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This paper examines how to implement difference-in-differences techniques when there are time-
varying covariates. Two-way fixed effects (TWFE) models are popular in the current literature but have
been shown to have biased results when solving models with time-varying covariates. This paper presents
conditions under which researchers can still recover the average treatment effect of the treated (ATT) of
some treatment when there are time-varying covariates and provides doubly robust estimators that work
with these assumptions. In addition, the paper offers an example for how to use imputation techniques
to estimate difference-in-differences models, using a data set on stand-your-ground laws from Cheng and
Hoekstra, 2013. Imputation involves using untreated data to make predictions on the untreated potential
outcomes of treated units. The paper also provides a proof for the asymptotic normality of imputation
techniques in both the two-period case and the multiple-period case.
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Chapter 1

Introduction

In this paper, we study difference in differences identification strategies where (i) the parallel trends as-
sumption holds only after conditioning on covariates, (ii) some or all of these covariates vary over time,
and (iii) some of the time varying covariates could themselves be affected by the treatment.

A number of papers (e.g., Heckman et al., 1998, Sant’Anna and Zhao, 2020 Abadie, 2005) show that
certain causal effect parameters, typically the average treatment effect on the treated (ATT), are identified
under conditional parallel trends assumptions. These types of conditional parallel trends assumptions are
attractive in applications where the path of untreated potential outcomes may differ among units with
different characteristics. However, work in the econometrics literature typically considers the case where
covariates involved in the parallel trends assumption either do not vary over time or are “pre-treatment”
(that is, the value of a time-varying covariate is set to its value in the pre-treatment period; see Bonhomme
and Sauder, 2011, Lechner, 2011 for some discussions on using pre-treatment values of time-varying covari-
ates). In contrast, empirical work in economics often only includes covariates that vary over time. In this
case, identification must implicitly assume that the treatment does not have an effect on the covariates
themselves, which is implausible in some applications.

Covariates that could have been affected by participating in the treatment are often referred to as “post-
treatment” or as “bad controls.” The received wisdom seems to be that this type of covariate should not
be included in empirical research.1 However, we provide several examples below where it seems important
to condition on the value of the covariate that would have occurred in the absence of the treatment; in these
cases, it would not generally be sufficient to just “not include” this sort of covariate. We propose several
different strategies for dealing with time-varying covariates that show up in the parallel trends assumption
while also potentially being affected by the treatment.

1For example, Angrist and Pischke, 2008 discuss “bad controls” in the context of deciding whether or not to control for
occupation when studying causal effects of graduating from college on earnings. In that case, occupation is likely to be affected
by attending college and, therefore, can make comparisons in earnings among those with the same occupation who graduated
or did not graduate from college hard to interpret (even if college were randomly assigned). Angrist and Pischke, 2008 note that
“...we would do better to control only for variables that are not themselves caused by education.” We return to a related example
later in this section on the effect of job displacement on earnings where occupation is potentially affected by job displacement.
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Difference in differences identification strategies are most often implemented using two-way fixed
effects (TWFE) regressions. The most common version of a TWFE regression that includes covariates is
the following

Yit = θt + ηi + αDit +X ′
itβ + vit (1.1)

where θt is a time fixed effect, ηi is individual-level unobserved heterogeneity (i.e., an individual fixed
effect), Dit is the treatment indicator, and Xit are time varying covariates. In the TWFE regression in
Equation (1.1),α is the parameter of interest and it is often interpreted as “the causal effect of the treatment”
or at least would be hoped to be a weighted average of underlying heterogeneous treatment effects. Being
able to include covariates is one of the main attractions of using a TWFE regression to implement a
DID design. For example, Angrist and Pischke, 2008 write: “A second advantage of regression-DD is
that it facilitates empirical work with regressors other than switched-on/switched off dummy variables.”2

TWFE regressions have come under much scrutiny in recent work in terms of how well they perform for
implementing DID identification strategies. In particular, TWFE regressions can perform very poorly in
the presence of more than two time periods, variation in treatment timing across units, and treatment effect
heterogeneity (particularly, treatment effect dynamics); see Goodman-Bacon, 2021, de Chaisemartin and
D’Haultfœuille, 2020. Although with only two time periods, TWFE regressions are known to be reliable
under unconditional parallel trends, here we point out a number of problems with TWFE regressions for
implementing DID identification strategies that rely on conditional parallel trends assumptions even in
the case with only two time periods.

In particular, we show that TWFE regressions can deliver poor estimates of the average treatment
effect on the treated (which is the natural target parameter for DID identification strategies) for any of
four reasons: (1) time-varying covariates that are themselves affected by the treatment, (2) ATTs and/or
parallel trends assumptions that depend on the pre-treatment level of time varying covariates in addition
to (or instead of) only the change in the covariates over time, (3) ATTs and/or paths of untreated potential
outcomes that depend on time-invariant covariates, and (4) violations of strong functional form assump-
tions both for outcomes over time and for the propensity score. All four of these issues are common in
applications in economics.

In applications where none of the four issues mentioned above occur, TWFE regressions deliver a
weighted average of conditional ATTs where all the weights are positive. However, even in this best-case
scenario, TWFE regressions still suffer from a “weight-reversal” property similar to the one pointed out in
Słoczyński, 2020 under unconfoundedness with cross-sectional data. In our case, conditional ATTs for
relatively uncommon values of the covariates among the treated group (relative to the untreated group)
are given large weights while conditional ATTs for common values of the covariates among the treated
group are given small weights. In order to get around this weight reversal issue, one needs to additionally
rule out heterogeneous treatment effects across different values of the covariates. Adding this condition
to the previous four implies that TWFE regressions deliver the ATT; however, we stress that these are a

2Angrist and Pischke, 2008 also briefly mention “bad controls” in the context of difference in differences (Section 5.2.1).
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very stringent set of requirements for TWFE regressions to perform well for estimating the ATT when
the parallel trends assumption depends on time-varying covariates.

We propose several new strategies for dealing with time-varying covariates that are required for the
parallel trends assumption to hold. When the researcher is confident that the covariates evolve exogenously
with respect to the treatment, we provide a doubly robust estimand for the ATT (these arguments are
similar to the ones in Sant’Anna and Zhao, 2020 for the case with time invariant covariates). Doubly
robust estimators have the property that they deliver consistent estimates of the ATT if either an out-
come regression model or a propensity score model is correctly specified, thus giving researchers an extra
chance to correctly specify a model relative to regression adjustment or propensity score weighting strate-
gies. Besides this, our doubly robust estimands can also be used in the context of the double/debiased
machine learning literature where the propensity score and outcome regression model can be estimated
using a wide variety of modern machine learning techniques (see Chernozhukov et al., 2018 for the gen-
eral case and Chang, 2020 in the context of DID).3 When the time-varying covariates can be affected
by the treatment, we provide sufficient (and easy-to-interpret) conditions under which the strategy of
conditioning on “pre-treatment” covariates, which is common in the econometrics literature, is justified.
We also discuss other cases where this strategy is not reasonable. In these cases, we propose regression
adjustment-type and doubly robust-type expressions for the ATT. Finally, when a researcher is willing to
make an additional functional form assumption for untreated potential outcomes, we propose some even
simpler approaches based on regression adjustment (these approaches are also broadly similar to recent
“imputation estimators” proposed in Liu et al., 2021, Gardner, 2021, Borusyak et al., 2021). We also show
that stronger functional form assumptions for the model for untreated potential outcomes can allow for
parallel trends-type assumptions for the covariates to be sufficient for identification of the ATT.

Before moving into our main arguments, we provide three examples to illustrate the types of questions
that we address in the current paper. We revisit these applications at relevant parts of the paper.

Example 1 (Stand-your-ground laws). Cheng and Hoekstra, 2013 study the effects of stand-your-ground
laws on homicides and other crimes. They use state-level data and exploit variation in the timing of stand-
your-ground laws across states in order to identify policy effects. For some of their results, they condition
on time-varying covariates that include state-level demographics, the number of police officers in the state,
the number of people incarcerated, median income, poverty rate, and spending on assistance and public
welfare. Although it is debatable whether or not some of the these covariates could be affected by the
treatment (particularly the number of police officers and the number of people incarcerated), by run-
ning TWFE regressions that include these covariates, Cheng and Hoekstra, 2013 at least implicitly argue
that these covariates evolve exogenously from the treatment. Whether this is true or not, for exposition
purposes we will assume that none of the covariates used in this example are affected by the treatment.

3Using machine learning in this context may be particularly useful because the expressions for the ATT involve conditioning
on time-varying covariates across different time periods. In many applications, time-varying covariates may be highly serially
correlated, and it may be challenging to specify simple parametric models involving these covariates in this context. However,
machine learning estimators may perform much better in this context.
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Example 2 (Shelter-in-place orders). A number of recent papers study the effect of shelter-in-place orders
on various outcomes including mobility (see, for example, Weill et al., 2021 and references therein), labor
market outcomes (e.g., Gupta et al., 2020), and consumer spending (e.g., Chetty et al., 2020). Paths of all
of these outcomes (in the absence of shelter-in-place orders) likely depend on the current number of Covid-
19 cases due to individuals making different choices about staying at home or continuing to work based on
the local “state” of the pandemic. This suggests that parallel trends assumptions ought to condition on the
number of Covid-19 cases that would have occurred if the policy had not been implemented. Moreover,
since Covid-related policies are designed to affect the number of Covid-19 cases, this would be a case with
a time-varying covariate that is likely to be affected by the treatment.

Example 3 (Job Displacement). Research on job displacement typically invokes parallel trends assump-
tions to identify causal effects of job displacement on workers’ earnings. If, in the absence of job displace-
ment, paths of earnings depend on the occupation, industry, or union status of a worker, then it would be
desirable to condition on these variables in the parallel trends assumption. However, most empirical work
on job displacement does not condition on these variables, presumably due to each of these possibly being
affected by job displacement.4 Moreover, Barnette et al., 2021 argue that differences in the distribution
of pre-displacement occupations are likely an important explanation for the magnitude of effects of job
displacement; similarly, Brand, 2006 reports relatively large effects of job displacement on occupation.

The examples above are broadly representative of applications that invoke DID identification assump-
tions with time varying covariates. The first example involves time-varying covariates that can reasonably
be thought of as evolving exogenously with respect to the treatment. The following two examples both
involve covariates that are potentially affected by the treatment. Later in the paper, we point out some
further conceptual differences between these latter two examples.

Related Literature
Our paper shares a similar motivation to Zeldow and Hatfield, 2021 which considers different possible

sources of bias due to controlling for time-varying covariates that are possibly affected by the treatment.
That paper mainly considers how sensitive existing strategies are (e.g., controlling for only pre-treatment
covariates or additionally including lagged outcomes) to covariates that can be affected by the treatment.
Relative to that paper, we make explicit assumptions on how the treatment can affect the covariates and,
under these extra conditions, are able to propose estimation strategies that are guaranteed to perform well
(up to regularity conditions) in those cases.

Our paper is also related to the literature on causal inference with panel data using structural nested
mean models Robins, 1997 and marginal structural models Robins et al., 2000; see Blackwell and Glynn,
2018 for a recent review. These approaches, however, are based on “sequential ignorability” assump-
tions rather than allowing for time-invariant unobserved heterogeneity. Sequential ignorability implies

4Some papers do include occupation, industry, and/or union controls in “robustness checks” and others study how effects
of job displacement vary by whether or not a worker remains in the same industry, occupation, or union status following
job displacement which is broadly similar to controlling for each of these (see, for example, Topel, 1991, Jacobson et al., 1993,
Stevens, 1997).
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that treated and untreated potential outcomes are independent of treatment status conditional on pre-
treatment values of covariates (and possibly pre-treatment outcomes).5 Unlike the bulk of this literature,
the current paper focuses on the case where a researcher would like to invoke a parallel trends assump-
tion – rather than sequential ignorability – for identification. However, the current paper also invokes
an additional assumption on how treated and untreated potential covariates are generated; this type of
assumption is not made in this literature. The reason for this is that the timing that we consider differs
from what is typically considered in the literature on sequential ignorability; in our case, units potentially
become treated, and then their covariate realizes (and may itself be affected by treatment). This covariate
needs to be controlled for identification. By contrast, the sequential ignorability literature typically has
the covariate realized first, then the treatment, then the outcome, and controlling for, effectively, the co-
variate in the previous period is sufficient for identifying parameters of interest. That said, like the current
paper, that literature does take seriously how covariates evolve over time and how participating in the
treatment can affect covariates themselves. Of papers broadly in this literature, the most similar to the
current paper is Imai et al., 2018 which focuses on a conditional parallel trends assumption that can hold
after conditioning on past values of the covariates as well as past values of the outcome.

Our paper is also related to the literature on mediation analysis. Like a mediator, our covariates
can be affected by treatment participation. However, the mediation literature is typically interested in
decomposing treatment effects into direct effects of the treatment and indirect effects due to the effect of
the treatment on the mediator (see Huber, 2020 for a recent review of this literature). Our paper is less
ambitious in that we only seek to identify the overall effect of the treatment on outcomes; the tradeoff
is that we are able to generally make weaker assumptions than would be required to separately recover
direct and indirect effects of participating in the treatment. That said, it would be interesting to extend
our arguments to additionally identifying direct and indirect effects of participating in the treatment,
and it seems likely that existing arguments from the mediation analysis literature could be applied in this
case. Our paper is relatively more similar to Rosenbaum, 1984, Lechner, 2008, Flores and Flores-Lagunes,
2009; these papers consider identification of treatment effect parameters under unconfoundedness (and
with cross-sectional data) where the covariates that are required for the unconfoundedness assumption
to hold could have been affected by the treatment. Besides this, our paper is related to a large literature in
econometrics on strict exogeneity and pre-determinedness in panel data models (see, for example, Arellano
and Honoré, 2001).

Finally, our results on interpreting TWFE regressions build on work on interpreting cross-sectional
regressions under the assumption of unconfoundedness and in the presence of treatment effect heterogene-
ity; this literature includes Angrist, 1998, Aronow and Samii, 2016, Słoczyński, 2020, Goldsmith-Pinkham
et al., 2021, Ishimaru, 2021. Goodman-Bacon, 2021, de Chaisemartin and D’Haultfœuille, 2020, and Ishi-
maru, 2022, all of which provide decompositions of the TWFE regression in Equation (1.1). In some ways,
the decompositions in these papers are more general than our decomposition as they all consider the case

5Another difference between the current paper and much of the sequential ignorability literature is that these papers are
typically primarily interested in recovering causal effects of different treatment paths (e.g., where each unit can move into or out
of the treatment in each period). The arguments in our paper could likely be extended in this direction but our main results
apply to the case where there are only two time periods and treatment can only take place in the second time period.
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with more than two time periods and with variation in treatment timing. On the other hand, our results
zoom in on the “textbook” case with exactly two periods and where no one is treated in the first period;
our decomposition emphasizes a number of possible limitations of TWFE regressions even in the case
with exactly two periods. Indeed, moving to more complicated cases with more periods and variation in
treatment timing would make the case for using TWFE regressions even weaker, as it would introduce
additional issues particularly related to using already treated units as comparison units (which can lead to
negative weights on underlying treatment effect parameters), as all three papers mentioned above imply.
See Remark 4 below for a more detailed comparison.
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Chapter 2

Identification

Notation and Setup
For this section, we focus on a baseline case where the researcher has access to two time periods of panel data.
We label the second time period t∗ and the first time period t∗−1, and use t to indicate a generic time period.
In each time period, we observe outcomes Yt, time-varying covariates Xt, and time-invariant covariates
Z . As is standard in the DID literature, we suppose that no one is treated in the first time period. We use
the binary variable D to indicate whether or not a unit participates in the treatment. Importantly for our
setup, we allow for the possibility that the time-varying covariate can itself be affected by the treatment;
in order to do this, we define Xt(1) to be the value that the covariates would take if a unit participated in
the treatment and Xt(0) to be the value that the covariates would take if a unit did not participate in the
treatment; for simplicity, we often refer to these as “treated potential covariates” and “untreated potential
covariates.” Next, we define treated potential outcomes as Yt(1, Xt(1)) (this is the outcome that a unit
would experience in time period t if they participated in the treatment and their covariates took on its
value under the treatment) and untreated potential outcomes as Yt(0, Xt(0)) (this is the outcome that a
unit would experience in time period t if they did not participate in the treatment and their covariates took
their values in the absence of the treatment). For most of the arguments in the current paper, it is sufficient
to use the shorter notationYt(1) := Yt(1, Xt(1)) andYt(0) := Yt(0, Xt(0)). In this setup, the observed
covariates in each time period are: Xt∗ = DXt∗(1) + (1−D)Xt∗(0) and Xt∗−1 = Xt∗−1(0). In other
words, in the second time period, we observe treated potential covariates for units that participate in the
treatment, and we observe untreated potential covariates for units that do not participate in the treatment.
In the first time period, since no units are treated yet, we observe untreated potential covariates for all units.
Likewise, observed outcomes are given by Yt∗ = DYt∗(1) + (1−D)Yt∗(0), and Yt∗−1 = Yt∗−1(0).

Following the vast majority of the DID literature, we target identifying the average treatment effect
on the treated (ATT). It is given by

ATT = E[Yt∗(1)− Yt∗(0)|D = 1]
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which is the average difference between treated and untreated potential outcomes among the treated
group.

Throughout the paper, we make the following assumptions

Assumption 1 (Random Sampling). The observed data consists of
{Yit∗ , Yit∗−1, Xit∗ , Xit∗−1,Wit∗ ,Wit∗−1, Zi, Di}ni=1 which are independent and identically distributed.
Wit∗−1 is a set of pretreatment covariates.

Assumption 2 (Conditional Parallel Trends).

E[∆Yt∗(0)|Xt∗(0), Xt∗−1, Z,D = 1] = E[∆Yt∗(0)|Xt∗(0), Xt∗−1, Z,D = 0] a.s.

Assumption 3 (Overlap).

(a) P(D = 1|Xt∗ , Xt∗−1, Z) < 1 a.s.

(b) P(D = 1|Xt∗−1,Wt∗−1, Z) < 1 a.s.

Assumption 1 says that we observe iid panel data. Assumption 2 says that, on average, the path of un-
treated potential outcomes is the same for the treated group as for the untreated group after conditioning
on untreated potential covariates in time period t∗, pre-treatment covariates Xt∗−1, and time-invariant
covariates Z . Relative to standard conditional parallel trends assumptions (Heckman et al., 1997, Call-
away and Sant’Anna, 2021, Abadie, 2005), the set of covariates being conditioned on includes untreated
potential covariates which are unobserved for the treated group and therefore can complicate existing
identification strategies. Assumption 3 is an overlap assumption, and this type of assumption is standard
in the treatment effects literature. Part (a) implies that, for any values of Xt∗ , Xt∗−1, and Z , there will be
some untreated units with those values of the covariates in the population. Part (b) is similar but holds
for any values of Xt∗−1, Wt∗−1, and Z .

Next, we provide two distinct assumptions for dealing with covariates that vary over time.

Assumption Cov-Exogeneity. (Xt∗(0)|Xt∗−1, Z,D = 1) ∼ (Xt∗(1)|Xt∗−1, Z,D = 1)

Assumption Cov-Unconfoundedness. Xt∗(0) ⊥⊥ D|Xt∗−1,Wt∗−1, Z where Wt∗−1 is a vector of pre-
treatment variables.

We call the first assumption covariate exogeneity because it implies that participating in the treatment
does not change the distribution of covariates for the treated group. This assumption is technically weaker
than assumptions like, for all units Xit∗(1) = Xit∗(0) = Xit∗ , although this would certainly be a leading
case where this sort of condition might hold. Assumption Cov-Exogeneity allows for covariates to change
values over time, but it imposes that (in distribution) they are not affected by participating in the treatment.
This sort of condition may be reasonable in some applications (e.g., Example 1 above). In other cases, this
assumption may be less reasonable (e.g., Examples 2 and 3 above).

Assumption Cov-Unconfoundedness is an unconfoundedness assumption for untreated potential
covariates. It allows for the treatment to affect the time varying covariates, but it says that the distribution

8



of untreated potential covariates is the same for the treated group and the untreated group after condition-
ing on the vector of pre-treatment covariates (Xt∗−1,Wt∗−1, Z). This assumption allows us to recover
the conditional distribution of untreated potential covariates for the treated group. This distribution is a
key ingredient for identifying the ATT below.

In Assumption Cov-Unconfoundedness, we allow for the possibility thatWt∗−1 is empty; in fact, this
is a leading case. In this case, unconfoundedness for untreated potential covariates holds after conditioning
on the lag of the time-varying covariates Xt∗−1 and other time invariant covariates Z . Below, we connect
this specific condition to the common practice in the econometrics literature on DID of conditioning
on pre-treatment values of time-varying covariates. With a slight abuse of notation, we also allow for
the possibility that Wt∗−1 includes the lagged outcome Yt∗−1, so that covariate unconfoundedness holds
after conditioning on pre-treatment covariates, time invariant covariates, and the pre-treatment outcome.
Interestingly, we show below that, under this condition, both the path of outcomes over time and the lag
of the outcome show up in the expression for ATT which is unusual in DID applications (see, Chabé-
Ferret, 2017 for related discussion). In the results below, we provide separate results that invoke either
Assumption Cov-Exogeneity or Assumption Cov-Unconfoundedness.

Next, we state our main identification result.

Theorem 1. Under Assumptions 1 and 2,

(1) if, in addition, Assumption Cov-Exogeneity and Assumption 3(a) hold, then

ATT = E[∆Yt∗|D = 1]−E
[
E[∆Yt∗|Xt∗ , Xt∗−1, Z,D = 0]

∣∣D = 1
]
.

(2) if, in addition, Assumption Cov-Unconfoundedness and Assumption 3(b) hold, then

ATT = E[∆Yt∗ |D = 1]

−E
[
E
[
E[∆Yt∗|Xt∗ , Xt∗−1, Z,D = 0]

∣∣Xt∗−1,Wt∗−1, Z,D = 0
]∣∣∣D = 1

]
.

The intuition for part (1) of Theorem 1 is relatively straightforward. Under the conditional parallel
trends assumption and when covariates evolve exogenously, one can recover the ATT by (i) taking the
path of outcomes experienced by the treated group and adjusting it by the path of outcomes experienced
by the untreated group (conditional on Xt∗ , Xt∗−1, and Z) and then (ii) accounting for differences in the
distribution of Xt∗ , Xt∗−1, and Z across groups. This result is very similar to existing results with time
invariant covariates (e.g., Heckman et al., 1997 as well as Lechner, 2011).

The intuition for part (2) is somewhat more complicated. The termE[∆Yt∗|Xt∗ , Xt∗−1, Z,D = 0]

is the average change in outcomes over time conditional on Xt∗ , Xt∗−1, and Z among the untreated
group. Under Assumption 2, this is the path of outcomes that, conditional on Xt∗(0), Xt∗−1, and Z , the
treated group would have experienced if they had not participated in the treatment. The next expectation
is over the distribution of Xt∗(0) (conditional on Xt∗−1,Wt∗−1, and Z) for the untreated group. Under
Assumption Cov-Unconfoundedness, this is the same conditional distribution that Xt∗(0) follows for
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the treated group. Finally, the outside expectation is over the distribution of Xt∗−1, Wt∗−1, and Z for the
treated group and, therefore, allows for these variables to be distributed differently in the treated group
relative to the untreated group.

Corollary 1 (Important Special Cases). Under Assumptions 1, 2, 3(b), and Cov-Unconfoundedness,

(1) if, in addition, Wt∗−1 = ∅, then

ATT = E[∆Yt∗ |D = 1]−E
[
E[∆Yt∗|Xt∗−1, Z,D = 0]

∣∣∣D = 1
]
.

(2) if, in addition, Wt∗−1 = Yt∗−1, then

ATT = E[∆Yt∗ |D = 1]

−E
[
E
[
E[∆Yt∗|Xt∗ , Xt∗−1, Z,D = 0]

∣∣Xt∗−1, Yt∗−1, Z,D = 0
]∣∣∣D = 1

]
.

Corollary 1 provides two important special cases for the results in part (2) of Theorem 1. The first part
provides a formal justification for the common practice in the econometrics literature on DID with time
varying covariates of including only “pre-treatment” covariates. In particular, this result says that, when
unconfoundedness holds for the time varying covariate conditional on time-invariant covariates and other
pre-treatment covariates, then it is sufficient for the researcher to only “account for” pre-treatment and
time-invariant covariates in order to recover the ATT.1 The second part of Corollary 2 is also interesting in
that it relates the ATT to an expression that includes the lagged outcome. There are a number of papers
that explore the idea of including lagged outcomes in a DID framework (e.g., Chabé-Ferret, 2017, Imai et
al., 2018, Zeldow and Hatfield, 2021) though it is challenging to provide a justification for including lagged
outcomes in DID settings — our approach justifies the inclusion of lagged outcomes (in the manner
specified in the corollary) in cases where unconfoundedness for the time-varying covariate holds after
conditioning on the lag of the outcome variable.

Next, we provide alternative expressions for ATT that are useful for estimation.

Corollary 2 (Doubly Robust Expressions for ATT). Under Assumptions 1 and 2,

(1) if, in addition, Assumption Cov-Exogeneity and Assumption 3(a) hold, then

ATT = E

[(
D

E[D]
− p(Xt∗ , Xt∗−1, Z)(1−D)

E[D](1− p(Xt∗ , Xt∗−1, Z))

)
(∆Yt∗ −E[∆Yt∗|Xt∗ , Xt∗−1, Z,D = 0])

]
,

(2.1)

where p(Xt∗ , Xt∗−1, Z) := P (D = 1|Xt∗ , Xt∗−1, Z).
1We provide the proof of this result in the appendix. The proof is relatively straightforward, but it appears to be a new

contribution in the literature.
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(2) if, in addition, Assumption Cov-Unconfoundedness and Assumption 3(b) hold with Wt∗−1 = ∅,
then

ATT = E

[(
D

E[D]
− p(Xt∗−1, Z)(1−D)

E[D](1− p(Xt∗−1, Z))

)
(∆Yt∗ −E[∆Yt∗|Xt∗−1, Z,D = 0])

]
,

where p(Xt∗−1, Z) := P(D = 1|Xt∗−1, Z).

Both of the expressions in Corollary 2 involve both an outcome regression (the conditional expec-
tation terms in each expression) and a propensity score. They are both doubly robust in the sense that
a researcher can consistently estimate the ATT if either the model for the propensity score or the out-
come regression model is correctly specified (references on double robustness include Robins et al., 1994,
Scharfstein et al., 1999, Słoczyński and Wooldridge, 2018, Sant’Anna and Zhao, 2020). Besides this, they
also provide a connection to the DID literature on estimating the ATT under conditional parallel trends
using double/debiased machine learning; see, in particular, Chang, 2020. This may be particularly useful
in the first case, where the propensity score and outcome regression depend on time-varying covariates in
both periods. These can be practically difficult to estimate because, in many cases, Xt∗ and Xt∗−1 may be
highly collinear. Conventional methods typically invoke functional form assumptions that impose, for
example, that these functionals only depend on ∆Xt∗ . As noted below, these sorts of restrictions may be
implausible in many applications.

Remark 1. In cases where time-varying covariates may be affected by the treatment, we mainly focus on
the case where an unconfoundedness type assumption holds for the time varying covariates. A natural
alternative would be to invoke parallel trends assumptions for the time-varying covariates themselves.
Importantly, though, our above arguments require identifying the entire conditional distribution of
Xt∗(0) for the treated group (not just its mean).2 That said, difference in differences approaches that
recover the distribution of untreated potential outcomes, such as Callaway and Li, 2019, Callaway et al.,
2018, could be applied here (though note that these approaches require additional assumptions). Likewise,
the change-in-changes approach in Athey and Imbens, 2006, Melly and Santangelo, 2015, which can
recover distributions of untreated potential outcomes, could be applied to the time-varying covariates
in this context. Another potential limitation of these approaches in this context is that they typically
only point identify distributions of continuous outcomes and, therefore, would not be very suitable for a
number of relevant applications that involve discrete time-varying covariates.

Remark 2. Although neither of our assumptions on untreated potential covariates in Assumptions Cov-
Exogeneity and Cov-Unconfoundedness are directly testable, the condition that is given in Assump-
tion Cov-Unconfoundedness can be “pre-tested” — that is, one can check if it holds in pre-treatment time
periods. One simple idea is to compute pseudo-ATTs in pre-treatment periods; if both Assumption 2 (the
conditional parallel trends assumption) and Assumption Cov-Unconfoundedness hold in pre-treatment

2In Chapter 4, we propose some alternative approaches where standard parallel trends assumptions for time-varying co-
variates can be used, though these approaches require imposing a linear model for the path of untreated potential outcomes in
Assumption 2 that are not used in this section.
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periods, then these pseudo-ATTs should be equal to 0. Alternatively, one can directly pre-test Assump-
tion Cov-Unconfoundedness: for some pre-treatment period t, Assumption Cov-Unconfoundedness
implies that the distribution of Xt|Xt−1,Wt−1, Z,D = d is the same for both the treated and untreated
groups. This sort of test could be implemented using results from the goodness-of-fit testing literature
(e.g., Bierens, 1982, Stute, 1997).

To conclude this section, we revisit the three examples from the introduction.

Example 1 (Stand-your-ground, cont’d) Our example on stand-your-ground laws involved condition-
ing on time-varying covariates that evolved exogenously with respect to the treatment. This suggests that
this example is most related to our results in part (1) of Theorem 1 and part (1) of Corollary 2. In particular,
machine learning estimators of the propensity score and outcome regression functions in Corollary 2
are particularly attractive as they do not require strong functional form assumptions on these nuisance
functions.3

Example 2 (Shelter-in-place, cont’d) In our example of shelter-in-place orders on various economic
outcomes, the parallel trends assumption holds after conditioning on the number of Covid-19 cases that
would have occurred if the policy had not been implemented. That is, “untreated potential Covid-19 cases”
plays the role ofXt∗(0) in this case. Callaway and Li, 2021 show that, under a SIRD model — which is the
leading pandemic model in the epidemiology literature — controlling for the pre-treatment “state” of the
pandemic is sufficient for unconfoundedness to hold. That is, the conditions in part (1) of Corollary 1 and
part (2) of Corollary 2 hold when one wants to control for the number of untreated potential Covid-19
cases.

Example 3 (Job displacement, cont’d) Finally, recall our example on the effect of job displacement on
earnings where the parallel trends assumption holds only after conditioning on, for example, “untreated
potential occupation” — that is, the occupation that a worker would have had if they had not been
displaced from their job. In this case, an unconfoundedness assumption for occupation may be more likely
to hold if it conditions on (i) pre-treatment time-varying covariates (including pre-treatment occupation),
(ii) time invariant covariates (such as demographics and education), and (iii) pre-treatment earnings. In
particular, conditioning on pre-treatment earnings could be important if there are occupation specific
wage premiums and high-earning workers are more likely to (in the absence of job displacement) stay in
the same occupation over time relative to low-earning workers. This application would then be covered
by the results from part (2) of Corollary 1.

3This particular application uses state-level data, so, in practice, it may be difficult to use machine learning approaches with
only 50 or so observations. See Chapter 4 for some more parametric approaches that may be more suitable for applications
with limited data. That said, the more general point here though is that, in cases where covariates evolve exogenously, machine
learning estimators, given enough data, are likely to be attractive in many applications.
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Chapter 3

Interpreting TWFE Regressions

In this section, we consider how to interpret α in the TWFE regression in Equation (1.1). We continue to
consider the “textbook” case with two time periods where no one is treated in the first time period and
where some (but not all) units become treated in the second time period. This is a best-case for TWFE
regressions as it does not introduce well-known problems related to using already-treated units as com-
parison units that show up when using TWFE regressions with multiple periods, variation in treatment
timing, and treatment effect heterogeneity (Goodman-Bacon, 2021, de Chaisemartin and D’Haultfœuille,
2020). In the case with exactly two periods, it is helpful to equivalently re-write Equation (1.1) as

∆Yit∗ = αDi +∆X ′
it∗β +∆vit∗ (3.1)

where we define ∆Xt∗ := (1, Xt∗ − Xt∗−1)
′ which is the change in the covariate over time and is

augmented with an intercept term for the time fixed effect. We also slightly abuse notation by taking β to
include an extra parameter in its first position corresponding to the intercept. Our interest in this section
is in determining what kind of conditions are required to interpret α as the ATT or at least as a weighted
average of some underlying treatment effect parameters.

Denote the linear projection of ∆Yt∗ on ∆Xt∗ by
L(∆Yt∗|∆Xt∗) := ∆X ′

t∗E[∆Xt∗∆X ′
t∗ ]

−1
E[∆Xt∗∆Yt∗ ],

and define the corresponding projection error e := ∆Yt∗ − L(∆Yt∗|∆Xt∗). Similarly, define the
linear projection of D on ∆Xt∗ as L(D|∆Xt∗) := ∆X ′

t∗E[∆Xt∗∆X ′
t∗ ]

−1
E[∆Xt∗D] and the corre-

sponding projection error u := D − L(D|∆Xt∗). Standard Frisch-Waugh type arguments imply that

α =
E[De]

E[u2]
(3.2)

Below, to keep the notation concise, it is useful to define Xall(d) := (Xt∗(d), Xt∗−1, Z). We also
define ATTXall(0)(X

all(0)) := E[Yt∗(1) − Yt∗(0)|Xall(0), D = 1] which is the ATT conditional on
Xt∗(0), Xt∗−1, and Z . And we further define p(Xall(0)) = P(D = 1|Xall(0)). Next, we state a main
result decomposing α from the TWFE regression.
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Proposition 1. Under Assumptions 1, 2, and 3(a),

α = E[ωATT (X
all(0))ATTXall(0)(X

all(0))|D = 1]

+E

[ ∑
d∈{0,1}

ωd(X
all(0))

{(
E[∆Yt∗|Xt∗(0), Xt∗−1, Z,D = d]−E[∆Yt∗|Xt∗ , Xt∗−1, Z,D = d]

)
(A)

+
(
E[∆Yt∗|Xt∗ , Xt∗−1, Z,D = d]−E[∆Yt∗|Xt∗ , Xt∗−1, D = d]

)
(B)

+
(
E[∆Yt∗|Xt∗ , Xt∗−1, D = d]−E[∆Yt∗ |∆Xt∗ , D = d]) (C)

+
(
E[∆Yt∗|∆Xt∗ , D = d]− L(∆Yt∗ |∆Xt∗ , D = d)

)}∣∣∣D = 1

]
(D)

+E
[
ωe(X

all(0)) {L(∆Yt∗ |∆Xt∗ , D = 1)− L(∆Yt∗|∆Xt∗ , D = 0)}
∣∣D = 1

]
(E)

where

ωATT (X
all(0)) :=

1− p(Xall(0))

E[(1− L(D|∆Xt∗))|D = 1]

ωd(X
all(0)) :=

d p(Xall(0)) + (1− d)(1− p(Xall(0)))

E[(1− L(D|∆Xt∗))|D = 1]

ωe(X
all(0)) :=

(p(Xall(0))− L(D|∆Xt∗))

E[(1− L(D|∆Xt∗))|D = 1]

The result in Proposition 1 indicates that α is equal to a weighted average of underlying conditional
ATTs (we discuss the nature of the weights in more detail below) plus a number of undesirable “bias”
terms. We provide formal conditions under which each of these extra terms are equal to zero below. But,
informally, term (A) contains bias from the treatment potentially affecting the covariates in time period
t∗. Term (B) comes from ignoring time invariant covariates. Term (C) comes up when paths of outcomes
depend on the levels of time-varying covariates instead of only on the change in covariates over time. Term
(D) arises when the conditional expectation is nonlinear in the change in covariates over time. Term (E)
is conceptually different from terms (A)-(D) and is non-zero when the propensity score is not equal to a
linear projection of the treatment on the change in covariates over time.1

Next, we introduce several additional assumptions that are useful for eliminating the bias terms in
Proposition 1. We also use the additional notation:

ATTXt∗ (0),Xt∗−1
(xt∗(0), xt∗−1) := E[Yt∗(1)− Yt∗(0)|Xt∗(0) = xt∗(0), Xt∗−1 = xt∗−1]

1Without further assumptions, some of the expressions that involve Xt∗(0) are not necessarily identified (this includes
ATTXall(0)(X

all(0)),E[∆Yt∗ |Xt∗(0), Xt∗−1, Z,D = 1] and all of the weights as they depend on p(Xall(0)). However,
if we additionally invoke Assumption Cov-Exogeneity, then all of these terms are identified and Term (A) is equal to zero
(see the discussion below for more details along these lines). The reason we do not invoke this assumption in Proposition 1 is
to point out that time-varying covariates being affected by the treatment can itself be an additional complication for TWFE
regressions.
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and
ATT∆Xt∗ (0)(∆xt∗(0)) := E[Yt∗(1)− Yt∗(0)|∆Xt∗(0) = ∆xt∗(0)] — these define different types

of conditional ATTs.

Assumption 4 (Conditional ATTs and parallel trends do not depend on time invariant covariates).

(a) ATTXall(0)(X
all(0)) = ATTXt∗ (0),Xt∗−1

(Xt∗(0), Xt∗−1) a.s.

(b) E[∆Yt∗(0)|Xt∗(0), Xt∗−1, Z,D = 0] = E[∆Yt∗(0)|Xt∗(0), Xt∗−1, D = 0] a.s.

Assumption 5 (Conditional ATTs and parallel trends only depend on change in time-varying covariates).

(a) ATTXt∗ (0),Xt∗−1
(Xt∗(0), Xt∗−1) = ATT∆Xt∗ (0)(∆Xt∗(0)) a.s.

(b) E[∆Yt∗(0)|Xt∗(0), Xt∗−1, D = 0] = E[∆Yt∗(0)|∆Xt∗(0), D = 0] a.s.

Assumption 6 (Linearity of conditional ATTs and paths of untreated potential outcomes).

(a) There exists a δ1 such that ATT∆Xt∗ (0)(∆Xt∗(0)) = ∆Xt∗(0)
′δ1

(b) There exists a δ0 such thatE[∆Yt∗(0)|∆Xt∗(0), D = 0] = ∆Xt∗(0)
′δ0

Assumption 7 (Linearity of propensity score in terms of change in time-varying covariates).
There exists a δp such that p(Xall(0)) = ∆Xt∗(0)

′δp.

The first part of Assumption 4 says that, conditional on Xt∗(0) and Xt∗−1, conditional ATTs do not
depend on time invariant covariates Z . The second part says that, conditional on Xt∗(0) and Xt∗−1, the
path of untreated potential outcomes does not depend on time invariant covariates Z . This implies that
the conditional parallel trends assumption holds without conditioning on time invariant covariates (and
thus strengthens Assumption 2). Assumption 5 is similar; the first part says that conditional ATTs further
only depend on changes in time-varying covariates over time, and the second part says that the conditional
parallel trends assumption only depends on the change in time-varying covariates over time rather than
their level.

Assumption 6 says that conditional ATTs and paths of untreated potential outcomes are linear in
changes in untreated potential covariates over time. Jointly, Assumption Cov-Exogeneity and Assump-
tions 4 to 6 imply that (i) time varying covariates are not affected by the treatment, (ii) that conditional
ATTs (conditional on Xt∗(0), Xt∗−1, and Z) only depend on the change in time-varying covariates (and
not on their levels or time invariant covariates) and are linear in time-varying covariates, and (iii) that
the conditional parallel trends assumption in Assumption 2 only depends on the change in time-varying
covariates over time (and not on their levels or time invariant covariates) and is linear in time-varying
covariates over time.

Assumption 7 says that the propensity score (conditional on Xt∗(0), Xt∗−1, and Z) is linear in
∆Xt∗(0). This type of assumption is very common in the literature on interpreting regressions under
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unconfoundedness with cross-sectional data (e.g., Aronow and Samii, 2016, Słoczyński, 2020, Angrist,
1998, Ishimaru, 2021). In those cases, it sometimes holds by construction (e.g., when the covariates are all
discrete and a full set of interactions is included in the model). In our case, though, it seems particularly
implausible as (i) it requires the propensity score to only depend on changes in covariates over time, and
(ii) even with fully interacted discrete regressors, the propensity score is unlikely to be linear in changes in
the regressors over time.2

Proposition 2. Under Assumptions 1, 2, 3(a), Cov-Exogeneity, 4, 5, and 6,

α = E[ωATT (X
all(0))ATTXall(0)(X

all(0))|D = 1]

+E
[
ωe(X

all(0)) {L(∆Yt∗|∆Xt∗ , D = 1)− L(∆Yt∗ |∆Xt∗ , D = 0)}
∣∣D = 1

]
(E)

where ωATT and ωe are defined in Proposition 1.

(a) If, in addition, Assumption 7 holds, then

α = E[ωATT (X
all(0))ATTXall(0)(X

all(0))|D = 1]

andE[ωATT (X
all(0))|D = 1] = 1.

(b) If, in addition, Assumption 7 holds and ATT∆Xt∗ (0)(∆xt∗(0)) is the same across all values of
∆xt∗(0), then

α = ATT

The proof of Proposition 2 is provided in the appendix. In the proof, we provide more specific results
on which conditions are required for each term in terms (A)-(D) in Proposition 1 to be equal to 0.

The result in Proposition 2 suggests a number of potential issues with the TWFE regressions as in
Equation (1.1). First, even if one is willing to maintain the additional assumptions in Assumption Cov-
Exogeneity and Assumptions 4 to 6 (which are likely to be very strong in most applications), α from
the TWFE regression is still hard to interpret. Maintaining these additional assumptions (particularly,
Assumption Cov-Exogeneity) implies that all of the weights, conditional ATTs, and linear projections in
the first part of Proposition 2 are identified and directly estimable. That said, the weights on conditional
ATTs, ωATT , do not have the property that they have mean one and the nuisance expression in term (E)
may be non-negligible.

The second part of Proposition 2 says that, if we are willing to assume that the propensity score is
equal to the linear projection of the treatment on the change in time-varying covariates over time, then

2For example, suppose that the only covariate is binary. In the cross-sectional case considered by other papers mentioned
above, the propensity score would be linear by construction. However, the change in the covariate over time would be a single
variable that can take the values -1, 0, or 1; moreover, the change in a binary covariate over time is equal to 0 in cases when the
covariate is equal to 1 in both periods or when the covariate is equal to 0 in both periods. This suggests that the propensity
score would not be linear in the change in covariates over time even in this very simple case.
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the weights on conditional ATTs will have mean one and the nuisance expression in term (E) will be equal
to zero. Even in this case, the weights have a “weight-reversal” property analogous to the one pointed
out in Słoczyński, 2020 in the context of unconfoundedness and cross-sectional data. What this means is
that conditional ATTs are given more weight for values of the covariates that are uncommon among the
treated group relative to the untreated group; and that conditional ATTs are given less weight for values
of the covariates that are common among the treated group relative to the untreated group.

Finally, if in addition to all the previous conditions, conditional ATTs are constant across different
values of the covariates, thenαwill be equal to theATT . This is a treatment effect homogeneity condition
with respect to the covariates. It is somewhat weaker than individual-level treatment effect homogeneity
and it allows for treatment effects to still be systematically different for treated units relative to untreated
units; however, for the treated group, treatment effects cannot be systematically different across different
values of the covariates.

These results are much different from our earlier results in Chapter 2. Those results did not require any
of the additional assumptions in Proposition 2. In fact, when covariates evolve exogenously with respect
to the treatment (as under Assumption Cov-Exogeneity), then the doubly robust expressions for the ATT
in part (1) of Corollary 2 only require that either the propensity score or the outcome regression model
be correctly specified; in cases where these are estimated using machine learning, even these parametric
assumptions can be substantially relaxed. Moreover, in contrast with the TWFE regressions considered
in this section, our earlier additional results can accommodate cases where the time-varying covariates are
affected by the treatment.

Remark 3. It is worth pointing out that all of the extra conditions considered in Proposition 2 are suffi-
cient conditions rather than necessary conditions. For example, it would be possible for some violations
of these assumptions to “offset” each other so that α happens to be equal to ATT. That said, there is no
reason to expect this to happen in applications.

Remark 4. The result in Proposition 1 is related to several other decompositions of TWFE regressions that
include covariates. All of these papers consider the same TWFE regression that we do in Equation (1.1).
They also consider the more general case where there are more than two time periods and allow for
variation in treatment timing. de Chaisemartin and D’Haultfœuille, 2020 show that, under a conditional
parallel trends assumption that involves only changes in observed covariates and linearity assumptions
that their main results related to multiple periods and variation in treatment timing essentially continue
to apply. That said, this suggests that in the two period case that we consider, TWFE regressions would
recover the ATT. The explanation for this difference is that we do not impose those extra conditions
in Proposition 1. Goodman-Bacon, 2021 provides a decomposition of α into a “within” component
and “between” component. The between component arises due to variation in treatment timing, and,
therefore does not show up in our case. The within component is analogous to our expression for α in
Equation (3.2). Relative to Goodman-Bacon, 2021, we further decompose this term into a number of more
primitive objects that highlight that researchers should be careful in interpreting “within” components
as averages of causal effects unless they are willing to invoke extra assumptions. Finally, Ishimaru, 2022,
like de Chaisemartin and D’Haultfœuille, 2020, provides conditions under which TWFE regressions
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that include covariates can be interpreted as weighted averages of underlying treatment effect parameters
(though, in both papers, the weights can be negative). These include a version of conditional parallel
trends that holds when one conditions on the change in covariates over time3 and an assumption on
linearity of the propensity score conditional on changes in observed covariates over time.4 None of these
papers explicitly address the issue of time-varying covariates potentially being affected by the treatment.5

3Ishimaru, 2022 does point out that “conditioning on [changes in time-varying covariates] may not be sufficient to make
parallel trends plausible.”

4Another way that the decomposition in Ishimaru, 2022 is more general than the one in the current paper is that paper
does not require the treatment to be binary. Ishimaru, 2022 also considers an interesting extension on decomposing a modified
TWFE regression that additionally includes time-varying coefficients on time-varying coefficients. Based on his result, it seems
likely that this sort of regression would not suffer from issues related to parallel trends depending on the levels of time-varying
covariates rather than only changes in time-varying covariates over time. However, it appears that this regression would still
suffer from the other issues mentioned in this section; that said, this is a distinct regression from the TWFE regression in
Equation (1.1) that is much more commonly used in empirical work in economics.

5Goodman-Bacon, 2021 does remark that “Note that for covariates to aid in identification, [time-varying covariates] must
be unaffected by the treatment to avoid bias from ‘conditioning on a post-treatment variable’.”
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Chapter 4

Alternative Regression
Adjustment/Imputation

Approaches

In this section, we provide several alternative strategies that involve stronger parametric assumptions on
the path of untreated potential outcomes than we made in Chapter 2. The approaches discussed in this
section are generally simpler to estimate than would be the case for the expressions coming from Chapter 2
and, in some cases, can allow for weaker (or at least alternative) assumptions on how the treatment affects
time-varying covariates. The strategies that we propose in this section are also able to avoid the issues with
TWFE regressions pointed out in Chapter 3, and (when desired) can allow for the possibility that the
treatment has an effect on the covariates.

The ideas in this section are broadly similar to regression adjustment strategies in the treatment effects
literature (see, for example, Imbens and Wooldridge, 2009) and the imputation estimators proposed in
Liu et al., 2021, Gardner, 2021, Borusyak et al., 2021 though they allow for (i) time-varying effects of time
varying covariates and (ii) the possibility that the treatment directly affects the time-varying covariates.

To start with, it is well known (e.g. Blundell and Costa Dias, 2009, Gardner, 2021, Borusyak et al.,
2021) that there is a close connection between unconditional parallel trends assumptions and the following
model for untreated potential outcomes

Yit(0) = θt + ηi + vit

where θt is a time fixed effect, ηi is time invariant unobserved heterogeneity (i.e., an individual fixed effect),
and vit are idiosyncratic, time varying unobservables. An unconditional version of parallel trends holds in
this model for untreated potential outcomes under the condition thatE[∆vt|D = 1] = E[∆vt|D = 0]

for all time periods (this would hold by construction if vt is independent of treatment status in all time
periods), but allows for η to be distributed differently across groups and does not impose any modeling
assumptions on treated potential outcomes.
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As discussed above, the econometrics literature on difference in differences often considers the case
where the covariates in the parallel trends assumption are time invariant. In that case, the analogous model
for untreated potential outcomes is given by

Yit(0) = gt(Zi) + ηi + vit

where the distribution of η can vary across groups (as well as vary with Z) and the key condition for the
conditional parallel trends assumption to hold is thatE[∆vt|Z,D = 1] = E[∆vt|Z,D = 0] (see, for
example, Heckman et al., 1997 for a discussion of this kind of model).1

In this setup, the main challenge is estimating gt(z) (though note that this is a practical, estimation
challenge rather than an identification challenge). The natural way to parameterize this model is

Yit(0) = Z ′
iδt + ηi + vit (4.1)

where we now take Z to include an intercept (and, therefore, δt absorbs the time fixed effect). Given
this framework, ATT = E[∆Yt∗ |D = 1] − E[Z|D = 1]′δ∗t∗ where δ∗t∗ := (δt∗ − δt∗−1) which can
be consistently estimated from the regression of ∆Yt∗ on Z using only observations from the untreated
group.2

The same sort of arguments imply that, when there are some covariates that vary over time (as above,
we consider the case of a single time-varying covariate but note that it is straightforward to extend these
arguments to cases with more time-varying covariates), a natural motivating model is

Yit(0) = gt(Zi, Xit(0)) + ηi + vit

which implies that

∆Yit∗(0) = gt∗(Zi, Xit∗(0))− gt∗−1(Zi, Xit∗−1) + ∆vit∗

Moreover, the same sorts of arguments as above imply that Assumption 2 holds in this model. Similar to
the previous case, the main practical challenge is that gt(z, xt(0)) is likely to be challenging to estimate.
Like the previous case, the natural way to parameterize this model is

Yit(0) = Z ′
iδt +Xit(0)βt + ηi + vit

1To see this, notice that E[∆Yt(0)|Z,D = 1] = gt(Z) − gt−1(Z) = E[∆Yt(0)|Z,D = 0] which implies that
conditional parallel trends holds.

2This is closely related to regression adjustment estimators (see, for example, Heckman et al., 1998, Imbens and Wooldridge,
2009, Sant’Anna and Zhao, 2020 for related discussion). An alternative strategy would be to estimate the ATT by
n−1
1

∑n
i=1,Di=1(Yit∗ − Ŷit∗(0)) where n1 is the number of treated observations and Ŷit∗(0) is an imputed untreated poten-

tial outcome given by Ŷit∗(0) = Yit∗−1+Z ′
i δ̂

∗
t∗ . This imputation estimator is numerically equal to the regression adjustment

estimator, but the imputation formulation is convenient particularly in the case with multiple periods and variation in treat-
ment timing; see Remark 6 below for more details.

20



which implies that

∆Yit∗(0) = Z ′
iδ

∗
t∗ +∆Xit∗(0)βt∗ +Xit∗−1(0)β

∗
t∗ +∆vit∗ (4.2)

where β∗
t∗ := (βt∗ − βt∗−1). Notice that, because untreated potential outcomes and untreated potential

covariates are observed for the untreated group, the parameters in the model above can be recovered
from a regression of the change in outcomes over time on time invariant covariates, the change in time
varying covariates, and the level of the time varying covariates in the pre-treatment period. The model in
Equation (4.2) is conceptually appealing as (up to the parametric assumptions) it compares units with
both the same initial level of the time-varying covariate and that have the same change in time-varying
covariates over time.

Although it is straightforward to recover the parameters in Equation (4.2), recall that,

ATT = E[∆Yt∗|D = 1]−E[∆Yt∗(0)|D = 1]

= E[∆Yt∗|D = 1]−
(
E[Z|D = 1]′δ∗t∗ +E[∆Xt∗(0)|D = 1]βt∗ +E[Xt∗−1(0)|D = 1]β∗

t∗

)
Given that the parameters are identified, every term is identified in this expression exceptE[∆Xt∗(0)|D =

1] (because Xt∗(0) is not observed for the treated group). We briefly consider six settings for recovering
E[∆Xt∗(0)|D = 1] — three of these come from the assumptions we have already considered for un-
treated potential covariates and three involve parallel trends assumptions for untreated potential covariates.
Several of these cases involve averaging over conditional expectations of ∆Xt(0). In this section we addi-
tionally impose linear models for these conditional expectations; under this extra condition, researchers
are able to estimate ATT while potentially allowing for the treatment to affect time-varying covariates
using only regressions and averaging.

Case 1: Assumption Cov-Exogeneity holds
Under Assumption Cov-Exogeneity,E[∆Xt∗(0)|D = 1] = E[∆Xt∗(1)|D = 1] = E[∆Xt∗|D =

1]. That is, when covariates evolve exogenously with respect to the treatment, we can replace the average
change in untreated potential covariates for the treated group with the average change in covariates actually
experienced by the treated group.

Case 2: Assumption Cov-Unconfoundedness holds conditional on (Z,Xt∗−1)

In this case, if we are willing to assume the following linear model for the change in untreated potential
covariates

∆Xit∗(0) = Z ′
iγt∗ +Xit∗−1λt∗ + uit∗

then the Cov-Unconfoundedness assumption gives the following result:
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E[ut∗ |Z,Xt∗−1, D = d] = 0

for d ∈ {0, 1}.
Plugging this expression into Equation (4.2) implies that

∆Yit∗(0) = Z ′
i(δ

∗
t∗ + γt∗βt∗) +Xit∗−1(0)(β

∗
t∗ + λt∗βt∗) + βt∗uit∗ +∆vit∗

:= Z ′
iδ

∗
2,t∗ +Xit∗−1(0)β

∗
2,t∗ + v2,it∗

where δ∗2,t∗ := δ∗t∗ + γt∗βt∗ , β∗
2,t∗ := β∗

t∗ + λt∗βt∗ and v2,it∗ := βt∗uit∗ + ∆vit∗ . Further, notice that
E[v2,t∗|Z,Xt∗−1, D = d] = 0 for d ∈ {0, 1}. Thus, in this case, one can estimate δ∗2,t∗ and β∗

2,t∗ from
a regression of the change in outcomes over time using the untreated group, and then estimate the ATT
from the sample analogue of

ATT = E[∆Yt∗|D = 1]−
(
E[Z|D = 1]′δ∗2,t∗ +E[Xt∗−1|D = 1]β∗

2,t∗

)
Thus, this particular case bypasses the need for actually estimating a separate model for the change in
the time-varying covariate over time. This is perhaps not surprising as these are the same conditions as
in Chapter 2 where it was sufficient for the researcher to condition on the pre-treatment value of the
covariates to recover the ATT.

Case 3: Assumption Cov-Unconfoundedness holds conditional on Xt∗−1,Wt∗−1, Z

In this case,

E[∆Xt∗(0)|D = 1] = E [E[∆Xt∗(0)|Z,Xt∗−1,Wt∗−1, D = 1]|D = 1] (4.3)
= E[Z|D = 1]′γt∗ +E[Xt∗−1|D = 1]λt∗ +E[Wt∗−1|D = 1]′ξt∗

where the first equality holds by the law of iterated expectations, and the second equality holds by As-
sumption Cov-Unconfoundedness and by assuming a linear model for the change in untreated covariates
over time. This suggests estimatingE[∆Xt∗(0)|D = 1] by running a regression of ∆Xt∗ on Z , Xt∗−1,
and Wt∗−1 using only untreated observations in order to estimate the parameters γt∗ , λt∗ , and ξt∗ , and
then to estimateE[∆Xt∗(0)|D = 1] by using the sample analogue of the expression in Equation (4.3).3

3In the special case (and perhaps leading case) considered in Corollary 1 where Wt∗−1 includes the lagged outcome, Yt∗−1

(in addition to all time-invariant covariates and the pre-treatment version of the covariates), one can follow this same procedure
with Yt∗−1 substituting for Wt∗−1.
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Case 4: Unconditional Parallel Trends holds for time-varying covariates
For this case, we assume thatE[∆Xt∗(0)|D = 1] = E[∆Xt∗(0)|D = 0]. It immediately follows

that

ATT = E[∆Yt|D = 1]−
(
E[Z|D = 1]′δ∗t∗ +E[∆Xt∗|D = 0]βt∗ +E[Xt∗−1(0)|D = 1]β∗

t∗

)
This expression is very similar to the one in Case 1, except that one should use the change in untreated

potential covariates for the untreated group.

Case 5: Conditional Parallel Trends holds for time-varying covariates
For this case, we assume thatE[∆Xt∗(0)|Z,D = 1] = E[∆Xt∗(0)|Z,D = 0]. In this case,

E[∆Xt∗(0)|D = 1] = E
[
E[∆Xt∗(0)|Z,D = 1]

∣∣D = 1
]

= E
[
E[∆Xt∗|Z,D = 0]

∣∣D = 1
]

= E[Z|D = 1]′γt∗ (4.4)

where the first equality holds by the law of iterated expectations, the second equality holds under condi-
tional parallel trends for time-varying covariates, and the last equality holds under a linearity assumption.
This suggests estimating γt∗ by running a regression of∆Xt∗ on Z using only untreated observations and
then to estimateE[∆Xt∗(0)|D = 1] from the sample analogue of Equation (4.4).

Case 6: Conditional Parallel Trends Holds under Generic Parallel Trends Assumption
For this case, we assume thatE[∆Xt∗(0)|Z,Wt∗−1, D = 1] = E[∆Xt∗(0)|Z,Wt∗−1, D = 0]. In

this case,

E[∆Xt∗(0)|D = 1] = E [E[∆Xt∗(0)|Z,Wt∗−1, D = 1]|D = 1]

= E[Z|D = 1]′γt∗ +E[Wt∗−1|D = 1]′ξt∗ (4.5)

where the first equality holds by the law of iterated expectations, and the second equality holds by the
conditional parallel trends assumption used in this case and a linearity assumption. Similarly to above,
this suggests running a regression of∆Xt∗ onZ andWt∗−1 using only untreated observations to estimate
γt∗ and ξt∗ and then to estimateE[∆Xt∗(0)|D = 1] from the sample analogue of Equation (4.5).

All of the approaches discussed in this section are substantially more robust than the TWFE regres-
sions discussed in Chapter 3. In particular, unlike TWFE regressions, they allow for the path of untreated
potential outcomes to depend on (i) time-invariant covariates, (ii) the pre-treatment level of time-varying
covariates, and (iii) the change in time-varying covariates over time that would have occurred if the treat-
ment had not taken place. Given any of a number of assumptions on the path of time-varying covariates
in the absence of the treatment (as in Cases 1-6 above), they allow for the treatment to have an effect on
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time-varying covariates. They allow for general forms of treatment effect heterogeneity; for example, they
do not require conditional ATTs to be linear in covariates (as in Assumption 6(a)) nor do they require
any of the extra treatment effect homogeneity conditions for TWFE regressions in Proposition 2. Finally,
they do not require any linearity conditions for the propensity score as in Assumption 7. Relative to the
approach discussed in Chapter 2, the approaches considered in this section require linearity assumptions
on the model for untreated potential outcomes and, in some cases, on a model for the change in untreated
potential covariates over time. The two main advantages of this approaches in this section are (i) parallel
trends assumptions for time varying covariates can be strong enough to identify the ATT, and (ii) the
approaches in this section are also easy to implement, only requiring running regressions and computing
averages.

Remark 5. Even in the case where βt = β (i.e., that the effect of time-varying covariates does not change
over time) the strategies proposed in this section would still result in improved estimators relative to the
TWFE regressions considered in Chapter 3 as they would still allow for parallel trends to depend on
time invariant covariates, allow for general forms of treatment effect heterogeneity, and do not require
assumptions on the propensity score. In the special case where βt = β and Assumption Cov-Exogeneity
holds (so that covariates are not affected by the treatment), then the approaches proposed in this section
coincide with the “imputation estimators” proposed in Borusyak et al., 2021, but, in general, our approach
allows for the path of untreated potential outcomes to depend on both the level and change of time-varying
covariates as well as for time-varying covariates to be affected by the treatment.

Remark 6. This section has continued to consider the case with exactly two periods, but it is straight-
forward to extend these arguments to multiple periods and variation in treatment timing by estimating
models for untreated potential outcomes using all available untreated observations (these are observations
both for units that do not participate in the treatment in any time period as well as pre-treatment time pe-
riods for units that become treated at some point). Once the model for untreated potential outcomes has
been estimated, one can “impute” untreated potential outcomes for treated observations, and weighted
averages of differences between observed treated potential outcomes and imputed untreated potential
outcomes correspond to various treatment effect parameters, depending on the weights chosen by the
researcher.

Remark 7. Compare to Imai et al., 2018, in our case weights can depend on Yt−1.
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Chapter 5

Empirical Application

To show how imputation techniques can be used in practice, we implement imputation to study the
effect of stand your ground laws on homicide rates, using the same data set that was used in Cheng and
Hoekstra, 2013. Stand your ground laws allow someone who is attacked in public to use lethal force against
their attacker. The data includes information related to stand your ground laws for all 50 states. For the
purposes of this paper, we will examine what effect, if any, stand your ground laws had on the number of
homicides. First, we will briefly discuss the data. Then, we will explain the estimation strategy used as well
as provide comparisons to the results from a TWFE regression and the technique proposed in Callaway
and Sant’Anna, 2021.

5.1 Data
The data consists of one observation for each state for each year from 2000-2010 for a total of 550 obser-
vations. Each state is given a state id number, which ranges from 1 to 50 and is used to group states. In
addition, the "post" variable indicates whether a state has previously passed a stand your ground law. For
example, Florida was the first state to pass a stand your ground law in 2006. For the Florida observations
for 2000, 2001, 2002, 2003, 2004, and 2005, post = 0. Because Florida passed the law in 2006, post = 1

for all of the Florida observations from 2006 or later. Although the data set contains over 100 variables,
the main focus of this section is on population and homicide count. The outcome variable is the change
in the number of homicides. The explanatory variable is whether a state passed a stand your ground law,
and the covariates are the population in time period g-1 and the change in population from time period
g-1 to t. When using the imputation model, the year 2000 was dropped because the estimation strategies
involved using lagged population as a regressor. Summary statistics for treated and untreated states are
presented in Table 1.
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Table 5.1: Summary Statistics

Treated Untreated

Mean Std. Dev. Mean Std. Dev.

Homicide Count 371.2 334.1 285.7 447.8
Population 5,957,985.3 5,501,486.9 5,742,704.4 7,040,260.5

5.2 Estimation Strategy
Compared to the two time period case discussed in the theory section, this data set presents additional
challenges because states become treated in different years. 2007 was the most common year for stand
your ground laws to be passed, but some states passed a version of the law in 2006, 2008, 2009, and 2010
as well. To overcome the issue, we group states by the year they were treated and solve for the ATT for
each group using the following procedure:

• We filter out treated states that are not in the group we are currently examining.

• We run a regression of population on lagged population for untreated states, using the results to
predict the untreated potential populations at time t for the treated states.

• Finally, we calculate the group’s ATT using the states’ population in the period before treatment
occurred (period g-1) and the predicted change in population between periods t and g-1 as covariates.

For this paper, we estimate the ATT of passing a stand your ground law on the change in homicide
count. We compare the results of the standard TWFE estimator, the imputation strategy described above,
and an event study using the pte package based on Callaway and Sant’Anna, 2021. The regressor in the
event study is the change in population. To calculate the standard errors for the imputation and Callaway
and Sant’Anna, 2021 techniques, we use a standard nonparametric bootstrap with 1,000 repetitions.

Table 5.2: Estimated ATT from Different Methods

Statistic Mean St. Error

Imputation 22.77 30.66
TWFE 31.27 17.10
Event Study 21.30 22.75
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5.3 Results and Analysis
The empirical results are presented in Table 2, which was created using the stargazer R package from
Hlavac, 2018. The estimated ATT for imputation was approximately 22.77 with an estimated standard
error of 30.66. The estimated ATT from a TWFE regression was 31.27 with an estimated standard error
of 17.10. Finally, the estimated ATT from the event study was 21.30, and the estimated standard error was
22.75. All of these results imply that there is no evidence to suggest that passing a stand your ground law
changes the number of homicies, as none of the results reject the null hypothesis at the 95% level.

Notably, the imputation estimator is farther from the TWFE estimator, which is known to be biased,
than the event study estimator. Callaway and Sant’Anna, 2021 does not account for time varying covariates.
However, it is unlikely that stand your ground laws will have any significant impact on a state’s population,
reducing the bias from time varying covariates. Therefore, the estimates of ATT from imputation and
Callaway and Sant’Anna’s estimator should indeed be very similar.
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Chapter 6

Conclusion

Time-varying covariates pose issues for traditional DID and TWFE estimators. This paper provides
conditions in which researchers can uncover the ATT when there are time-varying covariates, including
when these covariates may be affected by the treatment. The paper also gives doubly robust estimators to
overcome some misspecification and recover the ATT.

In addition, the paper explores when these assumptions are likely to hold. For example, Cov-Exogeneity
may hold in the stand your ground application but is unlikely to be a believable assumption when esti-
mating the effects of COVID-19 policies and job displacement. In the latter two cases, researchers may
need to make a case that Cov-Unconfoundedness holds.

Finally, the paper discussed an alternative approach to dealing with time-varying covariates in impu-
tation. If conditional parallel trends holds, then researchers can use the observed outcomes of untreated
units to predict the untreated potential outcomes of treated units. In the empirical application, the impu-
tation model and the event study predicted smaller effects from passing a stand your ground law than the
TWFE model, which may be a result of these methods avoiding the bias present in TWFE models. Future
research will focus on the other empirical applications and how researchers can apply these methods to
them.
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Appendix A

A.1 Main Proofs

Proof of Theorem 1
Proof. To start, notice that

ATT = E[Yt∗(1)− Yt∗(0)|D = 1]

= E[Yt∗(1)− Yt∗−1(0)|D = 1]−E[Yt∗(0)− Yt∗−1(0)|D = 1]

= E[∆Yt∗ |D = 1]−E[∆Yt∗(0)|D = 1]

where the first equality is just the definition ofATT , the second equality holds by adding and subtracting
E[Yt∗−1(0)|D = 1], and the third equality holds by writing potential outcomes in terms of their observed
counterparts. For part (1), further notice that,

E[∆Yt∗(0)|D = 1] = E
[
E[∆Yt∗(0)|Xt∗(0), Xt∗−1, Z,D = 1]

∣∣∣D = 1
]

= E
[
E[∆Yt∗(0)|Xt∗(0), Xt∗−1, Z,D = 0]

∣∣∣D = 1
]

= E
[
E[∆Yt∗|Xt∗ , Xt∗−1, Z,D = 0]

∣∣∣D = 1
]

where the first equality holds by the law of iterated expectations, the second equality holds by Assump-
tion 2, and the last equality holds because ∆Yt∗(0) and Xt∗(0) are observed for the untreated group and
uses Assumption Cov-Exogeneity to integrate over the distribution of observed covariates (i.e., treated
potential covariates) for the treated group. Combining this expression with the previous one for ATT
completes the proof for part (1) of the result.
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For part (2), notice that

E[∆Yt∗(0)|D = 1] = E
[
E[∆Yt∗(0)|Xt∗(0), Xt∗−1, Z,D = 1]

∣∣∣D = 1
]

= E
[
E[∆Yt∗(0)|Xt∗(0), Xt∗−1, Z,D = 0]

∣∣∣D = 1
]

= E
[
E
[
E[∆Yt∗(0)|Xt∗(0), Xt∗−1, Z,D = 0]

∣∣Xt∗−1,

Wt∗−1, Z,D = 1
]∣∣∣D = 1

]
= E

[
E
[
E[∆Yt∗(0)|Xt∗(0), Xt∗−1, Z,D = 0]

∣∣Xt∗−1,

Wt∗−1, Z,D = 0
]∣∣∣D = 1

]
= E

[
E
[
E[∆Yt∗|Xt∗ , Xt∗−1, Z,D = 0]

∣∣Xt∗−1,Wt∗−1, Z,D = 0
]∣∣∣D = 1

]
where the first equality holds by the law of iterated expectations, the second equality holds by Assumption 2
(unlike part (1), this term is not immediately identified because we do not have an immediate analogue
of the distribution of Xt∗(0) in order to identify the outer expectation), the third equality holds by the
law of iterated expectations, the fourth equality holds by Assumption Cov-Unconfoundedness (because,
after conditioning on (Xt∗−1,Wt∗−1, Z), the only randomness comes from Xt∗(0)), the fifth equality
holds by writing potential outcomes in terms of their observed counterparts, and this term is identified
because the distribution of (Xt∗−1,Wt∗−1, Z) is identified for the treated group.

Proof of Corollary 1
Proof. For part (1), the result holds immediately by the law of iterated expectations. For part (2), the result
holds immediately from the expression in part (2) of Theorem 1 using Wt∗−1 = Yt∗−1.

Proof of Corollary 2
Proof. For part (1), we omit the proof as, after invoking Assumption Cov-Exogeneity, this becomes the
same case as with time invariant covariates — see, for example, Sant’Anna and Zhao (2020) for this sort of
result in the case with time invariant covariates. Given the expression for the ATT in part (1) of Corollary 1,
the proof of part (2) follows using the same arguments as for part (1).

Proof of Proposition 1
We prove the result in several steps.
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To start, consider the numerator in the expression for α in Equation (1.1). Notice that

E[De] = E[D(∆Yt∗ − L(∆Yt∗|∆Xt∗)]

= E[D(∆Yt∗ −E[∆Yt∗|Xall(0)])] +E[D(E[∆Yt∗|Xall(0)]− L(∆Yt∗ |∆Xt∗)] (A.1)

We provide results for each of the terms in Equation (A.1) next.

Lemma 1. Under Assumptions 1, 2, and 3(a),

E[D(∆Yt∗ −E[∆Yt∗ |Xall(0)])] = E
[
E[D](1− p(Xall(0)))ATTXall(0)(X

all(0))
∣∣∣D = 1

]
Proof.

E[D(∆Yt∗ −E[∆Yt∗|Xall(0)])]

= E
[
D

(
∆Yt∗ − (E[∆Yt∗|Xall(0), D = 1]p(Xall(0))

−E[∆Yt∗|Xall(0), D = 0](1− p(Xall(0))) section

= E
[
E[D∆Yt∗|Xall(0)]

−p(Xall(0))
(
E[∆Yt∗|Xall(0), D = 1]p(Xall(0))

−E[∆Yt∗ |Xall(0), D = 0](1− p(Xall(0)) section

= E
[
E[∆Yt∗ |Xall(0), D = 1]p(Xall(0))

−p(Xall(0))
(
E[∆Yt∗|Xall(0), D = 1]p(Xall(0))

−E[∆Yt∗ |Xall(0), D = 0](1− p(Xall(0)) section

= E
[
p(Xall(0))(1− p(Xall(0)))

(
E[∆Yt∗|Xall(0), D = 1]−E[∆Yt∗|Xall(0), D = 0]

)]
= E

[
E[D](1− p(Xall(0)))

(
E[∆Yt∗|Xall(0), D = 1]−E[∆Yt∗|Xall(0), D = 0]

) ∣∣∣D = 1
]

= E
[
E[D](1− p(Xall(0)))ATTXall(0)(X

all(0))
∣∣∣D = 1

]
where the first three equalities hold by repeatedly applying the law of iterated expectations, the fourth
equality holds by rearranging terms, the fifth equality holds by integrating over the distribution ofXall(0)

conditional on D = 1 and re-weighting, and the last equality holds under the conditional parallel trends
assumption in Assumption 2.

Next, we provide a result for the second term in Equation (A.1).
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Lemma 2. Under Assumptions 1, 2, and 3(a),

E[D(E[∆Yt∗ |Xall(0)]− L(∆Yt∗|∆Xt∗)]

= E
[
E[D]

{(
E[∆Yt∗ |Xall(0), D = 1]− L(∆Yt∗|∆Xt∗ , D = 1)

)
p(Xall(0))

−
(
E[∆Yt∗|Xall(0), D = 0]− L(∆Yt∗|∆Xt∗ , D = 0)

)
(1− p(Xall(0)))

} ∣∣∣D = 1
]

+E [E[D] {L(∆Yt∗|∆Xt∗ , D = 1)

− L(∆Yt∗|∆Xt∗ , D = 0)(p(Xall(0))− L(D|∆Xt∗))
∣∣∣D = 1]

Proof. Notice that

E[D(E[∆Yt∗ |Xall(0)]− L(∆Yt∗|∆Xt∗)]

= E[p(Xall(0))(E[∆Yt∗|Xall(0)]− L(∆Yt∗ |∆Xt∗)]

= E[p(Xall(0)){E[∆Yt∗|Xall(0), D = 1]p(Xall(0))

+E[∆Yt∗|Xall(0), D = 0](1− p(Xall(0))]}]
−E[p(Xall(0)){L(∆Yt∗ |∆Xt∗ , D = 1)L(D|∆Xt∗)

+ L(∆Yt∗|∆Xt∗ , D = 0)(1− L(D|∆Xt∗)}]

= E
[
p(Xall(0))

{(
E[∆Yt∗|Xall(0), D = 1]− L(∆Yt∗|∆Xt∗ , D = 1)

)
p(Xall(0))

+
(
E[∆Yt∗|Xall(0), D = 0]− L(∆Yt∗ |∆Xt∗ , D = 0)

)
(1− p(Xall(0)))

}]
+E

[
p(Xall(0)) {L(∆Yt∗ |∆Xt∗ , D = 1)

− L(∆Yt∗ |∆Xt∗ , D = 0)(p(Xall(0))− L(D|∆Xt∗)) section

= E
[
E[D]

{(
E[∆Yt∗|Xall(0), D = 1]− L(∆Yt∗|∆Xt∗ , D = 1)

)
p(Xall(0))

+
(
E[∆Yt∗|Xall(0), D = 0]− L(∆Yt∗ |∆Xt∗ , D = 0)

)
(1− p(Xall(0)))

} ∣∣∣D = 1
]

+E [E[D] {L(∆Yt∗ |∆Xt∗ , D = 1)− L(∆Yt∗|∆Xt∗ , D = 0)}

∗ (p(Xall(0))− L(D|∆Xt∗))
∣∣∣D = 1 section

where the first equality holds by applying the law of iterated expectations, the second equality holds by ap-
plying the law of iterated expectations and the law of iterated projections, the third equality holds by adding
and subtractingE[L(∆Yt∗|∆Xt∗ , D = 1)p(Xall(0))2] andE[L(∆Yt∗|∆Xt∗ , D = 0)p(Xall(0))(1−
p(Xall(0)))] and rearranging terms, the fourth equality holds by applying the law of iterated expectations
to each each term. This completes the proof.

Next, we provide a result on decomposing differences between the conditional expectation of ∆Yt∗

(conditional on the full vector Xall(0)) and the linear projection of ∆Yt∗ on ∆Xt∗ .
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Lemma 3. Under Assumptions 1, 2, and 3(a) and for d ∈ {0, 1},

E[∆Yt∗|Xall(0), D = d]− L(∆Yt∗|∆Xt∗ , D = d)

= E[∆Yt∗ |Xt(0), Xt−1, Z,D = d]−E[∆Yt∗|Xt, Xt−1, Z,D = d] (A)
+E[∆Yt∗|Xt, Xt−1, Z,D = d]−E[∆Yt∗|Xt, Xt−1, D = d] (B)
+E[∆Yt∗|Xt, Xt−1, D = d]−E[∆Yt∗|∆Xt∗ , D = d] (C)
+E[∆Yt∗|∆Xt∗ , D = d]− L(∆Yt∗ |∆Xt∗ , D = d) (D)

Proof. The result holds immediately just by adding and subtracting terms.

Next, we provide a useful result for the denominator in the expression for α in Equation (1.1).

Lemma 4. Under Assumptions 1, 2, and 3(a),

E[u2] = E[p(∆Xt∗)(1− L(D|∆Xt∗))]

= E
[
E[D](1− L(D|∆Xt∗))|D = 1

]
Proof. From the definition of u, it follows that

E
[
u2
]
= E

[
(D − L(D|∆Xt∗))

2
]

= E[D]− 2E[DL(D|∆Xt∗)] +E[L(D|∆Xt∗)
2]

:= A1 − 2A2 + A3 (A.2)

and we consider each of these in turn. Start with,

A2 = E[DL(D|∆Xt∗)]

= E[D∆X ′
t∗ ]E[∆Xt∗∆X ′

t∗ ]
−1
E[∆Xt∗D]

= E[∆Xt∗D]′E[∆Xt∗∆X ′
t∗ ]

−1
E[∆Xt∗D] (A.3)

where the first equality holds from the definition of L(D|∆Xt∗) and the second equality holds immedi-
ately from the previous one. Next,

A3 = E[L(D|∆Xt∗)
2]

= E
[
E[∆Xt∗D]′E[∆Xt∗∆X ′

t∗ ]
−1∆Xt∗∆X ′

t∗E[∆Xt∗∆X ′
t∗ ]

−1
E[∆Xt∗D]

]
= E[∆Xt∗D]′E[∆Xt∗∆X ′

t∗ ]
−1
E[∆Xt∗D] (A.4)

where the first equality holds by the definition of A3, the second equality holds by the definition of
L(D|∆Xt∗), and the last equality holds by canceling terms. Plugging Equations (A.3) and (A.4) in Equa-
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tion (A.2) implies that

E[u2] = E[D(1− L(D|∆Xt∗))]

= E[p(∆Xt∗)(1− L(D|∆Xt∗))]

= E[E[D](1− L(D|∆Xt∗))|D = 1]

where the second and third equalities hold by the law of iterated expectations and which completes the
proof.

Proof of Proposition 1. The first part of the expression for α comes from Equation (A.1) and by Lemma 1
and Lemma 4. The second and third parts come from Equation (A.1) and by Lemmas 2 to 4.

Proof of Proposition 2
To show the first part of the result, we show that each of Terms (A)-(D) in Proposition 1 are equal to zero
under the extra conditions in this proposition.

Term (A): First, consider the expression in Term (A) for d = 0. Notice that,

E[∆Yt∗|Xt∗(0), Xt∗−1, Z,D = 0] = E[∆Yt∗|Xt∗ , Xt∗−1, Z,D = 0]

which holds because untreated potential covariates are equal to observed covariates for the untreated group.
Second, consider the case when d = 1. In this case,

E[∆Yt∗|Xt∗(0), Xt∗−1, Z,D = 1] = E[∆Yt∗|Xt∗ , Xt∗−1, Z,D = 1]

holds immediately by Assumption Cov-Exogeneity. Thus, Term (A) is equal to zero under Assump-
tion Cov-Exogeneity.

Term (B): First, consider the expression in Term (B) for d = 0. Notice that,

E[∆Yt∗|Xt∗ , Xt∗−1, Z,D = 0] = E[∆Yt∗|Xt∗ , Xt∗−1, D = 0]

under Assumption 4(b) because, conditional on being in the treated group, the observed change in out-
comes is equal to the change in untreated potential outcomes and the observed Xt∗ is equal to Xt∗(0).
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Second, consider the case when d = 1, in this case

E[∆Yt∗|Xt∗ , Xt∗−1, Z,D = 1] =
(
E[∆Yt∗|Xt∗ , Xt∗−1, Z,D = 1]

−E[∆Yt∗(0)|Xt∗(0), Xt∗−1, Z,D = 1]
)

+
(
E[∆Yt∗(0)|Xt∗(0), Xt∗−1, Z,D = 1]

−E[∆Yt∗(0)|Xt∗(0), Xt∗−1, Z,D = 0]
)

+E[∆Yt∗(0)|Xt∗(0), Xt∗−1, Z,D = 0]

= ATTXall(0)(X
all(0)) + 0 +E[∆Yt∗(0)|Xt∗(0), Xt∗−1, D = 0]

= E[Yt∗(1)− Yt∗(0)|Xt∗(0), Xt∗−1, D = 1]

+E[∆Yt∗(0)|Xt∗(0), Xt∗−1, D = 0]

=
(
E[∆Yt∗ |Xt∗ , Xt∗−1, D = 1]

−E[∆Yt∗(0)|Xt∗(0), Xt∗−1, D = 1]
)

+E[∆Yt∗(0)|Xt∗(0), Xt∗−1, D = 0]

= E[∆Yt∗|Xt∗ , Xt∗−1, D = 1]

where the first equality holds by adding and subtracting terms, the second equality holds by Assump-
tion Cov-Exogeneity and the definition of ATTXall(0), by Assumption 2, and by Assumption 4(b), the
third equality holds by Assumption 4(a), the fourth equality holds by adding and subtracting terms and
by Assumption Cov-Exogeneity, and the last equality holds because

E[∆Yt∗(0)|Xt∗(0), Xt∗−1, D = 1] = E[E[∆Yt∗(0)|Xt∗(0), Xt∗−1, Z,D = 1]|Xt∗(0),

Xt∗−1, D = 1]

= E[E[∆Yt∗(0)|Xt∗(0), Xt∗−1, Z,D = 0]|Xt∗(0),

Xt∗−1, D = 1]

= E[E[∆Yt∗(0)|Xt∗(0), Xt∗−1, D = 0]|Xt∗(0), Xt∗−1, D = 1]

= E[∆Yt∗(0)|Xt∗(0), Xt∗−1, D = 0]

where the first equality holds by the law of iterated expectations, the second equality holds by Assump-
tion 2, the third equality holds by Assumption 4(b), and the last equality holds because, conditional on
Xt∗(0), and Xt∗−1, the inside conditional expectation is non-random. Thus, Term (B) is equal to zero
under Assumption Cov-Exogeneity and Assumption 4.
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Term (C): First, consider the expression in Term (C) for d = 0. Notice that,

E[∆Yt∗|Xt∗ , Xt∗−1, D = 0] = E[∆Yt∗(0)|Xt∗(0), Xt∗−1, D = 0]

= E[∆Yt∗(0)|∆Xt∗(0), D = 0]

= E[∆Yt∗|∆Xt∗ , D = 0]

where the first equality holds by replacing observed counterparts with their corresponding potential out-
comes, the second equality holds by Assumption 5(b), and the third equality holds by writing potential
outcomes in terms of their observed counterparts. Second, consider the case when d = 1, so that

E[∆Yt∗|Xt∗ , Xt∗−1, D = 1] =
(
E[∆Yt∗|Xt∗ , Xt∗−1, D = 1]−E[∆Yt∗(0)|Xt∗(0), Xt∗−1, D = 1]

)
+
(
E[∆Yt∗(0)|Xt∗(0), Xt∗−1, D = 1]

−E[∆Yt∗(0)|Xt∗(0), Xt∗−1, D = 0]
)

+E[∆Yt∗(0)|Xt∗(0), Xt∗−1, D = 0]

= ATTXt∗ (0),Xt∗−1
(Xt∗(0), Xt∗−1) + 0

+E[∆Yt∗(0)|∆Xt∗(0), D = 0]

= E[Yt∗(1)− Yt∗(0)|∆Xt∗(0), D = 1]

+E[∆Yt∗(0)|∆Xt∗(0), D = 0]

=
(
E[∆Yt∗|∆Xt∗ , D = 1]−E[∆Yt∗(0)|∆Xt∗(0), D = 1]

)
+E[∆Yt∗(0)|∆Xt∗(0), D = 0]

= E[∆Yt∗|∆Xt∗ , D = 1]

where the first equality holds by adding and subtracting terms, the second equality holds by Assump-
tion Cov-Exogeneity, the definition of ATTXt∗ (0),Xt∗−1

, Assumption 5(b), and the middle term is equal
to zero by the same arguments as were used for Term (B) above, the third equality holds by Assump-
tion 5(a), the fourth equality holds by adding and subtracting terms and by Assumption Cov-Exogeneity,
and the last equality holds because

E[∆Yt∗(0)|∆Xt∗(0), D = 1] = E[E[∆Yt∗(0)|Xt∗(0), Xt∗−1, Z,D = 1]|∆Xt∗(0), D = 1]

= E[E[∆Yt∗(0)|Xt∗(0), Xt∗−1, Z,D = 0]|∆Xt∗(0), D = 1]

= E[E[∆Yt∗(0)|∆Xt∗(0), D = 0]|∆Xt∗(0), D = 1]

= E[∆Yt∗(0)|∆Xt∗(0), D = 0]

where the first equality holds by the law of iterated expectations, the second equality holds by Assump-
tion 2, the third equality holds by Assumption 4(b) and Assumption 5(b), and the last equality holds
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because, conditional on ∆Xt∗(0), the inside conditional expectation is nonrandom. Thus, Term (C) is
equal to zero under Assumption Cov-Exogeneity and Assumptions 4 and 5.

Term (D): First, consider the expression in Term (D) for d = 0. Notice that

E[∆Yt∗|∆Xt∗ , D = 0] = E[∆Yt∗(0)|∆Xt∗(0), D = 0]

= ∆Xt∗(0)
′δ0

= L(∆Yt∗ |∆Xt∗ , D = 0)

where the first equality holds by writing observed outcomes and time-varying covariates in terms of po-
tential outcomes/covariates, the second equality holds by Assumption 6(b), and the last equality holds by
the definition of linear projection. Next, consider the expression in Term (D) for d = 1,

E[∆Yt∗|∆Xt∗ , D = 1] =
(
E[∆Yt∗|∆Xt∗ , D = 1]−E[∆Yt∗(0)|∆Xt∗(0), D = 1]

)
+E[∆Yt∗(0)|∆Xt∗(0), D = 1]

= ATT∆Xt∗ (0)(∆Xt∗(0)) +E[∆Yt∗(0)|∆Xt∗(0), D = 1]

= ∆Xt∗(0)
′(δ1 + δ0)

= L(∆Yt∗|∆Xt∗ , D = 1)

where the first equality holds by adding and subtracting terms, the second equality holds using similar
arguments as for previous terms and uses Assumptions 2, 4 and 5 and Assumption Cov-Exogeneity, the
third equality holds by Assumption 6, and the last equality holds by the definition of linear projection
where the linear projection coefficient is given by δ1 + δ0.

This completes the first part of the proof. Next, we prove additional result (a) in Proposition 2. Toward
this end, recall that,

ωe(X
all(0)) =

(p(Xall(0))− L(D|∆X))

E[(1− L(D|∆Xt∗))|D = 1]

Under Assumption 7, p(Xall(0)) = L(D|∆Xt∗) which implies that ωe(X
all(0)) = 0. Next, recall that

ωATT (X
all(0)) =

1− p(Xall(0))

E[(1− L(D|∆X))|D = 1]

=
1− p(Xall(0))

E[(1− p(Xall(0))|D = 1]

where the second equality holds under Assumption 7. It immediately follows thatE[ωATT (X
all(0))|D =

1] = 1 This completes the proof of additional result (a). Now, we move to proving additional result (b)
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in Proposition 2. Under Assumptions 1 to 7 and Assumption Cov-Exogeneity, we have shown that

α = E[ωATT (X
all(0))ATT∆Xt∗ (0)(∆Xt∗(0))|D = 1]

= ATT E[ωATT (X
all(0))|D = 1]

= ATT

where the second equality holds when ATT∆Xt∗ (0) does not vary across different values of ∆Xt∗(0), and
the last equality holds because the weights have mean one.

A.2 Proof of Imputation Asymptotic Normality

A.2.1 Asymptotic Normality in the Two Period Case
ATT is defined as the following:

ATT = E[∆Yt∗|D = 1]− (E[Z|D = 1]′δ∗t∗

+ E[∆Xt∗(0)|D = 1]β̃t∗ + E[Xt∗−1(0)βt∗|D = 1])

ÂTT is the sample analog of ATT. Therefore:

ÂTT =
1

n

n∑
i=1

Di

p
∆Yit −

Di

p̂
(Ziδ̂t +∆Xit

ˆ̃βt∗ +Xit−1β̂t), (A.5)

where p = E[D]. We can estimate p in the following way:

p̂ =
1

n

n∑
i=1

Di (A.6)

Note that since period t-1 occurs before treatment, Xit−1 = Xit−1(0) ∀i. Thus,
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√
n(ÂTT − ATT ) =

√
n((

1

n

n∑
i=1

Di

p̂
∆Yit)− E[

D

p̂
∆Yt])

− (
√
n((

1

n

n∑
i=1

Di

p
Ziδ̂t)− E[

D

p
Zδt]

+
√
n((

1

n

n∑
i=1

Di

p̂
∆Xit∗

ˆ̃βt∗)− E[∆Xt∗(0)|D = 1]β̃t∗))

+
√
n((

1

n

n∑
i=1

Di

p̂
Xit−1β̂t)− E[Xt∗−1|D = 1]βt∗)

= A−B − C −D

=
1√
(n)

n∑
i=1

Ψ

→ N(0,Ω)

We now examine, A, B, C, and D.
For A:

A =
√
n((

1

n

n∑
i=1

Di

p
∆Yit)− E[

D

p
∆Yt])

=
√
n(E[

D

p
∆Yt] + op(1)− E[

D

p
∆Yt])

= op(1),

where the second equality holds by the Weak Law of Large Numbers and the Central Mapping Theorem.
For B:
First, we find

√
n 1

n
(δ̂ − δ). We need to find an expression for δ̂. We do so using FWL theorem

arguments. So, we begin by regressing Y on Xt−1 and ∆Xt:

Y = Xt−1β̂t +∆Xt∗
ˆ̃βt∗ + e

= b+ e

→ e = Y − b

Next, we will regress Z on the other explanatory variables:
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Z = b+ ϵ

→ ϵ = Z − b

Finally, we regress e on ϵ:

e = ϵδ̂ + ζ

δ̂ = [ϵ′ϵ]−1ϵ′(e− ζ)

= [(Z − b)′(Z − b)]−1(Z − b)′(e− ζ)

= [(Z −Xt−1β̂t −∆Xt∗(0)
ˆ̃βt∗)

′(Z −Xt−1β̂t −∆Xt∗(0)
ˆ̃βt∗)]

−1

∗ (Z −Xt−1β̂t −∆Xt∗(0)
ˆ̃βt∗)

′(e− ζ)

→ E[δ̂] = [(Z −Xt−1βt −∆Xt∗(0)β̃t∗)
′(Z −Xt−1βt −∆Xt∗(0)β̃t∗)]

−1

∗ (Z −Xt−1βt −∆Xt∗(0)β̃t∗)
′(e− ζ)

= δ.

Thus,

√
n
1

n
(δ̂ − δ) = E[(Z − b)′(Z − b)]−1 1√

n

n∑
i=1

((Zi − bi)
′Y + (Zi − bi)

′ζi − (Zi − bi)
′Y )

= E[(Z − b)′(Z − b)]−1 1√
n

n∑
i=1

((Zi − bi)
′ζi).

Then, we can solve for B:

B =
√
n((

1

n

n∑
i=1

Di

p̂
(Zi − bi)

′δ̂t)− E[
D

p
(Z − b)δt))

=
√
n(E[

D

p
(Z − b)δt] + op(1)− E[

D

p
(Z − b)δt])

= op(1),

where the second equality holds by the Weak Law of Large Numbers and the Central Mapping Theorem.
For C:
First, we find

√
n 1

n
( ˆ̃βt − β̃t). Using similar arguments as before:
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ˆ̃βt∗ = [(∆Xt∗(0)−Xt−1β̂t − Zδ̂t)
′((∆Xt∗(0)−Xt−1β̂t − Zδ̂t)]

−1

∗ (∆Xt∗(0)−Xt−1β̂t − Zδ̂t)
′(e− ζ)

= [(∆Xt∗(0)− c)′(∆Xt∗(0)− c)]−1(∆Xt∗(0)− c)′(e− ζ)

→ E[ ˆ̃βt∗ ] = [(∆Xt∗(0)−Xt−1βt − Zδt)
′(∆Xt∗ −Xt−1βt − Zδt)]

−1

∗ (∆Xt∗(0)−Xt−1βt − Zδt)
′e

= β̃t∗ ,

where e is the residuals from regressing the Z and Xt−1 on Y. Then:

√
n
1

n
( ˆ̃βt − β̃t) =

√
n
1

n
( ˆ̃βt − β̃t)

= E[(∆Xt∗(0)− c)′(∆Xt∗(0)− c)]−1 1√
n

n∑
i=1

((∆Xit∗(0)− ci)
′ei)

= E[
1−D

1− p
(∆Xt∗ − c)′(∆Xt∗ − c)]−1 1√

n

n∑
i=1

(
1−Di

1− p̂
(∆Xit∗ − ci)

′ei).

Then, we can solve for C:

C =
√
n((

1

n

n∑
i=1

Di

p̂
∆Xit(0)

ˆ̃βt∗)− E[
D

p
∆Xt∗(0)]β̃t∗)

=
√
n(E[

D

p
∆Xt∗(0)β̃] + op(1)− E[

D

p
∆Xt∗(0)β̃])

= op(1),

where the second equality holds by the Weak Law of Large Numbers and the Central Mapping Theorem.
For D:
First, we find

√
n 1

n
(β̂t − βt). Using similar arguments as before:

β̂t = [(Xt−1 −∆Xt∗(0)
ˆ̃βt∗ − Zδ̂t)

′(Xt−1 −∆Xt∗(0)
ˆ̃βt∗ − Zδ̂t)]

−1

∗ (Xt−1 −∆Xt∗(0)
ˆ̃βt∗ − Zδ̂t)

′(e− ζ)

= [(Xt−1 − d)′(Xt−1 − d)]−1(Xt−1 − d)′(e− ζ)

→ E[β̂t] = [(Xt−1 −∆Xt∗(0)β̃t∗ − Zδt)
′(Xt−1 −∆Xt∗(0)β̃t∗ − Zδt)]

−1

∗ (Xt−1 −∆Xt∗(0)β̃t∗ − Zδt)
′(e)

= βt,
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where e is the residuals from regressing the Z and ∆Xt∗(0)β̃t∗ on Y. Then, we can solve for D:

D =
√
n((

1

n

n∑
i=1

Di

p
Xit−1β̂t∗)− E[

D

p
Xt−1]βt∗)

=
√
n(E[

D

p
Xt−1βt∗ ] + op(1)− E[

D

p
Xt−1βt∗ ])

= op(1),

where the second equality holds by the Weak Law of Large Numbers and the Central Mapping Theorem.

A.2.2 Asymptotic Normality in the Multiple-Period Case
Having proved asymptotic normality in the two-period case, it is straightforward to prove asymptotic
normality in the multiple-period case. Instead of simply finding the ATT, we will find theATT(g,t), where
g denotes an initial treatment period group we are examining and t represents a time period such that
t ≥ g. The treatment group will consist of units that were treated in time period g, and the untreated
group will consist of units that were not treated by time period t. Then, we can proceed as we did in the
two-period case:

√
n(ÂTT (g,t) − ATT(g,t)) =

√
n((

1

n

n∑
i=1

Di

p̂
∆Yi,g,t)− E[

D

p̂
∆Yg,t])

− (
√
n((

1

n

n∑
i=1

Di

p
Ziδ̂g,t)− E[

D

p
Zδg,t]

+
√
n((

1

n

n∑
i=1

Di

p̂
∆Xi,g,t∗

ˆ̃βg,t∗)− E[∆Xg,t∗(0)|D = 1]β̃g,t∗))

+
√
n((

1

n

n∑
i=1

Di

p̂
Xi,g−1,tβ̂t)− E[Xg−1,t|D = 1]βg,t∗)

= A−B − C −D

=
1√
(n)

n∑
i=1

Ψ(g,t)

→ N(0,Ω(g,t))

We now examine, A, B, C, and D.
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For A:

A =
√
n((

1

n

n∑
i=1

Di

p
∆Yi,g,t)− E[

D

p
∆Yg,t])

=
√
n(E[

D

p
∆Yg,t] + op(1)− E[

D

p
∆Yg,t])

= op(1),

where the second equality holds by the Weak Law of Large Numbers and the Central Mapping Theorem.
For B:
First, we find

√
n 1

n
(δ̂ − δ). We need to find an expression for δ̂. We do so using FWL theorem

arguments. So, we will begin by regressing Y on Xg−1,t and ∆Xg,t:

Yg,t = Xg−1,tβ̂g,t +∆Xg,t∗
ˆ̃βg,t∗ + e

= bg,t + eg,t

→ eg,t = Yg,t − bg,t

Next, we regress Zg,t on the other explanatory variables:

Zg,t = bg,t + ϵ

→ ϵ = Zg,t − bg,t

Finally, we regress e on ϵ:

e = ϵδ̂ + ζg,t

δ̂g,t = [ϵ′ϵ]−1ϵ′(e− ζg,t)

= [(Zg,t − bg,t)
′(Zg,t − bg,t)]

−1(Zg,t − bg,t)
′(e− ζg,t)

= [(Zg,t −Xg−1,tβ̂g,t −∆Xg,t∗(0)
ˆ̃βg,t∗)

′(Zg,t −Xg−1,tβ̂g,t −∆Xg,t∗(0)
ˆ̃βg,t∗)]

−1

∗ (Zg,t −Xg−1,tβ̂t −∆Xg,t∗(0)
ˆ̃βg,t∗)

′(e− ζg,t)

→ E[δ̂] = [(Zg,t −Xg−1,tβg,t −∆Xg,t∗(0)β̃g,t∗)
′(Zg,t −Xg−1,tβg,t −∆Xg,t∗(0)β̃g,t∗)]

−1

∗ (Zg,t −Xg−1,tβg,t −∆Xg,t∗(0)β̃g,t∗)
′(e− ζg,t)

= δg,t

Thus,
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√
n
1

n
(δ̂g,t − δg,t) = E[(Zg,t − bg,t)

′(Zg,t − bg,t)]
−1 1√

n

n∑
i=1

((Zi,g,t − bi,g,t)
′Y

+ (Zi,g,t − bi,g,t)
′ζi,g,t − (Zi,g,t − bi,g,t)

′Y )

= E[(Zg,t − bg,t)
′(Zg,t − bg,t)]

−1 1√
n

n∑
i=1

((Zi,g,t − bi,g,t)
′ζi)

Then, we can solve for B:

B =
√
n((

1

n

n∑
i=1

Di

p̂
(Zi,g,t − bi,g,t)

′δ̂g,t)− E[
D

p
(Zg,t − bg,t)δg,t))

=
√
n(E[

D

p
(Zg,t − bg,t)δg,t] + op(1)− E[

D

p
(Zg,t − bg,t)δt])

= op(1),

where the second equality holds by the Weak Law of Large Numbers and the Central Mapping Theorem.
For C:
First, we find

√
n 1

n
( ˆ̃βg,t − β̃g,t). Using similar arguments as before:

ˆ̃βg,t∗ = [(∆Xg,t∗(0)−Xg−1,tβ̂g,t − Zδ̂g,t)
′((∆Xg,t∗(0)−Xg−1,tβ̂g,t − Zδ̂g,t)]

−1

∗ (∆Xg,t∗(0)−Xg−1,tβ̂g,t − Zδ̂g,t)
′(e− ζ)

= [(∆Xg,t∗(0)− c)′(∆Xg,t∗(0)− cg,t)]
−1(∆Xg,t∗(0)− cg,t)

′(e− ζ)

→ E[ ˆ̃βg,t∗ ] = [(∆Xg,t∗(0)−Xg−1,tβg,t − Zδg,t)
′(∆Xg,t∗ −Xg−1,tβt − Zδg,t)]

−1

∗ (∆Xg,t∗(0)−Xg−1,tβt − Zδg,t)
′e

= β̃g,t∗ ,

where e is the residuals from regressing the Zg,t and Xg−1,t on Y. Then:
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√
n
1

n
( ˆ̃βg,t − β̃g,t) =

√
n
1

n
( ˆ̃βg,t − β̃g,t)

= E[(∆Xg,t∗(0)− cg,t)
′(∆Xg,t∗(0)− cg,t)]

−1

∗ 1√
n

n∑
i=1

((∆Xi,g,t∗(0)− ci,g,t)
′ei,g,t)

= E[
1−D

1− p
(∆Xg,t∗ − cg,t)

′(∆Xg,t∗ − cg,t)]
−1

∗ 1√
n

n∑
i=1

(
1−Di,g,t

1− p̂
(∆Xi,g,t∗ − ci,g,t)

′ei,g,t)

Then, we can solve for C:

C =
√
n((

1

n

n∑
i=1

Di

p̂
∆Xi,g,t(0)

ˆ̃βg,t∗)− E[
D

p
∆Xt∗(0)]β̃g,t∗)

=
√
n(E[

D

p
∆Xg,t∗(0)β̃g,t∗ ] + op(1)− E[

D

p
∆Xg,t∗(0)β̃g,t∗ ])

= op(1),

where the second equality holds by the Weak Law of Large Numbers and the Central Mapping Theorem.
For D:
First, we find

√
n 1

n
(β̂g,t − βg,t). Using similar arguments as before:

β̂g,t = [(Xg−1,t −∆Xg,t∗(0)
ˆ̃βg,t∗ − Zδ̂g,t)

′(Xg−1,t −∆Xg,t∗(0)
ˆ̃βg,t∗ − Zδ̂g,t)]

−1

∗ (Xg−1,t −∆Xg,t∗(0)
ˆ̃βg,t∗ − Zδ̂g,t)

′(e− ζ)

= [(Xg−1,t − d)′(Xg−1,t − d)]−1(Xg−1,t − d)′(e− ζ)

→ E[β̂g,t] = [(Xg−1,t −∆Xg,t∗(0)β̃g,t∗ − Zδg,t)
′(Xg−1,t −∆Xg,t∗(0)β̃g,t∗ − Zδg,t)]

−1

∗ (Xg−1,t −∆Xg,t∗(0)β̃g,t∗ − Zδg,t)
′(e)

= βg,t,
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where e is the residuals from regressing the Z and ∆Xg,t∗(0)β̃g,t∗ on Y. Then, we can solve for D:

D =
√
n((

1

n

n∑
i=1

Di

p
Xi,g−1,tβ̂g,t∗)− E[

D

p
Xg−1,t]βg,t∗)

=
√
n(E[

D

p
Xg−1,tβg,t∗ ] + op(1)− E[

D

p
Xg−1,tβg,t∗ ])

= op(1),

where the second equality holds by the Weak Law of Large Numbers and the Central Mapping Theorem.
Therefore, ATTg,t is asymptotically normal for all g ∈ G and g ≤ t ≤ τ .
To estimate the aggregate Ψ, we can find the average of Ψg,t, weighting by group size and total time

treated:

Ψ =
∑
g∈G

τ∑
t=g

w(g, t)Ψg,t (A.7)

where w(g,t) are weights given based on group size g and time treated t. The formula for these weights
can be determined by the researcher.

Because each of the estimated ATTs for each combination of g and t are asymptotically normal, the
average of them is also asymptotically normal. Thus, we can conclude that:

√
n(ÂTT (g,t) − ATT(g,t)) =

1√
(n)

n∑
i=1

Ψ

→ N(0,Ωg,t)
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