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ABSTRACT 

 Computational quantum chemistry is a versatile tool for studying molecules and 

reactions. However, accurately computing properties requires manifold computations. Setting up, 

running, and processing these computations is a monotonous task. We have developed toolkits 

for facilitating these tasks. AARON, our automation tool, has been used to locate numerous 

transition state structures for an iridium-catalyzed C-H activation reaction for the purpose of 

assessing the accuracy of DFT methods. AaronTools is our Python toolkit for modifying 

structures and processing computations. AaronTools has been expanded work with several 

popular quantum chemistry software packages (Gaussian, ORCA, Psi4, Q-Chem, xTB, and 

SQM), plot simulated spectra, calculate several steric parameters, and generate molecular 

structures from simple input. SEQCROW, a ChimeraX bundle, provides a graphical interface for 

these features. Raven is an efficient reaction path search implementation that utilizes on-the-fly 

Gaussian process regression to locate guesses for transition state structures.  
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CHAPTER 1 

INTRODUCTION 

  

Computational chemistry has proven to be quite useful over the past few decades. It gives 

us a glimpse at molecules, which is often not available from experiment. As a result, we can look 

at transient structures and identify the interactions that govern reactivity and selectivity. 

Quantum mechanical methods are also capable of simulating spectra, which can help support 

structure assignments in cases where experimental data is absent or incomplete. Computational 

methods can also directly compute the energy of a given structure of a molecule, which allows 

for the prediction of relative rates of reactions or equilibrium constants.   

Quantum mechanical computations have been particularly useful for catalyst design, 

where materials and lab time can be costly. Density functional theory (DFT) is the go-to method 

for studying transition metal-catalyzed reactions. Due to its reasonable balance between 

computation time and accuracy, DFT can often be used to map out the energy of intermediates 

and transition state structures of a catalytic cycle. The catalyst can be adjusted (e.g., changing a 

ligand), and the energy of key energy minima and maxima along the catalytic cycle recomputed. 

This can indicate if the changes to the catalyst make it more effective, which can then guide 

future experiments.  

 More and more, reactivity is being correlated with calculated or computed parameters.1, 2 

Some examples of this are Tolman cone angles3 or computed atomic charges. Using such 

parameters can reduce computation time, compared to explicit computations of reaction barrier 
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heights, as their evaluation typically only requires a truncated portion of the catalyst or substrate. 

Local minima may also be sufficient for computing parameters, so the more expensive transition 

state optimizations can be skipped. Parameters correlating with reactivity can shed light on what 

is chemically important, which can help guide catalyst design. Catalysts or ligands that do not 

meet a threshold for key parameters can be discarded before progressing to more thorough 

computational or experimental stages of development.   

Accurate predictions of catalyst efficacy can require hundreds of computations, locating 

many transition state structures (TSSs), and choosing an appropriate level of theory. Setting up 

and running hundreds of computations manually is tedious and error prone. A mistyped setting 

or bad molecular structure could lead to misleading or erroneous results. It is not uncommon for 

quantum chemical computations to end with errors. Inexperienced users might have a difficult 

time identifying and addressing the source of the error. Errors aside, finished computations will 

need to be processed.  

 To facilitate many of these computational tasks, the Wheeler group has developed 

AARON and AaronTools.4 AARON is a command line utility that can take a set of template 

structures, swap substituents or ligands, run Gaussian computations, and process the resulting 

energies. Some rotamers of substituents can also be explored automatically. This helps with 

some of the more monotonous parts of a computational study. AARON can also try to fix 

common errors and adjust structures if optimizations appear to be going awry. AaronTools is at 

the foundation of AARON, handling the individual tasks that AARON requires (building and 

modifying molecular structures, constructing input files and parsing output files, etc.). With 

AARON, users should have more time to work on other things (i.e., they can think about the 

chemistry, not the computations).  
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 Although AARON has been used successfully in some chemical applications,5-10 it has 

some limitations. One is that it can only run certain types of computations, namely geometry 

optimizations, frequency computations, and single-point energies, and only using Gaussian. 

Although these job types are generally the bread and butter of computational studies, others are 

often useful. AARON also requires the user to supply templates of TSSs if optimizing saddle 

points. Locating transition state structures is one of the more challenging and time-consuming 

aspects of computational kinetics studies.  

 Another issue with AARON and many other tools for computing tasks is that they can 

only be used on the command line. When the primary goal is to learn more about chemistry or 

computational methods, learning to use computational tools should take as little time as possible 

so that users can focus on their project. Having to learn esoteric terminal commands is time-

consuming and should not be necessary. The command line is little more than a means to an end.  

 Tools with a graphical interface can be much easier to learn, particularly for those 

without backgrounds or experience in high-performance computing. However, computational 

chemistry tools are overwhelmingly made by computational chemists. Chemists who have built 

tools are probably experienced with the command line and would consider learning the 

command line to be tacitly required to conduct a computational study. Moreover, developing 

graphical interfaces is not a common skill for computational chemists since their focus tends to 

be on developing ‘more powerful’ command-line tools. The command line was once essentially 

required to work with high-performance computing clusters, but this is no longer the case. Server 

hardware from the last decade can run 3D graphical applications that can be accessed through a 

web interface.11, 12 With such modern hardware, it is now feasible to run computations using the 

latest high-performance computing resources through a graphical interface. 
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 Herein, I describe four projects. The first (Chapter 2) is the application of AARON to 

benchmark the performance of DFT in the prediction of the outcome of an iridium-catalyzed CH 

functionalization. This highlights both how powerful tools like AARON are, as well as areas 

where AARON falls short. Next, in Chapter 3, I detail additions I have made to AaronTools to 

make it more generally useful, namely by adding the ability to calculate several descriptors, 

process computations to generate simulated spectra, and add compatibility for multiple quantum 

chemistry software packages. In Chapters 4 and 5, I describe the features and development of a 

graphical interface for these tools called SEQCROW. Finally in Chapter 6, I introduce an 

efficient implementation of a transition state search algorithm using on-the-fly Gaussian process 

regression to locate guesses for transition state structures.  
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CHAPTER 2 

BENCHMARKING POPULAR DFT METHODS FOR REGIOSELECTIVITY OF AN 

IRIDIUM-CATALYZED C-H FUNCTIONALIZATION REACTION 

 

2.1 Abstract 

 DFT has been widely used in efforts to understand transition metal catalyzed reactions. 

However, the accuracy of these methods when applied to regioselective transition metal 

catalyzed reactions remains understudied. We study the iridium-catalyzed site-selective C-H 

activation of N-acetyl indole with a variety of DFT methods to assess popular DFT methods 

based on their ability to reproduce experimentally observed regioselectivity. Multiple pathways 

were located for activation at the C2 position. It seems unlikely that application of popular DFT 

methods will accurately reproduce experimental product ratios, but it may still be possible to use 

DFT to predict more selective catalysts. 

  

2.2 Introduction 

Transition metal-catalyzed selective C-H functionalization is important for synthetic 

organic chemistry. Being able to target a specific C-H bond allows for late-stage modifications. 

However, controlling which C-H bond is activated can be quite challenging. Understanding the 

mechanism of these reactions is key for developing more selective reactions and catalysts. 

Gaining detailed insight from experimental studies alone is often not feasible due to the lability 

of reactive intermediates and the complexity of the synthetic conditions. Thus, computational 
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quantum chemistry is frequently relied upon to gain insight into the mechanism of catalysts and 

substrates that promote selective C-H activation. 

Fagnou et al. have used competition studies to show that some Pd(II) catalysts with 

carboxylate ligands target more acidic C-H bonds.13 A kinetic isotope effect (KIE) study 

revealed a kH/kD of 3.0 for C-H activation of 1,3-difluorobenzene, indicating significant 

involvement of the proton on the rate-limiting step. Theoretical studies suggested a concerted 

metalation-deprotonation (CMD) event that is facilitated by an acetate ligand. This CMD 

mechanism offered a rationale for Pd(II) catalysts often tending to activate more acidic C-H 

bonds. However, not all base-assisted Pd(II)-catalyzed C-H activation reactions are consistent 

with this trend. For example, Gevorgyan et al. investigated the C-H activations of indolizines, 

and found no KIE.14 This and other evidence pointed towards an electrophilic substitution 

mechanism.  

In order to shed light onto the disparity in the behavior of different transition metal 

catalysts for different C-H activation reactions, Carrow and Wang computed bond orders for C-H 

activations TSSs for several catalysts and substrates.15 These bond orders were used to create 

More O’Ferrall-Jencks plots (see Figure 1). On these plots, the bond orders are plotted on 

different axes. The reactants and products will be in opposite corners, and TSSs and 

intermediates can be elsewhere on the plot. The farther a TSS or intermediate is from the 

diagonal, the more asynchronous the mechanism. The extreme asynchronous cases would either 

form a Wheland intermediate before deprotonating, or the base would deprotonate before 

metalation starts. 
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Figure 1: More O'Ferrall-Jencks plot for C-H activation facilitated by an internal carboxylate, with the C-H bond on the y-axis 

and the metal-C bond on the x-axis. 

 

Performing More O’Ferrall-Jencks analysis revealed different types of asynchronous 

mechanisms were at play. Electron poor d6 and d8 catalysts tended to form the metal-carbon bond 

faster than the C-H bond broke. Conversely, electron rich d8 and d10 metals tended to break the 

C-H bond faster. The electron-richness of d8 metals can be controlled to some extent with 

ligands. How asynchronous the mechanism is appears to be independent of the substrate, though 

the substrate could shift the TSS earlier or later. They suggested that this provided a theoretical 

understanding of Fagnou’s CMD mechanism and ones that behave more like electrophilic 

substitution, which they termed “eCMD”. Carrow and Wang noted that catalysts that use the 
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eCMD mechanism favor more electron rich C-H bonds, so as to complement the electron 

deficiency of the metal.  

Unfortunately, the terms “CMD” and “eCMD” conflate the synchronicity of the 

mechanism with the number of steps in the mechanism. Without the context of a More O’Ferrall-

Jencks analysis, CMD might simply be used to describe any metalation-deprotonation event 

where there is no evidence of an intermediate. Instead of eCMD, Ackermann described this 

mechanism as a base-assisted internal electrophilic substitution (BIES).16  Ackermann et al. 

studied several reactions involving Ru(II), Rh(III), Co(III), and Ni(II).17 They were able to locate 

agostic intermediates in each of their reactions. Using More O’Ferrall-Jencks analysis revealed 

that their TSSs and intermediates all fall in the BIES region.  

 

Scheme 1: Ir-catalyzed C-H amidation of N-acyl indoles reported by Chang et al.18 

 

Of course, the catalyst is just one method to control regioselectivity. Chang et al. have 

studied the functionalization of N-acyl indoles shown in Scheme 1.18 Their synthesis takes 

advantage of the acyl directing group, which, when coordinating the iridium catalyst, only allows 

the metal to reach the C2 and C7 positions of the indole. Chang noted that using bulkier acyl 

groups favors functionalization at C7. For example, with R1 = tBu and R2 = Me, they were able to 

achieve a 3:4 ratio of > 20:1. This was rationalized by the bulkier acyl group having more 

unfavorable steric interactions when the carbonyl is facing C2, thus promoting C7 activation.  
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Chang et al. were also able to achieve good selectivity for C2 functionalization with the 

iridium catalyst by modifying the carboxylate additive.18 This is in spite of Carrow and Wang’s 

suggestion that the d6 metal should preferentially activate the less acidic C7-H bond.15 Using 

more electron deficient carboxylates, such as trifluoroacetate, was shown to heavily favor C2 

activation. 

In order to better understand this trend in reactivity, Chang et al. conducted a 

computational study to look at the pathways to activate C2 and C7. The presumptively relevant 

TSSs and intermediates were located for both pathways with pivalate and trifluoroacetate. An 

agostic intermediate was identified for both activation pathways where the C-H bond has 

replaced a Ir-O bond with the carboxylate. The agostic intermediate going towards C7 activation 

was found to be lower in energy for both carboxylates. This was attributed to the C2-H bond 

being more electron deficient, which would make it a worse electron donor. For trifluoroacetate, 

the agostic intermediate in both activation pathways is more similar in energy to the indole only 

coordinating with its directing group, when the carboxylate is a 𝜅2 ligand. This could be 

explained by the weaker electron donor strength of trifluoroacetate, being more similar to a 

weakly-donating agostic interaction. The computational studies also revealed a qualitative 

agreement with experiment: C7 activation was favored for pivalate, and C2 activating was 

favored for trifluoroacetate.  

In order to establish a quantitatively predictive model for reactivity, Chang et al. 

investigated several descriptors proposed by Sigman et al.,1 including vibrational frequencies, 

Sterimol parameters, and NBO charges for the carboxylic acid analogues and acyl directing 

groups. The Sterimol parameters of the R2 group of the carboxylate showed poor correlation with 

experimental product ratios. However, NBO charges on the oxygen atoms appeared to be a 
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strong indicator of selectivity. A linear regression model was established relating the average 

NBO charge of the carboxylic acid’s oxygen atoms to the relative barrier height calculated from 

experimental product ratio. The model has an R2 of 0.91 across 23 different carboxylates. These 

cases only include experimental data for N-acetyl indole, so this regression model does not 

include the steric effect of the directing group on indole. A multivariate model incorporating the 

B1 Sterimol parameter of the acyl directing group with the NBO charges achieved an R2 of 0.94 

across several combinations of carboxylates with various N-acyl indoles.  

Density functional theory (DFT) is typically the go-to method for studying 

organometallic system. DFT computations have helped support mechanistic studies, such as 

those of Fagnou and Carrow and Wang.13, 15 DFT was also used to build predictive models of 

reaction outcome.1, 2, 18 It is often assumed that DFT strikes a good balance between accuracy 

and computational cost. This is often grounded in benchmarking studies that look at DFT 

predictions of minima or reaction barrier heights.19-21 These studies offer hope, as DFT energies 

typically fall within a few kcal/mol of reference energies. 

However, predicting a product ratio requires relative energies. If errors do not cancel 

favorably, the predictions could be off by much more than these benchmarking studies suggest. 

The performance of DFT for predicting regioselectivity of transition metal-catalyzed reactions 

has not been well-studied. This can be attributed to the difficulty of obtaining quality reference 

data to draw comparisons. Many transition metal-catalyzed reactions involve large substrates 

and/or large ligands, which are often not feasible to study using higher levels of theory. 

Additionally, such a study would require numerous transition state optimizations, which are 

notoriously annoying and time-consuming. Studying the performance of popular DFT methods 

for such reactions should clarify how much faith to put into computational results.  
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2.3 Assessing DFT methods for Predicting Selectivity of C-H Activation 

In order to assess the predictions of various DFT methods, we used DFT to predict the 

product ratios reported by Chang et al. for the regioselective functionalization of N-acetyl indole 

(see Scheme 1).18 Chang et al.’s data provides a range of product ratios, allowing us to judge not 

only DFT’s ability to reproduce experimental catalyst selectivity, but also gauge the ability to 

predict trends in selectivity. Performing well with either of these would indicate that DFT studies 

can be used to make predictions about the efficacy catalysts which have not been tested 

experimentally. We do not build parameter-based regression models, like Chang et al. did. 

Instead, we compute the energy of conformer ensembles for the relevant TSSs. In order to avoid 

a more prolonged conformer search, we limited our study to the subset of the 16 less flexible 

carboxylates shown in Table 1. 

 

Table 1: Site selectivity of the reaction in Scheme 1 with R1=CH3 based on the carboxylate additive  

entry R2 3:4 ΔΔG‡ entry R2 3:4 ΔΔG‡ 

1 tBu 2.5:1 0.56 9 (4-F)C6H4 1:2.2 -0.49 

2 iPr 1.6:1 0.30 10 (4-Cl)C6H4 1:2.3 -0.51 

3 Et 1.5:1 0.26 11 C6H5 1:2.7 -0.63 

4 Me 1.4:1 0.19 12 (4-Br)C6F4 1:6.0 -1.12 

5 CH2Cl 1:2.6 -0.58 13 CHF2 1:12.3 -1.56 

6 CH2F 1:2.8 -0.64 14 CHCl2 1:13.3 -1.61 

7 (4-CF3)C6H4 1:1.8 -0.36 15 CF3 1:61.9 -2.57 

8 (4-NO2)C6H4 1:1.8 -0.38 16 C2F5 1:73.1 -2.67 
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2.4 Methods 

 The methods we will be testing are B3LYP, B3LYP-D3, B3PW91, ωB97X-D, B97-D, 

BP86, PBE0, M06, M06-2X, M06-L, and M06-HF. These were found to be some of the most 

used DFT methods for studying organometallic catalysts.22 Each of these methods were tested in 

conjunction with the def2-SVP basis set, with the SDD effective core potential (ECP) on the 

iridium. The def2-TZVP basis set was also used to compute single-point energies on structures 

optimized using the def2-SVP basis set. For select methods, the 6-31G(d,p)/LANL2DZ and cc-

pVDZ/SDD basis sets and ECPs were also tested, as this has long been a popular basis set/ECP 

combination for organometallic systems. A few methods were also tested with the inclusion of 

implicit solvent, either throughout the geometry optimization or only during a single-point 

energy evaluation for structures optimized in the gas phase. The vast majority of these 

computations were carried out using AARON, which searched for different conformers of the R2 

group on the carboxylate.4 DFT computations were conducted using the Gaussian 09 software 

package.23 Relative barrier heights were calculated for enthalpy, RRHO free energy, and quasi-

RRHO free energy with 𝜔=100 cm-1.24 

For structures optimized using select DFT methods, single-point energies for were also 

computed at the DLPNO-CCSD(T) level paired with the cc-pVTZ basis on non-metal atoms and 

the cc-pVTZ-PP basis set and SK-MCDHF-RSC ECP on the iridium. The DLPNO computations 

were conducted using ORCA 4.2.25 By comparing the DFT energy of a structure to that of a 

higher level of theory, we can assess whether DFT predictions are sound.  
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2.5 Results 

2.5.1 Mechanistic Details 

It became clear that this reaction was not as straightforward as anticipated. Initially, we 

only looked for TSSs like the ones published by Chang et al.,18 where the TSS connects the 

agostic intermediate to the metalated intermediate and the carboxylate is in an ‘upright’ 

orientation. However, we found that alternative pathways exist for C-H activation of C2 for 

certain carboxylates with some DFT methods. In one, the carboxylate adopts a ‘sideways’ 

orientation. In addition, some fluorinated carboxylates were found to deprotonate and metalate in 

separate steps. Figure 3 shows representative TSSs for these different mechanisms.  

Although we have not located all mechanisms with all the DFT methods we tested, we 

cannot rule out the possibility that some of these mechanisms are inoperable for some DFT 

methods. TSSs with ‘sideways’ carboxylates have been found for nearly all of the R2 groups for 

B3PW91, B3LYP, PBE0, and BP86. The ‘upright’ and ‘sideways’ pathways are generally 

similar in free energy, with the ‘sideways’ pathway typically being slightly favored. On top of 

this alternate pathway being slightly lower in free energy, having more reaction pathways leads 

to a more accessible transition state ensemble, which will impact predictions of regioselectivity. 

Thus far, alternate pathways have only been found for activation of C2.  

We looked in more detail at the sideways and upright pathways for benzoate at the 

BP86/def2-SVP/SDD level of theory (see Figure 2).  In this case, the difference in electronic 

energy between the two first order saddle points is 0.8 kcal/mol in favor on the ‘sideways’ TSS. 

A second order saddle point has been located for the interconversion of the ‘upright’ and 

‘sideways’ TSSs. This second order saddle point is only 0.9 kcal/mol higher in energy than the 

‘sideways’ TSS. This highlights the flatness of the potential energy surface in the region 
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surrounding these two transition state structures, which likely underlies the difficulty in locating 

one or the other TSS at different levels of theory. 

 

Figure 2: 'Upright' (left) and 'sideways' (right) TSSs, and 2nd order saddle point (middle) connecting the two. Energies are in 

kcal/mol.    

 

Several functionals been found to have a qualitatively different C2 activation mechanism 

than the M06 mechanism Chang et al. reported. Several methods, including B3LYP, ωB97X-D, 

and B97-D, lack an agostic intermediate for most carboxylates on the C2 activation pathway. 

With these functionals, only fluorinated carboxylates (namely CHF2, CF3, and C2F5) seem to 

have agostic intermediates. Furthermore, BP86 lacks an agostic intermediate for most 

carboxylates for the C7 pathway. In the cases where distinct proton-transfer and metalation steps 

have been found, the difference in energy between these two steps is typically less than 1 

kcal/mol, so both steps will have some impact on reaction rate. Furthermore, in some cases, 

which step is rate-limiting depends on if you look at electronic energy or free energy. 

Unfortunately, experimental data does not clarify if this is a multistep mechanism, or which step 

is limiting if it is multistep.  
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Figure 3: Representative TSSs for the selectivity-determining step for the reaction in Scheme 1. Top left: activation of C2 with an 

‘upright’ carboxylate; top right: activation of C7; middle: concerted activation of C2 with a ‘sideways’ carboxylate; bottom left: 

forming agostic intermediate at C2; bottom right: deprotonation of C2. 

 

In order to better understand this reaction and the continuum between concerted and 

stepwise mechanisms, we computed Wiberg bond orders at different stages along the selectivity-

determining step for the B3LYP/def2-SVP/SDD structures. Using the NBO package included in 

Gaussian 09, bond orders were computed for transition state structures, intermediates, reactants, 

and products of the selectivity-determining step located using B3LYP/def2-TZVP/SDD. Figure 4 
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shows a More O-Ferrall-Jencks plot of the activated C-H and C-Ir bonds orders (i.e., bonds 

involving either C2 or C7, depending on which was being activated). As noted above, transition 

state structures above the dashed line would fall in the base-assisted internal electrophilic 

substitution (BIES) region. Below the line lies the concerted metalation-deprotonation (CMD), 

where more asynchronous mechanisms deprotonate first and metalate second.  

In agreement with Carrow and Wang’s findings,15 the transition state structures all fall in 

the BIES (eCMD) region. While the position of the C7 TSS’s is consistent across all 

carboxylates, there is considerable variation in the nature of the C2 activation pathways. The 

location of the agostic intermediates on the C2 pathway range from near the ‘sideways’ TSSs to 

near the proton transfer TSSs. Although agostic intermediates are common in transition metal-

catalyzed C-H activations reactions, it was not observed for all carboxylates. Less basic 

carboxylates seem to be more likely to form the agostic intermediate, whereas more basic 

carboxylates seem to deprotonate while the agostic interaction is forming.  
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Figure 4: More O'Ferrall-Jencks plot of stationary points located with B3LYP/def2-SVP/SDD. The dashed line connects the 

average bond orders for reactant structures to that of the product structures.  

  

To see how such mechanistic conclusions might change with different DFT methods, 

bond orders were also computed for several other methods. More O’Ferrall-Jencks plots for 

ωB97X-D, B97-D, and BP86 are shown in Figure 5, Figure 6, and Figure 7, respectively. As 

with B3LYP, ωB97X-D and B97-D indicate a BIES mechanism. The ωB97X-D TSSs for the 

proton transfer step for C2 and C7 are a bit more synchronous than B3LYP. For B97-D, the C2 

proton transfer TSSs appears to be slightly more asynchronous than B3LYP and are close to the 

agostic intermediate. BP86 deviates significantly from the rest, with the C7 TS being much 

earlier and eking into the CMD region. Only two agostic intermediates could be located for the 
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C7 pathway, both in the BIES region. There appears to be qualitative differences between the 

mechanism depending on the DFT functional that is used, which casts doubt on all-to-common 

practice of drawing mechanistic conclusions from DFT predictions using a single functional. 

 

Figure 5: More O'Ferrall-Jencks plot of stationary points located with ωB97X-D/def2-SVP/SDD. The dashed line connects the 

average bond orders for reactant structures to that of the product structures. 
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Figure 6: More O'Ferrall-Jencks plot of stationary points located with B97-D/def2-SVP/SDD. The dashed line connects the 

average bond orders for reactant structures to that of the product structures. 
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Figure 7: More O'Ferrall-Jencks plot of stationary points located with BP86/def2-SVP/SDD. The dashed line connects the 

average bond orders for reactant structures to that of the product structures. 

 

2.5.1 DFT Benchmark 

 Next, we turn to assessing the performance of popular DFT methods in predicting the 

regioselectivity of this reaction. Due to either missing many TSSs or the ‘sideways’ TSSs not 

being found or ruled out, the only methods for which the data is complete are B3LYP, PBE0, and 

BP86. That being said, the current data for most DFT methods tested are summarized in Table 2. 
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Table 2: Data for RMSE and correlation between relative barrier heights for experimental data and various DFT functionals. 

Superscripts denote methods used for single point energies where structures and frequencies were computed using a) DFT/6-

31G(d,p)/LANL2DZ, b) def2-SVP/SDD, c) PCM implicit solvent, d) SMD implicit solvent.  

   H  G  Quasi-G 

Functional Basis Set ECP RMSE r2  RMSE r2  RMSE r2 

B3LYP 6-31G(d,p) LANL2DZ 2.0 0.81  1.3 0.72  1.9 0.81 

B3LYPa 6-311+G(d,p) SDD 0.7 0.84  0.5 0.77  0.4 0.85 

B3LYP def2-SVP SDD 2.3 0.87  1.3 0.92  1.9 0.89 

B3LYPb def2-TZVP SDD 0.5 0.84  0.9 0.89  0.4 0.85 

B3LYPc def2-SVP SDD 0.8 0.88  1.3 0.71  0.9 0.91 

B3LYPd def2-SVP SDD 2.9 0.61  3.7 0.01  3.2 0.18 

B3LYP-D3 def2-SVP SDD 4.9 0.65  3.8 0.83  4.4 0.79 

B3LYP-D3 def2-TZVP SDD 2.7 0.83  1.8 0.78  2.2 0.87 

ωB97X-D def2-SVP SDD 5.5 0.87  4.4 0.62  5.1 0.85 

ωB97X-Db def2-TZVP SDD 3.7 0.85  2.6 0.78  3.2 0.85 

B97-D def2-SVP SDD 7.5 0.43  6.3 0.28  6.9 0.35 

B97-Db def2-TZVP SDD 5.7 0.50  4.5 0.32  5.0 0.43 

BP86 def2-SVP SDD 1.7 0.52  1.8 0.40  1.6 0.35 

BP86b def2-TZVP SDD 1.2 0.11  1.3 0.04  1.2 0.03 

B3PW91 def2-SVP SDD 3.3 0.04  1.9 0.24  2.1 0.04 

B3PW91b def2-TZVP SDD 1.2 0.09  0.5 0.38  2.6 0.10 

PBE0 def2-SVP SDD 4.8 0.14  3.6 0.09  4.2 0.00 

PBE0b def2-TZVP SDD 3.6 0.33  2.3 0.17  3.0 0.21 

M06-2Xb def2-TZVP SDD 2.4 0.85  1.6 0.42  2.1 0.68 

M06-L def2-SVP SDD 1.7 0.20  1.5 0.29  1.4 0.31 

M06 def2-SVP SDD 3.9 0.59  3.1 0.68  3.7 0.64 

HFa 6-311+G(d,p) SDD 1.2 0.86  1.5 0.61  1.3 0.83 

 

Of the methods where data is more complete, B3LYP had the lowest root mean squared 

error (RMSE) with respect to relative barrier heights calculated from experimental product 

ratios. When using a triple-𝜁 basis set to compute single point energies, B3LYP’s RMSE fell 
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below 1 kcal/mol. For other methods, using triple-𝜁 single point energies typically lowered the 

error by a few kcal/mol compared to the double-𝜁 energies. Alas, many methods’ RMSE still 

exceeds 2 kcal/mol, with B97-D/def2-SVP/SDD “achieving” an RMSE of about 7 kcal/mol. The 

range of experimental product ratios only covers a range of 3.2 kcal/mol, so many methods 

provide wildly inaccurate predictions based on computed energies alone. That being said, most 

of the methods where no ‘sideways’ TSS has been located overestimate in favor of C7 

functionalization. Locating more pathways for C2 activation could bring other methods in line 

with B3LYP.  

 Predicted relative barrier heights from several DFT methods correlate well with 

experiment. B3LYP, B3LYP-D3, and ωB97X-D all achieve an r2 of about 0.8 or higher based on 

quasi-RRHO free energy. This can be compared to Chang et al.’s simple model based on NBO 

charges and Sterimol parameters that achieved an r2 of 0.94. It seems as though a brute-force 

approach of looking at energies is less predictive than a simple descriptor-based model in this 

case.  

 When trying to predict more selective carboxylates, the overall trend might be less 

important than predicting the extremes. To see how well DFT methods predict the most selective 

carboxylates, we looked at the top four carboxylates that favor C2 functionalization. The 

predictions for select DFT methods are in Table 3. Although many methods correctly predicted 

the most selecting carboxylate, some did not.  
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Table 3: Most selective carboxylates according to different DFT methods based on quasi-RRHO free energies computed with 

DFT/def2-TZVP/SDD // DFT/def2-SVP/SDD 

Method 1 2 3 4 

experiment C2F5 CF3 CHCl2 CHF2 

B3LYP C2F5 CF3 CHF2 CHCl2 

B3LYP-D3 C2F5 CF3 CHCl2 CHF2 

ωB97X-D C2F5 CF3 CHCl2 CHF2 

B97-D p-NO2C6H4 C2F5 CF3 CHF2 

BP86 p-CF3C6H4 p-FC6H4 CH2Cl p-NO2C6H4 

PBE0 C2F5 C6H5 CHF2 p-FC6H4 

M06-2X C2F5 CF3 p-BrC6F4 CHF2 

 

 B3LYP seems to be a frontrunner in terms of reliably predicting the product ratio as well 

as the overall trend in reactivity. To assess whether B3LYP ought to be predicting product ratios 

as well as it does, we computed DLPNO-CCSD(T) single point energies using the B3LYP/def2-

SVP/SDD geometries. If B3LYP is getting the right product ratio for the right reason, the 

B3LYP energies should correlate with the DLPNO-CCSD(T) energies. Figure 8 shows a plot of 

DLPNO-CCSD(T) energies vs. B3LYP energies for several TSSs located for R2 = C2F5. This is a 

representative example of the poor correlation between DFT energy with the higher-level 

DLPNO method, indicating that B3LYP is giving untrustworthy results.  
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Figure 8: DLPNO-CCSD(T)/cc-pVTZ/cc-pVTZ-PP // B3LYP/def2-SVP/SDD electronic energies vs. B3LYP/def2-TZVP/SDD // 

B3LYP/def2-SVP/SDD energies for TSSs with pentafluoropropionate 

 

 

2.6 Conclusions and Future Work 

 Using several popular DFT methods, over one thousand transition state structures have 

been located for the selectivity-determining step in an iridium-catalyzed C-H activation of 

indole. Multiple pathways for this reaction have been uncovered for various DFT methods. In the 

cases where multiple pathways have been located, the relative barrier heights of the pathways 

vary. The mechanism with an agostic intermediate seems to be more feasible with fluorinated 

carboxylates. Although two of the best-performing methods, B3LYP and ωB97X-D, did not 
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have an agostic intermediate, comparison with DLPNO-CCSD(T) energies indicate B3LYP 

predicted relative energies are not trustworthy. Altogether, these results raise serious questions 

about how reliable DFT is for investigating reaction mechanisms. If different DFT methods give 

qualitatively different reaction pathways, perhaps less stock should be placed in computational 

mechanistic studies.  

 Moreover, DFT predictions for the product ratio seem quite unreliable. Few methods 

achieved less than 1 kcal/mol in error with respect to experiment. Although single point energies 

lower the error, this is not enough to make accurate product ratio predictions based on raw free 

energy. Instead, a correlation should be established relating the DFT energies to experimental 

catalyst performance. This is more likely to give a usable prediction. Although this seems to be a 

more reliable means of predicting catalyst performance, it usually fell short of Chang et al.’s 

simple descriptor-based model. Several DFT methods can predict either the trend in selectivity or 

the most selective carboxylates, however some could not.  

 Many scientists have turned to DFT to gain insight into their reaction. I think the 

assumption that DFT is a good balance between accuracy and performance should be re-

evaluated. With different DFT functionals giving qualitatively different mechanisms, unreliable 

predictions for product ratio, and often differing trends in reactivity, the accuracy is questionable 

at best in this case. Although some might be satisfied with a prediction for a more selective 

catalyst, others want to understand their catalyst. Based on this study of a seemingly simple 

reaction, I do not believe DFT can give finer mechanistic details. If black-box predictions are 

desired, descriptor-based models may frequently outperform DFT.  

 More broadly, this project has highlighted some of the shortcomings of AARON. 

Although AARON was used to automate thousands of computations, many tasks still had to be 
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done manually or with custom scripts. For instance, all the DLPNO-CCSD(T) and NBO 

computations had to be run and processed without AARON’s help. Additionally, AARON did 

not collate results for the different pathways. In some cases, TSS optimizations initiated from an 

‘upright’ structure would converge to the same TSS as those initiated from a ‘sideways’ 

structure, and vice versa. Other tools had to be developed to properly weed out duplicate 

structures.  
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CHAPTER 3 

EXPANDING THE CAPABILITIES OF AARONTOOLS 

 

3.1 Abstract 

 The capabilities of AaronTools have been expanded considerably since the latest 

publication.4 Now, AaronTools can set up and process computations from several quantum 

chemistry software packages: Gaussian, ORCA, Psi4, Q-Chem, xTB, and SQM. Computed 

vibrational frequency or excited state data can be used to produce a simulated IR or UV/vis 

spectrum, including spectra arising from an ensemble of conformations. AaronTools can also 

analyze structures to produce several popular steric descriptors that are useful for predicting 

reaction outcomes or catalyst performance. These new features make AaronTools a more well-

rounded tool for facilitating computational chemistry tasks. 

 

3.2 Introduction 

 AaronTools began as a Perl module for facilitating the manifold computations required to 

accurately predict the performance of asymmetric organocatalysts and organometallic catalysts.4, 

26 It could swap substituents or ligands on transition metal centers, create Gaussian input files, 

submit computations to a cluster, and read the structures and energies from the Gaussian output 

file. This, as well as several other structure modification and analysis features, make it well 

suited for automating many tasks. However, it has its limitations. AaronTools was not amenable 

to further development, meaning new features would take a considerable amount of time to 
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implement. Furthermore, Perl has fallen out of popularity, so modern-day computational 

chemists are less likely to know this arcane programming language (compared to programmers 

of antiquity). While the inclusion of command line scripts did allow users to access much of the 

functionality of AaronTools without learning Perl, adding new features has been a major 

challenge for AaronTools developers due to the structure of the original AaronTools code.  

 Recently, Victoria Ingman reimplemented most of the features of Perl AaronTools in 

Python.27 Python is generally considered to be easy to learn due to its syntax and error tracing. 

The Python implementation of AaronTools retained the structure editing and analysis features of 

the original AaronTools, as well as the ability to set up and process Gaussian computations. 

Although the feature set was largely the same, this would soon change. The basic structure of the 

code was reinvented in a way that made it much easier to add new features.  

 Many people run computations for reasons other than just computing energies or bond 

lengths. They may wish to simulate spectra or calculate molecular descriptors in order to build 

quantitative structure reactivity relationships (QSRRs). AaronTools lacked the ability to facilitate 

any part of this other than running the quantum mechanical computations. Consequently, some 

other software tool would have to be used (or created) to handle other important tasks. Many 

AaronTools scripts would also practically have to be used in tandem with a graphical interface, 

as the command line scripts or subroutines require the user to know, for example, the indices of a 

pair of atoms to calculate the distance between them.  

 Finally, AaronTools only worked with Gaussian 09, which lacks some useful methods 

that are in other electronic structure packages. For example, ORCA has the DLPNO coupled 

cluster methods, which can provide high-quality energies without the steep scaling of standard 

coupled cluster methods.28 Being restricted to Gaussian limited the utility of AaronTools for 
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many computational chemists. I wanted to address these shortcomings to make AaronTools a 

more well-rounded software package.  

 

3.3 Working with More Quantum Chemistry Software 

 Previously, AaronTools could write Gaussian input files and read Gaussian output files. I 

have expanded the types of files AaronTools can create and process to include ORCA, Psi4, Q-

Chem, and SQM. Creating input files is primarily handled by the new AaronTools.theory 

module. While most quantum chemistry packages provide the same overall set of methods and 

options, these are requested very differently within the corresponding input files. The 

AaronTools.theory module contains classes for storing most of the major settings in a 

software-independent manner, as described below. Many of these objects do not need to be 

created explicitly, as AaronTools will create them automatically when instantiating a Theory 

object or changing one of its attributes.  

 

3.3.1 Method 

 The Method object is used to keep method keywords the same across different input file 

formats. As an example:  

from AaronTools.theory import Method 
 
pbe0 = Method("PBE0") 

 

The PBE0 functional43,44 is referred to differently by different software packages, but this is all 

handled automatically by Method. For example, when used to create a Gaussian input file, the 

pbe0 Method will use the correct keyword for Gaussian (PBE1PBE). For semiempirical 

methods, a particular basis set is integral to that method, so most software packages do not 
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require the basis set to be specified to deploy a semiempirical method. As such, the 

is_semiempirical keyword argument can be passed when instantiating a Method. 

 There is also a Method subclass called SAPTMethod, which is designed for making Psi4 

input files using a SAPT method (e.g., SAPT0).29 This allows users to define monomers for 

SAPT computations by adding them to the components attribute of a Geometry object. The 

charge and multiplicity of each component when using a SAPTMethod should be a list of 

integers. The first item in the list should be the total charge or multiplicity, and subsequent 

entries correspond to the different monomers.  

 

3.3.2 Basis Sets 

 A BasisSet is a collection of Basis and ECP objects. This allows for the use of a split 

basis set, as well as the use of auxiliary basis sets. For example:  

basis = BasisSet( 
    [ 
        Basis("cc-pVTZ", [“C”, “H”, “N”, “O”]),  
        Basis("cc-pVTZ", [“C”, “H”, “N”, “O”], aux_type='C'),  
        Basis("cc-pVTZ-PP", [“Ir”]), 
        Basis("cc-pVTZ-PP", [“Ir”], aux_type='C') 
    ],  
    [ECP("SK-MCDHF-RSC")] 
) 

 

This will use cc-pVTZ and cc-pVTZ/C for C, H, N, and O, and use cc-pVTZ-PP and cc-pVTZ-

PP/C on any iridium atoms. The SK-MCDHF-RSC effective core potential will automatically be 

applied to transition metals.  
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3.3.3 Empirical Dispersion 

 The EmpiricalDispersion class is used to specify dispersion corrections.30-32 The 

keywords to invoke a particular dispersion correction vary across the different software packages 

that AaronTools can work with. To create an EmpiricalDispersion instance, simply supply 

any of the common names or keywords for the desired dispersion correction. For example,  

disp = EmpiricalDispersion("Grimme D2") 

disp = EmpiricalDispersion("GD2") 

disp = EmpiricalDispersion("D2") 

disp = EmpiricalDispersion("-D2") 

Using any of the above will result in the correct dispersion correction being requested when the 

input file is written.  

 

3.3.4 Integration Grid 

 As with other objects in the AaronTools.theory package, the IntegrationGrid 

object provides a way to specify grids in a similar manner across different file formats. In some 

cases, the grid can only be approximated, because different software packages use different 

pruning schemes or integration methods to accelerate DFT computations. An 

IntegrationGrid can be instantiated with a keyword or a string with the number of radial and 

angular points: 

grid = IntegrationGrid(“SuperFineGrid”) 

grid = IntegrationGrid(“(99, 590)”) 
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3.3.5 Job Types 

 The JobType class is used to set up common job types. For example, use 

OptimizationJob to set up a geometry optimization or FrequencyJob to compute normal 

vibrational modes. For geometry optimizations, users can request a transition state optimization 

or a constrained optimization. Constrained optimizations can lock atoms, bond lengths, angles, or 

dihedrals in place. Atoms can also be constrained to stay in the same plane. 

 

3.3.6 Implicit Solvent 

 ImplicitSolvent stores information about which implicit solvent model and solvent 

to use. When creating an input file, it will also check to ensure that the specified solvent is 

available in that software package.  

 

3.3.7 Everything Else 

 Settings for which AaronTools does not have a dedicated class can still be modified. 

However, the user must be cognizant of the software they will use, as AaronTools does not know 

how to convert these settings. These settings can be applied by passing a dictionary or list to a 

particular keyword when writing an input file. Table 4 enumerates these keywords for different 

software packages. 

Table 4: Keywords for specifying miscellaneous when creating input files for different software packages 

Gaussian 

Keyword Description List or dictionary 

link0 Link0 settings Dictionary 

route Route line Dictionary 

end_of_file After molecule specification List 

ORCA 

Keyword Description List or dictionary 

simple Simple input line list 
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blocks Various block sections Dictionary 

Psi4 

Keyword Description List or dictionary 

settings Global settings Dictionary 

before_molecule Lines above the molecule List 

before_job Lines between job and molecule List 

job Arguments passed to job subroutines Dictionary 

after_job Lines after the job List 

optking OPTKing settings Dictionary 

pcm_solvent PCM settings Either 

SQM 

Keyword Description List or dictionary 

qmmm qmmm namelist Dictionary 

Q-Chem 

Keyword Description List or dictionary 

rem General settings Dictionary 

section Other settings Dictionary 

xTB 

Keyword Description List or dictionary 

xcontrol Blocks in the xcontrol file Dictionary 

command_line Command line flags Dictionary 

 

3.3.8 Making an Input File 

 Input files can be created using the write method of the Geometry class. This method 

should receive an outfile argument to specify the name of the file. A Theory object should 

also be supplied. The various keywords in Table 4 may also be given. Alternatively, AaronTools 

users may use the makeInput.py command line script, which has options for the method, basis 

set, etc., as well as the software-specific options.  

 

3.4 Steric Descriptors 

Often, reactivity or reaction selectivity are impacted by steric interactions. In these cases, 

it might be possible to correlate some computed steric descriptor to reaction outcome, for 

example. This can reduce the complexity of optimizing a catalyst, as ones without the optimal 

value of the steric parameter value can be disregarded.  
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Perhaps the most widely used steric parameter for organometallic catalysis is the ligand 

cone angle. The ligand cone angle was originally formulated by Tolman, who used a to-scale 

physical model kit to calculate the angles between the M-L bonds and different substituents on 

phosphine ligands.3 A method for calculating the ‘exact’ ligand cone angle has also been 

developed by Allen and co-workers.33 I have implemented both of these algorithms in 

AaronTools. They can be calculated either using the cone_angle method of the Component 

class, or with the coneAngle.py command line script. Both of these will use the user-supplied 

structure.  

Another popular ligand steric parameter is percent buried volume (%Vbur).
34 This is a 

measure of how much space a ligand takes up in the vicinity of the reaction center. Splitting the 

buried volume into octants or quadrants around the center can also be useful for predicting the 

efficacy of a catalyst.35 I have implemented an algorithm for calculating %Vbur in AaronTools 

that uses Monte-Carlo integration. The %Vbur can also be split into octants or quadrants. The 

percentBuriedVolume.py command line script can be used to calculate %Vbur. 

Finally, Sterimol parameters can be used to measure the size of a substituent that goes 

beyond more classical steric parameters.36 Sterimol parameters quantify the length of the 

substituent, as well as its minimum and maximum widths. Sterimol parameters for substituents 

can be calculated with the substituentSterimol.py command line script. Sterimol 

parameters have also been defined for ligands.2 Due to differences in calculating the length 

parameter, the ligandSterimol.py script should be used for ligands. 
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3.5 Simulating Spectra 

 AaronTools can now produce simulated IR and UV/vis spectra of a molecule using data 

parsed from normal mode or excited state computations. If optical activity is computed for the 

various vibrations or excited states, a vibrational or electronic circular dichroism spectrum can be 

generated. Single molecule IR and UV/vis spectra can be produced with the plotIR.py and 

plotUVVis.py command line scripts, respectively. In solution, many conformers of a molecule 

typically contribute to the overall spectrum. AaronTools also has plotAverageIR.py and 

plotAverageUVVis.py command line scripts to produce spectra based on a Boltzmann 

population of conformers.  For example, see Figure 9. 

 

Figure 9: Computed VCD spectrum of methyl lactate 
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3.6 Orbitals 

 Molecular orbitals can be parsed from Formatted Checkpoint (FChk) files and ORCA 

output files. Other orbital data can also be parsed from NBO files. The orbital functions can be 

evaluated with the printCube.py command line script and printed to a Gaussian cube file, 

which can be opened in many graphical programs to visualize the orbital. This command line 

script can also print the SCF electron density and orbital-weighted Fukui functions37 to a cube 

file. Fukui functions can be integrated in the volume around each atom to produce a value that 

indicates the atom’s electrophilicity or nucleophilicity.  

 

3.7 Structure Building 

Building structures in a 3D molecule editor can be tedious, particularly for complex 

structures. AaronTools has a fetchMolecule.py command line script that takes an IUPAC name 

or SMILES and prints the 3D coordinates of a molecule. IUPAC names are converted to 

SMILES using the OPSIN web API,38 and 3D structures are generated from SMILES using the 

NCI/CADD SMILES translator4 or the RDKit Python module.39   

Coordination complexes can be generated using the getCoordinationComplexes.py 

command line script. This script takes a list of ligands, a central atom, and a coordination 

geometry (square planar, octahedral, etc.), and produces all symmetry-unique coordination 

complexes using the predetermined coordination geometries from Simas et al.40 For example, 

Figure 10 shows the two coordination complexes that are generated for a square planar 

coordination geometry with a chloride, carbonyl, and a Quinox ligand.  
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Figure 10: Two coordination complexes generated for a square planar coordination geometry with a chloride, carbonyl, and 

Quinox ligand 

 

3.8 Finders 

 The AaronTools Geometry class has a find subroutine that makes it easy to retrieve 

atoms based on serial number or element. However, the name and serial number of an atom 

typically requires using this in tandem with a GUI, and it is common for a molecule to have 

multiple atoms with the same element. This makes it difficult to locate a specific atom, which 

would be useful for many AaronTools subroutines or command line scripts. For this reason, I 

have made the AaronTools.finders module. This contains several objects for locating atoms 

based on certain characteristics of the atom using the Geometry.find subroutine.  

Table 5 contains a list of different finders. The findAtoms.py command line script can be used 

to print the indices of atoms that match the user-specified criteria. 
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Table 5: AaronTools finder classes and their description 

Finder class Description 

BondsFrom Atoms a certain number of bonds from another atom 

WithinBondsOf Atoms within a certain number of bonds of another atom 

BondedTo Atoms bonded to a particular atom 

WithinRadiusOfPoint Atoms near a specified point 

WithinRadiusFromArom Atoms near another atom 

NotAny Inverts the match criteria 

AnyTransitionMetal D block elements 

AnyNonTransitionMetal Non-D block elements 

HasAttribute Atoms with a particular attribute 

VSEPR Atoms with a certain VSEPR geometry 

BondedElements Atoms whose neighbors match the specified list of elements 

NumberOfBonds Atoms with a certain number of bonds 

ChiralCenters R or S chiral centers (configuration is not determined) 

FlaggedAtoms Atoms with the flag attribute set 

CloserTo Atoms closer to one of the specified atoms than the other 

AmideCarbon Carbon atoms in an amide functional group 

Bridgehead Atoms in more than one ring 

SpiroCenters Atoms in two ring systems that have no other common atoms 

 

3.9 Conclusions 

 AaronTools is a versatile toolkit for facilitating quantum chemistry workflows using 

several popular electronic structure packages. Its capabilities have been expanded considerably, 

allowing for the processing of computed data and calculation of several widely used steric 

descriptors. Now AaronTools can be used to not only run computations, but also create simulated 

spectra or generate data that are useful for establishing quantitative structure-reactivity 

relationships.   
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4.1 Abstract 

We describe a bundle for UCSF ChimeraX called SEQCROW that provides advanced 

structure editing capabilities and quantum chemistry utilities designed for complex organic and 

organometallic compounds. SEQCROW includes graphical presets and bond editing tools that 

facilitate the generation of publication-quality molecular structure figures while also allowing 

users to build molecular structures quickly and efficiently by converting 2-D molecular figures 

into 3-D structures, mapping new ligands onto existing organometallic complexes, and adding 

rings and substituents to molecular structures. Other capabilities include the ability to visualize 

vibrational modes and simulate IR spectra, to compute and visualize molecular descriptors 

including percent buried volume and Sterimol parameters, to process thermochemical corrections 

from quantum mechanical computations, to generate input files for ORCA, Psi4, Q-Chem, SQM, 

xTB, and Gaussian, and to run and manage computational jobs.  

 

4.2 Introduction 

Computational quantum chemistry is playing an increasingly important role in studies of 

organic and organometallic systems, most notably those involved in homogeneous catalysis. 

Such studies can provide key insights into the origins of reactivity and selectivity and can aid in 

the identification and development of new reactions and improved catalysts.22, 41-44 While 

methodological and hardware advances have opened the door for accurate quantum chemical 

studies of larger and larger molecules, graphical utilities for building and analyzing complex 

molecular structures and visualizing results have not kept pace. 

For example, a common task in modern quantum chemistry applications to 

organometallic systems is the replacement of a given ligand on a metal center with other 
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complex (and often chiral) ligands for each stationary point along a multi-step reaction pathway.  

In this way key barrier heights can be compared across multiple examples of a given reaction to 

unveil trends in reactivity and selectivity.  However, popular graphical molecular builders (e.g., 

GaussView/AGUI,45 Avogadro,46 IQmol,47 etc.) are not well-suited for this task. First, none of 

these tools provide libraries of common modern ligands (e.g., BINAP, SEGPHOS, etc.), instead 

requiring the user to build these ligands from scratch or extract them from previously computed 

structures. Moreover, replacing a ligand in a structure using these graphical builders requires the 

user to first delete the old ligand and then manually place the new ligand appropriately. This 

process can be a tedious and error-prone when performed across dozens of stationary points 

along a reaction, particularly if the process must be repeated for many different ligands. Apart 

from mapping new ligands, other common molecular building and visualization tasks can be 

surprisingly cumbersome in many graphical user interfaces. 

Herein, we describe SEQCROW, a free, open-source bundle for UCSF ChimeraX48 that 

provides powerful graphical tools for building and manipulating the types of molecular structures 

encountered in modern chemical applications, representing results from quantum chemistry 

computations, and preparing and running diverse input files for popular quantum chemistry 

software packages. 

 

4.3 SEQCROW 

 SEQCROW is an add-on to ChimeraX that provides new commands, atom selectors, 

graphical presets, and tools across many categories (see Figure 11). This includes reading 

structures, vibrational frequencies/normal modes, and other data from Gaussian,49 ORCA,25 Q-

Chem,50 or Psi451 output files. Much of the added functionality is available through both 



 

42 

graphical menus and the ChimeraX command line. SEQCROW is part of a collection of tools for 

quantum chemistry called QChASM (Quantum Chemistry Automation and Structure 

Manipulation)52 and uses the AaronTools Python package4, 52 for structure manipulation and 

analysis, preparation of quantum chemistry input files, and processing of quantum chemistry 

output files. We highlight several features of SEQCROW below. Additional information and 

help are available through the built-in help browser of ChimeraX and the GitHub page for 

SEQCROW.53 

 

 Figure 11: Overview of features available in SEQCROW 
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4.4 Graphical Presets, Bond Editor, and Selectors 

  

Generation of illuminating visual representations of molecular structures is vital to 

effective communication of computational results. This is particularly important for transition 

state (TS) structures, in which one must convey the breaking and forming bonds. SEQCROW 

provides publication-quality presets for ball-and-stick, stick, and VDW representations of 

molecular structures. This includes customizable semi-transparent bonds to represent forming 

Figure 12: TSS for a Rh-catalyzed asymmetric hydrogenation of acetaldehyde represented with different graphical presets from 

SEQCROW: ball-stick-endcap, sticks, and VDW 
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and breaking bonds in TS structures as well as bond types for non-covalent interactions and 

coordination bonds (see Figure 12). TS bonds are automatically detected and displayed when 

opening output files that contain imaginary vibrational frequencies, and a Bond Editor tool 

allows the user to create or erase each of these bond types as needed. 

While ChimeraX natively provides selectors for structural components, these are 

primarily aimed at biomolecules. SEQCROW adds additional selectors for more general 

components of organic and organometallic molecules. For example, using SEQCROW one can 

select all transition metal atoms or instances of a given substituent type by name (Ad, Ph, Me, 

etc.) within a molecule or set of molecules, which can then be highlighted or modified. 

SEQCROW also adds selectors for atoms with certain VSEPR shapes, such as tetrahedral or 

trigonal pyramidal atoms. In order to more easily select a molecular fragment, SEQCROW adds 

a ’connected’ selector, which expands the current selection to anything on the same fragment. 

This ‘connected’ selector is also available as a mouse mode, allowing for a fragment to be 

selected with one click. 

 

4.5 Structure Modification and Building 

 A key benefit of SEQCROW over many other graphical molecular builders is a series of 

unique structure modification tools. This includes the ability to quickly modify structures by 

adding substituents and rings or mapping new ligands onto existing molecular structures. Built-in 

libraries provide common (and not so common) substituents, ring types, as well as chiral and 

achiral ligands. SEQCROW allows users to browse these libraries or add their own, custom 

groups to these libraries. Multiple structures can be edited simultaneously, allowing, for 

example, derivatives of all stationary points along a reaction pathway to be generated. Users can 
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also rotate entire molecules or selected atoms about any defined centroid and axis (including the 

axis normal to a set of atoms) using the Rotate Atoms tool. 

 Building structures atom-by-atom in 3D can be finicky and tedious, particularly in the 

cases of chiral molecules and structures with fused rings. Users may find it easier to use 

SEQCROW’s 2D Builder tool. With this tool, a user can sketch a molecule in a ChemDoodle54 

2D window, or import a MOLFile or ChemDoodle JSON file, and load a 3D structure of this 

molecule into ChimeraX (see Figure 13). The 3D structures are obtained from an NCI/CADD 

web API. This generally works well for organic molecules, but it is less reliable for 

organometallic complexes. As an alternative, SEQCROW has a Coordination Complex 

Generator tool. With this tool, the user specifies the element of the central atom, the coordination 

geometry, and some mono- or bidentate ligands from the ligand or substituent library. The tool 

will then generate all symmetry-unique coordination complexes using a database of unique 

coordination geometries determined by Simas et al.40  

 

 

Figure 13: 2D sketch of dexamethasone and the resulting 3D structure 
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4.6 Setting up and Running Computations 

SEQCROW provides a general interface for building input files for QM computations.  

Unlike many graphical interfaces that are either specific to particular quantum chemistry 

packages or limit the possible computation types, SEQCROW’s QM Input Builder allows the 

generation of Gaussian,49 ORCA,25 Psi451, Q-Chem50, xTB55, and SQM56 input files for nearly 

any type of QM computation. This includes routine job types (geometry optimizations, 

vibrational frequencies, etc.) but also more complex job types including constrained geometry 

optimizations, calculations with mixed basis sets/ECPs, as well as SAPT and F-SAPT 

computations.29, 57-60 

The QM Input Builder will check for typos in user-entered methods and basis sets and 

offer suggestions if one of these is misspelled. The QM input builder will also check for other 

simple issues with the input, such as some elements not being included in a specified basis set. 

Some issues will be silently resolved. For example, the keyword to use dichloromethane as the 

CPCM implicit solvent in ORCA is “CH2Cl2”. If the user enters “dichloromethane”, the correct 

keyword will be used instead. Issues are only fixed silently in cases where it is clear what the 

user is requesting. 

Custom job presets can be saved and later retrieved to streamline the generation of input 

files. These presets can also be exported and sent to other users. For example, this provides a 

simple way for an experienced computational chemist to assist less experienced users build 

complex input files. Python classes enable developers to easily add additional file formats to 

SEQCROW, allowing for the deployment of generalized input file builders for any desired QM 

code.  
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In addition to the general input file builder, SEQCROW has a separate tool for setting up 

automated transition state searches. This allows users to easily utilize TSS search algorithms 

included in certain quantum chemistry software packages (i.e., nudged elastic band in ORCA, 

synchronous-transit guided quasi-Newton in Gaussian, freezing string in Q-Chem, and a 

metadynamics-based algorithm in xTB). These algorithms take the structures of the reactant and 

product as input, and the order of the atoms must be the same in both. The Transition State 

Structures tool allows users to swap the order of the atoms, as well as modify some algorithm-

specific parameters. 

Jobs can be run on the local machine or local computing cluster if the corresponding 

quantum chemistry software is installed. A built-in queue enables the user to monitor the 

progress of multiple jobs and automatically retrieve the output from completed or ongoing 

computations. From the queue, users can restart failed computations, with automatic error 

mitigation applied for common errors (e.g., running out of SCF iterations or geometry 

optimization steps). Planned extensions of SEQCROW will allow for job submission and job 

management on remote clusters as well as the setup and execution of automated workflows using 

AaronJr (Automate Any Reaction or Optimization, Normally Just right), which is a QM 

workflow manager currently in development.52, 61 

 

4.7 Processing Computed Data 

Another unique feature among graphical molecular visualization and analysis tools is the 

ability of SEQCROW to process thermochemical corrections by combining data from multiple 

quantum chemistry computations (see Figure 14).  SEQCROW’s Thermochemistry tool allows 

the user to combine single point energies from Gaussian,49 ORCA,25, Q-Chem50 or Psi451 with 
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thermal corrections (including not only RRHO free energies but also those relying on the quasi-

harmonic and quasi-RRHO approximations)24, 62 from any output file containing vibrational 

frequency data. These values can be computed at any requested temperature or using any cutoff 

value for the quasi-RRHO and quasi-harmonic treatments of the entropic component of the free 

energy. The Thermochemistry tool is also able to calculate these quantities for one ensemble of 

conformers relative to another. 

 

SEQCROW provides a simple yet customizable interface to visualize normal vibrational 

modes as well as IR spectra. Normal modes can be visualized statically via displacement vectors 

or animated. If requested, the appropriate vibrational scaling factors for the corresponding level 

of theory are automatically retrieved from either the NIST Computational Chemistry 

Comparison and Benchmark Database (CCCBDB)63 or the database maintained by the Chemical 

Theory Center at the University of Minnesota (UMN CTC).64, 65 An additional tool allows users 

Figure 14: Energies, enthalpies, and free energies (RRHO, quasi-RRHO, and quasi-harmonic) can be evaluated by combining 

energies from different QM packages at any specified temperature 
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to determine bespoke scaling factors based on a least-squares fitting of user-provided 

anharmonic vibrational frequencies. 

A single conformation of a molecule is generally not responsible for all of the signals in 

an experimental spectrum. Thus, SEQCROW has tools for generating computed IR or UV/vis 

spectra from a Boltzmann distribution of conformers. These tools allow for contributions of 

individual conformers to be plotted separately (see Figure 15), an arbitrary number of x-axis 

interruptions for uninteresting portions of the spectrum, and peak locations to be shifted or 

scaled. To simplify comparisons, spectra can be imported from or exported to CSV files. 

 

Inspecting orbitals may be useful for understanding the reactivity of a molecule. 

SEQCROW can display orbitals from formatted checkpoint files (FChk), ORCA output files, and 

NBO files from the Orbital Viewer tool. This tool allows users to modify the colors of the orbital 

lobes and resolution at which the orbital is calculated. Additionally, the SCF electron density and 

orbital-weighted Fukui functions37 can also be displayed. These can provide additional insight 

into the reactivity of a molecule.  

Figure 15: Choosing conformers to generate an IR spectrum, and an ECD spectrum with the most populated conformers 

displayed separately 
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4.8 Structure Analysis 

 Vital to many modern quantum chemistry applications is the evaluation of molecular 

descriptors.2, 66-68  SEQCROW provides an interface to compute and visualize three key 

descriptors: Sterimol parameters69, percent buried volume (%Vbur)
34, 70-72, and ligand cone 

angles.3, 33 Sterimol provides a multidimensional measure of the steric bulk of substituents, 

whereas cone angles and %Vbur quantifies the steric crowding around a metal center or other 

reactive center.  

Figure 16: A bonding PNBO of formamide and the orbital-weighted Fukui dual function for pentafluorothioanisole 



 

51 

 

With SEQCROW, these quantities can be evaluated and visualized in ChimeraX.  For 

example, Figure 17 shows the evaluation and visualization of the B1-B5 and L Sterimol 

parameters for the phenyl substituent. While other tools are available for computing these 

parameters,73, 74 the visualization of the corresponding vectors can facilitate the communication 

of key steric information in publications. Figure 17 also shows visualizations for two ligand 

steric parameters: cone angle and %Vbur, as well as a steric map with the buried volume 

partitioned into quadrants. 

Figure 17: Sterimol parameters for a phenyl substituent, and the cone angle, buried volume, and steric map for a BINAP ligand 

on a rhodium coordination complex 
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 These structure analysis tools can calculate these parameters for multiple structures 

simultaneously. This could be useful for studying a large number of different ligands/substituents 

or conformers. As an example, we will calculate the Sterimol parameters for 10 substituents at 

once. Ideally, we would use optimized structures for this, but structures generated by 

NCI/CADD SMILES translator. The structures we will use can be loaded into ChimeraX by 

running the command: open smiles:C smiles:CC smiles:C(C)C smiles:C(C)(C)C 

smiles:C1=CC=CC=C1 smiles:CF smiles:C(F)F smiles:C(F)(F)F smiles:CCl 

smiles:C(Cl)Cl on the ChimeraX command line. 

We will say that the first hydrogen on each of these is standing in for the rest of the 

molecule. Thus, the ‘substituent’ portion of these can be selected by running the command: 

select ~@H1 on the ChimeraX command line. Now, all atoms except one hydrogen should 

have a green outline. The substituents should be methyl, ethyl, isopropyl, tert-butyl, phenyl, 

fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, and dichloromethyl. To calculate 

the Sterimol parameters for all of these, simply click the “calculate parameters for selected 

substituents” button on the Substituent Sterimol tool. All parameter values will be in the table on 

the tool. If the “show vectors” and “show radii” options are selected on the tool window, the 

structures should look like what is shown in Figure 18.  
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4.9 Installation and Availability 

SEQCROW is free and open-source and can be installed automatically through the ‘More 

Tools’ option on the ‘Tools’ menu in ChimeraX. Additional information and help is available 

through the SEQCROW GitHub page.53 

 

4.10 Conclusions 

 As quantum chemistry applications have tended toward larger and more complex 

molecules, popular graphical user interfaces have not kept pace. The result is that building 

modern organic and organometallic molecules is often a cumbersome task. SEQCROW is a free, 

open-source bundle for UCSF ChimeraX48 designed to make it easier to build, manipulate, and 

analyze such molecules. 

The long-term goal is to develop SEQCROW into a complete graphical interface for 

quantum chemistry applications across different electronic structure packages. Such a tool will 

broaden access to these powerful tools. There has long been tension regarding the merits of 

making quantum chemistry more accessible to non-experts. Indeed, opening the powerful tools 

of quantum chemistry to those with inadequate training is a recipe for the generation and 

Figure 18: Vectors representing the Sterimol parameters for several substituents 
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possible publication of dubious computational results. Such data, once in the literature, can dilute 

the impact of more rigorous computational studies, to the detriment of the field. 

In our view, the prudent response to this dilemma should not be to limit access to 

quantum chemical tools but to facilitate training for those seeking to run computations. In this 

context, SEQCROW has been built with two audiences in mind. First, SEQCROW provides 

tools that will streamline modern quantum chemistry applications by experienced computational 

chemists. At the same time, SEQCROW provides access to the power of modern quantum 

chemistry programs without the need to learn to work on the Linux command line. Our hope is 

that SEQCROW will provide a platform for training those without experience in high-

performance computing or computational quantum chemistry, including both experimental 

researchers with a casual interest in computational chemistry and undergraduate students. 
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CHAPTER 5 

SEQCROW IMPLEMENTATION DETAILS 

 

5.1 Abstract 

 In this chapter, I show how to extend SEQCROW and provide details about how some 

SEQCROW features are implemented. This includes adding new file formats to the QM Input 

Builder tool and the Transition State Structure prediction tool, as well as allowing for those jobs 

to be run through SEQCROW. I will also discuss how the buried volume visuals are created, and 

how SEQCROW works as an interface between ChimeraX and AaronTools. 

 

5.2 Introduction 

 The various features of SEQCROW were developed over several months. AaronTools, 4 

which does a lot of the heavy lifting for SEQCROW, has resulted from the work of multiple 

Wheeler group members since before SEQCROW’s inception. Creating tools like SEQCROW 

and AaronTools takes a lot of time, thought, and code. Even so, SEQCROW is a plugin for 

ChimeraX, because building a standalone graphical program with all the functionality of 

SEQCROW would require significantly more time, thought, and code.  

In an effort to ease the creation of GUI-based tools, SEQCROW is built so that other 

ChimeraX plugins can utilize various SEQCROW interfaces. As mentioned in the previous 

chapter, new formats can be added to the QM Input Builder tool. Similarly, algorithms can be 

added to the Transition State Structure prediction tool. For both tools, plugin developers may 

choose to write additional code allowing their new file formats to be executed through the 

ChimeraX GUI.  
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In this chapter, I will describe how to add new input file types and jobs to SEQCROW. I 

will also describe other facets of SEQCROW that may be of interest to someone looking to make 

visualizations similar to SEQCROW’s. In particular, I will describe the algorithm for generating 

3D %Vbur visuals and how SEQCROW acts as a middleman between ChimeraX and 

AaronTools. I will assume the reader is familiar with the basics of ChimeraX bundle 

development, Python 3, and AaronTools.  

 

5.3 Adding Formats to the QM Input Builder Tool 

 Input file formats are tracked using ChimeraX’s ProviderManager structure. A plugin 

must add entries in the bundle_info.xml file for the QM input file formats it adds. SEQCROW’s 

manager for this is called “seqcrow_qm_input_manager”. The names of the providers will be 

used as the label for the input file format on the QM Input Builder tool, shown in Figure 19. 
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Figure 19: SECQROW's QM Input Builder tool, with the file formats displayed 

  

 The bundle’s API must also be able to respond appropriately when these providers are 

called upon. The provider is invoked through the bundle API’s run_provider method. When 

SEQCROW tries to run a provider, the bundle should give an instance of a QMFileInfo. This is 

a SEQCROW class for organizing all options available on the QM Input Builder tool, which 

includes a list of methods, basis sets and auxiliary basis sets, implicit solvents, and sections for 
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the “additional options” tab. A detailed explanation of all these and how to specify them can be 

found in the source code for the QMFileInfo class.  

 A developer will also need to write a method to create the input file(s) for a software 

package given an AaronTools Theory instance. For software that requires more than one input 

file, such as xTB, the method should return a dictionary. The keys of the dictionary should be 

either the standard file extension for one of the files or the entire name of the file if it requires a 

fixed name. The values of the dictionary should be the contents of the corresponding file as a 

string. The method should also return a list of warnings for potential issues with the user-

specified settings.  

 

5.4 Adding New Algorithms to the Transition State Structure Prediction Tool 

 Algorithms for the Transition State Structure prediction tool are tracked with 

SEQCROW’s “tss_finder_manager” provider manager. When run, the provider should 

return an instance of a TSSFinder subclass. This class contains information about what 

software can be used for the TSS finding algorithm, the algorithm options, a method for 

adjusting the AaronTools Theory object, and methods for obtaining the contents of an input file 

for the software.  

 

5.5 Implementing New Job Types 

 Jobs that run on the same computer as ChimeraX are implemented as a QThread 

subclass called LocalJob, which can be imported from SEQCROW’s jobs module. 

Developers should create a subclass of LocalJob for their new job types. LocalJob objects are 

instantiated with a job name, ChimeraX session, AaronTools Theory, an AaronTools 
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Geometry (though a Geometry should also be associated with the Theory), and various 

keyword arguments for other job-related options. Options can be added by modifying the 

exec_options class attribute. This is a dictionary, where the keys are the option text, and the 

values are ChimeraX Option objects, along with the arguments needed to instantiate the 

Option objects.  

 To execute the job, the run method must be defined. The standard procedure is to create a 

scratch directory in SEQCROW’s scratch directory (defined in the settings), write the input files, 

and start the job in a subprocess. For convenience, the LocalJob class has a write_file 

method, which will use the method associated with the QMFileInfo to create the input files in 

the scratch directory. The subprocess should be set as the job’s process attribute so it can be 

stopped if the user requests it. The output_name attribute should also be set to the path to the 

output file(s) created by the job that can be opened in ChimeraX. This should be done before 

starting the job subprocess in the event ChimeraX is closed before the job completes.  

 Cluster jobs all use the same job type: LocalClusterJob. The difference is that this 

will receive an object that is a subclass of both ClusterSubmitTemplate and 

ProgramSubmitTemplate, as well as several cluster-related options at instantiation. The 

template defines how to submit the template to the cluster and what the output files are. Because 

of this, it should not be necessary to make subclasses of LocalClusterJob for standard jobs.  

 Jobs launched from the Transition State Structure tool are similar to standard jobs. If 

running on local hardware, make a subclass of TSSJob. If running on a cluster, make a subclass 

of ClusterTSSJob. The main difference between these and the regular job types is they take a 

reactant and a product. ClusterTSSJobs also takes a TSSFinder.  
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 There are several managers for jobs. For standard local jobs, add a provider for the 

“seqcrow_job_manager” provider manager. Running these providers should return the job’s 

class (not an instance). For cluster jobs, the queue type (e.g., Slurm or PBS) should be in the 

“seqcrow_cluster_scheduling_software_manager” manager. Running this provider 

should return a ProviderManager, which keeps track of how to run jobs on different cluster 

types. Running a provider for one of these managers should return an object that is a subclass of 

both ClusterSubmitTemplate and ProgramSubmitTemplate. These define default job 

execution templates, and a method for submitting jobs to the cluster. 

 

5.6 Buried and Free Volume in 3D 

 Shapes rendered in ChimeraX (and many other 3D graphics programs) are comprised of 

three pieces of information: vertices, triangles, and normal vectors. Triangles create a surface 

between three vertices. Normal vectors to the vertices determine how the vertex is shaded based 

on lighting. 

The buried or free volume visuals, such as the one shown in Figure 17, are basically a 

bunch of spheres for the ligand atoms, with a larger sphere around the metal center. Certain 

vertices on these spheres are removed to show just what is necessary for the buried or free 

volume. Vertices on an atom’s sphere that are outside of the large sphere around the center are 

removed. They are also removed if they are inside of a different atom’s sphere. If we are 

displaying the buried volume, we keep vertices on the sphere around the metal center if they are 

inside of one of the atom’s spheres. If we are displaying free volume, we keep the vertices that 

are not inside of an atom’s sphere.  
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 However, this does not create a very appealing visual (see Figure 20, left). This is 

because we are also removing all triangles that use those vertices, which creates larger gaps 

where atom spheres meet each other or the larger sphere around the metal center. To rectify this, 

we add vertices along those intersections. Unfortunately, this precludes using a predefined set of 

vertices, triangles, and normal vectors for each sphere. 

Instead, SEQCROW constructs a list of regularly spaced vertices on a sphere and adds 

vertices at intersections. The SciPy module75 is used to determine the convex hull of the vertices. 

The simplices of the convex hull are the triangles for the sphere. Next, vertices are deleted, as 

outlined earlier. The normal vectors to the vertices are just unit vectors that point from the center 

of the sphere to the vertices.  The result is the final, smooth surface shown in Figure 20 (right). 

 

 

Figure 20: (left) Initial and (right) final visualization of free volume around a metal center. The metal and ligand are not shown. 
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5.7 SEQCROW as a Middleman 

 Many of the tools in SEQCROW simply take the input on the tool, convert any necessary 

structures to AaronTools-compatible objects, and then run an AaronTools subroutine. Compared 

to creating a command line script with AaronTools, the only extra step is converting objects to 

AaronTools equivalents. This greatly simplified adding several features to SEQCROW, as the 

subroutines did not need to be rewritten to work with ChimeraX AtomicStructure objects.  

The AaronTools-compatible objects are in SEQCROW.residue_collection. There are 

two Geometry-like classes here: Residue and ResidueCollection. As the name implies, a 

ResidueCollection contains one or more Residue objects. There is also an Atom subclass. 

Converting a ChimeraX AtomicStructure to a ResidueCollection is as simple as passing 

the AtomicStructure to the ResidueCollection initialization method. For performance 

reasons, someone might want to only convert a portion of an AtomicStructure. In this case, they 

can also supply a list of ChimeraX Residues when creating the ResidueCollection. A 

ResidueCollection can also be used to get a new AtomicStructure or update an existing 

one to match the ResidueCollection. This is done with the get_chimera and 

update_chix methods, respectively. 

SEQCROW also has a Finder that is specific to atoms on these objects called 

Atomspec. This uses the atom specifier for the corresponding ChimeraX atom to locate the 

AaronTools equivalent. This is often used to locate the atoms that are selected, like when 

calculating the Sterimol parameters of a substituent.   
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5.8 Conclusions 

 This chapter described some of the inner workings of SEQCROW that could be useful to 

other developers. I described how to add new file formats for the QM Input Builder tool. I also 

outlined how to add new TSS finding algorithm implementations to the Transition State 

Structure prediction tool. The process for adding the ability to run these computations was also 

described. The algorithm for creating SEQCROW’s 3D buried volume representation was 

detailed. The approach of using SEQCROW to interface AaronTools with ChimeraX by making 

it easy to create AaronTools-compatible objects could also be employed to create plugins closely 

associated with other Python modules.   
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CHAPTER 6 

RAVEN: A DOUBLED-ENDED GROWING STRING IMPLEMENTATION 

ACCELERATED BY GAUSSIAN PROCESS REGRESSION 

 

6.1 Abstract 

Raven is an implementation of the doubled-ended growing string method to locate 

minimum energy reaction pathways connecting a given reactant and product. It utilizes an on-

the-fly Gaussian process model to predict gradients at any necessary points on the potential 

energy surface. The use of a Gaussian process model allows Raven to locate a good starting 

point for transition state structure search in the majority of cases while requiring fewer 

computations than traditional reaction path search implementations. Raven is benchmarked using 

a previously published set of 121 reactions and demonstrated by locating a TSS for the Ir-

catalyzed CH functionalization reaction from Chapter 2. 

 

6.2 Introduction 

 One of the major benefits of computational chemistry is the ability to locate transition 

state structures (TSS’s). These transient structures are nigh impossible to see in an experimental 

setting. The analysis of TSS’s can provide useful insight into the factors governing reactivity and 

selectivity, such as steric clashes or key electrostatic interactions. However, optimizing to a TSS 

will notoriously fail if the starting structure is too far from the actual first order saddle point on 

the potential energy surface. Obtaining a good starting point can be difficult in cases where the 

reaction mechanism is unintuitive or particularly novel. The use of a poor starting structure may 
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also lead to locating a high-energy TSS, which will not typically be chemically relevant. TSS’s 

for metal-catalyzed reactions can be particularly challenging, since these often involve multiple 

bonds forming and breaking, either in a stepwise or concerted fashion. Indeed, distinct stepwise 

and concerted mechanisms may exist for a given reaction; however, the lowest-energy pathway 

is usually the most chemically relevant.  

 There are algorithms for automating the search for transition state structures. One of the 

most popular and generally applicable methods is reaction path search, where the goal is to 

locate a pathway between two minima. This is generally done by interpolating a pathway 

between these minima and iteratively optimizing the pathway by computing derivatives of the 

energy with respect to molecular coordinates at several points and adjusting the pathway 

accordingly. An example of this approach is the standard string method (SSM).76 In each 

iteration of the SSM, the gradient is computed at evenly spaced points along the interpolated 

pathway. The SSM can run into trouble if the initial pathway is unreasonable, leading to errors 

when computing the gradient or getting stuck in a high-energy pathway. For instance, structures 

near the middle of the path in the initial interpolated pathway often have atoms that are 

unreasonably close, leading to problems with SCF convergence, etc. 

 A more reliable algorithm is the double-ended growing string method (DE-GSM).77 This 

starts by optimizing the pathway close to the supplied minima first and waits to optimize the 

middle of the pathway until the ends closer to the minima have been optimized (see Figure 22). 

Thus, the pathway (string) ‘grows’ in from both ends. The structures close to the minima are 

typically more reasonable than the structures more towards the middle of the pathway in the 

initial interpolated pathway, so errors in the computations are minimized. As an example, the top 

of Figure 21 shows several points on an initial pathway for the Claisen rearrangement of allyl 
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vinyl ether determined by using a linear interpolation of Cartesian coordinates. Around the 

middle of this initial Claisen rearrangement pathway, many atoms are abnormally close to one 

another. This could result in issues when computing the energy or gradient of these structures. 

With reasonable structures, errors are much less common.  

 

Another benefit to the DE-GSM approach is that the initial pathway does not have much 

of an impact on the outcome of the algorithm since successive segments of the string are built as 

the string grows. Figure 21 shows two pathways for the classic Claisen rearrangement of allyl 

vinyl ether. The top series shows an initial, poorly chosen reaction pathway connecting reactant 

and product. The bottom series of structures results from application of the DE-GSM. In this 

pathway, the forming/breaking bonds are much longer in the middle of the initial pathway. 

Applying the SSM to the initial pathway runs the risk of locating a dissociative mechanism 

instead of the concerted one. 

Figure 21: Structures located a poor-quality initial pathway (top) and optimized pathway (bottom) for the Claisen rearrangement 

of allyl vinyl ether 
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Reaction path search algorithms can be quite costly, often requiring hundreds of gradients 

to be computed. This can limit the application of reaction path search techniques to small 

molecules or low-quality methods or force the use of a relatively small number of points along 

the pathway. Recently, Kästner et al.78 described a reaction path search algorithm that uses 

Gaussian process regression (GPR) to greatly reduce the number of computations required to 

converge the reaction path search algorithm.  

 GPR is a machine learning model that gives a Gaussian probability distribution of output 

values for a given input. This distribution is characterized by a mean and variance, both of which 

Figure 22: A snapshot of the DE-GSM method applied to a simple potential energy surface; the line represents the pathway at 

this iteration, and white dots (nodes) are locations where the gradient is computed during this iteration 
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are determined by a set of observed inputs and outputs. The similarity between a pair of points  

(𝑥1, 𝑥2) is gauged using a kernel function. Any function could be used as a kernel, but generally 

the function should have a higher value for a pair of inputs that are similar, and it should be 

closer to zero for dissimilar input pairs. Two popular simple kernel functions are the radial basis 

function: 

𝑘(𝑥1, 𝑥2; 𝑙) = exp (−
‖𝑥1 − 𝑥2‖2

2𝑙2
) (6.1) 

and the Matérn kernel: 

𝑘(𝑥1, 𝑥2; 𝑙; 𝜐) =
21−𝜈

Γ(𝜐)
(√2𝜐

‖𝑥1 − 𝑥2‖

𝑙
)

𝜐

𝐾𝜈 (√2𝜐
‖𝑥1 − 𝑥2‖

𝑙
) , (6.2) 

where 𝐾𝜈 is the modified Bessel function of the second kind. A value of 𝜐 = 5 2⁄  is often 

chosen. In this case, the kernel is: 

𝑘(𝑥1, 𝑥2; 𝑙) = (1 + √5
‖𝑥1 − 𝑥2‖

𝑙
+

5‖𝑥1 − 𝑥2‖2

3𝑙2
) exp (−√5

‖𝑥1 − 𝑥2‖

𝑙
) . (6.3) 

The value of these kernels for the pair of points (𝑥1, 𝑥2) is inversely proportional to the distance 

between the points. The parameter 𝑙 determines how quickly the kernel values fall off. 

 In order to obtain the distribution of output values for a new input value, 𝑥∗, the kernel 

function is evaluated for each pair of points in the training set, as well as for each training point 

with 𝑥∗, and 𝑥∗ with itself. The mean of this distribution is given by 

〈𝑓〉 = 𝐾∗
𝑇(𝐾 + 𝜎2𝐼)−1𝑦, (6.4) 

where 𝐾∗ is a vector containing the kernel values for each training point with 𝑥∗, 𝐾 is a matrix 

containing the kernel evaluated for each pair of training points, 𝑦 is the output for each training 

point, 𝐼 is the identity matrix, and 𝜎 is a regularization parameter to account for noise in the 

training data. Because the mean is the most probable value for a Gaussian distribution, this is 
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simply chosen to be the predicted output for this new input. Note that (𝐾 + 𝜎2𝐼)−1𝑦  only 

includes training data and a parameter. We can store this value as a vector until we need to 

rebuild the model. Predicting the mean then simply requires the evaluation of the kernel function 

to build 𝐾∗ and taking the dot product with the (𝐾 + 𝜎2𝐼)−1𝑦 vector. This is generally quick for 

simple kernels. The variance for the distribution is: 

𝑣𝑎𝑟(𝑓) = 𝐾∗∗ + 𝜎2𝐼 − 𝐾∗
𝑇(𝐾 + 𝜎2𝐼)−1𝐾∗, (6.5) 

where 𝐾∗∗ is the value of the kernel function evaluated for the new point with itself.  

 For reaction path search, the input to the GPR model can be the coordinates of the atoms. 

The output could be the energy or gradient for those coordinates. Kästner’s approach utilized a 

GPR model to predict many of the required gradients instead of running QM computations. 

However, their method was based on the nudged elastic band (NEB) algorithm for reaction path 

search. NEB is similar to SSM: low-quality initial interpolations can lead to errors or failure to 

converge to a lower-energy pathway.  

 In this chapter, I describe Raven, a DE-GSM implementation that uses GPR to reduce the 

computational cost. Raven is built using AaronTools27 to setup, process, and run all necessary 

computations. To evaluate the performance of this implementation, I compare its performance to 

Jónsson et al.’s NEB implementation, which does not use GPR, across a test set of 121 

reactions.79 

 

6.3 The Algorithm 

 Raven builds an interpolation between two structures by combining one-dimensional 

interpolations along each atom’s X, Y, and Z coordinate. This is done using one of the 1-D 

interpolation methods available in the SciPy library.75 In practice, we use the piecewise cubic 
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Hermite interpolating polynomial (PCHIP) method. PCHIP yields a monotonic function between 

each point, which seems to lend some stability to the interpolation. Before the interpolation is 

built, the Kabsch algorithm80 is used to align all structures along the pathway to the reactant. 

This removes motion due to rotation or translation of the center of mass. Although the tangent to 

the interpolation can be calculated at any point along the pathway, it might not be accurate for 

the frontier nodes while the string is still growing due to the larger gap in between the nodes. For 

a potentially more accurate tangent at the frontier, we use the linear direction from the frontier to 

the adjacent node. 

In Raven, the input for the GPR model is the coordinates of a structure, and the output is 

the gradient of the potential energy surface at that point. If the maximum square root of the 

variance exceeds a threshold for any node on the pathway, the gradient for that structure will be 

explicitly computed at the user-specified level of theory using the requested QM package (Raven 

can use gradients from Gaussian, ORCA, or Psi4). This computation will then be added to the set 

of observations, and the GPR model will be retrained. Additionally, when a new node is added to 

the pathway, the node’s gradient is always computed and used to retrain the model. By default, 

Raven uses the Matérn kernel with 𝜐 = 5 2⁄  and 𝑙 = 10 Å. 

As gradients are readily accessible from the GPR model, Raven uses gradient-descent-

based line search strategy to optimize points on the pathway. The tangent to the interpolated 

pathway is projected out of the gradient. This determines the step direction. Raven will take up to 

10 steps in this direction, ensuring not to move any atom too far from its previous position 

(default is 0.01 Å). Of these 10 steps, Raven will use the one with the lowest energy. The 

negative change in energy for each step is calculated from the dot product of the gradient at that 
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step with the step displacement vector. This scheme is also used to locate minima and maxima 

along the interpolated pathway. 

Once a frontier node meets the convergence criteria shown in Table 6, a new node is 

added a bit farther along that side of the pathway. Note that the criteria include the number of 

iterations without a new node. This is because Raven often gets stuck optimizing nodes without 

making much improvement from one iteration to the next. This could be due to known 

convergence issues with gradient-based optimization algorithms or insufficient training data in 

the GPR model. Once the pathway has the desired number of nodes, and each node meets the 

convergence criteria, optimization stops. Raven will then locate local maxima and minima along 

the pathway. By default, Raven will use 26 nodes. This is significantly more than traditional 

reaction path search implementations, though more nodes incur little computational expense due 

to the use of the GPR model. 

 

Table 6: Raven's default convergence criteria 

RMS F⟂ Max. F⟂ RMS displacement Max. displacement 

< 5 × 10-3 a.u. < 7.5 × 10-3 a.u. < 3.5 × 10-3 Å < 5 × 10-3 Å 

or 

Iterations without new node Predicted ΔE 

> 250 < 0 and > -5 × 10-4 a.u. 

or 

Iterations without new node Predicted ΔE 

> 500 < 0 a.u. 

 

6.4 Running Raven 

 An INI-formatted AaronTools config file is Raven’s primary input (see Figure 23). In the 

[Raven] section of the config file, users must specify the paths to files containing the structures 

of the reactant and product. The default parameters for the GPR model, number of nodes, and 

convergence criteria can also be adjusted in the [Raven] section. The desired level of theory is 
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specified in the [Theory] section. In the [Job] section, users specify the electronic structure 

package to run, the number of processors, and the amount of memory to use. Raven can be used 

with most program supported by AaronTools (currently Gaussian, ORCA, and Psi4). 

 

If Raven is being run in parallel mode, where all computations are submitted separately 

to a cluster, the [Job] section should also have the memory and wall time limits for each job. A 

template submission file should also be specified on the command line when running Raven. If 

Raven is being run in serial mode, where all computations are run one after another as a 

subprocess of Raven, the executable for the electronic structure package needs to be specified on 

the command line at run time. 

 

6.5 Benchmark Set 

 In order to evaluate the performance of this implementation, Raven was tested for the 121 

test cases published by Jónsson et al.79 This test set comprises slightly modified versions of 

benchmark sets from Birkholz and Schlegel81 and Zimmerman.82 The reactant and product 

structures for each reaction were first reoptimized using ORCA 5.0.3 at the B3LYP-D3BJ/def2-

[Theory] 
method      =   M06-2X 
basis       =   def2-SVP 
 
[Job] 
exec_type   =   ORCA 
procs       =   2 
exec_memory =   8 
memory      =   6 
wall        =   8 
 
[Raven] 
reactant    =   reactant.xyz 
product     =   product.xyz 

Figure 23: Example config file for running Raven 
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SVP level of theory. The reaction path was sought with the same level of theory using Raven 

with gradients and energies supplied by ORCA. The structures of the reactant, product, and 

optimized TSSs or guess TS structures from Raven can be found in Appendix A. In an effort to 

see if we found a reasonable pathway for these reactions, we also compared TSSs from Raven to 

those reported by Jónsson et al.79 

 

6.6 Benchmarking Results 

The starting TSSs located by Raven could be optimized to the correct TSS in 96 of the 

121 test cases (about 80% success rate). TSSs were determined to be correct if optimizing 

starting from the TSS, displaced by a small amount along the imaginary vibrational mode, 

resulted in either the reactant or product structure. Distributions of key performance metrics can 

be found in Figure 24. The mean RMSD between Raven’s guess and the optimized TSS across 

all 121 test cases is 0.3 Å; however, in several cases the RMSD was close to 0.8 Å. 

Locating successful TSS guesses required an average of 167 computations per system, 

while one system required more than 500 gradient evaluations, the rest required around 400 or 

fewer. For comparison, the NEB-TS method of Jónsson et al. required an average of 305 

gradients.79 The DE-GSM implementation of Zimmerman required an average of 500 gradients 

for a subset of these reactions.82 Our implementation is not directly comparable to these two, as 

these both incorporate saddle point optimization to locate a TSS. Thus, their methods give the 

TSS, not a guess. However, TS optimizations initiated from Raven’s guesses were required to 

converge within ORCA’s default number of optimization steps. 
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Unfortunately, Raven was unable to locate an adequate TSS guess in about 20% of the 

test cases. However, we can inspect some of the cases where Raven failed and speculate as to 

how the method can be improved. All but one of the test cases that failed (and many that 

succeeded) have Hessians with multiple negative eigenvalues. This indicates that some degrees 

of freedom were not fully optimized, such as a torsional rotation. A common pitfall when 

optimizing a TSS is that the optimization algorithm will choose the wrong degree of freedom to 

move to a saddle point. This could be the case with these failures. If these other degrees of 

freedom are close to a saddle point, it could be difficult for Raven to leave that saddle point. This 

Figure 24: Key performance metrics for Raven. A) RMSD between Raven's guess TSS and the optimized TSS; B) computations 

required for Raven to converge in successful cases; C) difference in energy between Raven's successful guess TSSs and the 

optimized TSS; D) difference in energy between the TSS optimized from Raven’s guess and the TSS reported by Jónsson et al. 
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is because the gradient will be nearly zero for that motion, meaning Raven will essentially not 

move from that location. 

A more sophisticated optimization algorithm could alleviate these types of problems. 

Many quantum chemistry software packages utilize quasi-Newton methods for optimizing 

structures. These methods employ approximate second derivatives to avoid getting stuck on 

saddle points. We could take the Jacobian of the GPR’s prediction for the gradient to get a 

Hessian. However, this Hessian will not necessarily be symmetric. This is a required property for 

Hessian matrices. More testing is required to determine if the Jacobian of the GPR-predicted 

gradient, or some other approximate Hessian, can be used to improve the performance of Raven.  

Another possible reason that Raven could fail in some cases is that the GPR model does 

not incorporate enough training data to accurately model the shape of the potential energy 

surface. Test cases were also run with a tighter root variance threshold (1 × 10-3). Although this 

should ensure the GPR will more closely match the actual potential energy surface, it did not 

seem to improve Raven’s TSS guesses significantly. It did, however, increase the average 

number of computations by ~130.  

It is also noteworthy that in five cases the pathway located by Raven had considerably 

lower energy barriers compared to those reported by Jónsson et al.79 For example, Figure 25 

shows two pathways for the addition of vinyl alcohol to formaldehyde to give 3-

hydroxypropanal. Jónsson et al.79 reported a single saddle point for this reaction, although they 

did not verify that this is a concerted mechanism. The TSS they reported is 98 kcal/mol above 

the reactant. Moreover, their reported TSS, even though it was deemed successful, does not 

appear to connect the reactant and product. Raven, on the other hand, identified a three-step 

mechanism that connects the reactant and product; however, the second step in Raven’s pathway 
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is the interconversion of two enantiomers, which is an artifact of the fact that atom indices are 

not automatically reassigned. The achiral product could be formed from either intermediate. 

After optimizing TSS guesses from Raven, the highest-energy TSS on the three-step pathway is 

~30 kcal/mol lower than the barrier in the pathway located by Jónsson et al.79 This could be a 

result of using more nodes, which increases the flexibility of the pathway, and enables multistep 

mechanisms to be uncovered.  

 

 

 At least one of the reactions where Raven failed was due to the ordering of atoms: the 

decomposition of sulfolene to sulfur dioxide and 1,3-butadiene. Raven’s pathway, shown in 

Figure 26, passes close to the correct TSS and the adjacent intermediate is constitutionally the 

same as the product, but the methylidene groups on butadiene need to be flipped to get the atom 

ordering correct. Consequently, Raven rotates both methylidene groups, forming and then 

opening a four-membered ring in the process. Although the initial decomposition was marked as 

a guess TSS, higher energy guesses were considered first for attempts to optimize to the actual 

Figure 25: Mechanism reported by Jónsson et al. (top) and mechanism discovered by Raven (bottom); energies relative to the 

reactant are in kcal/mol 
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TSS. Of course, the TSSs for forming and opening the four-membered ring are much higher in 

energy, but an attempt to locate a TSS starting from one of these guesses failed. 

 

Figure 26: Raven's key TS guesses and intermediates for the decomposition of sulfolene to SO2 and 1,3-butadiene. R and P 

indicate the reactant and product, respectively.  

 

6.7 Iridium-Catalyzed C-H Activation 

 In addition to the benchmarking set, I wanted to test Raven on something a bit more 

interesting for me personally: the C-H activation of N-acetyl indole (see Chapter 2). For this, I 

used ORCA to run M06-2X/def2-SVP gradients where necessary. I adjusted the similarity falloff 

parameter to 20 Å, as 10 Å seemed to be running excessive computations. Default values were 

used for all other settings. Raven converged after 205 gradient computations and produced the 

guess TSS shown in Figure 27 (left), which has the carboxylate in a sideways orientation. During 

optimization, the carboxylate adopted an upright orientation. The RMSD between these two 

structures is 0.71 Å, though the energy difference is less than 4 kcal/mol. 
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Figure 27: Raven’s guess TSS (left) and optimized TS guess (right) for the C-H activation of N-acetyl indole 

 

6.8 Conclusions and Discussion 

 Raven was able to locate usable TSS guesses in ~80% of test cases for a test set of 121 

reactions, as well as a TSS for the C-H activation of N-acetyl indole. It is a relatively efficient 

approach, requiring less than 200 energy and gradient computations per pathway optimization on 

average across the benchmarking set. This can be compared to ~300 computations per pathway 

reported for the same test set by Jónsson et al. using the NEB-TS method available in ORCA.79 

This efficiency can be attributed to the use of a GPR model to predict the gradient for most 

optimization steps. Incorporating GPR permits the use of more nodes without greatly increasing 

the computational cost. With more nodes, the interpolation is more flexible and can locate lower 

energy, multi-step pathways. More investigation is necessary to see if Raven’s performance can 

be increased further.  

 Although Raven’s pathway in Figure 25 is better given the constraints on the order of the 

atoms, it is not the best way to get from formaldehyde and vinyl alcohol to 3-hydroxypropanal. 

Reaction 16 (see Appendix A) achieves an equivalent transformation by means of a one-step 
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mechanism with a barrier of just 12.3 kcal/mol. Finding this one-step pathway with Raven 

required less than half as many computations as the three-step mechanism in Figure 25. The 

dangers of using a bad atom order can also be seen in the case of the decomposition of sulfolene. 

Thus, the onus of finding the lowest energy and most efficient pathway still falls on the user. 

This can be problematic for cases where chemical intuition is lacking. 

The Zimmerman group has developed ZStruct for finding reaction mechanisms without 

regard for the order of atoms.83 ZStruct uses reaction graphs to identify bonds that need to be 

broken or formed, generates potential intermediates, and then uses DE-GSM to locate pathways 

connecting these intermediates. Intermediates are located until the desired product is found. 

Zimmerman et al. have used ZStruct to investigate the mechanism of C-N bond formation in the 

reductive elimination step of a Pd-catalyzed reaction.84 Several unintuitive pathways were 

uncovered, but around 80,000 CPU hours were required for this study. Although incorporating 

GPR with reaction path search seems to reduce the cost of locating TSSs, exhaustive searches 

would likely remain prohibitively costly in many cases.  

 A major deficiency in Raven compared to the NEB-TS method79 or Zimmerman’s GSM-

EV-ES method82 is that Raven only gives a guess for the TSS. These other methods incorporate 

TS optimization algorithms, so they give an optimized TSS. Users will have to hope that Raven’s 

TSS guess is adequate for finding their desired TSS. Jónsson et al. and Zimmerman both noted 

that incorporating TS optimization into their algorithms improved the reliability of their 

respective implementations, as the TSS optimization algorithm can benefit from knowledge of 

the desired reaction pathway. A similar improvement could be expected if TS optimization is 

added to Raven.  
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 The parameter selection for the GPR model has not been tested. The value of the 

similarity falloff parameter, 𝑙, was chosen based on preliminarily good performance for just a 

few of these reactions. The default value of 10 Å may not be appropriate for larger molecules, 

where seemingly small changes in structure add up more quickly. Future studies should 

investigate the performance of Raven with respect to changes in the GPR parameters.  

Raven will be made available on GitHub as a command line utility. In the future, Raven 

will also be included as an option on SEQCROW’s Transition State Structure tool. This will 

provide an easy-to-use interface to deploy Raven.  
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CHAPTER 7 

CONCLUSIONS 

 I have described several toolkits to aid computational chemists in a variety of tasks. I 

have used AARON to assess the performance of DFT methods for predicting the regioselectivity 

of a C-H functionalization reaction. DFT methods were found to be inaccurate and often lacked 

predictive trends in selectivity. The latest version of AaronTools can set up computations for 

many popular quantum chemistry software packages. With AaronTools, users can calculate 

several parameters that are indicators of reactivity, produce simulated spectra, and generate 

molecular structures. SEQCROW provides a graphical interface to most of AaronTools, and can 

be used to produce high-quality graphics. Other bundle developers can utilize several of 

SEQCROW’s interfaces for their own purposes. Finally, Raven is an efficient implementation of 

the double-ended growing string method. The incorporation of a Gaussian process model for 

gradients of the potential energy surface reduces the number of computations required to 

estimate transition state structures. This enables more nodes to be added to the reaction pathway 

interpolation, increasing the flexibility of the pathway, and allowing for the discovery of 

multistep mechanisms.  

 I hope that these tools can help both veteran and novice computational chemists alike. 

The existence of these tools allows users to turn their focus to their science rather than worrying 

about the technical aspects of running different computations using different software packages. 

Veterans would not have to sink time into developing their own scripts. Novices do not have to 

spend time learning how to work on a command line interface to have access to the same 
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features as veterans. Of course, if beginners want to learn the command line, AaronTools will 

still be there.  
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APPENDIX A 

RAVEN BENCHMARKING SET 

 The following structures are the reactant (left), transition state structure (middle), and 

product (right) from the set used to benchmark Raven. If a reaction is marked as “failed”, the 

TSS shown is Raven’s highest energy guess. Otherwise, it is the TSS optimized from Raven’s 

guess. Select atoms are labeled if the reactant and product are the same molecules.  
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