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ABSTRACT 

 Listeria monocytogenes is a psychrotrophic pathogen that causes several foodborne 

outbreaks every year in the United States. In this study, a predictive model to study the growth of 

L. monocytogenes in egg yolk was developed and validated. The growth was studied and modeled 

at temperatures ranging from 0 to 45ºC. Baranyi model and Ratkowsky square root model were 

used to fit the growth data as primary and secondary models, respectively.  Tertiary model was 

generated and validated using three dynamic temperature profiles of low (0-10ºC), ambient (10-

25ºC) and high (25-40ºC).The primary and secondary models both provided coefficient of 

determination values of R2=0.99. The validation results depict that at prior physiological state of 

bacteria (ℎ𝑜) value of 0.01, more than 80% of the prediction errors lie within the Acceptable 

Prediction Zone (APZ) of 0.5>Prediction Error>-1.0.  These predictions can help estimate the L. 

monocytogenes populations due to possible temperature abuse in egg yolk. 
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CHAPTER 1 

INTRODUCTION 

 Foodborne illness is a major public health challenge, where 31 known pathogens cause an 

estimated 9.4 million cases of foodborne illness annually in the United States (US), resulting in 

approximately 55,961 hospitalizations and 1,351 deaths. The pathogens reported amongst leading 

cause of death include Listeria monocytogenes and Salmonella spp., where L. monocytogenes was 

linked to 19% of the total deaths (CDC, 2011). It has a reported hospitalization rate of 94%. 

Incubation period for this pathogen typically range from 24 h to four weeks for different forms of 

listeriosis (USFDA, 2020). 

Listeria monocytogenes is a ubiquitous organism found in soil, water, animals, and vegetation. It 

causes listeriosis and the symptoms include headache, vomiting and joint pain. It can cause deadly 

fetal-placental and central nervous system infections in pregnant women and 

immunocompromised populations (USFDA, 2020). A majority of the listeriosis cases are 

foodborne (CDC, 2021). L. monocytogenes implications in foodborne illnesses occurs worldwide 

but is most common in industrialized countries (Bille et al., 2003). The primary factors that lead 

to categorization of L. monocytogenes as major foodborne pathogen in industrialized countries 

include commercialization of food production resulting in large distribution of potentially 

contaminated foods, prevalence of refrigerated foods which allows L. monocytogenes growth and 

spike in patients undergoing immunosuppressive therapies along with extended life expectancy of 

people suffering from immunosuppressive disorders. All L. monocytogenes strains are serotyped 
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based on the variation in somatic (O) and flagellar antigens (H) (Seeliger, 1979). Serotype 1/2a is 

most isolated from food, but 4b is the one associated with a majority of human epidemics (Gilot 

et al., 1996).  

Eggs are a highly nutritious food with high amount of protein content. It is widely consumed in 

the form of scrambled, fried, hard-boiled, pickled eggs and is used as an ingredient in many 

processed food products. Liquid eggs are out of shell contents of eggs that are sold separately as 

liquid whole egg, egg yolk and egg white, amongst other products. The United States Department 

of Agriculture (USDA) recommends pasteurization of eggs at minimum temperature of 61.1ºC for 

3.5 min for plain egg yolk (USDA, 1980). However, post pasteurization contamination during 

storage or transportation can make the product microbiologically unsafe for consumption since L. 

monocytogenes can survive in refrigeration temperatures, where liquid eggs are stored. Thus, it is 

needed to systematically evaluate food safety hazards in the food supply chain and implement 

strategies to reduce and/ or eliminate the hazards. Predictive microbiology serves as a tool to help 

mitigate food safety risks as it can help risk assessors and managers to make informed decisions 

about handling of food products by understanding the potential behavior of a pathogen in food 

medium via mathematical models in various extrinsic and intrinsic factors. Pathogen Modeling 

Program (PMP) by USDA is one such tool that provides information on estimated growth and 

survival rates of various pathogens and spoilage organisms in a variety of environmental factors 

(USDA, 2016). Predictive models can be applied throughout the food chain, from raw material to 

final product. These can also be applied to risk analysis studies where dynamics of microbial 

population throughout the food chain are studied. A scientific validation for that particular food 

product and pathogen is required for safe application of predictive models (USDA, 2016).  
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Gumudavelli et al (2007) developed a dynamic predictive model to study the growth of Salmonella 

Enteritidis in egg yolk. Similarly, a predictive model to study the growth of Salmonella spp. in 

liquid whole egg has been developed (Singh et al., 2011). To develop a successful predictive 

growth model, the growth of a pathogen/ spoilage microorganism is studied in a controlled 

environment to generate data for mathematical modeling. Primary modeling is used to model the 

effect of an environmental factor on the growth of a microorganism of interest and secondary 

modeling to assess the relationship of parameters from primary model with the environmental 

factor. Model validation is performed as a follow-up, where predictions are compared with 

observations. The overall objective of this study is to develop a dynamic predictive model for the 

growth of L. monocytogenes in egg yolk with following sub-objectives: 

1. To study the growth of L. monocytogenes at static temperature profiles of 0 to 45ºC and 

develop a dynamic predictive model for the growth of L. monocytogenes in egg yolk. 

2. To validate the developed growth model in egg yolk and its comparison with salted and 

sugared egg yolk. 
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CHAPTER 2 

LITERATURE REVIEW 

General Overview of Listeria monocytogenes 

Listeria monocytogenes is a rod-shaped, Gram-positive bacterium that causes listeriosis. It can 

grow at temperatures ranging from 1 to 45ºC with an optimum growth temperature ranging 

between 30 to 37ºC (Muriana & Kushwaha, 2010). It can survive in a pH range of 4-9.5 and can 

withstand water activity as low as 0.92 (Carpentier et al., 2011). L. monocytogenes has a poor 

ability to endure acidic conditions (Gray & Killinger, 1966), and no growth has been observed 

below pH 4 (Farber & Peterkin, 1991). 

Listeria monocytogenes is a ubiquitous organism found in animals, birds, insects, soil, and 

vegetation (Dieterich et al., 2006). Every year, this bacterium infects around 1600 people and 

causes approximately 260 deaths, and most of these illnesses are foodborne (CDC, 2021). Foods 

that have been identified as a source of L. monocytogenes contamination include dairy products, 

soft cheeses, deli meat, fresh fruits, and vegetables, and ready to eat (RTE) products, amongst 

many others. Recent outbreaks of L. monocytogenes, as documented by the Centers for Disease 

Control and Prevention (CDC), include infections due to dairy products and fresh produce, 

including queso fresco in 2021 and enoki mushrooms in 2020 (CDC, 2021). 

Listeria monocytogenes is a major foodborne pathogen that, although causing a lesser number of 

infections per year, has a mortality rate as high as 21% (Mead et al., 1999) and usually results in 

hospitalizations with a hospitalization rate as high as 94% ((USFDA, 2020).The symptoms of 

infections in healthy people are usually mild, including headache, vomiting, and joint pain, which 
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can occasionally get severe in immunocompromised people leading to encephalitis and meningitis. 

In pregnant women, symptoms are usually flu-like, including fever, fatigue, and muscle pain. 

However, apart from miscarriages and premature delivery, it can cause severe complications in the 

offspring, including stillbirths or life-threatening infections (US-FDA, 2020). 

The potential of L. monocytogenes to survive in harsh conditions such as low pH, refrigeration 

temperatures, and high osmotic pressure, has made it a pathogen of concern in commercial food 

processing and preservation, as these are the commonly employed barriers to prevent the growth 

and transmission of foodborne pathogens (Melo et al., 2014). 

All L. monocytogenes strains are serotyped based on the variation in somatic (O) and flagellar 

antigens (H) (Seeliger, 1979). Serotype 1/2a is most isolated from food, but 4b is the one associated 

with majority of human epidemics (Gilot et al., 1996). Listeria innocua is a microorganism that 

could be used as an indicator of L. monocytogenes  (Greenwood et al., 1991) and as a surrogate to 

study the growth and transmission of the pathogen (Milly et al., 2008). 

Listeria monocytogenes in foods 

The majority of the listeriosis cases in humans are caused by RTE foods which are contaminated 

with high levels of L. monocytogenes at the time of consumption. According to a CDC report, the 

most recent outbreaks of L. monocytogenes in foods are in packaged salads, fully cooked chicken, 

queso fresco cheese and deli meats, all of which are RTE food products (CDC, 2022). The USDA 

and FDA has enforced a zero-tolerance policy for L. monocytogenes in RTE foods (Shank et al., 

1996) as the organism, once contaminated can grow even at refrigeration temperatures in foods 

during storage.  

The pathogen has been found to be able to survive on raw shell eggs with a potential to migrate to 

inner contents once broken. It can also survive shell egg washing and has been isolated from egg 



 

15 

wash water (Laird et al., 1990, Jones et al., 2006). L. monocytogenes can resist sunny side up frying 

and scrambling (Brackett and Beuchat, 1992). A prevalence rate of 15.5% of L. 

monocytogenes has been reported in laying hen flocks in France (Chemaly et al., 2008). L. 

monocytogenes can also proliferate during egg tempering steps when the temperatures are above 

7.2oC.  

Listeria monocytogenes in liquid eggs 

Also known as breaker eggs, these are the out-of-shell contents of eggs that are sold separately and 

are convenient for consumers. Liquid egg products available in the market include plain, salted, 

and sugared whole eggs and yolks, amongst many others. Plain egg albumen or egg whites are 

also commonly available commodities, that can be used for convenience in bakeries and homes. 

Egg yolk is a good emulsifier and is used in the production of mayonnaise, and salad dressings, 

amongst other food products. Other uses include making liqueurs like eggnog. 

The pasteurization guidelines laid by the USDA include pasteurization at 60ºC for 3.5 min for 

plain whole egg and 61.1ºC for 3.5 min for plain egg yolk (USDA, 1980). L. monocytogenes has 

been found to be as high as eight times more heat resistant than Salmonella in eggs under identical 

conditions (Schuman et al., 1997). A study by Foegeding et al.,1990 indicated that pasteurization 

conditions suitable for eliminating Salmonella in liquid eggs might not be enough for similar 

reductions in L. monocytogenes populations, making it a pathogen of concern in further processing 

and handling stages. Furthermore, being a psychrotrophic organism, L. monocytogenes can survive 

and grow at refrigeration temperatures, at which liquid eggs are stored (Tasara and Stephan; 2006). 

L. monocytogenes has been isolated from raw liquid whole egg (Leasor et al., 1989) and has been 
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detected in 8.5% of the samples in five egg-breaking plants in France over a period of one year 

(Rivoal et al., 2013). 

Albumen has several defenses against the microbial activity, with the high viscosity of the albumen 

obstructing bacterial movement from albumen to yolk (Board and Tranter, 1991). Also, lysozyme 

acts against gram-positive bacteria by lysing the cell wall. Lysozyme has been found to be effective 

in impeding L. monocytogenes growth (Wang and Shelef, 1991) and the  antilisterial activity is  

supplemented by egg white proteins conalbumin and ovomucoid and alkaline pH. Other albumen 

proteins, including avidin, ovoinhibitor, and ovomacroglobulin, also have antimicrobial 

capabilities. All these defenses help egg albumen form barriers against bacterial activity. However, 

egg yolk is a good nutrient medium with high availability of iron for the growth of bacteria once 

it reaches egg yolk through the vitelline membrane during storage. 

Economic Impact of Foodborne Illness 

The estimated cost of foodborne illness has been found to be between $888 to $2591 per person in 

different states in the US. The national cost of foodborne illness is estimated between 55 and 93 

billion US dollars (Scharff, 2015). A single foodborne outbreak cost a fast-food restaurant between 

3968 to 1.9 million dollars and the cost goes higher for casual-dining and fine-dining restaurants. 

L. monocytogenes outbreaks are reported to be the costliest (Bartsch et al., 2018).  

Predictive microbiology can provide estimates on the populations of a pathogen at different points 

in the food supply chain. This could help food processors determine the course of action in case 

of contamination about whether to destroy the batches contaminated or if it is still possible to 

reduce the pathogen levels. Predictive microbiology also aids in risk analysis of a given pathogen 

in a food to provide clear picture of  foodborne risks associated with the food (Walls and Scott, 

1997). 
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Predictive Microbiology and its Application in Food Safety 

Predictive microbiology refers to the use of mathematical, statistical, and microbiological 

fundamentals to predict the behavior of microorganisms in various environmental conditions (Ross 

et al., 2000). For predictive microbiology, microbial behavior is generally assessed in controlled 

environmental parameters such as temperature, pH, water activity (aw), sodium chloride 

concentration, antimicrobials, followed by results that are condensed in the form of mathematical 

equations. These equations help predict microbial behavior in unknown conditions by interpolation 

(Baranyi et al., 1996). 

The basic structure of a mathematical model to study bacterial kinetics is 

 

Where, 𝑌 is the response variable and 𝑋1, 𝑋2, 𝑋3 are independent or explanatory variables. 

𝛽1, 𝛽2, 𝛽3  are regression coefficients obtained by the regression method. 𝜀 represents error factor 

which explains the observed variability in data. Therefore, deterministic part is that which 

describes the relationship between response and explanatory variables and the stochastic part 

represents observed data variability to which cannot be explained by deterministic part. 

One classification of predictive models is based on information used to develop the model 

(McMeekin and Ross, 2002). Mechanistic models are built on a theoretical foundation, provide 

interpretation of the observed response in terms of the underlying mechanisms, and are more 

flexible to refinement as the system's knowledge changes. On the other hand, empirical models are 

simply developed to describe the observed phenomenon using mathematical equations. 
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Predictive microbiology can be used to study different microbial processes, referred to as, kinetic 

and probability modeling. Kinetic models pertain to predicting the degree and rate of microbial 

growth or decline, namely growth models, survival models and inactivation models (McMeekin et 

al., 1993), whereas probability modeling estimates the likelihood of occurrence of a microbial 

event such as toxin production by a bacteria or virus transfer (Pérez-Rodríguez et al., 2008).  A 

vast majority of the models are kinetic models because of their intensive applications in the food 

industry. Kinetic models can be further classified as primary, secondary, and tertiary models. 

Primary modeling refers to estimating change in microbial concentration over a given time, 

secondary modeling pertains to estimating the relationship of parameters from primary models 

with environmental variables, while parameters from both primary and secondary models are 

integrated into computer-based tools to generate tertiary models.  

Predictive microbiology has become a rapid answer to specific food safety questions in the food 

processing environment where microbial testing takes longer. Predictive microbiology coupled 

with user friendly software, help provide rapid estimations of effect of various factors like storage 

conditions and product formulations on the bacterial kinetics in food. It can be applied throughout 

the food chain from raw material accession to finished product release, has also been integrated 

into Hazard Analysis for Critical Control Point (HACCP) (McDonald and Sun, 1999) and is also 

a necessary element for Quantitative Microbial Risk Assessment (QMRA) (Lammerding and Fazil, 

2000). It also serves as a useful tool in designing shelf-life studies on foods, making a sampling 

plan and development of new food products.  

The United States Department of Agricultures’ Agricultural Research Service (USDA-ARS) has 

developed a Pathogen Modeling program (PMP) which is a collection of models for both bacterial 
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growth and inactivation in various foods and broth media. Similarly, Combase Predictor consists 

of growth and survival curves for bacteria including Listeria spp., Clostridium 

botulinum/perfringens, Salmonella spp., Escherichia coli, Staphylococcus aureus (Baranyi & 

Tamplin, 2004). 

Primary Modeling 

Primary models aim to estimate kinetic parameters as a function of treatment time such as, 

maximal growth rate, lag phase, and inactivation rate, simulating a storage phase, processing, or 

heat treatment in model applications. Primary models first use a set of mathematical equations 

which are assumed to decipher the data, following which, these mathematical equations are fitted 

by regression into the observed microbial data. This provides values for the model parameters such 

as lag phase duration or rate of growth for growth models. The resulting predictive models are 

only applicable to the intrinsic and extrinsic factors in which the observed dataset was obtained. 

Microbial growth is generally divided into four phases. The lag phase, also known as the adaptation 

period, is a period during which bacteria adapt to their surroundings and begin exponential growth 

(Buchanan and Klawitter, 1991). Microorganisms then grow exponentially (exponential phase) 

until they reach maximum population levels (stationary phase). The microbial population begins 

to decrease when the concentration of nutrients or the physiological state of cells drops (death 

phase). There are different growth models proposed by researchers that are differentiated by 

growth phases. Sigmoidal growth curve, with an immediate lag phase followed by an exponential 

and stationary phase, and finally death phase, is obtained when the logarithm of number of 

organisms is plotted against time. The three most common mathematical models for sigmoidal 

growth are the Gompertz model, Baranyi model, and logistic model.  
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Gompertz Model 

Gibson et al., 1988 adapted the equations introduced by Benjamin Gompertz to fit microbial 

growth data since it consists of three phases, similar to microbial growth stages. 

 

𝑌𝑡 = 𝑌0 + 𝐶{exp[− exp(−𝑏(𝑡 − 𝑀))]}     

Equation A                                 

Where 𝑌𝑡 =number of cells at time 𝑡 (log CFU/g), 𝑌0 =lower asymptotic value as 𝑡 approaches 

0(log CFU/g), 𝐶=number of cells at stationary phase (log CFU/g) -𝑌0 , in other words, the 

difference between upper and lower asymptote, 𝑀=time when growth is maximum and 

𝑏=relative growth rate. 

Zwietering et al., 1990 reparametrized the Gompertz equation, where the mathematical parameters 

were substituted with biological parameters. This reparameterization helps in determining start 

values for the parameters when they have a biological meaning, as well as finding 95% confidence 

intervals. The biological values used were specific growth rate= 𝜇 =
𝑏𝐶

𝑒
, lag phase duration= 𝜆 =

𝑀 − (
1

𝑏
), and generation time= 𝐺𝑇 = 𝐿𝑜𝑔(2).

𝑒

𝑏𝐶
 
 

𝑌𝑡 = 𝑌0 + 𝐴(exp [− exp [(𝜇𝑚.
𝑒

𝐴
) (𝜆 − 𝑡) + 1]])     

Equation B 

Where 𝐴 = number of cells at stationary phase (log CFU/g), 𝜇𝑚=specific growth rate (log 

CFU/h) and 𝜆=lag phase duration. 
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Baranyi Model 

Baranyi model is a mechanistic model introduced by Baranyi and co-workers in a series of reports 

(Baranyi et al. (1993, 1995); Baranyi and Roberts, 1994). Baranyi model is currently the most used 

primary model. This model assumes that bacteria need to produce an unknown substrate 𝑞 that is 

required for growth during the lag phase. Once cells have adapted to their new environment, they 

will continue to grow exponentially until the growth medium imposes constraints. The model 

proposed has a set of differential equations: 

𝑑𝑞

𝑑𝑡
= µ𝑚𝑎𝑥 ∙ 𝑞(𝑡) 

Equation C 

Where, q(t) = the concentration of limiting substrate, which changes with time; µ𝑚𝑎𝑥=maximum 

specific growth rate achieved. 

The initial value of 𝑞(𝑞0) describes the initial physiological state of the cells and therefore another 

form of the equation can be derived as below, where ℎ𝑜 represents interpretation of lag phase 

before it reaches the characteristic µ𝑚𝑎𝑥 in that environment. 

ℎ𝑜 = 𝑙𝑛 (1 +
1

𝑞0
) = µ𝑚𝑎𝑥 

Equation D 

A more detailed version of Baranyi model has been derived as: 

𝑌𝑡 = 𝑌𝑜 + µ𝑚𝑎𝑥𝐹(𝑡) − 𝑙𝑛 (1 +
𝑒µ𝑚𝑎𝑥𝐹(𝑡) − 1

𝑒𝑦𝑚𝑎𝑥−𝑦𝑜
) 

Equation E 
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Where, 

𝐹(𝑡) = 𝑡 +
1

𝑣
𝑙𝑜𝑔𝑒( 𝑒−𝑣𝑡 + 𝑒−ℎ0 − 𝑒(−𝑣𝑡−ℎ0)) 

Equation F 

𝑌𝑡= bacterial population at time 𝑡 (ln CFU/g), 𝑌𝑜 = initial bacterial population at time 𝑡 = 0 , 

𝑦𝑚𝑎𝑥=maximum bacterial population (achieved at stationary phase) (ln CFU/g), µ𝑚𝑎𝑥= maximum 

specific growth rate,  𝑣 is the rate of increase of limiting substrate 𝑞, assumed to be equal to µ𝑚𝑎𝑥. 

 

Logistic Model 

 

Logistic model uses the following differential equation to model growth kinetics of 

microorganisms (Pearl,1927; Vadasz et al, 2001) 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 (1 −

𝑁

𝑁𝑚𝑎𝑥
) 

Equation G 

Where, 𝑁= microbial population at time 𝑡 , 𝑟 = rate constant which can also be referred to as 

maximum specific growth rate, 𝑁𝑚𝑎𝑥 = maximum bacterial population (achieved at stationary 

phase). 

New Logistic Model 

Bacterial growth curves usually follow a sigmoid pattern. However, logistic model is unable to 

generate a sigmoid curve on a semi-logarithmic plot due to the absence of a lag phase. Therefore, 

it is not the best fit to model bacterial growth. Fujikawa et al., 2004 modified the traditional logistic 

model to a new logistic model which can be used to model bacterial growth 
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𝑑𝑁

𝑑𝑡
= 𝑟𝑁 (1 −

𝑁

𝑁𝑚𝑎𝑥
) (1 −

𝑁𝑚𝑖𝑛

𝑁
)c 

Equation H 

where a new factor 𝑁𝑚𝑖𝑛= minimum bacterial cell concentration (CFU/g) was introduced. 

𝑁=bacterial concentration at time 𝑡 and 𝑐 = rate constant and is always ≥0. 

Three-phase Linear Model 

Proposed by Buchanan et al. (1997), three phase linear model employ three phases of bacterial 

growth curve viz. lag phase, exponential growth phase and stationary phase. Figure 2.1 depicts 

graphical representation of three-phase linear model. 

In Lag phase, for  𝑡 ≤ 𝑡𝑙𝑎𝑔,  

 

𝑁𝑡 = 𝑁0 

Equation I 

In Exponential growth phase, for  𝑡𝑙𝑎𝑔 < 𝑡 < 𝑡𝑚𝑎𝑥 

𝑁𝑡 = 𝑁0 + 𝜇(𝑡 − 𝑡𝑙𝑎𝑔) 

Equation J 

In Stationary phase, for 𝑡 > 𝑡𝑚𝑎𝑥  

𝑁𝑡 = 𝑁𝑚𝑎𝑥  

Equation K 
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Where, 𝑁𝑡  = log population density at time 𝑡 (log CFU/ml), 𝑁0 =log of initial population density 

(log CFU/ml), 𝑁𝑚𝑎𝑥 =  maximum population density possible in that environment (log CFU/ml), 

𝑡 =time elapsed, 𝑡𝑙𝑎𝑔= end of lag time (h), 𝜇 =maximum specific growth rate (log CFU/h).  

The lag phase is divided into two time periods: 𝑡𝑎= time taken for the bacterial adaptation to the 

environment; 𝑡𝑚= the amount of time it takes for required energy to be generated to make 

biological components needed for cell reproduction. The growth rate is assumed to be highest 

between the end of the lag phase and the beginning of the stationary phase in this model whereas 

𝜇 is set to zero during the stationary and lag phases.  

 

Figure 2.1 Representation of three-phase linear model graphically. Adapted from : Buchanan et 

al., 1997 
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Huang Model 

A more recent model used for primary modeling is Huang model, proposed by Huang, 2013. A 

complete mathematical equation for the growth curve is written as: 

𝑌 = 𝑌0  +  𝑌𝑚𝑎𝑥 − 𝑙𝑛{𝑒𝑌0 + [𝑒𝑌𝑚𝑎𝑥 + 𝑒𝑌0]𝑒−µ𝑚𝑎𝑥∗𝐵(𝑡) 

Equation L 

Where, 

𝐵(𝑡) = 𝑡 +
1

𝛼
𝑙𝑛 [

1 + 𝑒−𝛼(𝑡−)

1 + 𝑒𝛼
] 

Equation M 

Where, 𝑌 = bacterial population at time 𝑡 (ln CFU/g), 𝑌0   = initial bacterial concentration(ln 

CFU/g), 𝑌𝑚𝑎𝑥= maximum bacterial concentration (ln CFU/g), µ𝑚𝑎𝑥 = specific growth rate ,  𝐵(𝑡)= 

transition function, 𝛼= lag phase transition coefficient (LPTC)  which defines the shift from lag 

phase to exponential phase and = lag phase.  

Secondary Modeling 

Secondary models model the changes in the parameters of primary models such as bacterial growth 

rate and lag time with respect to various extrinsic and intrinsic factors. 

There are two different outlooks for secondary modeling based the number of environmental 

factors: 

In first approach, the effect of one environmental factor is modeled at a time and a general model 

describes the effects of all individual factors on the bacterial behavior as a combined whole. 

Common secondary models like square root model and cardinal parameter type models employ 
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this approach. The second method pertains to modeling the effect of multiple environmental 

factors simultaneously through a polynomial function.  

Polynomial Models 

Polynomial models predict the effects of multiple environmental factors on bacterial kinetics and 

are also known as response surface models. These can go from second order polynomial equations 

to quadratic and sometimes even higher than that. Polynomial models have been used to model the 

effect of pH, water activity, sodium nitrite concentration and temperature on growth kinetics of L. 

monocytogenes (Buchanan and Phillips, 1990) and others (Lebert et al. 2000).  

A general equation for polynomial function is: 

𝑦 = 𝛽0 + ∑ 𝛽𝑗

𝑘

𝑗=1

𝑋𝑗 + ∑ 𝛽𝑗𝑗

𝑘

𝑗=1

𝑋𝑗
2 + ∑ 𝛽𝑗𝑙

𝑘

𝑗≠1

𝑋𝑗𝑋𝑙 + 𝜀 

Equation N 

Where  𝑦= dependent variable and 𝛽0 , 𝛽𝑗 , 𝛽𝑗𝑗,𝛽𝑗𝑙 =regression coefficients and 𝑋𝑗 , 𝑋𝑙being the 

independent variables (environmental factors), and  𝜀 = error term.  

Polynomial models are easy to implement in the computer systems, however, unrestrained number 

of factors can result in incorrect predictions since errors can also be modeled. Another drawback 

is that the model lacks the terms that help in explaining biological behavior. 

Square Root Type Models 

As discussed before, square root type models employ first approach where the effects of a single 

extrinsic or intrinsic factor is modeled. It was initially proposed by Ratkowsky et al., (1982), after 

observing linear relationship between square root of the maximum specific growth rate and 
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temperature before it reaches optimum temperature for growth for that organism and environment. 

For Ratkowsky square root model: 

√𝜇𝑚𝑎𝑥 = 𝑎(𝑇 − 𝑇𝑚𝑖𝑛) 

Equation O 

Where, 𝑇𝑚𝑖𝑛 =theoretical minimum temperature below which no growth is observed (it usually 

lies 2ºC -3ºC below the observed minimum temperature). 𝑇𝑚𝑖𝑛 is generally calculated by a linear 

regression of the square root of maximum specific growth rate and temperature.  

 Ratkowsky et al., (1983) later modified the previous model to cover the whole temperature 

growth range. 

µ𝑚𝑎𝑥 = 𝑎(𝑇 − 𝑇𝑚𝑖𝑛)2{1 − 𝑒𝑥𝑝[𝑏(𝑇 − 𝑇𝑚𝑎𝑥)]} 

Equation P 

Where, 𝑇𝑚𝑎𝑥 = temperature at which the growth is most rapid and 𝑏 = fitting parameter for shape 

above 𝑇𝑚𝑎𝑥. 

Ratkowsky square root model has also been adapted to model the effect of other environmental 

factors apart from temperature, such as pH and water activity (Ross et al. 2003). 

Similarly, bacterial lag time can also be modeled using equation: 

 

𝑡𝑙𝑎𝑔 = 𝑏. (𝑇 − 𝑇𝑚𝑖𝑛) 

Equation Q 
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Tertiary Modeling 

Modeling at the primary and secondary level make use of the static environmental conditions, say, 

isothermal temperature. Tertiary modeling refers to integration of primary and secondary models 

using computer programs for easy application. Examples of such software include Pathogen 

modeling program by USDA which use multivariant models based on Gompertz function and 

response surface analysis to predict bacterial behavior in food storage environment. Another such 

database is ComBase, which allows users to browse available data related to bacterial growth and 

inactivation along with developing new modeling techniques (Baranyi & Tamplin, 2004) 

Validation Methods 

Model validation is a crucial step in the field of predictive microbiology. Models cannot be used 

until they have gone through a validation procedure, which usually include testing the predictions 

using any quantitative approach (Dym 2004). Experimental analysis of the growth of the 

microorganism being studied in that food (as the model) is the basis of model validation where the 

observed (experimental growth) data is compared with the predicted (model predictions) (Gibson 

et al. 1988; Sutherland and Bayliss 1994).  

There are usually two forms of model validation: internal and external validation. Internal 

validation is usually done when the actual challenge tests could not be performed due to economic 

or time constraints. Instead, data taken from other studies performed in similar environmental 

conditions as described in the model, is compared to the model predictions to accurately determine 

if the model is capable of adequately describing the experimental data. 

Internal validation has been satisfactorily performed by (Garc ́ıa- Gimeno et al. 2002 ).  
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On the other hand, external validation is performed when the actual independent challenge tests 

are employed to make comparisons between the model predictions and observed data (Ross et al., 

2000). Additionally, data taken from scientific literature to validate the models also falls under 

external validation (Fernandez et al., 1997) 

To determine goodness of fit of models to experimental data, Root mean square error (RMSE) and 

coefficient of determination (R2) values are assessed where, 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑛

𝑖=1 𝜇𝑜𝑏𝑠 − 𝜇𝑝𝑟𝑒𝑑)2

𝑛
 

Equation R 

With, 𝜇𝑝𝑟𝑒𝑑=maximum specific growth rate predicted; 𝜇𝑜𝑏𝑠= maximum specific growth rate 

observed and 𝑛=total number of data points. A low RMSE value depicts better fitting of the model 

(Sutherland et al., 1994).  

Other indicators of better adequacy of models to explain observed data are bias factor which is the 

overall average of ratio of discrete model predictions to observations, and accuracy factors which 

is the absolute value of ratio of predictions to observations (Ross, 1996). Both of these values 

determine how close the model observations are to the predicted values. 

𝐵𝑓 = 10[∑
𝑙𝑜𝑔 𝜇𝑚𝑎𝑥𝑝𝑟𝑒𝑑/ 𝜇𝑚𝑎𝑥𝑜𝑏𝑠

𝑛 ]
 

Equation S 

 

𝐴𝑓 = 10[∑
|log 𝜇𝑚𝑎𝑥𝑝𝑟𝑒𝑑/𝜇𝑚𝑎𝑥𝑜𝑏𝑠|

𝑛 ]
 

Equation T 
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CHAPTER 3 

DYNAMIC PREDICTIVE MODEL FOR THE GROWTH OF LISTERIA MONOCYTOGENES 

IN EGG YOLK 

Abstract 

Listeria monocytogenes is a facultative anaerobic bacterium that can survive at refrigeration 

temperatures. It causes listeriosis and has been linked with several outbreaks in fresh produce, 

dairy products, eggs, and meat in the past decade. The current study was designed to develop a 

dynamic model to predict the growth of L. monocytogenes in egg yolk as a function of temperature. 

Liquid egg yolk was inoculated with approximately 2.5-3 log CFU/ml of a 6-strain L. 

monocytogenes cocktail and its growth at static temperatures of 0, 2, 5, 10, 15, 20, 25, 30, 35, 40, 

42.5, 45ºC was studied to cover entire biokinetic range of L. monocytogenes growth. A primary 

model (Baranyi model) was used to fit the growth data from each static temperature and parameters 

from this model were fitted into a secondary model (Ratkowsky square root model) to estimate 

their relationship with temperature. R2 values of higher than 0.9765 and RMSE values of lower 

than 0.5758 were obtained. The model developed for the growth of L. monocytogenes in egg yolk 

can deliver a rapid and cost-effective substitute for laboratory studies to determine the effects of 

storage temperature on L. monocytogenes growth characteristics in egg yolk and can also be 

implemented in microbial risk analysis to analyze egg safety. 
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Introduction 

Listeria monocytogenes is a rod-shaped, gram-positive, and ubiquitous microorganism that can be 

found in soil, water, vegetation, humans, birds, and animals (Dieterich et al., 2006). L. 

monocytogenes causes listeriosis in humans and infects around 1600 people annually resulting in 

approximately 260 deaths (CDC, 2021). The pathogen has a mortality rate as high as 20-30% 

(Buchanan et al., 2004). Most listeriosis cases are foodborne and primarily effect children, 

pregnant women, and immunocompromised people. The symptoms of infections in 

healthy people are usually mild, including headache, vomiting, and joint pain, which can 

occasionally get severe in immunocompromised people leading to encephalitis and meningitis. In 

pregnant women, symptoms are usually flu-like, including fever, fatigue, and muscle pain. 

However, apart from miscarriages and premature delivery, it can cause severe complications in the 

offspring, including stillbirths or life-threatening infections (USFDA, 2020). These clinical 

infections reflect the ability of L. monocytogenes to cross tight barriers in human host including 

intestinal barrier, by crossing intestinal epithelium to gain access to internal organs; blood-brain 

barrier in case of severe infection, resulting in meningitis; and fetoplacental barrier resulting in 

fetal infection (Dworkin et al., 2006). L. monocytogenes strains are serotyped based on the 

variation in somatic (O) and flagellar antigens (H) (Seeliger, 1979). Serotype 1/2a is most isolated 

from food, but 4b is the one associated with majority of human epidemics (Gilot et al., 

1996). Listeria innocua is a microorganism that could be used as an indicator of L. monocytogenes 

(Greenwood et al., 1991) and as a surrogate to study the growth and transmission of the pathogen 

(Milly et al., 2008). 

Recently, multiple outbreaks involving L. monocytogenes were linked to ready-to-eat (RTE) 

packaged salads, cooked chicken, queso fresco cheese, deli meats and enoki mushrooms (CDC, 
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2021). It is a psychrotrophic pathogen which can grow at refrigeration temperatures and below. It 

can also grow at a wide pH range of 4 to 9.5 and a water activity as low as 0.92 (Buchanan et al., 

2004). The ability of L. monocytogenes to survive in harsh conditions such as low pH, refrigeration 

temperatures, and high osmotic pressure, has made it a pathogen of concern in commercial food 

processing and preservation, as these are the commonly employed barriers to prevent the growth 

and transmission of foodborne pathogens (Melo et al., 2014). 

A total of 96.9 billion eggs were produced in the United States (US) in 2020, with a per capita 

consumption of 286 eggs. Over 25% of all eggs are further processed by the industry (United Egg 

Producers, 2022). This includes production of liquid whole egg, salted, and sugared whole egg, 

liquid egg whites, liquid egg yolk, salted and sugared egg yolk, amongst many others. Egg products 

are used extensively as an ingredient in food products in bakeries, restaurants and processing 

facilities for their foaming and emulsification properties. According to the guidelines set by United 

States Department of Agriculture's Food Safety and Inspection Service (USDA-FSIS), shells eggs 

are required to be stored at 7.2ºC to minimize quality and microbial deterioration. Along with that, 

most eggs have an average sell by date of 30 days in the US (Bell et al., 2001). These long periods 

of storage can sometimes lead to temperature abuse or occasional cross contamination of the eggs. 

Since L. monocytogenes can move to inner contents of the eggshell once broken, it poses a food 

safety threat, especially with high water activity of the egg liquids, which facilitate bacterial 

growth. Furthermore, being a psychrotrophic organism, L. monocytogenes can survive and grow 

at refrigeration temperatures, at which liquid eggs are stored (Tasara and Stephan; 2006). 
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 Listeria monocytogenes has been isolated from raw liquid whole egg (Leasor et al., 1989) and has 

been detected in 8.5% of the samples in five egg-breaking plants in France over a period of one 

year (Rivoal et al., 2013). Egg yolk is an iron rich nutrient media that lacks defenses against 

microbial activity like lysozyme and other antimicrobial proteins, thus providing a good 

environment for bacterial activity once it reaches egg yolk through the vitelline membrane during 

storage. Predictive modeling is a tool that uses mathematical and statistical concepts to 

quantitatively predict microbial behaviors in foods. Various intrinsic and extrinsic environmental 

factors can be modeled to study and predict microbial behavior including growth, inactivation, and 

survival. It is a useful reference tool for improving food safety, with applications in Hazard 

Analysis Critical Control Point (HACCP) development and risk analysis. It also provides 

operational support by providing insights on food safety hazards during processing steps, and 

incidental support in case of food safety concerns with products already released in the market. 

While there is several studies referencing growth characteristics of Salmonella in eggs, there is 

limited data on the behavior of L. monocytogenes in liquid eggs. Thus, this study was conducted 

to develop a dynamic predictive model for the growth of L. monocytogenes in egg yolk under 

varying temperature conditions. 

Materials and Methods 

Liquid egg yolk preparation 

Shell eggs were obtained from a local grocery store (Grade A Large Eggs) on the day of each 

experimental setup and were sanitized by dipping in 70% ethanol for 15 min. The eggs were then 

broken using a sterile knife in a laminar flow biosafety cabinet (Labconco, Fort Scott, KS). Egg 
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yolk and albumen were separated aseptically using a sterile egg separator and egg yolk was 

collected in a sterile glass container. 

Total solids, pH, and Water activity 

Total solids content of the egg yolk was measured by following Association of Analytical 

Chemists methods of analysis (AOAC, 2019). The pH and water activity of the product were 

determined using a pH meter (Thermo Scientific, Waltham, MA) and water activity meter 

(Aqualab, Pullman, WA), respectively.  

Bacterial Cultures 

Six L. monocytogenes strains isolated from poultry environment (aviary forage drag swab, nest 

box shells, free range nest box shells, free range grass isolate, American Type Culture Collection 

(ATCC) 13932, stock pathogen Listeria control) were used. A day before use, each individual 

Listeria strain was transferred into 10 ml tryptic soy broth (TSB; Becton, Sparks, MD) and 

incubated for 20 h at 37ºC. Following incubation, 10 ml TSB suspension of each strain was 

transferred individually into a sterile centrifuge tube and centrifuged at 6000 × g for 10 min at 4ºC 

to concentrate bacterial cells. The supernatant was decanted, and the pellet was resuspended in 5 

ml of 0.1% phosphate buffer saline (PBS; Fisher Scientific, Pittsburgh, PA) and recentrifuged. 

Finally, the pellet was suspended in 0. 5 ml 0.1% PBS. Each strain was centrifuged and suspended 

individually, following which the strains (0.5 ml) were mixed and vortexed to form a cocktail 

(3ml). 
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Sample Inoculation 

The six-strain cocktail of L. monocytogenes was diluted, and appropriate volume was added to 

liquid egg yolk to obtain the final L. monocytogenes population of 2-3 log CFU/ml. The product 

was homogenized in a stomacher (Stomacher 400 Circulator, Seward Laboratory Systems Inc., 

Islandia NY) at 100 rpm for 1 min. Vacuum pouches (6.35 cm x 12.7 cm; Prime Source, Kansas 

City, MO; 3 mil standard barrier nylon pouch, oxygen transmission rate of 3,000 cm3/m2/24 h at 

23ºC and 1 atm) were filled with 5 ml portion of egg yolk and were heat sealed. 

Isothermal and Dynamic Profiles 

Listeria monocytogenes growth data was collected at isothermal profiles of 0, 2, 5, 10, 15, 20, 25, 

30, 35, 40, 42.5 and 45ºC to account for the entire bio-kinetic zone of bacterial growth. Three 

biological replicates were performed for each isothermal profile. L. monocytogenes growth was 

followed until it reached stationary phase. For each isothermal profile, individual water baths with 

water circulation capabilities (Polyscience, Niles, IL) were set at the required temperature. 

Vacuum bags containing egg yolk were immersed in the water bath and after 10 min of immersion, 

a bag was removed to determine initial L. monocytogenes population and subsequent bags were 

removed at pre-determined time intervals until 3-4 data points in stationary phase of bacterial 

growth curve were obtained. Table 3.1 represents sampling intervals at each isothermal profile. 

Microbial Enumeration 

Following removal from the water bath, egg yolk bags were massaged for 2 min. for uniform 

mixing of the contents. The bag surface was sterilized by spraying 70% ethanol, wiped with paper 

towels, and opened using a flame sterilized scissor. Appropriate dilutions were performed on the 
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sample using 0.1% PBS and were spread plated on Listeria selective Modified oxford agar (MOX, 

Becton, Sparks, MD) for all temperature profiles. The plates were incubated at 37ºC for 48 h and 

bacterial colonies were counted and reported as log10 CFU/ml.  

Mathematical Modeling 

Primary Modeling 

The Baranyi model (Baranyi & Roberts, 1994) was used to describe the growth kinetics of L. 

monocytogenes in egg yolk at various isothermal temperatures. The bacterial concentration was 

expressed as log10 CFU/ml for model fitting. The four-parameter Baranyi model includes the 

following equation:  

𝑦𝑡 = 𝑦𝑜 + µ𝑚𝑎𝑥𝐹(𝑡) − 𝑙𝑛 (1 +
𝑒µ𝑚𝑎𝑥𝐹(𝑡) − 1

𝑒𝑦𝑚𝑎𝑥−𝑦𝑜
) 

Equation U 

where 𝑦(𝑡) is concentration of bacterial cells at time t (log CFU/ml), 

𝑦0 represents initial bacterial population (log CFU/ml), 

𝑢𝑚𝑎𝑥 represents maximum specific growth rate (log CFU/h), 

𝑦max is maximum concentration of bacterial cells (log CFU/ml). 

The parameter 𝐹(𝑡) can be expanded as: 

 

𝐹(𝑡) = 𝑡 +  
1

𝑣
𝑙𝑜𝑔𝑒( 𝑒−𝑣𝑡 +  𝑒ℎ0– 𝑒(−𝑣𝑡−ℎ0)) 

Equation V 
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 where, ℎ0 represents previous physiological state of bacterial cells and  portray lag phase   

duration of cells (h). The given equation can be used to quantify lag phase duration: 

𝜆 =  
ℎ0

𝜇𝑚𝑎𝑥
 

Equation W 

For each individual static temperature, growth data of L. monocytogenes in egg yolk was plotted 

against time and the parameters were derived using MATLAB software (version R2021a, 

Mathworks, Natick, MA). 

Secondary Modeling 

Secondary modeling evaluates the relationship of parameters from primary models with various 

extrinsic and intrinsic factors. In this case, temperature was an environmental factor and thus 

Ratkowsky square root model was used which evaluates the relationship between temperature and 

parameters from primary model. Here, a maximum specific growth rate for each temperature 

estimated from Baranyi model was fitted into Ratkowsky square root model (Ratkowsky, Olley, 

McMeekin, & Ball, 1982).  

   

     µ𝑚𝑎𝑥 = 𝑎(𝑇 − 𝑇𝑚𝑖𝑛)2{1 − 𝑒𝑥𝑝[𝑏(𝑇 − 𝑇𝑚𝑎𝑥)]} 

Equation X 

     

where, 𝑇 is the ambient measured temperature (ºC), 𝑇𝑚𝑖𝑛 is theoretical minimum temperature 

where growth is observed (ºC) and 𝑇𝑚𝑎𝑥 is the maximum temperature of growth (ºC), 𝑎 is a 

regression coefficient. 
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Zwietering et al. (1991) described a hyperbolic function to model lag phase duration with 

increment in temperatures of growth. The equation used was: 

 

𝜆 =  𝑒
𝑝

𝑇−𝑞  

                                                                             Equation Y   

where, 𝑇 is the ambient measured temperature (ºC), 𝑞 depicts the temperature where lag time is 

infinite (ºC) and 𝑝 is the parameter to explain the decline in lag time with rise in temperature. 

MATLAB was used for the secondary model fitting. 

Goodness of Fit of Primary and Secondary Models 

The averages and standard errors of the L. monocytogenes populations in egg yolk at different time 

intervals were determined using Excel (version 2021, Microsoft, Redmond, WA). MATLAB was 

used for analyzing the goodness of fit of primary, secondary, and dynamic models, where the 

coefficient of determination (R2) and Root Mean Square Error (RMSE) values were generated 

(Chai & Draxler, 2014). The equations used for calculating the same are: 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ 𝑒𝑖

2𝑛
𝑖=1  

Equation Z 

𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇𝑂
  

Equation AA 
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where, 

         𝑆𝑆𝑅 =  ∑ (𝑦𝑖̂ − 𝑦̅)2𝑛
𝑖=1   

Equation BB 

  

and 

𝑆𝑆𝑇𝑂 = ∑(𝑦𝑖 − 𝑦̅)2

𝑛

𝑖=1

 

Equation CC 

   

SSR is the regression sum of squares, SSTO is the total sum of squares, 𝑛 represents sample size, 

𝑦𝑖 represents the observed value at ith item, 𝑦̅ represents average response variable, 𝑦̂ is the 

estimated value, and 𝑒𝑖 stands for model prediction error at 𝑖th term, which is represented by the 

difference between predicted and observed values. 

Tertiary Modeling 

Parameters from primary and secondary models are integrated to generate tertiary model in 

MATLAB software. Fourth order Runge-Kutta method was used to predict bacterial growth under 

non-isothermal conditions. Baranyi & Roberts (1994) put forward these two equations to model 

differential growth: 

𝑑𝑦

𝑑𝑡
 = 

1

1 + 𝑒−𝑄(𝑡) 𝜇𝑚𝑎𝑥 [𝑇(𝑡)] (1 − 𝑒𝑦 (𝑡)– 𝑦𝑚𝑎𝑥 ) 

Equation DD 
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𝑑𝑄

𝑑𝑡
=  𝜇𝑚𝑎𝑥[𝑇 (𝑡)]   

Equation EE 

   

where starting conditions were fixed at 𝑦 = 𝑦0 , 𝑡 = 0 and 𝑄(0)= 𝑙𝑜𝑔e(𝑄0), with 𝑄0 being the 

starting physiological state of the bacterial cells.  

 

Results and Discussion 

pH and Water Activity  

Batches of egg yolk used in the study had an average pH of 6.24±0.20, water activity value of 

0.99±0.01 and a total solids content of 65.00±0.69%. Each parameter was measured in triplicates 

and is represented as arithmetic meanstandard deviation. Table 3.2 depicts values of all measured 

parameters of egg yolk in the study.  

Primary Growth Models in Isothermal Conditions 

Table 3.3 shows the primary growth parameters of L. monocytogenes in egg yolk at the isothermal 

temperatures studied. While data were collected at temperatures ranging from 0 to 45ºC, data at 

45ºC was excluded from the model fitting because the bacterial population decreased from an 

average 2.72 to 0.7 log CFU/ml over 84 h at this temperature. The lowest temperature at which 

growth was observed in the study was 0ºC, demonstrating the psychrotrophic nature of the bacteria, 

and highest was 42.5ºC. Figure 3.1 depicts the primary growth model at each temperature in the 

given range. The maximum specific growth rate (µ𝑚𝑎𝑥) of L. monocytogenes increased with 

increasing temperature up to 35ºC, which is within the reported optimum growth temperature range 
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of L. monocytogenes at 30-37ºC (Muriana & Kushwaha, 2010). The maximum specific growth 

rate expectedly declined at 40 and 42.5ºC temperatures, which are beyond the optimum growth 

temperature range. The max was found to be 0.0052 log CFU/h at 0ºC, which was the lowest 

amongst all temperature profiles, gradually increasing to 0.4397 log CFU/h at 35ºC, the highest 

value of  max observed in the static temperature range. Similar relationship between max and 

temperature was observed by Uhlich et al., (2006), who studied L. monocytogenes growth in queso 

blanco at temperatures ranging from 5-25ºC. Another study by Rodrı́guez et al., 2000 investigating 

L. monocytogenes growth in fresh green asparagus stored at temperatures 2-20ºC reported higher 

growth rates at higher temperatures.  

The parameter ℎ0 remained consistent since the physiological state of the bacterial cells before 

inoculation was comparable, as recommended by Baranyi and Roberts (1994). As no relationship 

was observed between growth temperatures and ℎ0, this value was quantified by calculating mean 

of the individual ℎ0 values at each temperature. The data were again fitted using this new average 

ℎ0 (2.46) to estimate other parameters, (max, 𝑦max and ). This value is in a similar range as 

observed by others including Juneja et al., (2022), who estimated an average ℎ0 value of 3.49 for 

Clostridium botulinum in cooked ground pork. Thomas, Tiwari, and Mishra (2019) used an 

average ℎ0 value of 2.47 to model growth of L. monocytogenes in queso fresco, while Singh et al. 

(2011) also set the value of ℎ0 at 3.51 to study Salmonella growth in liquid whole eggs, and Juneja 

et al. (2019) calculated a mean ℎ0 of 4.10 for Bacillus cereus during cooling of cooked rice. The 

minimal differences in ℎ0 could be due to different substrates and microbes studied. 

The goodness of fit statistics for primary model fitting using the Baranyi equations were found to 

be between 0.9818 and 0.9959 for R2 and from 0.1916 to 0.5758 for RMSE (Table 3.4). These 

values suggested acceptable goodness of fit with high R2 and low RMSE values, also indicating 
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that the observed values were closer to the model predictions for L. monocytogenes growth under 

the given conditions. 

Secondary Growth Models 

Table 3.5 depicts the results from the Ratkowsky root square model fitting for the secondary 

growth model (Ratkowsky et al., 1982). Theoretical maximum temperature (𝑇max) of growth 

obtained was 45.35ºC, which was close to the experimental temperature at 42.5ºC. The theoretical 

minimum (𝑇min) temperature obtained while fitting the data was -0.3178ºC, that was near 

experimental minimum temperature of 0ºC. The difference in theoretical and experimental  𝑇max 

and 𝑇min is not unusual and generally lies between 5-10ºC  (Ross & Dalgaard, 2004). When the 

values for 𝑇min and 𝑇max are placed in the Ratkowsky equation, the model is presented as:  

µ𝑚𝑎𝑥 = 0.0006124 (𝑇 − (−0.3178)2{1 − 𝑒𝑥𝑝[0.08202(𝑇 − 45.35)]} 

Equation FF 

The fitted model shown in Figure 3.2 displays positive linear relationship between max and 

temperature up to optimum temperature of growth for L. monocytogenes. Similar observations 

were made by Xanthiakos et al., 2006, when using square root model to estimate relationship 

between temperature and  max. The fitted secondary model in this study has a R2 value of 0.9949 

and RMSE of 0.01399 as shown in Table 3.5. This is consistent with Juneja et al. (2019), where 

the model for B. cereus in cooked rice found the Ratkowsky model to provide the best fit for 𝜇𝑚𝑎𝑥 

values generated from the Baranyi model. 
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Lag phase duration (𝜆) is the time it takes for the bacterial cells to adjust physiologically to the 

environment before the log phase (Baranyi and Roberts, 1994). Lag phase duration after 

substituting the values was calculated as: 

𝜆 =  𝑒
50.45

𝑇+7.22 

Equation M 

The lag phase duration was observed to decrease with increase in temperature (Figure 3.3). This 

could be because L. monocytogenes cells were incubated in TSB at 37ºC prior to inoculation of 

the egg yolk, thus potentially aiding in quicker adjustment of the cells to the new environment at 

high temperatures (Métris et al., 2003).This explains the shortest lag phase of 5.59 observed at 

35ºC. 

Conclusion 

The predictive model developed in this study can be used as a reference for the egg processing 

industry during long transport and storage periods and in case of any temperature abuse. L. 

monocytogenes populations in egg yolk grew to the maximum population density at all 

temperatures studied, from 0 to 42.5ºC. This observation highlights the importance of preventing 

contamination of eggshells with L. monocytogenes, since the bacteria can migrate into the inner 

contents of the egg. Liquid egg yolk has been found to be a good substrate for L. monocytogenes 

growth. These findings provide evidence to  USDA-FSIS guidelines of maximum egg yolk storage 

period of 7 days for unopened packages at refrigeration temperatures. Apart from following the 

pasteurization guidelines set by USDA for egg yolks, prevention of post pasteurization 

contamination is necessary to make the product safe for use. 
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Table 3.1. Frequency of sampling to determine growth of L. monocytogenes at isothermal 

profiles 

Temperature (ºC) Time Intervals 

0 Every 120 hours up to 1440 hours 

2 Every 96 hours up to 1152 hours 

5 Every 48 hours up to 624 hours 

10 Every 24 hours up to 312 hours 

15 and 42.5 Every 9 hours up to 117 hours 

20 Every 7 hours up to 91 hours 

25, 35 and 40 Every 6 hours up to 78 hours 

30 Every 3 hours up to 36 hours 
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Table 3.2. pH, Water activity and Total solids (%) of various batches of egg yolk used for 

different isothermal profiles. 

 

Batch number pH* Water activity * Total solids (%) * 

1 6.05±0.06 0.99±0.00 65.22±0.25 

2 6.27±0.07 0.99±0.00 64.91±0.74 

3 6.05±0.14 0.99±0.01 65.72±1.19 

4 6.20±0.07 0.98±0.01 65.10±0.78 

5 6.52±0.35 0.99±0.00 65.92±0.86 

6 6.17±0.03 0.98±0.01 63.55±0.62 

7 6.29±0.09 0.98±0.00 65.29±0.12 

8 6.60±0.46 0.99±0.00 64.84±0.16 

9 6.05±0.14 0.98±0.00 64.49±0.48 

*Mean values standard deviation 
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Table 3.3. Maximum specific growth rate (µ𝑚𝑎𝑥), lag phase duration (), and maximum 

population density (𝑦𝑚𝑎𝑥) of L. monocytogenes in egg yolk at various isothermal temperatures. 

 

Temp (ºC) µ𝑚𝑎𝑥(log CFU/h)    (h) 𝑦𝑚𝑎𝑥  (log CFU/ml) 

  0 0.0052  473.323 9.29 

  2 0.0121  203.878 8.95 

  5 0.0231  106.667 9.37 

10 0.0527    46.739 9.22 

15 0.1275    19.300 9.07 

20 0.2171    11.334 9.03 

25 0.3438    7.1576 8.67 

30 0.3822      6.438 8.14 

35 0.4397      5.596 8.38 

40 0.3585      6.864 8.32 

42.5 0.2316    10.625 7.59 
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Table 3.4. Parameters from statistical analysis of fitted primary model indicating goodness of fit. 

Temperature (ºC) Coefficient of determination (R2)  Root Mean Square Error 

(RMSE) 

0 0.9848 0.2406 

2 0.9956 0.1916 

5 0.9876 0.3362 

10 0.9955 0.1934 

15 0.9959 0.1724 

20 0.9972 0.1480 

25 0.9938 0.1851 

30 0.9818 0.3563 

35 0.9765 0.3009 

40 0.9912 0.1981 

42.5 0.9002 0.5758 
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Table 3.5. Parameters from secondary model fitting for growth of L. monocytogenes in egg yolk. 

 

Secondary models Model   parameters R2 RMSE 

Ratkowsky square root model 𝑇𝑚𝑖𝑛 =-0.3178ºC 

𝑇𝑚𝑎𝑥  = 45.35ºC  

𝑎 = 0.0006124 

𝑏 = 0.08202 

0.9949 0.0139 

Hyperbolic function 𝑝 = 50.45 

𝑞 = -7.221 

0.9794 21.7314 
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LIST OF FIGURES 

Figure 3.1. Primary Baranyi model fitted to growth data from static temperature experiments for 

growth of L. monocytogenes in egg yolk.  

(◯) refers to the observed values  

(      ) refers to the fitted line generated from the primary model 

Figure 3.2. Ratkowsky square root model to fit the maximum specific growth rate (µ𝑚𝑎𝑥) data for 

L. monocytogenes in egg yolk as a function of temperature.  

(◯) refers to maximum specific growth rate at each temperature 

(      ) refers to the fitted Ratkowsky model  

Figure 3.3. Lag phase duration (𝜆) of L. monocytogenes in egg yolk as a function of temperature.  

(◯) refers to lag phase duration at each temperature 

(      ) refers to the fitted hyperbolic equation 
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Figure 3.1 
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Figure 3.2 
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Figure 3.3 
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CHAPTER 4 

VALIDATION OF PREDICTIVE MODEL FOR THE GROWTH OF LISTERIA 

MONOCYTOGENES IN EGG YOLK 

Abstract 

Listeria monocytogenes is a rod shaped, facultative anaerobic bacteria that causes listeriosis. Since 

most of the listeriosis cases are foodborne, a systematic evaluation of food safety hazards in food 

supply chain and implement strategies is needed to eliminate these hazards. A validated predictive 

model can be used to estimate the behavior of a pathogen at various points in a food supply chain.  

In this study, validation of the dynamic predictive model developed to study the growth of L. 

monocytogenes in egg yolk was performed. The growth characteristics of L. monocytogenes in egg 

yolk is studied at three different temperature profiles of low (0-10ºC), ambient (10-25ºC), and high 

(25-40ºC) temperatures and compared with the predicted growth from the dynamic predictive 

model. Furthermore, sugared, and salted egg yolk were also used to compare the growth of L. 

monocytogenes in these products at similar conditions as plain egg yolk. The indicators employed 

to validate the model were Af, Bf and APZ analysis. The results indicated good fit for the model 

predictions in observed data with acceptable values of Af, Bf and prediction errors. 

Introduction 

Validation of a predictive model is a crucial step in the field of predictive microbiology and 

provided help in estimating growth of pathogens in various environments and food matrices. 

Models cannot be used until validated, which usually include testing the predictions using a 

quantitative approach (Dym, 2004). Experimental analysis of the growth of a microorganism being 



 

68 

studied in that food (as the model) is the basis of model validation where the observed 

(experimental growth) data is compared with the prediction (model predictions) (Gibson et al. 

1988; Sutherland and Bayliss 1994). Ross (1996) developed two statistical indicators to test the 

accuracy and applicability of the predictive models in real life conditions, namely accuracy factor 

(Af) and bias factor (Bf). These accuracy factors were developed to compare the independent 

observations to the model predictions. The bias factor is an average of the ratio of discrete model 

predictions to observations, and a when the ratio of predicted and observed maximum specific 

growth rate is calculated, a Bf value of 1 indicates that the observations are equally distributed 

below and above predictions and thereby are in perfect agreement. A value >1 means fail-safe and 

a value <1 indicates fail-dangerous models. Models with excessively fail-safe predictions can lead 

to economic losses if applied in the food industry as it can lead to destruction of safe food which 

would otherwise be harmless for consumer consumption (Oscar , 2005). On the other hand, 

exceedingly fail-dangerous predictions are increasingly harmful and can lead to foodborne illness. 

Therefore, an acceptable prediction zone needs to be specified for each model assessed. The 

acceptable Bf  range falls between 0.75-1.25. The Af  is an absolute value of ratio of model 

predictions to observations, determining closeness between the two. In this case, a value of 1 would 

mean perfect alignment between predictions and observations. 

Despite their applications, Af  and Bf have some limitations which can lead to inaccurate 

evaluation of model performance. Some of these shortcomings include 1) Af  and Bf are mean 

values and therefore, can get affected by outliers in the data (Delignette-Mullerand others 1995), 

2) In case of no growth, Af and Bf are not calculated (Augustin and Carlier 2000), and 3) Af and 

Bf being mean values can also get affected by systematic prediction bias, where overestimation in 
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one part of the model can get compensated by underestimation in other parts of the model (Ross 

1996). To overcome these limitations, acceptable prediction zone (APZ) method was developed 

where predicted values from the model were subtracted from observed values to generate 

prediction errors. The acceptable prediction zone of -1 to 0.5 was determined,  similar to Bf  range 

of 0.7-1.15 (Oscar, 2005). The acceptable range leans more towards the fail-safe range (-1) than 

fail- dangerous (0.5) range as more errors can be tolerated in this case because, although it can 

lead to food wastage but ensures that the food is microbially safe. In case of underprediction (fail-

dangerous), the actual bacterial population is more than expected and can give rise to food safety 

concerns (Ross et al., 2000).  If 70% of the prediction errors fall within an APZ, the model was 

considered acceptable. Although a certain margin in predictions and observations is considered 

acceptable in Af, Bf and APZ analysis methods, it is always recommended to have predictions as 

close as possible to observed data obtained.  

In this study, validation of a dynamic model developed for the growth of L. monocytogenes in egg 

yolk was performed using three validation profiles where the temperature was constantly changing. 

These ranged from low temperature profile (0-10ºC), ambient temperature profile (10-25ºC) and 

high temperature profile (25-40ºC). For comparison, sugared and salted egg yolk were also tested 

along with the plain egg yolk. The salted and sugared product were not used for validation purposes 

and were only for comparison, as it is an extrapolation of the parameters originally used to develop 

the model (Buchanan et al., 1993). 
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Materials and Methods 

Liquid egg yolk preparation 

Shell eggs were obtained from a local grocery store (Grade A Large Eggs) on the day of each 

experimental setup and were sanitized by dipping in 70% ethanol for 15 min. The eggs were then 

broken using a sterile knife in the biosafety cabinet (Labconco, Fort Scott, KS). Egg yolk and 

albumen were separated aseptically using a sterile egg separator and plain egg yolk was collected 

in a sterile glass container. For salted egg yolk, salt on a 10% weight basis (10 g salt/ 90 g 

product) was added to the plain yolk. Similarly, sugar on a 10% weight basis was added to make 

sugared egg yolk. 

pH, Water Activity and Total Solids 

The pH and water activity of all three products were measured using a pH meter (Thermo 

Scientific, Waltham, MA) and water activity meter (Aqualab, Pullman, WA), respectively. Total 

solids content of was measured by following the American Association of Analytical Chemists 

methods of analysis (AOAC, 2019).  

Bacterial Cultures 

Six L. monocytogenes strains isolated from poultry environment (Aviary forage drag swab, nest 

box shells, free range nest box shells, free range grass isolate, American type culture collection 

(ATCC) 13932, Stock pathogen Listeria control) were used.A day before use, each Listeria strain 

was transferred into 10 ml tryptic soy broth (T.S.B.; Becton, Sparks, MD) and incubated for 20 h 

at 37ºC. After incubation, 10 ml TSB suspension of each strain was transferred individually to 

sterile centrifuge tube and centrifuged at 6,000 × g for 10 min  at 4ºC to concentrate bacterial cells. 
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The supernatant was then decanted, and the pellet was resuspended in 5 ml of 0.1% phosphate 

buffer saline (PBS; Fisher Scientific, Pittsburgh, PA) and recentrifuged. Finally, the pellet was 

suspended in 0. 5 ml 0.1% PBS. Each strain was centrifuged and suspended individually, and the 

strains (0.5 ml) were mixed and vortexed to form a cocktail (3ml). 

Sample Inoculation 

The six-strain cocktail of L. monocytogenes was diluted, and appropriate volume was added to 

each egg yolk product to obtain the final L. monocytogenes population of 2-3 log CFU/ml. The 

products were homogenized in a stomacher (Stomacher 400 Circulator, Seward Laboratory 

Systems Inc., Islandia NY) at 100 rpm for 1 min. Vacuum bags (6.35 cm x 12.7 cm; Prime Source, 

Kansas City, MO; 3 mil standard barrier nylon pouch, oxygen transmission rate of 3,000 

cm3/m2/24 h at 23ºC and 1 atm) were filled with 5 ml portion of egg yolk products and heat sealed. 

Validation Profiles 

Listeria monocytogenes growth data was collected using three temperature profiles. These were 

low, ambient, and high temperature profile with temperature range of 0-10, 10-25 and 25-40ºC, 

respectively. Three biological replicates were performed for each product in each individual 

temperature profile. L. monocytogenes growth was followed till the stationary phase was attained. 

For each validation profile, water baths with water circulation capabilities (Polyscience, Niles, IL) 

were set at the desired temperature profile. Required number of vacuum bags containing plain, 

sugared, and salted egg yolk were immersed in the water bath. After 10 min of immersion, a bag 

was removed to determine initial L. monocytogenes population and subsequent bags were removed 
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at pre-determined time intervals until 3-4 data points in the stationary phase of bacterial growth 

curve were obtained. Table 4.1 provides sampling intervals at each validation profile. 

Microbial Enumeration 

After removal from the water bath, egg yolk bags were massaged for 2 min for uniform mixing of 

the contents. The bag surface was sterilized by spraying 70% ethanol and opened using a flame 

sterilized scissor. Appropriate dilutions were performed using 0.1% PBS and 0.1 ml of the sample 

was spread plated on Listeria selective Modified oxford agar (MOX, Becton, Sparks, MD) for all 

profiles. The plates were incubated at 37ºC for 48 h and bacterial colonies were counted and 

reported as log10 CFU/ml.  

Results and Discussion 

Table 4.2 shows the parameters measured for plain, sugared, and salted egg yolk in this study. 

Figures 4.1, 4.2 and 4.3 show the results from the dynamic model validation for three profiles of 

low (0-10ºC), ambient (10-25ºC) and high (25-40ºC) temperatures, respectively. Figure 4.1 depicts 

underprediction in egg yolk in low temperature profile when an average prior physiological stage 

(ℎ𝑜) value of 2.46 was used from primary modeling. However, when ℎ𝑜= 0.01 was used, the 

prediction curve changed significantly, and lies close to the observed population density curve.  

Similar trends were observed in ambient and high temperature profiles. In figure 4.2, the prediction 

curve follows the observed population density closely when ℎ𝑜 was fixed at 0.01, similarly in 

figure 4.3, the prediction curve was observed in close proximity to the observed population density 

curve at ℎ𝑜 = 0.01. These findings indicate a possible difference between initial physiological 

conditions of the bacterial cells before inoculation. Similar results were obtained by Koseki and 
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Isobe, (2005), when modeling the growth of Escherichia coli O157:H7, Salmonella spp., and 

Listeria monocytogenes  on iceberg lettuce in dynamic temperature conditions, where the model 

vastly overpredicted the growth of all three pathogens. The possible reason for this, as suggested 

by Bovill et al., (2000), is that the lag phase depends on prior physiological state of the bacteria 

which, in turn, is dependent on previous environment of the cells and cannot be estimated by data 

collection in other independent conditions in the lab such as at isothermal temperatures. Baranyi 

(2002) emphasized the need for a mathematical model to independently determine dynamics of 

bacterial cells. 

In case of 10% sugared and salted egg yolk curves, which were plotted with the plain egg yolk 

curves for comparison purposes, sugared egg yolk shows better proximity than plain egg yolk 

between observed and predicted L. monocytogenes populations at ℎ𝑜 = 2.46 in ambient and high 

temperature profiles. However, at low temperature, observed L. monocytogenes population in 

sugared egg yolk again started deviating from predictions. Salted egg yolk showed no growth in 

low temperature conditions and a decline in L. monocytogenes concentration at ambient and high 

temperatures, which is not unexpected, given the average water activity of 0.83 in salted yolk 

which does not assist in bacterial growth (Farber et al.,1992). 

The APZ method was employed to study the difference between predictions and observations in 

the validation study, as shown in figures 4.4 and 4.5. It was observed that 14 out of 17 from the 

low temperature, 13 out of 16 from ambient, and 15 out of 16 prediction errors (PE) from high 

temperature profile were within the acceptable range of 0.5>Prediction Error>-1.0, at ℎ𝑜 = 0.01. 

For a model to be considered acceptable, 70% of the PE need to be within the APZ (Oscar, 2005). 

Similar results have been observed by Juneja et al., (2022) when using APZ analysis. At ℎ𝑜 =
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2.46, majority of the values from the low temperature and approximately one third from the 

ambient and high temperature profile lie outside the APZ. Table 4.3 represents Af and Bf values 

from the validation profiles. Oscar, (2005) and Ross, (1996) suggested that Bf values between 0.7 

and 1.15 can be interpreted as acceptable when describing a pathogen growth. The Af values 

ranged from 1.05 to 1.08 and Bf from 0.99 to 1.02 for ℎ𝑜 = 0.01 in all three profiles, indicating 

concordance between of the model predictions and observations. 

CONCLUSION 

The models developed in this study can predict the growth of L. monocytogenes in varying 

temperature conditions that can possibly be encountered by egg yolk during transport and storage. 

The pathogen is found to be growing fast in egg yolk, reaching maximum population densities in 

each temperature profile. Along with that, the comparison studies done with sugared and salted 

egg yolk provides some insight into the shelf life of these products at dynamic temperatures where 

sugared egg yolk is found to be highly susceptible to bacterial growth once contaminated. On the 

other hand, salted egg yolk is established as a highly sheltered food from the bacterial activity. The 

disagreement observed between predicted and observed L. monocytogenes populations in egg yolk 

warrant further research to analyze the possible causes. The products used in this study were fresh 

with no preservatives added to extend shelf life, however the results could vary in case of any 

addition of preservatives like potassium sorbate which necessitate future studies.The general 

comparison between L. monocytogenes activity in salted, sugared, and plain egg yolk in validation 

profiles developed for plain egg yolk suggest further exploring separate dynamic modeling for 

these two products. This could aid in the successful implementation of those predictive models for 

egg processors. 
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Table 4.1.  Sampling frequency at validation profiles 

 

 

 

 

 

 

 

 

 

 

 

 

 

Product Validation profile (ºC) Time Intervals 

Plain egg yolk Low temperature Every 24 hours up to 504 hours 

 Ambient temperature Every 12 hours to 144 hours 

 High temperature Every 4 hours up to 60 hours 

Salted egg yolk Low temperature Every 72 hours up to 936 hours 

 Ambient temperature Every 24 hours up to 336 hours 

 High temperature Every 4 hours up to 68 hours 

Sugared egg yolk Low temperature Every 48 hours up to 600 hours 

 Ambient temperature Every 12 hours up to 144 hours 

 High temperature Every 4 hours up to 68 hours 
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Table 4.2. pH, Water activity  and Total solids (%) of various batches of egg yolk used for 

different dynamic profiles. 

 

Batch  Product pH* Water activity * Total solids (%) * 

1 Plain egg yolk 6.38±0.04 0.97±0.00 64.91±0.16 

2 Plain egg yolk 6.74±0.13 0.96±0.00 64.43±0.60 

3 Plain egg yolk 6.27±0.00 0.97±0.00 64.61±0.28 

1 Sugared egg yolk 6.39±0.02 0.94±0.01 62.48±0.32 

2 Sugared egg yolk 6.62±0.18 0.95±0.00 62.89±0.42 

3 Sugared egg yolk 6.20±0.00 0.94±0.00 62.79±0.50 

1 Salted egg yolk  6.24±0.02 0.83±0.01 62.31±0.30 

2 Salted egg yolk  6.19±0.03 0.83±0.01 62.70±0.19 

3 Salted egg yolk  6.02±0.02 0.82±0.01 62.90±0.32 

*Mean values standard deviation 
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Figure 4.1. Validation of dynamic growth model of L. monocytogenes in egg yolk at low 

temperature profile. 

     : Prediction line at ℎ𝑜 = 0.01, ◯: observed growth in plain egg yolk 

                        : Prediction line at ℎ𝑜=2.46, ✖️ : observed growth in sugared egg yolk 

    ◊ : observed growth in salted egg yolk, ------: temperature curve 
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Figure 4.2. Validation of dynamic growth model of L. monocytogenes in egg yolk at ambient 

temperature profile. 

     : Prediction line at ℎ𝑜 = 0.01, ◯: observed growth in plain egg yolk 

                        : Prediction line at ℎ𝑜=2.46, ✖️ : observed growth in sugared egg yolk 

   ◊ : observed growth in salted egg yolk, ------: temperature curve 
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Figure 4.3. Validation of dynamic growth model of L. monocytogenes in egg yolk at high 

temperature profile. 

     : Prediction line at ℎ𝑜 = 0.01, ◯: observed growth in plain egg yolk 

                        : Prediction line at ℎ𝑜=2.46, ✖️ : observed growth in sugared egg yolk 

  ◊ : observed growth in salted egg yolk, ------: temperature curve 
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Figure 4.4. Acceptable prediction zone (APZ) analysis of prediction error for growth of L. 

monocytogenes in egg yolk for three different temperature profiles at ℎ𝑜 = 0.01. 
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Figure 4.5. Acceptable prediction zone (APZ) analysis of prediction error for growth of L. 

monocytogenes in egg yolk for three different temperature profiles at ℎ𝑜 = 2.46. 
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Table 4.3.  Accuracy factor (Af) and Bias factor (Bf ) values at three different temperature profiles. 

Profile Title ℎ𝑜=0.01 ℎ𝑜=2.46 

0-10ºC Af 1.08 1.25 

Bf  1.00 0.79 

10-25ºC Af 1.05 1.13 

Bf 1.02 0.92 

25-40ºC Af 1.05 1.12 

Bf 0.99 0.90 
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CHAPTER 5 

OVERALL CONCLUSIONS 

In this study, the growth of L. monocytogenes in dynamic temperature conditions in egg yolk was 

modeled and validated. Based on the parameters set in this study the following was concluded: 

1. An increase in maximum specific growth rate and a decrease in lag phase duration of L. 

monocytogenes in egg yolk was observed with an increase in temperature till the optimum 

temperature of growth was achieved. 

2. The predictive models developed were acceptable with all goodness of fit parameters falling 

within acceptable ranges. These models can be used in predicting L. monocytogenes growth in 

egg yolk in case of temperature deviations in the supply chain.  

3. The growth rates observed in this study highlight the importance of preventing any cross-

contamination with L. monocytogenes as even at low initial populations and low temperatures, 

L. monocytogenes populations grew to the maximum population density. 
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CHAPTER 6 

FUTURE RESEARCH  

Further research can be conducted to observe the growth of L. monocytogenes in egg yolk 

supplemented with various shelf-life extending preservatives like potassium sorbates to further 

evaluate the safety of egg yolk against pathogen activity. Additionally, the effects of other non-

pathogenic foodborne bacteria on the growth of  L. monocytogenes could also be studied to 

determine if non-pathogenic foodborne bacteria compete with L. monocytogenes for nutrients and 

thus help diminish its growth. The general comparison between L. monocytogenes activity in 

salted, sugared, and plain egg yolk in validation profiles developed for plain egg yolk suggests 

further exploring separate dynamic modeling for these two products. This could aid in the 

successful implementation of those predictive models for egg processors.  
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