ADVANCING PHOTO-CLICK CHEMISTRY TOWARDS

MACROCYCLIZATION AND SEQUENCE-DEFINED OLIGOMERS

by
SHUBHAM SHARMA

(Under the Direction of VLADIMIR POPIK AND SERGIY MINKO)

ABSTRACT
Nature uses sequence-defined (having a precise sequence of units) monodisperse (same
molecular weight) polymers for the data storage and transfer (DNA, RNA), for the control
of properties and structure (proteins), for the efficient catalysis of various reactions
(enzymes), and many more. However, these bio-macromolecules have limited stability and
lack chemical and structural diversity. We have developed photo-SPAAC ligation
approach to the bulk synthesis of sequence-defined polymers. The trifunctional monomer,
containing photo-caged cyclooctyne, azide group, and a moiety allowing the attachment of
various functionalities (e.g., dye, catalysts, enzymes, etc.). Photo-activation of the
cyclooctyne at the terminus of the growing chain allows for the attachment of the next
monomer via quantitative and fast SPAAC reaction. We have demonstrated the

purification-free synthesis of two pentamers sequences.
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CHAPTER 1
LITERATURE REVIEW

1.1 Light Induced Click Reactions

The Cu(I)-catalyzed azide—alkyne cycloaddition (CuAAC) discovered by Sharpless' and
Meldal® has shown its application in biomolecular ligation, combinatorial synthesis, medicinal
chemistry, surface functionalization, and polymer synthesis. Cu(I) catalyzes CuAACs, which is
generally produced from Cu(Il) salts through, reduction, electrochemical generation® * and
photochemical approaches® along with reducing agents as Cu(I) is not very stable. Photochemical
generation of Cu(l) provides more control over reaction as reaction can be stopped anytime by
bubbling air to oxidize Cu(I) into Cu(Il). Photochemical generation of Cu(I) can be done by direct
photolysis of Cu(Il) catalytic system or indirectly via photochemically generation of reducing
agent. The first example of photo CuAAC was shown through indirect approach by
photoirradiation of riboflavin tetraacetate in the presence of Et;N to convert into flavin, which
reduces Cu(Il) to Cu(I).> The first example of direct approach was shown by UV/vis irradiation
of CuCl, in the presence of the PMDETA ligand by Yagci and co-workers.® After that huge array
of copper catalysts including CuCl,-2H20/sodium benzoate’, copper(II)(tris(2-aminoethyl)-
amine) ketoprofenate® *,copper(IT)(N,N’-dimethylethylendiamine) ketoprofenate!?, and others'! 12
are developed for photoinduced CuAAC. These catalysts can be deactivated by bubbling air and

can be reactivated by bubbling inert gas (by removing oxygen). The reversible nature of these

catalyst gave this reaction a temporal control and found many applications in material chemistry.



Cu(l)ligand
—= + Ny— > Ny~
b) strongly oxidizing strongly reducing
_ - % -
R
M E N__o| N8 Me
e /
7
J eSS ENN o081
Me N7 NH +2H" +2e° Me H
_ o o
hv | A > 420 nm
2Cu*?
R
Me N N (o)
Y
:@: Z NH
Me N
0 N
> \—_N\%\/Rz
c) Direct reduction
p
culL © Cu'lL
—= + N;— > \(\N,
1
N=N
ZR.+ CUIIIL cullL + 2R+

p

Visible or UV light Photoinitiator

Indirect reduction




Figure 1. a) Schematic of CuAAC, b) photo-CuAAC via indirect approach using riboflavin®, ¢)

photo-CuAAC via direct approach!?

However, the toxicity of copper and catalyst removal from the polymer system possess a challenge
to use CuUAAC reaction in many applications. To tackle this problem strain promoted azide—alkyne
cycloaddition (SPAAC) reaction was developed as it doesn’t need any catalyst. The first example
was shown by Bertozzi and coworkers using cyclooctyne and azide.'* Due to the importance of
SPAAC reaction, many strained cyclooctynes were developed including fluorinated cyclooctynes,
dibenzocyclooctynes (DIBO), and thiacycloalkynes.!>-17

First report of photo-SPAAC was reported by Popik and co-workers by developing photo protected
DIBO precursors using cyclopropenones.'® !° These strained cyclopropenone protected
dibenzocyclooctynes (photo-DIBO) showed excellent thermal stability and survives boiling water
and doesn’t react with azides. Deprotection of photo-DIBO can be easily done by irradiating it
with 350 nm light and then DIBO reacts with azides to form triazole product. Photo-DIBO has
been successfully employed in biological environment such as glycan labeling, cell labeling, and
cell sorting.2%-22 This reaction has shown its importance in material chemistry as it has been applied
to brush polymers, surface functionalization, hydrogel derivatization and nanoparticles

derivatization.?3-2¢
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Figure 2. a) Synthesis of cyclopropenone masked strained cyclooctyne, b) photo-DIBO azide

reaction scheme!?

Another important substrate for photo-SPAAC reaction was developed by Popik group using
DIBOD. DIBOD is a bis-alkyne crosslinker and can be used for double SPAAC reactions.?’ It has
limited aqueous stability hence limited applications. Popik and co workers protected both alkynes
of DIBOD with cyclopropenones and developed a new reagent, photo-DIBOD with excellent
stability even with an anti-aromatic structure.?® Moreover, cyclopropenones can sequentially be
removed from photo-DIBOD to crosslink two different azides.?” This significantly broadens the

utility of photo-DIBOD as compared to DIBOD.
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Figure 3. a) photo-DIBOD to DIBOD, b) photo-DIBOD to MC-DIBOD!?

1.2 Introduction to Sequence Defined Oligomers

Over the last decade, a new class of polymers called sequence-controlled polymers has emerged
with the advent of controlled/living radical polymerization. These polymers have a specific
sequence repeated multiple times with high precision. The simplest example is a block copolymer
which has a repeated unit of two monomers. Due to sequence incorporation, the polymer was able
to combine different functionalities which made them a material with distinct physical and
chemical properties. These new properties open a range of applications in materials engineering
for coatings, sensors, separation technologies, catalysis, medical applications, and many more

applications.’® However, these materials have not yet reached the potential of their biological
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counterparts. Nature uses sequence-defined polymers for data storage and transfer (DNA, RNA),
for controlling properties and structure (proteins), and for the efficient catalysis of various
reactions (enzymes).

To bridge the gap between biomacromolecules and synthetic macromolecules, several different
approaches were developed to synthesize monodisperse material, known as sequence-defined (SD)
oligomers. The most common strategy is to build the sequence step by step. This strategy was used
to build oligopeptides, but the complexity of purifications increased with chain length. Also, the
yield of the macromolecule decreased with the growing sequence. The discovery of solid-phase
synthesis greatly simplified the purification method?! and automation of this technique has reduced
the cost of synthesis to make oligopeptides readily available.?’ A similar approach has been
successfully implemented for DNA and RNA synthesis.>* However, bio-macromolecules have
limited stability as proteins can be degraded by change in temperature, pH and by oxidative
reactions.>* Also, biomacromolecules have limited chemical diversity as protein has 20 amino
acids and DNA has just 4 bases. Developing methods to synthesize SD oligomers/polymers which
can incorporate diverse chemical and physical properties can generate novel materials with tunable
properties. SD oligomers can have several potential applications in catalysis, data storage, energy
and medicine. Several novel approaches using liquid phase and solid support synthesis based on
fast and high yield chemical reactions were reported for the synthesis of SD oligomers.

Thomas Junkers et al. reported a photo-induced copper mediated radical polymerization
(photoCMP) single unit monomer insertion (SUMI) reaction-based strategy.> They used methyl
acrylate (MA) as monomer and ethyl 2-bromoisobutyrate (EBiB) as initiator. First methyl
acrylate was inserted into a ethyl 2-bromoisobutyrate (EBiB) initiator and then for all further

SUMI reactions, the following molar ratios were applied: [M]: [I]: [CuBrz] : [ME6TREN] =



1:1:0.012:0.084. They were able to generate a library of pentamers with yield ranging from 2-
10% as shown in figure 4. Due to the use of copper catalyst and ligand, they needed to purify at

each step, which decreased the yield and increased the work and cost of this material.*
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Figure 4. Sequence defined oligomerization using photoCMP SUMI reaction
Several liquid phase-based approaches were reported by using multicomponent reactions Ugi®¢

37.38 "and fluorine tagged hydroxyproline building block and purification by fluorous

and Passernini
silica gel*®. To simplify the purification, solid support bound thio-acetone based monomer with
two iterative process is shown to synthesize SD oligomers.*® 2-chlorotrityl chloride resin was
loaded with a cyclic thioester linker bearing carboxylic acid to form the initiator for the iterative
process. The initiator was reacted with 50 eq of amine to put the functional handle on the sequence

and for chain extension, 10 eq of thioester linker was added in the reaction mixture as shown in

Figure 5.
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Figure 5. Resin-bound thioacetone based approach for Sequence defined oligomers
This method was used to build sequences till pentamer without any protecting group. One of the
problems encountered was the formation of disulfide bonds after aminolysis which terminated the
chain extension. Disulfide bonds were partially reduced by using dimethylphenylphosphine. By
proving the potential of thioester-based chemistry for the formation of SD oligomers, they
developed an automated synthesis procedure by tweaking their strategy to build longer chains.
Ethanolamine was used to open the thioester ring and the released thiol was reacted with

functionalized acrylate to introduce the functional group in the oligomers as shown in Figure 6.%!
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Figure 6. Automated synthesis of sequence defined oligomers
They were able to successfully synthesize five decamer sequences by using 10 eq of ethanolamine
and 20 eq of acrylate at every step to derive their reaction to completion. Click Chemistry has also
been used to synthesize SD oligomers particularly Copper-catalyzed azide-alkyne cycloaddition
(CuAACQ). Dr. Luftz has used AB + CD approach where A = acid, B = alkyne, C = amine, D =
azide. The sequence was elongated by using copper click chemistry and amide bond formation.
They were able to synthesize eight trimers by using the iterative synthesis as shown below in
Figure 7.*> These monomers can be used for data storing as they can be interfered by mass

spectrometry.
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Figure 7. AB+CD Approach to sequence defined oligomers
In another example shown by the same group, they used modified amino acid, propargyl amine
and azido hexanoic acid to synthesize amino acid-based SD oligomers. By this approach, they
synthesized polypeptides with different spacers between amino acids. Although they generated a
library of synthetic amino acid oligomers for every addition of monomer, three reactions were

required as shown in Figure 5.%
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Figure 8. Synthetic amino acid-based sequence define oligomerization
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Recently, Ding and coworkers have shown new strategies using Iridium based click chemistry
between azides and thioalkynes (IrAAC).* In their first approach they encoded thioalkynes with
different groups to build their SD oligomers.*> The authors showed robustness of their method by
synthesizing a hexamer using this technique as shown in Figure 9a. In another publication, Ding
group encoded two functional groups in thioalkyne and used similar IrAAC strategy to build SD
oligomers.*® The advantage of this strategy is that is encodes two different molecules with one

monomer addition, making is more economical as compared to first one as shown in Figure 9b.
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Figure 9. a) IrAAC based SD oligomer synthesis with one encoded molecule, b) [rAAC based
SD oligomer synthesis strategy with two encoded molecule
The reported methods used multiple equivalents of catalysts and/or coupling reagents to derive
the reaction to completion. These methods have the general problem of build-up of unreacted
reagents and by-products with each step of monomer addition hence need purification at every
step. Solid phase supported synthesis has shown to simplify the purification, but it limits the
amount of material generated. Also, it is difficult to monitor real time reaction kinetics and

progress as some material must be cleaved from the solid support.

1.3 Introduction to Macrocyclization
Macrocycles are large cyclic structures consisting of twelve or larger member rings. They are
found in nature with unique drug like activity, which led to development of new drugs for example

erythromycin and rapamycin.*’ Another application of macrocycles was found in supramolecular

12



chemistry where due to preorganized cavities and multivalent binding sites, they were used in

48, 49 52, 53

molecular recognition and sensing.>® 3! Molecular device and machines , stimuli-
responsive materials and drug delivery systems are some of applications of functionalized
macrocycles reported in literature.>* However, design and synthesis of macrocycles remains a
challenge. In most of the macrocyclic synthesis, yields are generally low as high dilution
conditions were used to avoid the step growth polymerization.>> Copper click azide alkyne
cycloaddition (CuAAC) has shown great potential for synthesizing macrocycles.>® Fast reaction
rates and mild reaction conditions provide an efficient way of synthesizing macrocycles.
Moreover, triazole ring has polar C-H and N-H bonds which enhances binding efficiency.’” The
use of copper click chemistry can be problematic as copper binds to the multiple electron donor
and multivalent binding sites in macrocycle precursors.’® >° Strain Promoted Azide Alkyne
Cycloaddition (SPAAC) reaction can be better alternative for macrocyclization as compared to
copper click chemistry as it does not require any catalyst. Multiple reports have shown that SPAAC
reactions yield cyclic structures even with as high concentration as 0.5 M.%° Ke Zhang and
coworkers explored polymerization using DIBOD and bis-azides. When DIBOD/azide ~ 0.83,
reaction produce low molecular weight cyclic products whereas with DIBOD/azide ~ 1.2 reaction
produces high molecular weight polymers and cyclic structures as shown in figure 10.°! Same
group explored similar reaction with either excess of bis-azide or DIBOD. With excess of azide,
reaction produces low molecular weight polymer which can be cyclized using excess of DIBOD
in highly dilute conditions as shown in figure 11.%° Similar results are shown by Adronov and
coworkers using bis-ADIBO and bis-azide, which produces ~40% cyclic structure.®> However,

due to fast reaction rates it is difficult to form one major product or isolate them from multiple

cyclic compounds as well as polymers.®"> %2 In current methods, due to the need of activation step

13



of the bifunctional molecule, it polymerizes in concentrated solution and hence diluted conditions
are needed. This effect both yield and cost of macrocycle. There is a need of high yielding and

mild condition for synthesizing macrocycles.

OOO [Alkyne] /[Azide] =1.2 [Alkyne] /[Azide] =0.83
o
/

A
Aisiweay %2119
Bunessjedoy-jles
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T = Ll i T k£ T Lt T s T

16 18 20 22 24 26 ' 28
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Figure 10. Synthesis of cyclic polymer using DIBOD/azide ~ 0.83 and DIBOD/azide ~ 1.2
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Figure 11. Synthesis of cyclic polymer using either excess DIBOD and excess azide
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CHAPTER 2
Synthesis of Macrocycles via PhotoClick Chemistry

2.1 Results and Discussions

Herein we report a purification free method for synthesizing macrocycles using SPAAC. We first
investigated one component system with Photo-DIBO and azide group as bifunctional monomer.
We were able to cyclize the fifty-member ring as shown in Figure 12. photo-DIBO absorb UV
irradiation at 350 nm and unmasked into DIBO.® Upon irradiation, bifunctional monomer
quantitively converted into 50 member monomer macrocycle at 30 mM and 60 mM concentration
as shown in Figure 12. No dimer and higher oligomer macrocycle or open chain oligomers were
observed.

To understand the kinetics of cyclization, we followed consumption of alkyne at 324 nm by using
UV-Vis spectroscopy in methanol and dichloromethane. Rate constant was obtained as 9.7¢* s
in DCM and 0.138 s'! in methanol by fitting the disappearance curve of the alkyne with first order
decay kinetic equation as shown in Figure 12. These results agree with the general trend observed
in SPAAC reactions.!®

We want to explore this cyclization at higher concentration to find out the maximum concentration
at which we can form macrocycles, but direct increment of concentration didn’t work as the
formation of alkyne is the rate limiting step. For 60 mM concentration, it took 8 min irradiation
time for complete deprotection of the alkyne which suggested that the effective concentration of
alkyne in our system is likely much below 60 mM. To increase the effective concentration of

alkyne, we developed an emulsions-based system to increase the local concentration of our
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monomer at a lower overall concentration of the compound in the emulsion. We used water

dichloromethane system to achieve 120 mM concentration of alkyne which produced monomer
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Figure 12. Photo-DIBO-Azide cyclization. a) Reaction scheme of cyclization, b) UV-Vis spectra
of cyclization in methanol, ¢) Kinetics plot of cyclization at 10 uM in methanol, d) Kinetics plot

of cyclization at 10 uM in dichloromethane

cyclization. We also irradiated neat monomer on glass slide incubated for 12 hours and then
washed with 1 M sodium azide to quench unreacted alkynes and to our surprise, MALDI data
shows only monomer cycle. This proves the robustness of our system to produce selectively
macrocycles at much higher concentration then reported in literature.

We further explored small macrocycle formation with MC-DIBOT-TEG-N3 cyclization (Figure
13a) and photo-DIBOD with Bis-TEG-Azide (Figure 13b) shows the similar results with efficient

and quantitative conversion in macrocycles.
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Figure 13. a) MC-DIBOT-TEG-N;3 cyclization at 350 nm. b) two step cyclization of photo-

DIBOD with bis-TEG-Azide

Two component systems are usually difficult to cyclize due to added entropy in the system. We
tried our method with two-component systems by synthesizing bis-photo-DIBOT and reacting it
with bis-TEG-Azide and observed cyclization with only one cycle formation in quantitative
conversion shown by in Figure 14. These results indicate that by using 1:1 mixture of azide and

photo cagged alkyne, cyclization reaction is preferred as compare to oligomerization.
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Figure 14. a) bis-photo-DIBOT and bis-TEG-Azide cyclization at 300 nm, b) Kinetics plot of
cyclization at 10 uM in DCM, ¢) MALDI spectra of macrocycle, d) HRMS of cyclization with

100 eq excess bis-TEG-Azide in bis-photo-DIBOT

Kinetics of cyclization of bis-photo-DIBOT observe two first order kinetics equation. The
formation of first triazole ring is the rate limiting step as it is slower compared to the second triazole
ring formation which formed the macrocycle. To further confirm our kinetics data, we irradiated
bis-photo-DIBOT with 100 equivalent bis-TEG-azide. MALDI analysis of the reaction mixture
shows attachment of two bis-TEG-azide units to bis-DIBOT as major peak and minor peak as
macrocycle. The presence of macrocycle with 100 equivalent excess bis-TEG-azide confirms after
first SPAAC reaction, the second SPAAC reaction rate increases as indicated by kinetics plot as

shown in Figure 14b.
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We further explored SPAAC macrocyclization by using DIBOD and bis-TEG-azide. We tried
three different reaction conditions, a) DIBOD added slowly in bis-TEG-azide solution, b) bis-
TEG-azide solution added slowly in DIBOD, ¢) DIBOD and bis-TEG-azide added simultaneously.
In first two conditions, we got majority of monomer cycle and trace amount of dimer rings were
formed. In condition ¢, we observed 80% of monomer cycle and 15% of dimer cycle and trace
amount of trimer cycles as shown in figure 15. Purified monomer cycle NMR shows both the
isomers with one major and minor. Unfortunately, we were not able to isolate these isomers or
characterize which one is major. None of the conditions gave any open chain isomers as all
reactions were quenched by sodium azide to react with any unreacted cyclooctynes, before taking
any spectra. These results shows that SPAAC reaction is also a powerful tool to build macrocycles.
In conclusion, we have shown that photo-SPAAC and SPAAC reactions are a robust method for
macrocyclization that can be used for one and two component reactions. The reactions show
quantitative conversion and doesn’t need any purification. Also, method is concentration

independent hence can be used for bulk synthesis of macrocycles.
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Chapter 3
Synthesis of Sequence Defined Oligomers via Photo-Click Chemistry

3.1 Results and Discussions

The reported methods used multiple equivalents of catalysts and/or coupling reagents to derive
the reaction to completion. Every addition of bifunctional monomer in step growth
polymerization needs two reactions. First to addition of monomer in growing chain and then
deprotection to allow further addition. These methods demonstrate the general problem of build-
up of unreacted reagents and by-products with each step of monomer addition. Solid phase
supported synthesis has shown to simplify the purification, but it limits the amount of material
generated. Also, it is difficult to monitor real time reaction kinetics and progress as some
material must be cleaved from the solid support.

Herein, we report a novel ACB-type trifunctional monomer, suitable for photo-SPAAC ligation,
where A is photo-caged cyclooctyne; B is azide; and C is carboxylic acid for derivatizing
monomer with various functionalities compatible with SPAAC reactions. The use of solution
phase SPAAC chemistry can be use to synthesize SD oligomers in a bulk quantity as compared
to the solid phase approaches reported in the literature. Moreover, SPAAC chemistry is selective
towards strained cyclooctyne and azide hence this SD oligomers can be synthesized in various
environments including biological conditions. Photo-activation of the growing chain terminus
allows for the attachment of the next monomer. The advantage of our method is the use of a light
source to deprotect the alkyne moieties and generate carbon monoxide as side product. This
allows us to synthesize oligomers without purification (carbon monoxide is the side product) at

intermediate steps.
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Figure 16. Schematics for Sequence Defined Oligomer synthesis
The main problem of the step by-step growth of SD oligomers is the removal of the excess of the
monomer. In the present method, this problem is resolved by the very rapid deactivation (k -
9.7E-4 s-1) of the remaining monomer at each step as shown in scheme 1. Effective molarity of
this cyclization is very high. We have observed only one cycle formation till 120 mM

concentration.

Scheme 1. Deactivation of monomer by self-cyclization
The trifunctional monomer was synthesized by derivatizing cysteine as the parent compound. The
thiol group of cysteine was functionalized with maleimide-TEG-photo-DIBO (16) and the amino
group was modified to TEG-Azide(14). To synthesize photo-DIBO-OH (9), we used commercially
available 3-methoxy benzyl alcohol and 3-hydroxybenzaldyde as reported previously by our
group®. Photo-DIBO-OH was modified with tetraethylene glycol based azide linker to increase
its solubility in aqueous solvents and make the structure more flexible to reduce the steric effect

in higher oligomers which can decrease the rate of the reaction. Tetraethylene glycol was
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monotosylated by using tosyl chloride to form 2-(2-(2-(2-Hydroxyethoxy)ethoxy)ethoxy) ethyl
ester (11). Tosyl group of compound (11) was converted into azide by refluxing it with sodium
azide to produce 2-(2-(2-(2-Azidoethoxy)ethoxy)ethoxy)ethanol (12). The hydroxy group of
compound (12) was activated by reacting it with tosyl chloride and then coupled with photo-DIBO-
OH in the presence of triethylamine to get photo-DIBO-TEG-N3 (10) in quantitative yield as

shown in Scheme 2.
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Scheme 2. (a) PBrs DCM (96%); (b) PPH3 acetonitrile (85%); (c¢) butanol, DIAD, THF, PPH3
(96%); (d) n-butylithium, THF (80%); (e) H2, Pd/C, ethylacetate (91%); (f) ethanethiol, NaH,
DMF,120°C (80%);(g) TBDMSCI, imidazole, DCM (96%); (h) aluminum chloride,
tetrachlorocyclopropene, DCM (50%); (i) TBAF, THF (99%); (j) 13, TEA, DMAP, DMF (96%);

(k) TsCL, TEA, DCM (82%); (1) NaNs, Acetone (99%); (m) TsCl, TEA, DMAP, DCM (60%).
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Maleimide hexanoic acid was esterified using propargyl alcohol and a catalytic amount of
sulfuric acid. The resulting ester (15) was reacted with photo-DIBO-TEG-N3 (10) using copper
click chemistry to get maleimide photo-DIBO (16), which then reacted with the thiol group of

cysteine to yield photo-DIBO modified cysteine (17) as shown in Scheme 3.

o o
/ 0 a_ (¢ 9
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L Sy
iiso- Tl P

Scheme 3. (a) H, toluene (68%); (b) Cul, ascorbic acetate, THF, H>O (80%); (c) cysteine, TEA,
DMF (75%)

To modify the amino group of cysteine with azide, a tetra ethylene glycol-based linker was
synthesized by reacting compound (12) with di(N-succinimidyl) carbonate (DSC) to form linker
(14). Amino group of compound (12) was then reacted with compound (17) in presence of DIPEA
to give the monomer, (18) as shown in Scheme 4. This monomer was used to build step by step
SD oligomers with a carboxylic acid, which can be potentially used for attaching functional motifs

for potential applications.

24



[o]
o, _
d = - (1
N LI N/\/O‘(\/\o)ﬂ\o 0.0 b0 o
o BuO S OH 19

12

W £ 0
{H\;b/ BuO 0.0 0/\)/1:%0 o HN»k%/\)YAS
O.O N\/)*/ — 184 " «’\,\» \)\(
BuO o/\)’
Scheme 4. (a) DSC, TEA, DCM (76%); (b) 350 nm, methanol (94%); (c) 14, TEA, DCM (56%)

To start building up oligomer sequence, the first monomer was capped with DIBO-OH which was
obtained by irradiating photo-DIBO-OH with a 350 nm light to form compound (19). Latter was
irradiated with a 350 nm light to deprotect the alkyne which was confirmed by disappearance of
350 nm band and appearance of 303 nm band in UV-Vis spectra. To cyclooctyne (21), one
equivalent of monomer (18) was added and stirred overnight to form the dimer (22) which was
purified by size exclusion chromatography and characterized by high-resolution mass
spectrometry. Similarly, a trimer (24) was synthesized by deprotecting the dimer (22) using 350nm
photoirradiation and then letting it to react with one eq of the monomer (18). The resulting trimer
was purified by size exclusion column and characterized by the high-resolution mass spectra as

shown in Scheme 5.
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Scheme 5. (a) 19, DCM (80%); (b) 350nm, DCM (91%); (c) 18, DCM (77%); (d) 350nm, DCM

(93%); (¢) 18, DCM (78%)

To better understand the reaction, rate of dimerization was estimated using a second order rate.
Active concentration of product was measured by UV-Vis spectra taken every 30 min of the
dimerization reactions at 50 uM and 100 uM concentration. Active concentration was correlated

to absorption by using beer lambert equation as shown below

A+A —»P 1 Dimerization reaction
[A] =[A]o/(Alo*ki*t + 1) 2 Second order rate law
Abs - g*c*] 3 Beer Lambert law

Total absorption and concentration of product at time(t) can be written as equation 4 and 5
Abs(t) = [A]*ea+ [P]*ep 4

[P]=([Alo - [A])/2 S

Abs(t) = [A](ea-ep/2) + [Alo™ ep/2 6

ea and €p can be calculated by putting t = 0 and oo in equation 6

ga = Abs(0)/[Alo. €p=2*Abs(:0)/[A] 7
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Final rate law was obtained by substituting the value of €a, ep and [A] from equation 7 and 2 in
equation 6

Abs(t) = dAbs/(2*¥k1*t + 1) + offset

We also observed a linear loss of material from the solution which we attributed to aggregation
and/or adsorption of material on the walls of cuvette. Hence rate law was modified with another
rate constant k, as shown in the equation below

Abs(t) = dAbs/(2*k1*t + 1) + k2*t + offset 8 (Abs - Absorption at time t, dAbs - change in
absorption, k1 and k2 - rate constants, t - time, €a and €p - extinction coefficient, ¢ - concentration,
1 - path length of light (1cm)A - monomer, P - Dimer

Rate constant was obtained as 0.75M !s™! by fitting the UV-Vis spectra data in equation 8 as shown
in Figure 2

The complete disappearance of the monomer and dimer from the mass spectra of the reaction
mixture prove that the reaction has a very high conversion rate and can be used to build complex
sequences without any purification required at the intermediate steps. This will be the major
advantage in the synthesis of the SD oligomers in contrast to the reported literature methods that
required multiple equivalents of ligation reagents, coupling partners, and purification steps. In our
method, we are using just one equivalent of coupling partner and no ligation reagent.

To show that our method can be used to synthesize SD oligomers with precise sequences, we
synthesized a rhodamine coupled monomer (26). The carboxylic acid of rhodamine was modified
using 1,3 diaminopropane (25) and then the free amino group of compound (25) was conjugated
to the carboxylic acid of the monomer (18) to form the rhodamine modified monomer (26) as

shown in Scheme 6.
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Figure 2. UV-Vis trace at 324nm at 50 and 100uM respectively
With these two monomers, we attempted the synthesis of two different sequences AAABA and

AAABB, where A is the monomer with carboxylic acid (18) and B is the rhodamine modified

N
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pegen N e e su0 NI f Hn»ﬁ{\)’f
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i O~
C

>
Scheme 6 (a) 1,3-diaminopropane, EtOH, reflux (82%); (b) 25, EDC, TEA, DCM (76%)
monomer (26). We also hypothesized that the reaction rate for the formation of the trimer, tetramer
and pentamer will not vary much from the rate of formation of the dimer. To test this theory, all
the click reactions in the pentamer synthesis were conducted with a 1:1 ratio of the reactants at
30mM concentration and stirred for 2 hours, which was estimated time of 99% conversion

according to the rate constant for the formation of the dimer. No purification steps were done until
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the formation of the pentamer sequence. The formation of oligomers and the consumption of
reactants were monitored by mass spectrometry. MS spectra results show a high conversion at
each step with no or a trace amount of unreacted reactants left after each click reaction which
proves that oligomerization till pentamer have similar reaction rates.

In conclusion, we have successfully developed a novel monomer for synthesizing sequence
defined oligomers using photo-SPAAC reaction. This monomer has shown to quench itself that
avoids its further participation hence no purification needed. In our method, we are using just 1.05
eq of coupling partner and no ligation reagent. We have achieved one pot synthesis of two
pentamer sequences without any purification to show the viability of this method for automated
synthesis. Due to liquid-phase synthesis, these monomers can be scaled up and potentially be used

for catalysis, drug delivery, data storage and many more applications.
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CHAPTER 4
Experimental Data

4.1 Synthesis

Photo-DIBO was synthesized using previously published methods.®* photo reactions were done
by using Rayonet photo reactors with 16 lamps. UV-Vis spectra were taken using Cary 5000.All
other chemicals were purchased from Alfa Aesar, Sigma Aldrich, or TCI, and were used as
received. Flash chromatography was performed using 40-63 pum silica gel. All NMR spectra

were recorded in CDCI3 (unless otherwise noted) using 400 MHz instrument.

4-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethoxy)-9-butoxy-6,7-dihydro-1H-

dibenzo|a,e]|cyclopropalc][8]annulen-1-one(10) 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl 4-
methylbenzenesulfonate (1.6 g 1.7 Eq, 4.3 mmol), 4-butoxy-9-hydroxy-6,7-dihydro-1H-
dibenzo[a,e]cyclopropa[c][8]annulen-1-one(9) (812 mg, 1 Eq, 2.53 mmol) and potassium carbonate (350
mg, 1 Eq, 2.53 mmol) were dissolved in DMF (25 mL) and heated for 4 hours at 70°C. After that reaction
mixture was diluted with 200ml ethyl acetate and washed with brine, dried over magnesium sulphate and
concentrated. Crude product was subjected to silica gel column chromatography (20-60% ethyl acetate in

hexane) to get yellow wax type solid. Yield - 1.28 g (96%).
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'"H NMR (400 MHz, CDCL;) § 7.93 (d, J = 8.6 Hz, 2H), 6.97 — 6.84 (m, 4H), 4.21 (dd, J = 5.6, 3.9 Hz, 2H),
4.04 (t,J = 6.5 Hz, 2H), 3.94 — 3.85 (m, 2H), 3.76 — 3.65 (m, 10H), 3.38 (t, /= 5.1 Hz, 2H), 3.33 (d, J =

10.6 Hz, 2H), 2.70 — 2.54 (m, 2H), 1.79 (m, 2H), 1.58 — 1.44 (m, 2H), 0.99 (t, J = 7.4 Hz, 3H).

C NMR (101 MHz, CDCI3) § 162.55, 162.09, 161.59, 153.79, 147.80, 142.41, 141.98, 135.82, 135.71,
116.61, 116.35, 116.23, 116.16, 112.37, 112.28, 77.38, 77.06, 76.74, 70.89, 70.73, 70.71, 70.68, 70.05,

69.52, 68.01, 67.67, 50.68, 37.19, 37.16, 31.15, 19.20, 13.83.

Compound 9 - Chem. Commun., 2014,50, 5307-5309

0 fo) ® ° (0]
4 H /4
+ = "OH - \/\/\)J\
q\/\/\)j\OH //\ tol, reflux q 0/\\\
(o] (0] 15

Prop-2-yn-1-yl 6-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexanoate (15) - propargyl alcohol (265 mg,
0.28 mL, 2 Eq, 4.73 mmol) , 6-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexanoate (400 mg, 67.8 %) were
dissolved in Toluene (4 mL). 3 drops of concentrated sulfuric acid was added and reaction was refluxed for
overnight. Reaction mixture was diluted with ethyl acetate (100 ml) and washed with brine (2 * 50 ml) and
dried over magnesium sulfate. Crude product was purified with silica gel column chromatography to get

yellow color oil. Yield — 400 mg (68%).

'"H NMR (400 MHz, Chloroform-d) & 6.65 (s, 2H), 4.61 (s, 2H), 3.48-3.43 (m, 2H), 2.45 (s, 1H), 2.32 -

2.27 (m, 2H), 1.64 - 1.51 (m, 4H), 1.30 - 1.25 (m, 2H).

C NMR (101 MHz, Chloroform-d) § 172.53, 170.81, 134.06, 77.72, 74.86, 51.80, 37.54, 33.68, 28.15,

24.21.

Reference - Known Compound - J. Polym. Sci. Part B: Polym. Phys., 56: 355-361
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(1-(2-(2-(2-(2-((9-butoxy-1-0x0-6,7-dihydro-1H-dibenzo[a,e]cyclopropa|c] [8]annulen-4-
yDoxy)ethoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)methyl 6-(2,5-dioxo-2,5-dihydro-1H-
pyrrol-1-yl)hexanoate (16). 4-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethoxy)-9-butoxy-6,7-dihydro-1H-
dibenzo[a,e]cyclopropa[c][8]annulen-1-one (261 mg, 1 Eq, 0.50 mmol) , prop-2-yn-1-yl 6-(2,5-dioxo-
2,5-dihydro-1H-pyrrol-1-yl)hexanoate (137 mg, 1.1 Eq, 0.55 umol) , copper(]) iodide (28.6 mg, 0.3 Eq,
0.15 mmol) , Sodium ascorbate (52.9 mg, 0.6 Eq, 0.3 mmol) were dissolved in THF (4 mL) and Water
(1 mL). Reaction mixture was stirred for 24 hours at room temperature. After TLC analysis indicated
completion of reaction, reaction mixture was diluted with DCM (50 ml) and washed with brine (2 * 25
ml) and concentrated. Crude product was purified by silica gel column chromatography (10-30% acetone

in ethyl acetate). Yield — 310 mg (80 %).

"H NMR (400 MHz, Chloroform-d) § 7.91 - 7.89 (m, 2H), 7.80 (s, 1H), 6.90 - 6.87 (m, 4H), 6.67 (s, 2H),
5.20 (s, 2H), 4.53 (t, J= 5 Hz, 2H), 4.19 (t, J = 4 Hz, 2H), 4.03 (t, J = 6 Hz, 2H), 3.87 (t, /= 5 Hz, 4H),
3.73 - 3.70 (m, 2H), 3.65 - 3.61 (m, 6H), 3.47 (1, J =7 Hz, 2H), 3.33 - 3.31 (m, 2H), 2.62 - 2.59 (m, 2H),
2.30 (t,J =7 Hz, 2H), 1.82 - 1.75 (m, 2H), 1.66 - 1.45 (m, 6H), 1.30 - 1.21 (m, 2H), 0.98 (t, /= 7.4 Hz,

3H).

C NMR (101 MHz, Chloroform-d) § 173.16, 161.50, 142.39, 141.88, 135.60, 134.04, 124.91, 116.54,
116.28,116.16, 116.06, 112.32, 70.80, 70.56, 70.50, 69.48, 69.32, 67.96, 67.62, 57.48, 50.24, 37.52,

37.13, 37.09, 33.82, 31.10, 28.15, 26.13, 24.25, 19.16, 13.82.
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Mass — [M+H"] C42Hs1N4O19" — 771.3600, found - 771.3606.
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2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl (2,5-dioxopyrrolidin-1-yl) carbonate (14) - 2-(2-(2-(2-
azidoethoxy)ethoxy)ethoxy)ethan-1-o0l (1 g, 1 Eq, 4.5 mmol), bis(2,5-dioxopyrrolidin-1-yl) carbonate (3
g,2.5 Eq, 11.4 mmol) and potassium carbonate (630 mg, 1 Eq, 4.6 mmol) were dissolved in Acetonitrile
(20 mL) and stirred for overnight. After that acetonitrile was evaporated and the reaction mixture was
diluted with ethyl acetate (60 ml) and washed with brine (2 * 30 ml). Aqueous layer was extracted by DCM
(50 ml). Both the organic layer was combined and dried. Yield — 1.4g (85%). No further purification was

done to this compound.

'"H NMR (400 MHz, Chloroform-d) § 4.50 - 4.41 (m, 2H), 3.82 - 3.74 (m, 2H), 3.69 - 3.67 (m, 10H), 3.39

(t, J=5 Hz, 2H), 2.84 (s, 4H)

C NMR (101 MHz, CDCl3) § 168.62, 168.57, 151.65, 70.90, 70.73, 70.68, 70.66, 70.27, 70.03, 68.33,

50.69, 25.47.

o
o
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S-(1-(6-((1-(2-(2-(2-(2-((9-butoxy-1-0x0-6,7-dihydro-1H-dibenzo[a,e]cyclopropa[c][8] annulen-4-
yDoxy)ethoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)-6-oxohexyl)-2,5-dioxopyrrolidin-
3-yDcysteine(17) - Compound 16(200 mg, 1 Eq, 259 umol), cysteine (63 mg, 2 Eq, 0.52 mmol) were
dissolved in DMF (5 mL) and triethylamine (39 mg, 1.5 Eq, 0.39 mmol) was added dropwise. The
reaction was stirred for 4 hours and then diluted with DCM (50 ml) and washed with brine (2 * 30 ml).
The organic layer was concentrated and purified by silica gel column chromatography (5-20% Methanol

in DCM). Yield — 170 mg (75%).

'"H NMR (400 MHz, DMSO) 8 8.13 (s, 1H), 7.78 (d, J = 8.4 Hz, 2H), 7.18 — 6.98 (m, 4H), 5.10 (s, 2H),
4.52 (t,J = 5.2 Hz, 2H), 4.27 — 4.05 (m, 5H), 3.79 (m, 4H), 3.64 — 3.27 (m, 18H), 3.17 (d, J = 2.5 Hz, 3H),
2.46 (d, ] = 10.8 Hz, 2H), 2.28 (t, ] = 7.4 Hz, 2H), 1.77 — 1.65 (m, 2H), 1.46 (m, 6H), 1.19 (t, ] = 7.2 Hz,

3H), 0.94 (t, J = 7.4 Hz, 3H).

B3C NMR (101 MHz, DMSO) & 177.62, 177.35, 175.59, 175.53, 172.98, 162.78, 162.03, 161.75, 152.50, 148.46,
142.49, 142.27, 142.18, 135.41, 135.36, 125.57, 116.65, 116.44, 116.23, 113.28, 70.36, 70.22, 70.10, 69.98, 69.19,
69.09, 68.09, 68.02, 57.49, 49.84, 45.66, 40.58, 40.37, 40.16, 39.95, 39.74, 39.54, 39.33, 36.74, 36.26, 33.56, 31.06,

27.12,25.94,24.33, 19.15, 14.14.

Mass - [M-H'] C4sHssNsO12S™ - 890.3652, found - 890.3632
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N-(13-azido-2,5,8,11-tetraoxatridecanoyl)-S-(1-(6-((1-(2-(2-(2-(2-((9-butoxy-1-0x0-6,7-dihydro-1H-
dibenzo|a,e]|cyclopropalc][8]annulen-4-yl)oxy)ethoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-

y)methoxy)-6-oxohexyl)-2,5-dioxopyrrolidin-3-yl)cysteine (18) - Compound 17 (80 mg, 1 Eq, 90
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umol) and triethylamine (11 mg, 15 pL, 1.2 Eq, 0.11 mmol) were stirred in DCM (3 mL) for 10 minutes
and then 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl (2,5-dioxopyrrolidin-1-yl) carbonate (65 mg, 2 Eq,
0.18 mmol) was added in 1 ml DCM. Reaction mixture was stirred for overnight. After TLC indicated
completion of reaction, DCM was evaporated, and crude product was purified by silica gel column

chromatography (2-10% methanol in DCM). Yield — 58 mg (57%).

'"H NMR (600 MHz, CDCI3) § 7.91 (d, J = 6.0 Hz, 2H), 7.80 (s, 1H), 6.94 — 6.81 (m, 4H), 5.17 (s, 2H),
4.52 (t,J=5.1 Hz, 2H), 4.18 (dt, J = 6.9, 3.4 Hz, 3H), 4.02 (td, J = 6.6, 2.2 Hz, 3H), 3.85 (dd, /= 6.8, 3.3
Hz, 4H), 3.71 — 3.57 (m, 15H), 3.47 — 3.28 (m, SH), 3.08 (d, J = 7.4 Hz, 2H), 2.59 (d, J = 11.1 Hz, 2H),

2.27(q,J= 5.5 Hz, 2H), 1.82 — 1.71 (m, 2H), 1.58 — 1.39 (m, 12H), 0.97 (td, J = 7.3, 1.4 Hz, 4H).

C NMR (151 MHz, CDCl3) § 174.75, 173.27, 173.21, 162.30, 161.74, 154.03, 148.02, 142.62, 142.01,
141.59, 135.92, 135.88, 125.03, 116.42, 116.39, 116.28, 115.87, 112.45, 112.43, 112.40, 77.30, 77.08,
76.87, 70.84, 70.63, 70.59, 70.54, 70.52, 70.01, 69.52, 69.46, 69.33, 68.05, 67.68, 57.42, 53.68, 53.47,

50.67, 50.33, 41.97, 37.16, 37.12, 33.79, 33.77, 31.13, 29.69, 29.65, 24.23, 19.19, 13.83, 11.98.

Mass - [M-H'] CssH71N3O17S™ - 1135.4663, found - 1135.4677
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9

DIBO(19) - 4-butoxy-9-hydroxy-6,7-dihydro-1H-dibenzo[a,e]cyclopropa[c][8]annulen-1-one(9) (17 mg, 1

Eq, 53 umol) was dissolved in methanol (17 mL). Compound was irradiated in rayonet photoreactor with
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16 lamps of 350 nm for 10 minutes. UV spectra were recorded after 2, 6 and 10 minutes with 3 tM

concentration. Yield - 15 mg (97%)

'H NMR (400 MHz, CDCl3) § 7.16 — 7.06 (m, 2H), 6.80 (d, J = 2.6 Hz, 1H), 6.74 (d, J = 2.5 Hz, 1H), 6.69
(dd,J=8.4,2.6 Hz, 1H), 6.63 (dd, /= 8.3, 2.5 Hz, 1H), 3.90 (t, /= 6.5 Hz, 2H), 3.15 — 3.04 (m, 2H), 2.41

—2.29 (m, 2H), 1.70 (dq, J= 8.0, 6.5 Hz, 2H), 1.47 — 1.38 (m, 2H), 0.91 (t, /= 7.4 Hz, 3H).

Compound 19 - Chem. Commun., 2014,50, 5307-5309

S-(1-(6-((1-(2-(2-(2-(2-((9-butoxy-1-0x0-6,7-dihydro-1H-dibenzo[a,e]cyclopropa[c][8] annulen-4-
yDoxy)ethoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)-6-oxohexyl)-2,5-dioxopyrrolidin-
3-yD)-N-(13-(6-butoxy-11-hydroxy-8,9-dihydro-1H-dibenzo[3.,4:7,8] cycloocta[1,2-d][1,2,3]triazol-1-
yD)-2,5,8,11-tetraoxatridecanoyl)cysteine(20) - Compound 18 (10.000 mg, 1 Eq, 8.79 umol) and DIBO
(3.0000 mg, 1.16 Eq, 10.25 umol) were dissolved in Methanol (1 mL). Reaction mixture was stirred

overnight, concentrated and purified by silica gel column chromatography (10% methanol in DCM). Yield

— 10 mg (80%).
i ’ O OBu OO 0 /\)(NNN OB
BuO O.O o™ o HNg&ko/\)(‘N ' auo’*\(o/\f'f%o 0 HN)\ko . O
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Compound (21) - Compound 20 (14.0 mg, 1 Eq, 9.78 umol) was dissolved in methanol (3.20 mL) to get
3.06 mM concentration. Solution was irradiated with16 lamps of 350 nm for 4 minutes in 8 ml glass vial,
to complete disappearance of 350 nm peak. It was tracked using UV-Vis spectrometry at 3.06 uM

concentration. No further purification was done. Yield - 12.5 mg (91%).

Mass - [M+H'] - 1401.6323, found - 1401.6317

b\ OBu
* et UL Al W*" ! A
J{,\’\‘o \)\(o

4 N=\ s
»—r OH OH

N

Compound (22) - Compound 21 (10 mg, 1 Eq, 7.1 pmol) and compound 18 (8.1 mg, 1 Eq, 7.1 umol) were
dissolved in Methanol (330 plL)and DCM (110 pL). Reaction mixture was stirred overnight and

concentrated. Product was purified using LH-20 column (20% DCM in methanol). Yield — 14 mg (77%).

Mass - [M+2H']*" - 1270.0583, found - 1270.0578

g »
Pe@en STl M" ! . N
Q. /\)/ Buo /\)/:}« '

Compound (23) - Compound 22 (13 mg, 1 Eq, 5.1 umol) was dissolved in DCM (2.0 mL) to get 2.6 mM

concentration. The solution was irradiated with 16 lamps of 350nm for 2.5 minutes in an 8ml glass vial, to
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complete disappearance of the 350 nm peak. It was tracked using UV-Vis spectrometry with 2.6 uM

concentration. No further purification was done. Yield — 12 mg (93%).

Mass [M+2Na*]** - 1278.0428, found - 1278.0421

OCO “MM»WA IS
@ N g e ey
2 O.O 0’\)'/3‘\«’\’\' \"fi‘;:/\% O

Compound (24) - Compound 23 (12.0 mg, 1 Eq, 4.78 umol) and compound 18 (5.4 mg, 1 Eq, 4.78 umol)
were dissolved in DCM (165 pL). The reaction mixture was stirred overnight and concentrated. Product

was purified using LH-20 column (50% DCM in methanol). Yield - 13.2mg (78%).

Mass [M+3H']*" - 1216.5342, found - 1216.5303

]

ob e 2 O

NN O g~ Ny

MC-DIBOD (100 mg, 0.44 mmol) and the bis-azido-TEG (45 mg, 0.20 mmol) were mixed
together in DCM (2 mL) and stirred for 16 hours. The resulting product was concentrated under
vacuum and purified by chromatography (50% acetone/hexanes) to give 100 mg (71%) of the

product as a waxy yellow solid.
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'"H NMR: (400 MHz, Chloroform-d) § 7.87 (m, 2H), 7.69 — 7.65 (m, 2H), 7.63 — 7.49 (m, 10H),
7.45 (m, 2H), 4.45 — 4.37 (m, 2H), 4.31 — 4.22 (m, 2H), 3.99 — 3.92 (m, 2H), 3.86 — 3.79 (m,
2H), 3.52 —3.43 (m, 8H).

BC NMR: (101 MHz, CDCI3) & 157.49, 154.67, 152.04, 142.83, 133.93, 133.87, 133.18, 132.53,
132.38, 132.28, 131.58, 131.41, 130.58, 129.47, 128.71, 127.11, 124.59, 70.74, 70.58, 69.60,
48.96.

Pentamer Synthesis (Conditions) - Click Reactions are performed at 30 mM concentration, Photo
deprotection was done using a lower concentration (< 10 mM) using Rayonet Photoreactor.

Deprotection was followed by observing disappearance of 350nm band from UV-Vis

Spectroscopy.
hv A hv A B AAAB hv.  AAAB’ _>B AAABB
A— A —»AA L an Do aaa DY pan — B %

v A ™ A hy B aAAB hv_ AAAR" . AAABA
A —» A — — AA" — 5 AAA —» AAA" —> -

/\\,N

Ny OOO /\)/N \
0y A
SN b

Dimer (AA) - Akyne hnke? 8 mg, 1.0 Eq, 5.7 umol) and Monomer (6 m@ 1 Eq, 53 ufﬁjbl) Were
dissolved in DCM (200 pL) to achieve reaction concentration of 30 mM. The reaction mixture was
stirred for 2.5 hours, and ESI-MS was done which indicated the formation of product and complete
disappearance of alkyne linker. Without any purification, dimer was subjected to the next step.

Dimer Alkyne (AA") - Dimer (13.4 mg, 1 Eq, 5.3 umol) was dissolved in DCM (2 mL) to get

2.64 mM concentration and irradiated with 350 nm light from 16 lamps in rayonet photoreactor

for 4 mins. ESI-MS indicated the complete deprotection of dimer.
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Trimer (AAA) - Dimer alkyne (13.30 mg, 1 Eq, 5.3 umol) and monomer (6.00 mg, 1 Eq, 5.3
umol) were dissolved in DCM (180 pL) to achieve reaction concentration of 29 mM. The reaction
mixture was stirred for 2.5 hours, and ESI-MS was done which indicated the formation of the

product. Without any purification, Trimer was subjected to the next step.

Trimer Alkyne (AAA") - Trimer (19.32 mg, 1 Eq, 5.3 umol) was dissolved in DCM (2mL) to get
2.65 mM concentration and irradiated with 350 nm light from 16 lamps in Rayonet photoreactor

for 3 mins. ESI-MS indicated the complete deprotection of Trimer.

Tetramer (AAAB) - Trimer alkyne (19 mg, 1 Eq, 5.3 pmol) and monomer (8.5 mg, 1 Eq, 5.3
umol) were dissolved in DCM (180 pL) to achieve reaction concentration of 29 mM. The reaction
mixture was stirred for 2.5 hours, and ESI-MS was done which indicated the formation of the

product. Without any purification, tetramer was subjected to the next step.

Tetramer Alkyne (AAAB®) - Tetramer (28 mg, 1 Eq, 5.3 umol) was dissolved in DCM (750
puL) to get reaction concentration as 7 mM and irradiated with 350 nm light from 16 lamps in

Rayonet photoreactor for 5 mins. ESI-MS indicated the complete deprotection of Tetramer.

Pentamer Synthesis (AAABA, AAABA) — 28 mg of tetramer alkyne was divided into two parts

and 1 eq of A (3 mg) and 1 eq of B (4.3 mg) were added in separate vials. The reaction was stirred

for 2.5 hours and then subjected to ESI and MALDI.
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4.2 Kinetics Data
Kinetics plot were plotted using Carry 5000 by using first order decay kinetics equation

Kinetics in methanol for compound 18, k —0.15 s!

| Methanol 10uM 319nm |
0.20
Model ExpDect
\ Equstion y = Al"exp(-x/t1) + y0
\ Reduced Chi-S 1.01E7
ar
Adj. R-Square 0.99973
Value Standard Emror
c134 ¥0 012398 6.14336E-5
n ciz Al 007917 1.80782E-4
a c13 t 9.22227 0.04114
< c134 k 010832  4.82704E-4
c134 tau 6.29922 0.02852
0.15 -
I ! I T I ! I ! I T I ! I !
0 10 20 30 40 50 60

Mins
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Abs

Abs

Methanol 20uM 319nm

Model ExpDect
Equation y = Al%exp(-</t1) + y0
Reduced Chi-S 4.2485E-7
qr
Adj. R-Square 0.99963

Value Standard Error
c202 y0 0.17€28 7.88477E-5
Cc202 Al 0.171%8 4.0584E-4
c202 t1 7.32922 0.0289
c202 k 0.12844 5.37974E-4
c202 tau 5.08029 0.02002

50
Mins

0.55 -
| Methanol 30uM 319nm|
0.50 -
Model ExpDect
Equation y=Alexpl-xtl) + 0
O 45 Reduced Chi-S 1.82561E-7
’ 2dj R-Square 0.99989
Value Standard Error
c318 ¥o 0.26267 281624E-5
0.40 - = e
c318 k 0.15721 26535E-4
c318 tsu 4.40899 0.00744
0.35 -
0.30 -
0.25 -
I ! | ! I ! I ! I ! | ! I !
0 20 40 60 80 100 120

Mins
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Kinetics in dichloromethane of compound 18, k —9.7E-4 s7!

1.4

1.2 1

1.0 1
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0.2 1

| Kinetics of cyclization at 50uM in DCM |

Model ExpDecl

Equation y=Al*exp(-x1) +y0

Reduced 1.99376E-5

Chi-Sqr

Adj R-Square 0.9994

Value Standard Error

y0 0.24099 3.0271E-5
Al 1.0e03¢ 914

B t 1030.50351 029485
k 9.70399E4 2.77654E-7
tau 714.29061 020437
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Kinetics of cyclization at 10uM

Model ExpDec1

Equation y = At*exp(-x/t1) + yO

Reduced 7.02319E-7

Chi-Sqr

Adj. R-Square 0.99802

Value Standard Erro

y0 0.09€45 3.9°0¢E-G
Al 0.19057 | 5.25509E-5

B t 1017.2667 0.4054
k 983026E-4  3.91752E-7
tau 705.11559 0.281
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7.6, 1.5 Hz, 2H), 4.45 — 4.37 (m, 2H), 4.31 — 4.22 (m,

7.8,3.7, 1.3 Hz, 2H), 7.69 — 7.65 (m, 2H), 7.63 — 7.49 (m, 10H), 7.45 (tt, J

'H NMR (400 MHz, Chloroform-d) & 7.87 (ddd, J

2H), 3.99 — 3.92 (m, 2H), 3.86 — 3.79 (m, 2H), 3.52 — 3.43 (m, 8H).
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3C NMR (101 MHz, CDCl3) § 157.49, 154.67, 152.04, 142.83, 133.93, 133.87, 133.18, 132.53, 132.38,
132.28, 131.58, 131.41, 130.58, 129.47, 128.71, 127.11, 124.59, 70.74, 70.58, 69.60, 48.96.
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4.4 Mass DATA

SS_2019-0228_01#33-41 RT: 0.68-0.84 AV:9 SB: 68
T: ETMS + p ESI Full ms [200.00-1500.00]
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S_2019-0321N_49 #151-196 RT: 1.63-2.08 AV:46 N 5

T: FTMS - p ESIFull ms [300.00-1000.00]

393.2772
z=1

100
95
90
85
80
75
70
65
60
55
50
45
40
35
30

365.2457
z=1

400

BuO II

Mass - [M-H ] C

449.1726
z=1

500

585.5088

z=1

600

;j Vﬁr
e Sl

17

HN.O, S 890.3652

45 56 5 890.3632

z=1

926.3402
z=1

659.5374 988.3300

z=1 785.3388 862.3687 z=1
z=1 z=1

700 800 900 1000
m/z

70



SS 2019-0401_2#197-201 RT: 2.19-2.23 AV:5 SB:
T: FTMS - p ESIFull ms [150.00-2000.00]
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SS_2019-0613_54NH #134-188 RT: 1.12-1.54 AV: 55 .
T: FTMS + p ESIFull ms [500.00-3000.00]
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SS_2019-0613_56HP #260-301 RT: 2.26-254 AV: 33 | 0.05-0.39 NL: 4.69E5
T: FTMS + p ESI Full ms [500.00-3000.00]
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SS_2019-0613_57HP #286-305 RT: 2.34-2.48 AV: 20 1.76-2.11 NL: 5.55E5
T: FTMS + p ESIFull ms [500.00-3000.00]
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SSI_2019-0808_2 #428-430 RT: 3.38-3.40 AV:3 NL:

T: FTMS + p ESIFull ms [350.00-1800.00]
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Pentamer Mass Data
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