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ABSTRACT 

 

USDA reports are highly informative and valued by market participants. Markets quickly absorb 

their information, and exhibit volatility spikes following report announcements that dissipate 

quickly (Adjemian and Irwin ­ 2018). A government shutdown in January 2019 prevented the 

USDA from publishing information about the situation and outlook for major U.S. agricultural 

commodities. I show that, as a result, Chicago Mercantile Exchange Board of Trade markets for 

corn and soybeans experienced heightened market uncertainty, elevating the cost of managing 

risk using options. Having established the importance of government information, I decompose 

ending stocks forecast errors into errors of the other supply and demand components using a 

Machine Learning (ML) algorithm. The results show that export and production misses are the 

major contributors to ending stocks projection errors. Lastly, using past yield shocks as 

instruments to endogenous futures prices, I estimate a supply elasticity for corn at 0.26 percent. 

Recently, due to the COVID-19 pandemic, demand for ethanol plummeted – resulting in an 



inward shift in the demand curve for corn. Consequently, my analysis shows that corn producers 

suffered losses worth $5.4 billion, 27% lower compared to the actual payments USDA made 

under Coronavirus Food Assistance Program (CFAP). Moreover, all my estimates suggest that 

the USDA was able to fully compensate producers for any losses they faced due to demand 

reduction. 
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CHAPTER 1 

INTRODUCTION 

 

Agricultural markets are characterized by volatile supply due to weather patterns, crop 

diseases, and pests, and therefore volatile prices. Given that regularity, to assist market participants 

the U.S. Department of Agriculture (USDA) has for decades provided the public with price, 

demand, and supply forecasts for major agricultural commodities over each marketing year. These 

reports play a key role in setting expectations and guiding private production, consumption, and 

inventory decisions along the supply chain. Markets react to their news. Isengildina-Massa et al. 

(2008) find that WASDE reports significantly impact corn and soybean futures markets. Adjemian 

(2012) demonstrates that futures prices rapidly incorporate government information following the 

publication of these reports. Irwin, Gerlow, and Liu (1994) and Isengildina-Massa et al. (2006) 

establish how market participants consider USDA forecasts as benchmarks while making supply 

chain decisions. Isengildina-Massa et al. (2021) show that USDA’s January report clusters, which 

include final forecasts for several commodities’ marketing year, have a significant impact on 

nearby futures prices.  

 

During an appropriations lapse in 2013, USDA suspended its October World Agricultural 

Supply and Demand Estimates (WASDE) report. Adjemian et al. (2018) conclude that corn and 

soybean markets did not experience normally expected changes in prices and reductions in implied 

volatility (IV) around the release of the USDA information. As a result, market participants had 
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less information with which to plan or conduct their operations, and likely faced increased hedging 

costs. In this first chapter, I offer an obvious extension of that work and study the government 

shutdown in January 2019, which likewise forced USDA to suspend its publication of various 

reports, including its normally-scheduled WASDE, Crop Production, and Grain Storage releases. 

I explore its consequences for corn and soybean markets, and quantify how the price of managing 

risk using options increased due to the additional commodity market uncertainty caused by the 

missing reports. These findings make a policy-relevant case for the continued release of public 

information to align market expectations. 

 

The second chapter deals with decomposing the source of errors in commodity demand & 

supply forecasts. Ending stocks are among the most important balance sheet forecasts because they 

provide an estimate of the end-of-marketing-year inventory of a particular commodity, 

summarizing supply and demand outlook. Anticipated ending stocks levels guide production and 

use plans, influence carrying costs, impact prices paid to farmers, and influence import and export 

decisions. Overestimates (underestimates) of ending stocks could lower (higher) producer prices 

and distort storage and production signals. Understanding the source of errors in ending stocks 

projections will help organizations like USDA understand and perhaps minimize their misses if 

they are able to make improvements to forecasting techniques. In the chapter, I decompose ending 

stocks forecast errors into forecast misses for the component demand and supply-side variables. I 

use machine learning models to handle multicollinearity and non-linearities in the data. My results 

underscore the importance of production and foreign trade activities to ending stocks misses.   
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In the third chapter, I intend to estimate the price elasticity of supply for agricultural 

commodities. Large, recent negative shocks such as (1) the trade war effect on soybean exports, 

and (2) COVID-19's destruction of the demand for biofuels—which most directly affected corn— 

may reveal new portions of commodity supply curves. Understanding and quantifying these 

elasticities is important to policy formation and analysis, especially since they were used to 

generate remunerative payments to affected producers. I exploit USDA's twice-annual plantings 

forecasts (in March and again in June) alongside expected price changes to estimate these 

elasticities. Fortuitously, the COVID-19 shock occurred between the periods during which the data 

for these 2020 projections was collected. With these elasticities, I forecast planting behavior and 

farmer returns in the absence of the COVID shock, and compare the realized damage it did to 

producers to the payments the government made.  
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CHAPTER 2 

THE 2019 GOVERNMENT SHUTDOWN INCREASED UNCERTAINITY IN MAJOR 

AGRICULTURAL COMMODITY MARKETS1 

 

  

 
1 Goyal, R., and M. K. Adjemian. 2021. Food Policy. 102:102064. 

Reprinted here with permission of the publisher 
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Abstract: 

In January 2019, a government shutdown prevented the U.S. Department of Agriculture from 

publishing information about the situation and outlook for major U.S. agricultural commodities. 

We show that, as a result, Chicago Mercantile Exchange Board of Trade markets for corn and 

soybeans experienced heightened market uncertainty, elevating the cost of managing risk using 

options. We use historical options data to estimate that, on the first day of trading following the 

normally scheduled USDA publication time, the additional commodity market uncertainty caused 

by the government shutdown increased the price of managing risk using ATM corn and soybean 

options by additional 2.95% and 1.66%, respectively for corn and soybeans, using an approach 

that assumes a normal January report impact. Using a different counterfactual approach–

assuming that the observed, abnormally large implied volatility reduction following the February 

2019 publication would have been experienced in January, we find that the increase in risk 

management costs due to missing information was actually about 11.5% higher for corn and 4.4% 

higher for soybeans. 

2.  

2.1.  Introduction 

For decades, USDA has published information about the market situation for a wide range of 

domestic commodities and has estimated the elements of supply and demand for major agricultural 

commodities both in the United States and around the world. USDA publishes these reports free 

of charge in order to align market expectations, resolve uncertainty, and improve efficiency and 

economic activity in these markets. The most prominent examples of USDA reports include the 

World Agricultural Supply and Demand Estimates (WASDE), Grain Stocks, Crop Progress, Feed 

Outlook, Oil Crops Outlook, Crop Production, Acreage and Prospective Plantings (APP). 
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Market participants like farmers, elevators, commercial grain firms, and end­users rely on 

agricultural commodity futures and options markets to manage their business risks. Options 

strategies can limit potential losses, or provide additional income, depending on the side a trader 

decides to take – writer or purchaser. Information provided by USDA reports is closely followed 

by market participants and observers to make informed supply management and speculative 

decisions: realigning expectations about commodity market conditions, re­allocating resources, 

and maximizing their profitability. A growing empirical literature shows that these reports provide 

the market with important information, impacting prices and implied volatilities (IVs) at 

announcement time (see, e.g., Sumner and Mueller, 1989; McNew and Espinosa, 1994; 

Isengildina­Massa et al., 2008a and 2008b; Adjemian, 2012; Adjemian and Irwin, 2018; Ying, 

Chen and Dorfman, 2019). 

 

Indeed, recent work has shown that missing USDA reports may elevate uncertainty levels 

in agricultural markets. During an appropriations lapse in 2013, USDA suspended its October 

World Agricultural Supply and Demand Estimates (WASDE) report. Adjemian et al. (2018) 

concluded that corn and soybean markets did not experience normally expected changes in prices 

and reductions in implied volatility (IV) around the release of the USDA information. As a result, 

market participants had less information about planning or conducting their operations, and likely 

faced increased hedging costs. A natural extension of that work is to study the government 

shutdown in January 2019, which likewise forced USDA to suspend its publication of various 

reports, including its normally­scheduled WASDE, Crop Production, and Grain Storage releases. 

Once the 2019 shutdown ended, USDA published that information on February 8th, 2019, about a 

month later than in no shutdown years (USDA, 2019). The shutdown is, therefore, a natural 
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experiment that provides exogenous variation to study the impact of missing information on 

agricultural commodity markets. We exploit this natural experiment and study its consequences in 

this article. 

 

Figures 2.1 and 2.2 show how daily changes in the logarithm of IV (which, if they are 

small, approximate percent changes) for corn and soybeans, respectively, relate to USDA report 

publication days. In both charts, USDA publications tend to reduce IV levels, which we interpret 

as a decrease in market uncertainty about each commodity. Without accounting for any other 

factors (as we do later on in our regression framework), average WASDE report days correspond 

to a 3.4% daily reduction for corn, and a 3% reduction for soybeans. Average January report days 

(which include a WASDE, Crop Production, and Grain Stocks publication) occur alongside 3.6% 

and 2.7% IV decreases for corn and soybeans, respectively, while February WASDEs produce 

similar values of 2.8% and 1.4%. The figures also show that the February 2019 report—the first 

issued after the government shutdown that year resolved—coincides with a historically large 

reduction in IV. 

 

Figure 2.1: Corn: Daily change in log IV 
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Figure 2.2: Soybeans: Daily change in log IV 

 

Figure 2.3 plots the average pre­2019 path of log IV for CBOT corn in a 5­day window 

around the release of a January report against the actual log IV observed around (1) the 

originally­scheduled release date during the 2019 shutdown, and (2) the February 2019 report (the 

first that USDA published after the shutdown). The dotted line in figure 2.3 marks the normal, 

scheduled USDA WASDE and/or Grain Stock report release day. In general, USDA January 

announcements produce a sharp decline in CBOT corn implied volatility. Similarly, a sharp decline 

is also observed following the release of the February 2019 report. However, in January 2019 no 

such decline is observed, indicating that USDA’s failure to publish a report led to a higher level 

of uncertainty in the market than would have otherwise been observed. CBOT soybeans also 

exhibit similar patterns (see figure A2.1 in Appendix). In this paper, we estimate the degree to 

which missing government information increased uncertainty in major domestic commodity 

markets and its impact on market participants. 

 

Several important factors differentiate the 2013 and 2019 government shutdowns. The 

2013 shutdown prevented the publication of an October report during a relatively tranquil crop 

year. But the 2019 shutdown curtailed the release of a January report, and USDA publications 
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during that time are among the most important produced by the Department (e.g., Adjemian et al. 

2018). They provide the initial “final” production estimates for the forecasting cycle in the form 

of an annual summary and include one of the USDA’s quarterly reports of inventories, highly 

anticipated by traders since it signals crop disappearance and on­ and off­farm stocks levels at the 

State level— and January is the first stocks release to following the completion of both crop’s 

harvest. It is the only report day of the year that includes the simultaneous publication of both 

WASDE and Grain Stocks reports; generally, these are separated by about two weeks. Given the 

federal debt burden, it is likely that public budgetary pressures will increase in the future, so 

understanding how markets are affected by missing government information is an important area 

of study for both participants and policymakers. 

 

Figure 2.3: CBOT CORN: Indexed Logged IV Levels 
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Notes: The red dotted vertical line represents the trading when historic January USDA reports were 

released, the day when missing January 2019 USDA reports were scheduled for release, and the day when 

February 2019 USDA reports were published. The index log IV value = 100 on day T = ­5, or five trading 

days before relevant release day. 

 

Adjemian et al. (2018) suggest that the price of hedging is higher in the absence of the 

WASDE report. We quantify the additional risk management cost for at­the­money (ATM) options 

caused by missing public news.2 We also contribute to the literature by providing a full portrait of 

the impact of missing government information across moneyness levels. To construct the 

counterfactual for the estimated changes in IV if the January 2019 reports had been published on 

time, we use two measures: (1) the average change in IV around the release of pre­2019 January 

reports, and (2) the actual observed change in IV following the release of the next published report 

(i.e., in February 2019). We use the option vega, a measure of how much the price of an option 

changes conditional on a 1% change in implied volatility, to estimate the likely changes in options 

prices that would have occurred if the missing reports were published as originally scheduled. 

Given that the report was not released for several weeks, we later extrapolate those counterfactuals 

across the shutdown period to estimate the additional cost it posed to managing commodity risk 

using options. 

 

Risk averse commodity market participants with short positions (i.e., those with interest in 

selling the underlying commodity) can buy put options on futures contracts to hedge against the 

risk that prices fall; the option’s price is referred to as a premium. A put holder has the right to 

exercise the option–meaning that s/he can short a futures contract to the option writer at the strike 

 
2 An option is said to be at­the­money if its strike price is (nearly) equivalent to the price of the underlying 

security. These options only have time value and are usually the most highly traded. Corn ATM options 

accounted for 94.5% of the nearby option trade from 1/11/2019 – 1/25/2019. During the same period, Soybeans 

ATM options made up 91.1% of all nearby options traded in that market. 



 

11 

price. This becomes intrinsically valuable as the futures price falls below the strike price (plus the 

price of the option), since a profit can then be earned by taking a long at the lower price: selling 

high and buying low. If futures prices rise, or at least do not fall below the specified strike price, a 

put option would not become profitable. Since they provide the perspective of a short hedger, we 

use put options to evaluate the additional cost of managing risk due to publication curtailment of 

the January 2019 WASDE report.3 We control for the general market uncertainty caused by the 

government shutdown (and other phenomena in the world, including the ongoing trade war) using 

the Chicago Board Options Exchange Volatility Index (VIX), as well as standard trend, 

seasonality, and day­of­the­week effects. 

 

We estimate that, on the first day of trading following the normally scheduled USDA 

publication time, the additional commodity market uncertainty caused by the government 

shutdown increased the price of managing risk using ATM corn and soybean puts by an additional 

2.95% (95% CI: 2.938% ­ 2.97%) and 1.66% (95% CI:1.64% ­ 1.677%), respectively for corn and 

soybeans, using an approach that assumes a normal January report impact. Using a different 

counterfactual approach–assuming that the IV reduction following the February 2019 publication 

would have been experienced in January, we find that the increase in risk management costs due 

to the missing information was actually about 11.5% (95% CI: 10.97% ­ 11.8%) higher for corn 

and 4.43% (95% CI: 4.28% ­ 4.58%) higher for soybeans. We find significant but lower increases 

for deep out­of­the­money or in­the­money options for these commodities. 

 

 

 
3 We generate nearly identical results when we calculate these cost increases using ATM calls. 
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2.2. Background 

Every month USDA publishes a series of comprehensive reports defining the current situation and 

projections for supply and demand fundamentals in agricultural commodity markets. The World 

Agricultural Supply and Demand Estimates (WASDE) report provides a detailed balance sheet of 

variables for the agricultural commodity markets. WASDE is prepared by combining insights from 

several USDA agencies represented in the Interagency Commodity Estimates Committees 

(ICECs), chaired by the USDA World Agricultural Outlook Board (WAOB). ICECs relies on 

Foreign Agricultural Service (FAS) reports for overseas commodity market developments, the 

National Agricultural Statistics Service (NASS) for agricultural commodity and livestock 

projections, the Economic Research Service (ERS) for regional assessments, the Agricultural 

Marketing Service (AMS), and the Farm Service Agency (FSA) for market information and impact 

of domestic policies. ICEC committees generate consensus forecasts based on all these data 

sources. Since it contains highly market­sensitive information, WASDE is prepared under secure 

lock­up conditions and is released to all users simultaneously each month (Vogel and Bange, 

1999). 

 

Uncertainty about these fundamentals naturally decreases as the harvest comes in, and 

USDA updates its projections. While the May WASDE report contains the first projections for the 

new marketing year, the first survey­based corn and soybean production forecasts are included in 

the August report (Vogel and Bange, 1999). January reports contain the final annual projections 

each year. Between February and April, USDA makes only minor changes to its reports. NASS 

also issues Grain Stock reports, providing an extensive analysis of the on­ and off­farm stock 

positions for major crops. Grain Stocks reports are released four times a year (January, March, 
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June, September). Moreover, the January Grain Stocks report and the WASDE report are released 

concurrently (Adjemian et al., 2018).  

 

Many researchers have found USDA reports affect market expectations of prices and 

uncertainty. Sumner and Mueller (1989) show that market prices change following the release of 

USDA harvest forecasts. McNew and Espinosa (1994) report reductions in market uncertainty 

following report release. Isengildina­Massa et al. (2008a, 2008b) show that corn and soybean 

markets react to announcement days, reflected in increased futures return variance and reduced 

options IV. Adjemian (2012) shows that agricultural commodity futures markets rapidly 

incorporate new information, confirming the persistence of impact across contract positions. 

Following report release, futures markets experience heightened intraday trading volumes and 

volatility dissipating in a few minutes (Adjemian and Irwin, 2018). 

 

Over the last decade, private market advisory alternatives have grown, and so has their 

projections’ accuracy. Xiao et al. (2014) find that the accuracy of private forecasts is highest for 

wheat and lowest for soybeans. Recent literature suggests that, even in the presence of private 

forecasts, USDA reports are informative (Ying, Chen, and Dorfman, 2019; Karali et al., 2019). 

Karali et al. (2019) observed significant futures commodity price movements in response to market 

surprises, even for the reports most likely affected by the availability of private sources of 

information. As freely­available products of the federal government, USDA commodity reports 

are publicly­provided goods, and they have a strong track record of forecast reliability. Private 

forecasts, on the contrary, are not freely accessible. Even in the presence of private sources of 
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information, many USDA reports remain highly valued and trusted by end users (Karali et al., 

2019, Isengildina­Massa et al., 2020). 

 

2.3. Data 

Several popular techniques are used to represent backward-looking, historical market volatility 

(e.g., GARCH). When making plans, market participants also take into consideration market 

expectations. Implied volatility, a forward-looking measure, represents the volatility expected over 

the remaining life of the related futures contract. IV is also a basic component of option premia. 

We draw historical ATM options IV data for individual CBOT corn and soybean contracts from 

Bloomberg, from 1995 to 2019. Corn contracts deliver in March, May, July, September, and 

December, while soybean futures do so in January, March, May, July, August, September, and 

November. To form a continuous series of close­to­close changes in implied volatility for each 

commodity, we rollover from the nearby to the next deferred contract fifteen days prior to the 

contract expiration month. Bloomberg Listed Implied Volatility Engine (LIVE) IV values are 

calculated in a similar way to the inversion of the canonical Black­Scholes formula. It is important 

to note that researchers have identified limitations associated with the Black­Scholes formula, 

including the assumptions of lognormality of underlying asset prices, constant volatility over time, 

and zero transaction costs. Beckers (1980) and Wiggins (1987) suggest that these assumptions 

result in higher Black­Scholes prices for out­of­money options and lower prices for in­the­money 

and at­the­money options. However, as suggested in Whaley (1986) and Barone­Adesi and 

Whaley (1987), the difference between the prices derived from the Black­Scholes and an 

alternative option valuation model is less than 1% of the actual price. Recently, Jankova (2018) 

suggests that irrespective of the shortcomings of Black­Scholes method, it is still regarded as a 
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universal pricing model. Moreover, several papers use IV as a variable in their regression models 

(see, e.g., Adjemian et al., 2018, and Davidson et al., 2001). 

 

We match the change in implied volatility with the historical WASDE and Grain Stocks 

report announcements; the Cornell University Library maintains these data. For both commodities, 

figures A2.2 and A2.3 in the appendix compare kernel density plots based on the IVs observed on 

USDA announcement days relative to other days. Unfortunately, Bloomberg does not offer 

historical ATM options implied volatility data are not available by moneyness, or the ratio of the 

strike price of the option in question to the ATM strike levels. Therefore, to study the impact of 

missing information by moneyness levels, we extract Bloomberg data on 30­day implied volatility 

by moneyness for corn and soybeans from 2005 to 2019 (those data are not available from 

1995­2004, the time periods of analysis do not match exactly). The 30­Day IV refers to the 

forecasted daily implied volatility for the coming 30 days. In this way, it is similar to the way the 

VIX is constructed, since that measure represents the forecasted daily implied volatility associated 

with the S&P 500 index over the next thirty days. Table 2.1 provides summary statistics for each 

of the series used in our analysis. Comparing the daily change in IV for ATM options across the 

two data sets we used (which differ by time period and unit of analysis: contract level versus 

30­day), the means, medians, and standard deviations are approximately the same for both 

commodities. Similarly, within each commodity, the statistics in the table for the daily change in 

IV are quite similar across moneyness levels. 

 

USDA published a total of 398 WASDE and Grain Stocks reports (298 WASDE, 100 Grain 

Stocks reports) on 373 announcement days from January 1995 ­ February 2019. On 25 of those 
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announcement days, WASDE and Grain Stocks reports were released concurrently. To control for 

general market uncertainty and investor sentiment, we collect CBOE Volatility Index (VIX) data. 

We draw options vegas from DataStream, a database maintained by Thomson Reuters 

 

Table 2.1: CBOT Corn and Soybeans: Change in Daily IV 

Note: ∆ IV is computed as the daily difference between the logged IVs. There are a total of 6133 

and 6115 observations for corn and soybeans respectively from 1995 to 2019. From 2005 to 2019, 

there are 3494 observations for corn and 3441 observations for soybeans. 

 

2.4. Methodology 

2.4.1. Regression Models 

In this paper, we estimate how implied volatility for major agricultural futures contracts changed 

following USDA report announcements and calculate the daily change in implied volatility as: 
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 ΔIV𝑖,𝑡 = log(𝐼𝑉𝑖,𝑡) −  log (IV𝑖,𝑡−1)    (1) 

 

Where the commodity (corn or soybeans) is indexed by i, and the trading day is indexed 

by t. The logarithmic transformation helps to normalize the data, and differencing ensures 

stationarity. Our basic regression model is specified as: 

 

ΔIV𝑖,𝑡 = 𝛽0 + 𝛽1ΔIV𝑖,𝑡−1 + 𝛽2𝐷𝑊𝐴𝑆𝐷𝐸 + 𝛽3𝐷𝐺𝑟𝑎𝑖𝑛 𝑆𝑡𝑜𝑐𝑘𝑠

+ 𝛽4𝐷𝑃𝑟𝑒−2019 𝐽𝑎𝑛 𝑊𝐴𝑆𝐷𝐸 + 𝛽5𝐷𝑃𝑟𝑒−2019 𝐹𝑒𝑏 𝑊𝐴𝑆𝐷𝐸

+ 𝛽6𝐷𝐽𝑎𝑛 19 𝑊𝐴𝑆𝐷𝐸 + 𝛽7𝐷𝐹𝑒𝑏 19 𝑊𝐴𝑆𝐷𝐸 + 𝛽8Δ𝑉𝐼𝑋𝑡 + 𝛽𝑀𝑀

+ 𝜖𝑖,𝑡    

(2) 

where VIX refers to CBOE’s Volatility Index, IV is the implied volatility for commodity i 

on day t. M is a vector of other regressors including month and day­of­week dummies and time 

trends. We specifically include dummies for WASDE and Grain stock report release days (DWASDE 

& DGrain Stocks), for all trading days that include WASDE, and Grain stock reports released in 

January and February (DPre−2019 Jan WASDE & DPre−2019 Feb WASDE), for the missing January 2019 reports 

(DJan19 WASDE) and for the reports released in the following month (DFeb19 WASDE). 

 

Because the residuals from (2) are characterized by auto­correlation and heteroskedasticity 

(as discussed in detail in the next section), we also estimate GARCH models. In doing so, we 

attempt to capture the volatility clustering present in the IV series. Figure A2.4 plots the (discrete) 

first differenced logged daily IV series for nearby Chicago Mercantile Exchange (CME) corn 

contracts, from 1995­2019; it is clearly characterized by volatility clusters, interspersed with 

relatively tranquil periods. Our GARCH (1,1) model with ARMA (1,1) specification is as follows: 
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ΔIV𝑖,𝑡 = 𝛽0 + 𝛽1ΔIV𝑖,𝑡−1 + 𝛽2𝐷𝑊𝐴𝑆𝐷𝐸 + 𝛽3𝐷𝐺𝑟𝑎𝑖𝑛 𝑆𝑡𝑜𝑐𝑘𝑠

+ 𝛽4𝐷𝑃𝑟𝑒−2019 𝐽𝑎𝑛 𝑊𝐴𝑆𝐷𝐸 + 𝛽5𝐷𝑃𝑟𝑒−2019 𝐹𝑒𝑏 𝑊𝐴𝑆𝐷𝐸

+ 𝛽6𝐷𝐽𝑎𝑛 19 𝑊𝐴𝑆𝐷𝐸 + 𝛽7𝐷𝐹𝑒𝑏 19 𝑊𝐴𝑆𝐷𝐸 + 𝛽8Δ𝑉𝐼𝑋𝑡 + 𝛽𝑀𝑀

+ 𝜖𝑖,𝑡 + 𝜖𝑖,𝑡−1   

𝜖𝑖,𝑡 = 𝜎𝑖,𝑡 𝑍𝑖,𝑡 

𝜎𝑖,𝑡
2 = 𝜔 + 𝛼𝜖𝑖,𝑡−1

2 + 𝛽𝜎𝑖,𝑡−1
2 + 𝛾𝑅𝑅 

𝑍𝑖,𝑡 ~ 𝑁(0,1) 

(3) 

Where, ω, α and β are GARCH parameters. R is the vector of the same regressors that are 

added to the mean equation. Zi,t is a random variable with a standard normal distribution. In order 

to estimate the change in IV that would have occurred had the January 2019 reports been published 

on time, we construct two counterfactual measures: 

• the normal change exhibited by the IV series in response to pre­2019 January reports = β2 + β3 

+ β4 

• The actual observed change in IV following the release of the next published report (i.e., 

February 2019), compared to the impact of a pre­2019 February release = β7 − β5 

 

Using the variance covariance matrix of the parameters estimated from the regression 

framework, we apply the delta method to construct standard errors for the two counterfactuals. We 

also report Hodrick (1992) standard errors for regression models (1) and (2), which impose the 

null hypothesis of no serial correlation but do not impose conditional homoskedasticity 

. 
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2.4.2. Counterfactual-Implied Options Price 

To compute the increase in put option risk management costs, we calculate the counterfactual 

implied put options price, i.e., 𝑃𝑡,𝑐, where t refers to the day scheduled for the publication of the 

January 2019 WASDE report, and c refers to a counterfactual (either 1 or 2), using the following 

approach: 

 𝑃𝑡,𝑐 = 𝑃𝑡,𝑏 + ΔIV𝑡,𝑐 ∗ 𝑣    (4) 

 

 ΔIV𝑡,𝑐 = 𝐼𝑉𝑡−1,𝑏 ∗ (1 + 𝑐) ∗ (1 + 
𝐼𝑉𝑡,𝑏 −  𝐼𝑉𝑡−1,𝑏

𝐼𝑉𝑡−1,𝑏
) −  𝐼𝑉𝑡−1,𝑏    (5) 

𝑃𝑡,𝑏  is the observed put options price on the (missing) report day, and the subscript b refers 

to an observed value. 𝐼𝑉𝑡−1,𝑏  is the IV observed a day prior. The observed options vega is 

represented by v, and Δ𝐼𝑉𝑡,𝑐is the difference between the counterfactual IV (adjusted by the actual 

observed change in IV from t­1 to t.) and the previous days IV. 

 

2.4.3. Moneyness-level Analysis using 2005-2019 30-Day Data 

To investigate the impact of the missing reports across moneyness levels, for each commodity,  we 

construct a 5x1 IV vector of daily changes in the 30­day IV, for 90%, 95%, 100%, 105%, and 

110% moneyness, as our dependent variable and estimate a dynamic conditional correlation (DCC) 

GARCH model (Engle, 2002) to generate the marginal effects of the missing report. We take this 

approach because for each IV vector the underlying commodity is the same. Since each series is 

influenced by the same supply demand dynamics, like weather shocks and the general level of 

uncertainty in the markets, there is a high correlation among each component in the vector. A DCC 

GARCH model is flexible to those relationships while accounting for serial correlation and 

conditional heteroskedasticity. 
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2.5. Results and Discussion 

2.5.1. Regression Models 

Table 2.2 summarizes the results of the CBOT corn market IV models we estimate to measure the 

impact of missing government data. Model (1) presents the OLS regression results with no month 

and day­of­week effects (i.e., we do not include any dummies for month or weekdays). After 

controlling for other factors, the model associates historical (1995­2018) January WASDE and 

Grain­stock reports (reported in the table as counterfactual 1) with a highly statistically significant 

decline in daily IV of about 3.7%. Historic February WASDE reports have no significant effect on 

IV, while the release of the February 2019 WASDE report carried a substantial IV decline, after 

controlling for other factors. Under counterfactual 2, we estimate the impact of missing 

information is even larger: about13.8%. Model(2)controls for additional month and day­of­week 

effects, but produces no significant change in any of the coefficients; indicating that the results are 

robust to these effects. 

 

However, both models (1) and (2) suffer from auto­correlation – errors are serially 

correlated, as observed from the LM and LBP test statistics in the table. LM tests for the null 

hypothesis of no serial correlation. LBP tests for the null hypothesis of independence by testing 

overall randomness. We, therefore, estimate a standard GARCH (1,1) (Bollerslev, 1986) an 

exponential GARCH (1,1) model (Nelson, 1991) with ARMA (1,1) process, respectively referred 

to as models (3) and (4) in the table. Both make only minor changes to the counterfactual values, 
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and the estimates remain highly statistically significant. We use Akaike Information Criterion 

(AIC) and Bayesian Information Criterion (BIC) values to compare different models.4 

 

Figure 2.4: Corn: Counterfactual 1 and 2 Bands 

 

Note: CF1 refers to counterfactual 1 and CF2 refers to counterfactual 2 

 

Model (4) exhibits the lowest AIC and BIC values, so it is preferred according to model 

selection criteria. As a result, we report headline point estimates and confidence intervals from this 

model, and refer to it as preferred, although we note that at the 95% confidence level, Models (1) 

– (4) produce statistically indistinguishable results for each counterfactual, as shown graphically 

in figure 2.4. The similarity of our findings for each counterfactual across model specifications is 

a sign of the robustness of our results. 

 
4 AIC measures the relative distance between the fitted likelihood function and the true (unknown) likelihood 

function, while BIC estimates the posterior probability of the estimated model being true; lower AIC and BIC 

values are preferred. 



 

22 

 

Table 2.2: Factors that Affect the Daily Change in Log Implied Volatility for CBOT 

Corn, 1995­2019 

 

Note: Robust standard errors are reported in parentheses. Counterfactual 1 = (B) + (C) + (D), and 

Counterfactual 2 = (G) ­ (E). Standard errors for both are calculated using the Delta Method. Squared Brackets 

report Hodrick (1992) standard errors. These standard errors do not change the significance/ statistical importance 

of counterfactuals. 
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Table 2.3: Factors that Affect the Daily Change in Log Implied Volatility for CBOT 

Soybeans, 1995-2019 

 

Note: Robust standard errors are reported in parentheses. Counterfactual 1 = (B) + (C) + (D), and Counterfactual 2 

= (G) ­ (E). Standard errors for both are calculated using the Delta Method. Squared Brackets report Hodrick (1992) 

standard errors. These standard errors do not change the significance/ statistical importance of counterfactuals. 
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Figure 2.5: Soybeans: Counterfactual 1 and 2 Bands 

 
Note: CF1 refers to counterfactual 1 and CF2 refers to counterfactual 2 

Table 2.3 provides the same results for CBOT soybeans. To correct for serial correlation 

in OLS regression models (1) and (2), we estimate standard GARCH (1,1) and exponential 

GARCH (1,1) models with ARMA (3,1) processes. Across model specifications, we estimate the 

counterfactual 1 mean impact on IV in the range of negative 2.6% ­ 3.1%, and counterfactual 2 as 

a daily decline in IV of between 5.1% ­ 5.5%. As in the case of corn, our eGARCH model is 

preferred according to both AIC and BIC. Once again, however, these results are statistically 

indistinguishable at the 95% confidence level, as shown in figure 2.5. 

 

The tables and figures above compare the two counterfactual values we estimate. Recall 

that the first approach reconstructs what likely would have been observed had the market behaved 

as it normally does on a January release day. The second counterfactual measures the difference 
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between the observed February reaction by the markets against what would normally be expected 

in February. Because the latter involves an actual market response, it could be interpreted as more 

realistic. However, although it is stronger at the mean for both commodities, and statistically 

stronger in the case of corn, we hesitate to make that case because the February 2019 report 

contained information that had always previously been published in January. As a result, we 

generate both counterfactuals in order to bound the market effect of the shutdown­generated 

disruption of the normal flow of government news about commodities. Figures 1.4 and 1.5 depict 

our estimates of the 95% confidence intervals around both counterfactuals, for corn and soybeans, 

respectively. Both approaches are robust across four different model specifications, but 

counterfactual 2 is clearly larger (in an absolute sense) for corn. Confidence bounds overlap for 

counterfactuals 1 and 2 for soybeans, indicating that they are not distinguishable, statistically 

 

Our results are consistent with the literature’s findings. For example, Adjemian et al. 

(2018), using data from 1995­2015, indicate that January WASDE reports are associated with a 

5.75% (95% CI: ­10.84%, ­0.65%) reduction in uncertainty for corn and a 2.2% (95% CI: ­7.93%, 

3.48%) reduction for soybeans. Our findings are statistically indistinguishable from theirs, which 

is expected given that our study periods mostly overlap. Likewise, Isengildina­Massa et al. (2008a) 

study commodity markets over 1985­2002 and show that January WASDE report sessions 

coincide with a 0.5 percentage point and a 0.86 percentage point reduction in IV for corn and 

soybeans, respectively. Our findings are in the same direction, even though our study period 

doesn’t share much overlap. 
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2.5.2. Counterfactual-Implied Options Price 

Following the results in tables 2.2 and 2.3, we approximate the counterfactual price of 

ATM corn and soybean put options due to publication curtailment of the January 2019 WASDE 

report. We estimate that, on the first day of trading following the normally scheduled USDA 

publication time, the additional commodity market uncertainty caused by the government 

shutdown increased the price of managing risk using ATM corn and soybean puts by an additional 

2.95% per contract per bushel5 (95% CI: 2.938% ­ 2.97%) and 1.66% per contract per bushel (95% 

CI:1.64% ­ 1.677%), respectively for corn and soybeans, using an approach that assumes a normal 

January report impact. Using a second counterfactual approach–assuming that the IV reduction 

following the February 2019 publication would have been experienced in January, we find that the 

increase in risk management costs due to missing information was actually about 11.54% per 

contract per bushel (95% CI: 10.97% ­ 11.80%) higher for corn and 4.43% per contract per bushel 

(95% CI: 4.28% ­ 4.58%) higher for soybeans. 

 

2.5.3. Moneyness-Level Analysis using 2005-2019 30-Day IV Data 

Options can be characterized by their moneyness levels, or the ratio of the strike price of 

the option in question to the ATM strike. An ATM option only has time value, because its strike 

price is (nearly) equivalent to the price of the underlying security. In the money (ITM) options 

possess both intrinsic value (or monetary value), since they can be exercised profitably 

immediately, and time value, since they have the possibility of becoming even more profitable 

 
5 For example, our mean estimate for corn counterfactual 2 is ­12.14%. Substituting this and an observed 

v=0.511, IVt−1= 15.22%, IVt,b= 15.28%, and Pt,b = 8.875 cents per bushel into equations 4 and 5 generates the 

counterfactual options price of 7.96 cents per bushel. That compared to the observed price of 8.875 cents per 

bushel resulted in an 11.5% increase in ATM put options risk management cost. 
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with the passage of time. Out­of­the money (OTM) options have no intrinsic value but do possess 

time value. The trading volume of an option depends, to some extent, on the moneyness levels. 

ATM options are usually the most highly traded. Figure A2.5 in the appendix depicts trading 

volume data for the corn and soybeans options we studied, segregated by moneyness level, from 

January 11th, 2019 (the day when the missing reports were scheduled for publication) to January 

25th, 2019. For both the commodities, ATM options represent nearly all market trading interest 

during the period of observation, highlighting the usefulness of our approach. 

 

Implied volatility surfaces in commodity markets are generally skewed, and the impact of 

news may be affected by option moneyness. That is, deep out­of­the­money (OTM) or 

in­the­money (ITM) options, meaning those with strike prices associated with a very low or high 

probability of being executed, may be affected differently by news than ATM options. To explore 

this, we use the Bloomberg 30-day IV data at moneyness levels of 90%, 95%, 100%, 105%, and 

110%, for each commodity. The 30­Day IV refers to the forecasted daily implied volatility for the 

coming 30 days. It is similar to the way the VIX is constructed, since that measure represents the 

forecasted daily implied volatility associated with the S&P 500 index over the next thirty days. 

Due to data availability constraints, it is different from the IV values used for analysis in the 

previous section (There we use contract level IV). 

 

We estimate a multivariate dynamic conditional correlation (DCC) GARCH model ­ Engle 

2002 ­ (DCC(1,1) eGARCH(1,1) ARMA (1,1)).6 Tables A2.1 and A2.2 in the appendix provide 

 
6 We conduct a formal test for the relevance of DCC GARCH against a constant conditional correlation 

(CCC) GARCH model. For both the commodities, we reject the null hypothesis at 1% significance level, 

confirming the relevance of DCC GARCH model for our analysis. 
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the DCC GARCH outputs for the two commodities. The counterfactual 1 estimates for corn and 

soybeans are statistically significant, at 5% significance level, for all moneyness levels. For corn, 

counterfactual 2 is statistically significant at 10% significance level. For soybeans only ATM 

options have a statistically significant value (at 10% level) for counterfactual 2. 

 

To measure how the impact of the government shutdown and missing January 2019 reports 

affected options markets across moneyness levels, we use a cubic spline to interpolate the 

counterfactual values for the intervals between the counterfactual values we estimate at observed 

moneyness levels using a DCC GARCH model, shown as red dots in figures 2.6 and 2.7. The 

yellow line joining those dots are imputations estimated using a cubic spline method. We caveat 

this exercise by noting that splines pose risks, including over­fitting and deterioration of predictive 

ability in the tails of the distribution (Ruppert, 2002; Gauthier et al. 2020). 

 

Figure 2.6 provides the point estimate results and the 95 % confidence bands for 

counterfactual 1 for both corn and soybean across moneyness levels. ATM corn contracts 

experience the largest impact of government news (­7.4%, 95% CI: 4.5% ­ 10.3%), with smaller 

impacts estimated at other levels of option moneyness. Further, confidence intervals are narrower 

for deep OTM or ITM options and wider for other moneyness levels. Soybeans offer a smaller 

variation in marginal effects across different moneyness levels, but near­the­money options still 

display the maximum impact. Similar to corn, confidence intervals for soybeans are narrower 

towards both the ends of moneyness levels. Overall, for both the commodities, marginal effects 
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closely follow a convex function. ATM options are generally among the most heavily traded7, so 

they are highly sensitive to market uncertainty changes. Although our ATM results in figure 2.6 

and 2.7 are slightly smaller in absolute value than our findings in section 2.5.1, their similarity in 

magnitude and direction–despite being estimated using a different data set an over a different time 

period–offers a robustness check on our findings. 

 

Figure 2.6: IMPACT OF MISSING JANUARY 2019 REPORTS: Marginal Effects across 

Moneyness Levels (Based on Counterfactual 1) 

 

 

Figure 2.7 provides the same results for counterfactual 2 for both the commodities across 

moneyness levels. Once again, near­the­money corn and soybean contracts experience the largest 

impact of government news, and their similarity in to our ATM results in section 2.5.1, once again 

offers us a helpful robustness check on our analysis. 

 

 
7 As a result, we believe we capture the bulk of the observable risk management costs by focusing our analysis 

on the effect on ATM options. We are unable to observe trades that were not initiated due to increased costs 
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Based on the marginal effects from figure 2.6 and 2.7 and the actual IVs observed on each 

of these days across the moneyness level, we calculate the counterfactual IVs that would have been 

observed on January 11th 2019, if the missing reports had been published. Figures 2.8 and 2.9 

report our mean level results for corn and soybeans, respectively. We project that, had January 

2019 WASDE and Grain Stocks reports been published on time, each market would have 

experienced notable IV declines across moneyness levels. 

 

Figure 2.7: IMPACT OF MISSING JANUARY 2019 REPORTS: Marginal Effects across 

Moneyness Levels (Based on Counterfactual 2) 

 

 

2.6.Conclusion and Policy Implications 

USDA reports are highly informative and valued by market participants. Markets quickly 

absorb their information, and exhibit volatility spikes following report announcements that 

dissipate quickly (Adjemian and Irwin ­ 2018). A government shutdown in January 2019 prevented 

the USDA from publishing information about the situation and outlook for major U.S. agricultural 

commodities. As an exogenous shock, the shutdown presents a natural experiment to study how 
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markets behave in the absence of important government information about commodity market 

conditions. 

 

According to our results, corn and soybean markets in January 2019 did not experience 

reductions in uncertainty normally observed around the release of important government crop 

news. Uncertainty is an important factor in determining options values; more uncertainty raises 

their premia, all else equal. The economics literature documents a strong link between uncertainty 

and reduced economic vitality, raising concerning implications about our findings–were 

governments to curtail access to important supply and demand information for sustained periods. 

Hassett and Metcalf (2011) find that increases in tax uncertainty adversely impact capital 

formation. Nodari (2014) relates uncertainty over financial regulation to increases in the cost of 

borrowing. Baker et al., (2016), using a new measure of economic policy uncertainty, show that 

high policy uncertainty leads to lower investment rates and higher unemployment growth. 

 

Using volume data from the options markets, we us a conservative approach to estimate 

that, on the first day of trading following the normally scheduled USDA publication time, the 

additional commodity market uncertainty caused by the government shutdown increased the cost 

of managing risk with options by over $117,000 for corn and almost $37,000 for soybeans. 

Extrapolating this total over the shutdown period implies corn and soybean market costs of over 

$1.4 million and more than $938,000, respectively. Under our more aggressive counterfactual 

approach, we estimate the shutdown raised one­day risk management costs by about $425,000 for 

corn and $95,000 for soybeans, and more than $5.1 million and $2.4 million for the two 

commodities if we extend the period to the full nineteen trading days until the shutdown resolved 
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(and the next report was published). Note that because we use observed volume figures to generate 

these estimates, we are unable to observe options trades that did not take place possibly due to 

higher costs caused by the shutdown. 

 

ATM options experience the largest effects of missing information, at least in percentage 

terms. These options are usually the most highly traded. Hence, our results offer important insights 

for traders and market participants, as well as government decision makers who face budget 

constraints regarding the collection and provision of information about supply and demand 

fundamentals for agricultural commodities. Indeed, were private entities able to seamlessly replace 

the information provided by public sources during the shutdown, we would likely not have found 

statistically and economically significant effects associated with the first government report 

following the resolution of the government’s budget impasse. Researchers have investigated the 

substitutability between public and private sources of information about agricultural commodities, 

and generally found that public reports offer information that is—up to now—more accurate that 

the alternative shared by private firms. Egelkraut et al. (2003) compare USDA forecasts to Conrad 

Leslie and Sparks Companies’ private forecasts for corn and soybean production (which were 

made ahead of government announcements). They find USDA reports are more accurate for corn, 

and soybeans in October and November. Theorizing that private companies may have benefited 

over time from advances in computing power and big data, Karali et al. (2019) study whether 

USDA reports remain informative by modeling the market surprise, which they define as the 

difference between USDA forecasts and private expectations; the authors show that the “news” 

component of USDA reports has not decreased over time. They also show that the price impact of 

public reports has increased since January 2007, indicating that markets have grown more sensitive 
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to government news. Isengildina­Massa et al. (2020) compare USDA production and acreage 

forecasts (for corn, soybeans and wheat) to those produced over time by a series of private 

forecasters such as Conrad Leslie, Informa Economics, Dow Jones Newswire survey, and the 

Bloomberg Survey. The authors observe USDA errors to be smaller, and find increases in relative 

accuracy over time for USDA reports. 

 

Figure 2.8: Impact of Missing 2019 Reports on CBOT Corn IV: January 11, 2019 

 

 

One limitation of our approach is that the length of the shutdown period cannot be varied 

to determine how much more costly it would have been to deprive the market of government 

statistics for a longer period of time. However, it is likely that future budget pressures will make 

shutdown events more common and offer researchers the ability to consider this aspect of the 

absence of important, publicly­provided goods. 
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Figure 2.9: Impact of Missing 2019 Reports on CBOT Soybeans IV: January 11, 2019 
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2.7. APPENDIX 

Figure A2.1: CBOT SOYBEANS: Indexed Logged IV Levels. 

 

The lines are the time series of the indexed logged CBOT soybean IV levels in a 5­day window around the 

normal release of a January report averaged from 2009 ­ 2018. The red dotted line marks the day when the 

historic January USDA reports were released, the day when missing January 2019 USDA reports were 

scheduled for release and the day when February 2019 USDA reports were released. The index log IV value = 

100 on day T = ­5, or five trading days before normally­scheduled January report release. 
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Figure A2.2: Corn: Kernel Density Plot 

 

Figure A2.3: Soybeans: Kernel Density Plot 
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Figure A2.4: CME CORN (1995 ­ 2019)) 
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Figure A2.5: Options Trading Volume from 1/11/2019 – 1/25/2019 

 

 

 

 

 

 



 

39 

 

 

 

Table A2.1: CBOT Corn DCC GARCH Results 

 

Note: Standard errors are reported in parentheses. Counterfactual 1 = (B) + (C) + (D), and 

Counterfactual 2 = (G) ­ (E). Standard errors for both are calculated using the Delta Method. 
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Table A2.2: CBOT Soybeans DCC GARCH Results 

 

 

Note: Standard errors are reported in parentheses. Counterfactual 1 = (B) + (C) + (D), and 

Counterfactual 2 = (G) ­ (E). Standard errors for both are calculated using the Delta Method. 
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CHAPTER 3 

DECOMPOSING USDA ENDING STOCKS FORECAST ERRORS8 

  

 
8 Goyal, R., M.K. Adjemian, J. Glauber, and S. Meyer. 2022. Forthcoming in the Journal of Agricultural and 

Resource Economics.  

Reprinted here with permission of the publisher 



 

42 

Abstract: 

The U.S. Department of Agriculture (USDA) publishes monthly Ending Stocks projections, 

providing an estimate of the end-of-marketing-year inventory of a particular commodity, which 

effectively summarizes its supply and demand outlook. By comparing USDA’s projections of 

balance sheet variables against their realized values from marketing years 1992/3 to 2019/20, we 

decompose ending stocks forecast errors into errors of the other supply and demand components. 

We apply a decision-tree-based ensemble Machine Learning (ML) algorithm, the Extreme 

Gradient Boost Tree (EGBT), that uses a gradient boosting framework and is robust to 

multicollinearity. Our results indicate that export and production misses are the key contributors 

to ending stocks projection errors. Because foreign imports of U.S. products are likely tied to 

foreign production deficits, we likewise investigate how U.S. export errors are linked to USDA’s 

foreign production and export forecast misses, country-by-country, and show that misses on 

production and export levels in China, Mexico, Brazil, and European Union cost USDA the most. 

Overall, our results make a strong case that better information about production expectations, 

both domestically and worldwide, will contribute to more efficient agricultural balance sheet 

forecasts. 

3.  

3.1. Introduction 

The U.S. Department of Agriculture (USDA) publishes monthly supply and demand forecasts in 

a balance sheet format for key domestic agricultural commodities; balance sheet elements include  

beginning stocks, production, domestic consumption, exports, imports, and ending stocks. Recent 

agricultural economics literature shows that these reports provide the market with important 

information, align expectations, resolve uncertainty, and enhance economic activity (see, e.g., 
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Isengildina-Massa et al, 2008; Adjemian, 2012; Ying, Chen, & Dorfman, 2019). Following 

announcements, USDA reports reduce implied volatilities and elevate realized volatilities in 

futures markets, indicating that market participants react to new commodity information collected 

and published by the government.   

 

Ending Stocks projections represent the expected end-of-marketing-year inventory of a 

particular commodity, summarizing its supply and demand outlook. Because they signify the 

residual after all demand values are differenced from the supply side; ending stocks balance the 

balance sheet. Estimates of ending stocks signal the level of scarcity in the market, guide 

production and use plans, influence carrying costs, impact prices paid to farmers, and affect import 

and export decisions. Good & Irwin (2016) propose a curvilinear relationship between farm prices 

and the forecasted ending stocks-to-use ratio, a projection of the amount of inventories that will 

be carried to the next marketing year as a percentage of the total amount consumed in the current 

marketing year.   

 

The task of forecasters is complicated by tail events and structural changes to markets; 

during our period of observation, these include changes to ethanol policy; the rise of China as an 

export market; late plantings, droughts, bumper harvests; the U.S. trade war with China; and the 

COVID-19 pandemic (which significantly reduced the derived demand for corn in the form of 

ethanol). Forecast errors that events like these produce can negatively impact the welfare of the 

market participants. For example, overestimates (underestimates) of ending stocks could lead to 

lower (higher) producer prices and distort storage and production signals, ultimately generating 

inefficient intertemporal resource allocation decisions. Federal government budgets, payments, 
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and expenditures based on these estimates will also be inefficient (Xiao et al., 2017). Given that, 

several studies evaluate the accuracy and efficiency of USDA forecasts. Isengildina-Massa et al. 

(2006) find evidence of forecast smoothing—positive correlations in forecast revisions possibly 

resulting from strategic behavior on the part of forecasters. Isengildina-Massa et al. (2013) uncover 

multiple sources of average absolute forecast errors stemming from macroeconomic and 

behavioral sources consistent with the patterns of optimism and pessimism. No and Salassi (2009) 

observe time-based deterioration in USDA estimates, and Isengildina-Massa et al. (2020) draw 

attention to persistent under-estimation in USDA’s net cash income forecasts.  

 

In this article, we decompose ending stocks errors into the errors of other supply and 

demand components in order to study how different balance sheet elements contribute to ending 

stocks projection errors. No previous study has conducted an in-depth analysis or developed a 

comprehensive model to answer this question. One candidate approach to find the contribution of 

each balance sheet element is to use a regression framework and observe what proportion of the 

variation in the dependent variable (ending stocks) is explained by each (balance sheet) regressor. 

Common choices include applying LMG (Lindeman, Merenda, and Gold, 1980) and proportional 

marginal variance decomposition (PMVD) (Feldman, 2005) methods to find the relative 

importance of regressors in a model. LMG reports the average contributions of sequentially-added 

regressors to the R-squared of an ordinary least squares model. PMVD builds upon LMG and 

ensures that an independent variable’s regression coefficient with a true coefficient of zero 

asymptotically approaches zero. However, by construction, ending stocks are a linear combination 

of other balance sheet variables under consideration, so any regression of ending stocks on other 

balance sheet values suffers from multicollinearity—contaminating the LMG and PMVD 



 

45 

measures. To resolve this problem, we propose a decision-tree-based ensemble Machine Learning 

(ML) algorithm, Extreme Gradient Boost Tree (EGBT), that uses a gradient boosting framework 

and is robust to multicollinearity. In this paper, we conduct two Monte-Carlo simulation exercises 

to demonstrate the superior performance of EGBTs in the presence of multicollinearities.  

 

This study makes important contributions to the existing literature. First, our empirical 

approach proposes a machine learning model that indicates how misses in each balance sheet 

element contributes to ending stocks errors, and is flexible to capture non-linear relationships in 

the data. Second, extant work generally explores balance sheet errors for one or two commodities. 

We decompose USDA’s ending stocks projection errors for four major U.S. commodities: corn, 

cotton, soybeans, and wheat. 

 

According to our results, for all four commodities U.S. export and production forecast 

errors are the primary contributors to ending stocks misses. Predictably, production misses tend to 

cluster pre-harvest, while export misses are generally highest post-harvest. Given the importance 

of exports projections in explaining ending stocks forecast errors, in another step we first study the 

contribution of USDA’s foreign imports forecast misses, country-by-country, to U.S. export 

forecast errors, and find that—across commodities—import forecast misses by China, European 

Union, Brazil, Mexico stand out. Because foreign imports are likely tied to foreign production 

deficits, we likewise investigate how U.S. export errors are linked to USDA’s foreign production 

forecast misses, country-by-country, and show that misses on production levels in China, Brazil, 

European Union, and Southeast Asia cost USDA the most. That is, our findings indicate production 

forecast misses—both domestic and international—to be the main culprit. We interpret these 
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results to mean that better information about global production expectations would contribute to 

more accurate agricultural balance sheet forecasts. 

 

By using ML to decompose agricultural commodity projection errors our work avoids 

multicollinearity problems associated with traditional regression analysis and identifies likely 

sources of forecast misses, indicating to government agencies like USDA where they should focus 

to improve the informational value of their reports. Ultimately, more accurate forecasts will 

provide better information to traders and market participants, improving the efficiency of the 

agricultural supply chain. 

 

3.2. Background 

Botto et al. (2006) study USDA’s ending stocks forecasts for corn and soybeans from 1980/81 – 

2003/04, and use linear regression to show that almost every balance sheet element contributes to 

ending stocks forecast errors. The authors find evidence of overestimation in the ending stocks 

estimates for soybeans, and a high degree of bias in the early months of a given marketing year; 

they do not observe any significant bias in ending stocks projections for corn. Isengildina-Massa, 

Karali, and Irwin (2013) use correlation analysis and determine that production forecast misses are 

the primary source of error in ending stocks estimates for corn, soybeans, and wheat from 1987/88 

– 2009/10. The authors identify macroeconomic factors (like producer price and exchange rate 

indices) and indications of behavioral sources of error (such as lagged forecast errors and percent 

change in forecasts from the previous year’s values) in the ending stocks misses for all three 

commodities.  

 



 

47 

MacDonald and Ash (2016) identify bias in soybean export forecasts as the likely source 

of errors in ending stocks forecasts. The authors find incidences of smoothing (Isengildina-Massa 

et al., 2006) in all balance sheet projections for soybeans. They also observe a bias in foreign trade 

forecasts consistent with the bias in ending stocks and export projections. MacDonald et al. (2017) 

analyze soybean balance sheet elements using mean absolute percentage error and Diebold-

Mariano tests. They show soybean production errors influence USDA’s export forecasts; they also 

link price forecast errors and ending stock errors. From 2004-2015, the authors note a downward 

bias in export projections, implying that forecast errors in foreign balance sheet elements are 

associated with errors in U.S. exports. Xiao et al. (2017) decompose ending stocks forecast errors 

(of corn, wheat, and soybeans from 1985/86 through 2014/15) into idiosyncratic errors and 

unpredictable shocks using a Bayesian Markov Chain Monte Carlo (MCMC) method. The authors 

find inefficiency in projections for each commodity—soybeans worst of all. They detect bias in 

soybeans forecast revisions but not in corn and wheat revisions. Corroborating the previous 

literature, they also find evidence of USDA’s tendency to overestimate soybean ending stocks. 

 

3.3. Methodology 

Most of the research studies in the previous section use linear regression methods to check for bias 

and make inferences about the importance of different variables (based on their statistical 

significance). This approach has several limitations, including that (1) regression coefficients 

capture the average effect of a regressor on the outcome (given exogeneity), but not how much it 

contributes to the explained sum of squares, and (2) by construction, ending stocks are a linear 

combination of other balance sheet variables. Regression of ending stocks on other balance sheet 

values suffers from multicollinearity, contaminating the regression estimates. Moreover, these 
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studies do not include all the balance sheet elements in their analysis. Given our objective of 

determining the contribution of misses in each balance sheet element to ending stocks forecast 

errors, OLS is unsuitable because such a regression suffers from perfect multicollinearity; in that 

case the covariate matrix 𝑋′𝑋 in 𝛽𝑂𝐿𝑆̂ = (𝑋
′𝑋)−1𝑋′𝑌 is not invertible, and so OLS coefficients and 

the contribution of each element to the explained sum of squares is not estimable.  Common 

methods to address multicollinearity include partial least squares, and principal component 

analysis. However, each of these models limits explanatory power, preventing us from identifying 

the relative importance of the component balance sheet factors in ending stocks forecast errors.  

 

Another candidate choice is a machine learning (ML) technique termed gradient boosting 

decision trees (GBTs) that provides predictions for the dependent variable from multiple “trees”, 

trained in succession. ML models offer flexibility in extracting associations from the data. 

Moreover, since these methods select parameters via a grid search, they depend less on the 

researcher’s priors. (Breiman, 2001; Liaw & Wiener, 2002; Amin et al., 2021; Badruddoza et al., 

2021). Decision trees establish a tree-like structure, designed to capture the relevant information 

in the independent variables, subject to constraints. At every branch of the tree, the model splits 

the data into two parts. GBTs connect several such trees to provide robust estimates. Recent studies 

have explored the applicability of GBTs for economic applications. Hossain et al. (2019) study the 

effectiveness of different variables in predicting calorie-based food securing in rural Bangladesh. 

The authors show that random forests and GBT perform equivalently to non-machine learning 

methods. Amin et al. (2021) use extreme gradient boosting trees (EGBTs) to predict the modified 

Retail Food Environment Index using the data from U.S. census tracts; they use Shapley values to 

extract features and use EGBTs, random forests, and LASSO to predict access to healthful food 
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retailers, with 72% out-of-sample prediction accuracy. (EGBTs, compared to GBTs, leverage 

computational abilities of computer hardware to speed up the calculations.) Badruddoza et al. 

(2021) study the long-term dynamics of yogurt, eggs, organic whole milk, and other fluid milk, 

using vector autoregression to identify the determinants of price premiums for the above products. 

They also use EGBTs to capture data-driven insights and find that sellers maintain the price of 

milk, but increase the premiums for yoghurt and egg as input costs increase. In a 2020 working 

paper, Woloszko notes the importance of GBTs for macroeconomic modeling, particularly in the 

presence of structural breaks, and favors the easy interpretability of these models. In a 2017 Bank 

of England working paper, Chakraborty and Joseph study feature importance values obtained from 

decision trees. Following this literature, we apply EGBTs in our analysis and report the relative 

importance of each regressor. 

 

We also report Shapley additive explanations (SHAP) values (Lundberg and Lee, 2017). 

Shapley values quantify by how much does the ending stocks prediction error increases or 

decreases from the average prediction error due to the inclusion of a given predictor variable. In a 

2019 working paper by the Bank of England, Joseph uses SHAP values to calculate contributions 

for an underlying random forest (a collection of decision trees) to model unemployment in the U.S. 

and U.K. In our application, we use SHAP values to report the relative contribution of misses on 

each balance sheet element to the ending stocks projection errors for each observation in the 

dataset. They measure the influence of the independent variables by comparing the model with 

and without that variable. 
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Because we find that exports play a crucial role in determining ending stocks errors, we 

study how USDA’s country-by-country import projections contribute to the Department’s export 

forecast misses. Given the influence of foreign production deficits on the demand for foreign 

imports, we also study how country-by-country production estimates link to U.S. export misses. 

Below, we describe in detail our methods for constructing forecast errors and then calculating the 

relative contributions of balance sheet components to ending stocks errors.9 Lastly, we run a 

relative importance simulation exercise to gauge the performance of EGBT relative to linear 

regression, and report those results in the appendix. 

 

3.3.1. Forecast Errors 

We compute forecast errors as follows, depending on which side of the balance sheet the variable 

resides. If a positive shock to a given element increases the domestic commodity supply, as in the 

case of beginning stocks, production, and imports, we calculate its forecast errors as: 

 𝐹𝐸𝑠,𝑖,𝑡 = 𝐴𝑐𝑡𝑢𝑎𝑙𝑠,𝑖=19,𝑡 − 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠,𝑖,𝑡 
 

(1) 

where i is the forecast index (which takes on values from 1 to 19, representing USDA’s marketing 

year forecast horizon), s refers to balance sheet elements in question, and t refers to the forecast 

year.  

 

Alternatively, if the positive shock contributes to the commodity’s domestic disappearance, 

as in the case of exports and use, we calculate its forecast errors as: 

 𝐹𝐸𝑑,𝑖,𝑡 = 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑑,𝑖,𝑡 −  𝐴𝑐𝑡𝑢𝑎𝑙𝑑,𝑖=19,𝑡 
 

(2) 

 
9 We use a similar approach to calculate the contribution of foreign import forecast (and production forecast) errors 

to USDA export forecast errors.  
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where the other subscripts are the same and d refers to the balance sheet elements in 

question. By construction, it follows that the forecast errors for all these elements sum to the ending 

stocks forecast error for all s,i,t, with ending stocks forecast errors calculated according to equation 

(1). 

 

3.3.2. Using Extreme Gradient Boosting Trees to Measure Relative Importance 

Decision trees are a type of supervised machine learning tool that sequentially split data to generate 

predictions for a dependent variable.10 Decision trees pick a regressor and split the dataset into two 

parts. Different split points are tested, and the one resulting in the lowest prediction loss (defined 

in equation 3) is selected. They repeat this procedure for all regressors in the dataset. Of all the 

independent variables, the one resulting in the lowest loss is selected for the first split point. This 

procedure repeats until it is no longer possible the split the data (Quinlan, 1993). However, these 

trees are often associated with overfitting (poor out-of-sample performance), high variance 

(making them highly susceptible to outliers), and bias (Leiva et al., 2019). Chen and Guestrin, 

2016, propose “extreme boosting” decision trees. Boosting refers to obtaining a robust model by 

sequentially combining several models—decision trees in our case. The task of each sequential 

tree is to fit the model by reducing the errors made by the previous model. 

 

Let 𝑦̂𝑖,ℎ  be the prediction for iteration h, observation i. The gradient boosting tree 

minimizes the following loss function, 𝑄ℎ: 

 
𝑄ℎ = ∑(𝑦𝑖 − (𝑦̂𝑖,(ℎ−1) + 𝑔ℎ(𝑥𝑖)))

2
+ Ω(𝑔ℎ)

𝑛

𝑖=1

 
(3) 

 
10 Supervised machine learning trains the model using the dataset containing the independent and dependent 

variables. Unsupervised learning, on the other hand, has no data on the dependent variable.  

https://books.google.com/books?hl=en&lr=&id=b3ujBQAAQBAJ&oi=fnd&pg=PP1&ots=sR3oWKAtB1&sig=pDdtlEHaXgsR8tozoNoDDgABCls#v=onepage&q&f=false
https://ieeexplore.ieee.org/document/8767915
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where 𝛺 is the regularization term, imposing a penalty to the loss function and preventing 

overfitting. The vector of independent variables for observation i is given by 𝑥𝑖. The loss function 

adds a decision tree 𝑔ℎ  to further reduce the error between the actual value 𝑦𝑖 and the prediction, 

𝑦̂𝑖.  

 

The EGBT approach uses a gradient descent algorithm to minimize the loss function in 

equation (3). Gradient descent tweaks the parameters in this equation in the direction of the steepest 

descent of the loss function. The process is run through several iterations to arrive at the local 

minimum. The EGBT algorithm has a few parameters that deserve further discussion. Its “learning 

rate” determines the step size to approach the minimum of the models defined in equation (3), and 

prevents overfitting, while its “depth” equals the total number of splits to be made. In addition, the 

practitioner chooses the number of independent variables to select at each split point, and the 

number of sequential decision trees to fit for the EGBT model. Since these parameters control 

optimization, we select a grid of values for each of them. For each combination of these values, 

we fit an EGBT model. The combination resulting in the optimal resampling statistic (mean and 

standard deviation) is selected. 

 

After fitting the EGBT model, we compute the relative contributions of each regressor to 

the dependent variable by following the approach specified in Woloszko (2020). We calculate the 

average number of splits using that regressor and the average “height” of that variable (the point 

in the tree where a variable is selected to make a split) in all the sequential trees to arrive at its 

importance measure. We conduct this exercise for all independent variables in our dataset.   
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3.3.3. Shapley Additive Explanations 

The relative contributions obtained from EGBT models are recovered using the entire sample. To 

account for time-varying contributions of different balance sheet elements to ending stocks 

projection errors, we built the EGBT models for each five-year period from 1992/3 – 2018/19. 

However, it might be beneficial to note average contributions for each observation, which is not 

possible using EGBTs – since we cannot fit a tree on a single observation. We, therefore, use 

Shapley Additive Explanations (SHAP), proposed by Lundberg and Lee (2017) to help interpret 

the predictions we make in each five-year period EGBT model. Those authors define the 

explanation model (v) as: 

 

𝑣(𝑧′) = 𝜙0 +∑𝜙𝑗𝑧𝑗
′

𝑀

𝑗=0

 

 

(4) 

Where z is the simplified independent variable (also known as features), and 𝑧′ ∈ {0,1}𝑀 

If feature j is present, 𝑧𝑗
′ = 1, 𝑒𝑙𝑠𝑒 𝑧𝑗

′ = 0. 𝜙𝑗 is the feature attribution for feature j, and  𝜙𝑗 ∈ ℝ. 

𝜙 is also known as SHAP values. M is the total number of features in the dataset.  

 

To illustrate how we use SHAP values, consider the dataset for corn with 500 observations. 

The dependent variable is the absolute ending stocks forecast errors. The independent variables  

are projection errors for beginning stocks (B.S.), exports (Exp), imports (Imp), food, seed & 

industrial (FSI), feed & residual (FR), ethanol (E), and production (P). For observation 5, equation 

(4) simplifies to: 

 𝑣(5) = 𝜙𝐵𝑆,5 + 𝜙𝐸𝑥𝑝,5 + 𝜙𝐼𝑚𝑝,5 + 𝜙𝐹𝑆𝐼,5 + 𝜙𝐹𝑅,5 + 𝜙𝐸,5 + 𝜙𝑃,5 (5) 
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Where v (5) is the SHAP value for the fifth observation. In effect, equation (5) decomposes 

observation 5 into the linear influence of each feature; we do this for all the observations in the 

data set. 

 

Lundberg et al. (2018) use game theory to derive the feature attribution for each 

independent variable. The model assumes the values of the independent variables (of each 

observation) as the players and the value of the dependent variable as the payout. An equitable 

distribution of the payout among each independent variable is computed using Shapley 

decomposition. SHAP values exhibit specific desirable properties such as consistency, 

missingness, and local accuracy. The values are “consistent” in that if the importance of one feature 

increases in a new model, its SHAP value will never decrease. “Missingness” just signifies that 

any missing features get a zero attribution in equation (5), while “local accuracy” constrains that 

all feature attributes sum to the value of the dependent variable (Lundberg and Lee, 2017; 2018). 

Therefore, for robustness, we report SHAP values along with our EGBT results for each 

commodity.  

 

Along with EGBT, as an additional robustness check, we also estimate Random Forests in 

this article.11 For each of these models, we split our data randomly (following Bajari et al., 2015) 

into a training set (80%) and a test set (20%). We train our models on the training dataset and use 

that model to make predictions of ending stocks misses on the test dataset. We compare the test 

model predictions with the actual values of ending stocks forecast errors by calculating the 

standardized root mean squared error between the two. These results are reported in the appendix 

 
11 To conserve space, we only provide results for our EGBT model.  
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table A3.6. We find the performance of both models to be quite similar, with Random Forests 

performing slightly better compared to EGBT for some commodities, while EGBT does for others. 

Amin et al. (2021) note that Shapley values are computationally expensive, and hence they use 

EGBT for faster calculations. We follow them and report the Shapley values for the EGBT model 

only. Also, we report the parameter tuning figures for EGBT in the appendix table A3.7. We fit 

between 100 to 200 trees, and the change in parameter values does not impact the model output.  

 

3.4. Data 

We draw forecast data from USDA’s monthly World Agricultural Demand and Supply Estimates 

(WASDE) data for corn, soybeans, wheat, and cotton, maintained by the Cornell University library 

system. These reports provide government projections of marketing-year beginning stocks, 

production, domestic consumption, exports, and ending stocks for several commodities, in both 

domestic and international markets. Each forecast cycle runs 19 months, beginning in May and 

ending in November of the following calendar year. We extract these forecasts for corn, soybeans, 

wheat, and cotton from the 1992/1993 to 2018/2019 marketing years. This procedure yields 510 

observations for corn, soybeans, and wheat, and 434 observations for cotton (since those data are 

only available beginning in 1996/97).12 Table 3.1 provides summary statistics for USDA forecast 

errors of these elements for the four commodities. As we describe in section 3.1, we split the 

elements into those that either increase or decrease commodity.  

  

 
12 Our timeframe includes three missing reports relative to the normal and expected schedule. Both are associated 

with U.S. government shutdowns, which curtailed normal publication of USDA forecasts (Goyal and Adjemian, 

2021; Adjemian et al., 2017). Two missing reports in 2013, and one in 2019. 
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In table 3.1, units differ across commodities so we restrict our comparisons within each 

commodity’s balance sheet. Export forecast errors are highest for cotton, while the feed & residual 

category are largest for corn and wheat. Average export projection errors are negative for all 

commodities, indicating the USDA’s tendency to underestimate U.S. exports (Isengildina-Massa 

et al., 2020); ending stocks projections for corn, wheat, and cotton exhibit a similar pattern. In 

contrast, the Department tends to overestimate ending stocks for soybeans. 

 

Table 3.1: Average forecast errors for USDA balance sheet elements  

Balance Sheet Elements  

Commodity Mean Forecast Errors 

Corn Soybeans Wheat Cotton 

(Million Bu.) (Million Bu.) (Million Bu.) (Million 480-pound bales) 

Variables increasing commodity supply 

Beginning Stocks 
7.48 -4.9 1.65 -0.05 

(2.66) (1.23) (0.45) (0.01) 

Production 
-10.7 9.93 3.57 0.07 

(18.92) (4.5) (2.28) (0.04) 

Imports 
3.97 1.53 2.38 0.004 

(0.7) (0.39) (0.53) (0.002) 

Variables decreasing commodity supply 

Exports 
-6.04 -33.51 -3.85 -0.25 

(10.2) (4.51) (3.06) (0.06) 

Feed & Residual 
33.47 

  
11.22   

(9.34) (2.12)   

Food, Seed & Industrial* 
-1.07 4.28 3.76  

(2.08) (1.29) (16.47)   

Ethanol 
-9.45 

  
(4.99) 

Crushings   
-20.48 

  
(2.09) 

Domestic Use  
0.09 

(0.02) 

Ending Stocks 
17.64 -43 17.79 -0.13 

(12.68) (4.11) (3.07) (0.06) 
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Standard errors are reported in parentheses. Mean forecast errors for corn, soybeans, and wheat are in million 

bushels. Whereas for cotton, they are in million 480-pound bales. 

* We provide seed & residual for soybeans and food & seed for wheat in the food, seed & industrial category.  

Source: Authors’ calculations based on USDA data. 

 

Tables A3.1 to A3.4 in the appendix provide summary statistics for USDA’s projection 

errors for country-by-country imports and production. For corn and wheat, exports to ROW 

countries have highest (in absolute terms) forecast errors. China’s import projection misses are 

highest for soybeans, while exports to Turkey dominate for cotton. On average, absolute corn 

production misses are highest for China, absolute production errors for Brazil dominate for 

soybeans, while ROW production errors are highest for cotton and wheat. As a robustness check, 

we also conduct our entire analysis using the logarithm of balance sheet forecast errors, to avoid 

the impact of changing production levels over the study period. Appendix table A3.5 reports 

summary statistics for these forecast errors. Although not presented here to conserve space, the 

results, are broadly similar to what we observe with normal forecast errors. Therefore, we continue 

with forecast errors computed using equations (1), and (2). Before proceeding with any analysis, 

for each rolling five-year period, we normalize the forecast errors to mean zero, and variance one. 

 

3.5. Results 

Below, we discuss the results for corn, soybeans, wheat, and cotton. 

 

3.5.1. Corn 

Figure 3.1 plots USDA’s historical forecast errors corn’s balance sheet elements. By construction, 

large production (calculated as actual > forecast) and export errors (calculated as forecast > actual) 

lead to high USDA ending stock projection misses (calculated as actual > forecast). In both cases, 

misses mean that more commodity is on-hand domestically, raising ending stocks. As an example 
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in 2004/2005—especially early in the season—USDA missed high on both these elements, so its 

corn ending stocks forecasts also missed high. In 2012/2013, USDA missed high on exports but 

missed low enough on production (due to a historic drought) that its ending stocks errors were also 

low (especially early in the forecast cycle). 

 

Figure 3.2 presents EGBT results for the relative importance of each balance sheet element 

forecast to corn’s absolute ending stock errors over a rolling five-year period. The figure also 

shows the average absolute ending stocks forecast errors within each period in order to provide 

contextual comparison for errors over time. Our results show that production and export misses 

are significant contributors to the ending stocks misses. Exports contribute as much as 65% to 

ending stocks errors, while production contributes as much as 77%. Feed & Residual, on the other 

hand, contribute as high as 69%. Ethanol’s importance increases beginning in the early 2010s, 

rising to 73% of ending stocks forecast errors, on average, during the last three five-year cycles. 

 

Figure 3.3 provides the SHAP plot for corn. The vertical axis of the left panel labels the 

errors in descending order of their relative importance in determining USDA’s ending stocks 

forecast errors for corn. SHAP scores in figure 3.3 attribute the highest importance to export 

projections, followed by feed & residual and production. These conclusions confirm our findings 

in figure 3.2 demonstrating the robustness of our results. To read the chart, note that each circle 

represents a single observation; its color indicates the value of the independent variable (on a scale 

of low to high), while its position signifies how much it influences ending stocks errors. For 

example, consider region A in the left panel. The purple color of circles in this region indicates 

that export errors are moderately-high to high (based on the scale given at the bottom of the plot), 
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and their location indicates that a standard deviation increase in such errors raise ending stocks 

projection errors between 1.5-2 standard deviations. Averaging over all the SHAP values related 

to exports produces a value of 0.214 standard deviations, which is located next to the exports entry 

in the figure.  

 

Since exports are the most crucial factor in determining USDA’s ending stocks errors, we 

also show their marginal effect on the latter in the right panel of figure 3.3. The nonlinear 

relationship depicted in the figure indicates that export predictions misses make a decreasing 

marginal contribution to ending stocks errors as they grow larger (because other variables exert 

more influence). 

 

Due to the importance of export projection errors in corn ending stocks misses, we next 

conduct a trade analysis to determine which export destinations contribute the most by running a 

similar analysis on USDA’s country-level corn import forecast misses. Figure 3.4 presents EGBT 

relative importance results for our international trade analysis. Egypt (especially during the latter 

half of the sample period), Former Soviet Union, and ROW (rest of world) corn import errors are 

the most important.13 Because foreign import projections are closely tied to foreign production 

forecasts, we conduct a follow-on analysis of the relative importance of the latter to USDA export 

forecast misses. Figure 3.5 shows the relative importance of the errors made in estimating 

production levels in these countries to U.S. corn export misses. In the figure, Argentina, South 

Africa, the European Union, and Mexico misses are among the most important, although Brazil 

and China also appear in certain time periods. USDA’s December 2021 WASDE (USDA, 2021) 

 
13 ROW includes Colombia, which imports a high quantity of corn from the U.S. (FAS, 2019). Although not 

presented here to conserve space, in an auxiliary analysis SHAP values confirm our findings. 
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indicates that Argentina, Brazil, and South Africa are among the world’s major corn exporters, 

while the European Union and Mexico are among its major importers. China is the world’s second 

leading corn producer after the United States. 

 

3.5.2. Soybeans 

Figure A3.3 in the appendix plots the balance sheet element forecast errors for soybeans. Like 

corn, higher production and export forecasts (in absolute value) play an important role in soybean 

ending stocks errors. In general, USDA misses positive on production and negative on exports 

(underestimating both categories, which in our analysis leads to opposite signs). The same story 

applies to soybean crushings. In 2018/19, however, USDA missed high—very sharply—on 

exports, coinciding with the onset of the trade war between the United States and China (Adjemian 

et al., 2021). This is notable also because it broke with over a decade of practice of USDA missing 

high (underestimating) U.S. soybean exports. As with corn, USDA tends to balance large misses 

with similarly large misses on the opposite side of the balance sheet: production and export misses 

tend to work in opposite directions. For example, in 2016/17 USDA missed very high on 

production and very low on exports.  

 

Appendix figure A3.4 presents our EGBT relative contribution results for soybean ending 

stocks errors over a rolling five-year period. In the figure, production (32% contribution, on 

average) and export misses (31%, on average) are the lead contributors. Crushings and seed 

residual errors each contribute 8-10% to ending stocks errors. Figure A3.5 in the appendix presents 

observation-level SHAP scores, for robustness. They confirm that exports and production are the 
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most crucial balance sheet elements, followed by crushings. Just as in the case of corn, as USDA’s 

export misses increase, they contribute less to ending stocks errors on the margin.  

 

Since the early 2000s (coinciding with China’s accession to the World Trade Organization 

–Agarwal and Wu, 2003), USDA tends to underestimate Chinese soybean imports (at least 

partially explaining its underestimate of U.S. soybean exports). However, in 2018/19—again, the 

onset of the trade war—USDA overestimated both China’s soybean imports and U.S. soybean 

exports. Appendix figure A3.6 presents EGBT relative importance results for international trade 

and confirms the intuition that USDA’s Chinese import misses are responsible for the bulk of its 

export misses, especially as those misses rise (in absolute value) during the early-to-mid 2000’s. 

China’s average influence in explaining U.S. ending stocks errors peaks during two periods: 

following China’s World Trade Organization (WTO) accession (66%), and during the ongoing 

trade war (55%). USDA’s forecast of Brazilian imports contributed notably during the first half of 

the sample period (generally before U.S. exports jumped in size), while the relative importance of 

its errors in Mexican imports increased since the 2010s. In addition, figure A3.7 (in the appendix) 

shows how the errors in the world production estimates relate to U.S. soybeans export misses. As 

opposed to figure A3.6, China’s production errors play a less important role. This is intuitive, 

because while China is the world’s foremost soybean importer (forecasted by USDA in December 

2021 at 100 million metric tons in 2021/22), its production ranks far down the list (projected at 

16.4 million metric tons in the same report) (USDA, 2021). Rather, USDA’s domestic export 

misses are explained to a large degree by its production errors for the world’s other large feed 

soybean producers: Argentina, Brazil, and ROW (which includes Paraguay) (FAO, 2017). 
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3.5.3. Wheat 

Appendix figure A3.8 plots USDA forecast errors for wheat from 1992/93 through 2018/19. As in 

the cases of corn and soybeans, high production and export errors are associated with large ending 

stocks misses. The feed residual and food & seed categories also appear prominent at times. But, 

unlike corn and soybeans, beginning in the late 2000s USDA mostly overestimated, rather than 

underestimated, domestic wheat exports. 

 

Figure A3.9 (refer to the appendix) explains how these balance sheet elements contribute 

to ending stocks misses. Production contributes as much as 80% to ending stocks errors, food & 

seed contribute as much as 60%, and exports’ contribution peaks at 68% in the last five-year 

period. In the appendix figure A3.10, SHAP results confirm the important role played by 

production, exports, and food & seed elements misses to ending stocks errors.  

 

Appendix figure A3.11 in the appendix presents EGBT results for how international trade 

contributes to U.S. wheat export errors. Imports by China (16%, on average), ROW (16%), North 

Africa (19%) and Brazil (9%) are the most influential. Likewise, appendix figure A3.12 relates 

USDA’s country-level foreign production forecasts to its U.S. wheat export errors. Clearly, Brazil, 

and North Africa feature in both the production and import stories, but European Union’s 

production misses play a more prominent role than do USDA misses on its forecasted imports. 

This is consistent with the fact that while the European Union is among the world’s largest 

producers and exporters of wheat, its import level is fractionally small (USDA, 2021). 
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3.5.4. Cotton 

Figure A3.13 in the appendix plots the balance sheet element projection errors for cotton. As with 

other commodities, USDA tends to underestimate both exports and production. During the 2008 

recession, which substantially weakened apparel and clothing demand cotton export prices 

declined by 33% (BLS, 2011), possibly leading USDA to overestimate U.S. exports in that 

timeframe. Because of the way the balance sheet works, overestimating exports leads USDA to 

underpredict ending stocks.  

 

Figure A3.14 in the appendix shows the contribution of the various balance sheet elements 

to absolute USDA ending stocks errors. Export projection misses are clearly dominant; on average, 

they contribute 57% to ending stocks forecast errors. Specifically, exports become much more 

important than use from the early-2000’s and on, coinciding with China’s accession to the WTO; 

China is the world’s leading cotton importer (USDA, 2021). SHAP summary plots in  the appendix 

figure A3.15 confirm the oversized role of forecast misses for exports and domestic use in 

explaining USDA’s ending stocks errors. Unlike other commodities, the relative contribution of 

export errors maintains importance even as export levels rise. 

 

Since 2011, following China’s large buildup of cotton stocks (MacDonald et al., 2015) 

USDA has mostly underestimated the country’s imports, but this hasn’t always weighed down its 

U.S. export forecasts: domestic forecast errors were small in 2011/12 and 2012/13, even though 

the Department underestimated Chinese imports quite significantly. At the same time, USDA 

actually overestimated imports by both India and Mexico, contributing to, at times, aggregate U.S. 

export overestimates. Figure A3.16 in the appendix confirms that intuition: USDA import misses 
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on the part of China, India, and Mexico play significant parts in U.S. export misses. Appendix 

figure A3.17 explores how U.S. export errors are linked to misses in USDA’s country-level foreign 

production forecasts. European Union, Central Asia, India, and China’s influence is notable, with 

Bangladesh growing in importance over the latter half of the period of observation. 

 

3.5.5. Analysis by Forecast Step 

We also compute the contribution of balance sheet elements to USDA’s ending stock forecast 

errors, by forecast step, and present these results in figures A1.18 through A1.21 in the appendix. 

Doing so provides a portrait of how USDA misses contribute to ending stocks errors along the 

dimension of the average forecast cycle. For corn, production errors play a significant role in the 

beginning periods, and the importance of feed & residual errors emerge later in the cycle. For 

wheat (figure A3.20), food & seed, exports, and feed residuals have higher contributions during 

the forecast period’s beginning, middle, and ending periods, respectively.  

 

For soybeans, wheat, and cotton (figures A3.19 – A3.21), exports play a much important 

role throughout the forecast cycle. This is consistent with the fact that relative to corn, these three 

crops are far more export dependent. According to the latest WASDE (USDA, 2021), virtually all 

the cotton produced in the United States is exported. Over half of the soybeans and wheat produced 

this year are expected to be exported, as well. In contrast, the USDA expects that just 17% of the 

corn produced domestically will find its way to foreign consumers. It is therefore unsurprising that 

over the forecast cycle, exports matter less in explaining corn’s balance sheet errors. 
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3.6. Conclusion and Discussion 

Every month USDA publishes forecasts of production, exports, imports, domestic consumption, 

and ending stocks for major commodities, in both domestic and international markets. These 

projections help market participants form expectations and make decisions. Ending stocks 

summarize commodity fundamentals, and so are a natural focal point. Because forecast errors can 

distort decisions along the supply chain, researchers have focused on explaining them. We 

contribute to this literature by decomposing USDA’s ending stocks forecast errors for corn, wheat, 

cotton, and soybeans into the influence of different balance sheet variables. As both sides of the 

balance sheet are equivalent, perfect multicollinearity makes ordinary regression analysis 

unsuitable for analysis. Common approaches (like principal component analysis, LMG, and least 

absolute shrinkage and selection operator) to address multicollinearity limit the interpretability of 

results on the part of the researcher, so we address this problem by using EGBTs. 

 

Our EGBT results consistently highlight the importance of USDA’s domestic production 

and export misses in explaining its ending stocks errors. Export errors tend to exhibit a declining 

marginal contribution to explanatory power; their importance in generating ending stocks misses 

falls as export levels get very large. Summarized SHAP values with correlation coefficients with 

the predictors (figure A3.22), confirm the central contribution of exports and production errors to 

ending stocks misses for corn, soybeans, wheat, and cotton. Because U.S. exports are clearly linked 

to foreign production and import demand, we also use EGBTs to explore their role. Our findings 

indicate that misses in these forecasts among large international purchasers and export competitors 

are key contributors to USDA’s projection misses for domestic ending stocks. And for almost 
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every commodity, USDA forecasts for China’s imports and production stand out in their 

importance, especially after its accession to the WTO.  

 

Our results offer a portrait (really, several portraits) of which balance sheet elements affect 

USDA ending stocks forecasts. Ultimately, improvements in production forecasts could lead to 

progress in the USDA’s and the world’s ability to anticipate the global supply situation (and 

therefore reduce errors balance-sheet-wide). Going forward, technological innovations in satellite 

sensing, mapping, and geographic information systems may help realize these gains, in addition 

to assessing agricultural conditions and mitigating risk (Benami et al., 2021). 

 

Another source of USDA forecast errors could be incomplete adjustment to new 

information. For example, Isengildina-Massa et al. (2006) estimate statistically and economically 

significant smoothing in corn and soybean production forecasts, possibly due to strategic behavior 

on the part of forecasters. Obviously, correcting those tendencies would also improve the 

efficiency of USDA forecasts. However, it may instead be the case that information rigidities (see, 

e.g., Coibion and Gorodnichenko, 2015) prevent USDA forecasters from accessing the information 

they need to make fully efficient forecasts. In ongoing work (Goyal and Adjemian, 2021), we test 

for the presence of information rigidities among agricultural production and yield data. If they are 

present, investments in technologies like the ones we discuss above could reduce the noise or cost 

associated with gathering new data, and improve the forecasts themselves. 
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Figure 3.1: USDA Corn balance sheet element forecast errors, 1992-2019 

-2000

-1000

0

1000

2000

F
o
re

ca
st

 E
rr

o
rs

 (
M

il
li

o
n

 B
u

sh
el

s)

Marketing Year

Beginning Stocks Imports Exports

Feed and Residual Food, Seed & Industrial Ethanol

Production Ending Stocks



 

68 

 

Figure 3.2: Contribution of balance sheet elements to USDA’s Corn ending stock forecast errors 

Note: The first year quoted on X-axis “1992-1996” represent the 5-year period from marketing year 1992/93 to 1996/97. 
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Figure 3.3: Corn – exports SHAP dependence plot 
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Figure 3.4: Contribution of world Corn import errors to U.S. Corn export projection errors 

Note: The first year quoted on X-axis “1992-1996” represent the 5-year period from marketing year 1992/93 to 1996/97. 
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Figure 3.5: Contribution of world Corn production errors to U.S. Corn export errors 

Note: The first year quoted on X-axis “1992-1996” represent the 5-year period from marketing year 1992/93 to 1996/97
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3.7. Appendix 

In a regression framework, researchers use LMG (Lindeman, Merenda, and Gold, 1980) and 

PMVD (Feldman, 2005) to estimate the relative contributions of regressors. LMG is the average 

R2 contribution of the independent variables averaged over all possible orderings. PMVD is a 

weighted average contribution of regressors to the R2 with data-dependent weights. Therefore, a 

regression of ending stocks projection errors on balance sheet forecast misses introduces 

multicollinearity in the system—contaminating the LMG and PMVD measures. Moreover, when 

constructing forecasts, USDA consciously attempts to equalize the balance sheet elements. If the 

agency misses high on one variable, it will effectively miss low on at least one other element. We 

therefore use absolute values of forecast errors, which eliminates the possibility of a perfectly 

collinear relationship. However, as indicated by variance inflation factors, regression models still 

suffer from high collinearity. Furthermore, a curvilinear relationship may exist between different 

demand and supply element forecast misses and ending stocks forecast errors. Therefore, relative 

importance analysis based on a linear regression model may be inefficient because 

multicollinearity reduces the precision of regression coefficients. To resolve this problem, we use 

EGBTs, since they perform better in the presence of multicollinearity and are robust to 

nonlinearities. Since we do not note any conscious efforts to balance foreign imports or production 

to U.S. exports, we use signed errors for our trade analysis.  

 

In the following subsections, we provide a detailed discussion of how we set up the EGBT. 

But first, we conduct a simulation exercise comparing the EGBT approach to a linear regression 

modes in order to better understand the difference between the two approaches in computing 

relative importance.  
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3.7.1. Comparison of EGBT and Linear Regression 

We run a simulation with the following data generating process (DGP) 

𝑌 = 𝛽1𝑋1 + 𝛽2𝑋2
2 + 𝛽3X3 + 𝜖,     𝑋3 = 𝑋1 ∗ 𝑋2                               (1) 

𝑋1   ~ 𝑁(0, 1)                                                                                       (2) 

𝑋2   ~ 𝑁(0, 1)                                                                                       (3) 

𝛽1 = 𝛽2 = 𝛽3 = 0.33                                                                         (4) 

 

Regressors (𝑋1, 𝑋2, 𝑋3) are independently and identically distributed. We add a second-

order polynomial (𝑋2
2), and interaction effects in the form of variable 𝑋3. We set the values of 

parameter estimates (𝛽1, 𝛽2, 𝛽3) as 0.33. This implies that all the three regressors are equally 

important in determining the dependent variable, y. We repeatedly generate data sets of 500 draws 

from the prespecified probability distributions for each variable, about the same size as our data 

set of USDA forecast errors. For both models, we conduct 1000 Monte Carlo simulations. We 

represent the probability distribution of simulated relative importance scores found via linear 

regression using LMG,14 and report EGBT’s relative importance values based on each regressor's 

contribution to reducing the residual sum of squares (see more on this in the next section). To 

evaluate the two methods, we compare the median of simulated relative importance values to the 

actual value, also termed the “truth”. The model closer to the truth is preferred. 

 

Figure A3.1 compares the kernel density plots for the relative importance of each variable 

across all simulation trials, for the two proposed models. For all three variables in the figures, 

EGBT clearly performs much better compared to the regression model. The median relative 

 
14 PMVD is currently patented in the U.S and, hence, not available for public use.  
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importance and the actual importance coincide for the EGBT model for 𝑋1. Specifically, for 

variables 𝑋2and 𝑋3, regression models result in inferior performance. Furthermore, regression 

models result in much higher variance, causing lower precision and efficiency.  

 

Next, to check which model performs better in the presence of multicollinearities, we run 

a simulation with the following data generating process (DGP): 

𝑌 = 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3X3 + 𝜖                                                                (5) 

[
𝑋1
𝑋2
]   ~ 𝑁 [(

0
0
) , (

1 0.8
0.8 1

)]                                                                   (6) 

𝑋3   ~ 𝑁(0, 1)                                                                                            (7) 

𝛽1 = 𝛽2 = 𝛽3 = 0.33                                                                              (8) 

 

Regressors (𝑋1, 𝑋2,) are highly correlated with a covariance of 0.8. As with the first 

simulation, we set the values of parameter estimates (𝛽1, 𝛽2, 𝛽3) as 0.33, so all three variables make 

equal contribution to the outcome. We follow all the steps similar to the first simulation – (1) We 

compute 500 draws for each variable and run 1000 Monte Carlo simulations (2) We report LMG 

measures for linear regression model and the simulated relative importance values for EGBT (3) 

We plot kernel densities in figure A3.2 and compare the median of simulated relative importance 

values to the truth. For all three variables in the figures, EGBT measured contributions are much 

closer to the truth. Specifically, for non-linear, regression models result in inferior performance. 

There is only a marginal difference for variable 𝑋2. However, EGBT performs much better for the 

other two variables, 𝑋1and 𝑋3. Please note that the simulation results are for illustration purposes 

only and are dependent on the model parameters and may change if the number of variables is 



 

75 

increased. Therefore, given the superior performance of EGBTs in both the simulations, we report 

all the relative importance measures based on the EGBT model. 

 

 

Figure A3.1: Monte-Carlo simulation results –baseline  
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Figure A3.2: Monte-Carlo simulation results –multicollinearities 

Tables A1.1 to A1.4 provide summary statistics for USDA’s projection errors for country-

by-country imports and production. For corn and wheat, exports to ROW countries have highest 

(in absolute terms) forecast errors. China’s import projection misses are highest for soybeans, 

while exports to Turkey dominate for cotton. 
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Table A3.1: Average corn forecast errors for USDA foreign balance sheet elements 

Corn Argentina Brazil 

South 

Africa Egypt Japan Mexico 

Southeast 

Asia 

South 

Korea Canada China Europe 

Former 

Soviet 

Union ROW 

Imports 

Mean -0.002 -0.094 -0.090 -0.216 -0.088 -0.003 -0.325 -0.139 -0.098 -0.099 -0.816 0.070 -1.359 

SE 0.001 0.016 0.022 0.027 0.023 0.048 0.046 0.023 0.024 0.048 0.113 0.071 0.106 

Production 

Mean 0.348 1.566 0.176 0.035 0.000 0.236 0.041 -0.001 0.053 4.094 0.441 0.067 2.576 

SE 0.140 0.253 0.076 0.012 0.000 0.057 0.049 0.000 0.017 0.435 0.133 0.086 0.191 
Source: Authors’ calculations 

 

Table A3.2: Average soybeans forecast errors for USDA foreign balance sheet 

elements 

Soybeans Argentina Brazil Japan China Europe Mexico ROW 

Imports 

Mean -0.241 -0.022 0.032 -1.033 0.003 0.046 -0.159 

SE 0.034 0.012 0.014 0.155 0.050 0.011 0.076 

Production 

Mean -0.477 0.543 -0.002 0.086 -0.079 0.004 0.049 

SE 0.198 0.185 0.001 0.026 0.084 0.001 0.107 
Source: Authors’ calculations 

 

Table A3.3: Average wheat forecast errors for USDA foreign balance sheet elements 

Wheat Argentina Australia Brazil Canada China Europe 

Former 

Soviet 

Union 

North 

Africa 

Southeast 

Asia 

Select 

Mideast ROW 

Imports 

Mean  0.000 -0.024 -0.090 -0.029 0.265 -0.006 -0.039 -0.933 -0.558 -0.332 -1.482 

SE 0.000 0.003 0.024 0.002 0.066 0.140 0.093 0.060 0.071 0.053 0.108 

Production 

Mean  -0.394 -0.014 0.061 0.248 0.689 0.028 0.349 0.059 0.110 0.084 1.384 

SE 0.147 0.146 0.020 0.068 0.110 0.153 0.256 0.030 0.059 0.023 0.191 
Source: Authors’ calculations 
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Table A3.4: Average cotton forecast errors for USDA foreign balance sheet elements 

Cotton Bangladesh Brazil 

Central 

Asia China Europe India Mexico Pakistan Turkey ROW 

Imports 

Mean -0.106 0.069 -0.001 -0.445 0.121 -0.042 0.000 -0.038 -0.191 -0.048 

SE 0.018 0.011 0.004 0.133 0.011 0.016 0.008 0.029 0.021 0.027 

Production 

Mean 0.014 0.877 -0.039 2.759 1.208 -0.559 0.003 -0.396 -0.098 -5.668 

SE 0.004 0.174 0.015 0.558 0.304 0.229 0.005 0.089 0.019 1.409 
Source: Authors’ calculation 

 

Table A3.5: Average forecast errors for log balance sheet elements  

Balance Sheet Elements  

Commodity Mean Forecast Errors 

Corn Soybeans Wheat Cotton 

(Million Bu.) (Million Bu.) (Million Bu.) (Million 480-pound bales) 

Variables increasing commodity supply 

Beginning Stocks 
0.009 -0.01 0.003 -0.01 

(0.002) (0.005) (0.0009) (0.002) 

Production 
-0.002 0.004 0.001 0.0016 

(0.002) (0.002) (0.0011) (0.002) 

Imports 
0.126 0.073 0.027 -0.0001 

(0.016) (0.02) (0.0057) (0.023) 

Variables decreasing commodity supply 

Exports 
0.002 -0.03 -0.002 -0.022 

(0.006) (0.004) (0.0029) (0.005) 

Feed & Residual 
0.007 

  
0.111   

(0.002) (0.0147)   

Food, Seed & Industrial* 
0.0002 0.028 0.025  

(0.001) (0.013) (0.0024)   

Ethanol 
-0.002 

  
(0.002) 

Crushings   
-0.013 

  
(0.001) 

Domestic Use  0.018 

(0.003) 

Ending Stocks 
0.025 -0.152 0.022 -0.04 

(0.01) (0.014) (0.0047) (0.01) 

Standard errors are reported in parentheses. Mean forecast errors for corn, soybeans, and wheat are in million 

bushels. Whereas for cotton, they are in million 480-pound bales. 

* We provide seed & residual for soybeans and food & seed for wheat in the food, seed & industrial category.  

Source: Authors' calculations based on USDA data. 

 



 

79 

Table A3.5 reports summary statistics for the logarithm of balance sheet forecast errors. 

Export forecast errors are highest for cotton, while imports errors are largest for corn and soybeans. 

Feed and residual errors dominate for wheat. Table A3.6 reports the standardized root mean 

squared error observed for the test dataset for the two models. We find the performance of both 

models to be quite similar, with Random Forests performing slightly better compared to EGBT for 

some commodities, while EGBT does for others. 

Table A3.6: Standardized RMSE for EGBT and Random Forests 

 Random Forest Extreme Gradient 

Boosting Tree 

Domestic Forecasts 

Corn -6.07 -6.46 

Soybeans -0.71 -0.94 

Wheat -1.41 -0.14 

Cotton 10.53 14.74 

International Forecasts (Exports) 

Corn 3.03 1.07 

Soybeans -2.25 -1.6 

Wheat 3.04 3.66 

Cotton 1.94 1.19 

International Forecasts (Production) 

Corn -1.21 -1.61 

Soybeans 3.16 2.46 

Wheat 6.44 7.96 

Cotton -1.39 -0.13 
Source: Authors’ Calculations 

 

We report the parameter tuning figures for EGBT in the appendix table A3.7. We fit between 

100 to 200 trees, and the change in parameter values does not impact the model output.  

Table A3.7: Parameter Tuning Values 

Parameter Range 

No of Trees [100, 200] 

Depth of the tree [2,4,6] 

Learning Rate [0.1, 1] 
   Source: Authors’ Calculations 
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Figure A3.3: USDA Soybeans balance sheet element forecast errors, 1992-2019 
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Figure A3.4: Contribution of balance sheet elements to USDA's Soybeans ending stock forecast errors 

Note: The first year quoted on X-axis “1992-1996” represent the 5-year period from marketing year 1992/93 to 1996/97. 
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Figure A3.5: Soybeans – exports SHAP dependence plot 
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Figure A3.6: Contribution of world Soybeans import errors to U.S. Soybeans export projection errors 

Note: The first year quoted on X-axis “1992-1996” represent the 5-year period from marketing year 1992/93 to 1996/97. 
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Figure A3.7: Contribution of world Soybeans production errors to U.S. Soybeans export projection errors 

Note: The first year quoted on X-axis “1992-1996” represent the 5-year period from marketing year 1992/93 to 1996/97. 
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Figure A3.8: USDA Wheat balance sheet element forecast errors, 1992-2019 
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Figure A3.9: Contribution of balance sheet elements to USDA's Wheat ending stock forecast errors 

Note: The first year quoted on X-axis “1992-1996” represent the 5-year period from marketing year 1992/93 to 1996/97. 
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Figure A3.10: Wheat – exports SHAP dependence plot 
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Figure A3.11: Contribution of world Wheat import errors to U.S. Wheat export projection errors 

Note: The first year quoted on X-axis “1992-1996” represent the 5-year period from marketing year 1992/93 to 1996/97. 
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Figure A3.12: Contribution of world Wheat production errors to U.S. Wheat export projection errors 

Note: The first year quoted on X-axis “1992-1996” represent the 5-year period from marketing year 1992/93 to 1996/97. 
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Figure A3.13: USDA Cotton balance sheet element forecast errors, 1996-2019 
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Figure A3.14: Contribution of balance sheet elements to USDA's Cotton ending stock forecast errors 

Note: The first year quoted on X-axis “1992-1996” represent the 5-year period from marketing year 1996/97 to 2000/01. 
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Figure A3.15: Cotton – exports SHAP dependence plot 
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Figure A3.16: Contribution of Cotton import errors to U.S. cotton export projection errors 

Note: The first year quoted on X-axis “1996-1997” represent the 5-year period from marketing year 1996/97 to 2000/01. 
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Figure A3.17: Contribution of world Cotton production errors to U.S. Cotton export projection errors 

Note: The first year quoted on X-axis “1996-2000” represent the 5-year period from marketing year 1996/97 to 2000/01. 
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Figure A3.18: Contribution of balance sheet elements to USDA’s Corn ending stock forecast errors 
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Figure A3.19: Contribution of balance sheet elements to USDA’s Soybeans ending stock forecast errors 
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Figure A3.20: Contribution of balance sheet elements to USDA’s Wheat ending stock forecast errors 
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Figure A3.21: Contribution of balance sheet elements to USDA’s Cotton ending stock forecast errors 
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Figure A3.22: Top Predictors of Ending Stocks Errors 
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CHAPTER 4 

ESTIMATING SUPPLY ELASTICITIES FOR CORN IN THE UNITED STATES: 

ACCOUNTING FOR PROSPECTIVE PLANTINGS15 

  

 
15 To be submitted to AEPP. 
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Abstract: 

We propose adding USDA-reported prospective plantings to conventional acreage observations 

to estimate agricultural supply elasticities. Using past yield shocks as instruments to endogenous 

futures prices, we estimate a supply elasticity for corn at 0.26 percent (with a 95 percent 

confidence interval that ranges from 0.14 to 0.38 percent). Using three closely-related methods, 

we show that this elasticity implies the COVID-19 pandemic generated welfare losses to domestic 

corn producers of about $5.4 billion. Through its Coronavirus Food Assistance Program (CFAP) 

the federal government compensated producers with payments of $ 6.9 billion. 

4.  

4.1. Introduction 

Practitioners use commodity demand and supply elasticities to conduct agricultural policy analysis 

because policy makers and firms often request an understanding of the implications of sudden and 

unexpected supply (e.g., weather changes, natural disasters, pest infestations, and crop diseases) 

and demand shocks (recession, terrorist attacks, epidemics, and pandemics). In most years, 

commodity price variation is dominated by supply shifts. Consequently, Tomek (1979), Gray 

(1974), Chua and Tomek (2010), Adjemian and Smith (2012), and several other researchers have 

estimated demand elasticities and (their related) price flexibilities for agricultural commodities. 

Econometricians, however, need demand-induced price variations to study the shape of the 

commodity supply curve. Hendricks et al. (2014) show that estimating supply elasticities for 

agricultural commodities is complicated by the fact that demand shifters are difficult to observe, 

and their explanatory power with respect to price variation is limited, relative to supply shocks like 

weather events.  
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Recent volatility in commodity prices invited the attention of economists (Kim and 

Moschini, 2018; Carter, Rausser, and Smith, 2016; Roberts and Schlenker, 2013; Mallory, Hayes, 

and Babcock, 2011), who link the increases in commodity prices to the adoption of the Renewable 

Fuel Standard (RFS). RFS was established under the 2005 Energy Policy Act and expanded under 

the 2007 Energy Independence and Security Act. Post RFS adoption, ethanol consumption 

increased from 0.5% of total oil consumption in 2008 to 5.37% in 2018 (Schmitz, Moss, and 

Schmitz, 2020). Moreover, ethanol production accounts for 40% of total corn usage (2021) in the 

United States (USDA, ERS).  

 

The onset of the COVID-19 pandemic and the ensuing lockdowns and closure of non-

essential business reduced the demand for fuel (and therefore the corn used to generate ethanol). 

From March through November 2020, ethanol production declined by 2 billion gallons (a year-on-

year decrease of 2% from 2018 to 2019 and 12% from 2019 to 2020), decreasing corn usage by 

700 million bushels (RFA, 2020). Therefore, the COVID-19 pandemic is a large-scale demand 

shock, raising the question of its impact on farmers’ land allocation decisions. This becomes even 

more important to study because the United States Department of Agriculture (USDA) launched 

the Coronavirus Food Assistance Program (CFAP) to compensate farmers based on their expected 

losses.  

 

Roberts and Schlenker (2013) measure supply elasticities by instrumenting prices with the 

prior-year yield shock. We apply this method to a data set that includes the covid-19 event to 

estimate and compare supply elasticities used by USDA for policy analysis. Every year USDA 

releases (1) the Prospective Plantings report containing farmers’ planting intentions and (2) the 
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Actual Acreage report. The Prospective Plantings report helps set production expectations and 

guide market decisions for the coming year. To this point, this information has been left out in the 

literature when assessing acreage response to price fluctuations. We use the data on prospective 

plantings, actual plantings, and futures prices to study farmers’ responses to price shocks. We also 

connect this work to policy by using our elasticities to estimate the welfare damage generated by 

the COVID shock and comparing this to the payments USDA made to domestic corn and soybean 

producers under CFAP. To do so, we estimate the implied shift in the quantity via three related 

methods during the year 2020: (1) using the observed price difference from January to April (used 

by USDA in their calculations), (2) the observed price difference from January to August (harvest 

month for corn), and (3) the observed price difference from January to November (one month 

before contract expiration). We find that the supply elasticity for corn is 0.26% (estimates in the 

literature range between 0.40% and 0.50%). Under all three scenarios, our analysis shows that the 

USDA was able to entirely compensate farmers for their losses because of the COVID-19 

pandemic.  

 

We expand on the literature by adding information on farmers’ intended plantings to 

estimate agricultural supply elasticities using the data on farmers’ intended plantings and actual 

plantings. This offers us more data points, increasing statistical power and improving the precision 

of our estimates. Ultimately, our analysis will help government and private organizations form 

effective strategies when facing future demand shocks. In addition, the information on farmers’ 

responses to price changes will assist traders and market participants inform their production and 

risk management decisions, improving the efficiency of the agricultural supply chain. 
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4.2. Background and Literature Review 

Supply Elasticities 

Nerlove (1958), in a seminal work, studies agricultural supply elasticity analysis using lagged 

prices as control variables. Roberts and Schlenker (2013) estimate demand and supply elasticities 

for corn, soybeans, wheat, and rice by aggregating these commodities into calories. The authors 

construct weather-induced yield shocks as deviations from yield trends and use them as 

instruments to estimate supply elasticities. Their elasticity estimate lies between 0.08% and 0.1%. 

Further, they use these results to assess the US biofuel mandate’s impact on food prices between 

2005 and 2008, showing that the mandate increased food prices by 30% (~ loss in consumer 

surplus of 180 billion). On the contrary, Hendricks et al. (2014a) propose using OLS to estimate 

supply elasticities by regressing planting area on futures prices with the current-year realized yield 

shock as a control variable. They decompose supply elasticities into changes in deviations from 

yield trend, the composition of growing area, and total growing area to show that adding the current 

year yield shock eliminates any sources of endogeneity, making OLS a suitable model choice.  

 

Hendricks et al. (2014b) use satellite data on land use in three corn belt states, Illinois, 

Indiana, and Iowa, to estimate short and long-run elasticities for corn and soybeans. With roughly 

over 8 million observations from 2000 to 2010, the authors use first-order Markov transition 

probabilities and find an elasticity estimate of 0.29 for corn and 0.26 for soybean. Kim and 

Moschini (2018) argue that price changes from 2005 to 2015 were due to demand factors following 

RFS adoption. Using price changes (in this period) as exogenous variables, they estimate corn and 

soybean supply elasticities for 12 midwestern states from 2005 to 2015. The authors report own-

price elasticities of 0.38 for soybeans and 0.50 for corn.  
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In a recent article, Thompson et al. (2021) study how agricultural supply responds to 

extreme events such as the global price surge of 2005-07, the African swine fever, the trade war, 

and the COVID-19 pandemic. These authors evaluate how elasticities from the literature perform 

under these demand shocks for corn and soybeans. Specifically, they consider the performance of 

elasticities estimated by Goodwin and Mishra (2006), Hendricks et al. (2014a), and Kim and 

Moschini (2018). The authors find that the price changes were associated with small area effects; 

for example, price changes as high as 50% resulted in area changes as low as 3%. They also show 

that cross-price elasticities are crucial in determining area response to price changes.  

 

Thompson et al. (2021), however, do not estimate supply elasticities; they only assess the 

values measured in the literature. This article fills this gap by estimating supply elasticities for 

corn and soybeans using recently advanced techniques and methods. Furthermore, although most 

supply work relies on a single, annual observation of price and plantings, we expand the dataset 

by accessing one additional source of data: information on planting expectations that the USDA 

releases in its Prospective Plantings report in March before planting is complete.  

 

Coronavirus Food Assistance Program 

The United States government announced Coronavirus Food Assistance Program in April 2020. 

USDA allocated $16 billion to assist farmers and ranchers based on pandemic-associated losses. 

Producers who have suffered a price decline of 5% or greater were eligible for the program. 

Applications were accepted from May 26, 2020, to September 11, 2020. Later USDA offered a 

second round of payments (CFAP2) and received applications from April 2021 through October 
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2021. USDA made a total payment of $11.8 billion under CFAP1, and $19.2 billion under CFAP2, 

summing to $31 billion. Figure 4.1 shows the total CFAP payments made for corn (~$6.86 billion) 

across different states. As expected, disbursements are higher in corn belt states (Iowa, Illinois, 

Nebraska) compared to other regions.  

 

Figure 4.1: Total CFAP Payments for Corn 

 

Source: USDA Data 

 

4.3. Data 

End of March every year, USDA releases the Prospective Plantings report containing information 

on farmers’ planting intentions for that marketing year. The organization conducts farmer surveys 

towards the end of February and early March (March Agricultural Survey) and provides markets 

with an indication of the expected crop size (Good and Irwin, 2011). A total of 78,900 farm 
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operators were included in this survey in 2021 (Lofthus, 2021). In addition, every year in June, 

USDA publishes the Crop Acreage report presenting information on planted acreage for major 

crops across different states. The data on yield is available in the annual crop production summary 

published every year in January. The Cornell University Library maintains these data from 1980 

through 2020. In addition, we also collect data on ethanol production from the U.S. Department of 

Energy. Table 4.1 provides summary statistics for each of the above series we use in our analysis.  

 

Table 4.1: Summary Statistics 
 

Variable Time Period Mean Standard Error 

Prospective Plantings 

(1,000 acres) 

1980-2020 

82635.5 1191.4 

Planted Acreage (1,000 

acres) 
82340.6 1300.6 

Yield (per acre) 136.58 4.06 

Ethanol Production 

(Million gallons) 
2000-2020 9870 1206.02 

Source: USDA Reports 

 

Domestic prospective and planted corn acreage increased from 1980 to 2020, as shown in 

figure 4.2. In most years, prospective and actual plantings are fairly close. Their mean within-year 

difference over the period of observation is 0.36%. In 1983 prospective plantings exceeded actual 

acreage by 9.4 million acres—the largest difference observed in our dataset—potentially due to a 

drought in the mid-west that year. The next largest difference occurred in 2020, where planted 

acreage was about 5 million fewer acres than expected. This difference is most likely due to the 

reduced demand for ethanol and therefore corn as a result of the COVID-19 pandemic. Moreover, 

the pandemic also disrupted an increasing ethanol production trend in 2020 (a decrease of 1.8 

billion gallons). For the analysis we use harvest contract futures closing prices traded on the day 

prospective and acreage plantings reports are released. We draw these prices from Bloomberg. 
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Figure 4.2: Corn Acreage over Time 

 

 
Source: USDA reports 

 

 

4.4. Methodology 

We follow the approach of Roberts and Schlenker (2013) to estimate agricultural supply 

elasticities. In their model, quantity is specified as a function of price and other covariates: 

 𝑞𝑠𝑡 = 𝛼𝑠 + 𝛽𝑠𝑝𝑠𝑡 + 𝛾𝑠𝜔𝑡 + 𝑓𝑠(𝑡) + 𝑢𝑡 (1) 

where 𝑞𝑠𝑡 is the log corn supply (prospective and actuals) at time t. The log futures price 

is denoted by 𝑝𝑠𝑡, 𝜔𝑡 refers to the yield shock at time t, and the time trend is captured by 

𝑓𝑠(𝑡). However, farmers might make acreage decisions based on futures prices, and simultaneously 

acreage might determine futures prices, resulting in endogenous prices negatively biasing the 

elasticity coefficient. We follow Roberts and Schlenker (2013) and use the lagged yield shock as 

an instrument to address the concern of endogenous prices. Yield shocks are unexpected deviations 
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from yield trends that occur due to random weather shocks. We approximate these shocks by 

calculating Jackknife residuals by fitting a yield trend using a restricted cubic spline with three 

knots (Roberts and Schlenker, 2013; Hendricks et al., 2014a). We also perform a robustness test 

by repeating the procedure using four and five knots. More specifically, the first stage of the 2-

SLS method is given by: 

 𝑝𝑠𝑡 = 𝛿𝑠 + 𝜇𝑠0𝜔𝑡 + 𝜇𝑠1𝜔𝑡−1 + 𝑓𝑠(𝑡) + 𝜖𝑡 (2) 

Lagged yield shock (𝜔𝑡−1) is an excluded instrument. Before conducting our analysis, we 

deflate futures prices with the seasonally adjusted consumer price index (CPI).  

 

Figure 4.3: Demand and Supply Movements due to COVID-19 

 

 
 

As shown in figure 4.3, because of the COVID-19 pandemic, the demand curve shifted 

inward, resulting in losses for farmers and ranchers; in the figure, it moved from D1 to D2. In the 

short run, because the supply technology hasn’t changed the supply curve remains constant.16 

 
16 Planting harvest of field crops isn’t affected by covid lockdown restrictions 
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Therefore, we use our estimated elasticities from equation (1) to approximate the welfare 

damage—or the loss in producer welfare—resulting from this shift in the demand curve (trapezoid 

ABCD in the figure).17  To assess this, we use the following equation: 

 Welfare Loss =
1

2
(𝑃𝐽𝑎𝑛𝑢𝑎𝑟𝑦−𝑃′)

(

 
 𝑄𝐴𝑐𝑟𝑒𝑎𝑔𝑒 2020

1 + 𝛽𝑠
(𝑃′ − 𝑃𝐽𝑎𝑛𝑢𝑎𝑟𝑦)
𝑃𝐽𝑎𝑛𝑢𝑎𝑟𝑦

+ 𝑄𝐴𝑐𝑟𝑒𝑎𝑔𝑒 2020

)

 
 

 (3) 

Where, 𝑃𝐽𝑎𝑛𝑢𝑎𝑟𝑦 is the average futures price for the December 2020 corn contract in 

January 2020, and 𝑄𝐴𝑐𝑟𝑒𝑎𝑔𝑒 2020 is the actual corn acreage planted in 2020 (from the June Acreage 

report). The supply elasticity estimate is given by  𝛽𝑠 (from equation (1)).  We use three different 

estimates for 𝑃′: (1) the harvest futures contract price in April (used by USDA in their 

calculations), (2) in August (harvest month), and (3) in November (one month before contract 

expiration). 

 

4.5. Results 

In Table 4.2, we report the 2-stage least squares (2-SLS) model estimated using equations (1) and 

(2) using the data from 1980 to 2020. Column (A) corresponds to our base specification with yield 

shock and time trend (fitted using a cubic spline with three knots) as controls and lagged yield 

shock as an instrument. Our result implies that, on average, a 1% increase in corn’s harvest futures 

prices, increases acreage by 0.27%. In columns (B) and (C), we fit the time trend using a cubic 

spline with four and five knots, respectively. The supply elasticity varies between 0.26% – 0.28% 

with overlapping confidence intervals, indicating the robustness of our results.  

 

 
17 We assume that the demand and supply curves are linear. 
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Elasticity coefficients are statistically significant at a 5% significance level across all 

regression models. Column (B) is our preferred model because it has the lowest Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC) values.18 Figure 4.4 

compares our estimated corn elasticity to the results in the literature. It is important to note that 

Hendricks et al. (2014) use data from 2000 to 2010, and Kim and Moschini use data from 2005 to 

2015; our results are based on the information from 1980 to 2020. Moreover, none of these papers 

instruments for futures prices.  

 

Next, we assess the welfare damages to corn producers because of the pandemic by 

estimating equation (3) with 𝛽𝑠 = 0.264%. Based on price changes from January to April (the 

period used by USDA in their calculations), we estimate that the pandemic generated $5.4 billion 

(95% CI: [$5.35 bn, $5.45 bn]) in damages for corn producers due to an inward shift in the demand 

curve. In addition, our results project an estimated loss of $5.76 billion (95%CI: [$5.71 bn, $ 5.82 

bn]) when using price changes from January to August. However, when using price changes from 

January to November (one month before the 2020 harvest contract expires), our analysis projects 

that corn producers would have instead gained during the pandemic. However, it is important to 

note that increasing our period (January – November) might be adding noise and diluting the 

pandemic’s impact since the country was adapting and moving towards normalcy. Figure 4.5 

documents the welfare damages in three different scenarios and compares them to the USDA’s 

payments under CFAP 1 and 2 – all our estimates indicate that the USDA was able to fully 

compensate farmers for their damages due to the pandemic. 

 

 
18 AIC measures the relative distance between the fitted and the true (unknown) likelihood function, whereas BIC 

estimates the probability of the estimated model being true; lower AIC and BIC values are preferred. 
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Table 4.2: 2-SLS Regression Results for Corn 

 Dependent variable: 
  
 Log Acreage 

 3 knots 4 knots 5 knots 

 (A) (B) (C) 

Log Price (𝛽𝑠) 0.276*** 0.264*** 0.284*** 

 (0.068) (0.062) (0.070) 

Yield Shock 0.025*** 0.026*** 0.024*** 

 (0.008) (0.008) (0.008) 

   (0.098) 
    

Constant -6.61 -10.19 -1.9 

 (6.957) (12.329) (12.178) 

Weak instruments 0 0 0 

Wu-Hausman 0.11 0.04 0.03 

Observations 82 82 82 

R2 0.696 0.716 0.702 
 

Note: Robust standard errors are reported in parentheses. Asterisks *,**, and ***  denote statistical 

significance at the 10%, 5%, and 1%, respectively. 

Source: Authors 

 

4.6. Conclusions 

Previous literature addresses the concern of endogenous futures prices by using lagged 

yield shocks as instruments. However, these papers only use planted acreage as a dependent 

variable. USDA publishes prospective plantings and acreage in two separate reports published 

three months apart. We take advantage of this information and use both expected plantings and 

actual plantings to estimate agricultural supply elasticity for corn from 1980 to 2020. Our results 

show consistency across different model specifications, with a mean elasticity estimate of 0.26%.  
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Figure 4.4: Comparison of Corn Elasticities 

 
Source: Authors 

 

Recently, due to the COVID-19 pandemic, demand for ethanol plummeted – resulting in 

an inward shift in the demand curve for corn. Consequently, our analysis shows that corn producers 

suffered losses worth $5.4 billion (using price changes from January to April), 27% lower 

compared to the actual payments USDA made under CFAP. Moreover, all our estimates suggest 

that the USDA was able to fully compensate producers for any losses they faced due to demand 

reduction. 
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Figure 4.5: Estimated Corn Producer Surplus Effects of COVID-19 

 

 
 

Source: Authors 
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CHAPTER 5 

CONCLUSIONS 

In conclusion, my work underscores the importance of government information in reducing 

uncertainty in agricultural commodity markets. The absence of such information increases 

implied volatility resulting in losses for market participants. For example, the 2019 

government shutdown and the subsequent curtailment of the WASDE generated damages 

worth 7 million dollars for corn and soybean producers alone. Given the importance of these 

reports, the government forecasts must be highly efficient and accurate. In another chapter, I 

show that production and export misses are the significant contributors to endings stocks 

forecast errors. Errors in predicting US exports to China, Mexico, Brazil, and Southeast Asian 

countries are the leading contributors to U.S. export errors.  In the last chapter, I show that 

the COVID-19 pandemic resulted in approximately $5.5 billion loss for corn farmers. My 

findings will help governmental organizations understand the impact of adverse events on 

farmers and help them develop policies accordingly.  
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