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ABSTRACT 

Using whole-genome sequence (WGS) data to identify the causative variants and improve 

genomic prediction is of current research interest. However, single nucleotide polymorphisms 

(SNP) chips are still the primary source for genomic predictions. Regular SNP chips only include 

a small number of SNP. Therefore, more accurate genomic predictions would be expected with 

WGS data. The objective of first study was to investigate the impact of using preselected variants 

from WGS for large-scale single-step GBLUP (ssGBLUP) genomic predictions in maternal and 

terminal pig lines separately. Genomic predictions with regular SNP chip data were compared with 

preselected SNP sets. Preselection of SNP relied on genome-wide association studies (GWAS) 

and linkage disequilibrium (LD) pruning. A second study aimed to explore the use of selected 

WGS variants in a multi-line ssGBLUP genomic evaluation (MLE), which comprised over 

200,000 sequenced/imputed animals. A multi-line GWAS was conducted to preselect WGS 

variants, and unknown parent groups (UPGs) or metafounders (MFs) accounted for genetic 

differences among lines in a joint evaluation. Those first two studies reported small to no gain in 

accuracy of genomic prediction with WGS data. To explore the possible reasons for the limited 

gain in accuracy of genomic prediction with WGS data, a simulation study with different effective 



population sizes (Ne) was carried out in the third study. We investigated different discovery set 

sizes in GWAS, relating them to the limited dimensionality of genomic information. The selected 

variants based on different GWAS sample sizes were then added to simulated SNP panels that 

mimicked regular chips used commercially. Populations with smaller effective sizes (Ne = 20) 

require more data to capture causative variants, whereas for large populations (Ne = 200), using 

the number of genotyped animals equal to that of the largest eigenvalues explaining 98% of the 

variance of the genomic relationship matrix suffices. However, only a small proportion of the 

causative variants can be discovered if those genotyped animals do not have many progeny 

records. Even when several causative variants are preselected, their impact on ssGBLUP genomic 

predictions is minimal because medium-density commercial SNP chips already account for most 

of the information added.     

INDEX WORDS: whole-genome sequence, genome-wide association study, variants 

selection, multi-line genomic evaluation, limited dimensionality of 

genomic information 
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CHAPTER 1 

INTRODUCTION 

 Using whole-genome sequence (WGS) data in the genomic prediction of farm animals is 

becoming feasible as the cost of sequencing decreases. The WGS data covers the entire genome 

with abundant linkage disequilibrium (LD) information between the single nucleotide 

polymorphisms (SNP) and causative variants or possibly includes causative variants that may not 

be present in the regular SNP chip data. However, the benefit of using WGS data on genomic 

prediction could be limited as many SNP are redundant, and strongly correlated to each other with 

a high extent of LD when their physical distance is small. Therefore, identification of only 

significant variants and utilization of them could be an efficient strategy to improve the 

performance of genomic predictions. Pinpointing causative variants through genome-wide 

association studies (GWAS) has been a common choice when WGS data is used. Although many 

genotyped animals may have WGS data, non-redundant information is finite. In other words, 

genomic information has a limited dimensionality, which means that additive genetic information 

in a population is contained in a limited number of independent chromosome segments (Me). Thus, 

the limited dimensionality of the genomic information might give insights into the number of 

genotyped animals to use in variant preselection through GWAS for genomic prediction.  

 The main objective of this dissertation was to 1) investigate the impact of using preselected 

variants selected from WGS data on genomic prediction in pigs for both single-line and multi-line 

scenarios and 2) scrutinize the effects of different data set sizes in GWAS and genomic prediction, 

where the sizes depended on the limited dimensionality in the genomic information, as well as 
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explore a change in accuracy by adding preselected variants from WGS to regular SNP chip data 

through a simulation study. In Chapter 2, a literature review is addressed. Afterward, objective 1) 

is discussed in Chapters 3 and 4 for single-line and multi-line genomic evaluations, respectively. 

Finally, objective 2) is extensively discussed in Chapter 5 of this dissertation. 
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CHAPTER 2 

LITERATURE REVIEW 

Single nucleotide polymorphisms (SNP) have been extensively used as a source of 

genomic information to estimate the genetic merit of farm animals. The large adoption of SNP is 

due to (1) abundance, (2) informativity, (3) efficiency, and (4) affordability, among others. SNP 

are evenly distributed across the entire genome and may be in linkage disequilibrium (LD) with 

quantitative trait loci (QTL). In that regard, Meuwissen et al. (2001) proposed the Bayesian models 

to calculate SNP effects and genomic breeding values (GEBV) using phenotypic and genomic 

information. In line with that, genomic BLUP (GBLUP) was proposed afterward, which calculates 

GEBV assuming the covariance structure among animals is given by the additive genetic variance 

and the genomic relationship matrix (G) (VanRaden, 2008). However, GBLUP only considers 

information on genotyped animals, which does not reflect the structure of animal populations 

because most of the animals are not genotyped. To handle all available information on both 

genotyped and non-genotyped animals in a sole evaluation, a method called single-step GBLUP 

(ssGBLUP) was developed by Aguilar et al. (2010); Christensen and Lund (2010). This method 

uses all available phenotypes, pedigree, and genomic information in the mixed model equations 

(MME). In the ssGBLUP, the covariance structure among animals is given by the additive genetic 

variance and the realized relationship matrix (H), which its inverse is given by (Aguilar et al., 

2010): 

𝐇−1 = 𝐀−1 + [
0 0
0 𝐆−1 − 𝐀22

−1], 



 

 4 

Where 𝐀−1 is the inverse of the pedigree relationship matrix among all animals (𝐀), 𝐀22
−1 is the 

inverse of the pedigree relationship matrix only for the genotyped animals (𝐀22), and 𝐆−1 is the 

inverse of the genomic relationship matrix (𝐆), which is often constructed as (VanRaden, 2008): 

𝐆 = 
𝐌𝐃𝐌′

2∑pj(1−pj)
, 

where M is the matrix of centered genotypes for current allele frequencies, pj is the minor allele 

frequency of SNPj, D is the diagonal matrix of SNP weights. All the SNP were presumed to have 

homogeneous weights in ssGBLUP, meaning that D is an identity matrix (I). To avoid singularity 

issues, 𝐆  is often blended with a small proportion of 𝐀22 (e.g., 5%). 

 Implementation of ssGBLUP has made a considerable impact in animal breeding and has 

been applied for routine genomic evaluation in many farm animals, such as cattle, pigs, chickens, 

and sheep (Chen et al., 2011; Forni et al., 2011; Lourenco et al., 2015; Brown et al., 2018). For 

routine genomic evaluation, 50k SNP chips have been generally used under the assumption that 

SNP in the chip are in LD with existing QTL. Therefore, if SNP are in strong LD with QTL, they 

are likely inherited together, even though the SNP chips may not contain QTL in practice. In that 

sense, using whole-genome sequence (WGS) data has the potential to improve the accuracy of 

genomic predictions because they cover the entire genome with a large number of SNP. For 

example, WGS data in cattle consists of about 20 to 30 million SNP. By spanning the entire 

genome, WGS possibly includes causative variants that primarily affect the traits of interest but 

are not present in the SNP chip data.  However, there was limited or no improvement in genomic 

predictions with WGS data in cattle and pigs (Van Binsbergen et al., 2015; Zhang et al., 2018; 

Song et al., 2019). A procedure of choice to overcome this limitation when using WGS data is the 

preselection of significant variants through genome-wide association studies (GWAS). The 
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selected variants may be combined with regular SNP chips for genomic predictions or not,  which 

has been investigated in several studies (Brøndum et al., 2015; VanRaden et al., 2017; Fragomeni 

et al., 2019). 

 The primary purpose of GWAS is to identify genetic variants affecting the trait of interest, 

e.g., mostly disease-related traits in humans and economic traits in livestock. The first GWAS  was 

conducted in humans to identify a susceptibility gene for myocardial infarction trait (Ozaki et al., 

2002). Afterward, GWAS became a common procedure also in livestock and plants. The initial 

GWAS considered all the genetic variants identically and independently distributed. This was 

because the primary method aimed to explore the populations with unrelated individuals (Risch 

and Merikangas, 1996). However, that consideration does not hold in reality because of the 

relatedness between individuals in the population. In humans, individuals in the population are 

distantly related as no selection is conducted, and the effective population size (Ne) is larger 

compared to livestock. In livestock, individuals in a population are more closely related to each 

other, especially for populations under selection that have small Ne. This relatedness can hinder 

the identification of causative variants and induce false-positive results (Sul et al., 2018). To 

resolve this issue, population structure should be accounted for by the GWAS model. Several 

studies (Kang et al., 2008; Kang et al., 2010) attempted to correct for population structure through 

the mixed-effects model (Henderson, 1975) by fitting either A, G, or principal components in the 

model.  

 Besides accounting for population structure, several factors would affect the performance 

of GWAS. The number of causative variants and SNP, sample size, heritability of the trait, 

statistical methods, Ne, and the number of independent chromosome segments (Me) are the major 

ones (Berisa and Pickrell, 2016; Visscher et al., 2017; Jang et al., 2022). Among those, the 
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investigation of the sample size associated with Ne and Me is still questionable. Theoretically, 

increasing the sample size for GWAS improves the resolution and statistical power to identify the 

significant variants, avoiding spurious results. The sample size is critical when investigating a 

large number of SNP, as is the case for WGS data. As of June 2022, the number of genotyped 

Holsteins in the US is 5.4 million  (https://queries.uscdcb.com/Genotype/cur_freq.html), and 

Angus is 1.2 million (K. Retallick, American Angus Association, Saint Joseph, MO, personal 

communication). However, computations with such a number are challenging, and not all 

genotyped animals are informative. Therefore, it is crucial to understand how many genotyped 

animals are effectively needed to be used as a variant discovery set for GWAS. Understanding the 

efficient sample size for GWAS could help alleviate economic and computational costs in practical 

applications for populations with small and large effective sizes. 

 Misztal (2016) hypothesized that the additive genetic information in a population is 

contained in a limited Me. Stam (1980) showed that given a species with a genome length equal 

to L Morgans, the Me segregating in a population could be expressed as a function of Ne and L, 

which is 4NeL. Pocrnic (2016) showed that Me, and therefore, Ne and L, is a function of the number 

of largest eigenvalues (EIG) explaining a certain proportion of variance in G, such that EIG90 ≈ 

NeL, EIG95 ≈ 2NeL, and EIG98 ≈ 4NeL. Based on that, the optimal number of animals that carry 

all the independent chromosome segments, representing the non-redundant genomic information, 

is approximated by the number EIG explaining 98% of the variance in G. This number varies from 

4k to 6k in pigs and chickens and from 10k to 15k in cattle (Pocrnic et al., 2016). 

 The accuracy of genomic prediction is affected by many factors. Among them, the size of 

reference population and the relationship between the reference and validation individuals are 

important ones. Thus, the gain in accuracy of genomic prediction in populations with a small 

https://queries.uscdcb.com/Genotype/cur_freq.html
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reference size could be limited. In such a case combining multiple populations (breeds or lines) 

could help boost the accuracy of genomic predictions for the populations with fewer individuals 

(Calus et al., 2014; Rolf et al., 2015; Song et al., 2017; Cesarani et al., 2022). Combining multiple 

populations can be challenging, especially with genomic information. Several studies explored 

adjusting G for breed-specific allele frequencies in multi-breed evaluations in cattle and pigs, but 

no benefits were observed in prediction accuracy (Makgahlela et al., 2013; Lourenco et al., 2016). 

Cesarani et al. (2022) showed that accurate multibreed cattle predictions are obtained when all 

fixed effects in the model are breed-specific and unknown parent groups (UPGs) are fitted to 

account for genetic differences at the breed level, where UPGs can be used to model non-zero 

breeding values for missing parents (Westell et al. 1988). Macedo et al. (2020) also observed that 

better multibreed genomic predictions are possible if differences in base populations are correctly 

modeled. This difference can be modeled by UPGs, which ssGBLUP can handle in two ways based 

on the extension of the QP-transformed equation (Quaas, 1988) to all elements of 𝐇−1 (Misztal et 

al. 2013): 

𝐇∗ = 𝐀∗ + [

0 0 0
0 𝐆−1 − 𝐀22

−1 −(𝐆−1 − 𝐀22
−1)𝐐

0 −𝐐′(𝐆−1 − 𝐀22
−1) 𝐐′(𝐆−1 − 𝐀22

−1)𝐐
], 

or only the pedigree relationship matrices (Tsuruta et al., 2019): 

𝐇∗ = 𝐀∗ + [

0 0 0
0 𝐆−1 − 𝐀22

−1 𝐀22
−1𝐐

0 −𝐐′𝐀22
−1 𝐐′𝐀22

−1𝐐
], 

where 𝐇∗is the inverse of the realized relationship matrix with UPGs added to the A, 𝐀𝟐𝟐, and G 

or without G. Q is an incidence matrix relating animals in vector u to UPGs in vector g, 𝐀∗ is the 

inverse of A with UPGs constructed with the QP transformation. However, UPGs assume that the 
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ancestors in base populations are neither inbred nor related. Therefore, Legarra et al. (2015) 

proposed metafounders (MFs), which assume the individuals in the base populations are related 

and inbred. In this method, A was modified to be compatible with G centered with allele 

frequencies of 0.5 (𝐆0.5), so 𝐇−1 with metafounders is computed as: 

𝐇Γ−1 = 𝐀Γ−1 + [
0 0 0
0 𝐆05

−1 − 𝐀22
Γ−1 0

0 0 0
], 

where 𝐀Γ−1 and 𝐀22
Γ−1 are the altered 𝐀−1 and 𝐀22

−1 with the parameter 𝚪. The 𝚪 matrix is computed 

using SNP markers under a generalized least square approach (Garcia-Baccino et al., 2017). 

Although the MFs theory is well defined, its application in multibreed or multi-line evaluations is 

still under investigation. 
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CHAPTER 3 

USING WHOLE-GENOME SEQUENCE DATA FOR SINGLE-STEP GENOMIC 

PREDICTIONS IN MATERNAL AND TERMINAL PIG LINES1 

  

 
1Sungbong Jang, Roger Ros-Freixedes, John M. Hickey, Ching-Yi Chen, William O. Herring, Ignacy Misztal, and 

Daniela Lourenco. To be submitted to Genetics Selection Evolution. 
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ABSTRACT 

Whole-genome sequence (WGS) data harbor causative variants that may not be present in 

the regular SNP chip data. The objective of this study was to investigate the impact of using 

preselected variants from WGS for single-step genomic predictions in maternal and terminal pig 

lines with up to 1.8k sequenced and 100k imputed sequenced animals. Two maternal and four 

terminal lines were investigated for eight and seven traits, respectively. The number of sequenced 

animals ranged from 1,365 to 1,491 in maternal lines and 381 to 1,865 in terminal lines. Imputation 

occurred within each line, and the number of animals imputed to sequence ranged from 66k to 76k 

in maternal lines and 29k to 104k in terminal lines. Three preselected SNP sets were generated 

based on genome-wide association studies (GWAS) or linkage disequilibrium (LD) pruning. 

Top40k had the top SNP in each 40k genomic window; ChipPlusSign included significant variants 

integrated into the regular porcine SNP chip, whereas LDTags were tag variants retained after 

pruning SNP with LD r2>0.1 in 10-Mb windows. Those SNP sets were compared to the regular 

porcine SNP chip using single-step GBLUP with equal or different SNP variances. In maternal 

lines, ChipPlusSign, Top40k, and LDTags showed, on average, 0.62%, 4.9%, and 1.56% increased 

accuracy compared to the regular porcine SNP chip. The greatest changes were for fertility traits, 

with an average gain of 31.1%. However, for sire lines, most of the SNP sets resulted in a loss of 

accuracy ranging from 1% to 12.4%. Only ChipPlusSign provided a positive, albeit small, gain 

(0.85%). Assigning different variances for SNP slightly improved accuracies when using variances 

obtained from BayesR; however, the increase was not consistent across lines and traits. The benefit 

of using sequence data depends on the line, genetic architecture of the traits, size of the genotyped 

population, and how the WGS variants are preselected. When WGS is available on hundreds of 
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thousands of animals, the advantage of sequence data is present but could be limited in maternal 

and terminal pig lines. 

 

INTRODUCTION 

 Using SNP chip data for genomic prediction relies on the linkage disequilibrium (LD) 

between SNP and causative variants (De Roos et al., 2008). Because of the initial high cost of SNP 

genotyping, most of the SNP chips utilized in farm animals are still limited to less than 100k 

markers, which could restrict the information available for genomic predictions. Whole-genome 

sequence (WGS) data harbor millions of variants, possibly including causative variants that 

primarily affect the traits of interest but are not present in regular SNP chips. As sequencing is 

becoming cheaper, WGS data is becoming available for some agricultural species. Whether this 

data can help increase the accuracy of genomic predictions beyond that already achieved by SNP 

chips is still questionable because no or marginal gains were reported by several studies (Brøndum 

et al., 2015; van den Berg et al., 2016; VanRaden et al., 2017; Fragomeni et al., 2019). Specifically, 

in pigs, Zhang et al. (2018) showed that the 80k SNP chip outperformed the 650k SNP chip and 

WGS data for genomic predictions of average daily feed intake and backfat traits. In contrast, Song 

et al. (2019) reported a marginal gain in prediction accuracy when WGS data was used. The 

absence of benefits reported in those studies could be due to the small number of sequenced 

animals (maximum of 289 animals), poor imputation accuracy, statistical methods, and sequence 

SNP redundant with the ones in the chip.  

 Imputation is an inevitable step when working with WGS data because sequencing a large 

number of individuals is still unfeasible. So far, the most efficient approach is to sequence the 
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important animals in a population and impute the sequence to other genotyped animals (Ros-

Freixedes et al., 2020). Not all variants might be causative or in high LD with the causative ones; 

thus, using the entire WGS data would not benefit genomic predictions (Van Binsbergen et al., 

2015). Hence, the preselection of variants helps narrow down the WGS data to only significant 

ones. Several approaches have been investigated to select significant or causative variants for 

genomic prediction, such as genome-wide association studies (GWAS) (VanRaden et al., 2017), 

SNP functional annotation (Lopez et al., 2021), and gene expression (de Las Heras-Saldana et al., 

2020). Among these approaches, GWAS has been used to preselect WGS variants in pig 

populations (Zhang et al., 2018; Song et al., 2019); however, the number of individuals initially 

sequenced was small, and the imputation applied to less than 7k animals, indicating that only a 

small number of animals were used for variant selection and genomic prediction.  

Fragomeni et al. (2017) used simulated sequence data to show that once all causative 

variants are known, together with their position and percentage of additive genetic variance 

explained, prediction accuracy is maximized. Conversely, if only neighboring SNP are identified, 

the accuracy is inversely proportional to the distance between the causative variants and the 

neighbor SNP. If only a small proportion of the causative variants were known, the increase in 

accuracy was also proportional. When a few causative variants were known from a real beef cattle 

data, Gualdrón-Duarte et al. (2020) showed an increase in prediction accuracy for carcass traits of 

up to seven points when using single-step genomic BLUP (ssGBLUP) with BayesR SNP weights, 

but no improvements with non-linear weights (VanRaden, 2008; Fragomeni et al., 2019). 

Using simulated sequence data, Jang et al. (2022) looked at the dimensionality of the 

genomic information (Pocrnic et al., 2016a) to assess the number of genotyped animals needed to 

maximize the percentage of discoveries in GWAS. The authors showed that populations with 
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smaller effective size (Ne = 20) require more data to capture causative variants, whereas for large 

populations (Ne = 200), using the number of genotyped animals equal to that of the largest 

eigenvalues explaining 98% of the variance of the genomic relationship matrix suffices. Still, only 

a small proportion of the causative variants can be discovered if those genotyped animals do not 

have many progeny records.  

In pigs, the Ne varies from 30 to 50, and the dimensionality of the genomic information or 

the number of independent chromosome segments segregating in the population ranges from 4k to 

6k (Pocrnic et al., 2016b). Based on Jang et al. (2022), using a sample size for GWAS of 7k in a 

population with Ne of 20 allowed identifying causative variants explaining 20% of the additive 

genetic variance. Moreover, larger sample sizes resulted in larger prediction accuracies with 

selected variants. Recently, Ros-Freixedes et al. (2020) proposed an approach to accurately impute 

sequence to hundreds of thousands of pigs, which resulted in WGS data for over 300k animals 

across maternal and terminal lines. The present study investigates the impact of using preselected 

variants from WGS data for genomic prediction in maternal and terminal pig lines with up to 1.8k 

sequenced and 100k imputed sequenced animals. We explored different ways to preselect variants 

and the changes in accuracy when using single-step GBLUP (ssGBLUP) and ssGBLUP weighted 

with BayesR SNP variances (WssGBLUP). 

 

MATERIALS AND METHODS 

 Animal Care and Use Committee approval was not needed as data were obtained 

from preexisting databases. 

Data 
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Datasets provided by the Pig Improvement Company (PIC; Hendersonville, TN) 

comprised two maternal lines (ML1, ML2) and four terminal lines (TL1, TL2, TL3, and TL4) with 

diverse genetic backgrounds. We investigated average daily feed intake (ADFI), average daily 

gain (ADG), backfat thickness (BF), loin depth (LDP), total born (BTP), number of stillborn 

(NSB), return to oestrus seven days after weaning (RET), and litter weaning weight (WWT) for 

maternal lines. For terminal lines, we investigated ADFI in purebreds, ADG, BF, and LDP, in 

purebreds and crossbreds (ADGX, BFPX, and LDPX). In maternal lines, two-trait models were 

considered for ADG and ADFI (ADFI model), ADG and BF (GROWTH model), ADG and LDP 

(LOIN model), BTP and NSB (REPROD model), whereas single-trait models were used for RET 

(RET model) and WWT (WWT model). In terminal lines, the described ADFI model was applied, 

but four-trait models were used for GROWTH (ADG, BF, ADGX, and BFX) and LOIN (ADG, 

LDP, ADGX, and LDPX) model. The total number of animals in the pedigree and records for each 

trait are in Table 3.1. Pigs were genotyped with the GGP-Porcine HD BeadChip (GeneSeek, 

Lincoln, NE). We filtered out the monomorphic SNP as well as SNP with a call rate lower than 

0.90, minor allele frequency lower than 0.01, and the difference between observed and expected 

genotype frequencies greater than 0.15. Individuals with more than 10% missing genotypes were 

also removed. Table 3.2 depicts the number of genotyped animals and SNP per line after quality 

control. 

Whole-genome sequencing and imputation  

The whole-genome sequence data used in this study were generated by Ros-Freixedes et 

al. (2020); Ros-Freixedes et al. (2022). In summary, a low-coverage sequencing strategy was 

followed by joint calling, phasing, and imputation of the whole-genome genotypes using the 

‘hybrid peeling’ method implemented in AlphaPeel (Whalen et al., 2018). The number of 
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sequenced individuals for each line is provided in Table 3.2. The ‘hybrid peeling’ method used all 

the GGP-Porcine HD and WGS data available across the pedigrees. Imputation was carried out 

separately for each line. Individuals with low predicted imputation accuracy were excluded, as 

described by Ros-Freixedes et al. (2020). A total of 76,230 (ML1), 66,608 (ML2), 60,474 (TL1), 

41,573 (TL2), 29,330 (TL3), and 104,661 (TL4) sequenced/imputed individuals remained in each 

line after quality control. These individuals were predicted to have an average dosage correlation 

of 0.97 (median: 0.98 based on the imputation accuracy of 284 pigs that had both WGS (high 

coverage) and marker array data. All SNP with a minor allele frequency lower than 0.023 were 

removed since their estimated dosage correlations were lower than 0.90 (Ros-Freixedes et al., 

2020). 

Training and test sets 

Before the GWAS, all animals with WGS data were separated into training and test, which 

were defined as in Ros-Freixedes et al. (2022). Test sets were generated by extracting entire litters 

from the last generation of the pedigree. The training sets were created by establishing a threshold 

on the pedigree relationship coefficients between training and test sets. We removed individuals 

with a relationship coefficient equal to or greater than 0.5 to test animals to resemble the selection 

candidate evaluation done by pig breeding companies. Ros-Freixedes et al. (2022) investigated 

different training sets for variant discovery and genomic prediction and reported no improvement 

or drop in accuracy. Therefore, the same training dataset was adopted for both analyses.  

Pre-selected SNP panels 

Three different pre-selected SNP panels were created from WGS for the genomic 

prediction as described in Ros-Freixedes et al. (2022): (1) LDTags (2), Top40k, and (3) 

ChipPlusSign. The LDTags were tag variants retained after pruning SNP with LD with an r2>0.1 
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in any 10-Mb window so that, on average, 30k variants remained (range: 5k to 80k). Top40k were 

the variants with the lowest p-value (not necessarily below the significance threshold) in each 

consecutive non-overlapping 55-kb window along the genome, based on GWAS analyses. 

ChipPlusSign combined the GGP-Porcine HD SNP and significant variants (p ≤ 10-6) from the 

GWAS in a way that when a 55-kb window contained more than one significant variant, only that 

with the lowest p-value was selected. Genomic predictions with the three sets were compared 

against the GGP-Porcine HD chip (Chip). For scenarios that used multi-trait models, the 

preselected variants for each trait were combined for the traits included in each model. For 

example, those pre-selected variants for each ADFI and ADG were combined for the ADFI model 

and used for genomic prediction. As sequence information was available only on purebred animals, 

no variants were selected for ADGX, BFPX, and LDPX. After constructing all the pre-selected 

SNP panels, quality control was done to remove SNP with the difference between observed and 

expected genotype frequencies greater than 0.15 and to exclude individuals with parent-progeny 

Mendelian conflicts. Because the number of animals available for each SNP panel (Chip, LDtag, 

Top40k, and ChipPlusSign) was different after quality control, we only used the common animals 

that passed quality control for all the SNP panels for a fair comparison of genomic prediction 

(Table 3.3). 

Genomic prediction 

Single-trait, two-trait, or four-trait models were used for genomic predictions, depending 

on the traits. Herein, only a four-trait GROWTH model (ADG, BF, ADGX, and BFX) of terminal 

lines is described: 

𝐲 = 𝐗𝐛 + 𝐖𝐜 + 𝐙𝐮 + 𝐞, 
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where y is the vector of phenotypes; X is an incidence matrix for fixed effects (contemporary group 

as a cross-classified effect for all traits, offtest weight and carcass weight as a covariate only for 

BF and BFX, respectively) contained in b; W is an incidence matrix for the random, diagonal litter 

effect contained in c (c~ MVN(0, 𝐈⨂𝐋0)); Z is an incidence matrix for the random additive genetic 

effect contained in u (u~ MVN(0, 𝐇⨂𝚺0)); and e (e~MVN(0, 𝐈⨂𝐑0)) is a vector of residual 

effects. Matrices L0, 𝚺0, and R0 are as follows: 

𝐋0 =

[
 
 
 
 

𝜎𝑙𝐴𝐷𝐺

2 𝜎𝑙𝐴𝐷𝐺,𝑙𝐵𝐹
0 0

𝜎𝑙𝐵𝐹,𝑙𝐴𝐷𝐺
𝜎𝑙𝐵𝐹

2 0 0

0 0 𝜎𝑙𝐴𝐷𝐺𝑋

2 𝜎𝑙𝐴𝐷𝐺𝑋,𝑙𝐵𝐹𝑋

0 0 𝜎𝑙𝐵𝐹𝑋,𝑙𝐴𝐷𝐺𝑋
𝜎𝑙𝐵𝐹𝑋

2
]
 
 
 
 

, 

𝚺0 =

[
 
 
 
 

𝜎𝑎𝐴𝐷𝐺
2 𝜎𝑎𝐴𝐷𝐺,𝑎𝐵𝐹

𝜎𝑎𝐴𝐷𝐺,𝑎𝐴𝐷𝐺𝑋
𝜎𝑎𝐴𝐷𝐺,𝑎𝐵𝐹𝑋

𝜎𝑎𝐵𝐹,𝑎𝐴𝐷𝐺
𝜎𝑎𝐵𝐹

2 𝜎𝑎𝐵𝐹,𝑎𝐴𝐷𝐺𝑋
𝜎𝑎𝐵𝐹,𝑎𝐵𝐹𝑋

𝜎𝑎𝐴𝐷𝐺𝑋,𝑎𝐴𝐷𝐺
𝜎𝑎𝐴𝐷𝐺𝑋,𝑎𝐵𝐹

𝜎𝑎𝐴𝐷𝐺𝑋
2 𝜎𝑎𝐴𝐷𝐺𝑋,𝑎𝐵𝐹𝑋

𝜎𝑎𝐵𝐹𝑋,𝑎𝐴𝐷𝐺
𝜎𝑎𝐵𝐹𝑋,𝑎𝐵𝐹

𝜎𝑎𝐵𝐹𝑋,𝑎𝐴𝐷𝐺𝑋
𝜎𝑎𝐵𝐹𝑋

2
]
 
 
 
 

, 

𝐑0 =

[
 
 
 
 

𝜎𝑒𝐴𝐷𝐺
2 𝜎𝑒𝐴𝐷𝐺,𝑒𝐵𝐹

0 0

𝜎𝑒𝐵𝐹,𝑒𝐴𝐷𝐺
𝜎𝑒𝐵𝐹

2 0 0

0 0 𝜎𝑒𝐴𝐷𝐺𝑋
2 𝜎𝑒𝐴𝐷𝐺𝑋,𝑒𝐵𝐹𝑋

0 0 𝜎𝑒𝐵𝐹𝑋,𝑒𝐴𝐷𝐺𝑋
𝜎𝑒𝐵𝐹𝑋

2
]
 
 
 
 

, 

where 𝜎𝑙
2 is the litter variance, 𝜎𝑎

2 is the additive genetic variance, and 𝜎𝑒
2 is the residual variance. 

I is an identity matrix and H is the realized relationship matrix that combines pedigree and genomic 

relationships in ssGBLUP. The genomic prediction was performed with both ssGBLUP and 

WssGBLUP using BLUPF90 family of programs (Misztal et al., 2014b), which used the inverse 

of H (𝐇−1) as follows (Aguilar et al., 2010): 

𝐇−1 = 𝐀−1 + [
0 0
0 𝐆−1 − 𝐀22

−1], 
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where 𝐆−1 is the inverse of the genomic relationship matrix and 𝐀22
−1 is the inverse of the pedigree 

relationship matrix for the genotyped individuals. The G was created using the first method of 

VanRaden (2008): 

𝐆 = 
𝐌𝐃𝐌′

2∑pj(1−pj)
, 

where M is a matrix of genotypes centered or current allele frequencies, pj is the minor allele 

frequency of SNP j, and D is the diagonal matrix of SNP weights. All the SNP were presumed to 

have homogeneous weights in ssGBLUP, meaning that D is an identity matrix (I). To ensure 

compatibility between G and 𝐀22 and circumvent singularity issues, G was tuned and then blended 

with 5% of 𝐀22. 

 The algorithm for proven and young (APY) was applied to obtain 𝐆−𝟏 while avoiding the 

direct inversion of G (2014a) for the lines with more than 50k genotyped animals, i.e., ML1, ML2, 

TL1, and TL4. To ensure reliable estimation of GEBV, the number of core animals corresponded 

to the number of largest eigenvalues explaining 98% of the total variation in G assessed with 

regular chip data (Pocrnic et al., 2016a). Therefore, the number of core animals in each line was: 

4,200, 5,400, 3,400, and 5,500 for ML1, ML2, TL1, and TL4, respectively.   

 For the WssGBLUP, we calculated SNP variances from BayesR (Erbe et al., 2012) and 

assigned those variances as weights for SNP in an iterative way. Each iteration stored individual 

SNP variances, and posterior SNP variance was calculated as the average variance across all the 

iterations. Afterward, the weights were re-scaled to make the trace of D equal to the number of 

SNP. More details about BayesR weighting are described in Gualdrón-Duarte et al. (2020). This 

approach was only applied to the four largest lines, ML1, ML2, TL1, and TL4 for growth-related 

traits (ADFI, ADG, BF, and LD) with the Top40k and ChipPlusSign data. 

Validation 
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The accuracy of genomic prediction was calculated by correlating genomic EBV (GEBV) 

with deregressed EBV (dEBV) (VanRaden and Wiggans, 1991) for the animals in the test sets. 

Inflation or deflation levels were assessed as the b1 of the regression of dEBV on GEBV. The b1 

values lower than 1 indicated inflation of GEBV and greater than 1 indicated deflation. All animals 

with no dEBV were removed from the test sets. 

 

RESULTS 

Genomic prediction accuracy of maternal lines using ssGBLUP 

Fig. 3.1 shows the changes in prediction accuracy (%) of ChipPlusSign, Top40k, and 

LDtags compared to Chip for the two maternal lines. To compare the results between lines by the 

size of the genotyped population rather than the SNP panels, the x-axis was sorted by the number 

of genotyped animals in each line (small to large; M2 and M1 by order), but the gain range of y-

axis in each figure did not equalize to other figures to show the gain or reduction in each genotype 

scenario. For many traits, ChipPlusSign and Top40k showed greater accuracy than Chip (Fig. 3.1). 

Using ChipPlusSign instead of Chip resulted in a maximum gain of 1.49% for ADFI in ML2 and 

1.61% for ADG in ML1, and the greatest decrease of -0.74% and -0.26% for WWT in ML2 and 

ML1, respectively. The mean across all eight traits increased as the number of genotyped animals 

increased from ML2 to ML1, although the percentage of gain was very small (0.49% to 0.75%) 

compared to Chip. Accuracy gains by using Top40k were greater than the ones from ChipPlusSign. 

The average gain using Top40k for ML2 and ML1 was 4.34% and 5.54%, respectively, following 

the increasing number of animals with WGS data. The largest gains in each line with Top40k were 

22.87% and 34.77% for RET in ML2 and ML1, whereas the largest reduction was -4.25% and -

5.19% for ADFI in ML2 and WWT in ML1, respectively.  
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LDTags showed inconsistent results among traits. In ML1, the gains compared to Chip 

were 12.36% for BTP, 13.67% for NSB, and 94.06% for RET. Although a gain of 94.06% is 

impressive, the accuracy for RET using Chip was as low as 0.14. Likewise, in ML1, using LDTags 

in ML2 resulted in greater accuracy than Chip for BTP (2.82%) and RET (35.04%), but not for 

NSB (-8.80%). Therefore, pre-selection of variants from GWAS (ChipPlusSign and Top40k) 

could improve prediction accuracy for most traits in maternal lines, although those gains were 

small to modest. The pre-selection of SNP based on LD pruning (LDTags) also increased 

prediction accuracy for some reproduction-related traits; however, meaningful reductions were 

observed in most growth-related traits. 

Genomic prediction accuracy of terminal lines using ssGBLUP 

Changes in prediction accuracy (%) of ChipPlusSign, Top40k, and LDTags compared to 

Chip for four terminal lines are described in Fig. 3.2. The x-axis was sorted by the number of 

genotyped animals in each line as in maternal lines (small to large; TL3, TL2, TL1, and TL4 by 

order). ChipPlusSign reported a consistent gain in accuracy among all traits and lines, except for 

LDPX in TL2 (-5.26%) and LDPX in TL3 (-0.45%). As the results of ChipPlusSign in maternal 

lines, the result in terminal lines also showed an increasing pattern as the number of genotyped 

animals increased following the order, TL3, TL2, TL1, and TL4. The average gain for all seven 

traits was 0.37%, 0.56%, 0.95%, and 1.50% and the maximum gain was 0.94% (TL3-ADFI), 

2.27% (TL2-ADGX), 1.32% (TL1-BF), and 2.61% (TL4-ADGX), following the previous order. 

Contrary to ChipPlusSign results, Top40k reported inconsistent results among the traits and lines. 

Although TL3 and TL4 showed accuracy gains for most traits, except ADFI in TL4 (-0.49%), TL1 

and TL2 reported a reduction in accuracy for many traits (six traits for TL1 and four traits for 

TL2). On average, TL3 showed the second greatest accuracy gain for all seven traits (2.35%), with 
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the smallest number of genotyped animals among all terminal lines. TL2, TL1, and TL4 reported 

-3.32%, -6.28%, and 3.30% accuracy changes, meaning that the number of genotyped animals did 

not affect the gain with Top40k for terminal lines. However, the largest genotyped line (TL4) 

showed the most notable average gain (3.30%). The maximum gains in each line were 3.74% 

(LDP), 16.16% (ADGX), 1.55% (BFX), and 7.91% (ADGX) for TL3, TL2, TL1, and TL4, 

respectively. For both ChipPlusSign and Top40k, TL2 showed the greatest standard deviation 

among the traits, 2.67 and 18.37, respectively, meaning that accuracy changes highly depend on 

the traits in TL2.  

Genomic prediction results using LDTags reported accuracy reduction for all the traits 

among the models but gain for BFX in TL2 (2.81%). In general, the use of ChipPlusSign reported 

improved accuracy for most of the traits in the terminal lines. However, those gains were limited 

(maximum 2.61% for ADGX in TL4). Results of Top40k showed decreased accuracy in most of 

the traits for TL1 and TL2, on the contrary, increased accuracy was outlined in TL3 and TL4 for 

almost all traits. LDTags indicated lower accuracy than Chip data for all terminal lines. 

Inflation/deflation of GEBV 

Fig. 3.3 describes the b1 values for all genotyped scenarios for maternal (a) and terminal 

lines (b). All the values in each genotype scenario were averaged across all traits in each line. Fig. 

3.3-(a) described the results of maternal lines. When the number of genotyped animals increased 

(ML2 to ML1), b1 departed from 1.0 (0.86 in ML2 and 0.79 in ML1). More specifically, LDTags 

showed more notable deflation of GEBV from ML2 to ML1 (1.17 to 1.23, respectively). However, 

other genotype panels had greater inflation of GEBV from ML2 to ML1. The results of Chip, 

ChipPlusSign, and Top40k were similar within the lines.  
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The results of terminal lines are in Fig. 3.3-(b). Compared to the results of maternal lines, 

inconsistent patterns were observed in terminal lines among the traits and lines. Overall, all the 

terminal lines showed inflated GEBVs for all traits and genotype panels. LDTags showed less 

inflation for TL3, TL1, and TL4 (0.80, 0.79, and 0.88, respectively), whereas the greatest inflation 

was observed in TL2 (0.43). On average, TL3 reported the best result (0.76), followed by TL4, 

TL1, and TL2 (0.72, 0.70, and 0.62, respectively). The Chip, ChipPlusSign, and Top40k yielded 

similar results in TL3 and TL4. In TL1 and TL2, however, Top40k showed either less inflation 

(+0.05) or more inflation (-0.13) compared to Chip and ChipPlusSign. 

Genomic prediction using WssGBLUP 

WssGBLUP using BW was only applied to the four largest lines (ML1, ML2, TL1, and 

TL4) for growth-related traits (ADFI, ADG, BF, and LD) with Top40k and ChipPlusSign because 

those sets showed the best performance among the preselected genotype panels. Comparisons were 

made between Top40k and Top40k_BW and between ChipPlusSign and ChipPlusSign_BW. 

Results of prediction accuracy are in Table 3.4. For ML1, no gain was observed with WssGBLUP. 

In ML2, using Top40k_BW and ChipPlusSign_BW showed 0.02 accuracy gain in BF, whereas -

0.09 reduction in LD. TL1 results also showed no improvement in accuracy. The greatest gains 

(~0.06) were outlined in the results of TL4 when Top40k_BW or ChipPlusSign_BW were used. 

No gain was observed for ADFI. However, 0.06, 0.03, and 0.04 accuracy gains were observed for 

ADG, BF, and LD when Top40k_BW was used instead of Top40k. Similarly, 0.03, 0.02, and 0.04 

increases in accuracy were reported with ChipPlusSign_BW for ADG, BF, and LD. Overall, 

WssGBLUP showed similar b1 values to the regular ssGBLUP except for a few scenarios (results 

not shown). 
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DISCUSSION 

The current study investigated the impact of using large-scale WGS data for genomic 

prediction through ssGBLUP and WssGBLUP in maternal and terminal pig lines. This is the first 

study applying ssGBLUP to over 1.8k sequenced and 100k imputed sequenced animals in pigs. 

Several preselected genotype scenarios were created to compare genomic predictions with WGS 

and the regular SNP chip. Our results showed that preselected variants could outperform the 

regular SNP chip for genomic prediction, although not consistently across the lines and traits and 

with relatively limited gains. In addition, we observed the potential to improve prediction accuracy 

through WssGBLUP using posterior variance from the BayesR as SNP weight, especially for the 

largest genotyped populations. Our results suggest effective scenarios to construct preselected 

variant sets depending on traits and population sizes for maternal and terminal pig lines. In the 

discussion section, we will address the three topics: (1) Impact of preselected variants on genomic 

prediction (2) Using WGS data for genomic prediction in pigs (3) Comparison of different 

weighting methods in ssGBLUP. 

Impact of preselected variants on genomic prediction 

Theoretically, using WGS data can improve genomic predictions because they cover the 

entire genome, assuming that causative variants are likely presented in the data. Therefore, 

genomic prediction does not rely on LD between SNP and causative variants but directly uses 

causative variants (Meuwissen and Goddard, 2010). A common assumption is that all the variants 

can explain a large proportion of genetic variance in the WGS data. However, several studies 

reported that using WGS data did not improve prediction accuracies (Van Binsbergen et al., 2015; 

Zhang et al., 2018; Song et al., 2019). A plausible reason for that would be the use of redundant 

SNP. As the WGS data have millions of SNP across the entire genome, adjacent SNP likely have 
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a strong LD with causative variants or other SNP in certain genome blocks, indicating that most 

SNP are correlated, providing the same information. Therefore, fitting all the WGS data in the 

prediction model could lead to biased GEBV. To avoid bias, many studies have investigated the 

preselection of significant variants for genomic prediction (Brøndum et al., 2015; VanRaden et al., 

2017; Fragomeni et al., 2019). Besides preselection, removing correlated SNP based on LD extent 

has been also explored (Calus et al., 2016; Song et al., 2019).  

 Thus, in the current study, three different preselected genotype panels were designed and 

compared to the regular chip data. Those three panels were constructed following different 

assumptions. For ChipPlusSign, significant variants (p≤10-6) based on GWAS were added to the 

regular SNP chip with an expectation of better prediction accuracy if the significant SNP had large 

effects or were causative and not presented in Chip. Incorporating preselected, significant SNP 

into the regular SNP chip has been investigated in many studies with WGS data (Fragomeni et al., 

2017; VanRaden et al., 2017; Moghaddar et al., 2019). Top40k was created to mimic the number 

of SNP in the regular medium-density SNP chips used for routine genomic evaluation in many 

farm animals (e.g., pigs, cattle, and chickens). As most of the regular SNP chips contain evenly 

spaced SNP, Top40k also consisted of 40k SNP selected from each consecutive non-overlapping 

55-kb window of WGS with the lowest p-value (i.e., from GWAS) in each window. Therefore, 

gains in prediction accuracy were expected if those preselected 40k SNP from WGS data were 

more informative and explained a more notable proportion of genetic variation than the SNP in 

the regular chip.  As WGS data had many SNP with strong LD extent to each other or causative 

variants, removing highly correlated SNP was considered a reasonable strategy to preselect SNP, 

which was applied in the LDTags scenario. Song et al. (2019) reported that using LD-pruned WGS 

data outperformed an 80k SNP panel in pigs. Therefore, we expected that LDTags could 
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outperform Chip if those redundant SNP were correctly removed and SNP with considerable 

effects retained. 

 Among the preselected genotype sets, ChipPlusSign showed small to moderate accuracy 

gain for many traits in maternal and terminal lines. In this study, ChipPlusSign showed the most 

consistent results across lines and traits, with accuracy gains in most of them; however, within a 

limited range (from 0.12% to 2.61%). Several studies have been conducted to investigate genomic 

prediction by adding selected variants to regular chip data through either real or simulated data 

sets (VanRaden et al., 2017; Fragomeni et al., 2019; Moghaddar et al., 2019; Jang et al., 2022). In 

US Holstein, VanRaden et al. (2017) investigated the reliability of GEBV for 33 traits when 

preselected SNP (N = 16k) from WGS were added to a 60k SNP chip. They reported up to a 4.8 

percentage point increase in reliability (15.35%) with an average of 2.7 extra points (9.15%) 

compared to the reliability obtained from a 60k SNP chip. However, when Fragomeni et al. (2019) 

investigated the performance of ssGBLUP using the same preselected variants set created by 

VanRaden et al. (2017), almost no gain in reliability (0.92%) was observed, although reliabilities 

were greater in Fragomeni et al. (2019). One major difference between those two studies was the 

method of genomic prediction, multistep in VanRaden et al. (2017) and ssGBLUP in Fragomeni 

et al. (2019). When ssGBLUP was used, it combined all the information from genotyped and non-

genotyped animals, allowing the inclusion of a massive amount of data. In such a scenario, gains 

in reliability are less likely if the selected variants are redundant, not truly causative, or have a 

small effect on the traits of interest. Our results agree with the ones from Fragomeni et al. (2019), 

especially with ChipPlusSign. In a simulated study, Jang et al. (2022) investigated the 

dimensionality of genomic information for variant selection and genomic prediction with sequence 

data. Their results showed that populations with small Ne obtained a maximum accuracy gain of 
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0.86% to 1.98% when either significant variants or hundreds of variants with high effect sizes 

preselected from GWAS were added to a 50k SNP chip. The small Ne scenario they simulated was 

20, close to the Ne in pig populations (32~48) (Pocrnic et al., 2016b).  

 In our study, the results of Top40k highly depended on the traits and lines. Top40k showed 

the greatest gain for RET across all maternal lines (22.87% to 34.77%), but relatively marginal 

gains or reductions for other traits. In the terminal lines, results of Top40k fluctuated more among 

lines, with increased or decreased accuracies. The possible reason for the large improvement 

observed for reproduction or fertility traits in maternal lines might be the nature of the traits and 

the lack of informative SNP in the regular SNP chip. The lack of informative SNP for fertility 

traits led to a recent change in the SNP chip for beef cattle evaluations 

(https://www.angus.org/AGI/global/AngusGS.pdf).  

Heritabilities for RET were relatively lower than other traits. Consequently, this trait had 

the lowest prediction accuracies (0.14 for ML1 and 0.20 for ML2 with Chip) among other traits in 

maternal lines. Thus, there would be a greater room for improvement in genomic predictions 

through using preselected genotype data if the SNP in Chip could not explain a large proportion 

of the genetic variance. Therefore, we speculated that there would be more informative SNP in 

Top40k for RET, which were not included in the regular SNP chip. Likewise, small-scale 

differences in accuracy observed between Chip and Top40k were possibly due to variants 

capturing similar proportions of genetic variance and having similar LD patterns across the 

genome. In terminal lines, the maximum gain was observed for ADGX (16.16% in TL2), recorded 

in crossbred animals. The ADGX was investigated in the GROWTH model along with three 

correlated traits (ADG, BF, and BFX), and the Top40k was created based on GWAS for ADG and 

BF, individually, and then each Top40k was combined for genomic prediction. Thus, this result 
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showed the potential for prediction improvement for the traits recorded in crossbred animals if 

many phenotypes and WGS animals are available although those traits were not directly used for 

preselection of variants. 

 Those marginal gains for most traits with ChipPlusSign and Top40k raised a question about 

the amount of information that has been used for preselecting the variants and performing genomic 

predictions. Examining the dimensionality of the genomic information can help assess the efficient 

number of genotyped animals needed to maximize the percentage of discoveries in GWAS and 

prediction accuracy gains (Jang et al., 2022). According to Jang et al. (2022), in populations with 

a larger effective size (Ne = 200), using the number of genotyped animals equal to the number of 

largest eigenvalues explaining 98% of the variance of G sufficed to capture the most informative 

variants, although only a tiny proportion of the causative variants was discovered for highly 

polygenic traits. However, their study showed that populations with a smaller effective size (Ne = 

20) required much more data to capture causative variants. For example, when 30k genotyped 

animals were used in GWAS for highly polygenic traits, only three causative variants were 

identified, explaining 3.9% of genetic variation. In addition, incorporating preselected variants to 

regular chip data reported a nearly 2% maximum gain in accuracy for the scenarios with Ne = 20. 

In the current study, the number of WGS animals used for GWAS was 29k to 104k, which is the 

largest WGS data in pigs by far. However, the fine-mapping of causative variants was still 

challenging and the benefits for genomic predictions were limited. Since pig populations have 

small Ne and most of the traits are highly polygenic, to capture the most informative variants, a 

very large number of WGS animals having lots of progeny records would be required (Jang et al., 

2022). 
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 In an initial batch of analyses (results not shown), we used only significant variants 

(TopSign) for genomic predictions, which showed no benefits compared to Chip. In fact, 

accuracies were reduced for most of the traits and lines. The number of variants in TopSign ranged 

from 6 to 1,705 depending on the lines and traits. Fragomeni et al. (2017) outlined that the 

maximum accuracy of GEBV could be obtained if the true causative variants were identified with 

their exact substitution effects, position in the genome, and genetic variance explained by each 

variant assigned as weight. Therefore, our results revealed that the variants in TopSign might not 

be the true causative variants, so the use of those variants underperformed regular SNP chip 

information. 

 In addition to using GWAS to preselect variants, LD pruning was also performed to reduce 

the number of variants in WGS. The LD extent between variants in WGS data is greater than in 

the chip data because of the dense distribution of many SNP across the genome. Therefore, several 

studies investigated the impact of LD pruning of WGS data on genomic prediction (Calus et al., 

2016; Song et al., 2019). According to Song et al. (2019), using WGS after LD pruning showed 

the greatest prediction accuracy for both reproduction and production traits in pigs. Calus et al. 

(2016) concluded that pruning variants based on LD is an important step as those many variants 

having strong LD reduced the prediction performance. Our results showed decreased accuracy in 

terminal lines for almost all traits, and some gains in maternal lines, specifically for the 

reproduction traits (BTP, NSB, and RET). The possible reason for the discrepancy between 

previous studies and the current study could be the different criteria for LD pruning. The previous 

studies by Calus et al. (2016); Song et al. (2019), pruned the variants for 𝑟2 > 0.9, whereas we 

pruned the variants for 𝑟2 > 0.1 to maintain only a small number of variants. However, the chances 

of removing the true causative variants with stringent than lenient criteria are higher because LD 



 

 35 

pruning only considered the LD extent between the variants, not the substitution effects of variants 

on traits of interest.  

Using WGS data for genomic prediction in pigs 

The cost of sequencing is getting cheaper, so using sequence data for genomic prediction 

of farm animals (e.g., sheep, beef cattle, dairy cattle, and pigs) has been more approachable than 

in the past. Several studies have been carried out and reported no or marginal benefits of using 

WGS on genomic prediction in sheep, beef, and dairy cattle (VanRaden et al., 2017; Fragomeni et 

al., 2019; Moghaddar et al., 2019; de Las Heras-Saldana et al., 2020; Lopez et al., 2021). Compared 

to other farm animals, using WGS data for genomic prediction in pigs has been barely investigated 

and only small-scale data sets were used (Zhang et al., 2018; Song et al., 2019). The number of 

WGS pigs in those studies was less than 7k. As the number of variants in WGS increases, more 

samples are required to resolve the well-known issue, ‘𝑁 <<  𝑝’, where 𝑁 is the sample size and 

𝑝 is the number of variants. If the sample size is not sufficient, estimation of SNP effects and 

identification of causative SNP could be troublesome, especially for populations with small Ne and 

highly polygenic traits.  

In the current study, the number of sequenced animals was around 380 to 1.8k, which 

represented nearly 2% of the population in each line (Ros-Freixedes et al., 2020). However, 

depending on the line, the WGS information was imputed to be about 29k to 104k animals. 

Applying large-scale WGS data to preselect the variants through GWAS and using those variants 

for genomic prediction in this study showed limited improvement as found in Zhang et al. (2018); 

Song et al. (2019), in which only a small number of animals had WGS. Theoretically, increasing 

the sample size enhanced the power to detect causative variants and improved genomic predictions 

(Daetwyler et al., 2010; Meuwissen and Goddard, 2010). However, the pig populations are highly 
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structured and have a small Ne. Therefore, increasing only the sample size might not help improve 

the performance of both variant selection and genomic prediction. Jang et al. (2022) reported that 

using animals with greater EBV reliability (more data available) helped better identify the 

causative variants than using animals that had lower EBV reliability. Therefore, selecting high-

reliability animals and using them could be a possible strategy. Another possible reason for limited 

benefit could be the imputation accuracy (Van Den Berg et al., 2017; Ros-Freixedes et al., 2020). 

The ideal situation to use WGS data is to sequence all the animals in the population without 

imputation from genotype to sequence level. However, as sequencing the entire population is still 

impossible, imputation is an inevitable procedure for dealing with WGS data. Since only a limited 

number of WGS animals are used as a reference for imputation, sequencing more animals and 

using robust statistical tools to impute alleles accurately are required. 

Comparison of different weighting methods in ssGBLUP 

WssGBLUP was investigated in addition to ssGBLUP. A major assumption of GBLUP-

based methods is that all markers have homogeneous variance. Those methods have been 

extensively applied for most of the traits in farm animals due to their highly polygenic nature 

(Aguilar et al., 2010; Lourenco et al., 2015). However, that assumption does not biologically hold 

because not all markers in the genome explain the same proportion of variance (Meuwissen et al., 

2001). Therefore, assigning heterogeneous variance per marker for genomic prediction has been 

investigated in several studies (Wang et al., 2012; Zhang et al., 2016; Gualdrón-Duarte et al., 

2020). Weighting SNP in ssGBLUP was initially proposed by Wang et al. (2012) by assigning 

unequal SNP variance through squared SNP effects weighted by allele frequencies. However, this 

method caused a reduction in GEBV accuracy and extra bias over iteration due to the extreme 

values of SNP variance, especially for the polygenic traits (Lee et al., 2017; Lourenco et al., 2017).  
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Following the increased accuracy reported by Gualdrón-Duarte et al. (2020), we used the 

posterior SNP variances from BayesR as SNP weights. In BayesR, SNP effects are sampled from 

a mixture of four normal distributions with mean zero and variances equivalent to the following 

classes: 0, 0.0001𝜎𝑔
2, 0.001𝜎𝑔

2, and 0.01𝜎𝑔
2 (Moser et al., 2015). Therefore, we assumed that this 

strategy would construct a better weighting matrix close to the true variance of SNP. Our results 

showed that BW outperformed ssGBLUP for ADG, BF, and LD in TL4 for both Top40k and 

ChipPlusSign up to 0.06. However, other traits in ML1, ML2, and TL1 showed similar results as 

in ssGBLUP. Gualdrón-Duarte et al. (2020) compared the performances of weighting strategies in 

Belgian Blue beef cattle. In their study, the average reliability of genomic prediction for 14 traits 

using GBLUP and BayesR weighted GBLUP showed no differences. However, applying posterior 

variance of marker effect from the Bayesian mixture model (similar to BayesR) as the weighting 

factor showed the best performance among other weighting strategies and regular GBLUP in the 

Nordic Holstein population (Su et al., 2014).  

The current study showed absent or modest gains in prediction accuracy depending on the 

lines and traits. We expected almost no gain with WssGBLUP, especially for the largest genotyped 

population (TL4), as the SNP effects were likely dominated by a large amount of data in the single-

step system. However, we observed potential room for improvements in predictions when using 

the posterior variance of BayesR even with a large amount of data. In other words, although the 

volume of data could overwhelm a priori assumption of SNP effects, improvements can still occur 

if the variances used as SNP weights are accurate enough.  

 

CONCLUSIONS 
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Preselection of significant variants from whole-genome sequence data and their utilization 

could help to improve genomic predictions in both maternal and terminal pig lines with tens of 

thousands of sequenced/imputed animals. However, a limited gain is expected even in large 

populations. Greater gains are observed when selected variants for some traits are not already 

present in the commercial SNP chips. Weighting SNP using BayesR variances slightly boosts 

prediction accuracies. The results of genomic prediction using several preselected variant sets 

highly depend on the genetic architecture of traits, population structure, number of genotyped 

animals, and method to select variants.  
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TABLES 

Table 3.1. Number of records and animals in the pedigree 

Line ADFI ADG BF LDP BTP NSB RET WWT Pedigree 

ML1 35k 1.06M 820k 604k 1.08M 1.13M 0.86M 34k 3.75M 

ML2 34k 1.52M 936k 631k 5.11M 5.28M 4.10M 29k 9.18M 

Line ADFI ADG BF ADGX BFX LDP LDPX Pedigree 

TL1 35k 356k 339k 150k 149k 305k 148k 1.13M 

TL2 40k 298k 295k 158k 156k 294k 156k 0.84M 

TL3 16k 233k 226k 155k 153k 212k 152k 1.30M 

TL4 64k 937k 859k 299k 247k 753k 243k 3.14M 
*ADFI: Average daily feed intake; ADG: Average daily gain; BF: Backfat thickness; LDP: Loin depth; BTP: Total born; NSB: Number of stillborn; RET: 

Return to oestrus seven days after weaning; WWT: Litter weaning weight; ADGX: ADG recorded in crossbred; BFX: BF recorded in crossbred; LDPX: LDP 

recorded in crossbred 

*ML1: Maternal line1; ML2: Maternal line2; TL1: Terminal line1; TL2: Terminal line2; TL3: Terminal line3; TL4: Terminal line4 
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Table 3.2. Number of genotyped individuals, SNP, and sequenced animals in six lines 

Line 
Number of genotyped 

individuals 
Number of SNP 

Number of sequenced 

individuals 

ML1 76,227 40,592 1,365 

ML2 66,608 42,746 1,491 

TL1 60,467 35,786 731 

TL2 41,572 40,311 760 

TL3 29,328 39,999 381 

TL4 104,644 43,032 1,865 
*ML1: Maternal line1; ML2: Maternal line2; TL1: Terminal line1; TL2: Terminal line2; TL3: Terminal line3; TL4: 

Terminal line4 
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Table 3.3. Number of animals with genomic information that was retained after quality control 

and used in the analyses with all SNP panels 

Line ADFI GROWTH LOIN REPROD RET WWT 

ML1 74,148 74,153 74,152 73,919 73,891 74,058 

ML2 64,654 64,655 64,659 64,599 64,653 63,456 

TL1 56,423 56,424 56,422 - - - 

TL2 38,477 38,475 38,477 - - - 

TL3 27,671 27,671 27,671 - - - 

TL4 102,586 102,590 102,588 - - - 
*In ML1 and ML2; ADFI: two-trait ADFI model (ADG and ADFI); GROWTH: two-trait GROWTH model (ADG 

and BF); LOIN: two-trait LOIN model (ADG and LDP); REPROD: two-trait REPROD model (BTP and NSB); 

RET: single-trait RET model (RET); WWT: single-trait WWT model (WWT) 

*In TL1, TL2, TL3, and TL4; ADFI: two-trait GROWTH model (ADG and ADFI); GROWTH: four-trait 

GROWTH model (ADG, BF, ADGX, and BFX); LOIN: four-trait LOIN model (ADG, LDP, ADGX, and LDPX)   
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Table 3.4. Prediction accuracy of WssGBLUP compared to ssGBLUP 

Line Description ADFI ADG BF LDP 

ML1 

Top40k 0.37 0.49 0.51 0.53 

Top40k_BW 0.37 0.49 0.51 0.53 

ChipPlusSign 0.37 0.47 0.51 0.52 

ChipPlusSign_BW 0.37 0.47 0.51 0.51 

ML2 

Top40k 0.36 0.61 0.64 0.62 

Top40k_BW 0.35 0.62 0.66 0.53 

ChipPlusSign 0.37 0.61 0.63 0.62 

ChipPlusSign_BW 0.37 0.62 0.65 0.53 

TL1 

Top40k 0.34 0.45 0.59 0.56 

Top40k_BW 0.34 0.45 0.59 0.55 

ChipPlusSign 0.36 0.49 0.61 0.60 

ChipPlusSign_BW 0.36 0.50 0.60 0.60 

TL4 

Top40k 0.39 0.51 0.60 0.59 

Top40k_BW 0.39 0.57 0.63 0.63 

ChipPlusSign 0.40 0.51 0.60 0.57 

ChipPlusSign_BW 0.40 0.54 0.62 0.61 
*ML1: Maternal line1; ML2: Maternal line2; TL1: Terminal line1; TL4: Terminal line4 

*ADFI: Average daily feed intake; ADG: Average daily gain; BF: Backfat thickness; LDP: Loin depth 

*Top40k: Top40k preselected genotype panel; Top40k_BW: Top40k using BayesR weighting 

*ChipPlusSign: ChipPlusSign preselected genotype panel; ChipPlusSign_BW: ChipPlusSign using BayesR 

weighting 
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FIGURES 

 

     (a) ChipPlusSign                                                        (b) Top40k 
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Figure 3.1. Accuracy changes (%) of ChipPlusSign, Top40k, and LDTags compared to Chip in 

maternal lines 
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Figure 3.2. Accuracy changes (%) of ChipPlusSign, Top40k, and LDTags in terminal lines 
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     (a) Maternal lines                             (b) Terminal lines 

Figure 3.3. b1 values for all the genotype scenarios in both maternal and terminal lines 
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CHAPTER 4 

MULTI-LINE SINGLE-STEP GENOMIC EVALUATION USING PRESELECTED 

MARKERS FROM WHOLE-GENOME SEQUENCE DATA IN PIGS2 

  

 
2Sungbong Jang, Roger Ros-Freixedes, John M. Hickey, Ching-Yi Chen, William O. Herring, Ignacy Misztal, and 

Daniela Lourenco. To be submitted to Genetics Selection Evolution. 
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ABSTRACT 

Genomic evaluations in pigs could benefit from using multi-line data along with whole-

genome sequence (WGS) if data are large enough to represent the variability across populations. 

The objective of this study was to investigate strategies to combine large-scale data from different 

terminal pig lines in a multi-line genomic evaluation (MLE) through single-step GBLUP 

(ssGBLUP) models while including variants preselected from whole-genome sequence (WGS) 

data. We explored three terminal lines under single-line and multi-line evaluations for five traits. 

The number of sequenced animals in each line ranged from 731 to 1,865, with 60k to 104k imputed 

to WGS. Unknown parent groups (UPG) and metafounders (MF) were explored to account for 

genetic differences among lines and improve the compatibility between pedigree and genomic 

relationships in the MLE evaluations. Sequence SNP were preselected based on multi-line 

genome-wide association studies (GWAS) or linkage disequilibrium (LD) pruning. Those 

preselected variants sets were used for ssGBLUP predictions without and with weights from 

BayesR, and the performances were compared to that of a commercial porcine SNP chip. Using 

UPG and MF in MLE showed small to no gain in prediction accuracy (up to 0.02), depending on 

the lines and traits, compared to the single-line genomic evaluation (SLE). Likewise, adding 

selected variants from GWAS to the commercial SNP chip resulted in a maximum increase in 

prediction accuracy of 0.02, only for average daily feed intake in the most numerous lines. Besides, 

no benefits were observed when using preselected sequence variants in multi-line genomic 

predictions. Weights from BayesR did not help improve the performance of ssGBLUP. This study 

revealed limited benefits of using preselected whole-genome sequence variants for multi-line 

genomic predictions, even when tens of thousands of animals had imputed sequence data. 

Correctly accounting for line differences with unknown parent groups or metafounders in multi-
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line evaluations is essential to obtain predictions similar to single-line; however, the only observed 

benefit of a multi-line evaluation is to have comparable predictions across lines. Further 

investigation on the amount of data and novel methods to preselect whole-genome causative 

variants in combined populations would be of great interest. 

 

INTRODUCTION 

 Genomic evaluations have been successfully implemented in pig breeding programs to 

increase the accuracy of predicting genomic EBV (GEBV) and better identify the best animals to 

be parents of the next generation. However, lines with a small reference size may not experience 

the same benefits as large lines because the accuracy of GEBV could be limited by the size of the 

reference data set. Combining multiple lines could be a possible strategy for the small lines to 

benefit from genomics and the increased reference size. Several studies have investigated the 

impact of combining multiple lines or breeds in farm animals, such as dairy and beef cattle, 

chicken, and pigs (Calus et al., 2014; Rolf et al., 2015; Song et al., 2017; Cesarani et al., 2022). 

This would also allow the comparison of animals across lines and the identification of the best 

gene combinations. However, multi-line genomic evaluations (MLE) in pigs are still challenging 

because the main breeding objective is to improve pure lines for crossbred performance. In 

contrast, lines have heterogeneous genetic backgrounds and may be distantly related. 

 Single-step genomic BLUP (ssGBLUP) has been commonly used for genomic evaluation 

in pigs (Chen et al., 2011; Pocrnic et al., 2019; Song et al., 2019). The fundamental idea of this 

method is to use all available data, connecting genotyped and non-genotyped animals through a 

joint relationship matrix (H) (Legarra et al., 2009; Christensen and Lund, 2010). For that, 

ssGBLUP relies on the compatibility between pedigree (A) and genomic (G) relationship matrices 
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(Misztal et al., 2013). Two significant causes of incompatibility between A and G are missing 

pedigrees and heterogeneous base populations (Vitezica et al., 2011; Misztal et al., 2013). In 

theory, allele frequencies to construct G would correspond to the ones from the base population in 

the pedigree (VanRaden, 2008); however, base animals are seldom genotyped, making base allele 

frequencies unknown (Legarra et al., 2015). The incompatibility issue becomes critical in multi-

line populations because of the heterogeneous base population across lines. Macedo et al. (2020) 

reported that better genomic predictions could be obtained for such scenarios if differences in base 

populations are correctly modeled. Unknown parent groups (UPG) could mitigate this issue by 

modeling the differences in genetic base across classes of missing parents and accounting for the 

differences among breeds or lines; however, UPG assume that the base populations are unrelated 

(Legarra et al., 2007). Legarra et al. (2015) proposed using metafounders (MF), which are pseudo-

animals that act as proxies for the base individuals and can be related. A few studies investigated 

using ssGBLUP with MF in pigs, but only for crossbred (Xiang et al., 2017; van Grevenhof et al., 

2019) and single-line (Fu et al., 2021) evaluations. 

 Another factor affecting the performance of genomic predictions in MLE would be the 

inconsistent linkage disequilibrium (LD) structure between single nucleotide polymorphisms 

(SNP) and quantitative trait loci (QTL) across the lines. Pig populations have a smaller effective 

size (Ne) than dairy and beef cattle, resulting in smaller numbers of independent chromosome 

segments (Me) (Pocrnic et al., 2016b). Therefore, if the lines are distantly related, they are not 

likely to share many chromosome segments. This could lead to no benefits from combining 

multiple lines in genomic predictions. Song et al. (2017) evaluated genomic predictions for growth 

and reproduction traits in pigs using a combined data set with genotypes for 80k SNP, but no 

benefits were observed over the single-line genomic evaluation (SLE). In another study, the same 
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authors (Song et al., 2019) showed that pruned whole-genome sequence (WGS) data outperformed 

the 80k SNP chip for genomic predictions in combined populations; however, no benefit was 

observed through the direct use of WGS data. This could be due to the redundancy of many SNP 

across the whole genome with strong LD extent to each other in certain genomic blocks. Therefore, 

preselection of significant SNP or removal of redundant SNP could be a possible strategy to 

improve the accuracy of genomic predictions when WGS data are used. In the case of MLE, a joint 

preselection of SNP from WGS can help identify variants segregating across lines, which may not 

be possible with commercial SNP chips because of the limited number of SNP (~ 40k to 80k).  

 In the current study, we aimed to (1) investigate strategies to combine different lines in a 

multi-line evaluation through the use of unknown parent groups or metafounders; (2) evaluate the 

impact of using jointly preselected SNP from WGS in multi-line evaluations under ssGBLUP 

without and with weights from BayesR.    

 

MATERIALS AND METHODS 

 Animal Care and Use Committee approval was not needed because information was 

obtained from pre-existing databases. 

Data 

All datasets were provided by Pig Improvement Company (PIC; Hendersonville, TN). We

 investigated average daily feed intake (ADFI), average daily gain (ADG), backfat thickness (BF)

, ADG recorded in crossbred animals (ADGX), and BF recorded in crossbred animals (BFX) in t

hree terminal pig lines named TL1, TL2, and TL3. A two-trait model was considered for ADFI an

d ADG (ADFI model), whereas a four-trait model was used for ADG, BF, ADGX, and BFX (GR

OWTH model). Two scenarios were considered in this study: SLE and MLE. For the MLE scenar
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io, all the data from every single line were combined. The total number of records and animals in 

the pedigree for each line and MLE are in Table 4.1. Individuals in each line were genotyped with

 the GGP-Porcine HD BeadChip (GeneSeek, Lincoln, NE) and jointly imputed for MLE. We filte

red out the monomorphic SNP and SNP with a call rate lower than 0.90, minor allele frequency lo

wer than 0.01, and the difference between observed and expected genotype frequencies greater th

an 0.15. Genotyped pigs with greater than 0.10 missing genotypes were removed as well. For ML

E, all genotyped individuals in the three terminal lines were combined. Identical quality control w

as applied to the imputed MLE chip data (Chip). The total number of genotyped animals in all lin

es and SNP after quality control is described in Table 4.2. 

Whole-genome sequencing and imputation  

The WGS data used in this study were generated by Ros-Freixedes et al. (2020); Ros-

Freixedes et al. (2022). In brief, a low-coverage sequencing strategy was followed by joint calling, 

phasing, and imputing the whole-genome genotypes using the ‘hybrid peeling’ method 

implemented in AlphaPeel (Whalen et al., 2018). The number of WGS individuals for each line is 

provided in Table 4.2. The ‘hybrid peeling’ method used all marker array and WGS data that was 

available across the pedigrees. Imputation was carried out separately in each line. Individuals with 

low predicted imputation accuracy were excluded, as described by Ros-Freixedes et al. (2020). A 

total of 60,474 (TL1), 41,573 (TL2), and 104,661 (TL3) WGS individuals remained in each line 

after quality control. These individuals were predicted to have an average dosage correlation of 

0.97 (median: 0.98). SNP with a minor allele frequency lower than 0.023 were removed since their 

estimated dosage correlations were lower than 0.90 (Ros-Freixedes et al., 2020). 

Training and test sets 
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Before the SNP preselection, all animals with (imputed) WGS were split into two non-

overlapping data sets: training and test. Test sets were generated by extracting entire genotyped 

individuals in the litters from the last generation of the pedigree. The training sets were created by 

establishing a threshold on the pedigree relationship coefficient between training and test sets. We 

removed individuals with a relationship coefficient equal to or greater than 0.5 to test animals. 

Through this, the relationship between training and test sets became minimized, which could be a 

potential advantage when commercial data is used in the training data set. Training data sets were 

also used as discovery sets for GWAS in this study. Although using the same sets for training and 

GWAS can reduce accuracy and increase the bias of genomic predictions (Veerkamp et al., 2016), 

Ros-Freixedes et al. (2022) showed that using different sets for each task helped alleviate the bias 

but reduced prediction accuracy. 

Pre-selected SNP panels 

Five different preselected SNP panels were created from WGS for genomic predictions: 

(1) LDTags (2) Top40k, (3) TopSign, (4) ChipPlusSign, and (5) AllComb. After imputation, all 

WGS individuals from each line were combined for preselecting SNP for the MLE as described in 

(Ros-Freixedes et al., 2022). The LDTags were tag variants retained after pruning based on LD 

with an r2>0.1. Top40k were the variants with the lowest p-value (not necessarily below the 

significance threshold) in each consecutive non-overlapping 55-kb window along the genome, 

based on multi-line GWAS analyses. TopSign only included significant variants (p ≤ 10-6) from 

the multi-line GWAS in a way that, when a 55-kb window contained more than one significant 

variant, only that with the lowest p-value was selected. For the multi-line GWAS, seven lines 

(TL1, TL2, TL3, TL4, and three maternal lines) were jointly investigated as described in Ros-

Freixedes et al. (2022). ChipPlusSign combined TopSign and Chip because sometimes the number 
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of significant variants is small. AllComb contained the variants from LDTags, Top40k, TopSign, 

and Chip. The preselected variants for each trait were combined according to the traits included in 

the ADFI and GROWTH models. In the ADFI model, preselected variants for ADFI and ADG 

were combined and used for the genomic predictions. Likewise, preselected variants from ADG 

and BF were merged and used for genomic predictions in the GROWTH model; variants were not 

selected for ADGX and BFX because crossbred animals were not sequenced. For a fair comparison 

to the commercial SNP chip data (i.e., Chip), 206,634 animals were extracted from each 

preselected SNP set. Afterward, quality control was done with the same criteria mentioned above, 

except that individuals with parent-progeny conflicts were also removed. Table 4.3 depicts the 

number of genotyped animals and SNP for all preselected SNP panels after quality control. 

Single-line genomic prediction 

To compare the performance of genomic prediction using single-line and multi-line, Chip 

data was tested for SLE. Linear mixed models were used to perform genomic predictions with two 

and four traits for the ADFI and GROWTH models, respectively. Only a four-trait GROWTH 

model (ADG, BF, ADGX, and BFX) of TL1, TL2, and TL3 is described: 

𝐲 = 𝐗𝐛 + 𝐖𝐜 + 𝐙𝐮 + 𝐞, 

where y is the vector of phenotypes; b is a vector of fixed effects; c is a vector of random litter 

effects; u is a vector of random additive genetic effects; and e is a vector of residual effects. Matrix 

X is an incidence matrix relating phenotypes in vector y to fixed effects (contemporary group as a 

fixed effect for all traits, offtest weight and carcass weight as a covariate only for BF and BFX, 

respectively) in vector b, matrix W is an incidence matrix for random litter effects in vector c, 

matrix Z is an incidence matrix for random additive genetic effect in vector u. 
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Multi-line genomic prediction with unknown parent groups and Metafoudners 

Linear mixed models were used to carry out genomic predictions with two and for traits 

for the ADFI and GROWTH models, respectively. Two UPG or MF were used to model the 

heterogeneous base across the lines. Herein, only the four-trait GROWTH model (ADG, BF, 

ADGX, and BFX) is described: 

𝐲 = 𝐗𝐛 + 𝐖𝐜 + 𝐙𝐮 + 𝐙𝐐𝐠 + 𝐞, 

where y is the vector of phenotypes; b is a vector of fixed effects; c is a vector of random litter 

effects; u is a vector of random additive genetic effects; g is a vector of UPG; and e is a vector of 

residual effects. Matrix X is an incidence matrix relating phenotypes in vector y to fixed effects 

(contemporary group as a line-specific fixed effect for all traits, offtest weight and carcass weight 

as a covariate only for BF and BFX, respectively) in vector b, matrix W is an incidence matrix for 

random litter effects (line-specific) in vector c, matrix Z is an incidence matrix for random additive 

genetic effect in vector u, and matrix Q is an incidence matrix relating animals in vector u to UPG 

in vector g. 

The genomic predictions were performed with ssGBLUP without and with weights from 

BayesR (WssGBLUP) using the BLUPF90 family of programs (Misztal et al., 2014b). In 

ssGBLUP and WssGBLUP, the inverse of the realized relationship matrix (𝐇−1), which combines 

pedigree and genomic relationships is represented by (Aguilar et al., 2010): 

 𝐇−1 = 𝐀−1 + [
0 0
0 𝐆−1 − 𝐀𝟐𝟐

−1], 

where 𝐆−1 is the inverse of the genomic relationship matrix and 𝐀𝟐𝟐
−1 is the inverse of the pedigree 

relationship matrix for the genotyped individuals. The G was created with method 1 of VanRaden 

(2008) as: 
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𝐆 =
(𝐌 − 2𝐏)𝐃(𝐌 − 2𝐏)′

2∑ 𝑝𝑖(1 − 𝑝𝑖)
𝑚
𝑖=1

  

where 𝐌 contains genotypes coded as {0,1,2}, 𝐃 is a matrix of weights (𝐃 = I in ssGBLUP and 𝐃 

≠ I in WssGBLUP), and 𝐏 is a matrix whose columns contain observed allele frequencies across 

the entire data set of the second allele at a locus 𝑝𝑖. To avoid singularity issues, G was blended 

with 5% of 𝐀22. The GEBV for UPG models were calculated as: 

GEBV = 𝐐𝐠 + 𝐮, 

We investigated two ways to fit UPG in ssGBLUP. The first considered UPG in A, 𝐀22, and G 

(Misztal et al., 2013), and was called UPG1. The 𝐇−1 with UPG1 is described as follows: 

𝐇UPG1
∗ = 𝐀∗ + [

0 0 0
0 𝐆−1 − 𝐀22

−1 −(𝐆−1 − 𝐀22
−1)𝐐

0 −𝐐′(𝐆−1 − 𝐀22
−1) 𝐐′(𝐆−1 − 𝐀22

−1)𝐐
] 

where 𝐀∗ is the inverse of A with UPG constructed with the QP transformation (Quaas, 1988). 

The second model related UPG only to A and 𝐀22, was called UPG2 and had 𝐇−1 represented 

by: 

𝐇UPG2
∗ = 𝐀∗ + [

0 0 0
0 𝐆−1 − 𝐀22

−1 − 𝐀22
−1𝐐

0 − 𝐐′𝐀22
−1 𝐐′𝐀22

−1𝐐
] 

Alternatively to the UPG models, we used MF to fit the heterogeneous genetic base across different 

lines (Legarra et al., 2015). Based on the MF theory, the pedigree relationship matrices are 

modified to be compatible with G centered with allele frequencies of 0.5 (𝐆0.5) (Christensen, 2012; 

Legarra et al., 2015). 𝐇−1 with MF is described as follows: 

𝐇Γ−1 = 𝐀Γ−1 + [
0 0 0
0 𝐆05

−1 − 𝐀22
Γ−1 0

0 0 0
] 
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where 𝐀Γ−1  and 𝐀22
Γ−1  are the altered 𝐀−1  and 𝐀22

−1  with the parameter 𝚪, which is a matrix of 

relationships among MF. The 𝚪 matrix was computed using SNP markers under a generalized least 

squares approach (Garcia-Baccino et al., 2017) through the gammaf90 program of the BLUPF90 

software suite (Misztal et al., 2014b). 

For UPG and MF models, six groups of base animals were defined based on the lines of 

origin. The first three were assigned to TL1, TL2, and TL3; one was assigned to another terminal 

line (TL4), one represented a crossbred line (CL), and the last one represented the remaining base 

animals with unknown origin (UNK). TL4 is another important terminal line in the routine 

evaluation and might be connected to the TL1 to TL3 in the base population, so we defined it as 

one group of base animals. Due to an issue of estimating 𝚪 with all animals far back in the pedigree, 

animals born before 2000 were removed. Therefore, the total number of pedigreed animals was 

5.16M for the GROWTH model and 5.04M for the ADFI model after data truncation. Due to the 

unequal number of phenotypes between the two models, the total number of pedigreed animals 

differed. The description of groups of UPG and MF is described in Table 4.4. 

To efficiently compute the 𝐆−𝟏 without the direct inversion of G, the algorithm for proven 

and young (APY) (Misztal et al., 2014a) was applied to SLE and MLE. The number of core animals 

in each line corresponded to the number of largest eigenvalues explaining 98% of the total 

variation in G constructed by Chip (Pocrnic et al., 2016a). Therefore, the number of core animals 

was 3,996, 5,739, and 6,848 for TL1, TL2, and TL3, respectively. The number of core animals for 

MLE was selected as mentioned above but after combining all three terminal lines. Therefore, the 

number of core animals in MLE was 8,574. To fairly select the core animals from each line, we 

sampled 30% (2,572), 20% (1,715), and 50% (4,287) from TL1, TL2, and TL3, respectively. Those 

numbers were equivalent to the proportion of genotyped animals in each line for the MLE scenario. 
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In WssGBLUP, BayesR (Erbe et al., 2012) was used to estimate individual SNP variances, 

which were considered as weights. Each iteration stored individual SNP variances, and posterior 

SNP variance was calculated as the average variance across all the iterations. Afterward, the 

weights were re-scaled so that the trace of D was equal to the number of SNP. More details about 

BayesR weighting are described in Gualdrón-Duarte et al. (2020). 

Validation 

The LR validation method (Legarra and Reverter, 2018) was used to evaluate model 

performance. A total of 5,970 (TL1), 3,750 (TL2), and 11,308 (TL3) youngest genotyped animals 

in the test sets had their phenotypes removed from the evaluation. In the MLE scenario, the total 

number of records in the ADFI model was 1,476,644 (TL1), 1,478,431 (TL2), and 1,472,021 

(TL3). For the GROWTH model, the number of records was 2,187,538, 2,189,326, and 2,182,916 

for TL1, TL2, and TL3, respectively. These will be referred to as the reduced data and will be 

represented by the subscript r. On the other hand, the whole data, with no phenotype truncation, 

will be represented by the subscript w. Under the LR method, the accuracy of GEBV was 

calculated as 𝑎𝑐�̂� =  √
𝑐𝑜𝑣(�̂�𝑤,   �̂�𝑟)

(1−�̅�)�̂�𝑢
2 , where u is the vector of GEBV and �̅� is the average inbreeding 

coefficient for validation animals; �̂�𝑢
2  was additive genetic variance in each model. Bias was 

calculated as the difference between the mean of GEBV from the reduced and whole datasets, 

which is  𝜇𝑤,𝑟 =  �̅̂�𝑟 −  �̅̂�𝑤, with an expected estimator of 0 if unbiased. Dispersion of GEBV was 

assessed as the deviation of the regression coefficient (b1) from 1, where b1 was obtained from the 

regression of �̂�𝑤  on �̂�𝑟 : �̂�𝑤 = b0 + b1�̂�𝑟 . Under the condition of neither over nor under 

dispersion, the expectation of this estimator would be one. 
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RESULTS 

Population structure and Metafounders (𝚪) 

Principal component analysis (PCA) was performed to investigate the population structure 

of the three terminal lines. Chip data were used for 33,714 genotyped animals (TL1: 9,282, TL2: 

7,900, and TL3: 16,532). Those were selected among 206,634 genotyped animals for efficient 

computation and had at least one progeny. The PCA plot showed a clear separation among the 

lines, with the first two principal components explaining 22.1% of the genetic variation (Fig. 4.1). 

These results reinforce the need to account for different genetic bases when having a multi-line 

evaluation.  

 The relationships within and between MF (𝚪) are described in Table 4.4. Relationships 

within MF (diagonal values of 𝚪) were greater than one for TL1, TL2, and TL4, indicating that the 

base populations for those lines are inbred (Legarra et al., 2015). Contrary, TL3, CL, and UNK 

had values lower than one, indicating a high frequency of heterozygous compared to the population 

average. All the relationships between MF (off-diagonal values of Γ) showed positive values 

between 0 and 1, suggesting an overlap between ancestral populations. 

Accuracy of GEBV 

Fig. 4.2 shows the accuracy of predicting GEBV in SLE and MLE with UPG1, UPG2, and 

MF for five traits using Chip. The difference in prediction accuracy between SLE and MLE was 

up to 0.04. The results for TL1 are in Fig. 4.2 - (a). Only ADFI showed greater accuracy with MLE 

than SLE (0.56) for UPG1 (0.58), UPG2 (0.57), and MF (0.58). On the other hand, SLE had similar 

or better performance than MLE for the other four traits in the growth model. Among MLE 

scenarios, UPG1 outperformed UPG2 and MF for many traits, but the differences were minimal. 

Results for TL2 followed similar patterns (Fig. 4.2 - (b)); that is, all MLE scenarios outperformed 
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SLE for ADFI (0.63 vs. 0.61). Additionally, prediction accuracies of MLE scenarios were very 

similar for TL2. In general, TL3 reported greater prediction accuracies than TL1 and TL2; 

however, using MLE was not favorable. Only MLE with UPG1 outperformed SLE, which was for 

BFX (0.76 vs. 0.74). A comparison of MLE scenarios showed that UPG1 performed best for 

ADGP, BFP, ADGX, and BFX, with an accuracy gain of up to 0.03 (ADGP in TL3).  

In the current study, five preselected genotype panels made from WGS were compared to 

the Chip for genomic prediction. As UPG1 showed the best prediction accuracy with Chip among 

all MLE scenarios, only results with UPG1 are in Table 4.5. In the results of TL1, no benefits of 

using preselected genotype panels were observed, meaning that Chip performed the best. Among 

preselected panels, ChipPlusSign showed the greatest prediction accuracy for all five traits. 

Top40k, TopSign, and AllComb had very similar prediction accuracies. However, LDTags 

displayed the lowest prediction accuracy among all genotype panels. Similar patterns were 

observed for TL2. In TL3, ChipPlusSign reported the greatest prediction accuracy only for ADFI 

(0.81). Likewise for TL1 and TL2, Top40k, TopSign, and AllComb showed very similar results to 

each other, but lower accuracy was noticed with AllComb. LDTags underperformed all the other 

genotype panels. 

Bias of GEBV 

Fig. 4.3 shows the bias of GEBV when using SLE and MLE with UPG1, UPG2, and MF 

for five traits in each line. Overall, bias was not considerable across all lines and models, except 

for ADGP in SLE and MLE with UPG1. In the TL1, the bias in ADGP with UPG1 was -2.91, 

whereas for ADGX in the same UPG scenario was -0.82. In both ADGP and ADGX, SLE showed 

the second largest bias, whereas UPG2 and MF reported almost negligible bias in both traits. For 

the other three traits (ADFI, BFP, and BFX), virtually no bias (0.05) was observed in all four 
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models. In TL2, almost no bias (0.06) was displayed for ADFI, ADGX, BFP, and BFX for all four 

models. ADGP showed the greatest bias among the traits, but the value was still small (-0.82 in 

SLE). Similar patterns were observed in the result of TL3 for ADFI, ADGX, BFP, and BFX (-

0.46). A large bias was also reported in ADGP with a UPG1 (-2.10) and SLE (0.75).  

 Bias was also evaluated when the preselected genotype panels from WGS were used for 

genomic predictions. Results with UPG1 are described in Table 4.6. For TL1, only AllComb 

showed a smaller bias than Chip for ADGP, ADGX, and BFX. Except for those, Chip reported the 

smallest bias for other traits. Among the preselected panels, Top40k displayed the greatest bias in 

ADGP, BFP, ADGX, and BFX. Especially, for ADGP and ADGX, the bias was very large (-21.82 

in ADGP and -8.09 in ADGX) with Top40k. ADFI trait showed no bias. Only one case of smaller 

bias than Chip was identified in TL2, which is for ADGX with AllComb (-0.05). The Chip data 

showed the smallest bias for the other four traits. Among the preselected panels, AllComb reported 

the least bias, whereas other panels indicated inconsistent results varying according to the traits. 

Interestingly, for TL3, both ChipPlusSign and AllComb reported a smaller bias than Chip for 

ADGP, BFP, ADGC, and BFX. In addition, Top40k and TopSign also showed a smaller bias than 

Chip for ADGX. Contrary to the other preselected genotype panels, bias with LDTags was always 

greater than with Chip. 

Dispersion (inflation/deflation) of GEBV 

The regression coefficients (b1) of GEBV whole on GEBV reduced when using SLE and 

MLE with UPG1, UPG2, and MF for five traits of each line are depicted in Fig. 4.4. Values of b1 

greater than one indicate deflation of reduced GEBV, and smaller than one indicate inflation. In 

general, negligible deflation (1.01) and slight inflation (0.92) of GEBV were observed. The results 

of TL1 indicate relatively greater inflation with SLE for ADFI (0.95) and ADGP (0.92) compared 
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to other models with UPG and MF, although the differences are minimal. For the other three traits 

(ADGX, BFP, and BFX), all four models reported very similar b1 values (0.97 − 1.00). A similar 

pattern was identified for ADFI in TL2, which showed the greatest inflation of GEBV with SLE 

(0.93). For the other four traits, no considerable differences were found between the models (0.96 

− 1.01). TL3 reported the most consistent results in each trait. For ADFI, all four models showed 

b1 values equal to 0.96.   

 To compare the same scenarios with preselected genotype panels from WGS as was done 

for prediction accuracy and bias, only results with UPG1 are described in Table 4.7. The dispersion 

of GEBV in TL1 with Top40k (0.94 − 1.00), TopSign (0.95 − 1.01), and ChipPlusSign (0.94 − 

0.99) was very close to the result of Chip (0.94 − 1.00) for all five traits. However, LDTags and 

AllComb showed greater inflation of GEBV than other genotype panels. Among those two, 

LDTags indicated the greatest inflation of GEBV across all the traits (0.77 − 0.97). Only Top40k 

and TopSign reported better b1 values (close to 1) than in the Chip for some traits (Top40k – ADFI 

and ADGX; TopSign – ADFI and ADGP). Likewise, Top40k (0.96 − 1.00), TopSign (0.99 − 1.01), 

and ChipPlusSign (0.95 − 1.00) displayed similar results to Chip (0.97 − 1.00) in TL2, but a large 

inflation of GEBV with LDTags (0.78 − 0.90) and AllComb (0.88 − 0.96). Same patterns were 

observed in TL3. Remarkably, TopSign showed less inflation of GEBV than Chip for all five traits, 

although the differences are small (0.02).  

Genomic prediction using WssGBLUP 

Top40k and ChipPlusSign were used for WssGBLUP with BayesR weighting (BW) 

because those two panels showed the best performance among the preselected genotype panels. 

Additionally, BayesR weights were considered in ssGBLUP to make the results of this study more 

comparable to those in Ros-Freixedes et al. (2022) who used the same data under BayesR. Results 
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of prediction accuracy using BW for all five traits are summarized in Table 4.8. No benefits of 

using WssGBLUP over ssGBLUP were observed in Top40k and ChipPlusSign. In fact, the 

maximum accuracy gains of WssGBLUP compared to ssGBLUP was 0.01; however, a loss in 

accuracy of up to 0.04 was observed in several traits and lines.  

 

 DISCUSSION 

In this study, we investigated the impact of using UPG and MF when combining different 

pig populations in multi-line evaluations. Additionally, we explored the potential benefits of using 

preselected SNP from WGS in those joint evaluations when SNP received equal or different 

weights in ssGBLUP. The novel aspect of this study is the amount of sequence data used for multi-

line genomic predictions (i.e., over 200k pigs). This study brought insights into how accounting 

for different genetic bases in three large pig populations could affect the performance of joint 

genomic evaluations. It also proved that the forecasting regarding the usefulness of sequence data 

for across-breed predictions does not hold (Meuwissen et al., 2016), at least with the current 

methods. Overall, we will address three major topics in this discussion: (1) the impact of fitting 

UPG or MF in MLE, (2) the usefulness of WGS data for MLE, and (3) the impact of applying 

different weights to SNP selected from WGS in MLE. In a nutshell, two UPG and one MF model 

were considered in MLE, and performances of genomic predictions (accuracy, bias, and 

dispersion) were compared to SLE. Although the results varied depending on the lines and the 

traits, the maximum changes in prediction accuracy when moving from SLE to MLE were not that 

large (0.04). In the line with the smallest number of genotyped individuals (TL2), all three MLE 

scenarios performed very similarly. Most of the differences among scenarios were in the most 

extensive line (TL3). Regarding the use of WGS data, almost no benefits were observed when 
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preselected genotype panels were used for genomic prediction compared to Chip. This was true 

even when different weights were assigned to SNP.  

Multi-line genomic evaluation with UPGs and MFs 

Combining populations with different genetic backgrounds in genomic evaluations has 

been actively investigated in cattle (De Roos et al., 2009; Hayes et al., 2009; Olson et al., 2012; 

Cesarani et al., 2022), where the primary purpose is to increase the training size for small 

populations to improve the accuracy of genomic predictions. This is true if there are connections 

across populations and the training and validation sets are related (Meuwissen et al., 2001; De 

Roos et al., 2009; Hayes et al., 2009; Zhou et al., 2014). However, combining different pig 

populations may be challenging even if the lines belong to the same breeding company because 

the divergence may have happened a long time ago, and breeding objectives are different across 

lines. For these reasons, only a few studies have investigated combining multiple lines, 

populations, or breeds for genomic predictions in pigs (Fangmann et al., 2015; Aliakbari et al., 

2020). In our study, although the PCA showed a clear separation among the three lines, 

representing three different breeds, as TL2 is the line with the least number of genotyped animals 

and shows a close distance to TL3 based on the PCA (the largest number), we would expect some 

improvements for TL2 in a joint evaluation. However, only ADFI in TL2 benefitted from MLE 

instead of SLE, and the increase in accuracy was slight. Additionally, the performance of MF, 

UPG1, and UPG2 were similar.   

In the MF theory, a matrix of relationships within and across metafounders (𝚪) is used to 

make pedigree relationships compatible with genomic relationships. We observed relationships 

within MF lower than one for TL3, CL, and UNK but greater than one for TL1, TL2, and TL4. 

Values of 𝚪 smaller than one indicate a base population with broad genetic diversity with a higher 
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frequency of heterozygotes relative to the population average (Kluska et al., 2021). On the other 

hand, a value greater than one indicates inbreed and related base populations with a lower 

frequency of heterozygotes relative to the population average (Legarra et al., 2015). Besides, 

positive 𝚪  values between MF imply overlapping among individuals in the base populations 

(Kluska et al., 2021). Our results showed only positive 𝚪 values between MF, meaning that there 

was overlap between ancestors in their base populations. Xiang et al. (2017) reported similar 

results using pig data. Those authors calculated 𝚪 values between two MF, which were defined as 

Landrace and Yorkshire, showing a positive value (0.259). Therefore, we could speculate that 

although the lines in our study diverged from different breeds, they share ancestors in the base 

population. In addition, 𝚪 value smaller than one for MF assigned CL is explained by the fact that 

this line is crossbred, indicating that a large amount of genetic variability existed in the base 

population compared to the purebred lines. Conversely, TL1, TL2, and TL4 represent single 

breeds. Therefore, 𝚪 values greater than one for MF assigned to TL1, TL2, and TL4 agree with 

their historical development. However, a study by Xiang et al. (2017) reported 0.756 and 0.730 𝚪 

values for Landrace and Yorkshire, respectively, although they were pure breeds. The possible 

reasons for different 𝚪 values in purebred between the current study and the study by Xiang et al. 

(2017) could be the use of terminal breeds and maternal breeds as well as the use of different SNP 

data and lines from different companies.  

Fangmann et al. (2015) investigated using multi-subpopulation reference sets to improve 

the predictive ability of genomic predictions in pigs; however, almost no benefit was reported, 

even though all the subpopulations diverged from German Large White. Predictive abilities were 

reduced when distantly related subpopulations were added to the training data. Although our 

results agree with those in Fangmann et al. (2015), comparing the two studies might be unfair 
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because of the different data sizes and genomic evaluation models. For example, Fangmann et al. 

(2015) used only 2,053 animals with genotypes and phenotypes under GBLUP. We used ssGBLUP 

with over 5M animals, of which 206,634 were genotyped, and 140k − 1.6M were phenotyped 

depending on the trait. Most recently, Cesarani et al. [1] performed large-scale multibreed 

ssGBLUP in dairy cattle using five different breeds with 4M genotyped animals and 29.5M 

pedigree records. They reported similar predictive abilities for cows and reliabilities for bulls in 

single-breed and multibreed evaluations, even though some breeds had less than 50k genotyped 

animals and some had more than 500k. This was attributed to the use of UPG (i.e., UPG2) to model 

genetic differences across breeds, the inclusion of breed-specific fixed effects in the model, and a 

fair representation of all the breeds in the APY core. In our study, line-specific fixed effects were 

modeled to account for nongenetic differences among lines, the APY core properly represented 

the three lines, and UPG or MF were fit to account for the genetic differences among lines.  

A preliminary analysis was done to compare the performance of genomic predictions in 

MLE with and without UPG. Most of the traits reported better accuracy, less bias, and less 

dispersion with UPG1 and UPG2 compared to the MLE without UPG (results not shown). The 

major difference between UPG1 and UPG2 was that groups were assigned to A, G, and 𝐀22 in 

UPG1, but only to A and 𝐀22 in UPG2. Theoretically, UPG are not needed in G because genomic 

relationships are not affected by missing pedigrees. However, adding UPG to G (UPG1) in multi-

line evaluations could help to adjust the genetic base for each line (Tsuruta et al., 2019). However, 

UPG1 and UPG2 assume that the base populations are not related. Therefore, MF were also applied 

to MLE, which considered that individuals in the base populations were related and could be inbred 

(Legarra et al., 2015). Among the three methods used for MLE, UPG1 had a slight advantage, 

although the differences between MLE and SLE models were minimal. Our findings agreed with 
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the results by Fangmann et al. (2015); Song et al. (2017); Aliakbari et al. (2020), which showed 

that combining lines or breeds had almost no benefits in the performance of genomic predictions 

compared to the within-line predictions. However, several studies of cattle found some benefits of 

using the multi-breed reference on genomic prediction (Hayes et al., 2009; Lund et al., 2014). 

More benefits are likely in populations with a small number of genotyped animals, which was not 

the case in our study. Although MLE were not advantageous for these pig populations in terms of 

increased accuracy, having MLE facilitates comparing animals across breeds because of a single 

base for breeding values. In such a case, having similar accuracy, bias, and dispersion as in SLE 

is somehow an advantage. It indicates the lines can be successfully combined to identify “super-

boars” to be used across lines if needed. 

Impact of preselected markers on MLE 

In addition to the size of the reference population and the relationships between the 

reference and test animals, another key factor affecting the prediction accuracy would be the 

existence of causal variants or informative SNP in LD with them. This factor could be particularly 

important for MLE. This is because the LD between SNP and causal variants within lines may not 

be consistent across lines, especially for the distantly related ones, and causative variants for all 

the lines may not be present in the commercial SNP chips. One plausible approach to help improve 

genomic predictions in MLE could be using WGS. As WGS data covers the entire genome, it has 

abundant LD information and possibly harbors all the causal variants. This could increase the 

power of identifying LD structures and causal variants across lines. However, several studies 

showed no benefits of using WGS data on genomic prediction without variant preselection (Van 

Binsbergen et al., 2015; Zhang et al., 2018) because of the redundancy of SNP in WGS. As WGS 
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has highly dense SNP information compared to the regular chip data, SNP close to each other 

would be strongly correlated, providing the same information about nearby QTL. Several studies 

investigated the impact of SNP preselection using WGS data on genomic predictions, showing 

slight to no improvement (Brøndum et al., 2015; VanRaden et al., 2017; Fragomeni et al., 2019; 

Jang et al., 2022). In addition, several studies in cattle scrutinized the impact of WGS in multibreed 

or across-breed genomic predictions (Van Den Berg et al., 2017; Raymond et al., 2018; Meuwissen 

et al., 2021), but not much is available in pigs (Song et al., 2019). 

 Our study used multi-line GWAS or LD pruning to construct preselected genotype panels 

for different pig terminal lines. Consequently, five genotype sets were designed: ChipPlusSign, 

Top40k, TopSign, LDTags, and AllComb. Those sets were used for MLE to compare the 

performance of genomic predictions with Chip. Among all the scenarios, only ChipPlusSign 

reported greater accuracy than Chip, and this was for one trait (ADFI) only in TL3. On average, 

ChipPlusSign showed the greatest prediction accuracy among all preselected scenarios but was 

still smaller than Chip, although the difference was slight. For the multi-line GWAS, we used 

seven lines (TL1, TL2, TL3, TL4, and three maternal lines) as described in (Ros-Freixedes et al., 

2022). However, we used only TL1 to TL3 because of the amount of data, completeness of 

pedigree, and different traits being measured in the terminal and maternal lines. Compared to 

single-line GWAS, multi-line GWAS could help identify significant SNP affecting the traits as it 

makes a long-distance LD short, allowing more accurate identification of significant SNP across 

the lines (Moghaddar et al., 2019). This can be especially helpful for species with small Ne, such 

as pigs and chickens with small Me and a strong LD extent, which makes the identification of 

causative variants more difficult (Jang et al., 2022). Several studies in dairy cattle reported up to a 

7% increase in reliability when using variants selected from multi-breed GWAS for genomic 
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predictions (Brøndum et al., 2015; van den Berg et al., 2016); however, they used methods other 

than ssGBLUP. Using ssGBLUP, Fragomeni et al. (2019) reported no benefits of using preselected 

WGS variants but larger reliabilities than in GBLUP. This is because ssGBLUP allows for more 

data than in multi-step methods. With enough data, the effects of existing variants are well-

captured, and chromosome segments are correctly estimated.   

Adding significant SNP to the regular chip data or using only them could potentially 

improve prediction accuracies only if those are real causative variants with known effects, 

positions, and variance explained (Fragomeni et al., 2017; Jang et al., 2022). To accurately identify 

the significant ones, there should be a sufficient sample size, enough data connected to the 

genotyped samples, and a robust statistical model, among others. Jang et al. (2022) extensively 

investigated the impact of data quantity on the variant selection using simulated WGS and its effect 

on genomic prediction with populations having different Ne. They showed that identifying 

significant quantitative trait nucleotides (QTN) is more difficult in populations with smaller than 

larger Ne because of the strong LD extent across the genome in the former. Accordingly, 

improvements in the accuracy of genomic predictions using those selected QTN combined with a 

50k SNP chip in the population with smaller Ne were very limited (~1.98%) compared to the 

population that had larger Ne (~9.01%). Therefore, although multi-line GWAS could make the 

long-distance LD to be shorter across lines, the benefits would be still limited when it comes to 

genomic prediction.  

Impact of WssGBLUP on MLE 

In the current study, we used WssGBLUP with weights computed from BayesR. We did 

not use the standard weights proposed by Wang et al. (2012) because several studies reported no 
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improvement in the accuracy and increased inflation of genomic predictions when using those 

weights (Wang et al., 2012; Zhang et al., 2016; Gualdrón-Duarte et al., 2020; Jang et al., 2022). 

Additionally, we wanted to make our results comparable to those in Ros-Freixedes et al. (2022) 

who applied BayesR to the same dataset. In BayesR, SNP effects are sampled from a mixture of 

four normal distributions with mean zero and variances equivalent to the four classes. Thus, we 

assumed that better prediction performance could be observed with BW if it assigned weights 

closer to the actual SNP variances; however, no advantages were observed. More details about 

BayesR and using its weights in GBLUP-based methods are in Moser et al. (2015); Gualdrón-

Duarte et al. (2020).  

 This is the first study in large-scale pig lines using MLE with WGS selected variants using 

the WssGBLUP approach. In practice, the benefits of using WssGBLUP seemed very limited, 

especially with large data sets and many genotyped animals (Lourenco et al., 2017). Our MLE 

scenario used around 206k genotyped animals, and the total number of animals traced back through 

the combined pedigree data was more than 5M. In ssGBLUP, any prior information about SNP is 

overwhelmed by the data because this method allows the use of all sources of information 

simultaneously, making SNP weighting ineffective (Lourenco et al., 2020).  

 

CONCLUSIONS 

This study revealed limited benefits of using preselected whole-genome sequence variants 

for multi-line genomic predictions, even when hundreds of thousands of animals had imputed 

sequence data. Correctly accounting for line differences with unknown parent groups or 

metafounders in multi-line evaluations is essential to obtain predictions similar to single-line; 

however, the only observed benefit of a multi-line evaluation is to have comparable predictions 
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across lines. Further investigation on the amount of data and novel methods to preselect whole-

genome causative variants in combined populations would be of great interest. 
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TABLES 

Table 4.1. Number of records and animals in the pedigree for single- and multi-line datasets 

 

Lines ADFI ADG BF ADGX BFX Number of Animals in pedigree 

TL1 35k 0.36M 0.34M 150k 149k 1.13M 

TL2 40k 0.30M 0.30M 158k 156k 0.84M 

TL3 64k 0.94M 0.86M 299k 247k 3.14M 

MLE 140k 1.60M 1.50M 578k 525k 5.28M (5.17M) 
*The number of animals in the pedigree for the ADFI model is shown within brackets 

*ADFI: Average daily feed intake; ADG: Average daily gain; BF: Backfat thickness; ADGX: ADG recorded in 

crossbred; BFX: BF recorded in crossbred 

*TL1: Terminal line1; TL2: Terminal line2; TL3: Terminal line3; MLE: Multi-line evaluation 
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Table 4.2. Number of genotyped individuals, SNP, and sequenced animals in single- and multi-

line datasets 

 

Lines 
Number of genotyped 

individuals* 
Number of SNP 

Number of sequenced 

individuals 

TL1 60,450 37,909 731 

TL2 41,561 42,897 760 

TL3 104,622 44,022 1,865 

MLE 206,634 41,303 3,356 

*All genotyped individuals were imputed to sequence using the sequence individuals as reference 

*TL1: Terminal line1; TL2: Terminal line2; TL3: Terminal line3; MLE: Multi-line evaluation 
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Table 4.3. Number of animals and SNP in all preselected genotype panels used for multi-line 

evaluations 

 

 Number of genotyped animals Number of SNP 

SNP panels ADFI GROWTH ADFI GROWTH 

Chip 206,634 206,634 41,303 41,303 

ChipPlusSign 206,452 206,630 62,906 59,756 

LDTags 202,891 202,891 105,720 105,720 

AllComb 205,729 205,680 215,361 210,619 

Top40k 206,232 206,238 51,297 49,738 

TopSign 206,228 206,228 21,772 18,593 
*ADFI: Two-traits ADFI model (ADFI and ADG) 

*GROWTH: Four-traits GROWTH model (ADG, BF, ADGX, and BFX) 

*Chip: Imputed chip data; ChipPlusSign: Preselected SNP panel combining TopSign to Chip; LDTags: Preselected 

SNP panel after LD pruning; AllComb: Preselected SNP panel combining Chip, LDTags, Top40k, and TopSign; 

Top40k: Preselected SNP panel consisted of the variants with the lowest p-value in each 40k window; TopSign:  

Preselected SNP panel consisted of only significant variants 
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Table 4.4. Number of individuals that related to each unknown parent groups or metafounders 

and Γ values 

 

   Γ 

MFs Males Females TL1 TL2 TL3 TL4 CL Unknown 

TL1 3,649 2,713 1.03 0.45 0.5 0.67 0.46 0.47 

TL2 2,083 1,949 0.45 1.26 0.44 0.39 0.42 0.5 

TL3 7,148 6,135 0.5 0.44 0.62 0.43 0.38 0.43 

TL4 30,141 29,707 0.67 0.39 0.43 1.06 0.42 0.41 

CL 37,150 41,741 0.46 0.42 0.38 0.42 0.58 0.41 

Unknown 
158,929 

(45,031) 

158,929 

(45,031) 
0.47 0.5 0.43 0.41 0.41 0.50 

*The number of animals in the pedigree for the ADFI model is shown within brackets 
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Table 4.5. Accuracy of GEBV in each line with all preselected genotype panels using unknown 

parent groups1 

 

  Genotype panels 

Lines Traits Chip Top40k TopSign ChipPlusSign LDTags AllComb 

TL1 

ADFI 0.58 0.55 0.54 0.57 0.47 0.54 

ADGP 0.62 0.58 0.58 0.61 0.48 0.57 

BFP 0.71 0.67 0.67 0.70 0.60 0.68 

ADGX 0.53 0.53 0.53 0.53 0.45 0.50 

BFX 0.83 0.74 0.75 0.81 0.66 0.75 

TL2 

ADFI 0.63 0.55 0.55 0.57 0.44 0.52 

ADGP 0.69 0.63 0.64 0.67 0.53 0.61 

BFP 0.64 0.60 0.60 0.63 0.51 0.60 

ADGX 0.53 0.48 0.49 0.51 0.39 0.44 

BFX 0.58 0.52 0.53 0.56 0.41 0.49 

TL3 

ADFI 0.79 0.79 0.79 0.81 0.72 0.78 

ADGP 0.81 0.77 0.79 0.81 0.69 0.78 

BFP 0.75 0.71 0.73 0.75 0.61 0.71 

ADGX 0.62 0.56 0.58 0.60 0.46 0.53 

BFX 0.76 0.71 0.73 0.74 0.57 0.68 
*TL1: Terminal line1; TL2: Terminal line2; TL3: Terminal line3 

*ADFI: Average daily feed intake; ADG: Average daily gain; BF: Backfat thickness; ADGX: ADG recorded in 

crossbred; BFX: BF recorded in crossbred 

*Chip: Imputed chip data; Top40k: Preselected SNP panel consisted of the variants with the lowest p-value in each 

40k window; TopSign:  Preselected SNP panel consisted of only significant variants; ChipPlusSign: Preselected 

SNP panel combining TopSign to Chip; LDTags: Preselected SNP panel after LD pruning; AllComb: Preselected 

SNP panel combining Chip, LDTags, Top40k, and TopSign 
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Table 4.6. Bias of GEBV with preselected genotype panels when assigning unknown parent 

groups1 

 

  Genotype panels 

Lines Traits Chip Top40k TopSign ChipPlusSign LDTags AllComb 

TL1 

ADFI 0.00 0.00 -0.01 -0.01 -0.01 -0.01 

ADGP -2.91 -21.82 -8.93 -3.13 -5.54 -1.08 

BFP 0.02 0.34 0.15 0.03 0.17 0.06 

ADGX -0.82 -8.09 -3.25 -0.92 -2.31 -0.29 

BFX 0.05 0.67 0.28 0.05 0.31 0.00 

TL2 

ADFI 0.00 -0.01 -0.08 0.00 0.00 0.00 

ADGP -0.25 6.42 3.42 0.82 1.32 -0.41 

BFP 0.00 0.11 0.07 -0.03 0.14 0.00 

ADGX -0.18 -0.37 -0.64 -0.92 0.74 -0.05 

BFX 0.00 0.06 0.06 -0.05 0.19 0.01 

TL3 

ADFI 0.00 0.00 0.00 0.00 0.00 0.00 

ADGP -2.10 7.86 6.36 0.08 4.39 0.00 

BFP 0.04 0.08 0.07 0.00 0.11 0.01 

ADGX -0.46 0.26 0.09 -0.03 -0.60 0.03 

BFX 0.04 0.05 0.05 0.02 0.11 0.02 
*TL1: Terminal line1; TL2: Terminal line2; TL3: Terminal line3 

*ADFI: Average daily feed intake; ADG: Average daily gain; BF: Backfat thickness; ADGX: ADG recorded in 

crossbred; BFX: BF recorded in crossbred 

*Chip: Imputed chip data; Top40k: Preselected SNP panel consisted of the variants with the lowest p-value in each 

40k window; TopSign:  Preselected SNP panel consisted of only significant variants; ChipPlusSign: Preselected 

SNP panel combining TopSign to Chip; LDTags: Preselected SNP panel after LD pruning; AllComb: Preselected 

SNP panel combining Chip, LDTags, Top40k, and TopSign 

 

 

 

 

 

 

 



 

 90 

Table 4.7. Dispersion (b1) of GEBV with preselected genotype panels when assigning unknown 

parent groups1 

 

  Genotype panels 

Lines Traits Chip Top40k TopSign ChipPlusSign LDTags AllComb 

TL1 

ADFI 0.98 1.00 1.01 0.98 0.84 0.92 

ADGP 0.94 0.94 0.95 0.94 0.77 0.88 

BFP 0.99 0.99 0.99 0.99 0.91 0.96 

ADGX 0.99 1.00 1.01 0.98 0.91 0.94 

BFX 1.00 1.00 1.01 0.99 0.97 0.98 

TL2 

ADFI 0.97 0.97 1.00 0.95 0.78 0.88 

ADGP 1.00 0.96 0.99 0.97 0.80 0.89 

BFP 1.00 1.00 1.01 1.00 0.89 0.96 

ADGX 1.00 0.96 0.99 0.99 0.86 0.92 

BFX 1.00 1.00 1.01 1.00 0.90 0.96 

TL3 

ADFI 0.96 0.95 0.97 0.96 0.85 0.91 

ADGP 0.95 0.94 0.96 0.95 0.81 0.89 

BFP 0.98 0.97 0.99 0.98 0.85 0.93 

ADGX 0.98 0.99 1.00 0.97 0.85 0.92 

BFX 0.99 0.98 1.00 0.99 0.90 0.96 
*TL1: Terminal line1; TL2: Terminal line2; TL3: Terminal line3 

*ADFI: Average daily feed intake; ADG: Average daily gain; BF: Backfat thickness; ADGX: ADG recorded in 

crossbred; BFX: BF recorded in crossbred 

*Chip: Imputed chip data; Top40k: Preselected SNP panel consisted of the variants with the lowest p-value in each 

40k window; TopSign:  Preselected SNP panel consisted of only significant variants; ChipPlusSign: Preselected 

SNP panel combining TopSign to Chip; LDTags: Preselected SNP panel after LD pruning; AllComb: Preselected 

SNP panel combining Chip, LDTags, Top40k, and TopSign 
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Table 4.8. Accuracy of GEBV using WssGBLUP through BayesR-weighting 

 

Line Description ADFI ADG BF ADGX BFX 

TL1 

Top40k 0.55 0.58 0.67 0.53 0.74 

Top40k_BW 0.54 0.57 0.67 0.53 0.74 

ChipPlusSign 0.57 0.61 0.70 0.53 0.81 

ChipPlusSign_BW 0.54 0.60 0.69 0.50 0.79 

TL2 

Top40k 0.55 0.63 0.60 0.48 0.52 

Top40k_BW 0.54 0.62 0.60 0.49 0.52 

ChipPlusSign 0.57 0.67 0.63 0.51 0.56 

ChipPlusSign_BW 0.53 0.65 0.61 0.47 0.54 

TL3 

Top40k 0.79 0.77 0.71 0.56 0.70 

Top40k_BW 0.78 0.76 0.71 0.57 0.70 

ChipPlusSign 0.81 0.81 0.75 0.60 0.74 

ChipPlusSign_BW 0.77 0.78 0.72 0.56 0.71 
*TL1: Terminal line1; TL2: Terminal line2; TL3: Terminal line3; MLE: Multi-line evaluation 

*ADFI: Average daily feed intake; ADG: Average daily gain; BF: Backfat thickness; ADGX: ADG recorded in 

crossbred; BFX: BF recorded in crossbred 

*Top40k: Top40k preselected genotype panel; Top40k_BW: Top40k using BayesR weighting 

*ChipPlusSign: ChipPlusSign preselected genotype panel; ChipPlusSign_BW: ChipPlusSign using BayesR 

weighting 
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FIGURES 

 

 
 

Figure 4.1. PCA plot for three terminal lines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 93 

(a) TL1 

 
(b) TL2 
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(c) TL3 

 
Figure 4.2. Accuracy of GEBV for single- and multi-line evaluations with unknown parent 

groups and metafounders using Chip data 
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(a) TL1 

 
(b) TL2 
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(c) TL3 

 
Figure 4.3. Bias of GEBV for single- and multi-line evaluations with unknown parent groups 

and metafounders using Chip data 
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(a) TL1 

 
(b) TL2 
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(c) TL3 

 
Figure 4.4. Dispersion (b1) of GEBV for single- and multi-line evaluations with unknown parent 

groups and metafounders using Chip data 
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ABSTRACT 

 Identifying true-positive variants in genome-wide association studies (GWAS) depends on 

several factors, including the number of genotyped individuals. The limited dimensionality of the 

genomic information may give insights into the optimal number of individuals to use in GWAS. 

This study investigated different discovery set sizes in GWAS based on the number of largest 

eigenvalues explaining a certain proportion of variance in the genomic relationship matrix (G). An 

additional investigation included the change in accuracy by adding variants, selected based on 

different set sizes, to the regular SNP chips used for genomic prediction. Sequence data were 

simulated containing 500k SNP with 200 or 2000 quantitative trait nucleotides (QTN). A regular 

50k panel included one every ten simulated SNP. Effective population size (Ne) was 20 and 200. 

The GWAS was performed with the number of genotyped animals equivalent to the number of 

largest eigenvalues of G (EIG) explaining 50, 60, 70, 80, 90, 95, 98, and 99% of the variance. In 

addition, the largest discovery set consisted of 30k genotyped animals. Limited or extensive 

phenotypic information was mimicked by changing the trait heritability. Significant and high effect 

size SNP were added to the 50k panel and used for single-step GBLUP with and without weights. 

Using the number of genotyped animals corresponding to at least EIG98 enabled the identification 

of QTN with the largest effect sizes when Ne was large. Smaller populations required more than 

EIG98. Furthermore, using genotyped animals with higher reliability (i.e., higher trait heritability) 

helped better identify the most informative QTN. The greatest prediction accuracy was obtained 

when the significant or the high effect SNP representing twice the number of simulated QTN were 

added to the 50k panel. Weighting SNP differently did not increase prediction accuracy, mainly 

because of the size of the genotyped population. Accurately identifying causative variants from 

sequence data depends on the effective population size and, therefore, the dimensionality of 



 

 101 

genomic information. This dimensionality can help identify the suitable sample size for GWAS 

and could be considered for variant selection. Even when variants are accurately identified, their 

inclusion in prediction models has limited implications.   

 

INTRODUCTION 

Several factors influence the statistical power to identify causative variants in genome-

wide association studies (GWAS), including the number of quantitative trait nucleotides (QTN) 

affecting the trait, the number of single nucleotide polymorphisms (SNP) in the discovery panel, 

the number of genotyped individuals (Visscher et al., 2017), and the size of the genome blocks 

segregating in the population (Berisa and Pickrell, 2016), among others. Those genome blocks are 

chromosome segments inherited from founders and are subject to recombination every generation. 

Stam (1980) showed that segments are of different sizes but with a mean size of 1/4Ne, where Ne 

is the effective population size. Given a species with a genome length equal to L Morgans, the 

number of independent chromosome segments (Me) segregating in a population can be calculated 

as 4NeL.   

Animal populations have lower Ne than human populations, implying smaller Me. Pocrnic 

et al. (2016a) showed that although millions of individuals can be genotyped, non-redundant 

information is finite, which means the genomic information has a limited dimensionality; 

therefore, the additive genetic information in a population is contained in a limited Me. The same 

authors related the limited dimensionality to Me = 4NeL and observed that this quantity corresponds 

to the number of largest eigenvalues explaining 98% (EIG98) of the variance of the genomic 

relationship matrix (G). In cattle populations, EIG98 varies from 10K to 14K and is about 4K in 
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pigs and chickens. The minimum number of SNP needed to cover those segments is approximately 

12Me (MacLeod et al., 2005). 

With the availability of sequence information, causal variants are expected to be in the 

data, generating more opportunities for discovery than with mid-density SNP panels (Meuwissen 

and Goddard, 2010). When the causal variants are known and included in the usual SNP panels, 

the accuracy of predicting genomic estimated breeding values (GEBV) should increase. This is 

clearly observed in simulated studies where the QTN and their effects are known (Pérez-Enciso et 

al., 2015; Fragomeni et al., 2017). However, the accuracy increased by using significant variants 

from the sequence in real populations is almost inexistent (Veerkamp et al., 2016; Zhang et al., 

2018; Fragomeni et al., 2019). This raises a question on the effectiveness of GWAS in real 

populations. Although most traits of economic importance in farm animal populations are 

polygenic, very few peaks are usually statistically associated with traits of interest.  

Misztal et al. (2021) investigated the distribution of SNP around the QTN and the ability 

to identify QTN depending on the Ne in simulated populations. They found that identifying QTN 

in populations with small Ne (i.e., 60) required three times more genotyped animals with 

phenotypes than in populations with large Ne (i.e., 600). However, not all simulated QTN were 

identified, independently of the Ne or amount of data. Distinguishing between noise and the true 

signal is more difficult in small populations because of longer chromosome segments and the 

uncertainty about the exact QTN location. Additionally, the level of noise may mask the signal, 

preventing associations. With sequence data, a clear GWAS resolution for small populations may 

be even harder to achieve due to the reasons mentioned above. 

Although it is well-known that increasing the sample size for GWAS improves the 

resolution, the links among the number of genotyped individuals, Ne, Me, and GWAS resolution 
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are missing. Additionally, understanding the appropriate sample size for variant discovery, 

especially with sequence data, can help to alleviate both the economic and computational costs for 

practical applications. Based on the limited dimensionality of the genomic information, there may 

be an optimal number of animals that carry all the independent chromosome segments segregating 

in the population, and consequently, all the genomic information available in the population 

(Pocrnic et al., 2016a). When animals have lots of information, GEBV are estimated with high 

accuracy. Knowing that GEBV can be backsolved to SNP effects raises the question on whether 

GWAS resolution is high when Me animals with high accuracy GEBV are used. Therefore, we 

hypothesize that the ability to identify causative variants is high when the sample size for GWAS 

approaches Me, and using a larger sample size may not further improve GWAS resolution. Here 

we used the number of eigenvalues explaining different proportions of the variance in G to assess 

the dimensionality of the genomic information and used this number as the sample size in GWAS. 

We used simulated populations with varying Ne, number of QTN, and amount of information on 

genotyped individuals. We also evaluated the impact of incorporating the pre-selected variants, 

from GWAS with different sample sizes based on dimensionality, to a 50k SNP chip for genomic 

prediction using weighted and unweighted single-step GBLUP. 

 

MATERIALS AND METHODS 

 Animal Care and Use Committee approval was not needed as data were simulated 

Data simulation 

QMSim (Sargolzaei and Schenkel, 2009) was used to simulate a quantitative trait with 0.3, 

0.9, and 0.99 heritability. Different heritabilities mimicked limited or extensive phenotypic 

information. The historical population was simulated for 2,000 non-overlapping generations with 
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an increase in size from 1,000 (generation -2,000) to 50,000 (generation -1,000), and a decrease 

from 50,000 (generation -999) to 20,000 (generation 0) to create LD and mutation-drift 

equilibrium. Random mating and no selection or migration were assumed in the historical 

population. Recent populations of Ne equal 20 (Ne20) and 200 (Ne200) were simulated by changing 

the number of breeding males from 5 to 50 but keeping the number of females at 15,000. The 

founders of the recent populations came from generation 0 of the historical population. Twenty 

generations of random mating were carried out, considering a replacement rate of 80% for sires 

and 30% for dams. Animals were randomly selected and culled based on age. A total of 315,005 

and 315,050 animals were generated in the recent population for Ne20 and Ne200, respectively. 

However, only animals from generations 11−20 had phenotypic and pedigree information that was 

used for the current study. Of those, 75,000 animals from generations 16-20 were genotyped (N = 

15,000 in each generation). The phenotype was the sum of an overall mean equal to 1.0, true 

breeding value (TBV), and random residual effect. The phenotypic variance was set to 1.0, whereas 

the additive genetic variance was 0.3, 0.9, or 0.99, all explained by the simulated QTN. 

 To mimic the bovine genome, we simulated 29 chromosomes with a total length of 23.19 

Morgans. The overall number of SNP was 500,000, all with minor allele frequency greater than 

0.05, whereas QTN numbers were 200 and 2,000 for the scenarios Q200 and Q2000, respectively. 

Biallelic SNP and QTN were randomly placed on each chromosome, with numbers varying from 

9,000−35,000 SNP and 8−31 (Q200) or 80−320 (Q2000) QTN. The QTN effects were sampled 

from a gamma distribution with shape parameter 0.4 and scale parameter calculated internally for 

a genetic variance of 0.3, 0.9, and 0.99, depending on the scenario. A recurrent mutation rate of 

2.5 ×  10−5 was assumed for both SNP and QTN. A regular 50k panel was created for genomic 

predictions (GP) that included one every ten simulated SNP. Because different simulation 
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replicates would generate different QTN positions and effects, no replicate was used to obtain 

consistent GWAS results.  

Genotype scenarios – heritability and the presence of QTN in the data 

Trait heritabilities of 0.3, 0.9, and 0.99 were simulated to represent the animals with low 

reliability of EBV (H30), high reliability of EBV (H90), and very high reliability of EBV (H99), 

respectively. Therefore, higher heritabilities mean more information was added to the simulated 

animals without directly changing the number of records assigned to them (Pocrnic et al., 2019). 

Further, sequence data scenarios were created after the simulation. We assumed that QTN were in 

the data (withQTN), following the general assumption for sequence data; therefore, the SNP and 

QTN files were combined based on the corresponding maps. Descriptions for all the scenarios and 

combinations are in Table 5.1. 

Discovery, training, and test sets 

Before the GWAS analyses, all genotyped animals were separated into three non-

overlapping data sets: discovery, training, and test. The test set was composed of genotyped 

animals from the last generation (N = 15,000), whereas the remaining genotyped animals (N = 

60,000) were randomly assigned to the discovery and training sets (N = 30,000, respectively). To 

test the possible bias in GP by using the same data set for discovery and training, two different 

schemes were designed: 1) discovery = training: genotyped animals used for discovery were 

further used for training, and 2) discovery ≠ training: a different set of genotyped animals were 

used for discovery and training. 

EIGx scenarios for discovery and training 

Different scenarios were made based on the dimensionality of the genomic information to 

investigate the effect of sample size for discovery and training. The number of genotyped animals 
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in each discovery and training set (EIGx) was equivalent to the number of largest eigenvalues 

explaining x percent of the variance in G, where x assumed the values 50, 60, 70, 80, 90, 95, 98, 

or 99. For example, the number of largest eigenvalues explaining 50% of the variance in G was 

530 in the Ne200 Q2000 H30 scenario (Table 5.2); thus, the size of discovery and training sets in 

scenario EIG50 was set to 530. In addition, one extra scenario (ALL) in which the discovery and 

training sets consisted of all available genotyped animals (N = 30,000) was also evaluated. The 

number of largest eigenvalues explaining x percent (50, 60, 70, 80, 90, 95, 98, 99) of the variance 

in G was computed by squaring the singular values from the matrix of genotypes centered for 

current allele frequencies (M), using all the simulated genotyped animals (N = 75,000). The 

singular value decomposition was done in preGSf90 (Misztal et al., 2014). For that, G was 

constructed using all simulated SNP without QTN. All genotyped animals for each discovery and 

training set were randomly selected beginning from the scenario explaining the least proportion of 

variance (EIG50). Ensuring consistent results involved keeping all the animals from a previous 

scenario when moving to the next one, e.g., genotyped animals in EIG60 contained the ones from 

EIG50. The number of genotyped animals for all scenarios used as discovery and training sets is 

described in Table 5.2. 

Preselection of variants (TOPv scenarios) 

Different numbers of variants were selected from GWAS to be included in the 50k SNP 

panel for GP. Each QTN scenario had a specific number of selected SNP based on the order of the 

p-values (TOPv) or statistical significance using Bonferroni corrected p-values (SIG). For Q200, 

v corresponded to 10, 50, 100, 200, and 400, whereas for Q2000 v assumed the values of 10, 100, 

500, 1000, 2000, and 4000. 

Association among number of significant QTN, sample size, and EBV reliability 
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In the current study, we approximated sample size based on the total proportion of variance 

explained by significantly identified QTN from the results of different heritability scenarios. This 

approximation was done by local polynomial regression (Cleveland et al., 1992) using the ‘loess’ 

and ‘approx’ function in the R, and the resulting sample size was represented by SSpol.  

The main purpose of comparing scenarios with different heritabilities was to investigate 

the effect of using genotyped animals with low to high reliability of EBV on GWAS performance; 

however, not all the genotyped animals have high reliability of EBV. Therefore, in this study, we 

investigated the corresponding sample size from low to high heritability scenarios at the point 

where the same percentage of variance was explained; we estimated the sample size using H30 as 

a benchmark. This helped us identify how many samples are needed for GWAS given the average 

reliability of breeding values for the animals in the population and the benchmark reliability. For 

that, derived an equation to estimate the sample size relating the total number of samples, Me, Ne, 

proportion of additive genetic variance explained by significant QTN (%Var), and reliability of 

EBV as: 

SSrel =
Ns𝑟𝑒𝑙(log (𝜎𝑄𝑇𝑁

2 𝑁𝑒))𝜆𝜎𝑄𝑇𝑁
2

𝑟𝑒𝑙𝑡(𝜎𝑄𝑇𝑁
2 + ln (𝑀𝑒))

 

in which SSrel is the approximated sample size for target reliability, Ns is the benchmark sample 

size, 𝑟𝑒𝑙 and 𝑟𝑒𝑙𝑡 are the benchmark and target reliabilities of EBV (heritability), 𝜆 is a constant 

equal to 0.4, and 𝜎𝑄𝑇𝑁
2  is the %var explained by identified QTN. The total proportion of genetic 

variance explained by the identified QTN was calculated as the sum of the genetic variance 

explained by each QTN. As QTN effects were given by the simulation, the percentage of genetic 

variance explained by individual QTN was calculated as: 

%𝑉𝑎𝑟 =  2𝑝𝑞(𝛽)2/𝜎𝑎
2 
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where the 𝑝 and 𝑞 are the major and minor allele frequency of the QTN, 𝛽 is the QTN effect, 𝜎𝑎
2 

is the total additive genetic variance of the model.  

Models and analysis 

Genome-wide associations 

Efficient mixed-model association expedited (EMMAX) was performed using Gemma 

software (Zhou and Stephens, 2012), with the following model: 

𝐲 = 𝟏μ + 𝐗𝑖b𝑖 + 𝐙𝐮 + 𝐞, 

where y is a vector of phenotypes, μ is an overall mean, 𝐗𝑖 is a vector of genotypes for 𝑖𝑡ℎ SNP, 

b𝑖 is the substitution effect of the 𝑖𝑡ℎ SNP, Z is an incidence matrix for vector u, and u is a vector 

of random additive genetic effects, with 𝐮 ~ N(0, 𝐆𝜎𝑢
2) , and e is a vector of residuals, with 

𝐞 ~ N(0, 𝐈𝜎𝑒
2) and I an identity matrix. The G was computed as in Zhou (Zhou and Stephens, 

2012): 

𝐆 = 
1

𝑛𝑠
 ∑ (

p
i=1 xi − 1𝑛x̅i) (xi − 1𝑛x̅i)

T 

where the xi is the 𝑖𝑡ℎ SNP locus column, x̅i is the marker sample mean of the 𝑖𝑡ℎ locus, 𝑛 and 𝑛𝑠 

are numbers of genotyped animals and SNP. 

Genomic prediction 

A linear mixed model was used to compute GP: 

𝐲 = 𝟏μ + 𝐙𝐮 + 𝐞, 

where y is a vector of phenotypes, μ is an overall mean, Z is an incidence matrix for vector u, and 

u is a vector of random additive genetic effects, with 𝐮 ~ N(0, 𝐇𝜎𝑢
2)  and H is the realized 

relationship matrix, and e is a vector of residuals, with 𝐞 ~ N(0, 𝐈𝜎𝑒
2). The GP was carried out with 

ssGBLUP and weighted ssGBLUP (WssGBLUP) (Wang et al., 2012) using the BLUPF90 family 
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of programs (Misztal et al., 2014). For the mixed model equations in ssGBLUP and WssGBLUP, 

𝐇−1 combines both pedigree and genomic relationships (Aguilar et al., 2010): 

𝐇−1 = 𝐀−1 + [
0 0
0 𝐆−1 − 𝐀22

−1], 

where 𝐆−1 is the inverse of the genomic relationship matrix and 𝐀22
−1 is the inverse of the pedigree 

relationship matrix for the genotyped animals. The G was created as in VanRaden (VanRaden, 

2008): 

𝐆 = 
𝐌𝐃𝐌′

2∑pi(1−pi)
, 

where M was defined before, pi is the minor allele frequency of the 𝑖𝑡ℎ SNP, D is the diagonal 

matrix of SNP weights with dimensions equivalent to the number of SNP. In ssGBLUP, all SNP 

were assumed to have homogeneous weights, meaning that D was an identity matrix. To avoid 

singularity issues, G was blended with 5% of 𝐀22. 

 For the WssGBLUP, SNP effects were back-solved from GEBV (�̂�) as described in Wang 

et al. (2012): 

�̂� =  σa
2σu

−2𝐃𝐌′𝐆−𝟏�̂�, 

where �̂� is a vector of estimated SNP effects, σa
2 is the SNP variance, σu

−2 is the genetic variance, 

D is the diagonal matrix of SNP weights (I in ssGBLUP), and M is the centered matrix of 

genotypes. After SNP effects were estimated, the variance for the 𝑖𝑡ℎ SNP was calculated using 

the non-linearA method (VanRaden, 2008): 

di = CT
|âi|

σ(�̂�)
−2

, 

where CT is a constant that determines the departure from normality when deviating from 1; |âi| 

is the absolute estimated SNP effect for ith SNP; and σ(�̂�) is the standard deviation of the vector 
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of estimated SNP effects. This study used CT as 1.125, an empirical value based on polygenic 

traits in dairy cattle populations. Results from the second iteration of weights were used in this 

study to maximize the prediction accuracy, as suggested by Zhang et al. (2016); Lourenco et al. 

(2017). 

Validation of genomic predictions 

In each scenario, prediction accuracy was calculated as the correlation between TBV and 

genomic estimated breeding value (GEBV). Besides, the regression coefficient (b1) of TBV on 

GEBV was used as an indicator of inflation or deflation of GEBV. When b1 is lower than one, it 

is indicative of inflation and deflation otherwise. As replicates were not used in this study, standard 

errors (SE) were computed using the bootstrapping method (Canty, 2002). 

 

RESULTS 

Variant identification 

The preliminary analysis showed similar results for both GWAS and GP when QTN were 

included (withQTN) or not included in the data. Therefore, results of withQTN are only described. 

The results of GWAS are shown in Fig. 5.1 ~ 5.4. As most of the quantitative traits are highly 

polygenic, only results of Q2000 with H30 and H99 are shown with two Ne scenarios (Ne20, 

Ne200), respectively. In addition, the GWAS results of EIG60, EIG70, and EIG80 were not 

included in those figures due to their insignificance. Considering a population with Ne equal to 20 

and using EIG50, EIG90, EIG95, EIG98, and EIG99 as the sample size for GWAS in Q2000 was 

not enough to detect significant QTN when the amount of information for genotyped animals was 

small (Fig. 5.1). However, when the sample size increased to 30,000 (i.e., ALL), three significant 

QTN were identified. In contrast, using genotyped animals with high reliability increased the 
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ability to identify simulated QTN correctly (Fig. 5.2). EIG95 could capture three significant QTN, 

and as the sample size increased to EIG98, EIG99, and ALL, 17, 33, and 142 QTN were identified, 

respectively. 

 Different patterns were observed for a population with Ne equal to 200 when having 

contrasting EIGx as the sample size (Fig. 5.3 and Fig. 5.4). Although EIG50, EIG90, and EIG95 

were not sufficient to capture the significant QTN in H30, a sample size of EIG98 allowed the 

identification of seven QTN (Fig. 5.3). Moreover, increasing the number of genotyped animals to 

EIG99 and ALL helped detect more QTN and improve the GWAS resolution, even though 

genotyped animals had low reliability. When Ne was 200, but the animals had high reliability, 

EIG90 is an adequate sample size to detect the QTN with the largest effect size (Fig. 5.4). For this 

scenario, EIG98 provided a clear resolution, similar to EIG99 and ALL. It is important to note that 

the number of largest eigenvalues explaining a certain proportion of the variance in G was different 

for Ne20 and Ne200 (Table 5.2). With all available genotyped animals (i.e., ALL), Ne200 had more 

significant QTN discovered in GWAS than Ne20. For example, in Q2000 and H30, the three 

significant QTN in Ne20 captured 3.9% of the additive genetic variance, whereas, in Ne200, 15 

QTN were capturing 13.9%. In both Ne scenarios, using genotyped animals with high reliability 

helped better detect QTN. For a less polygenic trait (Q200), fewer genotyped animals were 

required to identify the simulated QTN than in a more polygenic trait (Q200). 

Association between variance explained by identified QTN and sample size 

The proportion of variance explained by identified QTN is shown in Fig. 5.5. When the 

sample size increased, the proportion of variance explained by the identified QTN increased 

regardless of heritability, Ne, and number of QTN. Comparing the proportion of variance explained 

according to the heritability, high heritability scenarios better identified significant QTN. For 
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example, using all genotyped animals in Ne20 and Q200 with H30 helped identify QTN explaining 

44.9% of the variance (Fig. 5.5a). However, H90 and H99 identified QTN explaining 72.9% and 

74.3% of the variance, respectively, with the same number of genotyped animals. For a more 

polygenic trait (Fig. 5.5b), QTN explained 3.9% and 43.1% of the variance with H30 and H99, 

respectively. The latter was similar to the variance explained in Q200, H30. Similar patterns were 

observed between Ne20 and Ne200; however, QTN identified in Ne200 explained a greater 

proportion of variance than Ne20 for Q200 and Q2000 (Fig. 5.5c-d). For example, the maximum 

proportion of variance explained by QTN in Ne20 (Fig. 5.5a-b) was 74.3% and 43.1% for Q200 

and Q2000 with H99, whereas those values were 96% and 65.1% in Ne200 (Fig. 5.5c-d). One 

remarkable discovery with a less polygenic trait was that the use of EIG98 and EIG99 showed a 

similar proportion of variance explained by identified QTN as in ALL (Fig. 5.5a and 5.5c). For 

H99, when EIG98, EIG99, and ALL were used, the variance explained by the identified QTN was 

59.9%, 68%, and 74.3%, respectively (Fig. 5.5a). In the case of Q2000, the scenarios mentioned 

above identified QTN explaining 11.2%, 18.9%, and 43.1% of the variance (Fig. 5.5b); therefore, 

the proportion of variance explained increased by almost fourfold from using EIG98 to ALL, 

whereas this increase was only 25% with Q200. In a larger population (Ne200) and H99 (Fig. 5.5c), 

EIG98, EIG99, and ALL schemes detected QTN explaining 95.2%, 95.6%, and 96% of the 

variance for Q200. Even for the more polygenic scheme (Q2000), EIG98, EIG99, and ALL 

captured QTN explaining 52.5%, 59.7%, and 65.1% (Fig. 5.5d). Similar patterns were observed 

for the other two heritability scenarios in Fig. 5.5c-d. 

 To investigate the corresponding sample size from the use of low to high heritability 

scenarios at the point where the same percentage of variance was explained, we used H30 as a 

benchmark. Table 5.3 shows the approximated sample size when the largest discovery set (ALL, 
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N = 30,000) was used. The results of the Ne20 Q200 scenario showed that around 2223 and 1662 

genotyped animals were required for H90 and H99 to reach the same magnitude of genetic variance 

explained by the identified QTN in H30 (Table 5.3). In Ne20 Q2000, using 3049 and 2378 

genotyped animals with H90 and H99 helped identify QTN explaining 3.9% of the variance, which 

was accomplished using ALL in H30. Similar patterns were observed in Ne200 scenarios. One 

remarkable difference between Ne20 and Ne200 was that the sample size to reach the same 

proportion of variance explained by QTN using ALL in H30 was equivalent to EIG90 ~ EIG98 in 

Ne20 but EIG80 ~ EIG90 in Ne200 when considering H90 and H99.  

 In the current study, in addition to the approximated sample size by local polynomial 

regression, we derived the equation to estimate the sample size relating the number of samples, 

Me, Ne, percentage of variance explained by the identified QTN, and reliability of EBV. For 

example, to approximate the sample size of H90 in Ne20 Q200 scenario when %var was 44.9, it 

would be  

SSrel =
30000 × 0.3 × (𝑙𝑜𝑔44.920) × 0.4 × 44.9

0.9 × (44.9 + ln (1840))
 

Those sample sizes approximated by the proposed equation are described in Table 5.3. 

Approximating the sample size in Q2000 was more accurate than in Q200 for Ne20 and Ne200. 

Additionally, the formula and the polynomial regression provided sample sizes that were within 

the same EIGx range, except for one scenario (Ne20 Q200 H99). As an example, Ne20 Q2000 

resulted in 3049 (H90) and 2378 (H99) samples in SSpol and 3007 (H90) and 2734 (H99) in SSrel; 

however, the sample size in both cases laid within EIG95~98. Differences between SSpol and SSrel 

across more polygenic scenarios were not large. 

Genomic predictions 
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Beforehand, we investigate the possible bias of GP by using the same set of genotyped 

animals for both discovery and training. Using different groups of genotyped animals for discovery 

and training resulted in less inflation of GEBV than utilizing the same animals for both processes 

(results are not shown). Therefore, the GP analyses were done with training animals different from 

the discovery set.  

 We noticed very small standard errors for prediction accuracy (<0.005) and b1 (<0.01) by 

bootstrapping. The results of prediction accuracy and inflation/deflation indicator of GEBV (b1) 

are shown in Fig. 5.6 and Fig. 5.7, respectively. Those accuracies and b1 were calculated as the 

average of all genotyped scenarios: 50k, TOP10, TOP50, TOP100, TOP200, TOP400, and ‘SIG’ 

for Q200 and 50k, TOP10, TOP100, TOP500, TOP1000, TOP2000, TOP4000, and ‘SIG‘ for 

Q2000 scenarios. Standard deviations were less than 0.02 for all scenarios. Fig. 5.6 shows the 

prediction accuracy depending on the number of QTN (Q2000 or Q200), trait heritability (H30, 

H90, and H99), and training data scenarios (EIGx and ALL). In general, as the training set size 

increased, prediction accuracy also increased. Different patterns were observed between Ne20 and 

Ne200. In Ne200, the prediction accuracy increased consistently as the training set size increased; 

however, the increase in prediction accuracy was not constant in Ne20. For example, in Ne20 Q200 

H30, while the training data set went up from the EIG50 to EIG95, prediction accuracy increased 

only by about 0.03. A similar pattern was observed for Ne20 Q2000 H30, which showed a gain of 

about 0.02. In general, Ne20 showed greater prediction accuracy than Ne200. For example, when 

the smallest sample size (EIG50) was used, the average accuracy in Ne20 was 0.82±0.03 and 

Ne200 was 0.74±0.09, a difference of about 0.08. This difference became smaller with the largest 

sample size (ALL), which was 0.04. Therefore, no substantial differences in prediction accuracy 

between the Ne20 and Ne200 were found when the largest training set was used. Overall, the 
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difference in prediction accuracy between EIG98 or EIG99 and ALL was smaller in Ne200 (0.88, 

0.90, and 0.92 on average for EIG98, EIG99, and ALL) than in Ne20 (0.90, 0.92, and 0.96 on 

average for EIG98, EIG99, and ALL), indicating a sample for training with the size of EIG98 or 

EIG99 would suffice.  

 The number of QTN marginally affected the prediction accuracy for Ne20 and Ne200 

scenarios. For both Ne scenarios, Q200 showed greater prediction accuracy, especially for the low 

heritability with the smaller training sets. For example, in Ne20 H30, the prediction accuracy from 

EIG50 to EIG70 was 0.81 with Q200 and 0.79 with Q2000. With larger training set sizes and 

higher heritability, the difference between Q200 and Q2000 decreased. Prediction accuracies were 

highly influenced by the heritability of the trait, particularly with a larger effective population size. 

For instance, with Ne200 Q200, when EIG50 was used, the prediction accuracy was 0.64, 0.81, 

and 0.81 for H30, H90, and H99, respectively. Even with the most extensive training set (ALL), 

prediction accuracy was 0.84, 0.96, and 0.98, following the previous order. Similar patterns were 

observed for Ne200 Q2000. Thus, using low to high-reliability genotyped animals for training 

could affect the prediction accuracy more in populations with large Ne. Expanding the training set 

from EIG95 to EIG98 in Ne200 H30 increased prediction accuracy by 5.5% and 6.82% for Q200 

and Q2000, respectively. However, the maximum increase for Ne200 H90 and H99 was observed 

when the training set size expanded from EIG80 to EIG90 (3.8% ~ 4.61%). Unlike Ne200, great 

improvements in accuracy were observed when moving from EIG99 to ALL in H30 and H90 for 

both Q200 and Q2000.  

 Regression coefficients (b1) used as indicators of inflation/deflation of GEBV are shown 

in Fig. 5.7. When the training set size was small, less inflation was observed in Ne200 than in Ne20. 

In both Ne scenarios, using a large training set alleviated the inflation, so when ALL was used for 



 

 116 

training, all scenarios had b1 close to 1, especially for Ne20. Interestingly, more variation between 

the models was observed in Ne20 than in Ne200.  

 Fig. 5.8 shows the prediction accuracy with 50k compared to 50k plus SIG, TOP400 

(Q200), and TOP4000 (Q2000), together with the percentage of gain by adding possible causative 

variants. As the increase was not major across analyses combining the 50k and the top SNP, only 

the scenarios with the largest changes are shown in Fig. 5.8; all the other scenarios are in 

Additional file 2. Overall, the percentage of gain was greater in Ne200 (3.29% ~ 9.01%) than in 

Ne20 (0.86% ~ 1.98%). In addition, Q200 showed a higher percentage of gain than Q2000 in 

both Ne scenarios. Interestingly, the maximum accuracy gain was usually observed when the 

largest number of top SNP (TOP400 for Q200 and TOP4000 for Q2000) was added to 50k chip 

data, representing twice the number of simulated QTN. The only exceptions were Q200 H90 and 

H99 for Ne20 and Ne200, which had the highest accuracy gain with 50k plus SIG. This is probably 

because identifying significant QTN was easier in a less polygenic trait (Q200) with H90 and H99. 

In contrast, finding QTN in Q2000 or a low heritability trait was harder.  

 

DISCUSSION 

In this study, we comprehensively investigated the impact of using different sample sizes 

in GWAS based on the dimensionality of the genomic information, the implications of using 

genotyped animals having low to high reliability of EBV in GWAS, and the inclusion of 

preselected variants into a typical 50k SNP panel using ssGBLUP and WssGBLUP. These 

investigations brought insights into how different data structures can affect the performance of 

GWAS and GP under the ssGBLUP framework. We used the concept of limited dimensionality of 

the genomic information (Pocrnic et al., 2016a). Our results showed that this concept could be a 
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helpful indicator of the number of genotyped animals required for GWAS, depending on Ne, Me, 

the number of QTN, and the reliability of EBV. Our results showed that having a sample size with 

the number of genotyped animals corresponding to that of EIG98 was appropriate for variant 

discovery, particularly in the population with large Ne. Additionally, using genotyped animals with 

high EBV reliability could help better identify significant QTN regardless of Ne and the genetic 

architecture of the traits. Incorporating selected variants obtained from GWAS to the 50k SNP 

chip could improve prediction accuracy when a training set with proper size was used; however, 

the gain could be limited in some scenarios. 

GWAS – preselection of variants 

The most prevalent workflow for GP with sequence data is 1) pre-selection of significant 

variants, 2) incorporation of selected variants to the commercial chip data (i.e., 50k), or fitting 

separate genomic matrices in the model (Fragomeni et al., 2019; Moghaddar et al., 2019; Lopez et 

al., 2021), 3) comparison of the GP performance with a benchmark SNP chip. Several studies have 

been conducted to improve GP using sequence data with either simulated or real data. However, 

conclusions about the advantage of using sequence data have not been very consistent in the 

literature, and they seem to be dependent on several factors such as the species, the genetic 

architecture of the trait, the size of data, and statistical methods (MacLeod et al., 2016; VanRaden 

et al., 2017; Fragomeni et al., 2019; Moghaddar et al., 2019). 

Among those factors, the most critical is the size of data for discovery, training, and test 

sets. Specifically, the sample size for the variant discovery set is essential as it is the first step and, 

thus, predominantly affects the results of the entire study. Current results indicated that using a 

small number of genotyped animals could not identify the significant SNP or QTN. Lourenco et 

al. (2017) used two different numbers of genotyped animals (N = 2,000 and 25,000) for GWAS 
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and reported that the best resolution was observed when more genotyped animals were used. In 

the same line, de Las Heras-Saldana et al. (2020) outlined that using a larger dataset for GWAS 

allowed to better identify quantitative trait loci (QTL) regions for carcass traits in Hanwoo cattle.  

As the number of genotyped animals has currently increased in many species, for instance, 

about 5 million U.S. Holsteins (https://queries.uscdcb.com/Genotype/cur_freq.html), and about 1 

million American Angus (K. Retallick, American Angus Association, Saint Joseph, MO, personal 

communication) have been genotyped as of March 2022, it is important to know how many 

genotyped animals are effectively required to detect the significant variants. Current results 

showed that using at least the number of genotyped animals equivalent to EIG98 could identify 

the most informative QTN. Using EIG99 or all available genotyped animals little improved the 

ability to identify significant QTN in Ne200 for both Q200 and Q2000 scenarios. This result could 

be helpful for both small and large genotyped populations with large Ne. For breeding populations 

with fewer resources, the number of animals to genotype may be limited; therefore, accessing what 

would be the effective sample size could benefit cost-effective genotyping or sequencing. For large 

populations, our study showed that not all animals are needed for variant discovery, and a balanced 

data set should be constructed for discovery, training, and testing to avoid biases and maximize 

the power to detect the significant variants. When Ne was small and the trait was highly polygenic, 

the small sample size could not identify any significant QTN until it reached ALL and EIG98 for 

H30 and H90. With more information on genotyped animals (i.e., H99), a sample size equivalent 

to EIG95 helped identify a few QTN. Chicken and pigs had smaller Ne (32 ~ 48) than cattle among 

the livestock species (Pocrnic et al., 2016b). Therefore, using a sample size corresponding to less 

than ALL would not be enough to detect significant signals for those species. Gozalo-Marcilla et 

al. (2021) carried out large-scale GWAS for backfat thickness in pigs using around 15k to 55k 

https://queries.uscdcb.com/Genotype/cur_freq.html
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genotyped animals. They found 264 significant SNP across 8 different lines for traits with 

moderate to high heritability (0.30 ~ 0.58). As backfat thickness has been known for its polygenic 

architecture (more than 1400 QTL associated backfat thickness is reported in 

https://www.animalgenome.org/QTLdb), their discovery is supported by our findings in 

populations with small Ne and moderate heritability.  

 Pocrnic et al. (2016a) described the number of largest eigenvalues explaining a certain 

proportion of G as a function of Ne and genome length in Morgans, such that EIG90 ≈ NeL, EIG95 

≈  2NeL, and EIG98 ≈  4NeL. Stam (1980) expressed the expected number of independent 

chromosome segments as 4NeL. In this study, Ne was 20 or 200 and L was 23, so Me was 

approximated as 1,840 and 18,400, between EIG95 and EIG98 for Ne20, and EIG98 and EIG99 

for Ne200 in Table 5.2. As Ne and Me are proportional, smaller Ne denotes fewer Me, indicating 

fewer blocks are existed in the genome with a strong LD between variants because of the close 

relationship among individuals. Ne also has been reported as a factor affecting the performance of 

GWAS (Baldwin-Brown et al., 2014; Lourenco et al., 2017). In the current study, we showed that 

when the same number of genotyped animals were used (ALL), Ne200 could better identify the 

significant QTN explaining more genetic variance than Ne20 for all heritability and QTN scenarios. 

This might be because of smaller chromosome segments and weaker LD between the QTN and 

SNP in Ne200 than in Ne20. Pinpointing QTN is harder in Ne20 because many SNP may capture 

the QTN signal. The noise in GWAS resolution is possibly due to the strong relationships between 

the SNP and QTN, established by a highly structured population over the generations in Ne20; 

therefore, identifying the true causative variant is not trivial in smaller populations. In general, Ne 

of farm animals such as chickens, pigs, dairy, and beef cattle is less than 200 and could range from 

40 to 150 (Pocrnic et al., 2016b); thus, the current findings would be helpful information for the 

https://www.animalgenome.org/QTLdb
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future GWAS in those species. However, identifying all significant variants is not assured due to 

the polygenic nature of most traits in livestock animals, and most of the causal variants have a 

small effect. For example, even with the largest number of genotyped animals for GWAS in our 

study (ALL, N = 30k), identifying QTN with very small effects was not possible due to limited 

statistical power. Misztal et al. (2021) showed that identifying all simulated QTN was impossible 

even when all had the same effect, Ne was 600, and the sample size was 6000. For a population 

with Ne of 60, a sample size three times larger resulted in more true signals in GWAS, but not as 

many as with Ne of 600. The same authors argued that with smaller Ne, more data is required to 

overcome the noise stage and capture the actual signals.   

 Different heritability scenarios were compared to investigate the performance of GWAS 

when genotyped animals with low to high reliability of EBV were used for the variant discovery 

stage. Our findings highlighted that regardless of the number of QTN, Ne, Me, and sample size, 

high heritability scenarios could capture more significant QTN explaining a larger portion of the 

variance. However, Takeda et al. (2020) observed no differences in power to detect QTL when 

heritability 0.2 and 0.5 were simulated but outlined that QTL detection was better with the 

increasing number of phenotyped progenies (N = 1,500, 4,500, 9,000). As the use of more 

phenotyped progeny data indicated higher reliability of EBV of the parents, which is the case of 

genotyped animals in the higher heritability scenarios in our study, those findings agreed with the 

current results. Besides, van den Berg et al. (2013) reported that the number of false positives in 

QTL detection decreased with increasing heritability and number of records. Thus, using 

genotyped animals with high EBV reliability could sufficiently detect the QTN although few 

animals were used. 

Sample size approximation 
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Approximated sample sizes were obtained through polynomial regression and a formula 

relating Ne, Me, and percentage of variance to be explained by significant QTN. The latter was 

useful to investigate the sample size given the average reliability of EBV in the set of animals 

available for GWAS. Overall, the comparison showed a better approximation with Q2000 

scenarios but a very different approximation scale with Q200 scenarios (results now shown). One 

possible reason for the inaccurate approximated sample size would be an unbalanced simulation 

design for Ne and heritability. As we only simulated two scenarios of Ne: 20 and 200 for the 

smallest and largest Ne in livestock species with three heritability scenarios: 0.3, 0.9, and 0.99 

representing low, high, and very high reliability of EBV, there is a large gap between Ne 20 and 

Ne200, and an irregular pattern of heritability scenarios. However, the proposed equation could be 

applied for more polygenic traits. For example, given the number of genotyped or sequenced 

animals available, reliability of those animals, reliability of target animals, and proportion of 

variance explained by identified QTN, i.e., identified SNP in real data, with Ne and Me, we can 

approximate the sample size for GWAS. 

Genomic prediction 

In general, the accuracy of GP was improved as the size of training data increased, and 

combining selected variants to a 50k SNP panel could improve accuracy when the GP was 

performed with the proper size of training sets. It was demonstrated that increasing the number of 

animals in training sets improved the accuracy of GP (Daetwyler et al., 2008; Hayes et al., 2009; 

Boddhireddy et al., 2014). Our findings support those results, although only a tiny improvement 

(< 1.0%) was reported when using training sets with the number of genotyped animals equal to 

EIG50 to EIG70 in Ne20. Moser et al. (2009) observed no improvements in prediction accuracy 

when the training size was enlarged from 1,239 to 1,880 in Australian dairy cattle. Therefore, 
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adding a substantial number of genotyped animals to the training set is necessary to improve 

prediction accuracy. As the current study suggested, the training set size can be based on the 

number of eigenvalues explaining a certain percentage of the variance in G. Those improvement 

patterns were very similar in both Ne20 and Ne200; however, the prediction accuracies were 

generally smaller for the Ne200 when the same number of genotyped animals were used. Daetwyler 

et al. (2010) investigated the impact of the genomic structure of the population (Ne and Me) on the 

accuracy of GBLUP. In their study, with the same number of individuals in the training sets, 

smaller Ne showed better accuracy than larger Ne regardless of the number of QTL.  

 Daetwyler et al. (2008) proposed the following equation for prediction accuracy: 𝑟𝑔�̂�𝐺 =

√𝑁𝑝ℎ2/𝑁𝑝ℎ2 + 𝑀𝑒 , where 𝑁𝑝  is a training set size, ℎ2  is the trait heritability, and Me is the 

number of independent chromosome segments. Equation to approximate the Me proposed by Stam 

(1980) was 4NeL, where Me is proportional to Ne, thus current results that showed greater accuracy 

with smaller Ne theoretically sounded when the 𝑁𝑝 and ℎ2 are equivalent. In addition, the small 

size of Ne means that fewer Me to estimate, thus a smaller prediction error variance would be 

estimated (Pocrnic et al., 2016a).  

 We selected variants based on a p-value of 0.05 with a Bonferroni correction for multiple 

testing and the order of the significance level; however, the Bonferroni correction might generate 

a stringent threshold, increasing the number of false negatives. Therefore, we tested GP by 

combining selected variants based on sample size (TOPv) and significant variants. We 

demonstrated that when a large training set incorporated a relatively large number of variants (i.e., 

twice the number of simulated QTN), prediction accuracy improved by up to 9%. Several studies 

used selected variants from imputed sequence data to improve GP in single-breed populations. 

Veerkamp et al. (2016) reported that when selected variants were used for GP, accuracy decreased, 
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and bias increased. However, VanRaden et al. (2017) observed an improvement in accuracy by up 

to 5% when 16k selected variants were added to 60k chip data. In single-breed populations, an 

improvement in prediction accuracy using selected variants from sequence data could be limited 

due to long-range LD; thus, precise identification of variants is much harder than multi-breed or 

across-breed (Veerkamp et al., 2016).  

 Fragomeni et al. (2017) outlined that including causative QTN in the unweighted G 

through ssGBLUP increased accuracies by 0.04 when the number of QTN was 100 and 1000, 

which was similar to our results (0.02 ~ 0.06). Additionally, when those authors added weights 

derived from SNP effects to G, accuracies increased by 0.10 and 0.03 for 100 and 1000 QTN 

scenarios, respectively, meaning that weighting SNP was more important for the scenario with a 

smaller number of QTN (less polygenic). However, in the current study, WssGBLUP resulted in 

no improvement in accuracy, and more inflation of GEBV was observed compared to ssGBLUP. 

However, the inflation of GEBV was reduced when more genotyped animals were added to the 

training set. The major difference between ssGBLUP and WssGBLUP is that ssGBLUP assumes 

that all SNP explain the same amount of genetic variance, whereas WssGBLUP assigns different 

variances for each SNP (Wang et al., 2012). In general, weighting G may not increase the accuracy 

of GP but may improve the GWAS resolution (Wang et al., 2012).  

 In our study, the resolution of variant detection was improved using at least the number of 

genotyped animals corresponding to the number of eigenvalues explaining 98% of the variation in 

G for the Ne200 scenarios, meaning that when the number of genotyped animals for discovery is 

close to the approximated Me, precise detection of significant variants is feasible. As the genomic 

information has limited dimensionality, it could be expressed as the number of non-redundant 

SNP, genotyped animals, and Me (Misztal, 2016). Therefore, investigating the dimensionality of 
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the genomic information can help determine the sample size required for discovery and training. 

Since the performance of GWAS and GP depends on several factors such as the genetic 

architecture of the trait, population structure, heritability, and sample size, more research is needed 

with real data to validate our results.  

 

CONCLUSIONS 

 Accurately identifying causative variants from sequence data depends on the effective 

population size and, therefore, the dimensionality of genomic information. This dimensionality 

can help identify the suitable sample size for GWAS and should be considered for variant selection. 

Assigning genotyped animals with high breeding value reliability to the discovery set helps better 

identify the significant QTN. As sequence data become available, preselecting variants, and adding 

them to regular chip data could improve prediction accuracy if the dimensionality of the genomic 

information is considered; however, the improvement is mostly limited.  
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TABLES 

Table 5.1. Description of all GWAS scenarios 

Scenario description Ne Number of QTN Heritability 

Ne20 Q200 H30 20 200 0.3 

Ne20 Q200 H90 20 200 0.9 

Ne20 Q200 H99 20 200 0.99 

Ne20 Q2000 H30 20 2000 0.3 

Ne20 Q2000 H90 20 2000 0.9 

Ne20 Q2000 H99 20 2000 0.99 

Ne200 Q200 H30 200 200 0.3 

Ne200 Q200 H90 200 200 0.9 

Ne200 Q200 H99 200 200 0.99 

Ne200 Q2000 H30 200 2000 0.3 

Ne200 Q2000 H90 200 2000 0.9 

Ne200 Q2000 H99 200 2000 0.99 
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Table 5.2. Number of genotyped animals for all scenarios in both discovery and training sets 

(a) Ne20 

 
Ne20 

Q200 H30 

Ne20 

Q200 H90 

Ne20 

Q200 H99 

Ne20 

Q2000 H30 

Ne20 

Q2000 H90 

Ne20 

Q2000 H99 

EIG50 80 80 80 80 80 80 

EIG60 130 140 140 140 140 130 

EIG70 220 240 230 220 230 220 

EIG80 390 410 410 400 400 400 

EIG90 860 900 890 890 880 840 

EIG95 1,700 1,770 1,800 1,800 1,750 1,700 

EIG98 4,000 4,100 4,100 4,100 4,100 4,000 

EIG99 6,900 7,100 7,100 7,100 7,000 6,900 

All 30,000 30,000 30,000 30,000 30,000 30,000 

 

(b) Ne200 

 
Ne200 

Q200 H30 

Ne200 

Q200 H90 

Ne200 

Q200 H99 

Ne200 

Q2000 H30 

Ne200 

Q2000 H90 

Ne200 

Q2000 H99 

EIG50 510 520 550 530 500 510 

EIG60 900 910 940 920 900 900 

EIG70 1,500 1,550 1,600 1,540 1,500 1500 

EIG80 2,600 2,650 2,700 2,650 2,600 2,600 

EIG90 5,100 5,250 5,300 5,300 5,100 5,100 

EIG95 8,600 8,800 8,800 8,800 8,600 8,600 

EIG98 15,000 15,200 15,200 15,200 15,000 15,000 

EIG99 21,000 22,000 21,400 22,000 22,000 21,000 

All 30,000 30,000 30,000 30,000 30,000 30,000 
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Table 5.3. Approximated sample size based on local polynomial regression and proposed 

equation using ‘ALL’ as benchmark 

 

 

*%Var1: percentage of variance explained by significantly identified QTN 

*SSpol2: Approximated sample size using local polynomial regression 

*EIGxapp13: EIGx scenario range including Sampleapp1 

*SSrel4: Approximated sample size using proposed equation 

*EIGxapp25: EIGx scenario range including Sampleapp2 

*Diff6: Difference between Sampleapp2 and Sampleapp1 

*Dotted arrows in Fig. 2 matched with each line of H90 and H99 scenario was approximated sample size using 

  local polynomial regression and those were described above as Sampleapp1. 

*EIGx scenario ranges including either Sampleapp1 (EIGxapp1) or Sampleapp2 (EIGxapp2) are described with the 

  difference between Sampleapp1 and Sampleapp2 as Sampleapp2 − Sampleapp1 (Diff) in Table  

 

 

 

Scenario Heritability %Var1 SSpol
2 EIGxapp1

3 SSrel
4 EIGxapp2

5 Diff6 

Ne20 

Q200 

0.3 44.9 30000     

 0.9 44.9 2223 EIG95~98 

(1770~4100) 

2698 EIG95~98 

(1770~4100) 

475 

 0.99 44.9 1662 EIG90~95 

(890~1800) 

2453 EIG95~98 

(1800~4100) 

791 

Ne20 

Q2000 

0.3 3.9 30000     

 0.9 3.9 3049 EIG95~98 

(1750~4100) 

3007 EIG95~98 

(1750~4100) 

-42 

 0.99 3.9 2378 EIG95~98 

(1700~4000) 

2734 EIG95~98 

(1700~4000) 

356 

Ne200 

Q200 

0.3 77.4 30000     

 0.9 77.4 5205 EIG80~90 

(2650~5250) 

4324 EIG80~90 

(2650~5250) 

-881 

 0.99 77.4 3814 EIG80~90 

(2700~5300) 

3931 EIG80~90 

(2700~5300) 

117 

Ne200 

Q2000 

0.3 13.9 30000     

 0.9 13.9 4524 EIG80~90 

(2600~5100) 

4719 EIG80~90 

(2600~5100) 

195 

 0.99 13.9 3664 EIG80~90 

(2600~5100) 

4290 EIG80~90 

(2600~5100) 

626 
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FIGURES 

 

 

Figure 5.1. GWAS results – EIG50, EIG90, EIG95, EIG98, EIG99, All – Ne20 Q2000 H30 
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Figure 5.2. GWAS results – EIG50, EIG90, EIG95, EIG98, EIG99, All – Ne20 Q2000 H99 
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Figure 5.3. GWAS results – EIG50, EIG90, EIG95, EIG98, EIG99, All – Ne200 Q2000 H30 
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Figure 5.4. GWAS results – EIG50, EIG90, EIG95, EIG98, EIG99, All – Ne200 Q2000 H99 

 

 

 

 



 

 137 

 

        (a) Ne20 Q200         (b) Ne20 Q2000 

 

       (c) Ne200 Q200         (d) Ne200 Q2000 

 

Figure 5.5. Total variance explained by significant QTN across the different sample sizes and 

heritabilities 
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Figure 5.6. Prediction accuracy 
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Figure 5.7. Regression coefficients (b1) 
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(1) Ne20  

 

(2) Ne200  

 

Figure 5.8. Prediction accuracy of 50k and TOPv scenario which showed a maximum gain 
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CHAPTER 6 

CONCLUSIONS 

 Preselected significant variants from whole-genome sequence can help improve the 

accuracy of genomic predictions in large maternal and terminal pig lines, although the advantage 

is limited. The benefits of using different preselected variant sets depend on the genetic 

architecture of traits, lines, size of the genotyped population, and how those variants were selected. 

Multi-line genomic evaluation in pigs with the addition of unknown parent groups or metafounders 

to account for the genetic differences could improve the prediction accuracy, bias, and dispersion 

of GEBV compared to the single-line genomic evaluation although the improvement is limited. 

Using preselected variant sets from whole-genome sequence on genomic prediction did not 

outperform Chip, showing varied results depending on the lines and traits. Weighted ssGBLUP 

for multi-line evaluations did not show considerable improvements. Accurately identifying 

causative variants from sequence data depends on the effective population size and, therefore, the 

dimensionality of genomic information. This dimensionality of genomic information can help 

identify the suitable sample size for genome-wide association and should be considered for variant 

selection. Assigning genotyped animals with high breeding value reliability to the discovery set 

helps better identify the significant variants. As sequence data become available, preselecting 

variants, and adding them to regular chip data could improve prediction accuracy if the 

dimensionality of the genomic information is considered; however, the improvement is mostly 

limited. 
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APPENDIX A 

INCLUSION OF SIRE BY HERD INTERACTION EFFECT IN THE GENOMIC 

EVALUATION FOR WEANING WEIGHT OF AMERICAN ANGUS1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 Sungbong Jang, Daniela Lourenco, and Stephen Miller. Journal of Animal Science. 100(3). Reprinted here with 

permission of the publisher. 
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ABSTRACT 

 A spurious negative genetic correlation between direct and maternal effects of weaning 

weight (WW) in beef cattle has historically been problematic for researchers and industry. 

Previous research has suggested the covariance between sires and herds may be contributing to 

this relationship. The objective of this study was to estimate the variance components (VC) for 

WW in American Angus with and without sire by herd (SxH) interaction effect when genomic 

information is used or not. Five subsets of approximately 100k animals for each subset were used. 

When genomic information was included, genotypes were added for 15,637 animals. Five 

replicates were performed. Four different models were tested, namely, M1: without SxH 

interaction effect and with covariance between direct and maternal effect (𝜎𝑎𝑚) ≠ 0; M2: with SxH 

interaction effect and 𝜎𝑎𝑚 ≠ 0; M3: without SxH interaction effect and with 𝜎𝑎𝑚 = 0; M4: with 

SxH interaction effect and 𝜎𝑎𝑚 = 0. VC were estimated using the restricted maximum likelihood 

(REML) and single-step genomic REML (ssGREML) with the average information algorithm. 

Breeding values were computed using single-step genomic BLUP (ssGBLUP) for the models 

above and one additional model, which had the covariance zeroed after the estimation of VC (M5). 

The ability of each model to predict future breeding values was investigated with the linear 

regression method. Under REML, when the SxH interaction effect was added to the model, both 

direct and maternal genetic variances were greatly reduced, and the negative covariance became 

positive (i.e., when moving from M1 to M2). Similar patterns were observed under ssGREML, but 

with less reduction in the direct and maternal genetic variances and still a negative covariance. 

Models with the SxH interaction effect (M2 and M4) had a better fit according to the Akaike 

Information Criteria (AIC). Breeding values from those models were more accurate and had less 

bias than the other three models. The rankings and breeding values of Artificial Insemination (AI) 
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sires (N = 1,977) greatly changed when the SxH interaction effect was fit in the model. Although 

the SxH interaction effect accounted for 3% to 5% of the total phenotypic variance and improved 

the model fit, this change in the evaluation model will cause severe reranking among animals.  

  

INTRODUCTION 

In beef cattle, the genetic covariance between the direct and maternal effects of weaning 

weight has shown an antagonistic effect that hinders the progress in a selection program (Meyer, 

1992; Pollak et al., 1994). Several simulation studies reported this antagonistic estimate could arise 

from ignoring the additional variance among sires such as SxH and sire by year interaction effects 

(Robinson, 1996; Lee and Pollak, 1997). In Australian beef cattle, various studies reported 

significant SxH or sire by herd-year interaction effects for many traits accounted for approximately 

5 to 10% of the phenotypic variation. Additionally, including the SxH interaction effect greatly 

reduced the negative covariance between direct and maternal effects on 200-day weight (Notter et 

al., 1992; Bradfield, 1999; Meyer and Graser, 1999). As a result, the Australian evaluation system, 

BREEDPLAN, began to include SxH interaction effect in its national evaluation model in 1999 

(Graser et al., 1999). 

The major reasons for the variation due to SxH interaction have not been completely 

determined, but several possible sources are reported: (1) preferential treatment, (2) non-random 

mating, (3) use of selected sires, which could lead to heterogeneous residual and additive genetic 

variance among herds, and (4) extensive use of specific sires in particular herds. Therefore, 

ignoring SxH interaction effect in the evaluation model could inflate the genetic variance and 

overestimate the estimated breeding value (EBV) (Tong et al., 1977; Meyer, 1987; Banos and 

Shook, 1990). When the SxH interaction effect was fit in the genetic evaluation model, the direct 
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and maternal variances were lower compared to the model without the SxH interaction effect 

(Baschnagel et al., 1999; Dodenhoff et al., 1999). Specifically, Dodenhoff et al. (1999) used data 

from the American Angus Association (AAA; St. Joseph, MO) and recommended the inclusion of 

the SxH interaction effect in routine genetic evaluations to avoid biased estimates. 

The estimation of VC has been mostly computed using the pedigree relationship matrix 

(A). If the population is undergoing selection based on pedigree and phenotypes with a proper 

model, the VC based on those two sources of information would be unbiased (Kennedy et al., 

1988). However, genomic information is now available and used for selection, so adding this 

source of information to VC estimation models makes sense. It is common fact in livestock 

populations that only a fraction of animals are genotyped, so using a genomic relationship matrix 

(G) instead of A could result in biased VC because the information on non-genotyped animals 

would not be used; therefore, the population would not be well represented (Cesarani et al., 2019). 

Veerkamp et al. (2011); Cesarani et al. (2019) recommended using the single-step methodology 

(Aguilar et al., 2010; Christensen and Lund, 2010) to estimate VC when genotyped and non-

genotyped animals coexist in the pedigree. In single-step, G and A are combined into a realized 

relationship matrix (H), so the information on genotyped and non-genotyped animals can be used.       

  Because the estimated VC could differ with the choice of the covariance structure among 

animals and the presence of the SxH interaction, the EBV can also change causing animals to 

change rank. Changes in EBV and the ranking of animals are problematic in the commercial 

marketplace. However, if those changes are moving EBV in the appropriate direction, the 

modifications should be acceptable. Because most of the routine genetic evaluations ignore the 

negative covariance between additive direct and maternal effects, room for improvements could 

be explored if SxH interaction is deemed important. Therefore, the first objective of this study was 
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to investigate the impact of a random SxH interaction effect on the VC of WW in American Angus 

cattle in the presence or absence of genomic information. The second objective was to evaluate 

the prediction models in terms of accuracy, bias, and dispersion using the LR method (Legarra and 

Reverter, 2018). The last objective was to investigate the changes in EPD and the ranking of AI 

sires among different models. 

 

MATERIALS AND METHODS 

Animal care and Use Committee approval was not needed because the information was 

obtained from the pre-existing databases. 

Data 

All datasets were provided by AAA. Over 9.4 million WW phenotypes collected from 1955 

to 2020 were available for almost 9.9 million animals. All WW were pre-adjusted for the age of 

dam and age of calf using the adjustment factors from the standard AAA national cattle evaluation. 

Data filtering for the VC estimation was performed to remove the following: 1) animals without 

WW and herd information; 2) contemporary groups with less than 50 animals; 3) animals with 

registration ID other than AAA and beef improvement records (BIR). After all filtering processes, 

2,474,202 animals remained. Five random samples of approximately 100k animals with WW 

records were taken for the analysis, which mimics the current procedures and data structures for 

VC estimation by AAA. Each sample contained all animals in the selected herd over time. Table 

1 depicts summary statistics for WW along with the number of animals, herds, sires, and SxH 

interactions in each replicate. 

Among those animals, 180,733 were genotyped. Because of the computing limitation of 

ssGREML, a subset of 15,637 animals born from 1972 to 2017 was selected among 180,733 



 

 147 

genotyped animals who had phenotypes for WW and at least one progeny as sire or dam. The 

animals were genotyped for 54,609 single nucleotide polymorphisms (SNP) originally present in 

the BovineSNP50k v2 BeadChip (Illumina Inc., San Diego, CA). Quality control of genomic data 

removed SNP with call rate < 0.9, minor allele frequency < 0.05, and those located on the sex 

chromosomes. After the quality control, 39,733 SNPs were available for animals born from 1972 

to 2017. For the estimation of breeding values, a larger dataset was used which included 

phenotypes for 2,474,202 animals, 180,733 genotyped animals, and a four-generation pedigree 

including 869,583 animals in total. Because of the large number of genotyped animals, the 

algorithm for proven and young (APY) was used to obtain 𝐆−𝟏 without the direct inversion of G, 

as proposed by Misztal et al. (2014a). The number of core animals was set to 19,019, which has 

been used for routine genomic evaluations by the AAA. Among all those animals, 1,977 were AI 

sires under investigation for ranking and EPD changes under different models. AI sires in this data 

are a combination of old sires with many progenies and young sires with no progeny in production 

yet. These AI sires had direct progeny ranging from 0 to 6,053 with a mean of 117.02 and the 

number of progenies raised by daughters ranged from 0 to 19 with a mean of 0.23. 

Models and Analysis 

The following four different linear mixed models were used for the VC estimation. 

M1: 𝐲 = 𝐗𝐛 + 𝐙𝟏𝐚 + 𝐙𝟐𝐦 + 𝐙𝟑𝐦𝐩𝐞 + 𝐞            

M2: 𝐲 = 𝐗𝐛 + 𝐙𝟏𝐚 + 𝐙𝟐𝐦 + 𝐙𝟑𝐦𝐩𝐞 + 𝐙𝟒𝐬𝐡 + 𝐞      

M3: 𝐲 = 𝐗𝐛 + 𝐙𝟏𝐚 + 𝐙𝟐𝐦 + 𝐙𝟑𝐦𝐩𝐞 + 𝐞;  with 𝜎𝑎𝑚 = 0     

M4: 𝐲 = 𝐗𝐛 + 𝐙𝟏𝐚 + 𝐙𝟐𝐦 + 𝐙𝟑𝐦𝐩𝐞 + 𝐙𝟒𝐬𝐡 + 𝐞;    with 𝜎𝑎𝑚 = 0    

where y is a vector of WW records; b is a vector of the fixed effects of contemporary group (CG), 

where CG was composed to represent animals of the same sex, born and weaned in the same herd, 
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in the same year and part of the same management group within that herd; a, m, and mpe are 

random vectors of additive direct genetic effect, additive maternal genetic effect, and maternal 

permanent environmental effect, respectively; sh is a random vector of SxH interaction effect as 

an additional uncorrelated random effect; X, 𝐙𝟏, 𝐙𝟐, 𝐙𝟑, and 𝐙𝟒 are the incidence matrices for the 

effects in b, a, m, mpe, and sh, respectively; e is the vector of random residuals. Hence, variances 

for the random effects in models M1 and M3 were: 

V(

𝐚
𝐦

𝐦𝐩𝐞
𝐞

) =

(

 
 

𝐀𝜎𝑎
2 𝐀𝜎𝑎𝑚 0 0

𝐀𝜎𝑎𝑚 𝐀𝜎𝑚
2 0 0

0 0 𝐈𝜎𝑚𝑝𝑒
2 0

0 0 0 𝐈𝜎𝑒
2
)

 
 

 

where A and I denote pedigree relationship and identity matrices; under single-step (i.e., ssGBLUP 

and ssGREML), the realized relationship matrix (H) was used instead of A. Models M1 and M2 

considered covariance between direct and maternal effects, whereas M3 and M4 forced this 

covariance to zero.  

Models M2 and M4 had a random SxH interaction effect, so the variance structure for the random 

effects was: 

V(

𝐚
𝐦

𝐦𝐩𝐞
𝐬𝐡
𝐞

) =

(

 
 
 

𝐀𝜎𝑎
2 𝐀𝜎𝑎𝑚 0 0 𝟎

𝐀𝜎𝑎𝑚 𝐀𝜎𝑚
2 0 0 0

0 0 𝐈𝜎𝑚𝑝𝑒
2 0 0

0 0 0 𝐈𝜎𝑠ℎ
2 0

0 0 0 0 𝐈𝜎𝑒
2)

 
 
 

 

Phenotypic variance (𝜎𝑝
2) was computed based on all the variances in each model. For example, in 

M2 and M4: 

𝜎𝑝
2 = 𝜎𝑎

2 + 𝜎𝑚
2 + 𝜎𝑎𝑚 + 𝜎𝑚𝑝𝑒

2 + 𝜎𝑠ℎ
2 + 𝜎𝑒

2 

Therefore, the direct and maternal heritabilities were estimated as: 
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ℎ𝑎
2  = 

𝜎𝑎
2 

𝜎𝑎
2+𝜎𝑚

2 +𝜎𝑎𝑚+𝜎𝑚𝑝𝑒
2 +𝜎𝑠ℎ

2 +𝜎𝑒
2 , 

ℎ𝑚
2  = 

𝜎𝑚
2  

𝜎𝑎
2+𝜎𝑚

2 +𝜎𝑎𝑚+𝜎𝑚𝑝𝑒
2 +𝜎𝑠ℎ

2 +𝜎𝑒
2 

where 𝜎𝑎
2 , 𝜎𝑚

2 , 𝜎𝑎𝑚 , 𝜎𝑚𝑝𝑒
2 , 𝜎𝑠ℎ

2 , and 𝜎𝑒
2  are additive genetic direct variance, maternal genetic 

variance, the covariance between direct and maternal genetic effects, maternal permanent 

environment variance, SxH variance, and residual variance, respectively. The formulas for 

heritability had no 𝜎𝑠ℎ
2  for M1 and M3, and 𝜎𝑎𝑚 was zero for M3 and M4. 

Two methods were used to estimate VC, which included REML and ssGREML. In REML, 

the assumption was a ~ N (0, A𝜎𝑎
2), where A is the pedigree relationship matrix. Conversely, the 

assumption under ssGREML was a ~ N (0, H𝜎𝑎
2), where H is the realized relationship matrix 

combining A with the genomic relationship matrix (G). In the ssGREML algorithm, the inverse of 

H is required (Aguilar et al., 2010): 

𝐇−𝟏 = 𝐀−𝟏 + [
𝟎 𝟎
𝟎 𝐆−𝟏 − 𝐀22

−𝟏] 

VC were estimated using the average information (AI) REML algorithm as implemented 

in AIREMLF90 (Misztal et al., 2014b), which has been modified to incorporate the YAMS 

package (Masuda et al., 2015) for optimized sparse matrix computations. Genomic EBV (GEBV) 

was estimated for all four models using ssGBLUP. One additional model was used as a benchmark, 

mimicking the current procedure in the AAA evaluations. This model was labeled model 5 (M5), 

and was similar to M1, except for the covariance between direct and maternal effects was zeroed 

after the VC estimation. As our objective herein was to compare genomic predictions between the 

models, not between methods, only ssGBLUP evaluations were carried out. Akaike Information 

Criteria (AIC) was used to compare models. In most cases, VC from non-genomic models are used 
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to obtain genomic predictions; however, in this study, GEBV were also computed using VC from 

genomic models. The VC used were averaged across five replicates. Changes in ranking and 

predictions for AI bulls were presented in the EPD scale, which was computed as one-half EBV. 

Ranking changes were calculated by comparing the ranking of animals in M1 to M4 against M5; 

the same was done for investigating EPD changes.  

Validation 

The LR validation method (Legarra and Reverter, 2018) was used to evaluate model 

performance. A total of 23,021 young genotyped animals born in 2019 were selected as validation 

animals and had their phenotypes removed from the evaluation, along with phenotypes for their 

contemporaries. The total number of records in this dataset was 2,451,181. This will be referred to 

as the partial data and will be represented by the subscript p. On the other hand, the entire data will 

be represented by the subscript w and had no phenotype truncation. Under the LR method, the 

accuracy of GEBV was calculated as 𝑎𝑐�̂� =  √
𝑐𝑜𝑣(�̂�𝑤,   �̂�𝑝)

(1−𝐹)�̂�𝑎
2 , where a is the vector of GEBV and �̅� 

is the average inbreeding coefficient for validation animals; �̂�𝑎
2 was model-specific under REML 

or ssGREML. Bias was calculated as the difference between the mean of partial and whole GEBV, 

which is  𝜇𝑤,𝑝 =  �̅̂�𝑝 −  �̅̂�𝑤, with an expected estimator of 0 if unbiased. Dispersion of GEBV was 

assessed as the deviation of the regression coefficient (b1) from 1, where b1 was obtained from the 

regression of �̂�𝑤  on �̂�𝑝 : �̂�𝑤 = b0 + b1�̂�𝑝 . Under the condition of neither over nor under 

dispersion, the expectation of this estimator would be 1.    

 

RESULTS AND DISCUSSION 

Genetic parameter estimation 
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VC can be estimated considering the covariance structure among animals is given by the 

pedigree relationship matrix, the genomic relationship matrix, or by the realized relationship 

matrix. In this study, the first and third assumptions were used to examine the differences in VC 

when the pedigree information is combined with genomic information or not (Table 2). Under 

REML, M1 resulted in larger direct and maternal genetic variances compared to the other 3 

models. In addition, M1 had greater negative covariance between direct and maternal genetic 

effects compared to M2. When SxH interaction was fit into the model (M2), both direct and 

maternal genetic variances were reduced by a ratio of almost 2.3 and 1.6, respectively. However, 

the residual variance was 16% greater in M2 compared to M1. Remarkably, the negative 

covariance between direct and maternal effects became positive when moving from M1 to M2. 

Therefore, adding the SxH interaction effect could mitigate the issue with negative covariance 

between direct and maternal effects.  

Baschnagel et al. (1999); Dodenhoff et al. (1999) also reported larger estimates of direct 

and maternal genetic variance and negative covariance between those effects when the SxH 

interaction effect was not fit in the models. Meyer (1992) outlined that a negative estimate of 

covariance between direct and maternal effects increased both direct and maternal genetic 

variances in crosses between Hereford and Zebu cattle, but the same was not true in Angus because 

the covariance was positive. In the current study, M1 showed negative covariance between direct 

and maternal effects as well as larger estimates of direct and maternal genetic variance among all 

the models. Nonetheless, these estimates decreased when the SxH interaction effect was 

considered, and a positive covariance between direct and maternal effects was observed. Several 

studies with simulated data also reported biased VC without SxH interaction effect in the model 
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(Robinson, 1996; Lee and Pollak, 1997),  supporting the hypothesis of overestimated genetic 

variances in the models without the SxH interaction effect.  

In our study, larger additive direct genetic variances were observed in ssGREML compared 

to REML. In contrast, smaller estimates of maternal genetic variance, SxH variance, and residual 

variances were observed in ssGREML; all with smaller standard errors. The large negative 

covariance between direct and maternal effects was reduced when SxH was added to the model 

(M1 vs. M2) but was still negative.  

When the covariance between direct and maternal effects was ignored in M3 and M4, most 

of the variances decreased, whereas the residual increased for both REML and ssGREML. One 

opposite pattern was observed in the comparison of M2 vs M4 under REML, which showed 

increased estimates of direct and maternal variances, with a decrease in residual variance. This 

current study’s results agree with Meyer (1992) that the overestimation of both direct and maternal 

genetic variances is due to a negative covariance between these effects. Based on the current 

observations, biased direct and maternal genetic variances could be caused by ignoring the 

additional SxH interaction effect and allowing the negative estimation of a covariance component 

between direct and maternal effects. Therefore, if a negative covariance is mitigated by adding the 

SxH interaction effect (M1 to M2), including the covariance may give less overestimated genetic 

variances. AIC values were calculated for all models to determine the best model fitting the data 

(Table 2). As the amount of data was different for REML and ssGREML, AIC was not used for 

comparisons across the methods but only for the comparison of models within each method. In the 

results of both REML and ssGREML, M2 and M4 showed lower AIC values than models without 

SxH interaction effect (M1 and M3) although the differences were not very large.  
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Direct and maternal heritabilities, together with the proportion of the phenotypic variance 

explained by the SxH interaction effect, are shown in Fig. 1 for REML (a) and ssGREML (b). 

Overall estimates of direct heritability from ssGREML across all models were larger than the ones 

from REML. When the SxH interaction effect was considered under REML, direct heritabilities 

were reduced by a factor of 2.2 from M1 to M2, and by 1.7 from M3 to M4. The reduction was 

also observed under ssGREML but to a lesser extent (i.e., a factor of 1.5 and 1.25, respectively). 

The rationale for a larger reduction in the direct heritability when SxH interaction was added under 

REML is the decrease in direct variance combined with larger SxH interaction and residual 

variances and a larger phenotypic variance compared to ssGREML.  

Overall, the estimation of VC with genomic information is affected by several factors: (1) 

genotyping strategy, (2) presence of selection, (3) parameters for the construction of G, and (4) 

proportion of genotyped animals (Jensen, 2016; Cesarani et al., 2019; Wang et al., 2020). Because 

genomic selection has been applied to many livestock species, estimating unbiased VC using A 

becomes more challenging as it does not account for the impact of genomic selection (Jensen, 

2016). In the AAA, the initial genotyping strategy included donor dams and proven sires because 

of the high costs; more recently, about half of the newly registered animals are genotyped each 

year, so the process is less selective. Wang et al. (2020) reported that VC estimated using H as the 

covariance structure among animals are sensitive to the genotyping strategy and proportion of 

genotyping. They emphasized that the strong selective genotyping and the high proportion of 

genotyped animals could produce overestimated variances; however, the level of overestimation 

observed in their study has not been confirmed.  

In this study, genotyped animals were sampled that had phenotypes and at least one 

progeny either as a sire or dam, but animals were not filtered based on their phenotypic values. 
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This sampling strategy was expected to reduce the selective genotyping effect while meeting the 

computing limitation of ssGREML. However, as the AAA breeders practiced selective genotyping 

at the very early stages of genomic selection and still even less selective genotyping existed, those 

genotyped animals generally showed heavier adjusted WW than the non-genotyped animals (Fig. 

2, t-value = 67.445 with p-value < 2.2e-16). This could be one possible reason why the direct 

heritability by ssGREML was larger than the estimation by REML among all the models (Fig. 1). 

Another possible reason could be the small proportion of genotyped animals. In the current study, 

the proportion of genotyping animals for each replicate is about ~8% which could produce a 

similar estimate or a modest overestimation in the ssGREML results (Wang et al., 2020).  

Forni et al. (2011) reported similar variance component estimates between REML and 

ssGREML, but smaller standard errors in ssGREML as it could use more data than REML. 

Moreover, adding genomic information could help to solve possible issues caused by missing or 

incorrect pedigree information, frequent in many animal species (Banos et al., 2001). Using both 

genotypes and pedigree for estimating VC might be useful for populations with a high error rate 

in the pedigree. Cesarani et al. (2019) carried out a simulation study to compare VC using REML, 

GREML, and ssGREML under different genotyping strategies. Those authors reported biased VC 

under REML with a small dataset, but no bias under REML and ssGREML with larger datasets. 

The dataset used in our study was large enough to estimate VC (Table 1), so the different estimates 

for the direct variance under REML and ssGREML may not be due to the data size.  

This is the first study that has estimated VC for WW in the presence of SxH interaction 

using ssGREML. Therefore, the basis for the differences between estimates under REML and 

ssGREML is not completely clear. Aldridge et al. (2020) claimed H could better separate the 

additive direct and permanent environmental effects. If the same theory can be applied to the 



 

 155 

additive genetic effect and the additionally random SxH interaction effect, it could be hypothesized 

that the additive direct variance component estimated using H is more accurate than A because H 

reflects the realized relationships among animals rather than the expected (Legarra, 2016). 

In the US dairy cattle evaluations, reduced weight for multiple daughters of a given bull in 

the same herd is used by adjusting for SxH interaction since 1967. As the SxH variance decreased 

from 14% (1967) to 10% (1997), the direct heritability increased from 25% to 30% in the same 

period (Van Tassell et al., 1997). Additionally, Wiggans et al. (2000) reported that SxH variance 

in Jersey and Brown Swiss reduced to 8% when heritability increased from 30% to 35% in 

November of 2000. Those findings are supported by the current results. When SxH variance was 

5% in REML for both M2 and M4, direct heritability was 0.15 and 0.16, respectively. On the other 

hand, when SxH variance decreased to 0.03 for both M2 and M4 under ssGREML, direct 

heritability increased to 0.26 and 0.24, respectively (Fig. 1). Lee and Pollak (1997) scrutinized the 

sire x year interaction effect and conjectured that the effect might be a true effect due to the 

different environmental factors associated with a different year. Based on their speculation, SxH 

interaction might also be a true effect due to the different environmental factors related to different 

herds. Therefore, improving the environment in specific herds could introduce heterogeneous 

variance among herds, which is a possible factor to generate SxH variance. 

Genetic trends and genomic prediction 

Genetic trends from 1972 to 2019 for all the five models are shown in Fig. 3. The genetic 

trends were measured as the average EPDs by year of birth. Overall, results indicate direct genetic 

trends have been increasing over time. The result for the direct effect (Fig. 3a) shows M2 and M4 

have lower genetic trends than M1, M3, and M5. Furthermore, M1 and M5 showed almost 

equivalent genetic trends and were a bit greater than M3. In Fig. 3b, opposite patterns were 
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observed for maternal effects, in which M2 and M4 have greater genetic trends than M1, M3, and 

M5. Particularly, M1 showed the lowest maternal genetic trend among all the models. Like the 

results of the direct genetic trend, consistent increases were observed since the 1980s; however, 

the slopes were not very steep after the 2010s, especially for the M1. These results suggest adding 

SxH interaction in the evaluation model increases maternal genetic trends and reduces the direct 

genetic trends, which could be overestimated without SxH. Legarra and Reverter (2017) outlined 

that bias was expected to increase with greater genetic gains. Genetic gain is defined as the change 

in the average breeding value of a population over a period, and the rate of genetic gain per year 

could be expressed as a genetic trend. These current results show that the models with the greatest 

bias for the direct effect (Table 3) have larger trends. In Fig. 3, direct genetic trends of M1, M3, 

and M5 are larger than M2 and M4. Also, greater bias is observed (Table 3) for those M1, M3, and 

M5 than M2 and M4 when both of VarREML and VarssGREML were used.  

In beef cattle and many other species, the predictive ability has been used as a tool for 

predicting future phenotypes (progeny performance), which is calculated as the correlation 

between (G)EBV and phenotypes adjusted for fixed effects (Legarra et al., 2008; Lourenco et al., 

2015). However, this method was difficult to apply for complex models such as binary traits, 

maternal effect, and multiple random effect models. Therefore, in the current study, the LR method 

was used to calculate both direct and maternal prediction estimators. As the LR method was 

recently developed, no studies have reported its performance on models with a maternal effect, 

although some studies validated this method with several simulations and real datasets (Silva et 

al., 2019; Macedo et al., 2020; Bermann et al., 2021). The estimators of the LR method are shown 

in Table 3. When VarREML was used, M2 and M4 showed greater accuracy for the direct effect 

than the other models, as well as relatively less bias. Dispersion was almost equivalent for all the 
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models. Similar behavior was observed when using VarssGREML. The increase in accuracy for the 

direct effect when adding SxH interaction in the model (M1 vs. M2) was around 24% for VarREML 

and 12% for VarssGREML . Additionally, bias decreased by approximately 30% and 15% for 

VarREML and VarREML, respectively.  

The accuracy of M2 and M4 for the maternal effect was also greater than M1 and M5 for 

both VC scenarios, whereas M3 showed the greatest accuracy among all the models although the 

differences compared to M2 and M4 were not very large. The largest bias was observed in M1 for 

both VC scenarios. On the other hand, other models showed very similar biases when VarREML 

was used, but those biases increased when VarssGREML was used, especially in M2 and M4. No 

large differences in dispersion were seen between the models and VC methods.  

In general, lower accuracies and greater biases were observed when VarssGREML was used. 

In the LR method, the dispersion estimator may indicate overdispersion of GEBV (if b1 < 1) or 

under-dispersion of GEBV (b1 > 1). The b1 across five models did not differ either with VarREML 

or VarssGREML. Remarkably, M2 and M4 had the greatest accuracy under the VarREML scenario; 

however, those accuracies dropped about 16.8% and 12%, respectively, when VarssGREML was 

used. Such a large reduction was not observed in other models. This pattern was also observed for 

the bias. When VarssGREML was used for M2 and M4, the bias increased up to 21.4% and 17.2%, 

respectively. However, these observed increases were to a very small extent for M1, M3, and M5 

(4.3~5.3%). Based on our findings, fitting SxH interaction in the model (M2 and M4) resulted in 

more accurate and less biased breeding values for the validation group, regardless of the choice of 

the covariance structure among the animals (A vs. H) for estimating VC. However, it could also 

be speculated that the use of VarssGREML  for genomic prediction, especially with the SxH 

interaction effect, could decrease the accuracy and increase the bias compared to the results with 
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VarREML because of 𝜎𝑎
2, which is part of the denominator of the accuracy formula, was larger when 

using genomic information, therefore, reducing the accuracy.    

Accuracy, bias, and dispersion are the main features to examine the performance of 

genomic predictions. These three components could reflect the predictability of response to 

selection, correctness of model, use of inappropriate VC, and several unaccounted effects in the 

models (Reverter et al., 1994; Legarra and Reverter, 2018; Macedo et al., 2020). Macedo et al. 

(2020) applied the LR method to examine the possible bias and lower accuracy with the use of 

wrong heritability and unaccounted environmental effects. In that study, they concluded that if the 

incorrect genetic model was used for genomic evaluations, the LR method could estimate the bias 

when the model was not severely misspecified. The current results for the models without SxH 

interaction effect (M1, M3, and M5) support that discovery. These models showed a large bias for 

direct GEBV and some level of bias for maternal GEBV. Henderson (1975) reported that the use 

of an incorrect variance and covariance matrix could result in greater prediction error variance 

(PEV) for the solutions. Schaeffer (1984) extended that theory and concluded that the increase in 

PEV is directly related to the differences between true and estimated correlations. Therefore, we 

would argue that M2 and M4 had more appropriate variance components because of the SxH 

interaction effect. However, the large bias still observed in all models may be due to the effects 

that could not be accounted for in the models, affecting the estimation of GEBV. Wang et al. 

(2020) reported that the inflation of (G)EBV could reflect the bias in variance component 

estimation. However, the inflation of (G)EBV (i.e., dispersion) was very consistent among models 

and VC methods. Therefore, based on our results and reports from the literature, we could 

conjecture that M1, M3, and M5 used inappropriate VC (estimates without SxH effect) and did 

not account for the hidden trend in the data (not fitting the SxH effect). Additionally, the use of 
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negative covariance between direct and maternal effects might result in biased estimates, 

especially for the maternal GEBV (M1 vs. M5).    

Wang et al. (2020) tested genomic predictions using VC estimated from A and H for 

commercial and simulated datasets. These results agree with the results from the current study in 

the sense that accuracies of GEBV were greater when using VC estimated from A than from H; 

however, no clear explanation was provided in the previous study. One possible reason could be 

selective genotyping. In general, accuracy is the correlation between true breeding value (TBV) 

and (G)EBV or a function of (G)EBV
partial

 and (G)EBV
whole

 in the LR method. Therefore, greater 

accuracy reflects the greater relatedness between TBV and (G)EBV or (G)EBV
partial

 and 

(G)EBV
whole

. If the VC used for genomic predictions were estimated with only selected genotyped 

animals, the relatedness between true and estimated BV would be more distant than if true VC 

were used. In this sense, it could be recommended to use VC from A, especially under the selective 

genotyping strategy; although more precisely estimated VC are expected from H as it has a more 

accurate relationship structure among the animals. 

One finding that deserves a deeper investigation is the large increase in accuracy and 

decrease in bias from VarssGREML to VarREML when the SxH interaction effect was added (M2 and 

M4 in Table 3). Further research is needed to understand the changes in predictions and VC when 

an additional random sire interaction effect is fitted in the model.  

Changes in EPD and ranking of AI sires 

The changes in the rank of AI sires among the models are illustrated in Fig. 4. The 

horizontal dotted lines were drawn to specify each change on +50, +100, -50, 0, and -100 scales. 

G1 to G4 represents the animals having no changes (G1), changes within the interval from -50 to 

+50 (G2), changes within -50 to -100 or within +50 to +100 (G3), changes more than ±100 (G4). 
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Overall, considerable ranking changes were observed, especially for (b) M2 vs. M5 and (d) M4 

vs. M5 compared to (a) M1 vs. M5 and (c) M3 vs. M5. Only a few AI sires had the same ranking 

among comparisons (82, 17, 81, 16 for (a) to (d), respectively). Because the ranking is an indicator 

of the genetic merit of the bulls in the population, even small changes could have a large impact, 

affecting the breeding decisions. Results of the change on direct EPDs of 1,977 AI sires are 

described in Fig. 5. Fig. 5a shows all the EPDs changed randomly within a very small range (from 

-2 to 4) regardless of the ranks of AI sires. On the contrary, Fig. 5b-d show changes that agree with 

the changes in the rankings of AI sires. Interestingly, the top AI sires had a greater reduction in 

EPDs as indicated by the greater negative values on the left-hand side of each plot (Fig. 5b-d). 

Additionally, a few bottom sires also had greater changes as observed on the right-hand side of the 

plots (Fig. 5b-d). Although similar patterns are observed in Fig. 5b-d, the range of EPD changes 

in Fig. 5c is smaller than that of Fig. 5b and 5d. These results imply adding the SxH interaction 

effect in the evaluation model could generate large changes in rank and direct EPDs on AI sires 

although it showed unbiased VC estimation along with a better prediction model. 

The results of ranking changes of maternal EPD for AI sires among the models are in Fig. 

6. The horizontal dotted lines and G1 to G4 have the same description as in Fig. 4. Similar patterns 

are detected in Fig. 4b and 4d and Fig. 6b and 6d, showing large ranking changes. Different from 

Fig. 4a, Fig. 6a also showed very large changes in rankings, implying the negative covariance 

between direct and maternal effects may have been the reason for such changes in the maternal 

effect. Fig. 7 shows changes in maternal EPDs for AI sires. Most of the AI sires had reduced 

maternal EPDs (Fig. 7a). Many sires had larger maternal EPDs in M2 and M4 than in M5 (Fig. 7b 

and Fig. 7d, respectively), in addition, the bottom sires had larger maternal EPDs in these models. 
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A similar pattern was observed in Fig. 7c, but a lot of sires had reduced maternal EPDs in M3 with 

a relatively small magnitude. 

 

CONCLUSIONS 

The inclusion of the SxH interaction effect in the model for weaning weight reduces the 

direct and maternal genetic variances and results in a positive covariance between direct and 

maternal effects when genomic information is not used. With genomics, the reduction is less, and 

the covariance is still negative. Using VC without genomic information may result in greater LR 

accuracy because of a lower additive genetic variance, with a similar level of dispersion. Adding 

the SxH interaction effect showed the best estimates of accuracy and bias for the direct effect but 

not for the maternal effect. Larger additive genetic variance with genomic information may be an 

artifact of selective genotyping. Fitting the SxH interaction effect in the model is recommended; 

however, further research is needed to investigate the improvement of prediction accuracy of 

maternal effects when SxH interaction is considered. Additionally, breeders should expect large 

changes in EPDs and ranking of animals, especially at the tails of the distributions, if this extra 

effect were fit into the genetic evaluation model. Before such changes are implemented in practice, 

more research is needed to ensure the resulting breeding values are better. The results of this study 

justify further investigation in this area for American Angus.  
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TABLES 

Table A.1. General statistics for all the replicates 

 
Replicate1 Replicate2 Replicate3 Replicate4 Replicate5 

No. of animals 112,677 105,909 102,433 109,260 102,183 

No. of herds 88 93 84 90 97 

No. of sires 3,970 4,553 4,262 4,379 4,157 

No. of S x H 5,723 6,128 5,668 6,286 5,808 

WW 

Min., lbs 211 193 262 246 196 

Mean., lbs 602.6 607.2 602.4 600 604 

Max., lbs 1044 1113 1032 1044 1014 

SD., lbs 95.43 103.83 96.20 90.20 90.93 
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Table A.2. Estimated variance component for the four investigated models using REML and ssGREML method 

 
Model3 

𝜎𝑎
2 𝜎𝑚

2  𝜎𝑚𝑝𝑒
2  𝜎𝑠ℎ

2  𝜎𝑒
2 𝜎𝑎𝑚 

Cor 

(a,m) 
𝜎𝑝

2 
AIC 

REML1 M1 
1069.60 

(47.12) 

415.66 

(43.31) 

372.08 

(27.13) 
0 

1623.96 

(63.26) 

-251.76 

(35.35) 

-0.38 

(0.06) 

3229.54 

(94.64) 

802049 

(37686.16) 

 M2 
467.63 

(40.63) 

266.11 

(45.67) 

366.95 

(27.00) 

150.90 

(21.16) 

1889.96 

(79.97) 

42.34 

(26.95) 

0.12 

(0.08) 

3183.89 

(94.35) 

801606 

(37619.05) 

 M3 
858.01 

(16.89) 

275.57 

(54.57) 

359.78 

(27.69) 
0 

1730.24 

(61.11) 
0 0 

3223.60 

(98.88) 

802150 

(37669.09) 

 M4 
517.79 

(20.99) 

290.99 

(55.71) 

368.25 

(27.13) 

143.77 

(17.75) 

1865.80 

(68.78) 
0 0 

3186.59 

(95.41) 

801607 

(37620.00) 

ssGREML2 M1 
1185.56 

(35.95) 

371.13 

(30.45) 

341.52 

(25.60) 
0 

1517.72 

(52.46) 

-263.24 

(38.19) 

-0.40 

(0.06) 

3152.70 

(85.16) 

829542 

(37475.95) 

 M2 
803.34 

(47.82) 

255.05 

(26.92) 

335.62 

(25.75) 

100.11 

(19.86) 

1672.94 

(72.20) 

-55.09 

(38.65) 

-0.12 

(0.08) 

3111.96 

(81.46) 

829174 

(37416.09) 

 M3 
928.88 

(19.57) 

236.99 

(39.32) 

326.15 

(26.40) 
0 

1643.42 

(55.07) 
0 0 

3135.44 

(89.08) 

829663 

(37452.34) 

 M4 
736.42 

(42.19) 

226.54 

(38.84) 

333.03 

(26.12) 

106.86 

(17.44) 

1708.12 

(61.31) 
0 0 

3110.97 

(89.67) 

829178 

(37413.24) 
*Standard deviation based on five replicates is in parenthesis 

REML1: restricted maximum likelihood method using only pedigree and phenotype 

ssGREML2: single-step genomic restricted maximum likelihood method using pedigree, phenotype, and genotype 

Model3: M1, without SxH interaction effect and with covariance between direct and maternal effect (𝜎𝑎𝑚) ≠ 0; M2, with SxH interaction effect and 𝜎𝑎𝑚 ≠ 0; 

M3, without SxH interaction effect and with 𝜎𝑎𝑚 = 0; M4, with SxH interaction effect and 𝜎𝑎𝑚 = 0 
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Table A.3. Accuracy, bias, and dispersion using the LR method (ssGBLUP) 

 Model3 Accuracy Bias Dispersion estimator (b1) 

  VarREML
1 VarssGREML

2 VarREML VarssGREML VarREML VarssGREML 

Direct M1 0.72 0.69 -3.60 -3.80 1.00 0.99 

M2 0.95 0.79 -2.53 -3.22 1.01 1.00 

M3 0.76 0.75 -3.26 -3.41 1.00 1.00 

M4 0.92 0.81 -2.65 -3.09 1.01 1.00 

M5 0.71 0.68 -3.53 -3.71 1.00 1.00 

Maternal M1 0.59 0.62 0.55 0.58 0.97 0.97 

M2 0.65 0.67 -0.06 0.24 0.98 0.98 

M3 0.66 0.70 0.06 0.08 0.98 0.98 

M4 0.63 0.69 0.07 0.11 0.98 0.98 

M5 0.59 0.61 0.04 0.06 0.97 0.97 

VarREML
1: ssGBLUP using the variance component estimated from REML 

VarssGREML
2: ssGBLUP using the variance component estimated from ssGREML 

Model3: M1, without SxH interaction effect and with covariance between direct and maternal effect (𝜎𝑎𝑚) ≠ 0; 

M2, with SxH interaction effect and 𝜎𝑎𝑚 ≠ 0; M3, without SxH interaction effect and with 𝜎𝑎𝑚 = 0; M4, with 

SxH interaction effect and 𝜎𝑎𝑚 = 0; M5, equivalent to M1, except for the 𝜎𝑎𝑚 = 0 after variance component 

estimation 
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Figure A.1. Proportion of variance explained by additive direct, maternal, and sire by herd 

interaction effect using REML and ssGREML 
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Figure A.2. Distribution of adjusted WW for genotyped and non-genotyped animals used for 

ssGREML. Vertical lines are indicating the average adjusted weaning weight for genotyped (geno; 

X̅ = 653.30) and non-genotyped (non_geno; X̅ = 601.43) animals 
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Figure A.3. Genetic trends for additive direct (a) and maternal (b) effects 
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Figure A.4. Changes in the ranking of 1,977 AI sires (direct effect) 
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Figure A.5. Changes of EPDs for 1,977 AI sires (direct effect) 
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Figure A.6. Changes in the ranking of EPDs for 1,977 AI sires (maternal effect) 
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Figure A.7. Changes of EPDs for 1,977 AI sires (maternal effect) 

 


