitals, such as d and f orbitals, experience a higher self-interaction

and localization errors as discussed in Chapter 3. Often this causes the LDA and GGA to

delocalize these types of orbitals. In Mott-Hubbard materials, this results in DFT predicting

the material to be conductive instead of insulating or semi-conducting. Corrections to this

behavior came in the form of the Hubbard U correction [85, 104]. This approach involves

the introduction of an occupation-dependent energy term into the Kohn-Sham Hamiltonian.

This potential energetically penalizes the system if the specified orbitals are found to be

unoccupied. This U parameter is frequently tuned in order to open up a band gap in the

wrongly-predicted metallic materials. This semi-empirical approach somewhat undercuts the

point of ab initio approaches, however recent advances have produced self-consistent method-

ologies for determining the value of the U parameter [86, 105]. Fundamentally however, these

calculations are still at a DFT level, meaning that results obtained will still be limited to the

non-interacting electron picture, it may however prove necessary for Mott-Hubbard systems

or systems whose defects may involve strongly localizing some states.

5.2.3.2 Hybrid Functionals

If agreement with experiment is a high priority, the LDA and GGA functionals can be

replaced by hybrid functionals. The representation of the many-electron wavefunction of a

system using Slater determinants comes with the unique benefit of exactly accounting for

the exchange phenomenon inherent to Fermions. The mathematics of calculating a Slater
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determinant makes it computationally intractable for systems larger than a few atoms. The

Hartree and Hartree-Fock quantum chemistry methods which are built upon this approach

do not account well for the correlation effects in many-electrons systems. This is appropriate

for small molecular systems, where correlation effects are largely negligible.

Obviously applying Slater determinant-based methods to crystal systems becomes pro-

hibitively expensive and not ideal given the high degree of correlation in most solid-state

systems. However, hybrid energy functionals seek to include a certain amount of the exactly

calculated exchange energy of these calculations within the framework of DFT [88]. This

involves the user specifying the fraction of the exactly-calculated exchange to be included in

the calculation. Some consensus in the literature indicates an inclusion factor of α = 0.25

is optimal for a broad range of systems, but this should still be considered as another con-

vergence parameter to be tested. This exact exchange almost universally brings band gaps

calculated under Kohn-Sham DFT to fairly good agreement with experiment. This comes

at the cost of a dramatically increased computational cost and time. However, for larger

systems, these calculations may be significantly more approachable than GW calculations.

New functionalities within Quantum Espresso version 7.0 now makes it possible to perform

band structure calculations with hybrid functionals. While this approach still does not rise

to the level of theory of GW, hybrid functionals do include some degree of screening in the

Coulomb potential, meaning that these types of band structures may give useful guidance

on the impurity bands which a defect complex may introduce into a system.

5.2.3.3 TDDFT

As mentioned previously, the prediction of absorption spectra is one of the most powerful

tools which can used to guide crystal growth projects. The developments of DFT and its

successes in treating static systems eventually gave rise to a similarly structured formalism

for dealing with dynamical processes such as absorption and scattering processes in the form

of time-dependent DFT (TDDFT) [106].
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Electron energy loss and inelastic X-ray scattering are both techniques that can be used

to explore collective and single-particle excitations in solid-state systems. In TDDFT, these

types of spectral information can be obtained from the poles of the susceptibility calculated

by generating an independent-electron susceptibility and then solving a Dyson-like screen-

ing equation to obtain a full response function. This generally involves the calculation of

numerous unoccupied states to build the susceptibility. This is then followed by the compu-

tationally expensive step of solving the Dyson-like equation for a given frequency, iterating

these steps for each frequency desired. Significant developments to this approach involve a

technique which allows one to calculate these quantities without using any virtual states,

allowing for the calculation of a spectrum of a solid over a broad range of frequencies with

a computational effort only a few times that necessary for a single ground-state DFT cal-

culation. This algorithm has been implemented in Quantum Espresso and as such, this

represents a possibly fruitful means of approach. Although these calculations are still at the

level of independent electrons under the formalism of DFT, the inclusion of screening has the

possibility to be a useful step toward making ab initio predictions of systems of experimental

interest.

5.3 Conclusions

With this work we have ascertained the effect of quasi-particle corrections to pure KNbO3

systems. We have also begun to form reasonable assumptions about the computational ex-

pense for applying GW calculations to doped KNbO3 systems by simple scaling arguments.

We have determined useful ranges of convergence parameters for these systems, which may be

expected to hold to some extent for the KNbO3 supercell systems as well. While supercom-

puting power in the modern era has skyrocketed, it is extremely vital to have approximate

bounds of the resources necessary to complete calculations of this type. Thus, determining

the resources necessary for full-scale GW applications is a vital step. By applying the GW
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approximation to simpler systems we may begin to identify convergence parameters which

may yield trustable results for supercell systems. If consistent timing information is available

for those small-scale calculations, approximate timing curves for full-scale simulations may

be able to be generated as well. Additionally, several levels of theory between Kohn-Sham

DFT and full GW calculations have been identified which may be useful in guiding experi-

ments. Band structures with hybrid functionals, TDDFT and the combination of TDDFT

with hybrid functionals [107] represent only a few of these useful intermediate levels of theory

which can offer predictive capabilities useful to experimentalists.

The application of GW calculations to the study of defected supercell systems proves

prohibitively expensive for these systems and remains untenable on anything short of large

scale supercomputing arrays. While lower levels of theory may still serve as useful guideposts

to experimental designs, GW calculations still represent the gold standard of ab initio pre-

dictive power. As such, they do still stand as a sort of “last resort” if highly accurate ab initio

predictions are vital. There is also some precedent for the possibility of these calculations

on supercell systems. Rinke et al. [108] performed GW calculations of a 64-atom supercell

of Si to calculate the defect formation energies of the Si interstitial. Lany and Zunger [109]

used a 64-atom supercell of ZnO similarly to calculate the defect formation energy of O

vacancies in that system, however for computational tractability they employed relatively

soft pseudopotentials for O and determined the response functions only at the Γ point. In-

vestigating the formation energy of O vacancies in hafnia (HfO2) systems, Jain et al. [110]

applied GW corrections to systems of up to 96 atoms. Their calculations were performed on

the powerful TeraGrid supercomputer system. Additionally, the cutoff energy used for the

calculation of the dielectric matrix was restricted to 10 Ry, presumably to strike a balance

between computational tractability and accuracy with respect to experiment. Malashevich

et al. [111] studied O vacancies in rutile TiO2 by employing GW calculations on defected

supercell systems consisting of 71 atoms. These calculations were performed at the National

Energy Research Scientific Computing (NERSC) Center, another powerful supercomputer
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facility, however, the dielectric function was calculated using a cutoff of 40 Ry and with the

inclusion of 4000 conduction bands. Thus, while they require some of the most advanced

supercomputing capabilities available, the feasibility of applying GW corrections to doped

systems has been demonstrated in the literature.

Additionally, application of GW calculations to large systems has been tackled on several

algorithmic fronts as well. Furthmüller et al. [112] sought to simplify the treatment of the

dynamical and local-field effects by employing a model dielectric function. Bruneval and

Gonze [113] developed a methodology by which the slow convergence of GW with respect to

the number of included virtual states is mitigated by replacing the energetic contribution of

all virtual states beyond an explicit threshold by a common energy determined through an

adjustable parameter. Approaches by Umari et al. [114] and Giustino et al. [115] focused

on removing the need for empty orbitals altogether by calculating the dielectric response

and self-energy with occupied orbitals within a linear-response Sternheimer equation. Most

recently, Gao et al. [116] have proposed an approach which seeks to approximate the costly

summation over unoccupied bands with a more efficient numerical integration over a sparse

energy grid. While these approaches vary in conceptual complexity, ease of optimization,

and implementation it is worth noting that methods of applying GW applications to large

systems are being pursued.
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Chapter 6

Summary, Conclusions, and Future

Directions

The photorefractive effect is a phenomenon with a diversity of technological applications.

The maturation of photorefractive materials for practical device fabrication, however, is yet

to be fully realized. To achieve this, promising photorefractive systems must be identified,

and methods of tuning their photorefractive properties must be explored. Proper exploitation

of the photorefractive effect will vary based on the desired application. If, for instance, long

storage times are required, then methods of engineering deep trap centers may be necessary

to ensure low dark conductivity and long grating lifetimes. However, dynamic holography

applications may require fast reading and writing times in which case short grating rise

times are necessary. Judiciously doping photorefractive materials is an established means of

achieving these various properties. It has been shown that dopants can be used to extend

the spectral response range of materials, increase photorefractive gain, and significantly alter

grating rise and decay times.

Growing these materials is often challenging, expensive, and time consuming. Addition-

ally, avoiding unintentional dopant inclusion is often a challenge in and of itself. In such

cases, understanding the precise nature and effect of those dopant may further complicate
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experiments. Additionally, the parameter space for experimental exploration is vast. The

capacity to vary crystal system, dopant species, concentration percentages, growth methods,

and post-growth treatments represent only a few degrees of freedom that experimentalists

have. Methodologies which can side-step the direct expense of crystal growth are thus desir-

able as a means of helping to cost-effectively explore this parameter space. Ab initio studies

represent one possible means of aiding experimental design.

To this end, we have performed simulations of doped KNbO3 systems. We examined

the effect of transition metal substitutions on Nb sites with coordinated and second-nearest

neighbor O vacancies. By generating DFT band structures and projected densities of states,

we explored the usefulness of almost the entire row of 3d transition metals, examining most

in 3+ charge state. We invoked simple scaling arguments examined the trends within the

band structures of the systems to make qualitative predictions about their response. We

concluded that a Ti substitution does not prefer to maintain a 3+ charge state, and instead

likely attempts to donate an electron back to the conduction band. A V substitution, while

exhibiting midgap impurity states, introduced them at a high position relative to the valence

band edge and for this reason we assumed that V in a 3+ charge state was also not a viable

dopant candidate.

Our scaling arguments in that study showed that, Cr, Fe, Co, Ni may each present

midgap states which could be of some experimental use, though with varying acceptor and

donor natures and in different spectral regimes. Mn also demonstrated midgap states of

mixed donor and acceptor nature, which we took to indicate a possibility of it exhibiting

hole-electron grating competition. Our survey mainly served to demonstrate that DFT can

be used to efficiently examine qualitative trends which might help as a first screening of

interesting dopant candidates for tuning the spectral response of KNbO3.

Defects that exist in multiple charge states are similarly important to the field of pho-

torefractive enhancement. Questions of which states may serve as charge carrier traps and

which donate charge carriers under excitation are vital to experimental design. An excellent
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experimental study on the states introduced by Fe doping of KNbO3 was conducted by Ba-

sun et al. [48] and so, in order to utilize DFT to the fullest extent that we can, we developed

models to explore the Fe dopant in different defect centers. We studied the Fe[Nb], Fe[K]

– VK, and Fe[Nb] – VO defect complexes, investigating Fe in the 2+ and 3+ charge states.

In order to do so, we used charge-compensating jellium backgrounds to introduced external

charge into the system and manipulate the charge state of the Fe dopant. We found that for

KNbO3 charge-compensating jellium backgrounds were a useful proxy for non-local mecha-

nisms of charge compensation. We explored a procedure wherein the equilibrium coordinates

of the systems with Fe in the 3+ and with Fe in the 2+ state were found, and then a number

of intermediate structures were generated by linearly interpolating between the equilibrium

positions of the two ionization states. Collecting band structures and projected densities

of states for each of these intermediate structures allowed us to examine how these states

changed under the perturbation of forcing a 3+ ion into the equilibrium geometry of the 2+

state.

By concerning ourselves only with the relative positions of energy levels, we found that

the level assignments made by Basun et al. could be matched quite well to various states

seen in our simulations. Assignments of the Fe[K] – VK system agreed quite well with their

observations. In particular, they observed states that they ascribed to the Fe in a 2+ and

3+ charge state, and did not observe the presence of any lines which indicated Fe in a 4+

charge state (at variance with the Fe[Nb] case). Our simulations revealed that such a state

is buried in the valence band, and thus would be difficult to observe spectroscopically.

In that study, we also found that for the Fe[Nb] complex, Fe in a 3+ charge state is

stabilized at some intermediate values of Q. This is unexpected behavior and may indicate a

failure of the model, or may be the artifact of those levels experiencing an avoided crossing.

However, whether this is interesting physics or a limitation to our method, its discovery could

still prove useful. The exact nature of the center reported by Basun et al. has not been well

understood to date, but our study provides insight into the Fe[Nb] – VO center. It behaves
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similarly to Fe[Nb], with some occupied impurity states being stabilized at intermediate

values of Q. It is also observed that an unoccupied, spin down eg state which was just barely

at the conduction band edge was shown to relax away from the conduction band, coming

into a relative position that we felt aligned with a proposed VO level in the work by Biaggio

et al. [91]

A larger result of these studies is the development of a methodology by which DFT may

be employed at several levels to thoroughly explore a candidate dopant-defect system prior

to needing to expend time and resources growing such a crystal. A first pass exploring

many interesting dopants in one or more defect complexes can be used to get a sort of “lay

of the land” concerning what types of impurity states may be introduced and furthermore,

how these features change as the dopant is varied. If a promising dopant already exists,

the space of possible defect complexes can similarly be explored and defect levels predicted

and assigned at a qualitative level. If a system is particularly costly to grow, and enough

computational resources are available, these early results may serve as a foundation for the

employment of the GW approximation to bring these qualitative trends into the realm of

quantitative predictions. It is to be emphasized that this methodology relies on a feedback

between experiment and simulation. The models developed must be guided by chemical

intuition and constrained by experimental capacity, while in turn, the simulations may be

used to guide experimental design and to aid in the interpretation of physical results.

While our methodology produced reasonable alignment with the experimental result of

Basun et al., the current holy grail of ab initio predictions would be quantitatively accurate

predictions of spectra found under the GW approximation. We studied the effects of the

GW approximation on the pure phases of KNbO3 as a testbed. This is well warranted,

as the convergence procedures for GW calculations become significantly more complex and

expensive, and having ideas of the convergence behavior of related systems may give some

hint as to starting points for converging supercell systems. We observed the effects of the

GW approximation on the band structures of the pure systems. We also used these results
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to place estimates on the cost of applying the GW approximation to doped supercells of

KNbO3.

We concluded that such calculations were beyond the capacity of the computational

resources currently available to us, however many levels of theory exist between standard

Kohn-Sham DFT and GW which ought to be examined. Furthermore, we see a number of

ways that our methodology may be refined and extended to offer as much predictive capacity

as possible to aid in the development and tuning of materials.

Each step of the work done here has a number of refinements which should be considered.

These steps should also be taken largely in tandem with experimental design. There is

an overabundance of computational effort which could be expended in many avenues of

exploration. The questions of how, where, and at what level this effort should be expended

are ones which should largely be determined by experimental need.

Chapter 5 described a number of levels of theory in between standard Kohn-Sham DFT

and GW approximation methods which could be undertaken to look at interesting systems

in more depth. The DFT calculations performed in this work already serve as a viable

testing ground for these levels of theory. The application of hybrid functionals requires some

additional convergence testing, however the GGA and hybrid functionals tend to produce

similar equilibrium lattice parameters [117]. The GGA-derived structures in this work would

likely already suffice for use in calculations with hybrid functionals. Research concerning the

usefulness of hybrid functionals for calculating defect properties shows promising degrees of

accuracy [118, 119]

Additionally, the supercells created in this work could be adapted for use in TDDFT

studies. One particularly interesting avenue of study would be the use of hybrid functional

band structures combined with TDDFT studies to see if level assignments made in Chapter

4 hold at higher levels of theory and if so, whether these assignments can be made directly

to absorption features calculated in TDDFT. Confirming such behavior would be a large

step forward for our methodology, as hybrid functionals and TDDFT represent a much more
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affordable alternative to GW calculations, and experimentally relevant systems could be

studied at this level with more modest computational resources, even as some level of GW

application is pursued simultaneously.

For studies requiring the study of a large number of dopants, we have already shown

that DFT calculations can be a useful screening procedure. Procedures at the basic DFT

level lend themselves quite well to high-throughput computation schemes. Architectures for

these types of workflows have been solidly established in the literature [120–122]. A large

body of work has already demonstrated the usefulness of high-throughput DFT for research

purposes and materials discovery [123–126].

Workflows applied at the scale of many hundred of different systems do require significant

optimizations. Performing convergence testing, examining pseudopotential behavior, and

even storing and examining data for each individual system would involve a time expenditure

which would render the benefits of ab initio calculations moot. Fortunately much work has

also been done in this vein. A database of pseudopotentials which are designed to optimize

softness and transferability was designed by Garrity et al. [127]. This move away from “case-

by-case” construction is vital to ameliorating the need for pseudopotential testing which

could hinder large-scale studies.

We believe that our methodology presented here could well be adapted to such high-

throughput schemes, though we note that refinements to our procedures should still be

considered at smaller scale.

Finally, the recent rise in machine learning techniques and applications has made ana-

lyzing large amounts of complex data feasible. If high-throughput calculation schemes are

pursued, they can produce abundant data which can be utilized by machine learning algo-

rithms to aid in predictions of material properties. There is a vast and growing body of

research which has been combining these two approaches [128], and it stands to reason that

such methods may be useful in extending the methodology we explore in this work.
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Appendix A

Proof of the Hohenberg-Kohn Theorems

Here we re-state and present the mathematical proofs of the first and second Hohenberg-

Kohn theorems. The proofs presented here follow the notation of Kohanoff [53] and can be

found there.

Hohenberg-Kohn I: The external potential of a system of interacting particles is

uniquely determined by the ground-state electron density, apart from an additive constant.

We proceed by contradiction, assuming that we can have two unique external potentials

produce the same ground-state density.

Assume two Hamiltonians, H and H ′ that differ only in the external potential they

experience, V and V ′. Assume also, a set of eigenfunctions for each of these Hamiltonians,

{|ψi〉} and {|ψ′i〉} with particular ground-states, |ψ0〉 and |ψ′0〉.

These ground-state wavefunctions have corresponding energies defined through:

E0 = 〈ψ0|Ĥ|ψ0〉 and E ′0 = 〈ψ′0|Ĥ ′|ψ′0〉. (6.1)

By definition of the ground state, |ψ′0〉 is not the ground-state eigenfunction of Ĥ and we

thus make the following statements:
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E0 < 〈ψ′0|Ĥ|ψ′0〉 + 〈ψ′0|Ĥ − Ĥ ′|ψ′0〉 = E ′0 +

∫
drρ(r)[V (r)− V ′(r)]

E0 < E ′0 +

∫
drρ(r)[V (r)− V ′(r)],

(6.2)

where the last term in the last statement uses Eq. 2.8. We now repeat this process with the

primed and unprimed quantities interchanged:

E ′0 < 〈ψ0|Ĥ ′|ψ0〉 + 〈ψ0|Ĥ ′ − Ĥ|ψ0〉

= E0 +

∫
drρ(r)[V ′(r)− V (r)]

= E0 −
∫
drρ(r)[V (r)− V ′(r)]

E ′0 < E0 −
∫
drρ(r)[V (r)− V ′(r)],

(6.3)

where our initial assumption allows us to say that the wavefunctions |ψ′0〉 and |ψ0〉 produce

the same density ρ. Now adding the final expressions from both of these procedures, we

arrive at the conclusion:

E0 + E ′0 < E ′0 + E0 (6.4)

This is clearly a contradiction as a quantity cannot be less than itself. Our assumption

that the density term in the last lines of equations (6.2) and (6.3) was equivalent has thus

been proven to be false. We conclude that the ground-state density produced by the external

potentials V and V ′ must be unique to each of them.

Hohenberg-Kohn Theorem II: For any given external potential, a functional of

energy in terms of the particle density can be defined. The functional attains its minimum
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only at the ground-state density

Let ρ′(r) be a non-negative density, normalized to the number of electrons and define the

variational energy as a functional of the electron density as:

E[ρ′] = F [ρ′] +

∫
drρ′rvext(r),

where F [ρ′] = 〈Ψ[ρ′]|T̂ + Ûee|Ψ[ρ′]〉,
(6.5)

with |Ψ[ρ′]〉 the ground-state wavefunction in a potential which has ρ′ as its ground-state

density. So E0 = Ev[ρ] ensures E0 < Ev[ρ
′] for any ρ′ 6= ρ, thus:

〈Ψ[ρ′]|Ĥ|Ψ[ρ]〉 = Ev[ρ
′] ≥ Ev[ρ] = E0 = 〈Ψ[ρ]|Ĥ|Ψ[ρ]〉. (6.6)
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Appendix B

Exchange-Correlation Functionals

As mentioned in Chapter 2, the choice of the exchange-correlation functional in DFT

comprises the largest approximation with the Kohn-Sham framework. We focus here on

the details of the implementation and performance of the two most widely-used exchange-

correlation functionals, the Local Density Approximation (LDA) and the Generalized Gra-

dient Approximation (GGA). These details are explored much more fully in [53]

B1 Local Density Approximation

The LDA was developed as the first means of implementing the Kohn-Sham formalism.

It is based around the exact calculations for the exchange energy which was calculated in

Dirac’s formulation of the homogeneous electron gas (HEG). This was an exact result and

thus was a helpful starting point to calculate exchange energies in solids.

The central idea of the LDA is to assume that within a small integration volume, the

electron density of the material is approximately even. In this case, locally, approximating

the electrons as behaving like an HEG can hold quite well. In the limit of uncorrelated

materials, the LDA becomes exact. A helpful approach is to split and separately calculate

the exchange (X) and correlation (C) energies.
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εLDA
XC [ρ] = εX [ρ(r)] + εC [ρ(r)]

εX[ρ] = −3

4

(
3ρ(r)

π

) 1
3

εPZ
C [ρ] =

 A ln(rs) +B + Crs ln(rs) +Drs rs ≤ 1

γ/(1 + β1
√
rs + β2rs) rs > 1

,

where rs = (3/4πρ)( 1
3

) is the mean interelectornic distance expressed in atomic units. The

correlation energy is based on quantum Monte Carlo results by Ceperley and Alder [129].

The PZ superscript in the correlation energy refers to the parametrization of those results

by Perdew and Zunger [130]. The parameters A,B,C, and, D all have characteristic values

and the parameters γ, β1, and, β2 are constants.

Despite the initial impression of crudeness, the LDA has demonstrated remarkable success

over a wide range of systems. We list here some trends and limitations of the approximation

scheme:

• The LDA favors electronic densities which are more homogeneous compared to exact

results; as a consequence of this binding energies of molecules and cohesive energies of

solids tend to be overestimated.

• Bond lengths tend to be underestimated due to the over-binding problem, however

these lengths, bond angles and vibrational frequencies tend to be reproduced to within

about 1% of experiment. Elastic constants and phonon frequencies tend to be slightly

underestimated, but also well-reproduced. Dielectric properties are overestimated by

about 10%.
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• For weakly bound system involving hydrogen bonds or van der Waals interactions,

bond lengths are far too short and dispersion interactions are poorly reproduced.

• Chemical trends such as ionization potentials and transfer energies between electronic

states of different symmetries are usually correct.

• Electronic densities where the electrons are very localized are quite poorly calculated.

The LDA fails to perfectly cancel the self-interaction, which becomes very important

for strongly localized states.

• Band gaps of strongly correlated materials (e.g. NiO, V2O3 etc.) are opened by the

correlations within the materials, but the LDA does not always reproduce this behavior.

B2 Generalized Gradient Approximation

A natural extension to the LDA would be to incorporate some amount of information

about the variations of the electron density about a local point of integration. To this end,

the GGA was developed as an attempted first-order improvement over the LDA.

Under the GGA the exchange-correlation energy takes the form:

EGGA
XC [ρ] =

∫
drρ(r)εXCFXC[ρ,∇ρ,∇2ρ, ...], (6.7)

where, FXC is a factor which modifies the exchange-correlation energy based on derivatives

of the electron density. The effect of this factor on the exchange and correlation energies are

separately accounted for. The exchange part is modified by:

FX(s) = 1 + κ

(
1 − 1

1 + µs2/κ

)
, (6.8)

where s = |∇ρ|
2kFρ

, with kF being the magnitude of the Fermi wave-vector. µ = β(π
2

3
) where β

is a parameter with a characteristic value. κ is a parameter that is designed to control the
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behavior of FX in the limit that the density is vanishingly low, that is to say s→ inf (known

as the Lieb-Oxford bound).

The modification to the correlation part of the energy is quite complicated, but comes in

the form of an additional contribution to the LDA correlation energy:

EGGA
C =

∫
drρ(r)

[
εLDA

C [ρ, ζ] + H[ρ, ζ, t]
]
, (6.9)

with

H[ρ, ζ, t] =

(
e2

a0

)
γφ3 ln

(
1 +

βt2

γ

[
1 + At2

1 + At2 + A2t4

])
, (6.10)

where

t = |∇ρ|/(2φTFρ)

φ = [(1 + ζ)2/3 + (1 − ζ)2/3]/2

A =
β

γ
[e−ε

LDA
C [ρ]/(γφ3e2/a0) − 1].

(6.11)

Despite its increased sophistication, the GGA is not without its limitaitons. While the

GGA ameliorates some shortcomings of the LDA, it is not a systematic improvement.

• The GGA improves the binding energies and atomic energies over the LDA.

• Bond lengths and angles are improved.

• For 4d and 5d transition metals, there is not a clear improvement over the LDA.

• There is some improvement in the gap energy, and subsequently the dielectric constant,

but this is not substantial.

An extensive benchmarking of a number of different functionals can be found in work

done by Goerigk et al. [131].
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B3 Beyond LDA and GGA

Functionals moving beyond the LDA and GGA have been attempted. The family of

meta-GGA functionals seek to consider the fourth-order gradient expansion of the exchange-

correlation energy. The central philosophy behind them is that the incorporation of addi-

tional semi-local information may improve some properties of the GGA.

Other approaches have focused on requiring the functional to obey as many physical

constraints as possible. These strongly constrained, appropriately normalized (SCAN) func-

tionals also fall into the category of meta functionals. A review and comparison of these

types of functionals can be found in the work by Zhang et al. [132]

These functionals provide some improvements in various properties depending on the

characteristics of the system under investigation. We will not expound on their details any

more here, but direct an interested reader to studies done by Sun et al. [133, 134]
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Appendix C

Quantum Espresso Details

Quantum Espresso (QE), or the opEn Source Package for Research in Electronic

Structure, Simulation, and Optimization, is an integrated suite of codes for electronic-

structure calculations and is our tool of choice for DFT calculations. It consists of a number

of core packages with interoperable, third-party add ons. We describe here some of the core

executables and the general workflow to produce basic DFT bandstructures.

C1 Executables

• pw.x: The heart of the QE package, pw.x is the executable responsible for solving the

Kohn-Sham equations. It has several calculation modes which can be run.

Most important is the self-consistent field, ‘scf’, option which takes the user-specified

input data, generates the Kohn-Sham Hamiltonian and solves the Kohn-Sham equa-

tions to self-consistency. Self-consistency is determined when the estimated energy

error of the electronic system falls below a certain, user-defined threshold. The output

of this calculation is the set of self-consistent single-particle wavefunctions over the

specified set of k-points and the self-consistent potential.

It is also possible to run the program non-self consistently under the ‘nscf’ calculation

mode, which runs the Kohn-Sham mechanism for one iteration. This will not produce
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a guaranteed set of solutions to the Kohn-Sham equations, but rather is run using

results from an scf calculation. It is useful for interpolating to a finer grid of k-points,

yielding approximate wavefunctions over this tighter grid.

The pw.x executable also has a number of modes used for structural optimization.

Mode ‘relax’ performs an alternating set of self-consistent iterations to get the Kohn-

Sham wavefunctions for a specific ionic configuration and ionic relaxations where the

Hellman-Feynman forces on the ions are calculated. The ions are moved according to

a quasi-Newtonian algorithm and the self-consistent iterations are performed again for

the new configuration. This is repeated until the forces are below a specified threshold

and then the equilibrium ion positions are reported. The calculation mode ‘vc-relax’

performs a similar procedure but it also calculates the stress on the cell and will relax

the lattice parameters themselves to find equilibrium lattice parameters. Both of these

procedures can also be performed using ab initio molecular dynamics [135].

The last calculation mode of importance to us is the ‘bands’ mode. In this mode, we

can non-self consistently solve for Kohn-Sham states over a specified path of k-points

in the Brillouin zone. This must obviously be done after obtaining scf results.

• dos.x: The dos.x executable is a post-processing utility which calculates the total

density of states (DOS). A specified smearing method of the occupation function con-

volves the states with a smearing function (e.g. a gaussian) of a specified width in

order to produce reasonably smooth DOS curves. For spin-polarized calculations, it

calculates the DOs of the spin-up and spin-down electron densities separately.

• projwfc.x: The projwfc.x is another post-processing utility which projects the elec-

tronic states onto the set of atomic orbitals, producing the so-called projected density

of states (pDOS). This helps to identify which atoms contribute most strongly to each

states. These results must be taken with some amount of caution as the set of atomic

orbitals is not complete, and thus the projection is not perfect. This incomplete projec-
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tion is captured in the reported Lowdin spilling parameter which reflects the percentage

of the states which cannot be represented by this projection.

• bands.x: The bands.x works on the results of a ‘bands’ nscf calculation. It takes the

eigenvalues along the specified k-point path and orders the results to form the bands.

The output files from this utility are easily plotted band structures.

• pp.x The pp.x program is a multi-faceted post-processing utility which encompasses

a number of different functions. It can be used to extract the electron density, the total

or ionic potentials, the spin-polarization, the norms of wavefunctions contributing to

specified bands, among many other functionalities.

C2 Workflow

We discuss here details concerning the quality of our calculations. In particular, the first

issue we focus on is convergence of the results. As mentioned in Chapter 2, this focuses

largely on the energetic cutoff for the wavefunctions and the density of the k-point mesh

used to sample the Brillouin zone. The increase in either of these parameters will increase

the computational cost of the simulation. The challenge then, is to determine parameters

which are “good enough” to yield reliable results.

We do this for the wavefunction cutoff (ecutwfc parameter in pw.x input files) by sim-

ply running scf calculations over a range of cutoff energies with a fixed k-point mesh and

comparing the resulting total energies of the system. In this work, we generally choose an

energetic cutoff which converges the total energy of the system to within a level of approxi-

mately 10 mRy. Fortunately, the convergence of the total energy with respect to the cutoff

energy is largely independent of the convergence with respect to the density of k-points. We

can repeat this process for an increasingly dense k-point mesh. This is quite simple as QE

needs only a simple set of directives to automatically generate a Monkhorst-Pack grid of a

specified dimension.
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The cutoffs chosen are discussed in the relevant chapters, but it should be noted that

they depend on the type and quality of pseudopotentials used. In particular, elements with

high angular momentum channels will generally require higher cutoff energies.

Once parameters for good convergence are established, our workflow for producing band

structures is as follows: a self-consistent calculation is run with the chosen convergence

parameters. Then a non-self-consistent calculation at a denser k-point mesh is run. From

the results of the nscf calculation, we can obtain the charge density map, DOS, and pDOS.

We then run a bands calculation over a specific path of high-symmetry points in the Brillouin

zone and the bands.x post-processing using those results.
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Appendix D

BerkeleyGW Details

D1 Introduction

The BerkeleyGW code (BGW) is a suite of programs for GW calculations. It is interop-

erable with a number of DFT code bases, including Quantum Espresso. A flow chart of how

the various executables generate results is presented in Fig. D1. We explore the details of

each step of the process here, but a full explanation is found in the paper by Deslippe et al.

[70]

D2 Executables

As explored in Chapter 2, the single-particle wavefunctions produced by DFT calculations

are a useful starting point for GW calculations. As such, the first step in the workflow of

BGW is to produce well-converged DFT results. From here, the executables of the BGW

suite are used to perturbatively arrive at GW corrected results.

• epsilon.x: The first step of the BGW process uses the plane-wave wavefunctions

of the DFT results to build and invert either the static or dynamic Random Phase

Approximation (RPA) dielectric function. For the static dielectric function, the RPA

polarizability is first calculated by:
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Figure D1: A chart demonstrating the workflow for GW calculations within the Berke-
leyGW code suite. Necessary inputs and created outputs are shown for each of the 4 main
executables.
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χGG′(q; 0) =
occ∑
n

cond∑
n′

∑
k

Mnn′(k, q,G)(M∗
nn′(k, q,G

′))
1

Enk+q − En′k
, (6.12)

with

Mnn′(k, q,G
′) = 〈nk + q|ei(q+G·r)|n′k〉. (6.13)

The Mnn′(k, q,G
′) factors are plane-wave transition elements, q is a vector in the

first Brillouin zone, G is a reciprocal lattice vector, and the Enk and the kets are the

eigenvalues and eigenstates respectively of the DFT calculation. The number of G-

vectors for which Eq. (6.13) is evaluated is determined by a user-defined energy cutoff,

called now the dielectric cutoff in BGW.

The RPA polarizability allows for the construction of the the dielectric function

through:

εGG′(q; 0) = δGG′ − v(q + G)χGG′(q; 0), (6.14)

where v(q + G) = 4π
|q+G|2 is the Fourier transform of the bare Coulomb interaction.

We note that the extension for calculating the frequency dependence of the dielectric

function involves the calculation the retarded and advanced dielectric functions:

ε
r/a

GG′
(q;ω) = δGG′ − v(q + G)

occ∑
n

cond∑
n′

∑
k

Mnn′(k, q,G)M∗
nn′(k, q,G

′)

× 1

2

[
1

Enk+q − En′k − ω ∓ iδ
+

1

Enk+q − En′k + ω ± iδ

]
.

(6.15)
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The expressions in Eq. (6.15) are evaluated over a grid of frequencies, with δ being

a broadening parameter which must in be tuned, ideally minimizing it. The upper

signs are taken for the retarded function and the lower signs for the advanced function.

In the code, a lower and upper frequency cutoff are specified as well as a frequency

spacing. One must refine this grid in order to truly converge the calculations if the

dynamical dielectric function is required.

The process involves three computationally intensive steps: (i) the calculation of the

matrix elements in Eq. (6.13); (ii) the summations therein; and (iii) the inversion of the

dielectric function. The first step of this process may be made to scale as ∼ N3 log(N),

with N the number of atoms in the system. With the matrix elements calculated, the

next step scales formally as N4, however in practice, this step typically takes up a

small percentage of the calculation. The inversion of the dielectric function, necessary

for the calculation of the of the screened Coulomb interaction, scales like N3, but the

process can be parallelized well on up to hundreds of processors and also represents

only a small percent of the calculation time.

Importantly, the calculation of the dielectric function at q = 0 for the G = G′ = 0,

that is the head of the dielectric function, clearly diverges. The BGW code handles

this by requiring a DFT calculation over a k-grid that is shifted by a q-vector with

a very small magnitude. The limit q → 0 is then taken numerically. Metals and

semi-conductors diverge differently in this limit, and this behavior is handled by a

user-specified tag in the input file.

The epsilon.x requires two different DFT calculations. The first of these calculations

is done with the desired number of conduction bands and uses a k-point grid which is

generated by an included BGW utility, kgrid.x. This produces the main information

that BGW will use to calculate the dielectric function, collected by another utility

program, pw2bgw.x which converts the information from the Quantum Espresso data

files into a form that can be used by BGW. The second calculation is performed using
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only the occupied bands of the system but with a k-grid shifted by the aforementioned

small q-vector. The input file for epsilon.x then requires the user to specify the

number of conduction bands to be included in the summation in Eq. (6.13), the grid

of points over which the unshifted wavefunction information is collected, and a tag

determining whether the system is semi-conducting or metallic in order to handle the

q → 0 limit.

Convergence of these epsilon calculations is quite complicated. There is, in fact, only

one convergence parameter. One fixes either the dielectric cutoff energy or the number

of bands and adjusts the other parameter to match. The highest band included should

match the dielectric cutoff. Fortunately, BGW provides an easily plotted data file which

shows the value of the polarizability using partial sums up to the number of conduction

bands specified in the input. This file contains the convergence information for each

q-point specified.

• sigma.x: With the dielectric function, or rather, its inverse, now in hand, the next step

of the process is to construct the self-energy operator. It computes a representation of

the Dyson’s equation in the basis of the DFT wavefunctions:

〈ψnk|HQP(ω)|ψmk〉 = EMF
nk δn,m + 〈ψnk|Σ(ω)− ΣMF(ω)|ψmk〉, (6.16)

with ω an energy parameter that should be set self-consistently to the quasi-particle

eigenvalues, however obtaining self-consistency in the GW approximation requires some

effort (see Appendix E). EMF
nk are the DFT eigenvalues, ψnk are the DFT eigenfunc-

tions, and ΣMF is an approximation to the self-energy operator, such as the exchange-

correlation potential from the DFT step. Though the full equation is presented in Eq.

(6.16), often the DFT eigenvalues and eigenfunctions are a good enough approximation

to the quasi-particle solutions that only the diagonal elements need be considered, and

in practice the off-diagonal elements by and large do not significantly affect the results.
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The sigma.x program requires DFT results from a grid which is identical to that used

for epsilon.x, but with some differences in the Quantum Espresso to BGW conversion

utility input file.

The matrix elements in Eq. (6.16) can be evaluated by sigma.x within various approx-

imations (e.g. the Hartree-Fock scheme, the static Coulomb-hole screened-exchange

method, GW under a generalized plasmon pole model, or full-frequency GW calcu-

lations). The static Coulomb-hole screened-exchange (COHSEX) method breaks the

many-body excitation into two components, Σ = ΣCH + ΣXC, one which captures the

interaction of the excited electron and the hole its excitation generates and the other

which captures the effects of the screening of the hole by the medium and the exchange

energy. This method does not dynamically screen the hole, hence the static prefix. In

the GW and static-COHSEX, the ΣSX and ΣCH parts are defined as:

〈nk|ΣSX(ω)|n′k〉 = −
occ∑
n′′

∑
qGG′

M∗
n′′n(k,−q,−G)Mn′′n′(k,−q,−G′)

× [εrGG′ ]
−1(q;ω − En′′k−q)v(q + G′)

(6.17)

and

〈nk|ΣCH(ω)|n′k〉 =
i

2π

occ∑
n′′

∑
qGG′

M∗
n′′n(k,−q,−G)Mn′′n′(k,−q,−G′)

×
∞∫

0

dω′
[εrGG′ ]

−1(q;ω)− [εaGG′ ]
−1(q;ω′)

ω − En′′k−q − ω′ + iδ
v(q + G′).

(6.18)

In practice, the code calculates the matrix elements of the bare exchange ΣX , related

to Eq. (6.18) by replacing the retarded dielectric function with a delta function, δGG′ ,
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and also calculates ΣSX−ΣX. The frequency integral is done numerically over the same

frequency grid that was specified in the frequency-dependent epsilon.x calculation.

One may also account for the frequency dependence in an approximate way which

saves the need to converge over a grid of frequencies. The main method of doing this is

known as the generalized plasmon pole (GPP) model. This model attempts to account

for the energy dependence of the polarizability in terms of a discrete set of energy

bands [136]. In the sigma.x code of BGW, the GPP equations corresponding to Eqs.

(6.17 and 6.18) are:

〈nk|ΣSX(ω)|n′k〉 =
i

2π

occ∑
n′′

∑
qGG′

M∗
n′′n(k,−q,−G)Mn′′n′(k,−q,−G′)

×
[
δGG′ +

Ω2
GG′(q)(1− i tanφGG′(q))

(ω − En′′k−q)2 − ω̃2
GG′

(q)

]
v(q + G′)

(6.19)

and

〈nk|ΣCH(ω)|n′k〉 =
i

2π

occ∑
n′′

∑
qGG′

M∗
n′′n(k,−q,−G)Mn′′n′(k,−q,−G′)

×
Ω2

GG′(q)(1− i tanφGG′(q))

ω̃GG′(q)(ω − En′′k−q − ω̃GG′)
,

(6.20)

where ΩGG′(q) is the effective bare plasma frequency, ω̃GG′(q) is the GPP mode fre-

quency, and φGG′(q), is the phase of the renormalized Ω2
GG′(q), respectively. They

have the forms:

Ω2
GG′(q) = ω2

p

(q + G)(q + G′)

|q + G|2
ρ(G−G′)

ρ(0)
,

ω̃2
GG′(q) =

|λGG′(q)|
cosφGG′(q)

,

|λGG′(q)|eiφGG′ (q) =
Ω2

GG′(q)

δGG′ − ε−1
GG′

(q; 0)
,

(6.21)
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with λGG′ as the amplitude of the renormalized Ω2
GG′(q) and ρ is the electron charge

density in reciprocal space and ω2
p = 4πρ(0)e2/m is the classical plasma frequency. For

the GPP model, the frequency integral of Eq. (6.18) is reduced to a single term using

an analytical approximation to the frequency dependence of the dielectric matrix which

requires only the static dielectric matrix εGG′−1(q; 0). This approximation is done using

the f-sum rule [137] which relates the imaginary part of the inverse dielectric function

to the first term in Eq. (6.21). It should be noted that for systems without inversion

symmetry ρ and VXC are complex functions in reciprocal space.

For static COHSEX calculations, the self-energy operator parts can be obtained by by

setting ω − En′k−q to zero in Eqs. (6.20). They then take the form:

〈nk|ΣSX(0)|n′k〉 = −
occ∑
n′′

∑
qGG′

M∗
n′′n(k,−q,−G)Mn′′n′(k,−q,−G′)

× [εrGG′ ]
−1(q; 0)v(q + G′)

(6.22)

and

〈nk|ΣCH(0)|n′k〉 =
1

2

occ∑
n′′

∑
qGG′

M∗
n′′n(k,−q,−G)Mn′′n′(k,−q,−G′)

×
[
ε−1
GG′

(q; 0)− δGG′
]
v(q + G′)

=
1

2

∑
qGG′

Mnn′(k, q = 0,G′ −G)
[
ε−1
GG′

(q; 0− δGG′)v(q + G′)
]
,

(6.23)

where in the expression for ΣCH(0), the completeness relation for the sum over empty

states is used to obtain the last equation which is free any dependence on the empty

orbitals.

For Hartree-Fock calculations, only the bare exchange is computed via:
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〈nk|ΣX|n′k〉

= −
occ∑
n′′

∑
qGG′

M∗
n′′n(k,−q,−G)Mn′′n′(k,−q,−G′)δGG′v(q + G′).

(6.24)

Convergence of the summations in the above expressions with respect to unoccupied

states is quite generally very slow. A complicating factor is that the convergence must

also be checked with respect to the dielectric cutoff used as well. These issues are

approached in Chapter 4 where preliminary GW calculations are explored.

• kernel.x and absorption.x: As mentioned in Chapter 2, the GW approximation

effectively solves for the properties of the system characterized by non-interacting quasi-

particles. Going beyond this involves using the quasi-particle information to solve for

the electron-hole excited states using a Bethe-Salpeter equation (BSE):

(EQP
ck − E

QP
vk )Asvck +

∑
v′c′k′

〈vck|Keh|v′c′k′〉 = ΩsAsvck, (6.25)

where s is an excitonic state label, Asvck is an excitonic wavefunction, Ωs is the excitation

energy, and Keh is the electron-hole interaction kernel. In BGW, the Tamm-Dancoff

approximation is taken [138], that is, only valence to conduction band transitions are

included. The exciton wavefunction is then expressed in real-space by:

Ψ(re, rh) =
∑
v,c,k

Asvckψ
∗
v,k(rh)ψc,k(re), (6.26)

with the imaginary part of the dielectric function being expressed as:
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ε2(ω) =
16π2e2

ω2

∑
s

|e · 〈0|v|s〉|2 δ(ω − Ωs)

〈0|v|s〉 =
∑
vck

Asvck〈vk|v|ck〉,
(6.27)

where v is the velocity operator along the direction fo the polarization of light, e.

The kernel.x executable constructs the kernel of Eq. (6.25) over a coarse k-point grid.

This kernel is limited to the static approximation and is broken in to two terms, a

screened direct interaction and a bare exchange interaction:

〈vck|Kd|v′c′k′〉 = −
∫
drdr′ψ∗c (r)ψc′(r)W (r, r′)ψ∗v′(r

′)ψc′(r
′) (6.28)

and

〈vck|Kx|v′c′k′〉 = −
∫
drdr′ψ∗c (r)ψv(r)v(r, r′)ψ∗v′(r

′)ψc′(r
′) (6.29)

The k-grid over which the kernel is calculated is often the same one used in the sigma.x

executable. The matrix elements are calculated in reciprocal space using:

〈vck|Kd|v′c′k′〉 =
∑
GG′

Mcc′(k, q,G)WGG′(q; 0)M∗
vv′(k, q,G

′) (6.30)

and

〈vck|Kx|v′c′k′〉 =
∑
GG′

Mcv(k, q,G)v(q + G)δGG′M
∗
c′v′(k, q,G

′). (6.31)

Thus for each k,k′ point, the matrix elements Mvv′ ,Mcc′ ,Mvc must be calculated. In

practice, the summations involved in Eq. (6.31) require less time than the matrix

elements to calculate and the number of bands needed to converge these calculations
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is often far less than those used in the preceding steps. An energy window of ∼10 eV

is often enough to converge a spectrum beyond the visible region.

Excitonic binding energies and absorption spectra require sampling over a fine k-point

grid in order to be properly represented. The steps involved in the calculation of the

kernel of the BSE would be prohibitively expensive. This is remedied in BGW by

interpolating the calculated kernel to a finer grid before solving the BSE.

The absorption.x executable expands the wavefunctions collected in a calculation

over a fine grid in terms of the wavefunctions of the nearest k-point in the coarse grid

through:

unkfi
=
∑
n′

Ckco

n,n′un′kco (6.32)

with the coefficients defined by

Ckco

n,n′ =

∫
drunkfi

u∗n′kco
(r), (6.33)

where the coefficients of the expansion normalized, such that
∑
n′
|Ckco

n,n′|2 = 1. One can

improve the interpolation systematically by including more valence and conduction

bands. Importantly, n and n′ are restricted to both be either valence or conduction

bands. Using the coefficients in Eqs. (6.33) the interpolation is completed via:

〈vckfi|K|v′c′k′fi〉 =
∑

n1,n2,n3,n4

Ckco
c,n1C

∗kco
v,n2C

∗k′co

c′,n3C
k′co

v′,n4〈n2n1kco|K|n4n3k
′
co〉. (6.34)

With the kernel constructed on the fine grid, the last part to be tackled is the diagonal-

ization of the BSE. This results in the excitonic eigenvalues and eigenfunctions which
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can then be used to create the absorption spectrum. The BGW suite contains some

post-processing utilities which allow for the plotting of these functions.

• inteqp.x: As long as the quasi-particle information is collected, that is, having run

the sigma.x executable, the quasi-particle corrections may be used to obtain the cor-

rections to band structure along an arbitrary path. This is done with the inteqp.x

executable. The quasi-particle corrections are much smoother functions of k and ω

than the quasi-particle eigenvalues themselves.
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Appendix E

On the GW Approximation

Here we focus on some details of the Green’s function formalism, Hedin’s equations, and

Feynman diagrams to give the reader more insight into the theoretical background. We follow

the derivation presented in [62] to which we direct an interested reader for more information.

E1 Equation of Motion for G

We derive the expressions for the propagator, beginning from the Heisenberg equation of

motion for the field operator:

i
∂

∂t
ψ̂(x, t) =

[
ψ̂(x, t), Ĥelec

]
, (6.35)

where x contains the space and spin coordinates and Ĥelec is the electronic part of the many-

body Hamiltonian, which can be broken down itself as: Ĥelec = ĥ0+v(r, r′). The potential in

Ĥelec is the two-body interaction. Noting that the field operators ψ̂, ψ̂† are anti-commuting

operators, we can evaluate the commutator in the Heisenberg equation to get:

[
i
∂

∂t
− ĥ0(r)

]
G(xt,x′t′) = δ(t− t′)δ(x− x′)

− i

∫
dx′′v(x,x′′)

〈
N
∣∣∣T̂ [ψ̂†(x′′, t)ψ̂(x′′, t)ψ̂(x, t)ψ̂†(x′, t′)

]∣∣∣N〉 , (6.36)
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the integrated expectation value is the two-particle Green’s function G2(xt,x′′t,x′′t+,x′t′).

The equation of motion for G2 would then introduce the three-particle Green’s function.

Thus, iterating the procedure would generate higher and higher orders of Green’s functions

to describe all possible many-body interactions. We encapsulate the sum of these interactions

in the full, non-local self-energy using:

− i
∫
dx′′v(x,x′′)G2(xt,x′′t,x′′t+,x′t′) ≡∫

dt′′
∫
dx′′Σ̄(xt,x′′t′′)G(x′′t′′,x′t′),

(6.37)

where Σ̄ refers to the sum of the self-energy and the Hartree potential given by Σ = Σ̄− vH .

Using the self-energy in equation (6.37) we arrive at the equation of motion for the Green’s

function:

[
i
∂

∂t
− ĥ0(r) − vH(r)

]
G(xt,x′t′) = δ(t−t′)δ(r−r′)+

∫
dt′′
∫

x′′Σ(xt,x′′t′′)G(x′′t′′,x′t′).

(6.38)

If we take G0 as the solution to part of the electron Hamiltonian, ĥ = ĥ0 + vH , then this

equation simplifies further to:

G(1, 2) = G0(1, 2) +

∫
d(3, 4)G0(1, 3)Σ(3, 4)G(4, 2). (6.39)

Which is the expression of equation (2.48) presented in Chapter 2, now with the streamlined

expression for the variable dependences described in that chapter.
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E2 Derivations of Hedin’s Equations

In this section we focus on the actual derivation of Hedin’s equations. We follow here

a somewhat simplified derivation as presented in [62], but the interested reader can follow

Hedin’s actual expansion in [63]

We introduce a small perturbing field φ which will later be set to zero. We can use the

identity put forward by Schwinger [139] to represent the two-particle Green’s function as:

G2(1, 3, 2, 3+) = G(1, 2)G(3, 3+) − δG(1, 2)

δφ(3)
. (6.40)

We can substitute this expression into equation (6.37) and multiply both sides of the

resulting equation by G−1 to get:

Σ̄(1, 2) = δ(1, 2)

∫
d(3)v(1, 3)G(3, 3+) − i

∫
d(3, 4)v(1, 3)G(1, 4)

δG−1(4, 2)

δφ(3)

= δ(1, 2)vH(1) − i

∫
d(3, 4)v(1, 3)G(1, 4)

δG−1(4, 2)

δφ(3)
.

(6.41)

We introduce now a set of quantities and identities which we combine to get Hedin’s equa-

tions:

Total Potential: V (1) = φ(1) + vH(1),

Inverse Dielectric Function: ε−1(1, 2) =
δV (1)

δφ(2)
,

Screened Coulomb Interaction: W (1, 2) =

∫
d(3)ε−1(1, 3)v(3, 2),

3-point vertex: Γ(1, 2, 3) = −δG
−1(1, 2)

δV (3)
,

Irreducible Polarizability: P (1, 2) = −iδG(1, 1+)

δV (2)
=

δn(1)

δV (2)
,

Reducible Polarizability: χ(1, 2) = −iδG(1, 1+)

δφ(2)
=

δn(1)

δφ(2)
.

(6.42)
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Using these expressions along with the equation for G, we get Hedin’s equations:

P (1, 2) = −i
∫
d(3, 4)G(4, 2)G(2, 3)Γ(3, 4, 1),

W (1, 2) = v(1, 2) +

∫
d(3, 4)v(1, 2)P (3, 4)W (4, 2),

Σ(1, 2) = i

∫
d(3, 4)G(1, 4)W (1+, 3)Γ(4, 2, 3),

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
d(4, 5, 6, 7)

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3).

(6.43)

E3 Self-consistency in the GW approximation

Going beyond the “single-shot” GW method (discussed in Chapter 2) requires some form

of self-consistency to be applied to the GW equations. It is to be noted that a straightfor-

ward expansion of the Green’s function in powers of the screened Coulomb potential is not

guaranteed to converge [61]. Additionally, the storage of all the quantities involved in the

calculation can be very taxing depending on the system of study.

Despite these difficulties, different self-consistent schemes within the GW approximation

have been devised. Conceptually, the purest of these schemes is fully self-consistent GW

(scGW). Under this scheme, all four quantities in the GW approximation are iterated until

self-consistency is achieved.

E4 Feynman Diagrams

An understanding of Feynman diagrams helps elucidate some details of Hedin’s expan-

sion. We cover some fundamentals here, but direct readers interested in a deeper under-

standing toward the book by Mattuck [140].

A Feynman diagram is a way to graphically represent the expansion of the Green’s

function into an infinite series. Each piece of a diagram corresponds to a piece of the

mathematics that go into the expansion. The fully interacting Green’s function is usually
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represented as a double line with an arrow indicating the propagation in time. Time is

generally understood to increase in the direction of the propagator. We remind the reader

that the propagator technically satisfies both time orderings, although in one we consider the

anti-particle propagating backward in time. In our diagrams here we consider time increasing

vertically.

The starting and ending points of the propagator represent the starting and ending space-

time points of the propagation. We note that the particle leaving the system need not be

the same particle that entered. Along a path of propagation, the particle will interact with

other particles in the medium. These interactions are the potentials (sometimes referred to as

“self-energy” parts) in the definition of the Green’s function (equation 6.39). An interaction

is then said to take place at some “internal” time, which is any point in time between the

starting and ending time. Arbitrarily many interactions may be taken to occur and the

number of interactions is taken as the order of the diagram.

When equation (6.39) was introduced, we discussed that itself to the notion of self-

consistency. We can iteratively substitute the Green’s function back into itself to generate

higher and higher orders of the expansion. We approach the expansion through Feynman

diagrams in the same way, considering increasingly complicated interactions. The first step

in this process is to build up an intuition about what sorts of interactions the particle may

undergo.

As a simplified case, we consider an electron moving ballistically in a lattice of ions. The

electron could be inserted into the system at time and place {t1, r1}, propagate freely to its

destination without scattering at all, and then leave the system at time and place {t2, r2}.

This would be the non-interacting propagator term G0, displayed by a single, arrowed line.

The electron may instead be inserted into the system at the same time and place {t1, r1},

propagate freely for some time, then, at some internal time t′ (with t1 < t′ < t2), scatter

off one of the ions in the lattice and then continue freely propagating until it leaves the

system at time and place {t2, r2}. This is represented by a propagator ending at time t′,
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some representation of the interaction, and then another propagator beginning at t′ and

continuing to t2. In our simplified case here, the particle merely interacts with the scattering

center, and no further structure need be introduced into the interaction. But we must build

the diagrammatic expansion of the Green’s function by considering all possible pathways

and interactions. The electron could scatter off the first ion, into the second, and continue

on. It could scatter off the first ion twice and continue on. It could scatter off the first

ion twice, the second ion once, the third ion twice and so on, ostensibly including every

combination of interactions possible. This would establish the full diagrammatic expansion of

the propagator. Each diagram represents a mathematical term in the expansion as integrals

of products of Green’s functions and potentials, and the sum of all diagrams is then the

fully-interacting propagator.

The above scenario makes it clear that the expansion is difficult to achieve even for

relatively simple examples. We make this problem more tractable by making assumptions

about which diagrams contribute the most to the sum. More complicated sequences of

interactions are expected to have lower probabilities of occurring and thus contribute less

to the propagator. We can, by organizing different families of diagrams, partially sum over

these diagrams, assuming they form a sequence which has a finite sum.

One more important note about Feynman diagrams is that the processes represented

in any given diagram do not necessarily carry the physical interpretation our introduction

has ascribed to them. Processes in these diagrams may violate laws such as the Pauli

exclusion principle or introduce interactions which occur in zero time, and thus present

unphysical virtual processes. However, the sum of all of these processes is required to produce

physical results. While this is provable, it is well beyond the scope of this appendix. We

now introduce several diagrams of serious importance to the many-body electronic problem.

We will describe the processes in these diagrams using physical intuition, but it should be

understood that they are really only quasi-physical in nature.
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E5 Bubble Diagrams

Figure E1: A Feynman diagram known as a bubble diagram.

The diagram depicted in Fig. (E1) is what is known as a bubble diagram. It represents

a process wherein the propagating particle excites a particle initially in an occupied state,

forming a particle-hole pair for an instant, but the propagating particle then interacts with

the excited particle scattering it back into the hole. This process is referred to as “forward

scattering”, given that the initially propagating particle is scattered back into its initial state.

This diagram is an example of an unphysical process. The interaction takes place in zero

time, that is, the particle which is excited and its hole are created and annihilated in the

same instant. Assuming that only bubble diagrams contribute to the propagator yields a

geometric series whose infinite sum can be achieved and is equivalent to taking the well-

known Hartree approximation. This approximation sees the particle as interacting with an

average potential produced by the particles in all occupied states.
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Figure E2: A Feynman diagram known as an open oyster diagram.

E6 Open Oyster Diagrams

The open oyster diagram, depicted in Fig. (E2), is a similar process to the bubble

diagram. The propagating particle excites a particle in a state below the Fermi surface,

creating a particle-hole pair. However, different from the bubble diagram, the propagating

particle scatters into the state of the excited particle with the excited particle scattering into

the state of the propagating particle. The original particle then recombines with the hole.

This diagram is referred to as a first-order exchange diagram, the process sometimes referred

to as “exchange scattering”.

When forward scattering and exchange scattering processes are considered as the only

contributions, the diagrams can be summed again, this time yielding the next higher rung

on the ladder of approximations the Hartree-Fock approximation. The Hartree-Fock approx-

imation involves the particle interacting with the same averaged external potential as in the

standard Hartree approximation, however now the phenomenon of exchange is accounted for

as well.
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E7 Ring Diagrams

Figure E3: A Feynman diagram known as a ring diagram.

The last diagram we will discuss is shown in Fig. (E3), called a ring diagram. The ring

diagram depicts a process wherein the propagating particle kicks a particle out of an occupied

state, generating yet again a particle-hole pair. However, in a ring diagram, the particle-hole

pair propagates as well until at some point the pair annihilates due to interaction with the

initial particle. Higher orders of this type of diagram describe the particle-hole pair exciting

other particle-hole pairs. This family of processes encapsulates the idea of the propagating

particle exciting a cloud of particles as it moves through the medium. As explored in Chapter

2, this idea is central to the quasi-particle picture. The dynamically-adjusting polarization

cloud that an extra particle generates is precisely of this nature.

Going one step further on the ladder of approximations for the many-electron system,

we consider the the open-oyster and ring diagrams as the diagrams contributing most to the

propagator. Summing these two families of diagrams yields the well-known Random Phase

Approximation. This also gives us a very convenient means of thinking about the correlation

in the system. We can consider the ‘bare’ interaction (or the non-interacting propagator)
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as now being ‘dressed’ by the cloud of virtual interactions with the many particles of the

medium. This feedback between the medium and the extra particle is exactly what is involved

in the self-energy which is key to the GW approximation.
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