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ABSTRACT 

 

This dissertation investigates the use of weigh-in-motion (WIM) and continuous count station 

(CCS) data, remote sensing, and machine learning techniques to maintain resilient infrastructures 

and employs a deep learning methodology to detect the surface distresses of pavements. WIM and 

CCS technology obtain many useful traffic information as vehicles move along the roads. Remote 

sensing methods offer tools to replace or complement existing traditional methods of pavement 

management systems and can serve many needs of transportation agencies. Machine learning 

techniques, also facilitate pavement management routine by creating models and predicting the 

roads performance and their deterioration status.  

This study investigates the predictions of resilient infrastructure distress situation by analyzing the 

historical spectra of flexible pavement road sections derived from Sentinel-2 and PlanetScope 

satellite images. The study also attempts to utilize a deep learning-based algorithm for predicting 

the pavement distresses using the images taken from interstate roads of Georgia.   



 

 

The recognition accuracy of the prediction model determines whether the remote sensing platform 

accompanied by machine learning approaches and Deep Neural Network (DNN) algorithms can 

be utilized as smart monitoring platforms for distress evaluation of the asphalt infrastructures and 

further maintenance activities. 
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CHAPTER 1 

1. INTRODUCTION 

 

This chapter presents the background information and objectives in this study.     

1.1 Background 

Pavement Management is a continuous and ongoing activity that is always accompanied by 

transportation engineering and should satisfy the needs of a given pavement to prevent failure and 

extend the pavement life as well as taking potential materials or techniques to improve the existing 

road facilities. Pavement management is generally categorized into two levels: network level and 

project level. The network-level pavement management is the summary of information related to the 

entire highway network applied for large groups of projects. However, project-level pavement 

management relates to more technical and specific pavement section decisions (Peterson, 1987).  

In terms of pavement assessment, the visual survey is a simple and traditional method for collecting 

distress information about the pavement surface. The Distress Identification Manual (DIM) for the 

Long-Term Pavement Performance (LTPP) Program is the primary guide for all distress surveys 

(Miller and Bellinger, 2003). Since road networks in the U.S. are so extensive, it is not feasible to 

use traditional approaches in surveying all existing roadways for their rideability and structural 

integrity. In addition to the difficulties associated with creating a comprehensive evaluation of 

thousands of miles, other factors also restrict the comprehensive road evaluation. Some of these 

limiting factors are time (road needs to be closed off during inspections causing traffic flow 

disruption), hazards for inspectors on highways, and the need for trained/experienced inspectors. 
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Most Department of Transportation (DOT) agencies perform routine inspections on their 

infrastructures in cycles of one to three years. The state-of-the-art remote sensing and machine 

learning technologies offer tools to replace or complement existing traditional methods. They can 

serve many needs of transportation engineers in DOTs to assist with the routine inspections of roads 

and bridges (Ozden et al., 2016). Recently, transportation agencies nationwide have incorporated 

remote sensing approaches into their standard specifications for the pavement management system 

(Schnebele et al., 2015) since it is an accurate, robust, and fast technique to collect data and is 

considered an efficient approach for pavement assessment in network level.  

This study attempts to employ Weigh-In-Motion (WIM) and Continuous Count Stations (CCS) 

technology, remote sensing techniques, and state-of-the-art machine learning methodologies for 

transport infrastructure monitoring in Georgia. Figure 1 illustrates the connection between different 

topics conducted in this dissertation which generally focuses on pavement management through the 

lens of design and maintenance. In this study, two research projects are performed on pavement 

design. Equivalent Single Axle Load (ESAL) factors and Pavement Mechanistic-Empirical Design 

(PMED) traffic inputs are updated using a large dataset obtained from WIM sensors. In addition, 

state-specific Truck Traffic Classification (TTC) groups are developed using WIM data. In terms of 

pavement design, another study is conducted to update the Lane Distribution Factors (LDF) using 

WIM and CCS data in support of Georgia’s pavement design manual. The other two projects are 

related to the pavement maintenance category. First, the application of remote sensing techniques in 

pavement management is discussed. Two satellite imagery sources (Sentinel-2 and PlanetScope) are 

utilized to evaluate their capability in observing transportation infrastructure conditions. Finally, deep 

learning methods are discussed to investigate the usefulness of state-of-the-art image processing 

techniques in pavement surface health monitoring. These two projects aim to predict the roadway 

segments’ distress condition and to see how well the pavement distress condition can be estimated 
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from freely accessible satellite images and the newly developed deep learning architectures. The 

novelty of the study is utilizing a vehicle (UGA’s GPR scan van) primarily used for another purpose 

to overcome the shortcomings of the satellite remote sensing technology. The combination of this 

work aids in mapping the available data sources, analytics, and implementation of the results for 

improving pavement management practice for Georgia. The specific aims of this dissertation are 

listed below and discussed in detail in each chapter.   

 

Figure 1. Flowchart of the dissertation.  

 

Chapter 1 aims to: 

1. Discuss background information and provide the perspective of the approaches taken in this study.   

 

Chapter 2 aims to:  

1. Provide background information about WIM technology, properties of WIM stations in Georgia 

and their capabilities in providing traffic information for pavement assessment. 

2. Develop Python codes to generate MEPDG traffic inputs using WIM data. 

3. Develop state specific TTC groups using machine learning techniques to facilitate the application 

of MEPDG software in Georgia.     
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Chapter 3 aims to:  

1. Provide background information about the lane distribution factors currently adopted in the 

Georgia pavement design manual.   

2. Develop Python codes to update lane distribution factors using WIM and CCS data. 

3. Develop models using statistical methods to facilitate the application of updated lane distribution 

factors using the most recent traffic data.  

 

Chapter 4 aims to: 

1. Discuss the remote sensing technology and its application in pavement management.  

2. Employ remote sensing satellite imagery to extract the spectrum features of asphalt pavement 

sections with cracks and distresses. 

3. Perform time series analysis to predict the pavement distresses on-time for scheduling cost-

effective maintenance works.     

 

Chapter 5 aims to: 

1. Review the state-of-the-art advancements and technologies in the field of machine learning and 

image processing for pavement crack identification purposes. 

2. Employ a newly developed semantic segmentation model for pavement crack identification.  

3. Determine how well the fine-tuned deep learning-based algorithm performs in terms of pavement 

crack identification.    

 

Finally, Chapter 6 provides conclusions and recommendations for future studies.   
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1.2 Research Objectives 

The primary objectives of this study are: 

 To utilize WIM technology for traffic and pavement assessment purposes.   

 To generate the state specific TTC groups to facilitate the adoption of the MEPDG in Georgia. 

 To update lane distribution factors for the Georgia pavement design manual using the most 

recent WIM and CCS data. 

 To leverage freely available satellite images to predict pavements distress situation.  

 To predict the pavement distress severity using a deep learning-based algorithm.    

 To maintain the resilient infrastructures using the recent advancements in developing 

technologies.     
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CHAPTER 2 

2. TRUCK TRAFFIC ASSESSMENT USING WIM DATA AND MACHINE LEARNING 

TECHNIQUES 

 

2.1 Problem statement  

The pavement Mechanistic-Empirical (ME) design requires high-dimensional traffic feature inputs 

by categories, including Vehicle Class Distributions (VCD), Monthly Distribution Factors (MDF), 

Hourly Distribution Factors (HDF), and Normalized Axles Load Spectra (NALS). In simplifying the 

Pavement ME design practice, Truck Traffic Classification (TTC) groups are commonly used for 

characterizing traffic inputs. Thus, properly defining TTC groups is critical for state-specific 

pavement ME design practice. In this study, the truck traffic data from existing Weight-in-Motion 

(WIM) stations were mined to develop specific TTC groups to assist with pavement ME design 

practice in Georgia. An effective data analytics procedure was developed by leveraging unsupervised 

machine learning techniques to reduce the high-dimensional traffic features by stratified Principal 

Component Analysis (PCA), followed by K-means clustering to establish appropriate TTC groups.  

For a case study, the performance of two typical designs was evaluated using the AASHTOWare 

pavement mechanistic-empirical (ME) design software with respect to two scenarios of traffic inputs: 

(1) the derived cluster-based groups, and (2) the national default TTC groups.  

 

2.2 Weigh-In-Motion Technology for Traffic Assessment   

The WIM technology, using sensors embedded in pavement, has enabled continuous collection of 

high-resolution vehicle class and axle weight data, such as gross vehicle weights, axle configurations 
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and weights, axle spacings, vehicle classifications, and speeds. The WIM data are used for various 

purposes, including the design of pavements or bridges, highway planning, motor vehicle 

enforcement, and legislative/regulatory studies (FHWA 2018). Based on Georgia’s Traffic 

Monitoring Guide (Wiegand, 2018) published by GDOT, the GDOT Office of Transportation Data 

(OTD) collects WIM data at 14 permanent continuous count stations (CCSs) and approximately 35 

portable sites located throughout Georgia. WIM technology helps to collect traffic loading–related 

information, such as vehicle counts, axle and gross weights, vehicle classification, etc. It allows for 

continuous data acquisition and provides an accurate representation of actual traffic loadings on 

Georgia’s highways.  

The main components of WIM systems include: 

(1) WIM sensor embedded in the roadway surface or under a bridge deck to detect, weigh, and 

classify vehicles. A sensor array is the combination of WIM sensor and loop detectors within a 

weighing lane. 

(2) Electronics to control system functions, process sensor outputs, and provide recorded information 

for display and storage. 

(3) Infrastructure, including conduit, bore, cabinet, poles, and junction boxes. 

(4) Support devices to power the WIM electronics and communication devices to transmit the 

collected data to a remote server. 

(5) Software installed in the WIM electronics to process sensor measurements, analyze, format, and 

store collected data (FHWA 2018). 

 

2.2.1 Types of WIM Sensors 

Several types of in-road WIM sensors are available, but the most frequently used types include 

bending plate, load cell, quartz piezo, polymer piezo, and the strain gauge strip sensor. Wide sensors, 
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such as bending plate and load cell, provide the opportunity for the tire to rest fully on the sensor, 

while other sensors, referred to as narrow or strip sensors, meet only a part of the tire footprint as a 

vehicle moves over them. The available sensors have a broad range in accuracy and cost that should 

be considered during the sensor selection process. If high-accuracy weight data collection over a long 

period of time is required, then either a load cell or bending plate sensor would be the preferred 

solution. In terms of life cycle costs, the bending plate and load cell sensors are more cost effective 

in comparison with piezo sensors with high data quality if properly maintained/calibrated. The 

polymer piezo sensors are sensitive to temperature fluctuations and pavement stiffness due to 

seasonal changes; thus, these sensors must be calibrated every 6 to 12 months to keep accuracy in 

weight measurements. In summary, for projects with a typical life expectancy of 8 to 10 years, load 

cells or bending plate sensors would be preferred. Quartz piezo or strain gauge strip sensors typically 

have shorter lifespans of 3 to 5 years (FHWA 2018). 

 

2.3 WIM Data Analysis  

Different Python codes were developed to analyze the raw WIM data. First, the vehicle class 

distribution of directional WIM stations was visualized. Figure 2 and Figure 3 show the vehicle class 

distribution by month for north- and southbound directions of WIM station 185-0227, respectively. 

As seen in the figures, the class 9 vehicle is the most dominant truck for all the WIM stations 

throughout the year. Moreover, Figure 4 shows the GVW frequency distribution of WIM station 185-

0227. Based on the figure, the first few weight ranges were considered outliers and were removed in 

the QC process to retrieve the real weight distribution of vehicles. 
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Figure 2. Line graph. Vehicle Class Distribution by month, Site 185-0227 NB. 

 

Figure 3. Line graph. Vehicle Class Distribution by month, Site 185-0227 SB. 
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Figure 4. Line graph. GVW frequency distribution, Site 185-0227. 

 

2.4 Missing and Erroneous Data 

Generally, there are two quality issues with WIM data: missing values and erroneous data. Power 

outages or sensor malfunctions can cause missing values (Wei and Fricker 2003). A variety of other 

factors may affect WIM data quality, including environmental changes, pavement conditions, lack 

of calibration, and the type of WIM technology. Moreover, drivers’ behavior, such as accelerating, 

decelerating, and weaving, also impact the data quality depending on the sensor technologies (Wei 

and Fricker 2003, Stone et al. 2011). In addressing the data quality issues in practice, state 

departments of transportation (DOTs) have developed standard quality control (QC) checks to ensure 

the quality of the data before releasing them for planning or design practice. To ensure the quality of 

WIM data used in the analysis in this project, the research team implemented a customized QC 

procedure derived from the QC policies currently used by GDOT (Wiegand 2018) and NCDOT 

(Stone et al. 2011). 
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2.5 Quality Control Checks 

Based on previous studies, only 15–25 percent of the collected WIM data are considered good quality 

data due to lack of skilled staffing, resources, and support software. Thus, both the Traffic Monitoring 

Guide (FHWA 2016) and AASHTO Guidelines for Traffic Data Programs (AASHTO 2009) 

emphasize the QC requirements in traffic monitoring programs. The FHWA Long-Term Pavement 

Performance Program developed mandatory verification QC checks and software on the collected 

traffic data in the field before merging with the database. The GDOT Office of Transportation Data 

currently has a comprehensive quality control and quality assurance (QA) process in place. Table 1 

shows GDOT’s quality control rules for WIM sites (Wiegand, 2018). 

 

Table 1. GDOT QC rules for WIM sites. 

Quality Control Rule Description 
Data 
Type 

Error Ratio The system will reject the day(s) that have vehicles in class 15 
(the error bin) greater than X percent of the total volume. 

Class 

Minimum Class Hours The system will reject data that do not provide a complete 
24 hours of truck data. 

Class 

No Truck Data The system will reject the day(s) if no truck data exist for the 
day. 

Class 

No Trucks Lane The system will reject the data if there is no truck traffic in 
one lane for the day. 

Class 

 

Ratio of Class 1 to Class 2 

The system will flag any day(s) for which the volume in 
vehicle class 1 (motorcycles) exceeds the volume in vehicle 

class 2 (cars). 

 

Class 

Ratio of Class 13 to Class 9 The system will flag any day(s) for which the volume in 
vehicle class 13 exceeds the volume in vehicle class 9. 

Class 

Ratio of Long Class to Short 

Class 

The system will flag any day(s) for which the total of the 
volumes in vehicle classes, 11, 12, and 13 (long class) exceeds 

the volumes in vehicle classes 8, 9, and 10 (short class). 

 

Class 

Trucks Last Year The system will reject any daily truck traffic volumes that are 
substantially different from the previous year. 

Class 

Zero Long Class The system will reject day(s) for which the long truck classes 
have a zero volume. 

Class 

Zero Short Class The system will reject day(s) for which the short truck classes 
have a zero volume. 

Class 
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Minimum Hours The system will reject any day that does not have data for 
every hour 

Volume 

No Data The system will reject a day for which there are no data. Volume 

Volume Last Year The system will reject any daily traffic volumes that are 
substantially different from the previous year. 

Volume 

 

Volume Split 

The system will flag the entire set of counts if volume in one 

direction is over X percent of the total volume. This check is 

not applied to nondirectional data. 

 

Volume 

Volume Step The system will reject the day(s) that show a sudden dramatic 
change in hourly volumes. 

Volume 

Volume Step Lane The system will flag the day(s) that have a sudden dramatic 
change in hourly lane volumes. 

Volume 

Zero Hours All Day The system will reject any day that has consecutive zero 
volumes for the entire day. 

Volume 

Zero Hours During Day The system will reject any day that has consecutive zero 
volumes at any time during the day. 

Volume 

Zero Hours During the Night The system will reject any day for which there are consecutive 
zero volumes at any time during the night. 

Volume 

Class 9 Average Steer Weight The system will reject any day for which the Class 9 average 
steer weight is outside the parameters. 

WIM 

Class 9 BC Spacing The system will reject any day for which the Class 9 average 
B–C axle spacing is outside the parameters. 

WIM 

Maximum Axle Count The system will reject any day for which the ratio of vehicles 
to axles is more than X. 

WIM 

Maximum Wheelbase The system will reject any day for which the wheelbase is 
more than X. 

WIM 

Minimum Axle Count The system will reject any day for which the ratio of vehicles 
to axles is less than X. 

WIM 

 

 

2.6 Data Acquisition  

2.6.1 Properties of Georgia WIM Sites  

In Georgia, the vendor uses two WIM sensor models in the state’s current WIM system: quartz and 

bending plate sensors. Lanes instrumented with quartz sensors provide information on both vehicle 

weight and class. Although bending plate sensors also record vehicle class and weight data 

simultaneously, the vendor considers the weight data from quartz sensors to be more accurate and 

reliable (Chorzepa et al., 2020). 
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2.6.2 Inactive WIM Stations 

GDOT uses the Traffic Analysis and Data Application (TADA), a web application, to disseminate 

traffic data collected from the Georgia Traffic Monitoring Program. The application utilizes a 

dynamic mapping interface that allows users to access data from the map in a variety of reports, 

graphs, and data formats. Historical data from two inactive WIM stations, 245-0218 and 143-0126, 

were evaluated. The 245-0218 WIM data (Figure 5) are erroneous and incomplete. Figure 5 shows a 

screenshot of TADA in which the details of one of the inactive WIM stations are characterized. 

 

 

Figure 5. Screenshot. Inactive WIM stations in TADA1. 

 

2.6.3 WIM Data Quality Control  

The North Carolina DOT and GDOT QC criteria were applied to Georgia’s raw WIM data to process 

data and generate AASHTOWare Pavement ME Design traffic inputs. 

 

 
1 https://gdottrafficdata.drakewell.com/publicmultinodemap.asp 

 



14  

2.6.4 WIM Data After QC Checks   

Figure 6 and Figure 7 show the monthly distribution factors of the directional WIM stations after 

applying the QC criteria. Furthermore, Figure 8 illustrates the GVW frequency distribution for site 

185-0227 after QC checks.  

 

Figure 6. Line graph. Monthly Distribution Factors, Site 185-0227 NB. 

 

 

Figure 7. Line graph. Monthly Distribution Factors, Site 185-0227 SB. 
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Figure 8. Line graph. GVW frequency distribution, Site 185-0227. 

 

The compiled WIM data include five feature categories consistent with the AASHTOWare Pavement 

ME Design traffic inputs: (1) Vehicle Class Distribution (VCD) factors, (2) Monthly Distribution 

Factors (MDFs) for each vehicle class, (3) Hourly Distribution Factors (HDFs) for each hour of the 

day, (4) Normalized Axle Load Spectra (NALS) for single-axle loads across vehicle classes and 

weight bins, and (5) NALS for tandem-axle loads across vehicle classes and weight bins. In 

compiling WIM data in AASHTOWare Pavement ME Design traffic input format, the tridem- and 

quad-axle load spectra were generally excluded from the analysis since pavement designs are less 

sensitive to tridem and quad axles due to their low impact and representation as compared to single- 

and tandem-axle load applications (Selezneva et al. 2016). As a result, a total of 564 design-related 

traffic features were obtained for each WIM site, including 10 VCD features, 120 MDF features, 24 

HDF features, 230 NALS – single-axle features, and 180 NALS – tandem-axle features.  

 

2.7 Development of State-Specific Truck Traffic Classification Groups  

Truck traffic classification (TTC) groups were originally developed based on the LTPP databases 

and provide the opportunity for engineers to use the national default values (i.e., Level 3 design 
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inputs) when site-specific traffic data are not available. Seventeen TTC groups were defined based 

on the distributions of vehicle classes in traffic streams (ARA 2004), as shown in Figure 9. In the 

PMED process, one typically obtains traffic composition on a specific roadway section from short-

term traffic counts to identify the closely matched TTC group. Then, the required design traffic inputs 

associated with the identified TTC group can be obtained from the historical databases (Wang et al. 

2015). However, the actual traffic data may not match well with any of the national default TTC 

groups. Thus, using the closely matched TTC group for design may result in over- or under-design 

of pavement structure. Nassiri et al. (2014) investigated the influence of site-specific traffic 

characteristics and the AASHTOWare Pavement ME Design default values on the performance of 

both flexible and rigid pavements in Alberta. Based on the results, TTC groups were found to be 

influential on AC pavement performance, especially for rutting. In another study, Li et al. (2015) 

aimed at developing simplified TTC groups based on cluster analysis of vehicle class distributions 

in Arkansas. Like many other states in the U.S., Georgia currently uses national default values (Level 

3 design inputs) for pavement design. 

 
Figure 9. Line graph. Truck Traffic Classification groups based on National Cooperative 

Highway Research Program (NCHRP) Project 1-37A (Ara, Inc. 2004). 
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The purpose is to develop customized or state specific TTC groups using existing WIM data in 

Georgia. We aimed to leverage unsupervised machine learning techniques to develop clusters 

(groups) of truck traffic by mining the comprehensive WIM data compiled in the AASHTOWare 

Pavement ME Design traffic input formats by categories, including VCD, MDF, HDF, and NALS.  

 

2.7.1 Traffic Inputs in AASHTO MEPDG MOP 

The AASHTO MEPDG MOP requires various data to design new or rehabilitated pavement 

structures. Generally, there are four different categories of inputs in AASHTOWare Pavement ME 

Design software (PMED). These input data are climate inputs, layer/material property inputs, design 

features and layer property inputs, and traffic inputs. The required traffic input data which can be 

extracted from WIM data are: VCDs, MDFs, HDFs, axles per truck class, and axle load distribution 

factors or NALS. For each of these traffic inputs, depending on the level of design, the PMED 

requires traffic distributions for each of 10 standard FHWA vehicle classes (i.e., classes 4 through 

13). The design levels are defined as follows: 

 Level 1: Most accurate design level requiring site-specific weight and volume data 

collected at or near the project site. 

 Level 2: Intermediate accuracy design level with modest knowledge of traffic 

characteristics requiring regional weight data and site-specific volume data. 

 Level 3: Least accurate design level with knowledge only of statewide default weight 

and volume data. 

In the following sections, the five different traffic input data are defined separately. 
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2.7.1.1 Vehicle Class Distribution  

VCD represents the percentage of each truck class (i.e., 4 through 13) within the annual average daily 

truck traffic (AADTT) for the base year, which is defined as the first year of the forecast period. The 

sum of the percent AADTT of all truck classes must equal 100. 

 

2.7.1.2 Monthly Distribution Factor 

MDF is defined as the seasonal differences in AADTT by allocating a normalized weight factor to 

each month of the year. As the default, a seasonally independent value of 1 for each of the 12 months 

is assumed as level 3 data. In this way, months with higher AADTT will receive a weight factor 

greater than 1, whereas months with lower AADTT will receive a factor less than 1 (ARA, Inc. 2004). 

The sum of the MDF of all truck classes must equal 12. 

 

2.7.1.3 Hourly Distribution Factor 

HDF is defined as the percentage of total trucks within each hour using data measured continuously 

over a 24-hour period. The sum of the percent of daily truck traffic per time increment should add up 

to 100 percent. 

 

2.7.1.4 Axles per Truck Class 

This input represents the average number of axles for each truck class (i.e., 4 to 13) for each axle 

group type (i.e., single, tandem, tridem, and quad). 
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2.7.1.5 Normalized Axle Load Spectra (NALS)  

The axle load distribution factors represent the percentage of the total axle applications for load 

intervals in a specific axle group type (i.e., single, tandem, tridem, and quad) and vehicle classes 4 

through 13. The load intervals for each axle group type are as below: 

 Single axles – 3,000 lb to 40,000 lb at 1,000-lb intervals. 

 Tandem axles – 6,000 lb to 80,000 lb at 2,000-lb intervals. 

 Tridem and quad axles – 12,000 lb to 102,000 lb at 3,000-lb intervals. 

 

The NALS can only be extracted from WIM data. Thus, the level of input depends on the data source 

(i.e., site, regional, or national). To generate AASHTOWare Pavement ME Design traffic inputs, the 

WIM volume and weight data were reviewed using a quality control procedure. The cleaned data 

were then processed using computer programming to generate traffic inputs, including VCD, MDF, 

HDF, axles per truck class, and NALS. 

 

2.8 Machine Learning Techniques  

Since obtaining high-quality WIM data is an expensive and time-consuming process, not all roads 

are equipped with WIM sensors. As a result, site-specific traffic data are limited to specific road 

sections. The issue appears when designing new pavements since designers have no idea about the 

TTC grouping of the section, subsequently leading to confusion in the selection of PMED input data. 

Machine learning methodologies in transportation engineering have been widely used in recent years. 

One common approach is clustering WIM stations to generate similar traffic-loading spectra as well 

as traffic data for designing new road sections without site-specific traffic information. Generally, 

the traffic vehicle class distribution has been utilized as a feature for clustering WIM stations.  
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In this study, VCD, MDF, HDF, and NALS for single- and tandem-axle loads were generated and 

used as features for clustering analysis. Therefore, the purpose of this study was to find the trucking 

pattern of the Georgia roads based on PMED traffic input data and generate new TTCs to determine 

whether, apart from VCD, other input data play a considerable role in clustering WIM sites. 

 

2.8.1 Principal Component Analysis  

Principal component analysis (PCA) is an unsupervised method that is commonly used for dimension 

reduction, in which high-dimensional features are projected to a low-dimensional space without 

losing much information. Principal Components (PCs) are created in the order of the amount of the 

variation and are orthogonal to each other. In other words, PC1 captures the direction of most 

variance, PC2 is orthogonal to PC1 and captures the direction of second most variation, and so forth. 

As discussed previously, PCA is applied to each feature category separately. Figure 10 shows the top 

10 PCs for each of 5 feature categories defined previously. 

As seen in Figure 10, the variance captured by each subsequent PC decreases. The number of PCs 

(i.e., dimensions) to keep is a judgment call that reflects the trade-off between the amount of variance 

to retain and the complexity (dimensionality) of the resulting feature space. For this analysis, the 

decision was based on the sudden drop of variance as well as retaining at least 60 percent of variances 

for each feature category. The ultimately retained PCs are indicated in the red rectangle in Figure 10, 

and the corresponding percentages of variance captured are summarized in Table 2. As a result, a 

total of 20 PCs (i.e., three PCs each for VCD, MDF, and HDF, respectively; six PCs for NALS-

Single Axles; five PCs for NALS-Tandem Axles) were retained, which is a significant reduction 

from the original 565 features. The 20 PCs were used for the subsequent cluster analysis. 
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Figure 10. Bar graph. Determining the optimal number of principal components for the 

attributes. 
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Table 2. Percent of variance explained by feature categories. 

 

Feature Category 

Principal Component (PC)  

Total PC1 PC2 PC3 PC4 PC5 PC6 

VCD 0.41 0.19 0.14    0.74 

MDF 0.30 0.21 0.09    0.60 

HDF 0.40 0.27 0.18    0.85 

NALS-Single Axles 0.22 0.14 0.11 0.09 0.08 0.06 0.70 

NALS-Tandem Axles 0.18 0.15 0.10 0.09 0.08  0.60 

Shading denotes “Not Used”. 

 

2.8.2 Clustering Technique 

Cluster analysis aims to find homogeneous subgroups among observations such that the observations 

within one group will be similar to one another and different from the objects in other groups. A 

variety of cluster methods have been developed with K-means being the most popular one that works 

well with many different data sets. In K-means clustering, the number of clusters, K, needs to be 

prespecified. The idea behind the K-means method is to find the K clusters so that the within-cluster 

variation is minimized. With the commonly used Euclidean distance as the proximity measure, the 

K-means algorithm can be expressed as an optimization problem as in equation 1. 

minimize
஼భ,…,஼ೖ

ቄ∑
ଵ

|஼ೖ|
∑ ∑ ൫𝑥௜௝ − 𝑥௜ᇲ௝൯

ଶ௣
௝ୀଵ௜,௜ᇲ∈஼ೖ

௄
௞ୀଵ ቅ   (1) 

Where, 

𝑥𝑖𝑗 = the jth feature of observation i p = the number of features 

|𝐶𝑘| = the number of observations in the kth cluster 
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The within-cluster sum-of-squares is also referred to as inertia, which measures how internally 

coherent the clusters are. Inertia is commonly used to determine the optimal number of clusters (K). 

A range of K values were experimented within the PC features derived previously. The inertia was 

then plotted against K in Figure 11, showing the inertia reduces as K increases. In extreme cases 

when the number of observations equals K, the inertia reduces to zero. In practice, the elbow method 

is often applied, where K is chosen as the point of the maximum curvature in the inertia plot 

(indicated by the red arrow in Figure 10). Following this approach, K was chosen to be 4 in this 

study. 

 

Figure 11. Line graph. Elbow method for determining K. 

 

For visualization purposes, the 20 PCs derived previously (referred to as the lower-level PCA) were 

further projected onto a two-dimensional space again using the PCA method, referred to as the 

higher-level PCA. This allowed the researchers to visually inspect how the 20 WIM sites are clustered 

on a two-dimensional plane. This nested PCA procedure is illustrated in Figure 12.
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Figure 12. Illustration. Nested PCA procedure. 

 

Corresponding to the higher-level PCA, the loading factors of the 20 lower-level PCs were calculated 

with respect to the two higher-level PC axes and are shown in Table 3. 

 

Table 3. Loading factors of 20 lower-level PCs 

 

The clusters of 20 WIM sites were plotted in the two-dimensional plane in the higher-level PC space, 

together with the scaled loading vectors, shown in Figure 13. 
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Figure 13. Plot. Clustering results and loading vectors. 

 

As shown in Figure 13, all clusters are clearly separated in the two-dimensional higher-level PC 

space. Cluster 0 (red square) consists of 8 WIM sites, which are in the lower left region, while cluster 

1 (green triangles) consists of 10 WIM sites, which are in the upper left region. Clusters 2 and 3 (blue 

diamond and cyan circle) contain only one WIM site each and both belong to the same WIM station 

051-0368. For direct reference, the WIM site IDs, and their corresponding clusters are included in 

Figure 13, as well. Apparently, clusters 2 and 3 (representing directional traffic at the same WIM 

station: 051-0368) are further separated from other sites and they are also farther apart from each 

other in Figure 14. This seemingly strange clustering outcome is intuitively interpretable, as the 

station 051-0368 is located on Interstate 16 near the City of Savannah and serves as the gateway for 

heavy trucks entering and leaving the Savannah Port. The distinct directional patterns of truck traffic 

at this station are well expected. The lines in Figure 13 represent loading vectors for the 20 lower-

level PCs. They can be used to interpret which features or feature categories have contributed to 

90௢ 
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separating different clusters. For example, the VCD feature category (PC1_VCD) plays the most 

important role in separating clusters 2 and 3 from clusters 0 and 1. This can be seen from Figure 13 

by drawing an imaginary line that is perpendicular to the PC1_VCD vector (see the dashed purple 

line). This is due to the fact that the vehicle class distribution at the station 051-0368 near the 

Savannah Port is quite different from other sites in Georgia. Besides PC1_VCD, other vectors, 

especially those crossing the dashed purple line (e.g., PC1-HDF, PC3-MDF, and PC2-tandem-axles, 

etc.), more or less contributed to separating this special station from other stations. Figure 14 shows 

the clusters of the 20 WIM sites by their geographical locations. 

 

 

Figure 14. Map. Clusters of WIM sites. 

 

2.9 Pavement Performance Analysis Results 

To compare the design implications of the derived clusters with the default TTC groups, the TTC 

groups that match our clusters were first found based on their similarity by the root mean squared 

difference in percent, computed by Equation 2.  

𝑅𝑀𝑆𝐷 =  ඨ
∑ (𝑦௜ − 𝑓௜)ଶ௡

௜

𝑛
                                                                          (2) 
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where, n is the total number of vehicle classes (n = 10, including Classes 4 through 13); 𝑦௜ is the 

percent occurrence of each truck class based on the clusters; and 𝑓௜ is the percent occurrence of each 

truck class based on the default TTC groups. The computed RMSDs are shown in Table 4.  

The TTC groups with the minimum RMSDs (the numbers in red in Table 4) to our respective clusters 

are selected as the best matches. As a result, clusters 0 and 1 are close to TTC group 1; cluster 2 is 

close to TTC group 4; and cluster 3 is close to TTC group 9.  For illustration purposes, the paired 

clusters and TTC groups are plotted together by the VCD feature in Figure 15. 

 

Table 4. Comparison of Root Mean Squared Differences between the Clusters and the TTC 
groups.  

Group No. Cluster 0 Cluster 1 Cluster 2 Cluster 3 
TTC 1 1.835 1.389 8.7812 17.544 
TTC 2 2.359 2.979 5.762 14.500 
TTC 3 3.272 3.775 5.541 14.305 
TTC 4 6.532 7.1640 2.536 10.194 
TTC 5 5.701 6.227 3.973 12.181 
TTC 6 10.767 11.420 4.106 6.043 
TTC 7 10.206 10.764 4.363 7.919 
TTC 8 8.931 9.504 3.652 9.459 
TTC 9 13.599 14.288 6.441 4.351 

TTC 10 12.619 13.213 5.932 5.488 
TTC 11 13.708 14.342 7.326 7.666 
TTC 12 17.714 18.386 10.533 5.867 
TTC 13 16.368 16.965 9.701 5.906 
TTC 14 23.237 23.861 16.110 7.045 
TTC 15 23.455 24.079 16.363 7.434 
TTC 16 22.073 22.719 14.899 6.908 
TTC 17 20.103 20.721 14.347 14.809 
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Figure 15. Line graph. Traffic pattern comparison of clusters and default TTC groups. 

 

Both the cluster-based traffic inputs and the corresponding TTC group-based traffic inputs were 

entered into the AASHTOWare Pavement ME Design software to simulate pavement performance. 

Two pavement designs (one for jointed plain concrete pavement [JPCP] and one for flexible 

pavement) were evaluated. The JPCP design consisted of five layers commonly used in Georgia. The 

top layer was a 12” PCC layer with the recommended JPCP values. The second layer was a 3” AC 

layer with Superior Performing Asphalt Pavement (Superpave): 64-22. The third layer was a 12” 

crushed gravel layer, serving as the non-stabilized base. The fourth and fifth layers were two subgrade 

A-7-6 sections, with a 12” layer on the top and the bottom layer serving as a semi-infinite layer. The 

flexible pavement design included an 8” asphalt concrete layer followed by a 12” unbound aggregate 

base layer on A-2-4 subgrade soils. 

The AASHTOWare Pavement ME Design software requires a series of traffic inputs, which can be 

obtained from the WIM data. The software allows pavement design to be conducted with three levels 

of inputs depending on the data availability. Level 1 uses site-specific data, which provide the highest 
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level of input accuracy for the pavement design. Level 2 uses regional data, which provide an 

intermediate level of input accuracy for the pavement design. Level 3 uses national or global 

averages, which provide the least detailed input values. As the purpose of this analysis was focused 

on the performance comparison of different traffic input scenarios, Level 3 inputs were used. 

Specifically, the performance difference was analyzed between two traffic input scenarios: one with 

the cluster-based traffic inputs derived in this project and the other with the national traffic inputs 

based on the default TTC groups. All the material inputs used in the analysis followed the recently 

developed input library from The GDOT Pavement ME Design User Input Guide (Kim et al. 2020).  

The performance curves over a design period of 20 years are plotted in Figure 16 and Figure 17 for 

JPCP and flexible pavement designs, respectively. For the JPCP, the default TTC groups resulted in 

worse performance than the cluster group counterparts. The performance gap was the largest between 

TTC group 1 and clusters 0 and 1 (with about 50 inch in International Roughness Index (IRI) and 

over 0.1 inch in faulting at the end of the design period). For the flexible pavement, similar 

performance trends were observed. The TTC groups generally performed equally well or worse than 

the cluster groups. The apparent gap in bottom-up cracks occurred between TTC group 1 and clusters 

0 and 1, which is about 6 percent at the end of the design period. The difference in permanent 

deformation between TTC group 9 and cluster 3 was about 0.15 inch at the end of the design period. 

The findings indicate that using the national default TTC groups that closely match the actual traffic 

data resulted in over-design of the pavement structure, especially for JPCP, in Georgia. This 

highlights the importance of developing customized TTC groups using state-specific WIM data. 
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Figure 16. Line graph. JPCP pavement performance comparison of cluster-based traffic 

inputs and default TTC groups. 
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Figure 17. Line graph. Flexible pavement performance comparison of cluster-based traffic 

inputs and default TTC groups. 
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CHAPTER 3 

3. DEVELOPMENT OF LANE DISTRIBUTION FACTORS FOR GEORGIA USING 

WIM AND CCS DATA 

 

3.1 Problem Statement  

Currently, the Georgia Department of Transportation (GDOT) uses the Lane Distribution Factor 

(LDF) values that were last updated in 1983. Since then, traffic in Georgia has changed 

dramatically, especially over the recent decade, due to considerable growth in the state’s economy 

and population, as well as demographic changes.  Since the currently adopted LDFs are outdated 

and may not reflect actual truck traffic lane distributions, a study based on the latest lane-specific 

vehicle counts and classification data is needed to verify and update, if necessary, the LDF values 

in support of GDOT’s pavement design practice. 

 

3.2 Lane Distribution Factor   

LDF is simply defined as the percentage of truck volumes traveling in the outermost lane, referred 

to as the design lane, to the total truck volumes of all lanes in one travel direction (Lu & Harvey 

2006). LDF is one of the critical pavement design parameters, which determines the amount of 18-

kip ESAL (Equivalent Single Axle Load) in the design lane. Equation 1 is typically used to 

estimate the design ESAL. Considering the multiplicative effect of LDF on the design ESAL, it is 

important to ensure the accuracy of LDF to avoid potential over- or under-design of pavement. 

  



33 

ESALୈୣୱ୧୥୬ = ൬
ADTଵ + ADT୒

2
൰ × ෍(P୧ × LEF୧)

୧

× 365 × N × DDF × LDF             (1) 

where,  

𝑃௜  = percent of vehicles in each of the three categories: (1) passenger cars & pickup trucks, (2) 

single unit trucks, and (3) combination trucks. 

𝐿𝐸𝐹௜ = load equivalency factor for each of the three vehicle categories above. 

N = design period in years (e.g., 20 years)  

DDF = directional distribution factor 

LDF = lane distribution factor 

Generally, LDF varies by area/ facility type, the number of lanes, and traffic volume. For two-lane 

highways, (one lane in each direction), the LDF is 1.0, where drivers have no choice, but use the 

only lane available. For facilities of more than one lane in each direction, LDF varies by other 

factors, such as AADT, geometric, and site-specific conditions (Haider et al. 2018). Typically, 

LDF decreases with the increase in the number of lanes as more lane options are available to 

drivers. Based on the field observations, the outermost lane usually carries the highest percentage 

of truck traffic, referred to as the design lane for the purpose of pavement design.  

The LDF values currently adopted in the Pavement Design Manual (GDOT, 2019) are shown in 

Tables 5 and 6. Table 5 shows the recommended range of LDF values by area/ facility types. Table 

6 shows LDF values for multilane highways with respect to specific ADT levels and the number 

of lanes. As mentioned previously, the last update for Table 5 was in December 2005 and Table 6 

LDF values were based on a previous study conducted in 1982-1983. 
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Table 5. Lane distribution factors by facility type (GDOT Pavement Design Manual 2019). 

 

 

Table 6. Lane distribution factors for multilane highways (GDOT Pavement Design 
Manual 2019) 

 

TABLE 7.2: LANE DIST. FACTORS TO CONVERT TOTAL 18K ESAL TO DESIGN LANE 18K ESAL

Facility LDF (in percent)
Four lane Rural Freeway 85-100

Four Lane Urban Freeway 60-80
Six Lane Rural Freeway 70
Six Lane Urban Freeway 60

Six Lane Rural Highway Free Access 70-100
Six Lane Urban Highway -Free Access 60-80

Two Lane Highway and Ramps 100

APPENDIX A: LANE DISTRIBUTION FOR MULTIPLE LANE HIGHWAYS

2 Lanes (one Direction) 3+ Lanes (one-Direction)
Inner Outer Inner* Center Outer

2,000 6** 94 6 12 82
4,000 12 88 6 18 76
6,000 15 85 7 21 72
8,000 18 82 7 23 70

10,000 19 81 7 25 68
15,000 23 77 7 28 65
20,000 25 75 7 30 63
25,000 27 73 7 32 61
30,000 28 72 8 33 59
35,000 30 70 8 34 58
40,000 31 69 8 35 57
50,000 33 67 8 37 55
60,000 34 66 8 39 53
70,000 -- -- 8 40 52
80,000 -- -- 8 41 51
100,000 -- -- 9 42 49

 * Combined inner one or more lanes.
** Percent of all trucks in one direction (note that the proportion of trucks in one
direction sums to 100 percent).

One Way 
ADT 
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The literature review reveals limited research on estimating lane distribution factors. The most 

relevant studies are discussed in the following section. 

 

3.3 Literature Review  

Albright and Blewett (1988) conducted a study in which a model was developed to estimate LDF 

values on tangent sections of the New Mexico rural interstates. Based on the study, the total vehicle 

volume and truck percentage are statistically significant in terms of truck lane use and should be 

considered as explanatory variables. Also, LDF has been proved to be a function of flow rate 

(Chatterjee et al., 2016). Based on this study, the increase in flow rate would equalize the LDF 

value. Kumar and Reddy (2014) conducted a case study in which the LDFs for two-lane, four-

lane, and undivided highways were evaluated against the suggested values for two sections of 

National Highways (NH7 and NH9) in India. The results proved that there are anomalies between 

the obtained LDF values and the LDF values suggested by the IRC pavement design procedure. 

Thus, fixation of the Lane Distribution Factor for these sections is recommended.  Another study 

(Fwa and Li, 1995) was conducted in Singapore to evaluate the effects of certain factors on the 

lane distribution of trucks. These factors include the functional class of roads, the number of travel 

lanes, the total directional traffic volume, and the volume of truck traffic. Statistical regression 

models were developed to estimate truck volume in the critical lane. The study indicated that 

changes in land-use development, economic, and social structures are effective on travel 

characteristics, traffic flow composition, and hence lane distribution factors.  

Thus, highway agencies must develop regression models and update them periodically to reflect 

such changes and provide more accurate LDF for pavement design. 
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Besides the regression approach, machine learning approach (e.g., clustering) was attempted as 

well.  Lu and Harvey (2006) utilized WIM data to characterize truck traffic to assist with 

mechanistic–empirical pavement design in California. Kernel density estimation was performed 

to estimate the density function of LDF for highways with different numbers of lanes. The analysis 

showed that when there are two lanes in one travel direction, more than 90% of the truck traffic 

will use the outside lane, and when there are three or more lanes in one travel direction, more than 

90% of the truck traffic will use the outermost two lanes.  

 

3.4 Traffic Data Collection 

The GDOT’s Office of Transportation Data (OTD) has a comprehensive traffic count program. 

Traffic data is collected by permanent Continuous Count Station (CCS) sites, portable count 

stations, permanent and continuous Weigh-In-Motion (WIM) sites, and temporary WIM sites 

(Wiegand 2018).  

 

3.4.1 WIM Sites 

The WIM sensors embedded in the pavement have the potential to collect continuous high-

resolution traffic data, such as vehicle counts, gross vehicle weight, axle configuration, axle weight 

data, and speed (Kim et al., 2021). WIM data are utilized for various purposes, such as the design 

of pavements or bridges, highway and traffic planning, legislative/ regulatory studies, capacity 

studies, enforcement, and inspection purposes (FHWA 2018 & Wiegand 2018). Although there 

are several types of WIM systems, WIM technology generally consists of several main 

components. Sensors embedded in the roadway surface or under a bridge deck detect axles and 

weights and classify the passing vehicles. Electronics control the system function to process sensor 
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outputs. Support devices power the WIM electronics to dispatch the collected data to a remote 

server. Finally, software installed in the WIM electronics process the measurements, analyze the 

format, and store the collected data (FHWA 2018).         

 

3.4.2 CCS Sites 

Since July 2017, OTD in GDOT has had hundreds of CCS sites installed on roadway systems 

throughout the state. These sites operate 24 hours per day, seven days per week, 365 days per year, 

excluding the necessary maintenance periods. The collected data from CCS sites are vehicle 

classification and traffic volume data (Wiegand 2018).  

In this study, the lane-specific vehicle counts and classification data for the most recent four years 

(2018-2021) were obtained from all active CCS sites in Georgia. The WIM data from 29 active 

WIM sites in 2021, collected as part of another study (Chorzepa et al., 2022), was also utilized. 

The locations of these CCS and WIM sites are depicted in Figure 18, where blue circles denote the 

CCS and red circles denote the WIM sites.  

 

3.5 Data Analysis 

The raw CCS and WIM data are processed to compute LDFs together with other features, including 

directional AADT, the number of lanes, truck volumes and percentages, area, and facility types. 

Vehicle classes 5 through 13 (according to the FHWA classification system) are considered as 

trucks. Given the definition of the LDF, yearly traffic data are first compiled for each lane in each 

travel direction, resulting in AADT and AADTT by lane and by direction. Then, the corresponding 

LDF values are computed for each direction. For each of 2-lane (one travel direction) facilities, 

two LDF values are computed, one for the inner lane (denoted as LDF_inner) and one for the outer 
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lane (denoted as LDF_outer).  For each of facilities with three or more lanes (one travel direction), 

three LDF values are computed, including one for the outermost lane (LDF_outer), one for the 

second outmost lane (denoted as LDF_center), and one for the remaining lane(s) (denoted as 

LDF_inner).  Besides the LDF values, explanatory variables (features) are compiled from the CCS 

and WIM data as well and are summarized in Table 7. It should be noted that regrouping of the 

original functional classes of facilities into two categories (i.e., Interstate and Others) was based 

on statistical analysis of the data. 

 

 

Figure 18. Map. Locations of active CCS and WIM sites in Georgia. 
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Table 7. Description of variables 

Variable Description Statistics of Dataset 
AADT Annual Average Daily Traffic Mean: 29,354 

Min: 1,207 
Max: 161,449 

lnAADT Natural logarithm of AADT Mean: 9.772 
Min: 7.096 
Max: 11.992 

Urban Dummy variable to indicate whether the 
facility is in an urban or rural setting. 

1 – Urban (count: 997) 
0 – Rural (count: 303)  

Interstate Dummy variable to indicate whether the 
facility is Interstate, other Freeways or 
Expressways.  

1 – Interstate (count: 747) *  
0 – Others (count: 553)  

3+ln Dummy variable to indicate if the facility 
has 3 or more lanes (one travel direction). 

1 – 3 or more lanes (count: 483) 
0 – 2 lanes (count: 817) 

Lanes Number of lanes (one travel direction) Min: 2, Max: 7, Mean: 2.76 
Truck 
percentage 

Percent of trucks in the traffic (one travel 
direction) 

Mean: 12.02% 
Min: 0.71%, 
Max: 61.32% 

* Includes other Freeways and Expressways. 

 

Additionally, to evaluate the potential effect of the COVID-19 on statewide traffic characteristics, 

the statewide mean AADT, AADTT were computed and are presented in Figure 19. Similarly, the 

statewide mean LDF values were computed and are presented in Figure 20.  As seen in Figure 19, 

a significant traffic drop is observed in 2020 due to the COVID-19. Although statewide traffic 

increases slightly in 2021, it is still lower than the pre-COVID-19 condition. Nevertheless, the 

statewide truck traffic increases steadily throughout the COVID-19. As shown in Figure 20, the 

LDF values remain relatively constant before and after the COVID-19.  
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Figure 19. Bar chart. Statewide traffic by year. 
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Figure 20. Bar chart. Statewide LDFs by year. 
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3.6 Estimating Lane Distribution Factor 

Logistic regression is one of the most popular statistical approaches which models the probability 

of a discrete outcome given one or more explanatory variables (Edgar & Manz, 2017). Since LDF 

is defined as the percentage of directional truck traffic traveling in the outermost lane (the lane 

with the highest percentage of truck volume, referred to as the design lane), it is natural to model 

LDFs as probability distribution across lanes. To capture the effect of the number of lanes (one 

travel direction), a hierarchical modeling framework is adopted with a higher-level logistic model 

(referred to as Model A) to estimate LDF_outer (i.e., LDF for the outermost lane) and a lower-

level logistic model (referred to as Model B) to estimate LDF_center (i.e., LDF for the second 

outmost lane) for facilities with three or more lanes in one travel direction.  In this study, Model 

B is specified such to estimate the “relative” LDF for the second outermost lane by disregarding 

the outmost lane. Model A is fit by considering all relevant features. Our analysis indicates that 

grouping the number of lanes into two categories (i.e., 2 lanes and 3+ lanes) does improve model 

fitting as compared to using the number of lanes directly as ordinal features, which substantiates 

the original design of the LDF table in the GDOT’s pavement design manual.  On the other hand, 

by closely examining the LDF values with respect to AADTs in the currently adopted design table, 

it becomes apparent that LDF is logarithmically related to AADT. Based on our data analysis, the 

logarithm transformation of AADT dramatically improves model fitting, thus was adopted. 

Additionally, the COVID-19 was also considered as a feature by coding it as a dummy variable.  

It turns out that the effect of the COVID-19 on LDF is not significant, which concurs with the 

stable LDF values before and after the COVID-19 in Figure 20. 
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Similar to Model A, Model B is fit only for facilities with 3+ lanes by simply disregarding the 

outermost lane and treating the second outermost lane as the “outmost lane”. The model estimation 

results are summarized in Table 8 and Table 9 for Model A and Model B, respectively. 

 

Table 8. Model A - Estimating LDFs for the outermost lane (LDF_outer) 

 

 

Table 9. Model B - Estimating LDFs for the second outermost lane (LDF_center) 

 

As shown in Table 8, increase of LnAADT will decrease LDF_outer as indicated by the negative 

coefficient for lnAADT. Facilities in urban areas have a lower LDF_outer as compared to those in 

rural areas. Interstates and other Freeways/ Expressways have a higher LDF_outer than the 

facilities of lower functional classes. The negative sign of “3+ln” reveals that facilities with three 

or more lanes (one travel direction) have a lower LDF_outer than facilities with two lanes (one 

travel direction). Similar feature effects are observed for Model B (see Table 9).  The F statistics 

 Variable Coef Std Err t statistic p value
Const 5.453 0.207 26.391 0.000 5.048 5.858
LnAADT -0.468 0.024 -19.515 0.000 -0.515 -0.421
Urban -0.311 0.035 -8.797 0.000 -0.381 -0.242
Interstate 0.837 0.038 21.860 0.000 0.762 0.913
3+ln -0.822 0.043 -19.315 0.000 -0.905 -0.738
F statistic: 679.20 p value: 0.000
R-squared: 0.676
No. of obs: 1,300

95% CI

 Variable Coef Std Err t statistic p value
Const 16.854 0.653 25.791 0.000 15.570 18.138
LnAADT -1.566 0.069 -22.809 0.000 -1.701 -1.431
Urban -0.438 0.141 -3.093 0.002 -0.716 -0.160
Interstate 1.636 0.172 9.486 0.000 1.297 1.974
F statistic: 222.30 p value: 0.000
R-squared: 0.582
No. of obs: 483

95% CI
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(lower p-values) indicate good overall fitting of both Model A and Model B with R-squared of 

0.676 and 0.582, respectively. 

Since Model A and Model B consider area/ facility types, the resulting LDF values are not directly 

comparable to the LDF values currently adopted in the GDOT pavement design manual. For 

comparing purposes, Model A and Model B are refit by removing the area/ facility types as 

features, referred to as Simplified Model A and Simplified Model B. The estimation results of the 

simplified models are summarized in Table 10 and Table 11, respectively. 

Table 10. Simplified model A 

 

 

Table 11. Simplified model B 

 

It should be noted that although the truck volume is an influential factor considered in the previous 

studies (e.g., Albright and Blewett, 1988 and Fwa and Li, 1995), our analysis indicates that truck 

percentage is not significant conditional upon AADT and area/ facility type. However, the effect 

of truck volume should be continuously monitored for future consideration. 

 Variable Coef Std Err t statistic p value
Const 3.849 0.229 16.831 0.000 3.400 4.297
LnAADT -0.284 0.025 -11.422 0.000 -0.332 -0.235
3+ln -0.710 0.053 -13.439 0.000 -0.814 -0.607
F statistic: 636.70 p value: 0.000
R-squared: 0.495
No. of obs: 1,300

95% CI

 Variable Coef Std Err t statistic p value
Const 15.910 0.708 22.478 0.000 14.520 17.301
LnAADT -1.374 0.066 -20.970 0.000 -1.502 -1.245
F statistic: 439.80 p value: 0.000
R-squared: 0.478
No. of obs: 483

95% CI
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3.7 Results  

For implementation of the study results, LDF values are updated by applying the developed 

models. First, the simplified models are applied to estimate LDF values and compare with the LDF 

values currently adopted in the GDOT pavement design manual. The updated LDF design table 

based on the simplified models is shown in Table 12.  Compared with the currently adopted LDF 

values (Table 6), the new LDF values are generally lower for 3+lane facilities and 2-lane facilities 

with low AADT. 

 

Table 12.  Updated lane distribution factors for multilane highways 

 

Knowing that area/ facility types are significant features underlying the variation of LDFs, separate 

design LDF tables (Tables 13-16) are also developed based on Model A and Model B with respect 

to different area/ facility types.   
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Table 13. Updated lane distribution factors for multilane highways (Urban 
Interstate/Freeways/Expressways) 

 

 

Table 2. Updated lane distribution factors for multilane highways (Rural 
Interstate/Freeways/Expressways) 

 



47 

Table 15. Updated lane distribution factors for multilane highways (Urban Others) 

 

 

Table 163. Updated lane distribution factors for multilane highways (Rural Others) 
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The distinct LDF values across area/ facility types suggest that separate LDF tables should be 

adopted for different area/ facility types. By comparing Tables 13-16 with Table 6, the use of the 

current design LDF values would generally lead to under-design of Rural 

Interstate/Freeways/Expressways and over-design of other facilities. To facilitate the design 

practice, a web application is developed to display the computed LDF values per user’s design 

inputs.  

 

3.8 Conclusion  

In this study, the latest lane-specific vehicle count, and classification data are obtained from all 

active CCS stations and WIM sites throughout the state of Georgia. LDF values are computed for 

each CCS and WIM site and correlated with relevant features, including AADT, area type, facility 

type, the number of lanes, truck percentage, as well as considering the effect of the COVID-19. A 

hierarchical modeling framework is developed, consisting of two logistic models: (1) a higher-

level model for estimating LDF for the outmost lane (LDF_outer) for all facilities, and (2) a lower-

level model for estimating LDF for the second outmost lane (LDF_center) for facilities with 3 or 

more lanes (one travel direction). The feature analysis reveals that grouping the number of lanes 

into two categories (i.e., 2 lanes and 3+ lanes) improves model fitting than treating the actual 

number of lanes as an ordinal feature.  Following similar analysis, the facility types are regrouped 

into two categories: Interstate (including other Freeways and Expressways) and others. The 

existing area types (Urban versus Rural) are retained. Consistent with current practice, logarithm 

transformation of AADT is applied, resulting in improved model fitting. The effect of the COVID-

19 on LDF is found to be insignificant.  
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Based on the study, it is highly recommended that separate LDF tables (Tables 13-16) are adopted 

for pavement design in light of the significant roles that the area and facility types play in 

determining LDF values. Given the anticipated economic growth and evolving socioeconomic 

characteristics of the state of Georgia as well as continuous adoption of new or emerging 

technologies (e.g., E-mobility, statewide deployment of charging stations, semi-autonomous or 

autonomous truck platooning, emerging connected and autonomous vehicles, etc.), regularly 

updating the LDF values (e.g., every 3 years) is recommended to capture the changes in traffic 

characteristics over time. 
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CHAPTER 4 

4. REMOTE SENSING TECHNIQUES FOR PAVEMENT MAINTENANCE 

SCHEDULING PURPOSES 

 

4.1 Remote Sensing Methodologies in Pavement Assessment   

Remote sensing is the technology to capture data from the earth’s surface through electromagnetic 

radiation and the science to analyze these data and the geo-bio-physical properties to understand 

the various geographical phenomena on our planet (Navalgund et al., 2007). Unlike other sensing 

technologies, remote sensing promised to be a cost-effective approach where the data are collected 

from all around the globe regularly (Goezt et al., 1983).  

Pavement deterioration is the combined result of either traffic loads or environmental factors 

during the pavement’s service life (Adlinge and Gupta, 2013). Asphalt pavements lose their first-

day quality and deteriorate gradually over time. Surface and fatigue cracking, potholes, rutting, 

and swelling are the most common asphalt pavements deterioration by which the flexible pavement 

surface can lose its specific properties such as smoothness, skid-resistance, and macro-texture 

(Schnebele et al., 2015). Figure 21 illustrates the aging process of a typical asphalt pavement 

surface over time. During the first years of the service life, the pavement loses a vast amount of 

bitumen due to volatilization, absorption, oxidation, and photochemical reaction with solar 

radiation, causing the pavement to be less viscous, brittle, and vulnerable (Herold, 2014 and Pan 

et al., 2017 and Andreou, 2011) (Figure 21(b)). Figure 21(c) shows the moderately aged pavement 

in which the stone content is exposed. Figure 21(d) demonstrates a heavily aged pavement in which 
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the weathering variables intensify the deterioration process. Finally, structural deformations occur 

in the form of cracks, rutting, and potholes, as seen in Figure 21(e) (Pan et al., 2017).  

 

 

Figure 21. Aging process of asphalt pavement over time [Pan et al., 2017]. 

 

In terms of the remote sensing, the newly paved asphalt exhibits absorption features due to the 

presence of oily components. When the pavement surface deteriorates by either aging process or 

by factors like photochemical reaction or influence of heat, the oily components in the asphalt mix 

decrease which causes the reduction of absorption and increase of reflectance in all parts of the 

wavelength spectrum (Herold, 2004). Figure 22 shows the spectral characteristics of three asphalt 

pavement sections with different aging levels measured by Analytical Spectral Devices (ASD) 

(Herold, 2004). However, all three samples are free of any obvious structural damages or cracks. 

The pavement condition index (PCI) and the structural index (SI) are also shown with image  
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Figure 22. Line graph. Spectral variation of asphalt pavement by aging (Herold, 2004).  

 

 

Figure 23. Line graph. Spectral variation of asphalt pavement by structural damages 

(Herold, 2004).  
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examples of the pavements. Spectrum A reflects a newly paved road with strong absorption 

features due to the presence of oily components. The overall reflection is very low, with the 

minimum reflectance near 350 nm and a linear rise towards longer wavelengths. Spectrums B and 

C represent intermediate and old/ deteriorated asphalt pavement sections, respectively. The erosion 

and aging of the asphalt mix cause the road surface to be less viscous and more vulnerable to 

structural damages and cracks. Figure 23 also shows the spectral measurements of asphalt 

pavement sections with different severity levels of structural damage and cracks. The general 

surface reflectance spectra are similar to the spectra in Figure 22. However, cracks impact the 

brightness in all parts of the spectrum. Cracks and structural damages cause shadows and make 

reflectance differences of up to 7-8% between healthy pavement and severely cracked pavements. 

When cracking occurs, deeper layers with higher contents of the asphalt mix are exposed to the 

air. Increased hydrocarbon absorption features thus reduce the reflectance. This phenomenon 

proves one of the limitations in monitoring road conditions using hyperspectral remote sensing.                 

The objective of this study is to leverage the satellite images for infrastructure health monitoring 

based on the historical datasets from the satellite imagery. In this approach, the surface reflectance 

is extracted from the pavement sections of the Georgia state roads. Moreover, the international 

roughness index (IRI) measurements throughout Georgia state are provided to correlate the IRI 

values and the corresponding spectral characteristics of different pavement sections using 

historical datasets and statistical analysis methods. The goal is to use freely available satellite 

imagery to indicate the distress severity of different pavement sections and schedule maintenance 

on time without needing an on-site distress survey. 

In the following section, recent approaches used for the application of remote sensing in 

monitoring road conditions are presented. 
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4.2 Literature Review 

Road quality mapping with in-situ measurements is expensive and time-consuming. To overcome 

the issue, Karimzadeh and Matsuoka (2021) measured the in-situ international roughness index 

(IRI) using a Quarter Car (QC).  They then developed new equations for constructing a road quality 

proxy map (RQPM). Intermediate resolution Sentinel-2 images are utilized in this study. 

Discriminant analysis methods such as optimum index factor (OIF) and norm R provide a tool for 

generating proxy maps and mitigating hazards at the network level pavement management 

systems. Recently a study has investigated the impact of the COVID-19 pandemic on urban road 

traffic volume using video remote sensing (Macioszek and Kurek, 2021). The study obtains data 

from Traffic Control Center (TCC), analyses the road traffic volume before and during the 

restrictions, and attempts to predict the traffic patterns at specific stages of the pandemic. Several 

studies have employed multispectral and hyperspectral data to map the road network, but few 

attempts were made to map the road surface conditions (Andreou, 2011). Tosti et al. (2021) 

investigated integrating information from satellite remote sensing and ground-based non-

destructive testing (NDT) methodologies for transport infrastructure monitoring purposes. The 

research revealed that the stand-alone application of these techniques is constrained due to multiple 

factors such as data resolutions and land coverage limitations. Herold et al. (2004) investigated the 

optimal wavelengths for mapping urban materials using Airborne Visible/ Infrared Imaging 

Spectrometer (AVIRIS) data. The maximum likelihood classifier generates the map, separating 

roads of different materials, such as asphalt, concrete, and gravel. The map also differentiates the 

surface materials in terms of age and condition. However, the developed map is restricted by a 

spatial sensor resolution of 4.0 m. Detecting the damage to forest roads wearing course is another 

research completed using different methods of remote sensing in the Czech Republic (Hrůza et al., 
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2018). The study aims to verify the possibility and accuracy of damaged bituminous forest roads 

detected by various remote sensing methods: close-range photogrammetry, terrestrial laser 

scanning, mobile laser scanning, and airborne laser scanning. The results indicated that close-range 

photogrammetry and terrestrial laser scanning methods have the highest accuracy and are 

sufficient for monitoring the asphalt-wearing course of forest roads. Andreou et al. (2011) 

investigated the application of hyperspectral remote sensing for mapping asphalt road conditions. 

Filed hyperspectral data obtained from GER1500 radiometer utilized to provide spectral 

measurements for developing a spectral library for asphalt. Spectral features analysis indicated 

that pavement condition is affected by asphalt age, material quality, and road circulation. Based 

on the results, the following machine learning-based analysis methods are the most appropriate for 

detecting asphalt pavement conditions: Principal Component Analysis (PCA), thresholding of 

color transformation images, unsupervised classification, Iterative Self-organizing Data Analysis 

(IsoData), supervised classification Spectral Angle Mapper (SAM), and texture measurements 

using Grey-level Co-occurrence Matrix operator. A study was conducted to observe defective 

roads utilizing the multispectral imageries of a flying drone called Parrot Sequoia (Mukti & Taher, 

2021). Potholes in the images were then recognized using techniques such as band combination 

and supervised classification. The results showed that the low resolution of the imageries 

potentially limits the pothole detection objective.  

 

4.3 Remote Sensing Platforms 

Remote sensing is a technology in which the object/area of interest is either very close (1 cm) to 

or very far (more than 1 million m) from the sensor (Jensen, 2009) and can be implemented through 

various platforms, including moving vehicles, airplanes, Unmanned Aerial Vehicles (UAVs), and 
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satellites. These techniques offer non-destructive and temporally systematic evaluation methods 

compared to traditional procedures such as coring and field surveys. In the following, a brief 

description of common platforms is discussed.  

 

4.3.1 Airplane  

Aerial platforms provide higher spatial resolution images and much more tasking flexibility 

compared with other platforms. For instance, airplanes can carry various sensors and devices 

gathering imagery data from altitudes ranging from 300 to 13,000 m (Job, 2021) while other 

platforms cannot maneuver by changing their altitude. Most DOTs make extensive use of aerial 

photography in accordance with highway planning and mapping applications. Required data could 

be collected from suborbital platforms like airplanes and helicopters when the weather condition 

is appropriate (Jensen, 2009).  

 

4.3.2 Unmanned Aerial Vehicle (UAV) 

UAV is an aircraft with neither a human pilot nor a passenger, which has been widely used in 

transportation engineering in recent years. UAVs are very cost-effective in providing "bird’s eye 

view" images for a variety of smart transportation applications (Coifman et al., 2004). UAVs can 

provide high resolution and near real-time imagery, less expensive than air-borne and space-borne 

platforms (Job, 2021). However, ego-motion issue caused by either pilot or wind is considered the 

most significant technical challenge in automatic UAVs (Ke et al., 2018). Garilli et al. (2021) 

developed two supervised classification approaches (a semi-automatic classification plugin for 
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QGIS and a convolutional neural network) using UAV photogrammetry to detect stone pavement’s 

pattern.   

 

4.3.3 Vehicle 

Survey vehicles are another type of sensing platforms in which data are collected using laser 

scanners, photo/video or thermal cameras, and Ground Penetrating Radar (GPR). GPR, Ultrasonic 

Testing (UT), and Acoustic Emission (AE) are mostly used for subsurface defects detecting 

(Golrokh et al., 2021). A dash-cam can be mounted on a vehicle and pavement surface images can 

be obtained as vehicle moves along the road.  

 

4.3.4 Satellite  

The human eye cannot see the light beyond the visible spectrum. Satellite images have the potential 

to derive the physical and chemical properties of materials as they can detect wavelengths in a 

wide range of the spectrum. The advantage of these methods is collecting high resolution images 

without interrupting traffic flow (Schnebele et al., 2015). Despite the non-deniable advantages of 

satellite platforms for providing vast regional information in a single image, data collection and 

their application can be limited by atmospheric inferences and temporal and spatial resolutions 

(Job, 2021). Satellite images consist of bands and pixels in which each pixel has a number referred 

to as Digital Number (DN) or Brightness Value (BV). Figure 24 shows a remotely sensed image 

and the pixels corresponding brightness values ranging from 0 to 255. Every material has a specific 

spectral response that can be used for land use/ land cover classification. The brightness values in 

a remotely sensed image can provide useful information for assessing the present situation.  
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Figure 24. Pixels and their corresponding brightness values of a satellite image (Phiri & 

Morgenroth, 2017). 

 

4.4 Data Acquisition  

The satellite images used for this study should be the most cost-effective, suitable, and accessible 

dataset with a high spatial resolution to distinguish roads and their surroundings. There are 

numerous satellite platforms each providing a wide range of imagery datasets with various features 

for different monitoring applications. However, based on the preliminary analysis results, the 

remote sensing satellite sensors considered for this study include Sentinel-2 and PlanetScope as 

multispectral remote sensing platforms. 
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4.4.1 Sentinel-2 Satellite    

Sentinel-2 is the most recent Earth observation mission of the European Space Agency (ESA) 

utilized for monitoring land, vegetation, water, and coastal areas. Sentinel-2 includes Sentinel-2A 

and Sentinel-2B satellites launched in June 2015 and March 2017, respectively (Thanh & Kappas, 

2017). The twin polar-orbiting Sentinel-2 system includes 13 spectral bands in the visible near-

infrared (VNIR) and short-wave infrared (SWIR) spectral ranges with three different spatial 

resolutions of 10, 20, and 60 m. The temporal resolution (revisit time) is five days, making the 

Sentinel one of the highest frequency satellites (Traganos & Reinartz, 2018). In this study, 

Sentinel-2 Level-1C low cloud cover (atmospherically corrected) images are downloaded from the 

ESA Copernicus Open Access Hub, which provides freely available multispectral multitemporal 

imagery data from the globe. After logging in to the Open Hub platform, the date, sensor, and 

product level need to be determined. Then, by drawing the rectangular box over the study area, the 

engine will start searching for the results. The overlapping images between selected dates will 

display. Figure 25 displays the acquired results and the overlapping images for Atlanta 

metropolitan area from the Sentinel-2 satellite.       

 

Figure 25. Sentinel-2 Satellite data acquisition. 
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4.4.2 PlanetScope Imagery  

PlanetScope constellation provides high spatial resolution (3.0 m), highest frequency, and global 

coverage images (Wu et al., 2021). Planet also provides 50 cm spatial resolution images collected 

since June 2020, which are not freely available. The surface reflectance base maps are products of 

PlanetScope imagery with four spectral bands (i.e., blue, green, red, and near-infrared (NIR)). The 

Planet base maps are comprehensive, have high spatial resolution and frequency, and are 

atmospherically corrected (cloud-free) and analysis-ready mosaics for better reflection of the 

ground truth data and further spectral analysis. The imagery type is selected as surface reflectance 

base maps by defining the coverage area. Then, the date range is selected between quarterly, 

monthly, or weekly. Finally, the delivery type is selected between web streaming or download. 

Figure 26 shows the downloaded PlanetScope imagery product from the study area.    

 

 

Figure 26. PlanetScope imagery data acquisition. 
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4.5 Data Analysis  

The Sentinel Application Platform (SNAP) is utilized to locate the data points using the Lat/Long 

information and then extract the spectrum values of individual pixels from the downloaded 

imagery datasets. Various pavement sections were investigated by analyzing the reflectance values 

of their satellite images and corresponding international roughness index (IRI) measurements in 

different years. For example, Figure 27 illustrates the average spectrum values of three pavement 

sections located on I-85, I-285, and I-20 in Georgia from 2018 to 2020. Also, Table 17 shows the 

IRI values for the sections mentioned above provided by the GDOT. As seen in the figure, there 

is no significant difference between the reflectance values of different pavement sections over the 

years. For example, the spectral view of the I-20 and I-285 sections in 2019 and 2020 are almost 

identical. The IRI index typically presents the smoothness and ride quality of the roadway segment 

(Arhin & Noel, 2014). The higher IRI value indicates a rough pavement.     

Based on the data from Table 17, the IRI value of the section located on I-85 in 2020 is higher 

than the other two years. Thus, its surface reflectance value is supposed to be higher, while the 

spectrum view in Figure 27 does not reflect the idea.    

Although Sentinel-2 imagery benefits from higher radiometric resolution (Razzak et al., 2021), the 

extracted data does not provide a reasonable accuracy due to the medium spatial resolution of 

images. Thus, the mixed pixel issue occurs because extracting the pure reflection value of pixels 

is not feasible. In other words, the pixels of the study area (road sections) are mixed with the 

adjacent area (usually road shoulders). Therefore, there is often more than one class type within a 

pixel, making the extraction of reflectance values complicated (Dey et al., 2009 and Yang et al., 

2021). Figure 28 shows the mixed pixel issue because of the low resolution of the Sentinel-2 
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images. As seen in the figure, the pins should represent only the road surface while most present 

the road shoulder's reflectance values. That is why Sentinel-2 imagery fails to investigate the 

relationship between degradation/ oxidation of asphalt pavements and change in brightness values. 

      

 

Figure 27. Spectral characteristics of Georgia pavement roads in Sentinel-2 satellite 

images.   
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Table 17. Measured IRI values for different pavement sections. 

 

 

 

 Figure 28. Mixed pixel issue observed in Sentinel-2 images. 

 

As a result, the Planet’s atmospherically corrected and ready to use base-maps are considered for 

further analysis. As mentioned, the Planet's surface reflectance base maps have four spectral bands. 

Thus, there are four band reflection values for each pixel of the surface images, as shown in Figure 

29. The 600 pins from the asphalt pavement sections of I-75 are found using their Lat/ Long 

information, and the reflectance values of the four bands are extracted.  

 

SurveyDate IRI
09/05/18 88.8
06/16/19 97.1
05/30/20 99.5

07/24/19 245.9
05/04/20 203.3

11/29/19 64.3
05/08/20 53.5

I-285

I-85 

I-20
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Figure 29. Spectrum value extraction using the SNAP software. 

 

4.6 Discussion  

Remote sensing technology offers non-destructive and non-intrusive approaches to replacing 

existing traditional pavement survey methods and serves the needs of transportation engineers. In 

this study, Sentinel-2 and PlanetScope satellite images were utilized to investigate the relationship 

between the pavement surface color change (due to the oxidation of the asphalt material) and the 

need for maintenance of the Georgia roads on time. The IRI values were also considered to 

correlate with the reflectance values obtained from the satellite images. The results indicate that 

the differences between the spectrum view of the pavement sections over the years are negligible. 

Also, there is no apparent relationship between the IRI indices and the corresponding reflectance 

values. The Sentinel-2 satellite images have a medium spatial resolution that cannot capture the 

pavement surface changes due to the distresses over time. PlanetScope images, on the other hand, 

have lower radiometric resolution with only four bands in the visible and near-infrared, which are 

not sufficient for observing the spectral characteristics of the pavement surface changes. Moreover, 
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the annual average rainfall in Georgia is very high, and floods are common in the state. Thus, rain 

is another factor challenging the idea of finding the relationship between the color change of 

asphalt pavements and their deterioration. After the rain, the pavement color remains dark until 

the surface dries up completely. Additionally, obtaining cloud-free satellite images on a specific 

date/time is demanding since Sentinel-2 images are not atmospherically corrected. Thus, the 

satellites’ revisit time and the usual cloudy sky of Georgia might occur simultaneously, resulting 

in highly cloud-covered images from the area, making the transport infrastructure observation 

challenging.   
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CHAPTER 5 

5. A DEEP LEARNING APPROACH FOR PAVEMENT CRACK IDENTIFICATION 

PURPOSES  

 

5.1 Problem Statement 

Cracking is usual damage in asphalt pavements and an essential factor to be considered in the 

accurate assessment and maintenance phase. Recent advancements and technologies in image 

processing have benefited highway specialists in diagnosing pavement distresses and acting on 

time. As a result, deep learning methodologies are being applied extensively to pavement crack 

detection and segmentation (Feng et al., 2020). As discussed in the previous chapter, due to the 

continuous nature of data acquisition in remote sensing approaches, satellite imageries have the 

potential to be utilized for transportation assessment purposes. However, the remote sensing 

approach fails to provide an indication for oxidation, degradation, and distress of the asphalt 

pavement sections in Georgia due to the low spatial resolution of the freely accessible satellite 

images. Therefore, we decided to utilize our image datasets taken from the Georgia pavement 

surfaces using a moving vehicle. The dataset is then processed to be fed into a deep learning-based 

model to detect cracks and distresses.  

The following section presents a literature review to discuss the state-of-the-art image processing 

techniques applied in pavement crack detection. 
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5.2 Machine Learning Methodologies in Pavement Assessment  

In the last few years, numerous studies have employed deep learning methodologies and shown 

the usefulness and cost-effectiveness of these techniques in infrastructure monitoring. However, 

there are pros and cons with every single model. Some of the developed architectures in pavement 

crack detection using image processing algorithms are discussed below.    

An Automated Pavement Imaging Program (APIP) was conducted by Mustaffar et al. (2008) to 

evaluate pavement distress conditions. The dataset consists of images taken by a digital camera 

with its axis perpendicular to the road surface. The automated program classifies longitudinal, 

transverse, and alligator cracks and finally estimates pavement distress severity with an accuracy 

of about 90 percent. CrackNet is a deep learning-based pavement crack detection software with 

high precision. Zhang et al. (2018) developed an improved software architecture called CrackNet 

II for enhanced learning capability and faster performance. The proposed algorithm has a deeper 

architecture with more hidden layers and fewer parameters resulting in five times faster 

performance than the original assessment model. Fan et al. (2018) proposed a supervised 

methodology based on deep learning, which can detect cracks in the raw images without the need 

for preprocessing. In this method, small patches from crack images are extracted as inputs for 

generating a dataset and training the crack detection model. Inkoom et al. (2019) investigated the 

application of recursive partitioning and artificial neural networks in predicting the pavements 

crack rating. In this study, explanatory variables such as the average daily traffic, truck factor, 

asphalt thickness, roadway functional classification, and pavement condition time series are 

utilized in the model. Based on the results, the model can be adopted by DOTs to predict highway 

cracking conditions' performance effectively Hoang and Nguyen (2019) developed a novel and 

automated model for asphalt pavement crack classification based on machine learning and image 
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processing. In this method, different feature selection scenarios are utilized to create datasets from 

digital images. The datasets are then utilized for training and verifying the machine learning 

algorithms, including the random forest (RF), the artificial neural network (ANN), and the support 

vector machine (SVM). The proposed method can assist transportation agencies with a high 

classification accuracy rate. Tsai et al. (2021) developed an accurate raveling detection and 

classification algorithm using 3D pavement data to overcome the inefficiencies of the traditional 

raveling survey methods in the state DOTs. In this study, 3D pavement data was collected on state 

roads of Georgia for training and testing. Then, three supervised machine learning techniques, 

including AdaBoost, support vector machine (SVM), and random forests, were used for the 

detection and classification of raveling in the dataset. Kyriakou et al. (2021) also developed a data-

driven framework using artificial neural networks, supervised machine learning methods, and 

smartphone technology for the spatial condition- assessment mapping of surface anomalies of 

pavements. The study offers easy, safe, low-cost, and continuous detection of road anomalies for 

highway specialists. Traditional crack detection models have difficulties such as low efficiency 

and missing detection. Hu et al. (2021) used YOLOv5 series detection models to overcome these 

problems and automatically detect cracks with high speed and accuracy. YOLO (You Only Look 

Once) is one of the fastest real-time object detection algorithms, which has been modified to the 

latest version named YOLOR; You Only Look One Representation. YOLO is called an object 

detector as the algorithm finds the location (the boundary box of objects) as well as the class of 

objects. The algorithm, based on the latest generation of Deep Neural Network (DNN) 

architecture, takes only one single forward propagation through a neural network to detect objects, 

thus known for its speed and high accuracy (Menghini et al., 2021). This model architecture utilizes 

regression to provide the class probabilities of the detected images (Redmon et al. 2016) and 
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employs both implicit and explicit knowledge simultaneously to the model training so the model 

can learn various tasks through this general representation (Zhang et al. 2021 and Redmon et al. 

2016). YOLOR divides the individual input images into an even number of grids. If the center of 

a detected object falls into a grid cell, that grid cell must detect the object. That is, YOLOR predicts 

bounding boxes, the confidence of those bounding boxes, and their class probabilities at the same 

time (Redmon et al., 2016).  It can be concluded that YOLOR has advantages over traditional 

object detection methods as it is extremely fast so that the frames of a streaming video can be 

processed in real-time. Second, YOLOR takes the entire image in the training and testing steps. 

Thus, it has fewer background errors compared to Fast R-CNN. Third, YOLOR learns how to 

generalize the representations of objects. Thus, the model performs well when applied to new 

domain inputs (Redmon et al., 2016). The widespread use of smartphones for pavement crack 

detection provides an easier and less expensive method for collecting data. However, their lower 

quality entails in failure of traditional models for accurate crack detection. Huyan et al. (2020) 

developed a state-of-the-art pixel-wise crack detection architecture called CrackU-net, which 

utilizes convolution, pooling, transpose convolution, and concentration operations and yields high 

accuracy and precision.  

This study utilizes a semantic segmentation model called SegNet for pavement crack identification 

purposes. In the following section, the architecture of the SegNet is discussed in detail. 

 

5.3 Pavement Crack Identification Network Using SegNet Architecture   

SegNet is a pixel-wise semantic segmentation algorithm that consists of an encoder network with 

13 layers, a corresponding 13-layer decoder network followed by a final pixel-wise classification 

layer. The decoder network is responsible for mapping the low-resolution encoder feature maps to 
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full input resolution feature maps. The encoder extracts low-resolution feature maps, and then the 

decoder maps them to full-input-resolution features using max-pooling indices. The output of the 

final decoder is then passed to a trainable multi-class SoftMax classifier to produce class 

probabilities for individual pixels (Badrinarayanan et al., 2017). SegNet has no fully connected 

layers. That is the reason why it can accept images of arbitrary size as input (Chen et al., 2020). 

Also, the algorithm is proved to be efficient in terms of memory and computational time by using 

an efficient weight update technique called stochastic gradient descent (SGD) (Badrinarayanan et 

al., 2017). Gradient Descent is a standard optimization algorithm based on minimizing the sum of 

squared errors. However, this algorithm has a high chance of getting into the local minima trap. 

To avoid this problem, Stochastic Gradient Descent (SGD) introduces the randomness factor in 

estimating every observation, which considerably increases the chance of finding the global 

minimum (i.e., the most optimum solutions). 

The CamVid dataset has been utilized for training the SegNet model. The Cambridge-driving 

Labeled Video Database (CamVid) is a collection of videos with object class semantic labels. The 

dataset includes 32 semantic classes with ground truth labels for each pixel (Brostow et al., 2009). 

Our own collected dataset (images with pavement cracks) is used in in this research study to fine-

tune the model. In addition, we needed to customize the model so that the number of classes to be 

predicted matches the number of classes in the pavement crack dataset. Finally, the network is 

being trained to update the weights of the model.  

The objects in the original training data (CamVid) and the pavement cracks in the new dataset are 

entirely different from each other and cannot share common characteristics. As a result, we are 

leveraging the transfer learning approach to be able to fit a well-performing model into this 

domain.   
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Transfer Learning is the methodology in which high-performing trained models are reused to 

perform on the data from another domain (Weiss et al., 2016). Since developing a powerful deep 

learning model from scratch is computationally expensive and time-consuming, transfer learning 

is considered an acceptable alternative approach widely used in training CNN models. Therefore, 

pre-trained models with fine-tuned weights and parameters are used as feature extractors (Chen et 

al., 2020). Depending on the size of the new dataset and its similarity to the original dataset, the 

approach for using transfer learning will be different.  

In most cases, transfer learning is not easily applicable, and there is a need for fine tuning. Fine 

tuning is the idea of adjusting the parameters and the weights associated with each node in the 

deep learning layers to customize the initial model based on the new dataset (Käding et al., 2016). 

One of the primary elements to be fine-tuned in each specific application is finding the optimum 

learning rate. Learning rate is a value that controls how many updates should be applied to adjust 

the model weights in response to the errors in each iteration of the learning process (Gotmare et 

al., 2018). One of the common issues in model training is being too sensitive to all variations in 

the features of training data which leads to overfitting. Overfitting happens when the model 

becomes too specific and fails to perform well on the unseen data. Learning rate can overcome this 

shortcoming by providing a threshold for weight adjustments with respect to the loss functions (Li 

H. et al., 2019). The learning rates considered in our model are set to 0.01 and 0.005.  

Our model is being trained and validated using a public dataset in this domain (Khan Ha, 2020). 

The dataset consists of more than 3,000 images with different pavement cracks and their 

corresponding annotations. For testing purposes, we used pavement surface images collected 

through a drive-by sensing approach from the Georgia interstate roads, which were fully unseen 

to the model, to predict the cracks within each individual image.  
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Drive-by sensing is a data collection paradigm in which vehicle-borne sensors keep recording data 

from the target phenomena. This sensing approach is cost-efficient and a great choice when target 

properties, in our case, asphalt quality, are dynamic (Anjomshoaa et al., 2018). For example, public 

transportation vehicles provide an excellent infrastructure to collect data continuously as they are 

wandering around cities (Lee & Gerla, 2010). To be more specific, since pavements are the primary 

land covers for vehicles movement, drive-by sensing is a perfect match for continuous pavement 

quality monitoring.  

In this study, we leveraged drive-by sensing using a GPR scan vehicle at the University of Georgia. 

The following section covers the details of the data collection and preparation.  

 

5.4 Dataset Collection and Preparation  

In this study, a GPR scan vehicle is used to take images from the state of Georgia’s pavement 

roads, as shown in Figure 30. On-dash mounted camera is utilized to capture images as the vehicle 

moves on the road. As shown in Figure 31, the front view images with complex backgrounds are 

recorded to evaluate the surface conditions of the road sections. The complex background includes 

lane lines, small trash, and oil/ water stains. It should be noted that only the rightmost lane is 

covered in each surface image. When taking images, the latitude and longitude information of the 

road sections are also recorded using a Global Positioning System (GPS).  
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Figure 30. UGA GPR van.  

 

 

Figure 31. UGA road survey control units. 

 

The critical state routes of District 7 in the Atlanta Metropolitan area from which the images are 

taken are I-20, I-75, I-85, I-285, I-675, GA-3, GA-5, and GA-400.  
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The acquired images from the Georgia roads are captured by a camera with less than 2-megapixel 

resolution (image dimensions: 1548 x 1155). To be able to feed the model with the dataset, the 

images are cropped to 448 by 448 pixels. Cracks of all images are manually labeled using an open-

source and pixel-wise annotating platform called Label Studio. Thus, there are annotated images 

corresponding to the individual raw images with the same name in the dataset. Figure 32 shows a 

sample image taken from our vehicle-borne data collection.     

 

 

Figure 32. Sample image taken from the Georgia roads.   

 

5.5 Experimental Environment  

In this study, we used PyTorch as the machine learning framework to implement our customized 

deep learning model. PyTorch is a framework primarily developed by Meta AI that enables 

arithmetic operations with powerful acceleration through graphics processing units (GPUs). On 
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the other hand, for the hardware environment, we utilized Google Colaboratory (Colab) notebooks, 

an interactive environment on the Google cloud platform that leverages cloud-based GPUs to train 

and evaluate deep learning models. All the model training, fine-tunings, evaluation, and testing in 

this chapter are being performed using PyTorch on Google Colab. 

 

5.6 Performance Evaluation  

After training the model, the new weights are recorded. These weights are further used to test the 

unseen images to predict the cracks. In the training phase, we applied different numbers of epochs 

to find the optimum parameter weights. In neural network algorithms, an epoch represents a 

complete pass through the training data. The model parameters and weights associated with each 

layer are updated through each epoch. The number of epochs is one of the essential factors that 

leads to appropriately trained models. The number of epochs considered in this model are 10, 50, 

and 100. Also, the cross-entropy loss is the metric to measure how well the customized model 

performs the classification task at the end of each epoch. This metric evaluates the performance of 

classification models that have the output in terms of probability.  

In this study, we consider precision, recall, and IoU (intersection over union) to evaluate the 

performance of the proposed crack identification network. Precision represents the ratio of the 

number of positive samples that are correctly classified to the total number of samples that are 

classified as positive (might be either positive, i.e., true positive, or negative, i.e., false positive) 

(Kane, 1996). The recall is a metric that identifies the proportion of actual positive values correctly. 

In other words, it is the fraction of true positives over the summation of true positives and false 

negatives (Buckland & Gey, 1994). Intersection over Union (IOU) is an evaluation metric to 

describe the extent of overlap between two specific sections. Intersection over Union measures the 
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accuracy of an object detection model on a specific dataset. A high IOU shows a great overlapping 

region in the images of the dataset (Rezatofighi et al., 2019). The F1-score values are also 

calculated. F1-score is a commonly used metric in classification models (Lipton et al., 2014). Since 

the F1-score is an average of precision and recall, it is sometimes convenient to have only one 

performance metric rather than multiple. Moreover, the average loss values are provided at the end 

of each epoch to see how the model is training.   

 

5.7 Results  

The performance evaluation metrics are reported across the test images in the form of a tensor after 

the model evaluation is completed. Table 18 shows the metrics for each learning rate and different 

number of epochs. Since there are two classes/objects in our case, each tensor represents the 

corresponding value for each class. For example, for learning rate of 0.01 with 10 epochs, 

precision: tensor ([0.99, 0.33]) indicates that for each pixel predicted to be part of the pavement 

surface, how many pixels are part of the pavement surface which equals 99.0%. Similarly, the 

precision for pavement cracks equals 33.0%. The same scenario applies to recall and IoU. The 

recall value for pavement surface is 97.0%, while the same metric for crack equals 87.0%. Finally, 

the IoU for pavement surface is equal to 97.0%, whereas the same metric for crack equals 48.0%.  

Figures 33-35 illustrate the test images for learning rate of 0.01 after 10, 50, and 100 epochs. As 

seen in the figures, our model can predict the cracks after ten epochs. However, there are some 

spots which classified as cracks by mistake. Also, there are cracks that the model has not identified. 

As the number of epochs increases, the model performs better. Figure 34 shows the same test 

images after the model evaluation and 50 epochs of training. As seen in the figure, crack detection 

performs much better in comparison to the lower number of epochs. The results in Table 18 
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indicate that the model performs better when learning rate is 0.01 than 0.005. Considering the fact 

that detecting all of the cracks in test images are crucial, the recall is the most important metric. 

The recall measurement has the maximum value for either pavement surface or cracks when 

learning rate is 0.01 and number of epochs is equal to 100. Also, the F1-score is maximum in either 

pavement surface or crack detection task when learning rate is equal to 0.01. Thus, it can be 

concluded that the optimum number of epochs for our model equals 100 with learning rate of 0.01.  

 

 

Figure 33. Test images after 10 epochs.   
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Figure 34. Test images after 50 epochs.  

 

 

Figure 35. Test images after 100 epochs.   
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Table 18. Performance evaluation metrics.  

 

To estimate the dimensions of the detected cracks, the percent of the pavement cracks (white 

pixels) is calculated by counting the white pixels in the predicted image and dividing by the total 

number of pixels (448 * 448) in an image. Table 19 shows the number of pixels with cracks and 

the percent of pavement cracks over the entire image for test images shown in Figures 33-35. 

 

Table 19. Pixel-level information of pavement cracks. 

 

 

 

  

No. 
Epochs 

Precision Recall F1-Score 
Intersection over 

Union (IoU) 
Average Loss 

Learning Rate: 0.01 
10 [0.99, 0.33] [0.97, 0.89] [0.98, 0.48] [0.97, 0.31] 0.090 
50 [0.99, 0.52] [0.99, 0.89] [0.99, 0.66] [0.99, 0.49] 0.081 

100 [0.99, 0.59] [0.99, 0.91] [0.99, 0.72] [0.99, 0.57] 0.080 
Learning Rate: 0.005 

10 [0.99, 0.46] [0.99, 0.59] [0.99, 0.52] [0.98, 0.32] 0.091 
50 [0.99, 0.42] [0.98, 0.94] [0.98, 0.58] [0.98, 0.41] 0.082 

100 [0.99, 0.58] [0.99, 0.89] [0.99, 0.70] [0.99, 0.54] 0.080 

No. 
Epochs 

No. 
Pixels 
with 

Crack 

Percent 
of 

Pavement 
Cracks 

No. 
Pixels 
with 

Crack 

Percent 
of 

Pavement 
Cracks 

No. 
Pixels 
with 

Crack 

Percent 
of 

Pavement 
Cracks 

No. 
Pixels 
with 

Crack 

Percent 
of 

Pavement 
Cracks 

Image (1) Image (2) Image (3) Image (4) 
Learning Rate: 0.01 Learning Rate: 0.01 Learning Rate: 0.01 Learning Rate: 0.01 

10 1386900 6.91% 555990 2.77% 979500 4.88% 487750 2.43% 
50 1268500 6.32% 909200 4.53% 842960 4.20% 367350 1.83% 
100 1162100 5.79% 881200 4.39% 776800 3.87% 313150 1.56% 
No. 

Epochs 
Learning Rate: 0.005 Learning Rate: 0.005 Learning Rate: 0.005 Learning Rate: 0.005 

10 1922800 9.58% 909250 4.53% 1075780 5.36% 843970 4.20% 
50 1655900 8.25% 1117980 5.57% 961400 4.79% 453700 2.26% 
100 1274500 6.35% 927260 4.62% 838950 4.18% 377450 1.88% 
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CHAPTER 6 

6. CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 CONCLUSIONS 

In this study, the state-of-the-art machine learning and remote sensing techniques are utilized to 

monitor and assess the pavement network in the state of Georgia.  

First, ESAL factors were updated using the most recent high resolution WIM data. Then, data from 

WIM stations throughout the state were utilized to develop Georgia-specific TTC groups. 

Unsupervised learning algorithms were leveraged to analyze high-dimensional traffic 

characteristic data collected from the existing WIM stations. The performance evaluation results 

showed that the global default traffic inputs overpredict the pavement distresses compared to the 

customized TTC groups developed from the state-specific traffic data.  

Also, traffic data from recent years were obtained using active CCS and WIM sites throughout the 

state to capture the change in traffic characteristics over time and to update the lane distribution 

factors in the Georgia pavement design manual. Based on the results, The truck percentage was 

proved to be insignificant in determining the LDF values for. Also, the study proved that COVID-

19 has not changed Georgia’s LDF pattern significantly. The remote sensing technology was 

leveraged for infrastructure health monitoring purposes The objective was to correlate the asphalt 

pavement color change and the best time for performing maintenance without needing an on-site 

survey which is time-consuming and laborious. The study proved that based on the current 
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technology, remote sensing cannot replace field inspection. However, the spectral signal is an 

additional level of information that can be considered in other pavement assessment methods. Due 

to the low spatial and radiometric resolution of the satellite remote sensing imageries, we attempted 

to utilize vehicle-borne imagery datasets that can be obtained when GPR scanning the Georgia 

roads. A deep learning-based pixel-wise model is then utilized to detect the pavement cracks in 

the dataset. The transfer learning and fine-tuning methods were applied to train the model. Based 

on the results, the model can detect pavement cracks with a high F1-score of 0.99 and 0.72 for 

pavement surface and cracks, respectively. Therefore, drive-by sensing is a cost-effective and 

continuous data collection approach for transport infrastructure monitoring since high resolution 

datasets can be captured easily and freely by moving vehicles throughout the state.     

 

6.2 FUTURE WORK AND RECOMMENDATIONS 

Based on the study, it is highly recommended that separate LDF tables are adopted for pavement 

design, considering the significant roles that the area and facility types play in determining LDF. 

Also, it is recommended to continuously monitor truck traffic volume for future consideration. 

A Hyperspectral Spectroradiometer called superger is being utilized to scan asphalt pavements for 

capturing the type and aging condition of pavements in a yearly approach. This method can help 

validate the reflectance values of freely available satellite images with the spectral values obtained 

from the hyperspectral superger device.   
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