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ABSTRACT 

 Untargeted metabolomics studies measure tens of thousands of features in a single 

biological sample. However, most features detected are unknown compounds. This creates a great 

need for a reliable approach to identify unknown compounds. A factor contributing to the large 

number of unknown compounds is that metabolomics studies usually apply genetics and pathway 

mapping after analytical measurements are collected. The problem with this approach is that 

unknown spectral features are challenging to resolve outside the context of a pathway. Here, we 

put genetic strain selection before data collection, thus established and hypothesized pathways can 

put unknown spectral features into context and help narrow possibilities during compound 

identification. Here, the model organism Caenorhabditis elegans is used to develop, test, and 

validate a pipeline to identify unknown metabolites. First, culturing and assaying large mixed-

stage C. elegans populations in large-scale culture plates yield enough animals to collect 

phenotypic and population data, along with analytical chemical data. This method standardizes 

culturing conditions crucial for reproducible data. Second, three disparate study groups of C. 

elegans strains are compared (i.e., genetically distinct natural strains; primary and secondary 

metabolism mutants) to showcase how an augmented design coupled with meta-analysis 



effectively handles known obstacles in metabolomics experiments to compare data in long-term 

studies. Technical obstacles encompassing non-linear batch variation, limited overlap in 

technology coverage, instability of spectral features, and challenging statistical analysis caused by 

heteroscedasticity are overcome using our approach. This project demonstrates the importance of 

using pipeline validation and proper study design, yielding reliable data for downstream unknown 

compound identification and metabolic pathway interpretation. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Introduction to Caenorhabditis elegans 

 Victor Nigon and Ellsworth Dougherty were the first to study the small, free-living 

nematode Caenorhabditis elegans in the 1940s1. However, it was not until the early seventies that 

the worm gained scientific traction when introduced by Sydney Brenner as a multicellular genetic 

model2. C. elegans has few somatic cells, which made it possible to reconstruct the cell lineage 

and map the wiring to the nervous system, one of the initial traits that made this worm an invaluable 

resource3. Since then, C. elegans has revolutionized cellular and molecular biology, developmental 

biology, neurobiology, and genetics4-7. C. elegans grows well under laboratory conditions, either 

on agar plates or in liquid culture, feeding on E. coli bacteria8. The worm has a quick life cycle 

taking approximately three days to grow from embryo to egg-laying adult in the laboratory-adapted 

Bristol strain, N2 (Figure 1.1)9. C. elegans primarily exists as a self-fertilizing hermaphrodite, 

producing males at a low frequency (<1% in N2), which allows for ease of generation as 

populations are driven to homozygosity (i.e., hermaphrodites cannot mate with other 

hermaphrodites; thus, strains are nearly isogenic)8. This trait allows for the generation of new 

recombinant strains via simple genetic crosses. A single hermaphrodite can produce up to 300 

offspring, and if mated with males, hermaphrodites can produce up to 1000 offspring8. 

Importantly, nematodes can be cryopreserved for long-term storage which allows strains to be  

preserved without worrying about mutation accumulation over time3. 
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Figure 1.1 Caenorhabditis elegans life cycle. Worms hatch from an embryo where they start to 

eat and increase in size through four larval stages (i.e., L1 – L4). Newly hatched L1 worms are 

approximately 0.25 millimeters (mm) long and continue to grow, shedding their cuticle after a 

period of inactivity (i.e., lethargus)10, and continue into the next larval stage with a new cuticle. 

Approximately 12 hours after the L4 molt, adult hermaphrodites (1 mm) begin producing progeny. 

Hermaphrodites can lay eggs for 2-3 days, laying about 300 embryos. Males are not shown in this 

diagram but can be distinguished starting at the L4 stage. After reproduction, hermaphrodites can 

live for several weeks before dying of senescence. If animals are under stressful conditions at the 

L2 stage, animals can molt in an alternative L3 stage (i.e., dauer), a stage of arrested development 

where the animal can survive for months. All times displayed for development are based on the 

laboratory-derived Bristol strain, N2, at 20°C9.  
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C. elegans as a Model Organism in Metabolomics 

Just as C. elegans has proved to be a powerful model organism studied widely in biology, 

C. elegans also has some key advantages to be a key model organism in metabolomics. C. elegans 

has similar nutritional requirements as humans, including the same essential amino acids and 

vitamins, homologous metabolic pathways, and canonical metabolic regulatory pathways such as 

insulin and target of rapamycin (TOR) signaling9, 11, 12. The nematode has a well-annotated genome 

in addition to a variety of genome-wide technologies that are available and enable the genome-

scale characterization of metabolic phenotypes, for instance, in response to dietary changes4, 13, 14. 

These include genome wide RNAi libraries and deletion mutants grown and maintained by the 

Caenorhabditis Genetics Center (CGC)15, 16. In addition, large-scale protein-protein and protein-

DNA interaction mapping efforts have identified molecular connections that can be integrated with 

phenotypic data7, 17, 18. These tools have helped gain new insights into metabolic gene regulatory 

networks, which showcase clear advantages in using C. elegans for system-level studies of 

metabolism. 

 In addition to its most well-known and recognized contributions to biomedicine – the 

discovery of genes involved in apoptosis, RNAi, and the first use of green fluorescent protein to 

determine cell-specific gene expression were accomplished first in C. elegans, adding to the 

compelling reasons to use C. elegans as a platform in unknown compound identification6, 19, 20. 

From a practical perspective, C. elegans can be easily cultured in plates or liquid with a diet of a 

simple bacteria, E. coli8. From a resource perspective, there are many reasons to use C. elegans. 

First, the CGC maintains and distributes ~ 10,000 genetic strains (and growing) of C. elegans and 

related nematodes, providing many mutant strains for primary and secondary metabolism. Second, 

the Caenorhabditis elegans Natural Diversity Resource (CeNDR) contains hundreds of genetically 
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diverse natural strains21. To date, greater than 100,000 natural isotypes represent more than 85% 

of the total genetic diversity of the species. For example, 120 of these strains capture as much 

genetic diversity as some human sub-populations (e.g., Europeans)21. Therefore genome-wide 

association studies (GWAS) can readily be performed to identify genes that underlie quantitative 

trait differences21. From a scientific perspective, a growing body of work is demonstrating the 

importance of C. elegans as a chemical model organism22-24. Studies in chemical ecology, 

metabolomics, and pheromone signaling have collectively showcased how C. elegans is an 

indispensable tool and model organism to these fields25-28. These studies laid the foundation for 

metabolomics research to leverage the extensive genetic and phenotypic data in C. elegans. Just 

as model organisms were important for completing the human genome (i.e., used in DNA 

sequencing technologies and data analysis techniques), they also play an essential role in 

metabolomics technique development14, 27, 29.  

 As the metabolome can vary greatly among genotypes within a species as well as across 

environments, using a model organism such as C. elegans assists in identifying the differences 

detected in the metabolome due to genetic and environmental effects. We believe that systematic 

comparisons between genes and metabolites for many organisms will enhance our understanding 

of evolution and biology, and aid in the identification of unknown metabolites30-33. 

Thus, when approaching an untargeted metabolomics study to identify unknown 

metabolites where lots of variabilities are at play, using a model organism as the biological subject 

can be a great aid. Much of what we know about biological processes in every scientific field has 

been learned through basic research in model organisms. Specifically, C. elegans, one of the most 

extensively studied animals with ample genetic resources, is a perfect model for untargeted 

metabolomics studies4, 15, 21, 34. 
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Introduction to Metabolomics 

Metabolomics is the study of metabolites, a collection of small molecules (<1500 Da) in a 

biological system35. Metabolites are deeply connected to the biological system interacting with the 

genome, epigenome, transcriptome, and proteome, representing the most downstream stage in the 

dynamic biochemical organization that is the central dogma of molecular biology (Figure 1.2)36-

40. Small molecules that make up the metabolome are quite functionally and chemically diverse 

including, (i) endogenous molecules biosynthesized in primary metabolism (e.g., directly involved 

in normal growth, development, and reproduction), (ii) secondary metabolite signaling molecules 

(e.g., not essential for growth, but usually with important ecological functions), (iii) exposome 

(i.e., external molecules, xenobiotics), and (iv) the microbiome (i.e., molecules from the microbial 

community)41. These small molecules interact and control the functions of DNA, RNA, and 

proteins through chemical modifications and metabolite-macromolecule interactions39. Therefore, 

metabolites are not only the downstream products of cellular regulatory processes but interactors 

and direct modulators of biological processes and phenotypes to genetic or environmental changes 

at a given moment in time39, 42, 43. 
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Figure 1.2 Metabolites interact and connect to all levels of the central dogma. The central 

dogma flows from DNA to RNA via transcription, to proteins via translation, and then to 

metabolites. Unlike DNA, RNA, and proteins, metabolites provide feedback to each central dogma 

stage. Metabolites are the closest measurable biological output to an organism’s phenotype. 

Created with Biorender.com. 

 

For decades, identifying metabolites as active participants in biological processes has been 

of interest, from the seminal finding of lactose-dependent regulation of gene expression in bacteria 

from the lac operon to the discovery of the key cellular roles of nutrient and energy sensor, mTOR 

kinase12, 44. As analytical technologies have evolved, the involvement of metabolites in biological 

processes has become more understood and proliferated39, 45-47. More recent work has showcased 

the vast number of small molecule interactions with macromolecules; for example, endogenous 

metabolites were found to aid in regulating cellular identity and activity where taurine, an 

aminosulfonic acid, enhances oligodendrocyte differentiation from stem cells48. There has also 

been compelling evidence of metabolites chemically modifying macromolecules such as lysine 

acetylation49. Altogether, metabolomics has evolved into a field that can unravel complex 

biological processes and impact many scientific disciplines. 

However, with great potential comes significant challenges. The complexity of the 

metabolome (e.g., ever-changing chemical interactions, chemicals present at vast ranges of 

concentration) and unique challenges in metabolomics experiments compared to other omics fields 

cannot be overlooked50, 51. One inherent challenge is handling the chemical complexity in 

metabolomics studies (Figure 1.3)52. For example, out of the omics fields, metabolomics is often 

compared to proteomics and has undoubtedly leveraged the proteomics experience. However, 
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metabolomics has different challenges, the biggest being the compound identification process53-55. 

Peptides and proteins are primarily linear polymers that can be sequenced. Proteins are commonly 

identified by collecting MS/MS spectra that serve as an input to databases (e.g., MASCOT, 

COMET)56, 57. Even unidentified spectra can be processed with de novo sequencing resulting in de 

novo peptide sequences assembled to complete sequences (e.g., for antibody screening) or mapped 

to a protein database (e.g., PepExplorer or MS BLAST)58, 59. 

In contrast, metabolites often lack a common building block. While they do use common 

elements (i.e., C, H, O, N, S, P), there are on the order of 2 million possible chemical structures 

(dependent on the number of atoms) a metabolite can take (Figure 1.3), making the annotation 

process challenging 42, 52. Since the number of building blocks of metabolomics is so vast compared 

to other omics fields, identifying metabolites becomes the central dilemma of metabolomics 

(Figure 1.3)52. 
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Figure 1.3 The central dilemma in metabolomics, unknown metabolites. Chemical complexity 

increases as the building blocks of the omics field increases. The foundation of metabolomics is 

so vast that the chemical complexity causes the central dilemma of metabolomics. Figure modified 

from Wishart 201152. 

 

Targeted vs. Untargeted Metabolomics 

The field of metabolomics is primarily broken into two approaches, targeted or untargeted. 

Targeted metabolomics detects and quantifies sets of metabolites that are targeted and defined 

before the start of an experiment42. Untargeted metabolomics allows for the collection of data 

without preexisting knowledge to identify biologically significant known and unknown 

compounds42 (Figure 1.4).  

Broadly, targeted metabolomics studies aim to identify and quantify a limited number of 

known metabolites through a validation process5, 35, 60-62. Conversely, untargeted metabolomics 

studies acquire data for as many chemical species as possible, annotate metabolites, and review 

known and unknown feature changes, generating new hypotheses and discovering new small 

molecules63-65. Data can be used for relative quantification across sample groups and provide a 

hypothesis that is often further studied with targeted approaches42.  

When identifying metabolites, classes of compounds are defined as “known knowns,” 

“known unknowns,” or “unknown unknowns” (Figure 1.5)66. “Known knowns” are metabolites 

whose identity can be confirmed by analytical platforms, are routinely identified, and exist in 

reference databases. “Known unknowns” are compounds that are unknown to the investigator at 

the time of investigation but are cited in chemical literature or chemical databases. “Unknown 
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unknowns” are truly unknown compounds that require extensive sample history and 

characterization. 

 

 

Figure 1.4 Targeted vs. untargeted metabolomics. Targeted metabolomics is validation-based, 

and measures defined groups of metabolites for absolute quantification. Untargeted metabolomics 

is discovery-based and allows for collection of data without preexisting knowledge. Modified from 

Schrimpe-Rutledge, Codreanu, Sherrod and McLean 42. 

 

 

 

 

 

 

 

 

Figure 1.5 Types of known and unknown metabolites. Definitions from Little, Cleven, and  

Brown (2011)66.  
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Untargeted Metabolomics 

A major advantage of untargeted metabolomics is the collection of data without preexisting 

knowledge. The idea that untargeted metabolomics analysis will result in an extensive list of 

identified small molecules that can be mapped to known networks and pathways is assumed, yet 

confidently assigning identifications often cannot be made due to the fundamental challenges of 

the metabolomics identification process32, 42. For example, chemical features can be assigned to 

many tentative or preliminary structures, or a current candidate match may not be available in 

metabolome databases. Since metabolites lack a specific genetic template, metabolomics databases 

are currently incomplete, unlike in other omics fields42, 67. In-silico metabolite databases can 

provide guidance, but confirmation of compound identification must be made through methods 

such as validation of covalent bonds within a molecule to obtain the complete molecular structure 

in nuclear magnetic resonance (NMR) spectroscopy, standard compound spike-in as the “true” 

validation of metabolite identify in liquid chromatography-mass spectrometry (LC-MS) or 

NMR68, retention times (time taken for the solute to pass through a chromatography column) and 

tandem mass spectrometry (MS/MS) fragmentation data with a reference standard (Table 1.1)69.  

Despite technological advances in NMR and LC-MS, the two analytical instruments most 

applied to metabolomics studies, metabolite identification remains the overwhelming bottleneck 

in untargeted metabolomics experiments. Only a tiny fraction, less than 2-10%, of the detected 

compounds in untargeted metabolomics studies can be reliably annotated, leaving most chemical 

species unknown51, 70. This unknown chemical space continues to be the focus of intense scientific 

research, developing new methods and hardware for improved chemical separation and structural 

identification, along with new databases, libraries, and algorithms that can predict chemical 

molecular properties51, 71. While the contribution of new technologies and databases is undoubtedly 



 

11 

needed in untargeted metabolomics studies, the field also needs to integrate more comprehensive 

experimental design approaches that can create a streamlined compound identification process. 

Experimental Design in Large-Scale Untargeted Metabolomics Studies 

Without careful planning and implementation of a proper experimental design, large 

metabolomics datasets can be acquired that do not answer the experiment's biological objectives 

or, even worse, produce data that leads to false conclusions. Thus, an experimental design that can 

handle variation (e.g., sample preparation, instrument) appropriately and ensure data collected 

addresses the study hypothesis and will be usable for downstream experiments should be 

implemented (Figure 1.6). Since untargeted studies provide relative comparisons between samples 

(i.e., metabolite concentrations are generally not reported) compared to targeted studies that 

provide quantitative data related to metabolite concentrations, it is even more critical to ensure 

significant detail and quality assurance occurs in and across all analytical strategies. 

Generally, metabolomics experiments have four main stages where variation is introduced, 

sample development, sample collection, sample preparation, and data acquisition. Thus, when 

planning out a large-scale untargeted metabolomics study, the following should always be 

considered: (i) reproducibility of pre-analytical sample collection, (ii) analytical sample 

preparation across sites and/or over time, (iii) requirement for multiple analytical experiments and 

instrument maintenance, (iv) randomization strategy for sample preparation and analysis, (v) 

appropriate quality control (QC) samples, and (vi) post-analytical data processing. 
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Figure 1.6 General Metabolomics Experimental Design and Workflow.  At the simplest level, 

metabolomics studies include a hypothesis (targeted studies) or problem (untargeted studies), pre-

analytical sample generation and collection, analytical sample preparation, data acquisition, post-

analytical data processing, and interpretation. As variation is a large problem in metabolomics 

studies proper quality controls (QCs), analytical instrument choice, and randomization strategies 

should be applied throughout the workflow to ensure introduced variation is not greater than the 

biological variation being measured. 
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(i) Reproducibility of pre-analytical sample collection 

In many untargeted metabolomics studies, samples are collected at multiple sites and/or 

across long periods. Since large-scale studies can include hundreds of samples collected over time, 

it is feasible that several researchers will handle and process samples with different equipment and 

consumables throughout the study. Therefore, a standard operating procedure (SOP) should be 

designed and used to train all researchers prior to sample collection. Since the metabolome of a 

sample is a snapshot of the metabolic interactions at a period in time, any differences in sample 

handling, collection, processing, storage, and transportation can impact the metabolic profile. This 

is especially true for blood serum and plasma that contain concentrations of enzymes that provide 

the capability for metabolism to operate post sample collection72, 73.  Without appropriately 

quenching metabolism, the metabolic profile of the sample analyzed will differ from the sample's 

metabolic profile at the time of collection74. Therefore, integrating an SOP is essential to minimize 

intra- or inter-researcher and inter-site variation that could impact the sample. It has been shown 

that the most significant variation at this stage comes from inter-individual processing/handling 

associated with the sample75, 76. 

(ii) Analytical sample preparation across sites and/or over time 

 In large untargeted metabolomics studies, analytical sample preparation cannot be done in 

one setting; therefore, the study should be divided into small analytical experiments to achieve an 

appropriate analysis. It is good practice to identify the equipment (e.g., centrifuge, homogenizer) 

or process (e.g., user handling capacity) that is the limiting factor of the study and use that 

information to guide the structure for sample preparation appropriately. 

 Additionally, while untargeted metabolomics studies seek full metabolome coverage it is 

not currently possible from a technical point of view. While a study may be “untargeted”, chosen 
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homogenization and extraction protocols, along with downstream instrument choice, will impact 

which metabolites are successfully measured and are associated with the biological question 77-79. 

Variation in solvent, extraction volume, and reconstitution solvent all affect the metabolic sample 

output.  Taguchi Design of Experiments (DoE) approaches allow for the optimization and should 

be used when planning and conducting experiments to obtain high quality data to best answer the 

biological questions at hand (see Appendix C).  

(iii) Requirement for multiple analytical experiments and instrument maintenance 

 NMR and LC-MS are complementary analytical platforms used for metabolomics, each 

with advantages and disadvantages in terms of sensitivity, information content differences, and 

variation over time (Table 1.1)80, 81. These platforms can be used individually but can be combined 

to yield better metabolome coverage and enable more accurate metabolite annotation82. The 

integration of multiple analytical platforms provides deeper understanding of these studies83, 84. 

However, it is essential to understand how each instrument works and the inherent requirements, 

limits, maintenance, and challenges for both. 

NMR spectroscopy exploits quantum mechanical interactions to provide an atomic-level 

detail of small molecule interactions occurring in a sample. NMR can rigorously quantify abundant 

compounds in various sample types (e.g., biofluids, tissues, cell extracts, whole organisms) in a 

non-destructive manner without the need for elaborate sample preparation80. In NMR, samples are 

introduced into the spectrometer in sealed glass tubes, so no sample-instrument interaction results 

in instrument drift like in LC-MS (see below), however chemical changes can occur due to 

instrument settings, high salt, or pH issues85. NMR offers advantages for compounds that are 

difficult to ionize or require derivatization for MS. NMR allows for the identification of 
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compounds with identical masses and remains the mainstay for determining structures of unknown 

compounds45. 

 In contrast to NMR, LC-MS has the sensitivity and ability to detect tens of thousands of 

features in a sample and because of this has become the most widely used technology in 

metabolomics studies86, 87. Fundamentally, MS measures the mass-to-charge ratio (m/z) of 

molecules present in a sample, which can be converted into a neutral mass measurement 

representing the molecular weight of molecules in a sample, aiding in identification of unique 

molecules in complex sample types. However, since biological samples are inherently complex 

and contain high matrix components (i.e., endogenous and exogenous factors that can interfere 

with the ionization process of the analyte) and metabolites, matrix components and metabolites 

physically interact with chromatography and MS platforms, leading to degradation of the 

analytical performance and sensitivity (e.g., a buildup of matrix and metabolites on columns can 

cause chromatographic performance changes and introduce retention-time variability within data). 

Another LC-MS challenge is MS ‘drift’ (i.e., measured variable response, m/z and retention time), 

which can become significant as an experiment runs or over the course of multiple injections – 

thus integrating multiple injections of the same sample (e.g., QC sample) when running an 

experiment can aid in identifying drift and subsequent fixes. While there are more examples than 

showcased here, routine LC-MS instrument maintenance is critical. The variability introduced into 

the data during sample collection can become significantly equal to or greater than the biological 

variability in the dataset. 

 Taken together, the integration of NMR and LC-MS data can be taken for structure 

elucidation or for better metabolome coverage. Specifically, each analytical approach brings 

unique attributes – NMR brings structural connectivity and accurate relative concentrations of 
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higher-concentration metabolites, and LC-MS brings molecular weights and elemental formulas 

to molecules (Table 1.1). Additionally, applying an appropriate number of samples or injections 

ensures that the within-experiment variability introduced is small compared with the biological 

variability in the sample being studied. 

 

Table 1.1 Two complimentary technologies: NMR vs. LC-MS.  A general comparison of the 

main characterization differences and advantages between LC-MS and NMR. 

 

(iv) Randomization strategy for sample preparation and analysis 

During sample collection, preparation, and analysis, randomization is imperative to ensure 

sound biological conclusions are reached. The randomization design that will yield the most robust 

dataset to answer the short and long-term hypotheses should be used for metabolomics studies 

collected over months or years. One option is to keep experimental units (e.g., genotypes) collected 

in the same sample collection block (e.g., start/harvest date) together in the same batch for data 

acquisition, known as conditional randomization (CR). Alternatively, samples can be randomized 

to new batches for data acquisition without regard to the original sample collection block, known 

Characterization LC-MS NMR

Sample

      Intervention Destructive Non-destructive

      Preparation Extensive Simple

Reproducibility More variable Very reproducible

Sensitivity Higher Lower

Speed of Analysis (per sample) 5-30 min 20 - 30 min

Chromatic Separation Medium-resolution separation No separation

Structural Information Low High

Chemophysical Information More information (time separation) Less information

Main Advantages Soft ionization Minimal smaple preparation

Large mass range Non-destructive

Wide dynamic range Suitable for comounds which are difficult to 

ionize or require derivatization

Main Distadvantages Slow analysis time Poor sensitivity and dynamic range

Requires ionizable metabolites Some chemical classes not detected

Inter-and intra-variability
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as re-randomization (RR). Simulations of natural populations have shown that CR can best detect 

genotypic differences when looking for genotype effects. When experimental errors of 

blocks/batches are confounded, they are jointly estimated as a single effect leaving more degrees 

of freedom for estimating the residual error. Thus, all genotypes are measured simultaneously in 

the same ‘environment,’ reducing the genotype comparison variance. In contrast, RR results 

separate the estimate block/batch effects, effectively constructing different environments for each 

genotype and making the accurate estimation of these effects necessary for comparing genotypes.  

(v) Appropriate quality control (QC) samples 

Quality control (QC) samples should represent the qualitative and quantitative composition 

of the subject samples being analyzed in the study; sometimes, this can be the average composition 

of all samples studied. In analytical experiments, QC samples should be analyzed intermittently, 

ideally in the beginning, middle, and end of the sample layout and the composition of each QC 

sample should be equal in theory. Realistically, variation will be introduced during an analytical 

process (e.g., injection volume, ion-transmission efficiency, needle change), and QC samples will 

aid in identifying when and where this variation is most prevalent.  

 Different QC sample types can benefit an untargeted metabolomics study including a 

reference strain/sample type, pooled reference strains/samples, pooled test strains/samples, and a 

long-term reference material (RM) (i.e., either an in-house iterative batch averaging method 

(IBAT)88 or commercially produced RM). A reference strain or sample type that can be compared 

to all test strains should always be included. All reference strain samples extracted and included 

in each instrument run should also be pooled and used. Additionally, a pool of all extracted test 

strains/samples in each instrument run should be included. Lastly, as we show in Gouveia et al. 

2021, an IBAT sample is a stable reference material that can be produced over time in any context 
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where multiple small batches of starting material are produced, aliquoted, and then pooled to 

generate an RM 88. Throughout all steps of the process, the importance of collecting meta-data can 

aid in the assessment of sample bias, outliers and can relate data to confounding factors that can 

be incorporated into statistical analysis.  

(vi) Post-analytical data processing 

 There are many facets to post-analytical processing, including peak picking/selection, 

deconvolution, spectral alignment to identify features and their corresponding abundances (e.g., 

peak height or peak area), normalization 89-91, scaling 92, transformations (e.g., log or rank 

transformations) 93, and statistical analysis (e.g., principal component analysis [PCA], analysis of 

variation [ANOVA], partial least squares – discriminate analysis [PLS-DA], orthogonal 

projections to latent structures [OPLSDA], or meta-analysis) 50. It is after these processing steps 

that the identified statistically significant spectral features can be used in the compound 

identification process and to determine the structure of the significant molecules, and ultimately 

make meaningful biological conclusions and connect to other datasets (e.g., RNA Sequencing, 

GWAS, pathway mapping). Choices made at each step of data processing comes with it benefits 

and associated pitfalls 50.  

Study Motivation and Summary 

In untargeted metabolomics studies we can measure up to tens of thousands of features in 

a single biological sample, with sensitivity, resolution, and reproducibility by both LC-MS and 

NMR. However, the major challenge is that most of the features we can now detect are unknown 

compounds80. A factor contributing to the large number of unknown compounds is that 

metabolomics studies usually apply genetics and pathway mapping after collecting analytical 

measurements71. The problem with this approach is that unknown spectral features are challenging 
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to resolve outside of the context of a pathway. Here, we put genetic strain selection before data 

collection, thus established and hypothesized pathways can be used to put unknown spectral 

features into context and help narrow down possibilities during compound identification.  Using 

this approach, we can leverage publicly available genetic and metabolic pathway data. Known 

metabolic pathways provide substantial chemical constraints on unknown compound structures 

which can narrow the options to identify unknowns. However, it is worth mentioning that known 

pathways do not imply all metabolites on a pathway, as known pathways can still be incomplete 

and not indicate all possible metabolic interactions in their current state. Various metabolomics 

studies have demonstrated that “known” pathways are incomplete, and that unknown chemical 

species are indicative of much more extensive pathways and networks than currently 

documented71. 

Our project is largely driven by the premise that genetics is a critical but untapped tool that 

will enable the development of a pipeline aiding in unknown metabolite identification. Genetics 

provides defined genes, their functions, and involvement in known pathways that enable prediction 

of gene involvement in metabolic networks94. Here we can approach compound identification 

differently by combining the elements of traditional metabolomics workflows (i.e., LC-MS/MS 

and NMR) with genetic tools to computationally link molecular formulas with NMR spectra and 

genetically defined and targeted pathways. This dissertation will cover components of using 

genetic tools to aid in the path to compound identification.  

To demonstrate the overall approach, we use the model organism C. elegans because (i) it 

has extensive genetic and pathway data freely available (e.g., WormBase13, WormFLux94, 

WormCat), (ii) genetically diverse and mutant strains of interest can be obtained by the 

Caenorhabditis elegans Natural Diversity Resource (CeNDR)21 and Caenorhabditis Genetics 
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Center (CGC), respectively, (iii) it shares much of its central metabolic pathways with humans, 

and (iv) can be grown with relative ease in many environmental conditions in laboratory 

conditions. Our argument for using C. elegans as a model organism to address our biological 

problem of interest is addressed in Chapter 2. 

The purpose of this dissertation work is to use the genetic model organism C. elegans to 

(i) develop, test, and validate a pipeline for the identification of unknown metabolites and (ii) 

improve our understanding of conserved metabolic pathways and identify associated metabolites. 

In Chapter 2, I lay out our published method for culturing and assaying large-scale mixed-stage C. 

elegans populations in large scale culture plates (LSCP), which generates sufficient numbers of 

animals to collect phenotypic and population data, along with analytical chemical data (i.e., LC-

MS/MS and NMR). This method standardizes culturing conditions crucial for reproducible data95.  

Chapter 3 builds on the data collected in Chapter 2 by showing how an augmented design 

and meta-analytic approach were used to overcome the well-known technical obstacles to large-

scale metabolomics studies encompassing high levels of non-linear batch variation, limited overlap 

in technology coverage, instability of spectral features, and challenging statistical analysis caused 

by widespread heteroscedasticity. Two meta-analysis approaches were used on strains collected in 

Chapter 2 to identify spectral features that differ between (i) the reference strain and each strain 

and (ii) across all strains in a study group. With this design, we identified putative compounds to 

prioritize for downstream compound identification. 

Taken together, the work presented in this dissertation lays out an approach to better 

leverage data across metabolomics experiments to have a more efficient process to compound 

identification, the biggest bottleneck in untargeted metabolomics. Lastly, Chapter 4 reviews how 

the methods and approaches here (i.e., batch effects, rank transformation, meta-analysis post-
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processing issues) can be a great asset to ongoing and future metabolomics studies. Additionally, 

current conclusions, work in progress, and future directions regarding this project will be reviewed. 
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CHAPTER 2 

METHOD TO CULTURE AND ASSAY LARGE-SCALE MIXED-STAGE 

CAENORHABDITIS ELEGANS POPULATIONS FOR OMICS STUDIES1 
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Chapter 2 is adapted from Shaver, A. O., Gouveia, G. J., Kirby, P. S., Andersen, E. C., 

Edison, A. S. Culture and Assay of Large-Scale Mixed-Stage Caenorhabditis 
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Abstract 

Caenorhabditis elegans (C. elegans) has been and remains a valuable model organism to 

study developmental biology, aging, neurobiology, and genetics. The large body of work on C. 

elegans makes it an ideal candidate to integrate into large-population, whole-animal studies to 

dissect the complex biological components and their relationships in a given organism. In order to 

use C. elegans in collaborative omics research, a method is needed to generate large populations 

of animals where a single sample can be split and assayed across diverse platforms for comparative 

analyses. 

Here, a method to culture and collect an abundant mixed-stage C. elegans population on a 

large-scale culture plate (LSCP) and subsequent phenotypic data is presented. This pipeline yields 

sufficient numbers of animals to collect phenotypic and population data, along with any data 

needed for omics experiments (i.e., genomics, transcriptomics, proteomics, and metabolomics). In 

addition, the LSCP method requires minimal manipulation to the animals themselves, less user 

prep time, provides tight environmental control, and ensures that handling of each sample is 

consistent throughout the study for overall reproducibility. Lastly, methods to document 

population size and population distribution of C. elegans life stages in a given LSCP are presented. 

Introduction 

C. elegans is a small free-living nematode that is found throughout the world in a variety 

of natural habitats 1. Its relative ease of growth, fast generation time, reproduction system, and 

transparent body make it a powerful model organism that has been widely studied in 

developmental biology, aging, neurobiology, and genetics 2, 3. The copious work on C. elegans 

makes it a prime candidate to use in omics studies to comprehensively link phenotypes with 

complex biological components and their relationships in a given organism.  
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In order to use C. elegans in collaborative omics research, a method is needed to generate 

large mixed-stage populations of animals where a single sample can be split and used across 

diverse platforms and instruments for comparative analyses. Creating a pipeline to generate such 

a sample requires keen awareness of diet, environment, stress, population structure, and sample 

handling and collection. Therefore, it is crucial to have standard and reproducible culturing 

conditions integrated into large-scale pipelines. In C. elegans research, two traditional methods are 

used to culture worms - agar petri dishes and liquid culture 4. 

Historically when large quantities of C. elegans are needed, they are grown in liquid culture 

4. The steps involved in generating a large population of worms in liquid culture require multiple 

handling steps that often include bleach synchronization to rupture gravid adult cuticles, releasing 

embryos to achieve the desired population size. However, when bleach synchronization is used, 

population growth is dependent on starting census size and thus effects subsequent growth and 

population numbers. In addition, C. elegans strains vary in their cuticle sensitivity, exposure time, 

and stress response to bleach synchronization making it difficult to assay a large number of strains 

at a time 5-9.  

Additionally, worm growth in liquid culture requires a couple of transfer steps as it is often 

recommended to grow just one generation of worms before harvesting because overcrowding can 

easily occur if grown for multiple generations and lead to dauer formation despite the presence of 

food 10. Dauer formation occurs through small signaling molecules such as ascarosides, often 

referred to as “dauer pheromones” 10-13 that are released into liquid media and affect the growth of 

the population. Furthermore, growing large worm populations in liquid culture leads to excess 

bacteria accumulation in the culture, creating difficulties when a clean sample is needed for 

downstream phenotypic assays. Lastly, when a liquid culture becomes contaminated, it is more 
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difficult to maintain as fungal spores or bacterial cells are easily dispersed throughout the media 

14.  

The other traditional method of growing C. elegans is on agar petri dishes. Commercially 

available petri dishes allow one to easily grow multiple generations of mixed-stage worms without 

the rapid effects of overcrowding and high dauer formation as seen in liquid cultures. However, a 

disadvantage to worm growth on traditional agar petri dishes are that the largest commercially 

available petri dish does not yield large worm populations for an omics study without adding in a 

bleach synchronization step. In summary, culturing mixed-stage populations of C. elegans on agar 

petri dishes is more suitable for collecting omics data, but we required a method to generate very 

large population sizes without liquid culturing. 

Here, we present a method to culture and collect large mixed-stage C. elegans populations 

on a LSCP. Collecting samples through this pipeline yields enough sample to gather phenotypic 

and population data, along with any data needed for omics experiments (i.e., genomics, 

transcriptomics, proteomics, and metabolomics). In addition, the LSCP method requires minimal 

manipulation of the animals, less user prep time, provides tight environmental control, and ensures 

that handling of each sample is consistent throughout the study for overall reproducibility. 

Protocol 

1 Sterilize LSCP and Equipment 

NOTE: A variety of vessels can be used as a LSCP. In this protocol, a standard glass baking 

dish was used. The LSPCs in use had outer dimensions of 35.56 x 20.32 cm, inner dimensions of 

27.94 x 17.78 cm, and approximately 4.45 cm deep and came with a fitted lid. Ensure the LSCPs 

are dishwasher and autoclave safe. Ensure the LSCP lids are dishwasher safe. 
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NOTE: Throughout each step of this protocol ensure working space is cleaned with 70% 

ethanol and 10% bleach. If available, treat used areas with UV light for 30 minutes and turn on a 

HEPA air-filter 30 minutes prior to starting each step. 

1.1 Prep glass LSCPs by handwashing, followed by dishwashing, and subsequent 

autoclaving to ensure glassware is free of contaminants prior to starting the experiment. Store 

autoclaved LSCPs in a clean dry location until in use. 

1.2 Prep LSCP lids by handwashing followed by dishwashing. Store LSCP lids in a clean 

bin until needed.  

1.3 On the day Nematode Growth Media Agarose (NGMA) is prepped, wipe LSCP lids 

with 10% bleach solution twice, followed by 70% ethanol. Once wiped down with 10% bleach 

and 70% ethanol, keep LSCP lids in a clean bin in the laminar flow hood where the NGMA will 

be prepped. 

2 Prepare Nematode Growth Media Agarose (NGMA) 

NOTE: The preparation steps for the NGMA as described here will yield enough material 

for 2.5 LSCPs. The protocol can be tailored to the needed LSCP batch size in a given experiment. 

2.1 Prepare NGMA by combining the following reagents into an autoclaved 2 L 

Erlenmeyer flask with stir bar on a stir plate: 2.5 g peptone, 3 g NaCl, 7 g agarose, 10 g agar, and 

975 mL sterile water 15. Ensure that the total volume equals 1 L. Tape a foil cap to the flask. 

2.2. Autoclave on liquid cycle at 121°C and 21 p.s.i. for 45 minutes. 

2.4 Turn on water bath set to 50°C. 

2.5 Bring the autoclaved NGMA to the water bath to cool to 50°C. 
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2.6 Bring 2 L Erlenmeyer flask of NGMA into the hood or cleaned space and set on a stir 

plate. Use a thermometer to track NGMA temperature.  

2.7 After the NGMA has reached 50°C, add the following in the order listed with a sterile 

disposable pipette inside the hood or cleaned space: 25 mL of 1 M KH2PO4 (K phosphate buffer), 

1 mL of cholesterol (5mg/mL in ethanol), 1 mL of 1 M CaCl2, 1 mL of 1 M MgSO4, 1 mL of 

nystatin (10mg/mL), and 1 mL of streptomycin (100 mg/mL) 15. 

2.8 Pour 400 mL of NGMA into a sterile glass LSCP, approximately 1.3 cm deep, allow 

the LSCP to solidify on flat surface in the hood and place the autoclaved foil lid back on the LSCP.  

2.9 Once agar is set, remove the foil and place a clean air-tight lid onto LSCP and move to 

4°C for storage. 

2.10 NGMA in LSCPs should be used within 5 days and can be stored at 4°C until in use. 

3 Generate E. coli food for NGMA on LSCP 

NOTE: In order to generate a stable food source, batches of HT115 (DE3) E. coli have 

been generated using a small batch averaging concept consistent with the central limit theorem 16. 

Details described in this protocol start once E. coli has been generated and subsequently frozen for 

use.  

4 Bacterial Lawn on NGMA 

4.1 Bring NGMA LSCPs out of 4°C to room temperature (RT) for several hours before 

spreading the bacterial lawn to allow entire dish to reach RT. 

4.2 Pull out needed E. coli bacterial stock(s) from -80°C to thaw 17. 

 

NOTE: In this protocol, E. coli bacterial stocks were grown in a bioreactor. At the end of 

the culture growth, the culture was diluted 1:50, and the measured OD600 was 0.4. Thus, the culture 
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had an effective OD600 of 20. Bacteria were pelleted, weighed, and resuspended in K-medium at a 

concentration of 0.5 g/mL (wet weight), transferred into 2 mL aliquots, and frozen 18.  

4.3 Dilute E. coli bacterial stock(s) with 2 mL sterile K-medium to achieve 0.5 g E. coli in 

4 mL per NGMA LSCP. 

4.4 Carefully pipette 4 mL of E. coli in the middle of the NGMA LSCP.   

NOTE: The amount of bacteria used here has been optimized for a LSCP with a dimension 

of 35.56  x 20.32 cm and to yield a large population of mixed-stage worms. Bacterial volume and 

concentration can be adjusted to fit experimental needs. 

4.5 Use a sterile spreader to spread the bacteria into a rectangle leaving approximately 3.8 

cm of room around the edges of the NGMA E. coli free. 

4.6 Leave the NGMA LSCP with E. coli in the hood with the fan on for 1 hour to ensure 

the E. coli suspension fully dries.  

4.7 Once the bacterial lawn is dry, push lid on tightly and store at 4°C until used.  

5 Chunk Worms to Reduce Stress and Age Variability Across Samples 

NOTE: The age and health of a given worm can influence fecundity and subsequent 

population growth time. Ensure worms are maintained in healthy conditions with minimal stress 

prior to being used in this pipeline. It is assumed stock samples have been created, frozen, and kept 

at -80°C to reduce genetic drift over time. 

NOTE: Chunking is an optimal method to transfer worms from a homozygous strain 4. If 

a strain is heterozygous or needs to be maintained by picking and mating, chunking is not 

advisable. Chunking frequency may need to be optimized depending on worm genotypes used, 

temperature chosen for growth, and downstream steps. 
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5.1 Streak worms from a frozen worm stock to a newly seeded 6 cm plate4. This plate will 

serve as the “master chunk” plate. 

5.2 After the master chunk plate is full of healthy gravid adults (approximately 3 days) 

with plenty of E. coli lawn still present, follow standard C. elegans chunking guidelines as 

described in WormBook to produce four total chunk plates4. 

NOTE: All chunk plates should be stored in a controlled temperature (CT) room at 20°C 

unless otherwise specified for growth.  

NOTE: If users of this protocol do not have access to a CT room as described here it is 

recommended to use either (A) a small incubator where the temperature can be controlled or (B) 

a designated room where environmental conditions can be controlled as much as possible. If 

neither of these alternate options are available, note that variation in sample growth may be greater. 

5.3 Once many gravid adults are observed in the 4th chunk plate, move on to Step 6. 

6 Spot Bleaching Gravid Adults onto LSCP 

NOTE: This bleaching technique is used to eradicate most contaminants and dissolve the 

cuticle of the hermaphrodites releasing embryos from the adult worm. The bleach solution will 

soak into the NGMA prior to the embryos hatching.  

6.1 Bring LSCP produced in Steps 1-4 out to RT for several hours prior to spot bleaching 

worms. 

6.2 Prepare a 7:2:1 ratio of ddH20:bleach:5 M NaOH. Make this alkaline hypochlorite 

solution fresh just before use. 

NOTE: Use the same stock of bleach and NaOH throughout the duration of a given 

experiment to avoid bleach batch affects. Bleach used in this protocol was 5-10% Sodium 

hypochlorite.  



 40 

6.3 Light a Bunsen burner and flame a worm pick before proceeding. Scoop fresh E. coli 

onto a sterile pick from the edge of the bacterial lawn on the LSCP. 

6.4 Pick a single gravid adult from the 4th chunk plate for spot bleaching. 

6.5 Pipette 5 l of the alkaline hypochlorite solution into one corner of the LSCP away 

from the E. coli lawn. 

6.6 Place the picked gravid adult into the 5 l alkaline hypochlorite solution. Tap the 

nematode to help disrupt the cuticle and release eggs. 

6.7 Repeat steps 6.4 – 6.6 four times for a total of five gravid adults placed evenly around 

the E. coli lawn. Pick all five gravid adults from the same 4th chunk plate to ensure nearly 

genetically isogenic individuals are added to a given sample. 

NOTE: Five gravid adults are used to seed each LSCP for the following reasons: (a) A 

simple, fast, and efficient way to seed many C. elegans strains onto LSCPs at one time was needed 

and (b) to reduce the age differences amongst the gravid adults picked that could lead to growth 

heterogeneity.  

NOTE: Depending on the needs of a given experiment, the number of starting gravid adults 

on a LSCP can be changed. Altering the number of starting gravid adults on the LSCP will change 

growth rate and thus time to harvest. 

6.8 Place lid back onto the LSCP. 

6.9 Repeat steps for all LSCPs. 

7 Worm Growth in Controlled Temperature (CT) Room 

NOTE: The CT room was set to 20°C as most C. elegans stocks are maintained at this 

temperature. Temperature can be adjusted to fit the needs of an experiment.  
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7.1 Following spot bleaching, place the lid tightly onto the LSCP and place in the CT room 

set to 20°C with constant airflow and a 12L:12D photoperiod (12 hours light and 12 hours 

darkness).  

7.2 Note time and position sample was placed in CT room.  

NOTE: Position within the room should always be documented to record any 

environmental differences samples could potentially encounter while growing. Once the sample is 

in the CT room, it should remain in its assigned spot undisturbed. Do not open the lid of the LSCP 

in the CT Room to decrease the chance of contamination. 

7.3 Take LSCP to a microscope, outside of the CT room, to observe population growth and 

density.  

NOTE: Each C. elegans strain and sample will vary in its growth, so monitor samples 

closely. 

NOTE: While it is recommended to not disturb the growth of the LSCP while in the CT 

Room, LSCPs were transported out of the CT Room and lids were opened every 2 days to monitor 

sample growth. Taking the sealed lids off the LSCPs every 2 days also allows for O2 to flow into 

the LSCP. 

NOTE: While checking population growth on the LSCP, ensure condensation is not 

accumulating. Significant condensation accumulation was not observed in the worm growth 

process reported here, however if condensation accumulation occurs take a clean delicate task 

wiper and remove the condensation to avoid pooling on the agar. 

7.4 Once the LSCP has become full of a large population of worms, it is ready to be 

harvested. The following criteria are used to decide if a LSCP is ready to be collected (7.5 – 7.8):  

7.5 The LSCP is (1) full of gravid adult worms,  



 42 

7.6 (2) reached a large population size (i.e., worms cover the entire surface of the agar),  

7.7 (3) does not have many eggs on the surface of the agar (i.e., the maximum number of 

worms should have hatched), and  

7.8 (4) has minimal to no E. coli left indicating the worms would starve and generate dauer 

larvae if left on the plate for an additional two days. If the LSCP meets all four of the criteria 

described in 7.5-7.8, the sample is ready to be harvested. 

NOTE: Although most LSCPs are ready to harvest between 10 to 20 days, depending on 

strain and sample (see Figure 2.4), check each LSCP frequently upon establishing this protocol to 

determine normal harvest times. 

7.9 Clean gloves and area with 70% ethanol between handling LSCPs to avoid cross 

contamination between strains. 

8 Harvesting the LSCP Sample  

8.1 Turn on and allow centrifuge to cool to 4°C prior to harvesting samples. 

8.2 Prepare three 50 mL conical tubes with M9 solution per LSCP to be harvested. 

8.3 Label one 15 mL conical tube per LSCP.  

NOTE: All centrifugation steps take place in the 15 mL conical tube, as worms pellet well 

in these tubes. 

8.4 Pour 50 mL of M9 solution (from one 50 mL conical tube in Step 8.3) onto the LSCP 

surface and swirl around to ensure that M9 covers the entire NGMA surface. 

8.5 While M9 sits on the LSCP surface, prime a sterile serological pipette with M9.  

NOTE: By priming the sterile serological pipette with M9 this ensures that less worms 

stick to the inside of the plastic pipette, preventing sample loss.  

8.6 Tilt the LSCP so M9 and the worm population gather in one corner of the LSCP.  
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NOTE: The mixture of M9 solution and worms from the LSCP will be referred to as the “worm 

suspension” in downstream steps. 

8.7 Using a primed serological pipette with an automatic pipettor, pipette worm suspension 

and place into the original 50 mL conical tube. Once 50 mL of worm suspension is collected, place 

conical tube on a rocker to disrupt bacteria clumps and debris. 

8.8 Repeat steps 8.4 - 8.7 collecting 150 mL of worm suspension per LSCP.  

8.9 Transfer 15 mL of worm suspension, from one of the three 50 mL conical tubes, by 

pouring to the labelled 15 mL conical tube set aside in Step 8.4. Centrifuge the 15 mL conical tube 

at 884 x G for 1 minute at 4°C. The majority of worms will pellet at the bottom of the tube. 

8.10 Aspirate off supernatant ensuring to not disturb the worm pellet. 

8.11 Continue adding approximately 13 mL of worm suspension to the same 15 mL conical 

tube repeating steps 8.10 and 8.11 until all 150 mL of worm suspension are consumed. Invert the 

tube and disturb the pellet between centrifugations to wash and aspirate off as much bacteria and 

debris as possible.  

NOTE: At this step, the contents from all three 50 mL conical tubes are condensed in a 

single 15 mL tube. 

8.12 Add 10 mL of clean M9 to the 15 mL conical tube and agitate the worm pellet by 

inverting. Centrifuge the 15 mL conical tube at 884 x G for 1 minute at 4°C. Aspirate off 

supernatant ensuring to not disturb the worm pellet. Repeat twice. 

NOTE: If there is a great amount of debris or bacteria in sample, repeat step 8.12 until the 

sample is clean. 
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8.13 Once the sample is clean, add ddH20 to the worm pellet for a total of 10 mL of ddH20 

and worms. Agitate the worm pellet by inverting. Move quickly into step 9.1, as worms must 

remain in ddH20 for five minutes or less to avoid osmotic stress. 

NOTE: Suspending worm pellets in ddH20 is the preferred solvent for downstream omics 

steps. Worms can be suspended in other solvents or buffers if they are compatible with a given 

experimental workflow.  

NOTE: The mixture of ddH20 and worms from step 8.14 are referred to as the “worm 

sample” in subsequent steps. 

9 Estimate Population Size 

NOTE: Move through Steps 9.1 – 9.7 quickly. 

9.1 Prior to pipetting the worm sample, prime pipette tip being used with M9 to avoid 

worms sticking to the inside of the plastic pipette preventing sample loss and reducing count 

variation. 

9.2 Take a 100 L aliquot of worm sample and dilute it into 900 L of M9. Mix well and 

make a serial dilution (1:10, 1:100, 1:1000). Repeat this step twice to achieve a total of three sets 

of aliquot replicates. 

NOTE: Pipetting worms can cause high variability in sample population counts. Ensure 

that the worm sample is homogenous prior to pipetting the desired aliquot. 

9.3 Set the 15 mL conical tube on a rocker to continue moving culture while aliquots are 

counted.  

9.4 Ensure the worm sample is well mixed and homogenous. Pipette 5 L from the 1:10 

worm sample, dispense it onto a microscopy slide, and count the number of worms. If this number 
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is <~50, then also count the 1:100 and 1:1000 dilutions. If it is more than 50, move to the next 

serial dilution. 

NOTE: If too many worms cannot be accurately counted, use the next serial dilution for 

counting instead.  

9.5 Count each aliquot replicate of each dilution three times. At the end of counting, for 

most cultures, nine total counts will be documented (i.e., three total counts for each aliquot 

replicate).  

9.6 Average the dilution counts to determine the estimated population size of the worm 

sample. These dilution counts will determine the volume of worm sample needed to create desired 

aliquot size for omics steps.  

NOTE: In this experiment, aliquots of approximately 200,000 mixed-stage worms were 

generated. In addition, one aliquot of approximately 50,000 mixed-stage worms was set aside for 

sorting in a large particle flow cytometer (described in Step 10). 

NOTE: As aliquots are being created, ensure the worm sample is homogenous with a 

mixed-stage population of worms to ensure that each aliquot has approximately the same number 

of worms. 

 9.7 Once the worm sample has been split into appropriate aliquots, flash freeze in liquid 

nitrogen and store the sample at -80°C. 

NOTE: Do not freeze the aliquot intended for large particle flow cytometry. 

10 (Optional) Prepping Sample for Large Particle Flow Cytometry  

NOTE: Steps 10, 11, and 12 are the authors’ preferred method to record sample growth 

(i.e., population size and population distribution of C. elegans life stages) and determine success 

of a culture. Users of this protocol can substitute optional Steps 10, 11, and 12 with their own 
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metrics of growth success. Steps 10, 11, and 12 are described here for two reasons; First, so users 

who have equipment used in Steps 10, 11, and 12 can replicate these steps and secondly, to show 

validation of this growth method. 

NOTE: Step 9 above provides a good estimation of total number of worms to determine 

aliquot sizes, and step 10 is a more quantitative metric to estimate the number and population 

distribution of worms in a given sample. 

10.1 Bring the aliquot of approximately 50,000 mixed-stage worms (set aside in Step 9.6) 

up to 10 mL total volume in M9 solution. 

10.2 Make a solution composed of 1 mg/mL of E. coli and a 1:50 dilution of 0.5 M red 

fluorescent microspheres 18. 

10.3 Add 200 L of this solution to the 10 mL of mixed-stage worms in M9 and incubate 

while rocking for 20 minutes. 

10.4 After 20 minutes, centrifuge the 15 mL conical tube at 884 x G for 1 minute at 4°C.  

10.5 Aspirate off supernatant ensuring to not disturb the worm pellet. 

10.6 Wash worm pellet twice with M9 solution to eliminate excess bacteria and red 

fluorescent microspheres. 

10.7 Add 5 mL of M9 to the worm pellet and ensure pellet looks clean. If pellet is clean, 

add 5 mL of M9 with 50 mM sodium azide to both straighten and kill the worms for accurate 

counting and sizing 19.  

10.8 Document time and date when sodium azide is added to sample. 

10.9 Set sample aside on rocker until needed for large particle flow cytometry.  

NOTE: Sodium azide is known to affect nematode physiology (i.e body length, 

metabolism, and thermotolerance). Therefore, it is critical to note the time worms are exposed to 
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sodium azide as many of these physiological affects happen within a matter of minutes 20. Due to 

the known physiological effects of sodium azide on worms, this treatment will affect downstream 

image quality and should be considered. 

11 (Optional) Documenting Population Distribution and Prepping 384-well Plate for 

Imaging 

NOTE: Step 11 uses a large particle flow cytometer (LPFC). Basic knowledge of a LPFC 

is assumed in this protocol. Other methods can be substituted to document the growth and 

population distribution of samples. 

NOTE: Steps documented here are for users who plan to use a LPFC in their pipeline 21. 

11.1 Clean and prime the LPFC and allow laser(s) to warm for 1 hour prior to sorting 

samples. 

11.2 After the laser has warmed, open the “Histogram” profile and scale to a Time of Flight 

(TOF) of 2050. 

11.3 Add a bar region to the “Histogram” spanning a TOF range of 100. The first bar region 

covers a TOF of 50-150.  

11.4 Continue to create twenty bar regions each spanning a TOF range of 100. These bar 

regions will span the entire TOF range from 50 – 2050. See Supplementary Table 2.1 for the 

exact gated regions to use across the TOF distribution.  

11.5 Save this Histogram set up as an “experiment” to use in future LPFC runs. 

11.6 Select calibrated 384-well plate or calibrate instrument to a 384-well plate to dispense 

objects into. 

11.7 Once in the calibrated 384-well plate template, set template to dispense 20 gated 

objects into four wells (four technical replicates of each gated region) for each of the 20 bar regions 



 48 

created during Steps 11.3-4.  See Supplementary Table 2.2 for an example layout of how to 

dispense worms into the 384-well plate. 

11.8 Transfer sample from Step 10.9 into a 50 mL conical tube and add additional M9 

solution to achieve approximately 40 mL total volume. 

11.9 Start sorting the sample while simultaneously dispensing objects from the sample into 

the calibrated 384-well plate. 

NOTE: Ensure the flow rate of the LPFC is operating between 15-20 objects per second 

and specify no doubles to be sorted. 

11.10. Once entire sample has been sorted and the maximum number of gated regions have 

been dispensed into the 384-well plate, take the sample off LPFC and clean instrument. 

NOTE: When larger TOF regions are reached, it may become challenging to continue to 

fill the 384-well plate due to low event counts in that TOF region. Fill as many of the gated regions 

as possible to get the best idea of where C. elegans life-stages fall within the LPFC distribution 

prior to running out of sample. 

11.11 Place a sealed film on top of the 384-well plate until imaged. 

NOTE: Image plate as quickly as possible after sorting since samples are treated with 

sodium azide 20. 

NOTE: Red fluorescent microspheres can be seen in the LPFC data files to help identify 

which objects are alive worms, dead worms, dauers, or junk 22. 

12 (Optional) Imaging 384-well Plate  

NOTE: Step 12 uses a plate-reading micro confocal microscope. Basic knowledge of a 

micro confocal microscope is assumed in this protocol. Other methods can be substituted to 

document the growth and population distribution of samples. 
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12.1 Using a plate-reading micro confocal microscope with a 20X lens, take images of each 

well in the 384-well plate with the following settings (12.2-12.6): 

12.2 (A) Open the “Objective and Camera” tab and set to “10x Plan ApoLambda” mode. 

12. 3 (B) Open the “Camera Binning” tab and set to “2”.  

12.4 (C) Open the “Sites to Visit on Plate” tab and set to “4” sites per well and “overlap 

sites 10%” to later stitch together images. 

12.5 (D) Open “Wavelength” tab and set to “Brightfield 1”.  

12.6 (E) Open “Illumination” tab and set to “Transmitted light, bright sample”. 

12.7 Place the 384-well plate in the microscope and set the “Z Stack” to “Calculate Offset” 

and find the proper focal plane for the samples in the 384-well plate.  

12.8 Run the 384-well plate on the micro confocal microscope collecting four images per 

well. 

12.9 Montage the four images together to create one image per well. 

Representative Results 

Growth of C. elegans using the LSCP method yields an average of approximately 2.4 

million mixed-stage worms per sample over 12.2 days. Growth of C. elegans using the LSCP 

method enables users to generate large mixed-stage populations of C. elegans with little handling 

and manipulation of the animals, which is ideal for large-scale omics studies (Figure 2.1). Once a 

LSCP has become full of adult worms, reached a large population size, and has minimal bacteria 

left, users can harvest and estimate the population size. This point can also serve as a quality 

control by evaluating whether the population is sufficient to use in an omics pipeline (Figure 2.2). 

Population dynamics are dependent on the strain itself, behavior of the strain (i.e., burrowing 

strains tended to have lower worm recovery), and growth success (i.e., contamination). The LSCP 
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method was tested on 15 strains of C. elegans containing a mixture of Caenorhabditis Genetics 

Center (CGC) mutants and Caenorhabditis elegans Natural Diversity Resource (CeNDR) wild 

strains 23, strain genotypes are described in Supplementary Table 2.3.  

 

 

Figure 2.1: Overview of the LSCP worm growth pipeline. (A) Once received in the lab, all 

strains are prepared and frozen for long-term storage at -80°C2. (B) A “master chunk” plate is 

prepared from a frozen worm stock and stored at 15°C to be used for no longer than one month. 

(C) Each sample goes through four successive chunking steps to reduce generational stress prior 

to growing on the LSCP. (D) Five individual gravid adults are picked from the “chunk 4” 6 cm 

plate in Step (D) and spot bleached on five given areas of the LSCP. (E) The LSCP is placed in a 

Controlled Temperature room to grow at 20°C until it has become full of adult worms, reached a 

large population size, and has minimal bacteria left. (F) The worm population is harvested and 

collected for downstream steps. (G) Aliquots are created from LSCP and are flash frozen for 

downstream desired applications. 
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Figure 2.2: Overview of LSCP harvesting and estimating population size.  (A) Use 50 mL of 

M9 to wash worms off the NGMA surface and pipette worm suspension into a 50 mL conical tube. 

Repeat twice. (B) Pour 15 mL of worm suspension into a new 15 mL conical tube. Pellet worms 

by centrifuging. Aspirate off M9 + debris without disturbing worm pellet. Repeat until all 150 mL 

of worm suspension are collected. (C) Wash and centrifuge the worm pellet three times with M9 

to eliminate remaining debris. Once the sample is clean, resuspend worm pellet in 10 mL of ddH20. 

(D) Create a serial dilution of sample to estimate worm population size. Choose the dilution that 

allows you to count worms most accurately. The dilution used may change depending on the 

population size of the LSCP. Once a dilution is chosen, ensure you count worms from all three 
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aliquot replicates of that dilution. (E) Aliquot the sample onto a clean slide and count worms 

present under a dissecting microscope. (F) Split sample into appropriate-sized aliquots.  

 

The LSCP method yielded population sizes from approximately 94,500 to 9,290,000. The 

mean population size within the reference strain, PD1074, and across strains was approximately 

2.4 million worms (Figure 2.3). No significant differences were found in estimated population 

sizes between C. elegans strains over the course of an average of 12.2 LSCP growth days (Figure 

2.4). PD1074 LSCPs took between 10 – 14 days to grow to a full mixed-stage population. The 

mean growth time across PD1074 was 10 days. The slowest growing strain grew for a maximum 

of 20 days, and the fastest growing strain grew for a minimum of 10 days (Figure 2.4). 

Therefore, using this LSCP method, users can easily integrate new strains of interest into 

a study with little knowledge of developmental timing and background expertise. Note that strains 

and phenotypes that have to be maintained by picking, have fecundity defects, are heterozygous, 

or have growth defects may not work well in this pipeline. 
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Figure 2.3: LSCP method generates an average population of 2.4 million mixed-stage worms. 

The LSCP yields population sizes in the smallest population growths at around 94,500 and at the 

biggest population growths at around 9,290,000. The mean population size across all strains was 

2.4 million worms. Bars underneath C. elegans strain names indicate whether a strain is a CGC 

mutant or CeNDR natural isolate. LSCP sample size is displayed for each strain. Comparisons for 

all pairs using Tukey’s HSD Test were performed. No significant differences were observed 

between estimated population sizes across C. elegans strains (F(14,108) = 0.7, p = 0.77). Colored 

bars indicate standard color displays for respective C. elegans strain representation.  
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Figure 2.4: LSCP method generates large mixed-stage populations of worms in 10 – 20 days. 

C. elegans LSCP grew until the sample was full of adult worms, reached a large population size, 

and had minimal bacterial left. LSCPs took between 10 – 20 days to grow to a full mixed-stage 

population, depending on the strain. The mean growth time across the strains was 12.2 days. LSCP 

sample size is displayed for each strain. Each error bar was constructed using 1 standard deviation 

from the mean. Levels not connected by same letter are significantly different. Comparisons for 

all pairs using Tukey’s HSD Test. A significant difference was found in the amount of growth time 

on LSCP needed across C. elegans strains (F(14,108) = 8.8, p < 0.0001*). Colored bars indicate 

standard color displays for respective C. elegans strain representation. 
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Large particle flow cytometry and imaging of samples allows users to document 

population distribution. A wide variety of platforms can be used to measure successful 

population growth. For reproducible omics measurements, it is important to grow consistent 

cultures. The metrics of culture reproducibility are number of worms and a consistent size 

distribution for a given strain. We show that the sample distribution for the reference strain, 

PD1074 – a variant of the original N2 Bristol strain, using the LPFC 18, 21 and micro confocal 

microscope as proxies for growth success. As worms were measured from the L1 stage through 

gravid adult on the LPFC distribution (Figure 2.5), subsequent imaging (Figure 2.6), and the 

variation in the population distribution across samples (Figure 2.7), we can see that this pipeline 

is generating a mixed-stage population of C. elegans. 

To take a closer look at the population distribution of our mixed-stage samples, we looked 

at the distribution of 35 PD1074 LSCPs by looking at the percent of worms that fall within each 

region across the entire Time of Flight (TOF) (i.e., body length) distribution (Figure 2.7A and B).  
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Figure 2.5: Mixed population and growth measurement of the wild-type reference strain, 

PD1074. A representative LPFC distribution of one LSCP growth of the wild-type reference strain, 

a variant of the original N2 Bristol strain, (PD1074) documents the size distribution and event 

counts of a mixed-stage population. The x-axis displays the length (Time of Flight, TOF) of the 

worms sorted. The y-axis displays the optical density (optical extinction, EXT) of the worms 

sorted. Each data point is a worm that was documented in the sample. Each TOF region that was 

used for image analysis is displayed in a different color. Twenty TOF regions were created (R2 – 
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R21) ranging from a TOF of 50 to 2050. Details on each TOF region can be found in 

Supplementary Table 2.1.  

 

 

Figure 2.6: Images of worms sorted from TOF regions ranging from R2 – R12 show the 

PD1074 LPFC distribution. In region R2, L1 worms can be identified and in region R9 

predominately gravid adults are identified spanning the two developmental larval extremes giving 

us approximate regions within the flow cytometer distribution of where stages are expected in the 

distribution. Scale bar represents 1 mm. Representative images were taken from the LPFC 

distribution displayed in Figure 2.5, and the colored boxes correspond to regions from Figure 2.5. 
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Figure 2.7: Population distribution across time of flight (TOF) regions in the wild-type 

reference strain, PD1074. Distribution of worms across the entire TOF region showing in which 

regions worms are found. Each PD1074 LSCP is represented as an individual color. (A) The x-

axis shows the twenty TOF regions (R2 – R21) observed and counted for the LSCP displaying the 

entire size distribution. The y-axis shows the percent of worms from a given LSCP that had a body 

size that fell into a given TOF region. (B) As a smaller fraction of the worm population falls 

between the R7-R21 regions, the log of the percent of worms that fell within each region was taken 
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to display the population distribution. The x-axis displays the R7-R21 TOF regions. The y-axis 

displays the log of the percent of worms from a given LSCP that had a body size that fell into a 

given TOF region. 

 

Discussion 

Contamination by mold, fungi, or other bacterial sources can occur at any step in the LSCP 

method, so handle samples with care. By growing the LSCP in a controlled setting, the user can 

more easily track the growth of the sample and document potential contamination. If the surface 

of the LSCP becomes contaminated, either cut out the contamination when possible and let the 

sample continue to grow or discard the sample if the contamination is not possible to control. It is 

imperative to address contamination quickly to reduce unwanted growth and to ensure it is not 

outcompeting worms for resources. 

This method is meant for those who want to grow large-scale mixed-population cultures of 

C. elegans. Although it may be possible to grow synchronized populations of worms on the LSCP 

as done on commercially available petri dishes and in liquid culture, the authors have not tested 

this option. Additionally, if users wish to grow more than approximately 2.4 million worms on 

average in a given sample, a different method is recommended. Growth success is dependent on 

the strain being processed in the pipeline. The authors were able to successfully grow populations 

of approximately 2.4 million worms in at least five biological replicates of 15 C. elegans strains, 

indicating that the method is robust. 

This method allows the user to harvest large populations of worms with all life cycle stages 

present. With current methods available, collecting large-scale samples of C. elegans requires 

bleach synchronization to obtain the number of worms desired for downstream work. Given this 
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approach, one can now grow as many worms as previously possible in fermenters or large-scale 

liquid cultures without the difficulties associated with bleach synchronizing and multiple handling 

steps. Our protocol allows one to target strains of interest efficiently, use minimal handling time 

in growing the sample itself, and isolate stages of worms or the population as needed in 

downstream pipelines. 

Future Applications 

The authors are using samples grown in the method described here to identify unknown 

metabolites in various strains of C. elegans via Liquid Chromatography – Mass Spectrometry, 

NMR spectroscopy, and RNA sequencing. The authors plan to continue to use this method for 

growth of samples in this pipeline with a variety of C. elegans strains as new strains of interest can 

be easily processed using this pipeline. 
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 CHAPTER 3 
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Abstract 

 Large-scale untargeted metabolomics studies suffer from batch effects and instrument 

variability issues, making comparisons within and across studies difficult. To identify stable 

features, we used a set of anchors: a reference strain during sample collection, blocks during data 

collection, and appropriate controls. Anchor samples allowed for the identification of stable 

features. Five datasets from three studies of Caenorhabditis elegans were collected by nuclear 

magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-

MS). By exploiting variation among anchor samples, we found 34% and 14% of features to be 

significant in LC-MS and NMR, respectively. Comparing differences between mutants and natural 

strains (NS) and independently assaying NS for variation in the same features, we found that 20-

50% of features varied in a mutant and among a set of genetically diverse NS. Features that varied 

in response to a mutation and showed variation in NS are excellent targets for compound 

identification. 

Introduction 

Untargeted metabolomics studies compare the variation in small molecules caused by 

genetic perturbations, treatments, and environmental differences1. Metabolomics is a powerful tool 

in biomarker discovery and holds great promise for precision medicine2-4. Targeted metabolomics 

is common in studies exploring human health questions that range from aging5, 6 to complex 

diseases7-12. An advantage of untargeted metabolomics for these questions is the ability to reach 

beyond sets of well studied compounds to explore differences in an unbiased way13. Despite the 

attractiveness of an unbiased survey, untargeted metabolomics has well known challenges. In 

particular, the collection of highly variable biological material in a reproducible manner across 

batches remains an unsolved analytical challenge. These effects make the identification of 
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differential compounds and comparisons of their abundances across datasets challenging. 

Chemical annotation of compounds requires considerable time and labor14; therefore, it is essential 

to prioritize spectral features based on their likely biological significance. Given this bottleneck, 

it is essential to find novel ways to prioritize spectral features and overcome intractable challenges 

such as matrix effects, instrument drift, and batch variation15-18.   

Batch effects across experiments are a problem in untargeted metabolomics and a barrier 

to adopting these methods19. Although normalization strategies are improving15, 16; non-linear 

effects20, sample variation, the inability to separate environmental variance, and analytical 

artifacts17 still pose ongoing challenges. While different approaches to sample-based and data-

based normalization have been described, such as total protein content, total ion count (TIC), and 

pooled QCs12, 21, reproducibility and heteroscedasticity (variability across variables) issues remain 

problematic22-26. 

Our goal, and that of many studies, is to compare groups across large numbers of samples27-

30. As sample size increases, challenges associated with variation must be accounted for 

appropriately. In metabolomics studies, variation in pre-analytical sample collection (growth), 

analytical sample preparation (extraction), and data collection (instrument)31 can be confounded 

(Figure 3.1). Identification of shared spectral features using biological reference materials (BRM) 

is a successful strategy31, 32 that has proven essential in large-scale studies32-34. Implementation of 

BRM controls for instrument variation can estimate and normalize extraction variation16, 18, 31. 

However, the challenge of inter-sample variation remains. Metabolites may only be present in 

some samples or some batches. This inter-sample variation in metabolites present within a study 

may be due to genetic variation among individuals or variation in environmental conditions. In 

both liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) 
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spectroscopy, ambiguity in whether features are generated by genetic or environmental factors 

coupled with batch effects and challenges in peak picking algorithms present obstacles to apply 

untargeted metabolomics to broader studies17, 35. 

Although tools to handle extraction and instrumentation variation exist, they can still be 

limited in their utility in large studies for samples with complex matrices33, 35, 36. Here, we use the 

model system Caenorhabditis elegans to demonstrate how anchor samples, defined as replicates 

of the reference strain that augment the experimental design, can be combined with known control 

strategies to disentangle heteroscedasticity in order to focus on genetic variation in spectral 

features without compound identification37-39. 

C. elegans is a model organism ideally suited to study conserved small molecules in 

metabolism40-42. The worm’s short life cycle, self-fertilization of homozygous hermaphroditic 

individuals, ease of cultivation, and ability to propagate large numbers of animals43 are ideal for 

large-scale studies42, 44-46. These traits allow one to (i) develop, test, and validate approaches to 

identify stable spectral features, (ii) demonstrate the feasibility of large-scale biochemical pathway 

analyses with genetic mutants, and (iii) focus on spectral features likely to reveal essential 

components of metabolic pathways by comparing features that vary in large and small genetic 

perturbations.  

We designed three C. elegans studies to link metabolic variation across mutants and wild 

strains. The first and second studies comprised central metabolism (CM) mutants and UDP-

glycosyltransferases (UGT) mutants as examples of primary and secondary metabolism, 

respectively. CM mutants have been used in studies showing that diagnostic changes can be 

associated with human disease47, 48. UGTs are an evolutionarily diverse class of Phase 2 enzymes 

involved in detoxification49, 50. Although UGTs are vital to internal detoxification across species, 
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the functions of UGTs have not been well described due to complex regulatory factors49-52. The 

third study comprises genetically diverse natural strains (NS) from a broad geographic base, used 

to describe natural variation in the metabolome of C. elegans53. We included N2, a widely used 

laboratory-adapted strain, and three strains selected from natural habitats worldwide54.  

Collectively, CM and UGT mutants, and NS, allow us to (i) identify spectral features that 

vary between genetic perturbations, (ii) compare the same spectral features across all three studies 

without compound identification, and (iii) plan future experiments that can be directly compared 

to these studies. The anchor design proposed here is straightforward to execute in model systems. 

An anchor design is an experimental design that includes a reference strain alongside every test 

strain in an experiment during growth and collection, augmenting the design. This technique is 

common in agricultural studies as it was first proposed to account for the rampant variation among 

field plots and the need to compare large numbers of genotypes across heterogeneous 

environments38, 39. The inclusion of anchor samples during data acquisition prioritizes the focus 

on stable features across a wide range of environmental conditions. Significant spectral features 

that vary across studies are of interest and more likely to elucidate reactions in biochemical 

pathways. 

Results 

Here, we provide a method to identify spectral features and a straightforward meta-analytic 

approach that includes three studies dispersed across six acquisition batches.  This demonstration 

is comprised of 104 independent samples to produce five analytical datasets (3 LC-MS and 2 

NMR, two complementary technologies commonly used in untargeted metabolomics). This 

method (Figures 3.1 and S3.1) showcases how the use of anchor samples, strict quality control 
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and assurance (QA/QC), and peak picking strategies identifies stable spectral features that reflect 

the genotype rather than experimental or environmental variation. 

Anchor samples are pooled to identify stable spectral features 

Stable spectral features are identified across three diverse studies of C. elegans strains. Our 

first study comprised of CM mutants (n = 5) identifies spectral features involved in central 

metabolism. The second study, UGT mutants (n = 5), identifies spectral features affected by Phase 

2 enzymes involved in the detoxification system. The third study, NS (n = 4), assesses natural 

genetic variation. Collectively, these studies represent the common genetic paradigms of general 

interest to metabolomics and genetic researchers (See Table S3.1 for full strain details).   

Due to stringent QA/QC methods, filtering, and peak picking, datasets were reduced to 

only include stable spectral features detected in the anchor strain. Thus, the number of stable 

spectral features detected across LC-MS and NMR fractions are as follows: 3953 in reverse phase 

(RP) LC-MS positive, 377 in RP LC-MS negative, 199 in hydrophilic interaction liquid 

chromatography (HILIC) LC-MS positive, 585 in NMR polar, and 487 in NMR non-polar. An 

instrument failure occurred during the collection of the HILIC negative data preventing the use of 

that dataset (see Methods).  

LC-MS spectral feature identification is challenged by inconsistencies in the presence of 

chromatographic peaks across replicates, retention time drift complicating peak alignment, non-

linear batch effects, and algorithmic limitations in estimating peak abundances in complex 

spectra26, 55-58. Including multiple anchor samples and pooled anchor samples in each batch can 

mitigate these issues. We collected samples from genotype PD1074 in every block during the 

large-scale culture plate (LSCP) growth process43. These samples anchor the three studies and 

enable inter-study comparisons37, 39. 
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PD1074 LSCPs are genetically identical, leading to the expectation that the spectral 

features present in each biological replicate are a result of the strain’s genetic composition as they 

are stable across an extensive range of growth conditions (samples collected over six months) 

(Figure S3.2). Individual PD1074 anchor samples are extracted separately and pooled to average 

the growth and extraction variance (repeat extractions, n=20 for NMR, n =18 for LC-MS). During 

data acquisition, we included an anchor pool in each batch as one of several controls (Figure 

3.1C). Comparing the anchor pools for each batch (n=12) across all batches (n=6) enables the 

identification of spectral features present across instrument runs over months. Further, the 

selection of features present in all anchor samples ensures stable features across a range of 

environmental conditions (Figure 3.1). Iterative batch average method (IBAT) controls in the 

NMR study combined with the anchor PD1074 samples and the anchor pools enabled us to 

estimate the relative contribution of growth (~60%), extraction (~40%), and instrument variance 

(negligible)31. By including anchor samples during peak picking (see Methods), we found that 

97% of the selected features are present in the independently collected IBAT controls in the NMR 

experiment, validating this approach for feature selection.  
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Figure 3.1. Experimental design overview. (A) Each C. elegans LSCP is grown and harvested 

with at least one PD1074 anchor control (sample growth variation captured) (Figure S3.2). (B) 

Multiple independent PD1074 anchor samples and test strains (NS, CM mutants, or UGTs), IBAT 

references, and blanks are included in each batch for LC-MS or NMR (batch preparation variation 

captured). (C) Each test strain is collected in two sequential batches. A total of six batches in three 

sets with instrument controls, library standards, replicate injections of the pooled test, and PD1074 

anchor samples (instrumentation variation captured) are in each run. (D) In LC-MS, stable PD1074 

spectral features were first identified from PD1074 pools and retained if present above the level of 

the blank in 100% of the individual PD1074 spectra. In NMR, semi-automated peak-picking and 

binning were performed to extract peak heights and identify stable peaks present in PD1074 

samples. (E) Data analysis was performed using meta-analysis models to identify spectral features 

of interest. 
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Meta-analysis identifies differences in spectral features between test and reference strains 

without the need for complex normalization 

For each spectral feature, the difference between the PD1074 anchor LSCP (n=6-10) and 

each test strain (n=2-6) was estimated for each batch. We identified statistically significant spectral 

features by comparing a single test strain to the control and performing a meta-analysis across the 

two batches59. By comparing test samples to the PD1074 anchor sample within the batch, we did 

not need to estimate and remove batch variance 37. Although it is common in metabolomics 

experiments to use human plasma, urine, or commercially available reference materials, these 

samples are made in batches of finite material, creating referencing issues in long-term studies 

when batches of standards are exhausted31. Instead, we used the inter-sample variation within 

batches to compare the test and control samples and estimated a relative effect size in each batch 

(meta-analysis) (Figure 3.1E). We compared this new approach with a linear models analysis60 

(Figure S3.3) and demonstrated that final inferences are very similar, as predicted in larger studies 

that have compared individual analyses and meta-analytic approaches60. An advantage of the meta-

analysis is the ability to apply this technique generally, even when there are complex patterns of 

variance such as those present in cohort studies or due to technical variation (e.g., after an 

instrument interruption). We then leverage the effect sizes calculated from the anchored design to 

compare strains to each other even when data acquisition occurred independently.  

We see a similar pattern across platforms for the percentage of significant features 

identified across the three studies, with the highest percentage found in the RP LC-MS (-) dataset 

(Figure 3.2A). The highest percentage of significant spectral features was 58% in the CM mutant 

study. In the individual strains, the CM mutant, VC1265 (pyk-1) had the largest overall effect 

across platforms and fractions, followed by RB2347 (idh-2). AUM2073 (unc-119) and KJ550 
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(aco-1) had the smallest overall effects (Figures 3.2B, 3.3, and S3.4). For the UGT mutants, 

VC2512 (ugt-60) had the largest overall effect, followed by RB2607 (ugt-49). RB2011 (ugt-62) 

had the smallest overall effect (Figures 3.2C and S3.5). These patterns demonstrate the variation 

in single knockouts of different genes with similar functions. In the NS, the most genetically 

divergent strains from PD1074 (CB4856 and DL238) had the largest overall effect in both 

platforms, and N2 had a small set of differences, as expected, since N2 is a variant of PD1074 

(Figures 3.2D and S3.6). 
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Figure 3.2. Summary of significant spectral features found in each analytical platform and 

across the three studies identified via the meta-strain model. (A) Percent of significant features 

found in at least one strain in each of the five technologies. Significant spectral features identified 

in at least one strain by study are displayed for (B) central metabolism mutants, (C) UGT mutants, 

and (D) natural strains. Strains at zero have no significant spectral feature differences from the 

anchor strain, PD1074. Strains at one have the most significant spectral feature differences from 

PD1074. Significant feature totals are summarized at the end of the plot and detailed in Table 3.1, 

which lists the total spectral features identified via the meta-strain model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Non-polar Polar RP + RP - HILIC +

AUM2073 11 29 175 8 3

KJ550 9 14 110 17 10

RB2347 23 22 421 38 14

VC1265 25 49 671 79 42

VC2524 19 13 261 24 4

Total CM sig. features by 

platform
87 127 1638 166 73

RB2011 2 6 237 21 16

RB2055 8 20 161 34 10

RB2550 11 23 200 18 5

RB2607 18 17 539 69 9

VC2512 33 72 736 101 34

Total UGT sig. features 

by platform
72 138 1873 243 74

N2 1 3 22 6 7

DL238 18 15 631 52 19

CX11314 13 16 254 44 7

CB4856 23 29 869 113 17

Total NS sig. features by 

platform
55 63 1776 215 50

146 228 2541 281 115Total sig. features by platform

StrainStudy Group NMR LC-MS

Number of significant spectral features 

UGT 

mutants 

(UGT)

Central 

metabolism 

mutants 

(CM)

Natural 

Strains (NS)
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Table 3.1. Summary of significant spectral features found in all three studies across NMR 

and LC-MS in the meta-strain model. The total number of significant spectral features in the 

meta-strain model (p < 0.05) for a given strain and each analytical platform are listed. 

 

 

 

Figure 3.3. Heatmaps of significant spectral features identified via the meta-strain model in 

the CM mutant study. (A) RP LC-MS positive mode (B) RP LC-MS negative mode (C) HILIC 

LC-MS positive mode (D) NMR polar (E) NMR non-polar. For each heatmap, the first five 

columns are strains, and each row represents a spectral feature with an effect size that is 

consistently higher or lower relative to PD1074 in that study. The effect sizes range from (2 to -

2). Positive effect sizes (i.e., the strain had a higher peak at that given metabolic feature than the 

anchor PD1074) are displayed in red. Negative effect sizes (i.e., the anchor PD1074 had a higher 

peak at that given metabolic feature than the test strain) are displayed in blue. The right-hand 

column indicates the number of strains in which a given spectral feature is statistically significant. 

See Figure S3.4 for significant spectral features identified via both the meta-strain and meta-study 

models. 
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Analysis of features across studies 

The percentage of significant features in each of the mutant studies (CM and UGT) that 

overlapped in at least one NS (Figure 3.4) were features of interest for follow-up compound 

identification. CM mutant strains AUM2073 (unc-119) and RB2347 (idh-2) share 75% and 68% 

of their significant features with a NS, respectively. UGT mutants, RB2607 (ugt-49) and RB2055 

(ugt-1) share 67% and 62% of their significant features with a NS, respectively. RB2011 (ugt-62) 

had the most overlap with the NS sharing 67% of its significant features in RP LC-MS (+) and 

44% in HILIC LC-MS (+). See Figures S3.7 and S3.8 for significant feature overlap across study 

comparisons. 

We focused on compounds affected in any CM mutants and used those to identify which 

UGTs and NS had genetic variation in those same compounds for the NMR polar data. Using 

COLMAR61, we identified three putative compounds significant in strains from all three studies. 

Of the 35 putative compounds showing evidence for metabolic variation in the NMR data 13 were 

annotated (see Table S3.2).  

 Nine putative compounds show metabolic variation in response to the pyk-1 mutation 

(Figure 3.5). The mutation in pyk-1 affects a large portion of the metabolome. The gene pyk-1, is 

involved in one of the last enzymes of glycolysis, encoding for pyruvate kinase and responsible 

for glycolytic ATP production. The depletion of lactic acid production is consistent with the 

mutation in pyk-162 in the strain VC1265. We saw the depletion of lactic acid in the DL238 (NS), 

and an increase in VC2512 (ugt-60) (Figure 3.5). As expected, none of the 13 compounds 

identified in the NMR polar dataset were significant in N2 (Figure 3.5). Interestingly, these 

compounds were also insignificant in CX11314, RB2055 (ugt-1), RB2607 (ugt-49), and RB2011 
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(ugt-62). Using the meta-study model, we identified significantly different features within the NS 

that were otherwise not significant in a single strain (meta-strain model) (Figure S3.9). 

 

 

Figure 3.4. Percent of significant features for each of the mutant studies (CM and UGT) that 

are also significant in at least one NS by analytical platform. (A) UGT mutants (B) CM 

mutants. Data points at zero indicate the analytical platform detected no significant spectral 

features shared between the mutant strain and a natural strain. Data points at one indicate all 

significant spectral features for the mutant strain are shared with a natural strain for that analytical 

platform.  
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Figure 3.5. Heatmap of metabolites identified by NMR. Significant NMR spectral features in 

the central metabolism mutants are compared across UGT mutants and natural strains. Muted 

boxes indicate that the metabolite is not significant for that strain. Deep blue boxes indicate the 

metabolite is significant and more abundant in the anchor strain, PD1074. Deep red boxes indicate 

the metabolite is significant and more abundant in the strain listed. For compounds with more than 

one significant feature, the highest effect size feature is used for this figure. The significant 

compound list provides metabolites to pursue in subsequent experiments. See Table S3.2 for 

compound annotation list and details. 
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Discussion 

The anchor design enables the same spectral features to be analyzed across current and 

future experiments. We elected to use PD1074 as our anchor as it is a trackable variant of the 

laboratory-adapted strain, N2. A decision to focus on stable features in the anchor strain instead of 

unique features in test strains enables the use of the anchor strain in downstream studies. The 

implementation of this method is not limited to a single genotype; multiple strains of interest can 

be used as anchors if they are included as individual samples and QC pools throughout the study. 

A focus on spectral features present despite environmental variation eliminates the need to 

annotate compounds prior to across study comparisons. The barrier is not a limit in the number of 

spectral features that can be detected, but the number that can be identified. 

In non-model organism experiments, implementation of a BRM31, 34 with multiple 

extractions in each batch and a pooled control enables stable feature identification. We recently 

developed techniques that reduce the burden of BRM31 development. However, in the LC-MS 

data, we demonstrate that in the absence of a BRM, pooled anchor samples can be used to connect 

the experiment over time and identify stable features even with variable data acquisition 

conditions. For example, these scenarios can include periods of instrument maintenance which can 

affect data quality. 

A similar approach has been suggested by normalizing to a QC or BRM material included 

in each batch10, 15, 16. Perhaps of most value to experimental success is the inclusion of several 

alternate strategies for stable feature identification. Even though a high abundance of features due 

to contaminants from sample preparation are present in the LC-MS dataset, the anchor design and 

use of individual PD1074 samples along with their pools enable the identification of stable spectral 

features. We include multiple individual samples from a control group and a pool in each batch to 
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filter features that vary due to environmental variation during sample collection. Additionally, this 

provides the added benefit of enabling a straightforward calculation of the relative effect size for 

each test strain by batch that can be used later to combine batches or compare test strains. 

Our analysis focuses on a single anchor genotype and allows us to compare the effect of 

all common stable spectral features across experiments. The same result can be achieved by 

identifying a control group. Studies where data are acquired over time can be compared because 

they are connected by the anchor samples. Anchors enable spectral features to be prioritized for 

future studies so that database matching and, ultimately, compound identification efforts are 

focused on the most likely biologically important spectral features. This aspect is important as 

model systems and genetic studies7, 9, 63 increase in size and complexity31, 36, 64, 65.   

Effect sizes calculated in the meta-strain model are comparable to those calculated by a 

linear model analysis, demonstrating the successful implementation of meta-analysis when sample 

sizes are small (Figure S3.3). Additionally, we demonstrate how a list of significant spectral 

features can be used to focus NMR compound identification efforts (13 annotated compounds) 

(Figure 3.5). A similar approach can be used for LC-MS where features are annotated using 

accurate mass, elemental formula, MS/MS database matching, and in silico predictions of spectral 

features. Compound identification approaches for LC-MS are challenging and oftentimes require 

orthogonal data for confident annotations. This approach allows future MS/MS experiments to 

target spectral features of interest. The existence of multiple anchor control samples can be used 

to collect these specific features rather than relying on the data-dependent acquisition (DDA) or 

iterative DDA approaches. In silico prediction methods for NMR and MS/MS have improved 

accuracy; however, they remain computationally expensive and intractable, especially as 

molecular weight increases.1H and 13C 1D NMR and MS/MS fragmentation in silico predictions 
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can be prioritized for target features identified with this approach66. However, ambiguity is 

expected to remain for large molecular weight formulas, although the set of possible compounds 

can be significantly reduced67. 

 Mapping metabolites in pathways is complicated because many metabolites are involved 

in multiple pathways and/or have yet to be described. The genetic mutation approach used to 

annotate gene function in pathways has had limited success in untargeted metabolomics because 

of the inability to track features across experiments, the exclusion of relevant mutants needed for 

a comprehensive study, and the necessity of subsequent rescue experiments to discern pathway-

gene relationships. Using a meta-study approach, we identify significant features across a study 

that are not differentially expressed in meta-strain comparisons (Figure S3.8). This allows for the 

identification of significant spectral features when small sample sizes prohibit statistical inferences 

in the meta-strain model or when batch effects are large contributing to heteroscedasticity. 

Similarly, untargeted studies of collections of genotypes68 using an anchor genotype, in this case 

PD1074, can leverage data across experiments and increase the utility of untargeted metabolomics 

for genetic studies and may increase the efficiency of the compound identification process14. 

Online Methods 

C. elegans Strain Selection  

This study used 15 Caenorhabditis elegans strains obtained from the Caenorhabditis 

Genetics Center (CGC) and Caenorhabditis elegans Natural Diversity Resource (CeNDR) 41. 

Fourteen C. elegans strains were used as ‘comparison strains,’ and one strain, PD1074, was used 

as the ‘reference strain’ (Table S3.1). These strains were selected to cover the diversity of interests 

in the metabolomics community, to encompass samples with mutations in primary and secondary 

metabolism, along with natural strains.   
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C. elegans Sample Growth and Preparation  

Large populations of nematodes were generated for every biological replicate with minimal 

variability43. The stable Escherichia coli (E. coli) IBAT (iterative batch average method) BRM 

and food source used throughout this experiment was described previously31. Briefly, a large-scale 

culture plate (LSCP) was used for each biological sample to generate a large mixed-stage 

population of worms (four to seven LSCP replicates per test strain). For each LSCP, worms were 

collected, population size estimated, and subsequently divided into at least 12 identical aliquots of 

200,000 worms in ddH2O and flash-frozen in liquid nitrogen and stored at -80°C43. As a quality 

control sample, C. elegans IBAT BRM was generated and saved in 200,000 worm aliquots31.  

Study Design 

Each C. elegans strain was reared with at least one PD1074 LCSP (i.e., anchor sample). 

Sample collection for all three studies lasted more than six months. Each culture initiation and 

harvest included at least one LSCP of PD1074. To ensure handling was consistent, no more than 

five LSCPs were handled at a given time. There are 29 independent PD1074 LCSPs collected and 

104 independent test strain sample LSCPs. The PD1074 represents an augmented (i.e., anchor) 

design37, 39, where one PD1074 replicate (‘check’) was matched with each test strain replicate 

(‘new treatments’) where the test strains have fewer replicates than PD1074s, augmenting the 

standard design.  

Iterative Batch Average Method (IBAT) in PD1074 

An IBAT control31, made up of pools of PD1074, was generated to assess batch variance 

across the six batches in this study. Briefly, aliquots of PD1074 were pooled together to generate 

a BRM that (i) minimizes the variance between batches of PD1074 BRM, (ii) can be used 
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throughout large-scale experiments, and (iii) can be used to determine the magnitude of variation 

at multiple points in a metabolomics experiment. See Gouveia et al., 2021 for more details on the 

IBAT process31. 

Lyophilization  

Frozen aliquots of 200,000 C. elegans worms were retrieved from -80°C and lyophilized 

in a VirTis® BenchTop™ “K” Series Freeze Dryer (SP Industries, Inc.). After lyophilization, each 

aliquot was weighed and stored at -80°C until homogenization.  

Batching and Quality Control Across Analytical Platforms 

Up to 24 extractions could be performed simultaneously based on centrifuge capacity 

limitations. Six extraction batches were needed to accommodate all the strains. Extraction batches 

were designed in sets of two consecutive batches so that each test strain has all replicates measured 

in close proximity. The test strains belong to three studies, and the studies are used to create three 

sets of two batches each, for a total of six batches. The three sets were collected back-to-back in 

NMR but are separated in time by some months in the LC-MS, although the column and instrument 

are the same for all three sets. There was a needle failure between batches 5 and 6 in the HILIC 

LC-MS run. The NS were collected in batches 1 and 2, most of the CM mutants in batches 3 and 

4 (exception, AUM2073 and VC2524 were collected in batches 5 and 6), and the UGT mutants 

were mostly in batches 5 and 6 with (exception, RB2011 was collected in batch 1). Each extraction 

batch includes half of the replicates for each test sample type (balanced across two consecutive 

batches), a set of PD1074 anchor LCSPs, the IBAT control, and an extraction blank. Extraction 

blanks were processed with test strain and PD1074 aliquots to control for homogenization and 

extraction steps to account for non-biologically related LC-MS or NMR features that arise from 

sample preparation. Test LSCPs were unique to a batch, but aliquots from the same PD1074 LSCPs 
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may be included more than once. Multiple aliquots of the same LSCP enables QC of feature 

selection and alignment were included as these differ only by technical variance (i.e., instrument 

and extraction) (Figure 3.1). 

NMR Sample Homogenization and Extraction  

Frozen lyophilized C. elegans aliquots were retrieved from -80°C. 200 μL of 1 mm zirconia 

beads (BioSpec Products) were added to each sample and homogenized at 420 rcf for 90 seconds 

in a FastPrep-96 homogenizer and subsequently placed on dry ice for 90 seconds to avoid 

overheating; this step was repeated twice for a total of three rounds. 

Using the homogenized samples, 1 mL of 100% IPA chilled to -20°C was added to the 

lyophilized/homogenized sample powder and Zirconia beads in two increments of 500 μL. After 

each addition of 500 μL, samples were vortexed for 30 seconds – 1 min., and left at room 

temperature (RT) for 15 - 20 minutes. After RT incubation, samples were stored overnight (~12 

hours) at -20°C. Samples were centrifuged for 30 minutes at 4°C (20,800 rcf). The supernatant 

was transferred to a new tube to analyze non-polar molecules. 1 mL of pre-chilled 80:20 

CH3OH:H2O (4°C) was added to the remaining worm pellet to analyze polar molecules. The polar 

fraction was allowed to shake at 4°C for 30 minutes. Samples were centrifuged at 20,800 rcf for 

30 minutes at 4°C. The supernatant was transferred to a new tube to analyze non-polar molecules. 

Both polar and non-polar samples were placed in a Labconco Centrivap at RT and monitored until 

completely dry. Once dry, polar samples were reconstituted in D2O (99%, Cambridge Isotope 

Laboratories, Inc.) in a 100 mM sodium phosphate buffered solution with 0.11 mM sodium 2,2-

dimethyl-2-silapentane-5-sulfonate (DSS-D6; 98%; Cambridge Isotope Laboratories, Inc.). Once 

dry, non-polar samples were reconstituted in CDCl3 (99.96%; Cambridge Isotope Laboratories, 
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Inc.). Samples were vortexed until fully soluble, and 45 μL of each sample were transferred into 

1.7 mm NMR tubes (Bruker SampleJet) for acquisition.  

NMR Acquisition 

To collect the polar fraction, one-dimensional (1D) 1H NMR spectra were acquired with a 

noesypr1d pulse sequence on a NEO 800 MHz Bruker NMR spectrometer equipped with a 1.7mm 

TCI cryoprobe and a Bruker SampleJet autosampler cooled to 6°C. During acquisition, 32,768 

complex data points were collected using 128 scans with two additional dummy scans. The spectral 

width was set to 15 ppm.  

To collect the non-polar fraction, one-dimensional (1D) 1H NMR spectra were acquired 

with a zg pulse sequence (zg30). During acquisition, 65,536 complex data points were collected 

using 64 scans with four additional dummy scans. The spectral width was set to 20.2 ppm.  

In addition, immediately after each 1D acquisition, a 2D J-resolved spectrum is collected 

using the Bruker pulse program jresgpprqf. For both the polar and non-polar fractions, 8,192 and 

40 points were collected using eight scans, four dummy scans, and spectral widths of 16 and 0.09 

ppm, respectively. See metabolomics workbench Study IDs (NMR polar: ST002095; NMR non-

polar: ST002096) for additional acquisition parameters and data. 

For metabolite identification the web server COLMARm was used. As inputs three two-

dimensional experiments 1H-1H TOCSY (dipsi2gppphzspr), 1H-13C HSQC (hsqcetgpsisp2.2) 

and 1H-13C HSQC-TOCSY (hsqcdietgpsisp.2) collected on separate pooled PD1074 polar 

samples were used. The HSQC experiment was collected using 6250 and 720 points in the indirect 

and direct dimensions, 32 scans and 16 dummy scans and a spectral width of 13 ppm for the proton 

and 165 ppm for the carbon dimensions. The HSQC-TOCSY experiment parameters were identical 

to HSQC except for 32 dummy scans and a 90 ms mixing time. The TOCSY experiment was 
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collected with 7272 points and 800 points in the indirect and direct dimensions, 32 scans and 16 

dummy scans, a spectral width of 11.367 ppm in both dimensions and a mixing time of 90 ms. 

Peak picking and spectral match against hydrophilic metabolite databases (i.e., HMDB and 

BMRB) was carried out by COLMARm using 0.04 and 0.3 ppm chemical shift cutoffs for 1H and 

13C respectively and a matching ratio cutoff of 0.6. See metabolomics workbench Study IDs (NMR 

polar: ST002095; NMR non-polar: ST002096) for all the acquisition parameters and data. 

NMR Data Processing 

Following data acquisition, the data were processed using NMRPipe 69. Fourier transform, 

an exponential line broadening of 1.5 Hz and manual phase correction were carried out. Using the 

tools from (MATLAB, The MathWorks, R2019a70), the spectra were referenced at 7.24 ppm using 

the CDCl3 resonance, and the polar extracts are referenced at 0.00 ppm using DSS. Solvent regions 

were removed followed by baseline correction using a statistical smoothing function71. Alignment 

was performed using CCOW72 and PAFFT73 algorithms. Manual curation of semi-automated 

peak-picking was carried out by peak picking that used a binning algorithm74 to extract peak 

heights. This was done separately for blanks and samples. Individual spectral features were 

removed if detected in the solvent and process blanks using the BFF function in SECIMtools75.  

Two-dimensional NMR experiments were also processed using NMRPipe. Spectra were 

Fourier transformed, a 90O shifted sine window function and automatic zero filled applied, 

manually phased and referenced to DSS. 

Stable spectral features were compared between individual PD1074 samples, PD1074 

pools, and IBAT controls.  
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LC-MS Sample Homogenization and Extraction  

Using glass and zirconium oxide beads, the aliquots were homogenized for three minutes in a 

Qiagen Tissuelyser 2. Homogenized worms were extracted with 1.5 mL of isopropanol (IPA) at -

20°C overnight (approximately 12 hours), then pelleted and the supernatant transferred to separate 

2 mL centrifuge tubes. Supernatants were then dried to completion in a Labconco Centrivap and 

stored at -80°C for non-polar LC-MS analysis. The pellet was extracted a second time using 80:20 

methanol:water (CH3OH:H2O) (v:v) for 20 minutes at RT while shaking at 1500 rpm. Samples 

were again pelleted to separate proteins, and the supernatant was transferred to separate 2 mL 

centrifuge tubes, dried down to completion, and stored at -80°C for polar LC-MS analysis. 

LC-MS Acquisition and Processing 

Each instrument run for a single batch included the following controls with replicate injections 

at the beginning and end of the batch: instrument control, extraction blanks, pooled test sample 

aliquots, and pooled PD1074 anchor aliquots. In the middle of the batch, individual test samples 

and PD1074 controls were injected in a randomized order to reduce systematic bias. 

Non-polar extracts were reconstituted in 75 µL of IPA containing isotopically labeled lipid 

standards and analyzed by LC-MS using a ThermoFisher Scientific Accucore C30 150 x 2.1mm, 

2.6 µm column paired with a Thermo Fisher Orbitrap ID-X in positive and negative polarity. Polar 

(80:20 CH3OH:H2O) extracts were reconstituted in 75 µL of 80:20 CH3OH:H2O containing 

isotopically labeled arginine, hypoxanthine, hippuric acid, and methionine (Cambridge Isotope 

Laboratories, Inc.) and analyzed by LC-MS using a Waters BEH Amide 150 x 2.1 mm, 1.7 µm 

column paired with a Thermo Fisher Orbitrap ID-X in positive and negative polarity. LC-MS/MS 

data for each mode of analysis was collected using three rounds of iterative DDA (Thermo 

Scientific AcquireX) performed on pooled test samples. 
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Data for each sample was collected in full MS1 with a resolution of 240,000 FWHM (full-

width half-maximum) and MS/MS spectra of pooled samples were collected at a resolution of 

30,000 FWHM using a 0.8da isolation window and stepped HCD collision energies of 15, 30, and 

45. See supplemental information for detailed LC-MS parameter settings. Thermo .raw files were 

converted to centroid mode and .mzML format using Proteowizard’s MSconvertGUI tool76. Raw 

files are deposited at metabolomics workbench Study ID ST002092. Pre-processing steps, input 

parameters, and set values used for LC-MS data are listed in Table S3.4. 

Selection of stable LC-MS spectral features  

A plasticizer contamination event precluded us from quantitatively assessing the 

performance of an IBAT control in the LC-MS experiments and was eliminated from the LC-MS 

data. Instead, we used the 12 PD1074 anchor pools encompassing the individual PD1074 anchor 

samples in a two-step procedure. We use the PD1074 anchor samples here because these anchor 

pools are present by design in each of the three sets and six batches for the initial peak picking and 

alignment. First, these samples were averaged over extraction variance but differ based on 

instrumentation variation across batches. In the second step, we retained the subset of peaks only 

present in 100% of the individual PD1074 samples to focus on stable peaks across growth 

conditions. Here, we focus on peaks present across multiple individual samples of the same 

genotype, PD1074, a variant of the laboratory-adapted strain N2, but any strain of C. elegans could 

serve this purpose. 

 The 12 pooled PD1074 samples were used to estimate optimal parameters, and then these 

parameters were applied to all samples using a memory-efficient algorithm SLAW 

(https://github.com/zamboni-lab/SLAW).77 Only spectral features above the blank threshold of 

100 for all 12 anchor pools were retained for further analysis. SLAW offers the following peak 
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picking algorithms: XCMS centWave78, 79, OpenMS FeatureFinderMetabo80, 81, and MZmine 

ADAP82, 83 For this study, ADAP was selected as the peak picking algorithm84. The SLAW 

algorithm is predicated upon the assumption that the experimental design includes identical QC 

samples across an experiment (e.g., BRM) in intervals during data collection. This inclusion is 

typical in large-scale studies31, 85, 86, but the selection of stable spectral features across extraction 

variance is not standard. While the benefits of including QC samples are known and recently have 

been implemented in peak picking and alignment optimization workflows that traditionally have 

not scaled to large data87, the inclusion of anchored samples during sample generation, analytical 

measurement, and data processing is novel.   

 Spectral peaks were filtered further using the individual PD1074 anchor samples. We took 

a conservative approach requiring 100% of the PD1074 samples to have each spectral feature 

present above the blank. This focuses the experiment and our attention on spectral features that are 

likely to be present in a subsequent independently prepared MS2 experiment in the compound 

identification process, and not spectral features present sporadically due to variation in growth or 

extraction. 

Quality Control Assessments for LC-MS and NMR Data  

Stable spectral features were rank transformed (i.e., raw data is replaced by ranks where 

the lowest rank has the smallest peak height, and the highest rank has the largest peak height for a 

given spectral feature). QC assessments included Standard Euclidean Distance (SED), principal 

component analysis (PCA), coefficient of variation (CV), Bland Altman (BA), and sample density 

distributions to identify potential feature artifacts and/or atypical samples75. See Table S3.3 for 

QC parameters and thresholds used to identify stable mass features75. PCA is used to visualize 

distortions due to batch or genotype. BA plots on pools and anchor samples within a batch were 
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used to visualize alignment variation, and BA plots on replicate aliquots of the same anchor 

samples were used to verify the success of the alignment across batches. Per feature CV is 

examined to identify any wildly aberrant features and was used to help refine the quantification of 

the solvent front. 

Sample outliers were identified based on the SED plots. Chromatograms of samples whose 

distance to other samples did not cross the 95% percentile for the distribution of pairwise distances 

were manually examined for chromatography failure. The PD1074 LSCP sample “aos54” failed 

the QC assessment for NMR. The PD1074 LSCP samples “aos53” and “aos41” failed the QC 

assessment for RP LC-MS datasets. Test strain “aos49” in batch 5 is removed from all datasets, 

and test strain “aos25” in batch 1 was removed from the HILIC LC-MS positive dataset. Samples 

were removed from further consideration in their respective datasets. 

Meta-analysis on LC-MS and NMR Data  

All replicates of a particular genotype were contained within two sequential batches: 

however, different test strains within the same study span multiple sets. We used meta-analysis for 

each feature to compare the test genotype to the control, where each batch is treated as an 

‘experiment’ using a fixed effects (FE) model using standardized mean difference (SMD)75, 

referred to as “meta-strain” model throughout. Positive effect sizes indicate that the test strain has 

a higher peak than PD1074 for a given chemical feature. Negative effect sizes indicate PD1074 

has a higher peak than the test strain for a given chemical feature. Each strain was tested against 

PD1074 to see if that feature is differentially expressed between PD1074 and the test strain. We 

also used meta-analysis to compare test genotypes to each other, referred to as the “meta-study” 

model throughout. For example, for the five UGT mutants (i.e., RB2011, RB2550, RB2055, 
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RB2607, and VC2512) we tested whether a feature is differentially expressed between the test 

strain and anchor in all five test genotypes. See supplemental information for more details. 

NMR 1H 1D spectra Annotation 

 Significant features obtained from the “meta-strain” analysis of the CM mutants were 

selected for identification. The 2D experiments HSQC, HSQC-TOCSY, and TOCSY were 

collected from a pooled PD1074 sample. These data served as inputs to the public webserver 

COLMARm88 (Complex Mixture Analysis by NMR), an application that allows us to 

simultaneously and interactively compare multiple 2D spectra data to HMDB89, BMRB90, and 

NMRShiftDB91 publicly available databases. Only the significant features were annotated. 

Annotation confidence scores per compound are detailed in Table S3.2 according to the previously 

reported levels as described elsewhere92. 

 Further annotation details can be found in the COLMAR outputs submitted to 

Metabolomics Workbench. Figure 3.5 illustrates the annotated compounds. Only the feature with 

the highest effect size was selected for compounds with more than one significant feature. After a 

list of compounds was identified, WormFlux44 was used to explore the effects of the CM mutants 

on the C. elegans metabolic network. 

Code Availability 

The python code for QA/QC is available through GitHub 

(https://github.com/secimTools/SECIMTools) and can be run via a Galaxy install 

(https://docs.galaxyproject.org/en/master/) or from a command line interface.  The meta-analysis 

(meta_analysis.py) and rank transformation (add_group_rank.py) python code are available on the 

SECIMtools GitHub page. The Matlab functions used as well as instructions and version control 

are available at https://github.com/artedison/Edison_Lab_Shared_Metabolomics_UGA.  

https://github.com/secimTools/SECIMTools
https://docs.galaxyproject.org/en/master/
https://github.com/artedison/Edison_Lab_Shared_Metabolomics_UGA
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Data Availability 

 These data are available at the NIH Common Fund's National Metabolomics Data 

Repository (NMDR) website, the Metabolomics Workbench, 

https://www.metabolomicsworkbench.org where it has been assigned Study ID (LC-MS: 

ST002092; NMR polar: ST002095; NMR non-polar: ST002096). The data can be accessed 

directly via its Project DOI: http://dx.doi.org/10.21228/M82978. This work is supported by NIH 

grant U2C-DK119886. Methods and protocols used in this study are available on protocols.io 

(NMR: dx.doi.org/10.17504/protocols.io.b2rbqd2n), LCMS: 

(dx.doi.org/10.17504/protocols.io.bahjib4n). 
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CHAPTER 4 

DISCUSSION AND FUTURE DIRECTIONS 

 Untargeted metabolomics is a powerful approach to understand how metabolites shape 

complex phenotypes and their interactions. To take full advantage of the rich data generated in 

metabolomics studies, a robust experimental design and workflow must be implemented to collect 

data that addresses the study hypothesis and makes biologically meaningful conclusions. This 

dissertation summarizes suggested methodological approaches to implement in untargeted 

metabolomics experiments. 

Benefits and Limitations to the Presented Methods 

The LSCP growth method, implementation of an anchor design, and identification of stable 

spectral features enables future experiments to adopt these methods and compare results to past 

and future studies. Chapter 2 showed that the LSCP growth method allows users to grow and 

harvest large mixed-stage populations of C. elegans for metabolomics studies without the 

challenges associated with multiple bleaching steps, liquid culture handling, or synchronization of 

multiple strains with different developmental timings. LSCPs allowed us to collect strains of 

interest and generate large C. elegans populations in each sample for LC-MS and NMR data 

collection at multiple institutions.  

The biggest limitation in the LSCP method is the inability to identify unique metabolites 

or metabolic shifts for a given developmental stage, as we did not focus on culturing a single C. 

elegans life cycle stage. It may be possible to grow synchronized populations of worms on the 
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LSCPs as done on commercially available petri dishes and in liquid culture. However, if other 

researchers are interested in the LSCP method to synchronize strains to a single life cycle stage, a 

few factors should be kept in mind: (i) sample handling time will increase and (ii) growth rate will 

vary depending on the strain's mutation(s), behavior, and growth conditions. 

In Chapter 3, the ability to track stable features in the anchor strain PD1074 provides an 

opportunity to compare C. elegans LC-MS and/or NMR spectroscopy data across experiments, 

laboratories, and project goals of any study that implements a common anchor strain. The anchor 

design and use of anchor samples allowed us to apply rigorous QA/QC methods that aided in the 

identification of stable features that reflect the genotype of the anchor strain instead of 

experimental or environmental variation, an issue commonly faced in metabolomics experiments. 

While metabolomics experiments regularly detect tens of thousands of spectral features, most of 

these detected features are unstable or are not biologically meaningful1. Our methods greatly 

reduce the number of spectral features analyzed in a dataset, which will allow us to focus on a 

narrowed list of stable and biologically meaningful features during compound identification. 

Additionally, these methods enable a comparison of data across studies. The benefits listed here 

will be of great use to the untargeted metabolomics community. 

While there are many benefits to the approaches presented in Chapter 3, there are 

limitations to consider. Mapping metabolites in genetic pathways is complicated because many are 

involved in multiple pathways and/or pathways that have yet to be described2, 3. Here, we 

attempted to identify how central metabolism (CM) and UDP-glucronosyltransferases (UGT) 

mutations affected the identified spectral features and/or compounds. While we did track stable 

anchor features across mutant strains, our approach is limited as not all relevant mutants needed 

were included, and subsequent rescue experiments to discern gene pathway relationships were not 
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performed. To pinpoint how genetic mutations affect the metabolome, the implementation of 

stable features for the test strains, the inclusion of all relevant mutants in a pathway, and rescue 

experiments would need to be performed. 

 Additionally, we decided to focus on stable features in the anchor strain instead of unique 

features in the test strains to use the anchor strain in downstream studies that include large mutant 

or natural strain panels. Thus, if a feature is not identified and stable in the anchor strain, it was 

omitted from the performed analyses. All test strains have biologically unique features and 

metabolites that are not present in the anchor strain; this approach loses that information. Notably, 

while we did not focus on unique test strain features here, a user could adjust the peak picking 

strategy and thresholds to focus on those unique features.  

Future Studies: Implementation of Methods in the TOR Signaling Pathway 

Over the past two years, we have collected data on the target of rapamycin (TOR or mTOR) 

pathway. TOR is a conserved serine/threonine kinase that regulates cell growth and metabolism in 

response to environmental cues4. Here, we have implemented the experimental methods described 

in Chapters 2 and 3 to focus on C. elegans strains with mutations in (1) multiple genes and (2) the 

same genes in the TOR pathway (Figure 4.1). 

By focusing on one pathway and collecting data on multiple genes within the TOR 

pathway, we will be able to see the metabolite shifts and changes that are up or downstream from 

mutations. For example, since PDK is upstream of AKT (Figure 4.1) we hypothesize that the 

knockout of pdk-1 would affect AKT and its subsequent metabolic contribution. By including a 

test strain with a mutation for pdk-1 and akt-1, we can directly test our hypothesis by collecting 

the metabolic profile of two strains directly next to one another in the TOR pathway. 
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The value of focusing on different strains with a mutation at the same gene allows us to 

build in an additional control, as we hypothesize that strains with a mutation in the same gene 

display the same metabolomic differences. For example, we have collected data on GR1318 (pdk-

1) and PJ1134 (pdk-1), which are both strains with mutations for the gene pdk-1 and dominant 

suppressors of the daf-c phenotype of age-1 (i.e., animals become increasingly 

sluggish/immobilized as they age). Therefore, we hypothesize that GR1318 and PJ11314 will have 

similar metabolic profiles. Once data from the TOR samples are processed, we plan to compare 

that study to those presented here. We also plan to continue using described methods to analyze 

new strains of interest. 

 

Figure 4.1 mTOR Signaling Pathway. The mammalian (mechanistic) target of rapamycin 

(mTOR) is a highly conserved serine/threonine protein kinase, which exists in two complexes 

termed mTOR complex 1 (mTORC1) and 2 (mTORC2). mTORC1 contains mTOR, Raptor, 

PRAS40, Deptor, mLST8, Tel2 and Tti1. mTORC1 is activated by the presence of growth 

factors, amino acids, energy status, stress, and oxygen levels to regulate several biological 

processes, including lipid metabolism, autophagy, protein synthesis and ribosome biogenesis. On 

the other hand, mTORC2, which consists of mTOR, mSin1, Rictor, Protor, Deptor, mLST8, Tel2 

and Tti1, responds to growth factors and controls cytoskeletal organization, metabolism, and 

survival. Red boxes indicate biological replicates for strains carrying a mutation at that point in 

the pathway have been collected. Collection of additional strains in the mTOR pathway is in 

progress. Stars indicate we have multiple strains carrying a mutation for that gene in the mTOR 

pathway. mTOR signaling pathway reproduced with permission from KEGG Pathway entry: 

cel04150 (https://www.kegg.jp/entry/pathway+cel04150). 

https://www.kegg.jp/entry/pathway+cel04150
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Future Studies: Application of Methods to the Fraction Library and Compound Identification 

Processes 

 Consortium collaborators have created a fraction library on the anchor strain PD1074. 

Spectral features and overlapping compounds identified through processes described in Chapter 3 

(Figure 3.5 and Table S3.2) can be further explored, annotated, and validated through a fraction 

library process. As the interactions between metabolites and macromolecules are dynamic, these 

functional interactions are difficult to capture and are largely ignored in metabolomics research5. 

However, NMR is an avenue to study the function of metabolites through the creation and analysis 

of fraction libraries5. Briefly, chromatographic fractionation allows for the collection of fractions 

at distinct time intervals and concentrates complex biological samples (e.g., from C. elegans 

samples)5, 6. Concentrated fractions can bridge the sensitivity gap between NMR and LC-MS, and, 

importantly, reduce spectral overlap, improving the process of metabolite annotation.  

Future Studies: Implementation of MALDI-MSI to Identify Stage Specific Chemical Features 

 Finally, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is an 

ionization technique that uses a laser energy absorbing matrix to create ions with minimal 

fragmentation. MALDI MS has low volume requirements and can quickly produce information 

rich MS datasets using a 384 well-plate format. As mentioned above, a limitation to the presented 

methods is the inability to identify C. elegans stage-specific chemical features. However, using 

samples sorted into wells by TOF from the LPFC (Chapter 2), we hypothesize that MALDI-MS 

can be used to identify size specific metabolites detected by changes in the C. elegans cuticle. C. 

elegans shed their cuticles at each life cycle stage (see Figure 1.1), thus the MALDI-MS technique 

can be used to differentiate chemicals between life cycle stages. MALDI imaging MS (MALDI-

IMS) is a technique that records mass spectra as a function of position across a biological tissue 
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sample, yielding images of chemical distribution. Methods have been developed to use MALDI-

MSI to record chemically relevant data on single intact nematodes7. We hypothesize that the stage-

specific features identified can then be spatial localization and mapped by MALDI-IMS.  

 We collected preliminary MALDI-MS (+) data on a PD1074 sample sorted by TOF to see 

if we could identify separation by C. elegans body size (Figure 4.2). Preliminary data shows that 

small regions and large regions do separate well. Additional studies should be performed to 

determine the stage of worms that are encompassed in each of those TOF regions to see if stages 

are indeed being separated. Once stage of worms is confirmed by microscopy (Chapter 2), we can 

assign chemical specific features to a life-cycle stage. This would aid studies presented here and 

future studies that use a LSCP growth method as we would be able to still take advantage of using 

a mixed-stage population while also knowing the relative abundance of each stage in a given 

sample and better understand the chemical dynamic occurring in a population of nematodes. 
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Figure 4.2 PCA of MALDI-MS chemical features from a PD1074 sample that has been sorted 

by TOF. TOF regions are displayed by color. Each region spans a TOF range of 100. Regions 

here encompass a total TOF range of 50 – 750. Data points of the same color represent technical 

replicates. Each data point encompasses 20 nematodes. See LPFC methods in Chapter 2 for TOF 

region details.   

 

 In conclusion, better tools and methods continue to improve the process of compound 

annotation. Work presented in this thesis showcases a unique approach not commonly used or 

adapted in untargeted metabolomics studies but can be integrated across studies on most 

organisms. 
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Supplementary Figure 2.1: Mean daily temperature (°C) of growth conditions under which 

the LSCP was grown and handled. Reported temperatures of the Controlled Temperature (CT) 

room were documented and collected throughout the six-month span of sample growth and 

collection. The average daily temperature is reported here. No significant differences were 

observed between the temperature in which the LCSP grew during the duration of the project 

(F(5,24) = 2.59, p = 0.0524). The entire temperature difference spanned no greater than 0.003°C 

throughout the six-month duration of sample growth and generation.  
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Supplementary Table 2.1: TOF gated regions used to sort worms into 384-well plates for 

imaging. Binned regions were created to span a TOF of 100 across the entire TOF distribution 

from 50 – 2050. Gated regions can be changed and optimized to suit your needs. Each TOF region 

that was used for image analysis is displayed in a different color. 

 

 

 

 

 

 

Gated Region TOF Distribution (.2us)

R2 50 - 150

R3 150 -250

R4 250 - 350

R5 350 - 450

R6 450 - 550

R7 550 - 650

R8 650- 750

R9 750 - 850

R10 850 - 950

R11 950 - 1050

R12 1050- 1150

R13 1150 - 1250

R14 1250 - 1350

R15 1350- 1450

R16 1450 - 1550 

R17 1550 - 1650 

R18 1650 - 1750 

R19 1750 - 1850

R20 1850 - 1950

R21 1950 - 2050
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Supplementary Table 2.2: 384-well plate template of TOF regions and replicate layout. Every sample was sorted into a 384-well 

plate for imaging. Four replicates were created for each region selected for sorting. Gated regions can be changed and optimized to suit 

your needs. See Supplementary Table 1 for specific gated regions created and used in this protocol. Each TOF region that was used for 

image analysis is displayed in a different color. 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A R2 R2 R2 R2 R3 R3 R3 R3 R4 R4 R4 R4 R5 R5 R5 R5 R6 R6 R6 R6 R7 R7 R7 R7

B R8 R8 R8 R8 R9 R9 R9 R9 R10 R10 R10 R10 R11 R11 R11 R11 R12 R12 R12 R12 R13 R13 R13 R13

C R14 R14 R14 R14 R15 R15 R15 R15 R16 R16 R16 R16 R17 R17 R17 R17 R18 R18 R18 R18 R19 R19 R19 R19

D R20 R20 R20 R20 R21 R21 R21 R21

E

F

G

H

I

J

K

L

M

N

O

P
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Supplementary Table 2.3: C. elegans strains used in this protocol contain a mixture of CGC 

and CeNDR strains. The strain, genotype, strain source, and details are described in this table. 

 

 

 

Strain Geneotype Source About

N2 WT CeNDR WT

RB2011
ugt-62 

(ok2663)
CGC Homozygous. Gene knockout ugt-62

AUM2073 unc-119 CGC
GSK-3 promotes S-phase entry and progress in germline stem clls to maintain tissue 

output

KJ550 aco-1 CGC

aco-1  encodes an aconitase that is homologous to mammalian iron regulatory protein-

1 (IRP1); aco-1 activity is required for normal brood sizes and, under iron stress 

conditions, for normal lifespan and L4-to-adult growth rates

DL238 WT CeNDR WT

RB2607 ugt-49 CGC Homozygous. Gene knockout ugt-49

VC2524 gpd-2 CGC gpd-2  encodes one of four glyceraldehyde-3-phosphate dehydrogenases (GAPDHs)

CX11314 WT CeNDR WT

RB2055
ugt-1 

(ok2718)
CGC Homozygous. Gene knockout ugt-1

RB2347 idh-2 CGC

idh-2 encodes a predicted mitochondrial isocitrate dehydrogenase; by homology, 

IDH-2 is predicted to catalyze the formation of alpha-ketoglutarate from isocitrate as 

part of the citric acid cycle

VC1265 pyk-1 CGC
pyk-1  encodes for one of two pyruvate kinases. Essential for embryonic 

devleopment

RB2550
ugt-23 

(ok3541)
CGC Homozygous. Gene knockout ugt-23

CB4856 WT CeNDR WT

VC2512 ugt-60 CGC Homozygous. Gene knockout ugt-60

PD1074 WT CeNDR WT
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Supplemental Information 

Reverse Phase (RP) chromatography method 

 Non-polar extracts were separated using a Vanquish liquid chromatograph (ThermoFisher 

Scientific), fitted with a ThermoFisher Scientific Accucore™ C30 UPLC RP column (2.1 x 150 

mm, 2.6 µm particle size). The compounds were eluted with the following gradient: 60:40 

acetonitrile:water (ACN:H2O) with 10 mM ammonium formate and 0.1% formic acid (mobile 

phase A) and 90:10 isopropanol:acetonitrile with 10 mM ammonium formate and 0.1% formic 

acid (mobile phase B) using the following gradient program: 0.0 min 20% B; 1.0 min 60% B; 5.0 

min 70% B; 5.5 min 85% B; 8.0 min 90% B; 8.2-10.5 min 100% B; 10.7-12.0 min 20% B. A curve 

5 value was set for 0.0 minutes, and a curve 6 for the remainder of the gradient. The flow rate was 

set at 0.400 mL min-1. The column temperature was set to 50°C, and the injection volume was 2 

µL. The following internal standards were spiked in for RP analysis: 15:0-18:1(d7) PC, 15:0-

18:1(d7) PE, 15:0-, 18:1(d7) PS, 15:0-18:1(d7) PG, 15:0-18:1(d7) PI, 18:1(d7) LPC, 18:1(d7) 

LPE, 18:1(d7) Chol Ester, 15:0-18:1(d7) DG, 15:0-18:1(d7)-15:0 TG, 18:1(d9) SM, and 

Cholesterol (d7).   

Hydrophilic Interaction Liquid Chromatography (HILIC) method 

 Polar extracts were separated using a Vanquish liquid chromatograph (ThermoFisher 

Scientific), fitted with a Waters Acquity UPLC BEH Amide column (2.1 x 150 mm, 1.7 µm 

particle size). The compounds were eluted with the following gradient: 80:20 water:acetonitrile 

(H2O:ACN) with 10 mM ammonium formate and 0.1% formic acid (mobile phase A) and 100% 

ACN with 0.1% formic acid (mobile phase B) using the following gradient program: 0.0-0.5 min 

95% B; 8.0-9.4 min 40% B; 9.5-11.0 min 95% B. A curve 5 value was set for 0.0 minutes, a curve 

6 at 0.5 min, curve 7 at 8.0 min, and a curve 6 for the remainder of the gradient. The flow rate was 
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set at 0.400 mL min-1. The column temperature was set to 40°C, and the injection volume was 2 

µL. 

Mass spectrometer settings and methods   

 An Orbitrap ID-X Tribrid mass spectrometer (ThermoFisher Scientific) equipped with a 

HESI ion source was used for all mass spectrometry data collection. For HILIC analysis the mass 

spectrometer was run in full MS mode at a resolution of 240,000 (FWHM at m/z 200) for the 

duration of the chromatographic gradient. A normalized automatic gain control (AGC) target of 

100% was set with a maximum injection time of 100 ms. A tune file with the following source 

conditions was used for positive and negative mode: spray voltage (+) 3500, spray volage (-) 2500, 

vaporizer temperature: 275 ⁰C, sheath gas: 40, aux gas: 8, sweep gas: 1, and S-Lens RF level: 60%. 

Scan range covered m/z 70-1050. Calibration was conducted using ThermoFisher Pierce™ 

Negative Ion Calibration Solution and Pierce™ LTQ Velos ESI Positive Ion Calibration Solution 

prior to collecting negative and positive mode data, respectively.   

 Identical parameters were used for reverse-phase analysis with the following exceptions: 

spray voltage (+) 3500, spray volage (-) 2800, maximum injection time of 200ms, vaporizer 

temperature: 425 ⁰C, sheath gas: 60, aux gas: 18, sweep gas: 4, and a scan range of m/z 150-2000. 

Growth of C. elegans using the LSCP method yields on average 2.4 million mixed-stage 

worms per sample 

 Growth of C. elegans using the LSCP method generates large mixed-stage populations of 

C. elegans with minor handling and manipulation of the animals, ideal for metabolomics 

experiments. Population dynamics depend on the strain’s behavior (i.e., burrowing strains tend to 

have lower worm recovery) and growth success (i.e., contamination). The LSCP method yields 

population sizes from approximately 94,500 to 9,290,000. The mean population size within the 
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anchor strain, PD1074, and across strains is approximately 2.4 million worms (Figure S3.2). 

PD1074 LSCPs take between 10 – 14 days to grow to a full mixed-stage population. The mean 

growth time for PD1074 is ten days. The slowest growing strain grows for a maximum of 20 days, 

and the fastest growing strain for a minimum of 10 days (Figure S3.2). Strain-dependent variation 

in growth rate is to be expected because of the wide range of strains and traits included in this 

study. Notably, growth time is not indicative of the final population size (Figure S3.2). Additional 

information on C. elegans growth and population dynamics has been presented previously1. 

Variation between PD1074 and N2 

The anchor strain PD1074, obtained from CeNDR, is a variant of the traditionally used 

laboratory-adapted N2 Bristol strain. PD1074 is used in this study as it is a variant of N2 with a 

trackable evolutionary history2. Here, we include N2, obtained from CeNDR, as one of our natural 

strains as an additional way to validate our methods and processes. Phenotypically, compared to 

PD1074, N2 is not significantly different in the amount of time needed to cultivate a population or 

the resulting population size (Figure S3.2). Metabolically, N2 is most similar to PD1074 showing 

16 total feature differences in the RP LC-MS (+) data, six feature differences in the RP LC-MS (-

), and seven differences in the HILIC LC-MS (+) data (Table 3.1), indicating little difference 

between N2 and PD1074. In the non-polar NMR data, N2 has three significant feature differences 

and seven significant feature differences in the polar NMR data (Table 3.1), having many fewer 

spectral features differentiating from PD1074. Both the phenotypic and metabolic data showcase 

that these strains are very similar. In contrast, in the RP LC-MS modes, N2 has up to a 50-fold 

difference from the other strains (Figure S3.5). 

Model comparison for batch effect corrections  
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 Meta-analysis is a statistical analysis that combines summary statistics instead of an 

analysis of individual samples3, 4. A meta-analysis can be used to account for the batch effects in 

untargeted metabolomics. In a traditional meta-analysis, an effect size is calculated for each study 

and then combined and weighed by the individual study sample sizes 5, 6. As meta-analysis is a 

promising approach to address the complicated variance structure in a straightforward way, and 

has been shown to be equivalent to more complex linear model approaches on individual data on 

larger sample sizes3, we demonstrate that meta-analysis, even with relatively small sample sizes 

per group (n=6 for test samples), is very similar to a mixed effects model with the variance modeled 

appropriately7. This study design makes it possible to apply both approaches and compare 

inferences directly. In other more complex situations modeling the individual-level data can be 

very challenging.  The meta-analysis model was formally compared to the linear model in several 

formulations, and in each case, the meta-strain model has similar statistical inferences as the linear 

model, consistent with the literature on larger sample sizes4. To mirror the comparison in Lin & 

Zeng (2010)3, a fixed-effect model or random effect model can be used to infer a true biological 

effect from the effects estimated from individual batches. The fixed-effect model assumes that the 

underlying effect sizes in all batches are identical and treats the inverse of the variance of each 

batch effect size as the weight to account for all variabilities in each batch.  

 Contrary to the fixed-effect model, a random-effect model assumes that the underlying 

effect size in all batches is similar but not identical. As there are just a few batches in this study, a 

fixed-effect model is applied. We use the fixed-effect model effect size estimate: 

𝜃̅𝑤 =  
∑ 𝑤𝑖 𝜃𝑖

𝑘
𝑖=1

∑ 𝑤𝑖
𝑘
𝑖=1
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where wi is a weight calculated as the inverse of variance for the effect size in batch i, and 

𝜃̅𝑤 is the effect size of interest inferred from the individual effect sizes in batches. For the ANOVA 

comparison the effect size is calculated as: 

 

𝜃̅ =
𝑙𝑠𝑚𝑒𝑎𝑛𝑡𝑒𝑠𝑡 − 𝑙𝑠𝑚𝑒𝑎𝑛𝑃𝐷1074

𝑠𝑑
 

 

𝑠𝑑 =  √𝑛 ∗ 𝑠𝑒 

 

 To illustrate the comparability between these approaches, we compare the linear model by 

batch l, where strain i  is the independent variable and ion signal for each spectral feature m, and 

test replicate j is the response variable:  

 

𝑌𝑚𝑙𝑖𝑗 = 𝜇 + 𝑏𝑎𝑡𝑐ℎ𝑙 +  𝑠𝑡𝑟𝑎𝑖𝑛𝑖 + 𝑒𝑙𝑖𝑗 

 

The example depicted is typical, with the number of features detected in the linear model 

consistently slightly higher than the meta-analysis4. This is consistent with the slight benefit in the 

degrees of freedom estimates from the combined model on individual data. The effect size 

estimates are consistent. Batch effects across experiments are an enormous problem in 

metabolomics experiments, and the inability to adequately address this in a mixed model analyses 

is a well-known problem4, 7. Meta-analysis presents a straightforward way of comparing data 

across experiments. 
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Supplemental Figures 

 

Supplemental Figure 3.1. Unified workflow for spectral feature selection across platforms. 

Steps and software listed to obtain spectral features. LC-MS-specific steps are listed on the left 

side of each process. NMR-specific steps are denoted on the right side of each process. When 

neither NMR nor LC-MS is indicated, the same steps are performed on data from both analytical 

platforms (see Methods for detailed documentation). 
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Supplemental Figure 3.2. LSCP method generates, on average, a population of 2.4 million 

mixed-stage C. elegans populations. The LSCP yields population sizes in the smallest population 

growths at around 94,500 worms and the biggest population growths at around 9,290,000 worms. 

The mean population size across all strains was 2.4 million worms. Bars underneath C. elegans 

strain names indicate each strains study. Comparisons of population size for all pairs using Tukey’s 

HSD test were performed. No significant differences are observed between estimated population 
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sizes across C. elegans strains. Colored data points indicate the growth time (days) to generate a 

given LSCP sample.  

 

 

Supplemental Figure 3.3: Comparing the inferences from a linear model and meta-analysis 

(meta-strain) using the test genotype, VC1265. There are six panels in the plot. (A) Displays the 

p-values where the y-axis is from 0-1 and represents the significant results (p-value < 0.05) in the 

linear model. (B) displays the effect size distribution for effect sizes in the x-axis for the scatter 
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plot. (C)  is a scatter plot, where the x-axis is the effect sizes calculated by the meta-anlaysis model 

and the y-axis is the lsmean difference calculation. Each point is one spectral feature. (D) displays 

the effect size distribution for effect sizes in the y-axis for the scatter plot. Point colors represent 

significance of the test of the null hypothesis where the mean peak height for VC1265 is not 

different from the mean peak height of PD1074 with a nominal threshold p-value < 0.05. Red 

points are significant in both models. Orange points are significant in the linear model. Blue points 

are significant results in the meta-analysis model. Grey points indicates that spectral feature is not 

significant in either model. Red lines in (A) and (E) are significance thresholds for the nominal p-

value < 0.05 on the other test. (F) summarizes the results. 
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Supplemental Figure 3.4. Heatmaps of significant spectral features identified via the meta-

strain and meta-study models in the CM mutants study. (A) RP LC-MS positive mode (B) RP 

LC-MS negative mode (C) HILIC LC-MS positive mode (D) NMR polar and (E) NMR non-polar. 

The first two columns on the left-hand side pertain to the meta-study model results. The yellow 

and black bar highlights the significant features found in the meta-study model, followed by the 

meta-study heatmap. The following five columns within the heatmap compare the spectral features 

for a given strain in the meta-strain model. For each heatmap, each row represents a spectral feature 

with an effect size that is consistently higher or lower relative to PD1074 in that study (meta-strain) 
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or across strains (meta-study). The effect sizes range from (2 to -2). Positive effect sizes (i.e., the 

strain had a higher peak at that given metabolic feature than the anchor PD1074) are displayed in 

red. Negative effect sizes (i.e., the anchor PD1074 had a higher peak at that given metabolic feature 

than the test strain) are displayed in blue. The right-hand column indicates the number of strains 

in which a given spectral feature is statistically significant in the meta-strain model.  
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Supplemental Figure 3.5. Heatmaps of significant spectral features identified via the meta-

strain and meta-study models in the UGT study. (A) RP LC-MS positive mode (B) RP LC-MS 

negative mode (C) HILIC LC-MS positive mode (D) NMR polar and (E) NMR non-polar. The 

first two columns on the left-hand side pertain to the meta-study model results. The yellow and 

black bar highlights the significant features found in the meta-study model, followed by the meta-

study heatmap. The following five columns within the heatmap compare the spectral features for 

a given strain in the meta-strain model. For each heatmap, each row represents a spectral feature 

with an effect size that is consistently higher or lower relative to PD1074 in that study (meta-strain) 

or across strains (meta-study). The effect sizes range from (2 to -2). Modes denoted with an asterisk 

have effect sizes that range from (4 to -4). Positive effect sizes (i.e., the strain had a higher peak at 

that given metabolic feature than the anchor PD1074) are displayed in red. Negative effect sizes 

(i.e., the anchor PD1074 had a higher peak at that given metabolic feature than the test strain) are 

displayed in blue. The right-hand column indicates the number of strains in which a given spectral 

feature is statistically significant in the meta-strain model. 
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Supplemental Figure 3.6. Heatmaps of significant spectral features identified via the meta-

strain and meta-study models in the NS study. (A) RP LC-MS positive mode (B) RP LC-MS 

negative mode (C) HILIC LC-MS positive mode (D) NMR polar and (E) NMR non-polar. The 

first two columns on the left-hand side pertain to the meta-study model results. The yellow and 

black bar highlights the significant features found in the meta-study model, followed by the meta-

study heatmap. The following five columns within the heatmap compare the spectral features for 

a given strain in the meta-strain model. For each heatmap, each row represents a spectral feature 

with an effect size that is consistently higher or lower relative to PD1074 in that study (meta-strain) 
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or across strains (meta-study). The effect sizes range from (2 to -2). Modes denoted with an asterisk 

have effect sizes that range from (4 to -4). Positive effect sizes (i.e., the strain had a higher peak at 

that given metabolic feature than the anchor PD1074) are displayed in red. Negative effect sizes 

(i.e., the anchor PD1074 had a higher peak at that given metabolic feature than the test strain) are 

displayed in blue. The right-hand column indicates the number of strains in which a given spectral 

feature is statistically significant in the meta- strain model. 
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Supplemental Figure 3.7. Significant features found via the meta-strain model across the 

three study groups in NMR. (A) NMR polar (B) NMR non-polar. Fourteen strains in the CM 

mutants (yellow), UGT mutants (purple), and NS (green) are displayed. Horizontal bar plots sum 

the total number of significant features for a strain. Vertical bar plots sum significant feature 

interactions within and across strains. Significant feature connections below three are not 

displayed.  
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Supplemental Figure 3.8. Significant features found via the meta-strain model across the 

three study groups in LC-MS. (A) RP LC-MS positive mode (B) RP LC-MS negative mode (C) 

HILIC LC-MS positive mode. Fourteen strains in the CM mutants (yellow), UGT mutants 

(purple), and NS (green) are displayed. Horizontal bar plots sum the total number of significant 

features for a strain. Vertical bar plots sum significant feature interactions within and across 

strains. Significant feature connections below three are not displayed for all modes, except for the 

RP LC-MS positive mode, where connections below 15 are not displayed. 
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Supplemental Figure 3.9. Forest plot comparing the meta-strain and meta-study models in 

the NS for the NMR polar ppm 2.3291. The meta-strain model for each NS in each batch is 

displayed, where the area of each square is proportional to the study’s weight in the meta-analysis 

with confidence intervals (CI) represented by whiskers. The dashed vertical line represents the 

overall measure of effect. The right-hand column is the measure of effect (odds ratio) for each 

study. The meta-study model (FE model) is represented by the red diamond, where the lateral 

points indicate CI for the estimate.  
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Supplemental Tables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Table 3.1. C. elegans genotypes used in study.  

 

 

 

Strain Genotype Source About Study Group

PD1074 wild type CeNDR wild type Anchor Strain

AUM2073
unc-119; vizSi34 II; unc-

119(ed3) III.
GSK-3 promotes S-phase entry and progress in germline cells to maintain tissue output

KJ550 aco-1 (jh131) X.

Exhibits aconitate hydratase activity. Is involved in tricarboxylic acid metabolic process. 

Localizes to cytosol. Is expressed in seam cell. Is an ortholog of human ACO1 (aconitase 

1).

RB2128
idh-1; 

F59B8.2(ok2832) IV.

idh-1 encodes a predicted cytosclic isocitrate dehydrogenase; by homology, IDH-1 is the 

formation of alpha-ketoglutarate from isocitrate, Is predicted to have isocitrate 

dehydrogenase (NADP+) activity and metal ion binding activity. Is expressed in tail. Is an 

ortholog of human IDH1 (isocitrate dehydrogenase (NADP(+)) 1).

RB2347 idh-2(ok3183) X.

Is predicted to have isocitrate dehydrogenase (NADP+) activity and metal ion binding 

activity. Human ortholog(s) of this gene are implicated in D-2-hydroxyglutaric aciduria 2. 

Is an ortholog of human IDH2 (isocitrate dehydrogenase (NADP(+)) 2).

VC1265
pyk-1; 

F25H5.3(ok1754) I.

pyk-1 encodes for one of two pyruvate kinases. essential for embryonic development, Is 

predicted to have kinase activity; metal ion binding activity; and pyruvate kinase activity. 

Human ortholog(s) of this gene are implicated in pyruvate kinase deficiency of red cells. 

Is an ortholog of human PKLR (pyruvate kinase L/R) and PKM (pyruvate kinase M1/2).

VC2524 gpd-2 (ok3243) X.

Is predicted to have NAD binding activity; NADP binding activity; and glyceraldehyde-3-

phosphate dehydrogenase (NAD+) (phosphorylating) activity. Is expressed in several 

structures, including AB; Psub1; and head. Is an ortholog of human GAPDH 

(glyceraldehyde-3-phosphate dehydrogenase).

RB2011 ugt-62 (ok2663)

homozygous. gene knockout ugt-62, Is predicted to have glucuronosyltransferase activity. 

Human ortholog(s) of this gene are implicated in Crigler-Najjar syndrome and Gilbert 

syndrome. Is an ortholog of several human genes including UGT1A6 (UDP 

glucuronosyltransferase family 1 member A6); UGT1A8 (UDP glucuronosyltransferase 

family 1 member A8); and UGT1A9 (UDP glucuronosyltransferase family 1 member A9).

RB2055 ugt-1 (ok2718) V.

homozygous. gene knockout ugt-1, Is predicted to have UDP-glycosyltransferase activity. 

Human ortholog(s) of this gene are implicated in Crigler-Najjar syndrome and Gilbert 

syndrome. Is an ortholog of several human genes including UGT1A4 (UDP 

glucuronosyltransferase family 1 member A4); UGT1A8 (UDP glucuronosyltransferase 

family 1 member A8); and UGT1A9 (UDP glucuronosyltransferase family 1 member A9).

RB2550 ugt-23 (ok3541) X.

homozygous. gene knockout ugt-23, Is predicted to have glucuronosyltransferase activity. 

Is involved in gastrulation. Human ortholog(s) of this gene are implicated in Crigler-Najjar 

syndrome and Gilbert syndrome. Is an ortholog of human UGT3A1 (UDP 

glycosyltransferase family 3 member A1) and UGT3A2 (UDP glycosyltransferase family 3 

member A2).

RB2607 ugt-49(ok3633) V.

homozygous. gene knockout ugt-49, Is predicted to have glucuronosyltransferase activity. 

Human ortholog(s) of this gene are implicated in Crigler-Najjar syndrome and Gilbert 

syndrome. Is an ortholog of several human genes including UGT2A3 (UDP 

glucuronosyltransferase family 2 member A3); UGT2B10 (UDP glucuronosyltransferase 

family 2 member B10); and UGT2B11 (UDP glucuronosyltransferase family 2 member 

B11).

VC2512

ugt-60(ok3248) III/hT2 

[bli-4(e937) let-?(q782) 

qIs48] (I;III).

homozygous. gene knockout ugt-60, Is predicted to have glucuronosyltransferase activity. 

Human ortholog(s) of this gene are implicated in Crigler-Najjar syndrome and Gilbert 

syndrome. Is an ortholog of human UGT2B7 (UDP glucuronosyltransferase family 2 

member B7).

N2

DL238

CX11314

CB4856

CGC

CGC

Central 

Metabolism 

Mutants

wild type CeNDR wild type Natural Strains

UGT Mutants
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Feature ID Putative Annotation Strain
Confidenc

e score

ppm_1_4761

ppm_1_4896

ppm_2_5027 Alpha-ketoglutaricacid RB2347 3

ppm_2_237 Aminoadipic Acid* RB2347 2

ppm_3_2462 VC1265

ppm_3_2547 VC2524

ppm_1_6361

ppm_1_6525

ppm_3_1839 Beta-Alanine RB2347 4

ppm_3_2672 Betaine VC1265 4

ppm_0_8620

9
CH3-Lipoprotein AUM2073 1

ppm_2_5584 AUM2073

ppm_2_5788 KJ550

ppm_2_5866 AUM2073

ppm_2_0689

ppm_2_0778

ppm_2_1094

ppm_2_1186

ppm_2_3474

ppm_2_3585

ppm_2_4498

ppm_2_4587

ppm_2_4673

ppm_2_4774

ppm_2_1285 Glutamine/Glutamic Acid* RB2347 3

ppm_3_5782 Glycerol* AUM2073 3

ppm_3_9436 Glycero-phosphocholine RB2347 3

ppm_1_3238

ppm_1_3396

ppm_1_6686 Leucine* AUM2073 4

ppm_1_755 KJ550

ppm_3_0189

ppm_3_029

ppm_3_0393

ppm_1_9208 Lysine-Acetic Acid-Arginine* AUM2073 3

ppm_1_6832 KJ550

ppm_1_7156

ppm_1_7348

ppm_7_3231

ppm_7_338

ppm_7_4387 RB2347

ppm_3_1231

ppm_7_3876

ppm_2_007 AUM2073

ppm_2_0306 VC2524

ppm_3_4544 RB2347

ppm_3_4704 VC1265

ppm_5_188 RB2347

ppm_5_2069 KJ550

ppm_3_6408 VC1265

ppm_3_6575 RB2347

ppm_3_8518

ppm_3_8699

ppm_1_591

ppm_1_5981

ppm_1_6058 Unknown 2 KJ550 n/a

ppm_3_2244 Unknown 3 VC1265 n/a

ppm_8_1863 Unknown 4 AUM2073 n/a

ppm_0_9400

7
Unknown 5* AUM2073 n/a

ppm_1_9545 Unknown 6* KJ550 n/a

ppm_2_2768 Unknown 7* RB2347 n/a

ppm_2_2952 Unknown 8* RB2347 n/a

ppm_3_7919 Unknown 9* RB2347 n/a

AUM2073 4Arginine*

Alanine VC1265 4

4Arginine

Citrate (carbon shift outside 

threshold criteria)
2

VC2524

4

KJ550

Glutamic Acid

VC1265 4Lactic Acid

RB2347 4Glutamic Acid*

AUM2073 4Glutamine-Unknown*

4
VC1265

Lysine

4
VC1265

Lysine-Arginine*

VC1265
4Phenylalanine

Phenylalanine* 4RB2347

3Proline (low level)

Trehalose 4

4Trehalose-Glycerol*

4KJ550Trehalose*

AUM2073 n/aUnknown 1
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Supplemental Table 3.2. List of significant features and respective annotation. FeatureID 

indicates the chemical shift of each feature. Putative annotation indicates compound name as 

obtained from COLMAR. Strain indicates the corresponding mutant for each feature deemed 

significantly different (p-value < 0.005). Confidence score defined as 1 to 5, with 5 being the 

highest. The scale is defined as follows: (1) putatively characterized compound classes or 

annotated compounds, (2) matched to literature and/or 1D spectra of a reference standard, (3) 

matched to HSQC, (4) matched to HSQC and validated by HSQC–TOCSY and TOCSY 

(COLMARm), and (5) validated by spiking the authentic compound into the sample8. Unknown 

has no matches in COLMAR database. Low level indicates features were low intensity in 2D 

spectra. Abbreviations: asterisk – feature indicated was found to be overlapped within the 2D 

spectra, n/a – not applicable. 

 

 

 

Supplemental Table 3.3. SECIM Tools workflow, input parameters, and set values used for QC 

steps on analytical data.  

SECIM Tools Workflow: Input Parameters Set Value

BFF Threshold 5000

Criterion Value 100

Group/Treatment [Optional] genotype

Input Run Order Name [Optional] run_order

Additional groups to separate by 

[Optional]

Threshold 0.95

Group/Treatment [Optional]

CV Cutoff [Optional] 0.1

Principal Components Analysis (PCA) Group/Treatment [Optional]

Outlier Cutoff 3

Sample Flag Cutoff 0.2

Feature Flag Cutoff 0.05

Group/Treatment [Optional] genotype

Group Name [Optional]

Generate distribution of features across samples Group/Treatment [Optional] genotype

Blank Feature Filtering (BFF)

Standard Euclidean Distance (SED)

Coefficient of Variation (CV)

Bland-Altman (BA)
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Supplemental Table 3.4. Pre-processing steps, input parameters, and set values used for LC-MS data are listed in the order of execution. 

RP (+) HILIC (+) RP (-) 
Filtering

fold blank 1 1 1

frac qc 1 1 1

Grouping

alpha* 0.1 0.1 0.1

dmz* 0.005 0.005 0.005

drt* 0.03 0.03 0.03

extracted quantity height height height

num references 150 150 150

ppm 5 5 5

Ion Annotation

adducts positive

[M+H]+, [M+2H]2+, [M+Na]+, [M+K]+, [M+NH4]+, [M+2Na-H]+, [2M+H]+, 

[2M+2H]2+, [2M+H+Na]2+, [2M+Na]+, [2M+2Na-H]+, [M+2H-NH3]2+, 

[M+H-H2O]+, [M+H-H2O]+, [M+2H-H2O]2+, [M+3H]3+, 

[M+CH3COONa+H]+, [M+CH3COONa+Na]+, [M+CH3COONa+NH4]+

[M+H]+, [M+2H]2+, [M+Na]+, [M+K]+, [M+NH4]+, [M+2Na-H]+, [2M+H]+, 

[2M+2H]2+, [2M+H+Na]2+, [2M+Na]+, [2M+2Na-H]+, [M+2H-NH3]2+, 

[M+H-H2O]+, [M+H-H2O]+, [M+2H-H2O]2+, [M+3H]3+, 

[M+CH3COONa+H]+, [M+CH3COONa+Na]+, [M+CH3COONa+NH4]+

[M-H]-, [M-2H]2-, [M-2H+Na]-, [M-H+Cl]2-, [M-2H+K]-, [M+Cl]-, [2M-H]-, 

[2M-2H+Na]-, [2M-H+Cl]2-, [2M-2H+K]-, [2M+Cl]-, [M-H-H2O]-

dmz 0.005 0.005 0.005

main adducts positive [M+H]+, [M+2H]2+, [M+Na]+, [M+NH4]+ [M+H]+, [M+2H]2+, [M+Na]+, [M+NH4]+ [M-H]-, [M+Cl]-, [2M-H]-

max charge 3 3 3

max isotopes 4 4 4

min filter 2 2 2

num files 100 100 100

polarity positive positive negative

ppm 5 5 5

Optimization 

files used 12 12 12

need optimization TRUE TRUE TRUE

noise threshold 1000 1000 1000

num iterations 5 5 5

number of points 30 30 50

output format

ms1 gap-filled data matrix gap-filled data matrix gap-filled data matrix

ms2 fused mgf fused mgf fused mgf

peak picking

algorithm ADAP ADAP ADAP

noise level ms1 1000 1000 1000

noise level ms2 1000 1000 1000

peaks deconvolution

SN* 4.57 17.38 15.6

coefficient area threshold* 57.94 108.56 39.05

ms2 mz tol 0.005 0.005 0.005

ms2 rt tol 0.1 0.1 0.1

noise level 10000 10000 10000

peak width (min/max)* 0.018 / 0.718 0.030 / 0.434 0.083 / 0.581

rt wavelet (min/max)* 0.001 / 0.081 0.002/ 0.110 0.012 / 0.103

peaktable filter absolute intensity top 30000 absolute intensity top 30000 absolute intensity top 30000

traces construction

dmz* 0.005 0.004 0.002

min scan* 6 4 4

ppm* 6 12 6

*value determine via SLAW optimization
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C.1.1 Abstract 

The use of quality control samples in metabolomics ensures data quality, reproducibility and 

comparability between studies, analytical platforms and laboratories. Long-term, stable and 

sustainable reference materials (RMs) are a critical component of the QA/QC system, however, 

the limited selection of currently available matrix- matched RMs reduce their applicability for 

widespread use. To produce a RM in any context, for any matrix that is robust to changes over the 

course of time we developed IBAT (Iterative Batch Averaging meThod). To illustrate this method, 

we generated 11 independently grown E. coli batches and made a RM over the course of 10 IBAT 

iterations. We measured the variance of these materials by NMR and showed that IBAT produces 

a stable and sustainable RM over time. This E. coli RM was then used as a food source to produce 

a Caenorhabditis elegans RM for a metabolomics experiment. The metabolite extraction of this 

mailto:mcintyre@ufl.edu
https://pubs.acs.org/doi/10.1021/acs.analchem.1c01294
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material, alongside 41 independently grown individual C. elegans samples of the same genotype, 

allowed us to estimate the proportion of sample variation in pre-analytical steps. From the NMR 

data, we found that 40% of the metabolite variance is due to the metabolite extraction process and 

analysis and 60% is due to sample-to-sample variance. The availability of RMs in untargeted 

metabolomics is one of the predominant needs of the metabolomics community that reach beyond 

quality control practices. IBAT addresses this need by facilitating the production of biologically 

relevant RMs and increasing their widespread use.  

C.1.2 Contributions 

I aided in sample generation, provided intellectual contributions and feedback, and provided 

manuscript edits. 

 

C.2 Taguchi Design of Experiments Approach for Untargeted Metabolomics Sample Preparation 

Optimization 

Brianna M. Garciaa, Goncalo J. Gouveiaa, Amanda O. Shavera, I. Jonathan Amstera, Arthur S. 

Edisona, and Franklin E. Leach IIIa* 

aUniversity of Georgia, Athens, GA 30602, United States 

 

This manuscript was submitted to Analytical Chemistry in December 2021 and is under review. 

 

C.2.1 Abstract 

Metabolomics commonly uses analytical techniques such as nuclear magnetic resonance (NMR) 

and liquid chromatography coupled to mass spectrometry (LC-MS) to quantify and identify 

metabolites associated with biological variation. Metabolome coverage from non-targeted LC-
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MS studies relies heavily on the pre-analytical protocols (e.g., homogenization and extraction) 

used. Chosen protocols impact which metabolites are successfully measured, which in turn 

impacts biological conclusions. Different homogenization and extraction methods produce 

significant variability in metabolome coverage, sample reproducibility, and extraction efficiency. 

Herein we describe an efficient Taguchi method design of experiments (DOE) approach to 

optimize the extraction solvent and volume, extraction time, and LC reconstitution solvent for a 

sequential non-polar and polar Caenorhabditis elegans extraction. DOE is rarely used in 

metabolomics yet provides a systematic approach for optimizing sample preparation while 

simultaneously decreasing the number of experiments required to obtain high-quality data.  

C.2.2 Contributions 

I aided in sample generation, provided intellectual contributions and feedback, and provided 

manuscript edits. 
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