
Realization of Inter-Model Connections: Linking
Requirements and Computer-Aided Design

by

Cheng Chen

(Under the Direction of BeshoyMorkos)

Abstract

Managing rapid engineering changes in requirements and complex computer-aided design (CAD)

models continue to increase the risk of industrial project failures in smart manufacturing. As products

evolve over time, tracking design changes across different domains has become increasingly difficult to

operate. Mismanagement incidents can derail industrial product development and result in financial

losses. Existing practices often lack connections to cross-domain analysis and rely on domain experts

to interpret engineering change propagation. To reduce the burden of this taxing process, this study

proposes computational tools as digital threads that assist engineers in understanding the correlations of

change propagation. The proposed framework investigates three components of analyzing engineering

changes within and across domains. Particularly, the work pertains to (1) a topic modeling approach

to narrow down engineering changes within requirements topics, (2) a framework for recognizing

mechanical designs based on point clouds representations, and (3) an approach to incorporating

joint embedding to learn the correlation between requirements and CAD images. The study makes

use of several datasets, including three different heterogeneous industrial requirements documents,

ShapeNetCore, and synthetic image datasets. Using this framework, engineers can generate interpretable

results and determine the correlations of text-to-text and text-to-images for complex systems. The

outcome of this study can contribute to building digital threads and assisting designers tomake informed



engineering decisions, track change propagation within and across domains, and reduce unanticipated

engineering changes.
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Chapter 1

Introduction

Solving engineering’s grand challenges and achieving sustainable

development goals requires a broad spectrum of fundamental knowledge

and interdisciplinary understanding to develop innovative solutions for

industry 4.0. The engineering skills and knowledge necessary to succeed in

the manufacturing job market of the future will continuously evolve as new

knowledge is continually generated. The development of digital threads has

emerged as a compelling topic for industries and researchers to represent

information flow within complex systems. Thus, it has become more critical

than ever before to transform today’s design and manufacturing systems from

manufacturing physical products to relying on digital threads, which has led

to this study.

1.1 Motivation

Customer requirements management determines the success of today’s

industrial projects. Mismanaging requirements can cause more than half of

the project failures and financial lost (PMI, 2014). Requirements management

1



1 Unstructured

requirements are presented

as text-heavy natural

language data in the form

of MSWord documents

or Excel spreadsheets.

It can be challenging

for system engineers

to handle ambiguous

requirements when

analyzing unstructured

textual data.

is a formal design process starting with customers’ needs (CNs) and outputs

a structured engineering design document. At every stage of the product

lifecycle management process, requirements management plays a crucial role

in addressing, adjusting, and verifying stakeholder expectations.

Requirement Management

Requirement management is a process of assisting designers in

documenting, analyzing, and tracking information throughout all product

lifecycle stages. As requirements play a vital role in product evolution,

organizations and industries across all fields experienced project failures

and wasted program dollars due to insufficient resource allocation for

requirement management (PMI, 2014). Moreover, unexpected engineering

changes also contribute to projectmanagement failures (B.Morkos et al., 2012).

Researchers have a broad understanding of requirementsmanagement and the

type of representations and reasoning involved. In this chapter, requirements

management refers to utilization of numerical models to identify and analyze

similar design criteria based on latent topics. Manual entry into requirements

management tools and the traceability of requirement changes still need to be

improved for current industrial practice (Kropsu-Vehkapera et al., 2009).

The ability to establish requirements correlations and track engineering

changes throughout the product life cycle is necessary to the success of a

complex design. As engineering design and manufacturing systems become

increasingly sophisticated, more unstructured requirements documents are

collected through the iterative design process (L. Wang et al., 2021).

Unstructured requirements 1 often contain domain-specific knowledge

and concise information (C. Chen et al., 2021), making it difficult to

2



2 Model-Based Enterprise

andModel-Based

Engineering are

indistinguishable terms. For

clarity, MBE is defined as

follows (Lubell et al., 2012):

• Model-Based Enterprise

refers to an

organization that

uses model-based

engineering.

• Model-Based

Engineering is a

strategy for product

development,

manufacturing, and

lifecycle while using

a network approach

(e.g., digital threads)

to connect

engineering activity.

understand and manage engineering changes. Extracting and analyzing useful

design information from large unstructured data requires extensive manual

intervention and communication, resulting in a human task that is taxing

and prone to errors (Hein et al., 2018; B. Morkos et al., 2012). To address

these challenges, this study examines several topic modeling approaches for

generalizing requirements documents into topics that will assist engineers in

understanding the structure of complex system with model-based systems

engineering.

Model-Based Engineering

As artificial intelligence advances manufacturing corporations, this

evolution redefines both industrial business model innovation and reforms

the manufacturing sector by introducing more data-driven decision making

for each step of the manufacturing process. One of the most promising

approaches, model-based enterprise (MBE)1 , has shown its potential to drive

smart manufacturing by linking all sources of digital data through the product

lifecycle (Lubell et al., 2012). The global net value of the MBE market has

grown from $7.89 billion in 2017 (“Model Based Enterprise Report 2019

- Global Market Outlook 2017-2026 - ResearchAndMarkets.com”, 2019) to

$9.94 billion in 2019 (Global Model Based Enterprise Market - Industry

Analysis and Forecast (2020-2027) - By Deployment Type, Offering, Industry

and Region. 2020), and the forecast for the future market performance

is set at about $44 billion by 2027. Beyond upgrading the manufacturing

equipment, companies have sought a digital model-based network for higher

production efficiency and a profitable return on investment. Through

machine learning techniques, building the next generation of manufacturing

3



3 The concept of digital

threads, as shown below,

includes link-data

methods and standard-

based approaches that

allow heterogeneous

data from a variety of

phases and systems to be

compared, synchronized,

and repaired across the

entire product lifecycle.

(T. D. Hedberg et al., 2020)

networkswill provide seamless product record-tracking and tracing capabilities

to all parties, from customers to government regulatory compliance agents

(Bajaj and Hedberg Jr, 2018; Davis et al., 2012).

The advances and implementation of MBE in engineering enterprises

present an opportunity to understand an area of design practice that has

been rarely explored. The MBE presents a unique opportunity to link all

digital data sources throughout the product lifecycle, allowing data to bemore

adaptable to change even as manufacturing productivity increases to levels

previouslyunthinkable. Developing such a systemwould allow for the tracking

of design changes both upstream and downstream in requirements analysis

and computer-aided design (CAD). For instance, changes from requirements

can be subsequently realized in the CAD domain, and vice versa. Further,

consider how requirements in CAD may be realized in the requirement

domain. This is particularly important as requirements often serve as the

contractual agreement between parties, and thus all changes and decisions

need to align with that of the requirements. However, this is difficult to

perform as relationships between requirements and CAD are not formalized

nor fully realized. Often, it is dependent on experts to manually determine

the relationship. If this was automated, engineers and designers could make

informed decisions regarding requirements and CAD.

Note that the scope of this paper is set to develop the framework to

perform a future system within MBE. In this paper, we therefore present a

framework for research that will explore the links between requirements and

CAD. In the existence of a multilevel information framework of MBE, digital

threads 3 can be developed to synchronize data throughout the entire product

lifecycle (T. D.Hedberg et al., 2020). During the conceptual design phase (e.g.,

4



requirement management), design information, such as requirement changes,

can be classified into four categories and visualization can be performed to

determine the different change patterns over time (Giffin et al., 2009) with

the likelihood of change propagations (Clarkson et al., 2004). Researchers

can further predict the higher-order change propagations for a complex system

(B. Morkos et al., 2012). Further, requirements can be also analyzed by lexical,

syntactic, and structure analysis, and this approachhas the potential to connect

with CAD (Z. Y. Chen et al., 2007). For themechanical modeling (e.g., CAD),

most of the research focused on the applications related to graphics, analysis

of components, computer numerical control, and manufacturing processes

(Groover andZimmers, 1983). Prior to this study, little research has been able to

establish the correlation between requirements and CADmodels. By utilizing

machine learning techniques, engineering changes within requirements and

CAD analysis can be performed coherently.

Advances in smart factories, coupled with the disruptions of supply

chains, have created a turning point in manufacturing industries. With the

increasing application ofmachine learning in design automation, model-based

engineering (MBE) has become the new norm for handling manufacturing

data. Despite the improvement in manufacturing resilience, we have not

fully exploited semi-structured or unstructured data for design improvement.

How to process multi-source data to aid knowledge acquisition during

the design process has received attention in recent years from other

industry environments, such as the process industry (Mao et al., 2019), the

manufacturing execution system (Y. Wang et al., 2018), and the cyber-physical

system (Cheng et al., 2018). In response to this information gap, designing a

complex system would require the development of new tools and processes

5



(Castet, 2017). Thismeans that domain experts should actively develop various

design techniques to resolve dynamic engineering change management issues.

Mechanical Designs

Using computer vision to recognize different objects and shapes has

become increasingly important in the field of manufacturing (Lyu et al., 2021),

autonomous driving (Kidono et al., 2011), and augmented reality (Alexiou

et al., 2017). To overcome certain technological limitations, many industries

have shifted from using 2D images to capturing 3D geospatial data. As

more data is being collected by various types of sensors, such as LiDAR, the

challenge of recognizing objects from point clouds has gained more attention

in recent years. In addition, the classification of targeted objects in a real-

world environmentwould require amore robust and computationally efficient

model (Uy et al., 2019). In a manufacturing environment, segmenting a

point cloud into mechanical components or subassemblies can assist designers

in identifying objects as well as in detecting potential product defects in

advanced manufacturing. However, few approaches have implemented point

clouds into design manufacturing applications due to the limited availability

of benchmark datasets and the lack of algorithmic development. As a

result of the implementation of point clouds in design and manufacturing,

computer vision systems are becoming increasingly capable of recognizing

mechanical designs, geometric characteristics, and mechanical subassemblies

automatically. A more robust design tool will allow engineers to make better

decisions and achieve lean manufacturing by aiding engineering changes.

6



1.2 Challenges in Model-Based Enterprise

Analyzing data from a variety of sources presents its own set of challenges.

First, due to confidentiality, few design documents are publicly available

or can be used for benchmark datasets. Second, extracting meaningful

information from unstructured datasets is difficult. Unstructured data in

engineering design often takes the form of textual information, such as design

discourse (Gyory et al., 2020) or customer feedback (Song et al., 2020). Many

natural language processing techniques are often applied to retrieve useful

information from domain-specific data. In requirement management (RM),

the corresponding image datasets are rarely documented. To make up for the

missing information, image scraping is used to collect online images based

on the given requirements. With the combination of textual and visual

information, our study presents a framework for bridging the information gap

between unstructured requirements and synthetic image datasets.

Despite the potential advantages of promising technologies (e.g., MBE),

some barriers may hinder the transition (Nathan Hartman, 2018). One of the

challenges is to add a decision support layer in a local supply chain network

(Davis et al., 2012). Managing an entire information system requires a more

efficient business and operating model, which enables the model-based system

to manage automation, optimization, and decision-making across different

manufacturing infrastructures. Second, every organization employs various

product lifecycle management (PLM) tools/software to build a fully designed

model, and few companies can afford such integrated software shared with

their suppliers. In response, MBE software (e.g., Syndeia2) integrates different

domain platforms with various standard-based data, using digital threads.

7



4 http://intercax.com/

products/syndeia/

The goals of Model-Based Engineering are data repair, synchronization, and

sharing; digital threads connect the information flow among all phases of

the product lifecycle (T. D. Hedberg et al., 2020). Furthermore, many

leaders of major manufacturing sectors accept the MBE concept and envision

that MBE can reduce the cost of the technology management process by

50% and reduce time to market by 45% (Bajaj et al., 2016; T. Hedberg et

al., 2016). In PLM, data management still lacks detailed techniques and

formal studies to support decision-making (J. Li et al., 2015). Therefore, this

paper proposes a fundamental framework for understanding the relationship

between requirement management and CADmodeling.

Research Challenges of Generating Digital Threads

Every design journey begins with requirements eliciting, analyzing, and

specifying design information to satisfy the needs of stakeholders. Especially

for complex systems, the large amount of engineering design documentation

collected and generated for a product can make it difficult to navigate

and retrieve specific correlations among the requirements (Saaksvuori and

Immonen, 2008). For creating digital threads, many NLP tools are employed

to tackle the challenging issues within design documents (Ball and Lewis,

2020; Gyory et al., 2021; Joung and Kim, 2021; Saidani et al., 2021); however,

requirements documents present their own challenges when it comes to

obtaining information such as:

• Discovering, analyzing, and representing domain-specific design topics

from a small collection of requirements documents

• The extraction of useful information from sparse and high-dimensional

textual data

8
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Depending on the requirement style, both functional and nonfunctional

requirements may contain various frequency distribution of domain-specific

terms. Current methods, however, are not adequate to capture the semantic

relationship among words with low lexical frequencies. As most requirements

contain few words, explicitly implementing NLP models may achieve limited

results. Therefore, the need for more robust models to manage requirements

in industrial applications has become increasingly important.

Challenges in Multi-source Data

Exploiting collected data from multiple sources is a challenging task that

must be accomplished to satisfy the requirements and ensure the success

of industrial projects. Various industries may utilize different formats or

standards for production and design. Often, manufacturers are unaware of

how to obtain and store design information (J. Li et al., 2015). Among the

stored information, many data-driven tools require the availability of large and

structured datasets. It is still difficult to fully exploit unstructured or semi-

structured data, including text, images, and video. To integrate unstructured

data into current PLM systems, more data-driven approaches should be

developed to provide cost-effective solutions.

Data Challenges in PLM

Several major challenges of implementing PLM (e.g., product design,

manufacturing, and customer service) in manufacturing sectors remain. The

PLM front-end is a centralized network where vendors manage all product

information. Although data collection has grown rapidly, the “Big Data”

concept and technique still have limited application in the PLM domain (J. Li

9



et al., 2015). Due to the difficulty of integrating, sharing, and storing distinct

types of data, current solutions rely on software for managing, analyzing, and

simulating data. For instance, image files are often included with technical

notes in a folder tree sent to suppliers (David and Rowe, 2016). Often,

requirements exist as interface layers in PLM software, and it may be difficult

to provide designers with direct visualization.

1.3 Research Objectives and Deliverables

Themotivation for this research can be categorized into four components,

as shown in Table 1.1. Each research objective is accompanied by a high-level

summary of the outcomes. Deliverables contain existing and ongoing papers

in the form of conference or journal proceedings.

The proposed study consists of two major stages: a requirement

management study and a CAD study. We aim to answer two research

questions for a given product: how to categorize requirement data into

topics and how to associate geometric models (e.g., CAD) with requirement

domains. First, an in-depth study is presented inFigure 1.1, which illustrates the

combined knowledge representation between requirements and CAD, where

digital threads correlate different design information throughout all phases of

the product lifecycle. For instance, the requirements might not necessarily

describe all the design details for CAD, and CAD component designs cannot

directly translate the design specifications back to requirements. Accordingly,

if requirement sentences and CAD data can be learned jointly, we hypothesize

that by converting natural language requirements into subspaces, we can

categorize requirements based on their semantic structures. Second, current

literature lacks a descriptive method to define the connectivity among CAD

10



Objectives Outcomes Deliverable Dissertation
Investigate on how to
implement topic
modeling on
requirements
documents

Estimate the
appropriate
number of topics

Conference
Paper (C. Chen
et al., 2021)

Chapter 3,
Section 3.2

Explore different
types of NLPmodel
combinations for
representing
requirements
documents

Analyze the
optimal
combination of
models for each
industrial
requirements
documents

Journal Paper Chapter 3,
Section 3.3

Design a framework
to cluster CAD
components into
mechanical
subassembly

Develop and
evaluate a proposed
neural network
model to classify
point cloud data
into categories

Conference
Paper
(Mohammadi
et al., 2022)

Chapter 3,
Section 3.4

Implement a joint
embedding model to
learn the correlation
between
requirements and
mechanical images

Compare and
investigate the
improved
performance for a
fine-tune model

Journal Paper Chapter 3,
Section 3.5

Table 1.1: Research Objectives, Outcome, and Deliverables

components. However, by learning a joint representation, CAD parts can be

partitioned into separate groups while maintaining functional reasoning from

requirements.

1.4 Solution Overview

Many studies have modeled engineering changes using matrix-based

modeling as a general approach, such as the design structure matrix (DSM)5

(Browning, 2015; Eckert et al., 2004; Hein et al., 2018; Lee and Hong,

2017; B. Morkos et al., 2012; Tilstra et al., 2012), graph theory, and system

11



Figure 1.1: AFlowChartOfCodingProcessToBuildDigitalThreads ForMBE

5 A square matrix,

,

in which the off-diagonal

elements represent the

dependencies between

elements. Diagonal

elements don’t contribute

significant meaning

(Browning, 2015).

modeling language (SysML), to manage the interrelation of complex system

requirements. When managing a complex system, design practitioners

can examine DSMs to track engineering changes and locate the related

requirements. The value of dependency relations depends on either rating

schemes (Browning, 2001; Helmer et al., 2010), keywords (Mocko et al.,

2007), scoring metrics (Yu et al., 2007), or attributes (Y. Chen et al., 2010).

However, converting requirements documents to a matrix representation

requires domain experts to interpret and maintain requirement changes.

In contrast, graph representations of complex systems are often used to

demonstrate how engineering changes affect their physical systems (Eckert et

al., 2004). Both direct and indirect graphs can analyze the likelihood of change

propagation and its downstream impact (Clarkson et al., 2004; Hein et al.,

2021; Keller et al., 2009).

For process-oriented applications, SysML simulates operations and

generates graph-based representations to trace engineering changes across

domains. Among the most common tools used in industry projects are Astah,

12



6 A diagram of LDA’s

model architecture

is shown below

,

where topic-word and

document-word probability

distributions are computed

as part of the training

process (Commons, 2020).

IBM Rational DOORS, NoMagic MagicDraw, IBM requirement quality

assistant (RQA), and Jama Connect (B. W. Morkos, 2012). Using these

tools, engineers can organize logical relationships among requirements, share

interpretable data among teams, and specify the capabilities of a system. Such

a process depends on intensive human efforts and specific domain expertise

at each design stage. Therefore, a more automated process is preferable

for developing a probabilistic model framework and understanding the

requirement correlations, which will provide additional relevant information

for designers to make informed decisions. Design practitioners can trace

requirement changes based on each subsystem and narrow down the potential

change paths.

1.5 Proposed Methods

One feasible way to improve requirements management is to use topic

modeling. Topicmodels are a type of statisticalmodel used in natural language

processing (NLP) capable of discovering interpretable “topics” for textual

data. One prominent technique, latent Dirichlet allocation (LDA) 6 (Blei

et al., 2003) is studied extensively. LDA is a hierarchal Bayesian model for

revealing the latent semantic structure of documents within a corpus based

on their semantics. The LDA approach, in contrast to other approaches,

such as word embedding, assumes that each corpus contains a mixture of

topics and that the order is irrelevant. Each document is assumed to be

a collection of topics, and each word contributes to multiple topics with

varying probabilities. These assumptions are also valid for requirements

documents, where documents can be randomly shuffled and then divided

into both training and hold-out sets. However, limited research is conducted
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on applying LDA in requirements documents, though this process could

be problematic for generating differentiable and interpretable results. Other

models, such asword embeddingwith clustering, hierarchicalDirichlet process

(HDP), short text topic modeling (STTM), Gibbs sampling algorithm for

the Dirichlet multinomial mixture model (GSDMM), and hierarchical latent

Dirichlet allocation (hLDA), can also accomplish comparable results with

various assumptions. To avoid the need to make further assumptions for

design requirements, we have chosen LDA as a baseline model to study

design requirements. Thus, the scope of this study is to implement LDA

to requirements documents and determine topical representations for each

dataset.

Withinmany existing techniques for performing semantic analysis, LDA is

widely used to extract latent topics from a collection of documents (Blei, 2012).

The LDA is a generative probabilistic model that creates topics based on large

observations and predicts the topic composition of unobserved documents.

The number of interpretable topics is typically predetermined by domain

experts. However, LDA has limited performance for generalizing topics from

short documents with few words, such as tweets and Reddit posts. For short

sentences, several variations of LDA have been developed, such as short text

clustering (Qiang et al., 2020; Yin and Wang, 2014). For instance, the movie

group process analogy provides an insightful understanding of the GSDMM,

in which students can be clustered into K tables based upon their common

interests in movies. As each movie title can appear only once, the clustered

results strike a balance between completeness and homogeneity. As a result

of different model assumptions, both models can generalize words into topics

with varying levels of performance.
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The emerging concept of identifying latent modules or subassemblies is

studied as an intermediate step for organizing changes within subsystems of

engineering products using unstructured data. To capture hidden topics or

semantic representations within design documents, a variety of approaches

in natural language processing can be utilized. As engineering changes

rarely occur alone, identifying changes in information within modules

could aid in narrowing the range of affected physical components. Several

early studies integrated DSM and clustering algorithms to determine the

modularity of product architectures (Jung and Simpson, 2017; Yu et al.,

2007). On the other hand, other approaches have attempted to capture

latent modules from text documents. Early studies have employed a variety of

techniques, including term frequency-inverse document frequency (TF-IDF),

latent semantic analysis (LSA), non-negative matrix factorization (NMF), and

probabilistic latent semantic indexing (pLSI) (Ball and Lewis, 2019). To

overcome certain limitations of previously developedmethods, latentDirichlet

allocation (LDA) allows for analysis of design team communications (Gyory et

al., 2021) and product ecosystems (Zhou et al., 2020), mapping of authorship

networks (Guo et al., 2018), and filtering of key words (Joung and Kim, 2021).

As opposed to the previous approaches, LDA can generalize corpora based

on a predetermined number of word groups without relying on handcrafted

correlations. As the original LDA model fails to capture hidden semantic

similarity in short corpora, this study hypothesizes that the combination

of topic models with word embedding algorithms will improve overall

performance. Among the most popular word embedding models, sentence

embeddings using Siamese BERT-networks (sentence-BERT) is a transformer-

based neural network (Reimers and Gurevych, 2019), which is commonly pre-
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7 A product subassembly,

as shown in Figure below

, is

often represented as a tree

diagram, where the wheels

are the leaf nodes and have

three children (Kusiak and

Larson, 1995. Dependencies

are indicated by the edges.
8 Using an airplane as an

example in the Figure below,

the point cloud can

accurately represent

geometric models from

ShapeNetCore datasets.

Subsystems are represented

by colors.

trained on large-scale corpora for the purpose of learning general language

representations. Combining embedded knowledge from sentence-BERTwith

topic modeling could provide a more robust representation of requirements

documents.

The different combinations of LDA and sentence-BERT will produce

interpretable correlations and visualizations between topics and words.

Using requirement topics as building blocks, engineers can further track

design changes using topic-word correlations, generalize the structure of

requirements documents, and predict the impact of forthcoming design

changes without collecting extra information. As a measure of the model’s

performance, metrics (coherence scores and silhouette scores) and human

judgment are used against three industry projects. The findings of this study

can provide valuable insights into tracking the propagation of engineering

changes in complex designs.

A product decomposition in mechanical design can be divided into

modularity of the product and structural decomposition (Kusiak and Larson,

1995). Compared to product modularity, structural decomposition focuses

on the breakdown of mechanical structures into parts and subsystems.

Subassemblies represent subsystems 7 that may consist of several components.

Few studies are conducted using data-driven approaches to identifying

subassemblies in product architectures. To create an intelligent model for the

automatic recognition of mechanical sub-assemblies for distinct designs, we

need to identify the various categories of objects first. In this study, a different

framework for recognizing geometric models is proposed using point cloud

representations 8.

16



A promising method for learning the correlations between requirements

and geometric models is to implement joint embedding, which is a machine

learning technique that captures the association betweenboth types of datasets.

Early studies in this area employed different approaches to analyze texts and

images in relation to each other. The concept of correlating sub-images with

keywords (nouns and adjectives) was applied to predict the labels of new

images (Mori et al., 1999). Further, a multimodal Deep Boltzmann Machine

(DBM) model was proposed to learn joint distributions over images and texts

(Srivastava and Salakhutdinov, 2012). Convolutional networks have shown

their ability to recognize correlations within and between images and words

as further evidence of advancing vision models (Joulin et al., 2016). Different

deep convolutional neural network architectures were created to accurately

label images (Krizhevsky et al., 2012; G. Li et al., 2020). As unforeseen images

may have unanticipated labels, an N-gram model approach was trained on

unlabeled datasets and predicted the possible labels for a testing set (A. Li

et al., 2017). A contrastive language-image pre-training (CLIP) model was

recently developed to deal with out-of-distribution predictions by using zero-

shot learning (Radford et al., 2021). For typical image and text classification

problems, both training and test datasets are from the same distribution. In

contrast, theCLIPmodel uses a dot product to learn the joint embedding space

and perform zero-shot prediction on images with truly out-of-distribution

samples. Several pre-trained CLIP models containing general knowledge can

be further fine-tuned to learn domain-specific designs. Because of these factors,

we selected theCLIPmodel to learn the correspondence between requirements

documents and images.
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This work proposes a method to address the current information gap

of multi-source data issues within MBE. We present a model that can learn

domain-specific knowledge by building correlations between images and texts.

Harvesting a variety of unstructured data enables interpretable visualizations

for engineering changes, as shown in Figure 1.2. By using this method,

engineers can visualize the interconnections of subsystems andmanage change

propagations.

Figure 1.2: A Conceptual Example Of The Use Of Multi-source Data In
Manufacturing

Propagating Engineering Changes Across Domains

A significant challenge during product lifecycle management is how to

automatically interpret and translate engineering changes into domain-specific

knowledge. One of the major obstacles is the absence of open-source datasets

that can be used to study the impact of design changes made to CADmodels.

Little mechanical industrial design is available online and can be used as a

benchmark dataset. It is common knowledge that larger available datasets

would help to improve the performance of neural network models. In recent
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years, many popular datasets developed for computer vision have been used in

numerous fields, including IMDB-Wiki Dataset, ShapeNetCore, ImageNet,

Fashion MNIST, and CIFAR-10. Such datasets are gathered online and often

annotated by humans to ensure quality. In mechanical design, large-scale

datasets containing either 2D images or 3D CAD models associated with

multiple types of design information are highly desirable.

1.6 Research Questions

Each generated topic from LDA consists of a list of words with

corresponding probabilities, where designers can understand high-volume

requirements documents through generated topics. Visualizing topics

correlated with requirement sentences can reduce human error (Cerpa and

Verner, 2009; Ullman, 1992) and improve design efficiency by organizing

corpora based on topics. Further, analyzing latent topics can contribute to

information tracking and developing digital threads across a product’s lifecycle

(T.D.Hedberg et al., 2020). Table 1.2 provides details on studying information

tracking by examining three fundamental research questions (RQs):

The results of this study have implications for requirement management

and the development of various phases of PLM. With the integration of our

proposed framework into digital threads, the CLIP model can create and

realize the connections between image and requirement data. By tracking

these correspondences, designers can track engineering changes across various

domains. Our findings could also impact engineering education for design

practitioners on how to infuse domain-knowledge into AI to gain an in-depth

understanding of complex systems. Further, this study could be expanded
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Research Question 1

RQ 1.1: Can design requirements documents be interpreted based on the
generated topics?
Hypothesis: Topic modeling may generate interpretable requirement topics
that can be verified by domain experts.
RQ 1.2: Howcanwe determine the number of topics generated or interpreted
that adequately represent each requirement document?
Hypothesis: Depending on the perplexity and coherence values, the
appropriate number of topics for each industrial project may be determined.
RQ 1.3: Can generated topics accurately represent the subsystems in each
requirement corpus?
Hypothesis: By adjusting the relevance score, each requirement topic’s
quality can be improved.

Research Question 2

RQ 2.1: How to design a computationally efficient model for differentiating
a large database of 3Dmechanical designs?
Hypothesis: The proposed model can detect various types of mechanical
designs by incorporating meta-learning and SAE techniques.
RQ 2.2: How to improve prediction accuracy for the proposed model?
Hypothesis: During training, different types of random noise can
be introduced into a point cloud dataset to achieve a greater level of
generalization.

Research Question 3

RQ 3.1: How to create a synthetic image dataset for representing the missing
mechanical design information?
Hypothesis: A image retrieval technique can be used to locate the most
relevant information.
RQ 3.2: How can transfer learning be used to establish correlations between
requirements and images of mechanical components?
Hypothesis: Using a pre-trained foundation model can serve as a starting
point for understanding domain-specific knowledge.
RQ 3.3: Can a fine-tuned model predict the most relevant sentences from
domain-specific requirements documents?
Hypothesis: A zero-shot learning procedure can test the correlation between
the most relevant image and the requirements.

Table 1.2: Research Questions and Hypothesis

to combine multiple data sources and improve PLM’s digital manufacturing

capabilities at an early stage.
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Chapter 2

Relevant Literature Review

To support the discussion in the remainder of this chapter, this chapter

generalizes the necessary background knowledge for building digital threads

under the framework of model-based engineering. First, a literature

review regarding requirement management is reviewed and a research gap

is identified to demonstrate the importance of introducing topic modeling

in the development of digital threads. Second, topic modeling and word

embedding techniques are discussed in detail to support the development of

digital threads.

2.1 Requirements Management

Requirements play a critical role in the conceptual design phase, and

they are often presented as a list of documents containing product design

specifications/constraints (Hein et al., 2018; Pahl and Beitz, 2013). By

consulting stakeholders, users, customers, or suppliers, requirements clarify

design tasks and record the limitations for product development (Andreou

et al., 2003; Fricker, 2010; Nilsson and Fagerström, 2006). For a complex
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system, testing and evaluating the complete requirements could prove

challenging (Bloebaum and McGowan, 2012; Giffin et al., 2009). Moreover,

the design is an iterative process, and any initial changes might result in

an unanticipated change propagation due to different representations or

insufficient communication among designers (Eckert et al., 2004; Kobayashi

and Maekawa, 2001; Ncube and Maiden, 1999). To predict the most likely

consequences, requirement propagation is defined based on their types and

purposes (Z. Y. Chen et al., 2007; Z. Y. Chen and Zeng, 2006; Giffin et al.,

2009). Much existing commercial software (e.g., IBM DOORS (Eriksson

et al., 2005) or JAMA1) and many research tools (e.g., ARCPP (Hein et

al., 2018), ROM Client (Z. Y. Chen et al., 2007)) can manage requirement

repositories; however, their functionalities are incapable of representing the

CADmodels. To address this challenge, this studydescribes a scheme to cluster

requirements as groups, using a spectral clustering method. If successful,

this work would reduce the workload related to requirement documents and

miscommunications among design engineering teams.

Document-based requirements are written in a specific format to

avoid ambiguity and ensure testability for reflecting stakeholder needs.

Requirements management consists of requirement elicitation, analysis,

specification (Jiao andChen, 2006), and verification. In requirements analysis,

the goals include improving engineering processes such as requirements

classification, prioritization, negotiation, or change propagation. One of the

key issues in requirements analysis is the confirmation management (CM)

topic evaluators list (Kapurch, 2010), where designers must verify and trace

each design change manually. Visual analysis of requirements with topic

modeling could assist in identifying and inspecting all appropriate changes.
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Functional and Non-Functional Requirements

Engineering changes happen at different levels of requirements, which

can be generalized as functional requirements (FRs) and non-functional

requirements (NFRs) (J. Summers and Morkos, 2013). A requirement

hierarchy structure is often used to present the FRs as operational and

technical requirements, where each technical requirement must trace back

to an operational requirement (Cellucci, 2008). The concept of modeling

requirements by topic can assist engineers in predetermining the range of

requirements that may be affected during requirement management. This

allows designers to visualize the topic composition and identify the relevant

FRs or NFRs based on their domain knowledge.

Current Study Progression Based on the literature on requirements

management, this study falls within the domain of requirements analysis. We

initiated requirement management studies in our research group bymanaging

various industrial projects (B. Morkos et al., 2010; B. Morkos et al., 2012). As

a result of the initial study, correlations of requirements are often modeled

using handcrafted features. To improve change traceability, an automated

requirement change propagation prediction tool (ARCPP) is developed to

track engineering changes within requirements documents automatically. As

engineering changes are volatile in nature, the following study estimated

information changes across nodes to measure requirement volatility (Hein,

2018). An advantage of having such a tool is the ability to measure which

requirements are likely to lead to the most changes. This study, however,

adopts a different approach by narrowing down the range of requirement

changes using topic modeling (C. Chen et al., 2021). Rather than narrowing
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down the range of engineering changes manually, the designer could track

changes based on pre-assigned topics. As a next step in this area of research,

it is imperative to leverage transfer learning by implementing large foundation

models for tracking and identifying engineering changes.

Engineering Changes in Product Llifecycle Management

The engineering change process involves the creation, review, and approval

of engineering change requests (ECRs) and engineering change orders (ECOs).

Many research efforts have explored the development of tools for managing

changes in reengineering processes using DSM-based methods. A literature

review reveals the change prediction method (CPM) (B. Morkos et al., 2012)

can capture requirements relationships using higher-order DSMs to track

requirements changes and anticipate change propagation. Building on selected

keywords, NLP techniques could predict engineering change propagations

on vastly different design projects (B. Morkos et al., 2014). This finding

has led to the current investigation of all words in textual information using

topic modeling, to provide an alternative to the existing requirements tracing

techniques that are based on DSMs.

The static DSM (e.g., affinity matrix, A ∈ Rn×n ) represents the internal

relationships among the requirements of a complex system forpotential change

propagations (Browning, 2001; B. W. Morkos, 2012). Each element of DSM

defines a document or unique word. The off-diagonal component reveals

the dependency of the pairwise comparison between any two subcomponents.

WithinDSM, various techniques can analyze and categorize requirements into

subgroups/sub-diagonal blocks based on the concepts (words) (Danilovic and

Browning, 2007; Y.Huang et al., 2012; Qiao et al., 2017; Yang et al., 2013). Since
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//www.jamasoftware.com

requirements can be generalized into a set of concepts between similar contexts,

this study approaches requirement management with the aim to reduce the

dimensionality of the dataset using a different clustering method.

Requirement management studies the areas of documenting, analyzing,

and prioritizing technical design information. For developing a complex

system, many existing approaches build the correlations among requirements

to better understand and predict the propagation of information changes.

However, the process of developing a topic layer to narrow down requirement

change propagation has not been thoroughly studied. The purpose of

this study is to improve the generation of design topics from requirements

documents. This proposed framework explores different combinations of

topic and word embedding models to determine which setting can extract

the most relevant design information for design topics. To understand the

reasoning behind this framework, the following section provides relevant

background information and topic models on requirements management

based on three industrial projects.

This studywas promptedby earlier research on requirementsmanagement.

As requirements documents are collaboratively developed based on different

domain knowledge, tracking engineering changes within a domain can be

problematic. Different techniques were employed to elicit requirements (B.

Morkos and Summers, 2009). As the project progresses, the evolution of

requirements significantly affected the success of the team (Joshi et al., 2019; B.

Morkos et al., 2019; J. D. Summers et al., 2014). One of the most challenging

aspects of requirement analysis is managing changes. There is evidence that

requirements may not always correlate well with other populated design

documents within a project (B. Morkos et al., 2010). Such discrepancies may
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result in information loss during the propagation of engineering changes. An

ARCPP tool has been developed to simulate the affected requirements based

on keywords as each engineering change propagates through requirements

(Hein et al., 2015; B. W. Morkos, 2012). Additionally, other methods

such as centrality measures (Htet Hein et al., 2017) and neural networks

(B. Morkos et al., 2014) were used to assess the properties of requirement

networks and to compare prediction accuracy. In contrast to FRs, a case study

demonstrated that engineering design decisions are often influenced by NFRs

in the automotive OEM industry (Shankar et al., 2012). As a result of the

high complexity of design change propagation, a volatility measure is designed

to determine how engineering changes react in the following four predefined

scenarios: multiplier, absorber, transmitter and robust (Hein et al., 2021). To

reduce the risks caused by unexpected change propagation, the topic model

approach generalized requirements documents into interpretable groups from

which propagation can be estimated (C. Chen et al., 2021). However, the

propagation of requirement changes should result in the realization of the

physical components, and these connections are not well understood. For

developing such correlations, this study examines various aspects of the RM

process within PLM.

Distribution management is a process for approving engineering changes

for documents within PLM (Saaksvuori and Immonen, 2008), where

engineers spend 15-40percent of their time searching and checking information

within PLM systems. During the change verification process, requirements are

used to ensure product design integrity and target performance. At every stage

of the product lifecycle, the configuration of customized products requires

making difficult trade-off decisions to comply with customer requirements.
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These decisions are critical to the successful completion of complex projects

(Giffin et al., 2009). In addition to decisionmaking, the success of the product

also depends on the allocation of appropriate resources for requirements

management.

A requirement risk is a potential mismatch between stakeholder

expectations and the outcome of a project. With the integration of RM

tools into PLM (Violante et al., 2017), a product-centric approach becomes

increasingly critical to trace design information related to the physical product.

Such connections within PLM’s subsystem can be classified as intra-model

or inter-model connections (T. D. Hedberg et al., 2020). By enabling digital

threads, engineering changes can be propagated across subsystems through

these connections. In recognition that solving engineering changes alone

can be viewed from many different perspectives, the leading practices can

be divided into three categories: design teams (Terwiesch and Loch, 1999),

computer-based tools (G. Huang and Mak, 1998), and model-based systems

(Madni and Sievers, 2018). Different disciplines have different approaches

to handling the challenges posed by passing design information to other

domains. Recent merging problems have included how to learn and represent

various types of data or how to improve user interface interoperability. Several

perspectives on RM are presented in the following sections to minimize

requirement risk.

Existing Tools for Analyzing Requirements Changes

Often, companies adapt existing designs of products or machines to

reduce the high costs and risks of developing new products while meeting

customer needs (Cross, 2021). As part of the product development process,
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companies strive to bring the product to market as quickly as possible (Ulrich,

2003). Therefore, understanding the structure of existing documents and

reusing such textual correlations can effectively assist engineers in redeveloping

products and mitigating unexpected changes during the early stages of design.

The requirementmanagement involves eliciting (B.Morkos and Summers,

2013), analyzing (Browning, 2015), specifying (Shankar et al., 2010), and

verifying stakeholder needs. Requirement hierarchy and traceability are two

major aspects of requirement management (Cellucci, 2008; Hirshorn, 2017).

The requirement hierarchy indicates the level at which a set of requirements

should be verified (e.g., from system to subsystem level or from operational

to technical requirements). In confirmation management, requirement

traceability refers to the ability to manage changes within the hierarchy of

requirements throughout the entire life cycle of a product. The changes

are frequently bidirectional, as engineering changes may be propagated either

upstream or downstream. Automating the process of tracking requirements

changes within a requirement hierarchy remains an open challenge.

Latent Semantic Analysis

Early work often makes use of natural language techniques for

investigating requirements changes within design documents. One of

the most popular methods is Latent Semantic Analysis (LSA). LSA is a

statistical technique to study the semantic and contextual reasoning of text

documents (Deerwester et al., 1990; Foltz et al., 1998; Hofmann, 2013).

Text Preprocess. Text preprocess is an operation to transform every text

into its canonical form. Since requirement documents contain many non-

standard words, a standard preprocess is necessary for LSA to realize the digital
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contents. Lowercase, tokenization, lemmatization, and punctuation have

been included in this preprocessing step using Python Spacy Package. Since

some of the high-frequency words might still offer some values in representing

the structure of requirements, only certain stop words have been eliminated

under scrutiny. We also assume nouns, verbs, adverbs, and adjectives have

equally important roles in capturing the connections among requirements;

LSA analyzes those words all together. For instance, Table 3.6 shows the

difference before and after this preprocessing.
Table 2.1 & Table 2.1: One Example Of Requirements From The Project 1

Original Requirement:
2.2. Each station shall be able to accommodate casing length of API Range

Three from thirty four feet to forty eight feet.
After Pre-process:

station able accommodate case length api range three thirty
four foot forty eight foot

After the text preprocesses, the trimmed requirements have been used

as inputs for LSA for further analysis. Typically, both bag-of-words

(square matrix) and LSA (least square matrix) can represent the structure of

requirement documents. However, the bag-of-wordsmodel is often employed

as a sparse matrix with a high sparsity, and it can be computationally expensive

since each word represents one dimension. For a large requirement document,

the bag-of-words model has often encountered the curse of dimensionality

issues. Instead, the TF-IDF model can calculate the weights for every single

uniqueword (e.g., feature) corresponding to each document. Based on theTF-

IDF scores, the final result shows the importance of each word for different

documents and can describe the correlations among requirements with a

low sparsity. Furthermore, N-gram models could also improve accuracy by

including unique phrases for each concept. Since both of the projects contain
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mainly bigram terms (e.g., manual inspection, lifting mechanism), an n-gram

range can potentially improve model performance for LSA.

LSA generates concepts based on correlations between a set of documents

and their words. There are four major procedures, as follows (Fu et al., 2013;

Landauer et al., 1998):

(1) For constructing a word-by-sentence matrix, each row (sentence)

refers to one requirement sentence, and every column contains a unique

word. A standard NLP preprocessing procedure, including tokenization,

normalization, and feature extraction, can reduce the noise for the training set.

Based on the occurrence of each unique word to each requirement sentence,

a Term-Frequency (TF) records the total score within the word-by-sentence

matrix.

(2) A Term Frequency - Inverse Document Frequency (TF-IDF) is a

method to reduce the effect of high-frequency words in natural language (e.g.,

“a” and “the”) (Jones, 1972; Rajaraman and Ullman, 2011). Since TF shows the

occurrence of each term, IDF offsets the weight of common terms fromTF. A

reweighing and IDF-Smooth function can avoid zero divisions.

(3) Since latent semantics is based on spectral clustering, taking (a

truncated) Singular ValueDecomposition (SVD) of the affinitymatrix (A) can

compute the corresponding eigenpairs. The result of this matrix factorization,

L = UΣV T , calculates that the columns of U and V T are the eigenvectors

for the word-by-sentencematrix. Σ is a diagonal matrix with non-zero singular

values. Therefore, finding theK largest eigenvectors could eliminate the noise

and approximate the solution of the optimal cut in Equation 2.2.

L︸︷︷︸
m×n

= U︸︷︷︸
m×m

Σ︸︷︷︸
m×n

V T︸︷︷︸
n×n

(2.1)
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then it can be approximated by a truncated representationwith k components,

L̂ =
k∑

i=1

uiσiv
T
i (2.2)

wherem is the number of requirements,n is the number of uniquewords, and

k is the predominant number of singular values.

By adjusting the optimal number of k values to create a filter, we could

reduce the noise from datasets. One way to determine the k value is to

use the Power Method by computing the eigengap of each eigenvalue until

convergence (Mavroeidis, 2011; Ng et al., 2002; Zelnik-Manor and Perona,

2005). After sorting the kth largest eigenvalues in descending order, we

used eigenvectors to determine which words are similar to each other for

each concept. Then we can list and compare the p number of common

words/phrases to determine for each intrinsic concept. Other methods to

group similar words/data can be determined by using Bayes’s theorem (Fu et

al., 2013) or k-means (Ng et al., 2002; Von Luxburg, 2007) to construct each

group.

(4) In comparison to any two sentences from a DSM (a sentence-by-

sentence matrix), evaluating eigenpairs or computing the cosine similarity

kernel can extract the hidden content from requirement documents with

similar terms. Analyzing the eigenvectors of the word-by-sentence matrix is

a common technique to study the connections among each sentence through

unique words. Likewise, cosine similarity is another approach to measure the

similarity between documents, and it could compute coherence values ranging

from independent to correlative with -1 to 1, respectively. The value 0 indicates

that the two documents are orthogonal in vector space and that they contain

no shared words.
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Spectral Clustering

To generalize topics for design documents, spectral clustering can be

potentially combined with LSA. In graph theory, graph partitioning is one of

the most widely used techniques for data analysis, with applications ranging

from image processing to text mining (Polanco and San Juan, 2006; Wu

and Leahy, 1993). The goal of a graph partition is to separate the graphs

and maximize the distance of within-group connections while minimizing

the number of between-group connections. Conversely, the separated

groups possess the most dissimilar “patterns” (Von Luxburg, 2007). Instead

of calculating the total cost of edge weights, another partition method,

normalizedNcut, computes theminimumcut cost as partition criteria (Shi and

Malik, 2000). Normalized spectral clustering is then used for approximating

Normalized Ncuts (Mavroeidis, 2011; Von Luxburg, 2007).

Engineering requirements can be mapped into undirected graphs, while

the value of affinitymatrices (e.g., DSM) can represent the edges of graphs. For

a given graph, each vertex represents a requirement sentence or a unique word,

and the edges define the similarity between any two vertices (Wu and Leahy,

1993). The similarity could be measured by using LSA or different distance

metrics (Xing et al., 2003; Zelnik-Manor and Perona, 2005). Typically, data

samples exist in ahigh-dimensional feature space. Spectralmethods can convert

the high dimensional data sets to eigenspace and compute eigenvectors of the

graph’s Laplacian to derive clusters (Chung and Graham, 1997; Keogh and

Mueen, 2010; Ng et al., 2002; Zelnik-Manor and Perona, 2005). By analyzing

the eigenvectors we can discover the optimal number of groups. To choose

the leadingK eigenvectors to separate the clusters well, the SVD is used with
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theK-means algorithm (Bach and Jordan, 2006; N. Liu and Stewart, 2010; S.

Wang and Rohe, n.d.).

System Modeling Approaches

MBE has been widely embraced by major organizations in the industry

(Lubell et al., 2012). A survey has verified thatMBE improves the entire system

lifecycle compared to the traditional drawing-based process (Bajaj andHedberg

Jr, 2018; Rangan et al., 2005). It is important to note thatMBE describes a real-

time-three-dimensional digital information exchange across through product

design, and it generalizes the product lifecycle into four sections: (1) product

requirement modeling in complex systems, (2) mechanical design models

in product data management (PDM), (3) Computer-Aided Manufacturing

(CAM)models based onMTConnect data, and (4) quality inspection reports

in (check) theQuality InformationFramework (QIF) derived from theQuality

Management System (QMS).

The current approach to identify possible problem areas and estimate

the range of engineering changes within subsystems requires domain experts’

judgement supported by different modeling tools (McLellan et al., 2010). The

international council on systems engineering (INCOSE) defines model-based

systems engineering (MBSE) as a formal modeling approach for supporting

the design, analysis, validation, and verification of system requirements. In

contrast to document-based information exchange, MSBE utilizes domain

models as a primary method of exchanging information. Based upon Unified

Modeling Language (UML), System Modeling Language (SysML) (Haskins

et al., 2006) is one of the popular modeling techniques for determining

logical architecture. Through the representation of requirements, behavior,
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structure, and parametric correlations of the system, the SysML can facilitate

decision-making activities, such as requirements analysis or architectural

design. For instance, with the help of a requirement diagram, designers

could view, understand, and track the propagation of changes across different

specifications. Implementing SysML can assist engineers in detecting errors,

defects, and potential problems in industries such as automotive (Nouacer et

al., 2016) and avionics systems (Gregory et al., 2020).

The electromechanical equipment of today exhibits many characteristics

of complex systems. Current practice of analyzing system-of-systems problems

often requires a combination of software (SysML) and domain experts to

identify, solve, and verify the relations between physical components and

functions (Eng et al., 2017; Mørkeberg Torry-Smith et al., 2013). However,

tracing the engineering changes using traditional graphical representations of

the requirementmanagement softwaremaynot accurately represent the higher

order change propagation. For modeling such change behavior, the DSM can

be utilized to predict engineering changes in requirements documents. Such

correlations are typically many-to-many in nature, where engineering changes

propagate between high-level requirements (operational requirements) and

low-level requirements (technical requirements) (Cellucci, 2008; Hull et al.,

2005). Rather than graphically represent information for each requirement,

DSMmaps correlationsusinghandcrafted features designedbydomain experts

(Browning, 2015; B. W. Morkos, 2012). Through interpretable correlations,

engineers can track changes in requirements documents.

Furthermore, as requirements are constantly evolving throughout a

project, maintaining a large requirement management system can be

challenging (B. Morkos et al., 2019; B. Morkos et al., 2010; J. D. Summers et

34



al., 2014). To overcome this problem, ARCPP has been developed as a tool

that predicts requirements changes in real time by using the physical (nouns)

and functional (verbs) patterns derived from each sentence (Hein et al., 2015;

Htet Hein et al., 2017; B. Morkos et al., 2012). As compared with other

approaches, ARCPP addresses the challenge of unanticipated requirements

changes within requirements documents. Other than predictivemodels, many

graphical packages and SysML models have helped engineers gain a better

understanding of processes and visualize the relationship between engineers’

products and stakeholder needs.

Requirements in Smart Manufacturing

For smartmanufacturing to achieve higher production, higher quality, and

cost-effective rates, unstandardized or unstructured data such as requirements

must be reevaluated (L. Wang et al., 2021). With the integration of data

science andmanufacturing, the direction of requirementmanagement inPLM

will undergo a paradigm shift. Future cloud manufacturing (CMfg) will

be dependent on customers’ service requirements (Tao et al., 2015), such as

decentralized production 3D printing. Users will choose from multiple cloud

services based on their needs, and the servicewill offer themost optimal options

to reduce the cost.

A blockchain-based PLM system is proposed to improve data security,

allowing individual designers to store decentralized design documents across

multiple stakeholders (X. Liu et al., 2020). Design information, including

text, images (e.g., drawings) and 3D model requirements, will be stored in

cloud databases. Upon adding a new block to the network, all systems from

stakeholders will automatically verify and update synchronously based on
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historical records. As designmanufacturing requirements continuously evolve,

the direction of product requirements will increase in variety, quality, and

service while maximizing the satisfaction of customers.

Requirement Datasets

There are three in-house industrial requirement datasets implemented in

this paper. First, project 1 is designed for a manufacturing company to design,

program, and install threading line equipment. It contains seventeen general

sections varying from general descriptions to technical specifications. Second,

project 2 depicts the design specifications of yarns on a spool through an

automated creel system. In the textile industry, creel is designed to hold a comb

of yarn. The project 3 consists of the design of an exhaust gas recirculation

bypass flap with an accompanying electrical design. It is important to note

that each project consists of unstructured natural language data containing

different sentence lengths and vocabulary embedded with domain-specific

knowledge.

2.2 Topic Modeling

LDA is a generative probabilistic model introduced (Blei et al., 2003) for

representing discrete data, commonly in the formof a collection of documents.

LDA arose as an improvement upon Hoffman’s probabilistic latent semantic

indexing (pLSI) model (Hofmann, 1999); whereas pLSI only provided a

probabilistic model at the level of topics, LDA incorporates an additional

probabilistic model at the documents level. LDA assumes that each document

in a corpus has a hidden, underlying structure. Each word is generated by first

36



randomly selecting a topic according to the requirement’s topic composition

and then randomly selecting a word according to the chosen topic’s word

composition (Blei, 2012). Every document is modeled as a mixture of k

latent topics, where each topic is defined by a multinomial distribution over

N unique words (Blei et al., 2003). This study will implement LDA in the

previously unexplored domain of requirements documents.

After values for α, β, and k are assigned, topic modeling algorithms

can identify the most likely topic composition for each requirement in

a requirements document. Usually, either variational or sampling-based

methods (Blei, 2012) are used to solve the LDA inference problem. For this

study, we use collapsed Gibbs sampling (CGS), a widely used sampling-based

method. CGS is a Markov-chain Monte Carlo method first applied to LDA

(Griffiths and Steyvers, 2004). We use CGS to iteratively determine the most

appropriate topic for each word given 1) the two Dirichlet hyperparameters,

2) the requirement’s current distribution over topics, and 3) the distribution

of that word over topics for the entire requirements document. CGS

accomplishes this by approximating an intractable sum, knownas theposterior,

over a set number of iterations (Blei, 2012). While this paper utilizes

and presents the mathematical algorithms derived from CGS, a rigorous

mathematical description of the sampling is detailed here (Griffiths and

Steyvers, 2004; Porteous et al., 2008; Xiao and Stibor, 2010).

A fictitious example presents how LDA works to depict the hidden

topic structure for 3D-printer requirements in Figure 3.20. The topic and

word simplexes contain Dirichlet distributions of topic compositions for each

requirement and word compositions for each topic, respectively. In the topic

simplex, each corner represents a topic, and each dot represents a requirement.
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The multinomial distribution of each requirement over these three topics can

be visualized as the proximity of each dot to the three corners. The included

histogram indicates the probability values corresponding with the example

requirement’s proximity to each topic. The hyperparameter, α, influences

how requirements are dispersed throughout the simplex. For values of α

smaller than one, requirements aremore likely to be focused around one of the

three topics, and when α is set equal to 1, requirements are evenly distributed

throughout the simplex. In the word simplex, the hyperparameter, β, is

similarly used to model vocabulary compositions for each topic. The charts

below the word simplex indicate the distribution of words for each topic.

Once a hidden topic structure is identified, designers must interpret an

appropriate label for each topic based on its distribution over words. Our

example in Figure 3.20 includes LDA’s resulting word distributions for each

topic, with topics initially labeled as Topic 1, Topic 2, and Topic 3. Then,

designers could interpret Topic 1 as “Printer Head,” Topic 2 as “Extrusion

Settings,” and Topic 3 as “Build Material” based on the proportions of

each word in the topic. These interpretations are subjective and should

consequently be performed by domain experts. Note that the number of

topics and words will not be equal in practice; typically, there are many more

words than topics, resulting in greater differentiation between each topic’s

word composition than is seen in this example. Additionally, words from the

example requirement that would typically be included in the LDA process,

such as “printer,” “rate,” and “buildup,” are ignored for simplicity.

After obtaining results, LDA’s performance must be evaluated. Perplexity

and coherence are applied as measures, which respectively assess the

generalization of a trained probabilistic model to an unforeseen sample (Teh et
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Topic 3

Hidden Topic Structure

The printer must extrude filament from the nozzle at an adjustable rate,
while also preventing buildup of filament within the nozzle.

Figure 2.1: Conceptual Example Of Hidden Topic Structure

al., 2007) and the semantic similarities among words. Perplexity is commonly

used to evaluate linguistic models, with a low score indicating a high degree of

generalization. Intuitively, lower perplexity in LDA represents a more robust

generalization performance. Contrary to perplexity, coherence tends to align

well with human judgment and is often used to determine the number of

topics. To ensure the effectiveness of the results, domain experts validate the

generated topics.

Within many existing techniques for performing semantic analysis, LDA

is widely used to extract latent topics from a collection of documents (Blei,

2012). The literature indicates that LDA overcomes some limitations of

precursor thematic analysis models, such as TF-IDF, LSI, pLSI, and NMF

(Blei, 2012; de Paulo Faleiros and de Andrade Lopes, 2016; Gyory et al., 2021).

In LDA, each document is assumed to be a collection of topics, and each

word contributes to multiple topics with varying probabilities. The LDA is

a generative probabilistic model that creates topics based on large observations

and predicts the topic composition of unobserved documents. The number of
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interpretable topics is typically predetermined by domain experts. However,

LDA has limited capabilities for generalizing topics from short documents

with few words, such as tweets and Reddit posts. Several variations of LDA

have been developed, such as short text clustering (Qiang et al., 2020; Yin

and Wang, 2014), to enhance the performance of topic modeling in smaller

datasets. TheGibbs sampling algorithm for theDirichletmultinomialmixture

(GSDMM) (Yin and Wang, 2014) is a variation of LDA. The movie group

process analogy provides an insightful understanding of the GSDMM, in

which students can be clustered into K tables based upon their common

interests in movies. As each movie title can appear only once, the clustered

results strike a balance between completeness and homogeneity. As a result

of different model assumptions, both models can generalize words into topics

with varying levels of performance.

2.3 Relevance to Design Research and Practice

Improvements or automation to requirements management could change

how requirements are elicited, documented, and verified. Currently,

requirements management includes the documentation of requirements with

minimal tracing and exists mostly within its own domain of requirements

(e.g., it does not build relationships with design tasks or activities outside

of requirements). Further, understanding requirements from a topical

perspective may provide designers and managers with a mechanism for

ensuring requirements completeness. Topics may serve to appropriate

requirements into pertinent design groups. For instance, a suspension team

could receive requirements related to components of shock absorbers.
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In design research, LDA is studied in design group cognition (Gyory et

al., 2020), idea generation (Ahmed and Fuge, 2018), and product attributes

(Joung and Kim, 2021). The concept of topic generation can also present

a mechanism for requirements automation that can be performed early in

the design process and does not require specific designer expertise once

when managing the requirements documents. In doing so, topics (and their

associated requirements) could determine resource allocations and inform

design-space exploration. Designers can further interpret latent stakeholder

needs and interests based on the generated topics to determine engineering

requirements and improve project success.

2.4 Overview of BERT Architecture

Integrating a pre-trained embedding model enhances the quality of the

design topics and improves the model’s overall performance. BERT is a

transformer-based bidirectional model used for natural language classification,

question answering, language inference, and sentence similarity tasks (Devlin

et al., 2018). BERT models are typically trained by using more than 3.3 billion

words retrieved from open online libraries, such as StanfordNatural Language

Inference (SNLI) (Bowman et al., 2015) andWikipedia articles (Dor et al., 2018).

For a sentence similarity task, BERTmodelwould requiren(n−1)/2 inference

computations. By adding apooling layer at the end, sentence-BERTovercomes

this limitation, resulting in computations that are equal to the number of

sentences analyzed. To improve performance, sentence-BERT models are

pre-trained on Wikipedia and NLI datasets and fine-tuned on STSB datasets

(Reimers and Gurevych, 2019).
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Numerous studies have evaluated the knowledge that pre-trained BERT

models can extract from large linguistic datasets. BERT can encode the

general knowledge in both syntactic and semantic representations (Lin et al.,

2019). The concept of syntactic knowledge relates to the relationships among

words to form a meaningful sentence. The BERT model encodes linguistic

information as hierarchical structures as opposed to linear structures to create

syntactic dependencies. However, this knowledge dependency has not yet

been fully understood. On a higher level of abstraction, the self-attention

mechanism represents partial syntactic structure via attention weights. Using

these attention heads, a syntactic tree can be built, often packed inside a [CLS]

token, to solve a prediction task. The notion of semantic knowledge concerns

themeaning ofwords and sentences. Similar to convolutional neural networks,

the lower layers contain low-level features, while the higher layers represent

semantic features (Jawahar et al., 2019). Incorporating a pre-trained Sentence-

BERT model provides general language representation to facilitate syntactic

and semantic comprehension of requirement documents. As pre-train BERT-

based models can handle a range of tasks, relying solely on the sentence-BERT

model may not be sufficient to capture design topics from domain-specific

requirements documents. The idea of combining LDA and Sentence-BERT

can mitigate the disadvantages of using a single model.

2.5 Techniques for Supporting Joint Embedding

Besides textual documents, other types of data can also be linked and

jointly represented with requirements. There are times when different types

of data might not be properly collected or saved during the product design
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process. To compensate for this loss, a synthetic image dataset can mimic real-

world data.

Image Scraping

A digital thread is more than just digital transformation - it is the ability

to extract useful information from different types of data sources. The use of

image retrieval techniques could potentially contribute to building such digital

threads and to correlating images and text, which are widely used in social

web applications. As image data may not always be available, image retrieval

is used to search and collect online images. Image retrieval can be divided

into three categories: text-based image retrieval (TBIR), content-based image

retrieval (CBIR), and semantic-based image retrieval (SBIR). For example,

search engines likeGoogle rely onTBIR systems (vanGemert, 2003). Through

a query, text-based retrieval can be simplified into a keyword-based search, and

the returned results can be visualized as images with semantic similarity (Datta

et al., 2008).

Combined with TBIR systems, web scraping is a technique which can

collect information fromGoogle. Such scraping tasks include reading HTML

links, image files, and audio records (Mitchell, 2018). The challenge of

collecting information online involves complicated website structures and bot

access as known as the Completely Automated Public Turing test to tell

Computers and Humans Apart (CAPTCHA). Many libraries are built to

aid designers to automatically download images based on queries, such as

the Selenium, the Google-image-download, and the Beautiful Soup libraries.

These tools allow users to search and modify the raw content through
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appropriate parsers using Python. Based on targeted image URL links,

information is downloaded for further analysis.

2.6 Point Cloud Classification

Among the major challenges of classifying 3D models is the improvement

of algorithm efficiency and real-time execution. Several deep neural networks

have been developed to address this issue, including PointNet (Qi, Su, et al.,

2017), DGCNN (Y.Wang et al., 2019), and SimpleView (Goyal et al., 2021). As

a result of its unified architecture, PointNet utilizes the permutation invariance

of points and processes each independently with a symmetric function that

aggregates the features. EdgeConv is a block introduced by DGCNN that

exploits both local and global shape properties for each point as topological

information. In SimpleView, 3D point clouds are converted into 2D depth

images by utilizing a projection-based method. Generally, deep neural models

require a lengthy training period and are dependent on a number of parameters

to achieve higher accuracy. To date, these techniques do not convert feature

space into semantic embedding space for the classification of 3Dmodels.

Current literature of automatically perform object classification or part

segmentation has mainly focus on deep learning approaches (Bello et al.,

2020; Y. Liu, Fan, Meng, et al., 2019; Y. Liu, Fan, Xiang, et al., 2019;

Qi, Su, et al., 2017; Qi, Yi, et al., 2017; Y. Wang et al., 2019). The

disadvantages of deep learning approaches are expensive to train and thehidden

weights are not interpretable. Many shallow learning techniques using feature

extraction can be implemented in point cloud applications to develop more

computationally efficient models and overcome certain model limitations.

Semantic autoencoding (SAE) is a technique for learning project functions

44



10 As the Sylvester equation

is based on the size of the

feature space rather than

the number of samples, this

method can significantly

improve the computational

efficiency of point cloud

applications.

from feature spaces to latent spaces (Kodirov et al., 2017). SAE is a zero-shot

learning technique that scales large-scale datasets by computing the Sylvester

equation 10(Bartels and Stewart, 1972). In point-cloud representations, this

approach has been widely implemented and is a solution to the problem of

recognizing 3D objects.

Recent advances in computing technology have made it possible

for manufacturers to combine point clouds and 3D computer vision

techniques to systemize domain experts’ knowledge for building automation

systems. Current electro-mechanical systems are capable of recognizing 3D

characteristics of objects ranging in size from nanometers to kilometers. For

smart manufacturing applications, each data point in a point cloud contains

spatial information that provides precise position information. While

there are many innovative algorithms for processing 2D images, 3D object

recognition has not yet been fully explored. With high precision models,

designers can quickly identify objectives or mechanical sub-assemblies, detect

manufacturing defects (Lyu et al., 2021; Nouacer et al., 2016), and reconstruct

CAD models for reverse engineering purposes (Vafaeesefat and ElMaraghy,

1999). This study is primarily focused on object recognition to build such a

framework. Further, the work could lead to an automatic system to detect

mechanical subassemblies.

Mechanical Geometric Modeling

Geometric modeling has a significant impact on the design and

manufacturing of products. The paradigm shift from engineering drawings to

computer-aided design models has significantly changed the way engineering

design products are manufactured and analyzed. The use of CAD and
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computer-aided engineering (CAE) has become common practice in the

fields of design, manufacturing, and quality inspection. By visualizing virtual

products during the early design phases of a product, CAD models can assist

in ensuring high quality and accuracy. Many 3D representations, such as point

clouds, 3Dmeshes, and voxels, are developed to study existing structures as 3D

CADmodels become more prevalent in engineering applications.

Computer-aided Modeling

Since the 3D CAD model replaced engineering sketches/drawings, digital

documents have improved the reusability, accessibility, and quality of

engineeringmodel designs (Frechette, 2011; Karima et al., 1985; Veisz et al., 2012).

3D CAD representation contains a set of distinct parts, such as geometric

objects generated as CAD format, including completed product components

and assemblies (e.g., product materials and manufacturing information) (T.

Hedberg et al., 2016; Wardhani and Xu, 2016). In industrial practice, design

engineers interpret system requirements and create CADmodels for every step

of the product lifecycles. Any product design modification would result in a

time-consuming procedure to mitigate potential system failure (B. Morkos et

al., 2012). In response, our goal is to associateCADmodelswith corresponding

requirements and reduce the liability of changes in a complex system. To

numerically represent CADmodels, different designs can be represented using

a number of geometric techniques.

• Voxel are often viewed as 3D pixels for volumetric data, where 3D

ShapeNet (Wu et al., 2015) extract information from 2.5D depth images

to recreate the 3D shapes using cuboids. The advantage of voxel provides
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the flexibility to generate high accuracy 3D building block for object

recognition.

• 3D mesh is another method to visual objects in terms of polygons with

vertices, edges, and faces. High-fidelity models require many polygons,

which increases memory usage. It is common for mesh representations

to be sensitive to irregular elements, making them difficult to edit and

analyze.

• Point clouds contains a finite number of dots (e.g., including the values

of each point forX, Y, Z coordinates) to represent a 3D object. Typically,

point clouds data are collected using Lidar scanner or can be converted

from other types of data, such as OFF or STEP files. In practice, point

cloudsdata are often implemented for its high accuracy and lowmemory

usage.

Point clouds are computed efficiently by converting the data into a

common standard format such as HDF5. In most point cloud benchmark

datasets, such as ShapeNetCore (Yi et al., 2016) and ModelNet40 (Wu et al.,

2015), 1024 random points are sampled for each model and normalized into

a unit sphere. An individual point contains only (x, y, z) coordinates, and a

label identifies the component groups. A comparison between two different

datasets is shown in Table 2.2 below.

# of Classes # of Samples # of Parts

ShapeNetCore 16 16,881 2 - 6
ModelNet40 40 12,311 -

Table 2.2: A Comparison Of Two Popular 3D Datasets

Clustering in Computer-aided Model. The goal of clustering CAD

models is to match the subcomponents from requirements. Research in this
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area has paid little attention to building an appropriate number of clusters

(e.g., sub-assemblies) corresponding to requirements. In the current practice,

online outsource cloud platforms enable people to manually label CAD

components and to have these labels verified by domain experts for the purpose

of building machine learning datasets. Since the mechanical design space is

vast, recognizing different types of CAD subassemblies can be challenging

and requires a large amount of data to train. Aside from the challenges

associated with building such datasets, there is also the issue of matching

the CAD subassemblies with the corresponding requirement concepts (e.g.,

topics). Particularly, we realized that since requirements might not explicitly

describe how designers should create each small component for CADmodels,

and a mismatched groups could occur. As a result, building a model-based

approach remains the most practical solution.

Meta-Learning

Meta-learning (Finn et al., 2017) consists of learning multiple tasks

simultaneously to train a model without adding any additional parameters. In

comparison to a standard stochastic gradient descent (SGD) method, meta-

learning updates gradient parameters based on the number of tasks. As a result,

this step requires an additional backward pass to compute Hessian-vector

products using various Python packages. As an extension to the original study

ofK-shot learning settings, zero-shot meta-learning has gained popularity in

recent years (Mohammadi et al., 2019).
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Joint Embedding

As digital threads become more prevalent in industry, computer vision

techniques aremaking theirway into other fields, such asmanufacturing. Joint

embedding learning involves mapping different types of information, such as

images, texts, speech, and video, into a common latent vector space. The most

common research challenges occur in the areas such as bi-directional image

and text retrieval (Faghri et al., 2017; L. Wang et al., 2018), visual question

answering (Antol et al., 2015), and image captioningKarpathy and Fei-Fei, 2015.

Previously, Canonical Correlation Analysis (Gong et al., 2014; Hardoon et

al., 2004) is used to find the linear combination of image and textual data

that maximizes the correlation between image-text pairs. Using this method,

correlations can be built between images (e.g., engineering drawings or photos)

and text documents (e.g., requirements documents, interview dialogues, or

project descriptions). However, this approach can present correlated image

and text features at a high memory cost. A variety of loss functions were

developed to overcome this problem, including margin-based loss (Frome et

al., 2013), bi-directional ranking loss (L.Wang et al., 2018), triplet loss function

(Schroff et al., 2015), and multi-classN -pair loss (Sohn, 2016).

A joint embeddingmodel, CLIP 11, which is trained on 400million images

and texts from publicly available datasets, uses supervised zero-shot learning.

The zero-shot learning approach is characterized by the fact that no classes

are presented during testing that were presented during training (Socher et al.,

2013). As the CLIP model can be boiled down to image and text embeddings

during training, this structure allows diverse types of neural networks to

be applied to the image and text encoders. To scale down the number of

parameters, the image encoder typically employs either the vision transformer
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(ViT) (Dosovitskiy et al., 2020) or ResNet (He et al., 2016). Several common

building blocks are used in the construction of a text encoder, including the

BERT or transformer-base models (Sanh et al., 2019). The BERT model

supports a maximum sequence length of 512 tokens, while the transformer

model truncates the sequence length to 76 tokens to improve computation

efficiency. Depending on the type of application, a simpler model might

achieve a better generalization performance. Meanwhile, a cosine similarity

is then calculated among images and texts and evaluated with a chosen loss

function, such as cross-entropy loss. As a part of testing, the zero-shot CLIP

model provided more reliable results for out-of-distribution image prediction.
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Chapter 3

ResearchMethodology and

Findings

Based on the current literature review, this chapter discusses three

proposed methodologies for contributing to digital threads.

• Requirement Topics: A topic modeling approach is implemented on

requirements documents and creates a layer of topics to assist designers

in determining engineering changes.

• Point Cloud Classification: A neural network model is proposed to

recognize point cloud representations in mechanical design models.

• JointRepresentation: Through the training of a foundationmodel, this

approach extends the previous two domains knowledge by learning the

associations between requirements and CAD. By fine-tuning CLIPs,

this approach can leverage both domain-specific and general knowledge.

The goal of this chapter is to present details of the implementation of

requirements topics, point cloud classification, and joint representation of
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diverse types of information. Each section begins with a description of the

proposed methodology, followed by a discussion of the results.

3.1 Experimental Study

Before the implementation of LDA, a proof-of-concept example is carried

out to show that topics can be extracted from requirements documents

using LSA. For project 1, we only considered technical requirements that are

related to the mechanical components and operations, such as operations,

general equipment concepts, benefits, description of equipment supplied,

and welded tube scope of supply with a total of 247 sentences. The

rest of requirements are considered as non-technical (description of project,

project specifications, shipping, installation and start up, documentation,

training, projectmanagement, design planning and design control, acceptance,

preliminary project schedule, delivery, notes and exceptions, warranty

containing a total of 104 sentences) requirements.

Based on the technical requirements, the word-by-sentence matrix has

been converted into eigenspace, and each concept contains unique words (p

= 8) that have a tight intrinsic relationship, as displayed in Table 3.1. Upon our

initial observation, certain unique words repeat several times within or across

concepts. For instance, the word “pipe” is often used as “pipe stops” or refers

to a physical pipe. Also, most of the unique words captured within those five

concepts are nouns, and previous research has indicated that nouns are more

likely to instigate propagation in requirements than verbs (Hein et al., 2015).

For each concept, we hypothesize that a frequency analysis could determine the

most correlated requirements. We tested this idea by comparing each concept

with requirements. For instance, we assumed the designers need to modify
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the “station” design in concept 1. In this case, “station” refers to a threading

station in Req. 5.1.10.1. After the keyword search, we randomly picked four

requirement sentences, including “station,” shown in Table 3.2. The results

of each sentence contain a different number of unique words highlighted

in bold. Since Req No: 5.1.4.2.3.3 and 4.2.8.2 have less than three unique

words from concept 1, we can design a minimum threshold (θ ≥ 4 words)

to determine the affected requirements. For Req No: 5.1.4.2.3.3 and 4.2.8.2,

those two requirements have been influenced by the initial requirement change

from the cognitive perspective. This finding has been verified with ground

truth. Furthermore, since Req No: 3.49 contains key words from concept 2

as well, there will be many overlaps when cluster requirements into groups.

If each concept can represent one dimension, the total number of concepts

will depend on the parameter,K . Therefore, mapping the entire requirement

document could be computationally expensive and hard to visualize.
Table 3.1: The Five Concepts Generated From LSA With Its Unique Words
For Project 1

Concept 1: Concept 2: Concept 3: Concept 4: Concept 5:

end lift blast next member

pipe stop end blast vroller structural member

station pipe end end return weld structural

box pipe stop blast station allow pipe structural

box end fix end next station station frame

threading fix pipe radial allow return

lift paddle radial roller pipe frame

stop paddle lift transfer transfer construct weld

In the same manner as with project 1, project 2 has been subjected to the

same threshold value. The results of the calculation are displayed in Table

3.3. For demonstration purposes, a unique word “stainless” has been chosen
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Table 3.2: The Selected Requirements HighlightedWith UniqueWords From
Concept 1
Req No: Descriptions:

5.1.4.2.3.3 After pipe is in position within blasting station, radial rollers rise and V-rollers lower.

4.2.8.2 HMI provides overall view of status of line and station by station statuses.

3.49 Pipe is lifted off of adjustable pipe stops at thread inspection table and lowered onto stationV-rollers
by paddle lifts.

5.1.10.1 Station design is identical to box end threading station.

from concept 2 shown in Table 3.4. Based on the content of this project,

“stainless”, “stainless steel”, and “steel” have similar meanings and can be

observed in all four selected requirements. After a frequency analysis, the first

two requirements are most related. Thus, with any modification on stainless

material, both first and second requirements are more likely to be affected.

Note that not all the unique words are useful, and there is some noise due

to incorrect preprocessing, such as “end end” in concept 3. For this reason,

a verification step is necessary to ensure the quality of each concept.
Table 3.3: The Five Concepts Generated From LSA With Its Unique Words
For Project 2

Concept 1: Concept 2: Concept 3: Concept 4: Concept 5:

datum equipment list design maximum supplier

limit follow stainless requirement equipment system approval

document datum stainless steel engineering including following

document steel datum list including limit approve sub

limit display datum requirement maximum personnel following purchaser

follow display follow engineering document personnel safety prior start

drawing equipment item form safety including purchaser approval

purchaser document fit securely form limit supplier equipment start fabrication

A proof-of-concept study conducted on two industrial projects has

demonstrated that terms with intrinsic correlations can be grouped together

using LSA. Following this study, we implemented LDA to study the latent

topics from the requirement documents.

54



Table 3.4: The Selected Requirements HighlightedWith UniqueWords From
Concept 2

Descriptions:

Major equipment items supplied by the Supplier shall be fitted with a securely mounted stainless steel nameplate displaying
the following information: Manufacturer’s model and type number.

Fabricated stainless steel shall be L-grade stainless steel unless otherwise noted.

Yarn guides shall have a one inch outside diameter ceramic eyelet on a stainless steel plate Specifications for eyelets will be
provided by Purchaser.

Stainless steel and plated surfaces shall not be painted, unless otherwise specified.

3.2 Implementation of LDA

As LDA is efficient in uncovering latent topics, a case study will present

each requirement project’s topics distribution. This section describes the

method of the case study in three phases: (1) requirement text preprocessing,

(2) LDA collapsed Gibbs sampling, and (3) hyperparameter tuning for LDA.

Phase I: Data Preprocessing

As requirements documents vary in style and format depending on the

industry and company, the performance of topics modeling may differ for

each corpus. The requirements documents for three different industrial design

projects (named Project 1, Project 2, and Project 3) (B.Morkos et al., 2012) were

selected for analysis in this study. Project 1 involves designing, manufacturing,

programming, and installing threading line equipment and contains 350

requirements. Within the threading equipment, most stations share standard

mechanical components, which causes repetitive words. Second, Project 2

specifies the design of an automated creel system,which is a piece of equipment

used in the textile industry to secure yarn combs while weaving fabrics. The

Project 2 requirements document contains 160 sentences. Third, Project

3 describes electrical cabinets and enclosures with operator panel interface
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equipment and includes 247 requirements. Each project contains different

non-alphanumeric characters and various ratios of FRs and NFRs. Based on

the number ofNFRs, projects can be sorted into 2, 1, and 3 in descending order.

A data preprocessing procedure is designed to reduce the noise for three

unstructured requirement datasets. This step is frequent practice in NLP

to improve algorithmic performance by filtering out the insignificant words

(Joung and Kim, 2021). Both stopwords (e.g., “shall,” “etc.,” or “must”)

and non-alphanumeric characters (e.g., “-” or “%”) are eliminated by using

NLTK’s package12. After randomly shuffling each document 10 times, the

remaining English words are lowercased, tokenized, and lemmatized to create

a vocabulary of unique words. As requirements are formal writing sentences,

each word assumes a single base form. A summary of each requirement corpus

is presented in Table 3.5.
Table 3.5: Requirement Corpus Statistics

Project Number of
Requirements

Avg. Tokens
per Requirement Tokens Vocab

1 350 119.38± 7.59 41782 793
2 160 204.00± 6.00 32641 806
3 247 144.31± 13.47 35645 1051

Phase II: LDA Collapsed Gibbs Sampling

AnLDAmodel (Blei et al., 2003) is applied for generating the requirement

topics after preprocessing the text data. In this study, each requirement

dataset is a corpus, and every FR or NFR is treated as an individual unlabeled

document. To solve LDA inference for a corpus in equation 3.2, the collapsed

Gibbs sampling method is applied to estimate the values of latent variables. A

word-topic matrix (ϕnk) is initialized after assigning a random topic to each
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word based on multinomial distribution. For each document d, we draw a

random proportion from the document-topic matrix (θdk) with the Dirichlet

parameter α. As every word wdn from the document-word matrix has a

preassigned topic zdn, each iteration will compute and update the word-topic

matrix ϕnk, topic probability array, and document-topic matrix θdk (Teh et al.,

2007), whereϕnk contains theDirichlet priorβ. Amaximumof 200 iterations

is used to ensure model convergence. Then a perplexity measurement

is calculated to represent the performance of the model generalization as

Perplexity(Dtest) = exp
{∑M

d=1 logp(wd)

−
∑M

d=1 Nd

}
, whereM is the total number of

requirement documents.

p(D|α, β) =
M∏
d=1

∫
p(θd|α)

(
Nd∏
n=1

∑
zdn

p(zdn|θd)p(wdn|zdn, β)

)
dθd (3.1)

As perplexity ratings donot always correspond to human intuition (Chang

et al., 2009), we calculated the coherence score, Cv, a measure of topicality

that can be interpreted by humans, by using the Genism package13, as shown

in Figure 3.5. The coherence score is calculated as the average of cosine

similarity, normalized pointwise mutual information, and Boolean sliding

window measures for the various LDA models. A higher coherence score is

more likely to correlate with human judgment and to produce meaningful

topics.

Phase III: Hyperparameters Tuning

This section adopts two different methods to estimate the appropriate

number of topics. First, a line fitting technique known as the L method

(Salvador and Chan, 2004) is explored for determining the optimal number of

topics. This procedure is defined by closely fitting two lines to the data, and the
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Table 3.6: After Tuning Both α And β As Control Variables, The Bolded
Number Indicates The Lowest Perplexity Value (Averaged Over Three Runs)
Fixed At TwoHundred Iterations For Project 1.

k = 15

β = 0.1 β = 0.2 β = 0.3

α = 0.01 52.30 65.10 80.94
α = 0.1 71.65 97.80 115.40
α = 0.2 106.78 117.43 139.14
α = 0.3 105.53 135.67 153.37
α = 0.4 117.36 150.61 172.42
α = 0.5 127.49 139.20 189.60

intercept point indicates the estimated number of groups. This technique can

provide a quick estimation of the number of topics without adding additional

analysis. Second, one popular technique for finding the number of topics is

to vary the alpha values (e.g., α = 10/k, β = 0.1) (Griffiths and Steyvers,

2004; Jacobi et al., 2016). By varying the topic range from k = 10 to 100

with an increment of 10, the lowest perplexity value indicates the appropriate

number of topics on a hold-out set. Both methods are applied for each dataset

to estimate the number of topics, as discussed in Section 14. After fixing the

number of topics, a fine-tuned procedure has determined the best value for

both α = {α|0 < α} and β = {β|0 < β < 1}, as shown in Table

3.6. A method of relevance measure is then applied to improve the quality

of generated topics by balancing the ratio between the word-topic probability,

p(n|k), and the lift, p(n|k)
p(n)

, which is a conditional distribution over marginal

distribution. The results of topics’ quality and interpretability are shown in

the following Section 14 by adjusting the experimental value λ.
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RESULTS AND DISCUSSION

After applying the same data pipeline to all three heterogeneous

requirements documents, this section discusses the findings of topic

visualization, the number of topics, and the quality of sampled topics. Project

1 is presented as an example of a representative project with topic distributions.

Topic Visualization

To address the first research question of how to represent requirements

documents into topic structures, a graphical representation tool named

LDAvis (Sievert and Shirley, 2014) provides an overall view of both topic and

word distributions for topic interpretation. Each circle in Figure 3.1 represents

a latent topic in a 2D subspace, while the topics that overlap share common

words. For each topic, the top 30 most relevant words are selected based on

their probability: the gray bar represents the overall term frequency in the

corpus, and the red bar indicates the high-frequency terms for that topic.

As requirements often use modal verbs (e.g., must), high-frequency words

are expected to appear frequently in topics and contribute little information

for most topics. For this reason, designers should also consider low-frequency

words for topic interpretation. In response, LDAvis provides a weighting

parameter, λ, that balances this issue. Depending on the interpretation and

domain knowledge of each topic, the optimal λ value and the actual number

of words to consider may vary.

The top 30 words from LDAvis can also be visualized as a WordCloud

based on their word probability distribution, as shown in Figure 3.2. Font size

indicates the probability of p(n|k), with the most relevant words having the

largest font. For instance, topic 9 can be viewed as a group of pipe dimensions
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Figure 3.1: Fifteen Topic Word Relations For Project 1

and units. It is crucial to use such topics when redesigning products for other

unit systems because requirements engineers can use such topics to identify all

units and ensure that the conversions are correct.

Topic 6:
Lift pipe

Topic 1:
Threading station

Topic 9:
Units and Dimensions

Topic 3:
Transfer pipe

Topic 4:
Pushbutton station

Topic 7:
Product warranty

Figure 3.2: Samples Of Generated Topics With Assigned Labels For Project 1
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Quantity of Topics

The second research question studies the appropriate topics that designers

should consider for each design. After performing topic visualization analysis,

designers must make a trade-off decision for the number of topics, and then

manually assign labels to each topic in LDA. In general, select a higher number

of topics is preferable (Wallach et al., 2009). Choosing more topics is difficult

to interpret, and fewer topics cannot capture all the necessary design details.

Ideally, well-separated topics contain distinct word distributions orthogonal

to each other in a subspace (Arun et al., 2010), meaning that topics should be

diversified, and words should be distinct. We consider that the appropriate

number of topics depends on either the design intent or the interpretation of

designers.

Perplexity and coherence measurements are utilized to determine the

optimal number of topics. As increasing the number of topics decreases the

perplexity monotonically (Blei et al., 2003), we first adopt the perplexity scores

for different values of k in Figure 3.3. After a fine turning step, each methods

(e.g., L method and α = 10/k) was estimated at 10 and 20 topics, respectively,

as shown in Figures 3.3 and 3.4. In comparison to perplexity, the coherence

score indicates an optimal range of topics between 8 and 16 in Figure 3.5.

The optimal number of topics was determined by manually examining

the combined range from 8 to 20. We observed that the majority of the

NFRs closely overlapped each other, resulting in nearly half of the total

topics. Choosing more topics would further break down topics and reduce

marginal topic distributions, producing a more refined collection of topics.

For example, topics 1 and 4 in Figure 3.2 refer to threading and pushbutton

stations, respectively, while topics 3 and 6 represent lift and transfer motions
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Figure 3.3: PerplexityWithTheOptimalNumberOfTopicsOnHoldOut Set
(Two Lines Are Fitted Using The LMethod For Project 1.)

Figure 3.4: Optimal Number Of Topics Is Twenty With α = 10/k Method
For Project 1
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Figure 3.5: The Variation Of Cv Coherence Score With The Number Of
Topics.

of the pipe. However, in comparing the distribution of words across various

topics between 10 and 15, some of the terms used in topics 3 and 6 had a similar

meaning to topic 3 in Figure 3.6, whichmay be regarded as a merging of topics.

This is because the number of topics affects the distribution of the word-topic

matrix, ϕnk, document-topic matrix, θdk, and the model parameters for the

LDAwhen fitting the data.

Validation Detailed topics may not always align with human intuitions or

provide valuable insights. Project 1, for instance, can be generalized into 9

differentmanufacturingworkstations based on their functionalities by domain

experts. Ideally, each generated topic should correspond to a specific station,

but topic 15 performed relatively well when identifying three stations from

the predetermined range. That is because the common word “station” has

a relatively high co-occurrence count, such as “lifting station” or “threading

station.” Selecting a higher number of topics can further segment the topics
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intomore stations. Several of theNFRs are composed of low-frequency words

and selecting fewer topics can lead to greater generalization of interpretable

results. Consequently, a tradeoff decision should be based on purposeful

interpretation for various corpora.

To validate the effectiveness of the generated topics, we compare the

results with the predefined topics (e.g., section titles created by the industrial

designers). Upon comparison, it appears that there are many overlaps

between the topics, which can be applied to extract information from complex

designs. As an example, one of the captured topics is “product warranty”.

It contains many details regarding the duty of manufacturers and standard

maintenance of products. In one of the subsections, “threading station”,

various characteristics (e.g., verbs and nouns describing pipes) have been

accurately captured. Other topics, such as “life pipe” shown in Table 3.6,

describe the same components despite a slight difference in the titles. As a

concept, such topics can accurately capture the categories as compared to the

design intents of industrial partners.

Furthermore, both Project 2 and Project 3 utilize the same approach to

demonstrate the robustness of the process when applied to different sets of

requirements written by different authors for different systems of varying

scales. Project 2 contains the highest ratio of NFRs, and project 3 consists

of mostly technical requirements; each project resulted in 12 and 11 topics,

respectively. The L method tends to estimate fewer topics, whereas the 10/α

method may overestimate the number of topics and may require a fine-tuning

to obtain a stable result. The generated topics of Project 2 are also capable of

capturing some aspects of design information based on low-frequency words,

as shown in Figure 2. Similarly, Project 3 provides further details on several
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Figure 3.6: Ten Topic Word Relations For Project 1

mechanical components based on FRs in Figure 3.8. In sum, the various ratio

ofNFRs or FRswill affect the general outcomes of the topics. As the structure

of the corpus changes, design practitioners may adjust the ratio of NFRs and

FRs during data preprocessing to achieve the desired result.

Topic 6:
Lugs

Topic 7:
Datasets

Topic 9:
Constural frame

Topic 8:
Personal protection

Topic 5:
Design criteria

Topic 1:
Supplier’s scope

Figure 3.7: Samples Of Generated Topics With Assigned Labels For Project 2
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Topic 9:
Indicator lights

Topic 3:
Manual operation

Topic 7:
Human machine interface

Topic 5:
PLC programming

Topic 11:
Air valve

Topic 6:
Equipment

Figure 3.8: Samples Of Generated Topics With Assigned Labels For Project 3

Quality of Topics

For RQ3, we assessed the quality of generated topics by hypothesizing

that high-frequency terms are not important for each topic. Repeated words

such as “part” or “system” may not convey relevant information for all topics;

therefore, the variable λ from LDAvis is used to balance the impact of high-

frequency words for a more meaningful topic interpretation. To illustrate its

effectiveness, we select the top three relevant words in topic 3 of Figure 3.6 as

an example. Designers may interpret topic 3 as the rolling motion of pipes

based on its first seven words. With λ = 1, the original top three most relevant

words are listed as “pipe,” “station,” and “stop” based on their probability

in descent order. The words “pipe” and “station” are high-frequency words,

occurring in approximately 40% and 30% of requirements, respectively, for the

entire corpus. Conversely, “stop” has a relatively low overall term frequency

(a smaller red and gray percentage). By setting λ = 0.8, the relevance score

of “stop” bypassed “station,” meaning the word “stop” can contribute more

information for topic 3 and aids topic interpretation. Per domain expertise,

“pipe stop” is a mechanical component commonly used to lift, roll, adjust,

and transfer pipes among stations. Thus, “pipe” and “stop” should be closely
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related. Depending on the domain knowledge, designers should incorporate a

different number of topwords into each generated topic to enhance the quality

of the generated topic by selecting the most suitable λ value.

3.3 Generalizing Requirements into Topics

Comparing to the previous section, this segment provides a framework

for generalizing design topics from requirement documents. This study

has examined several model combinations to improve the word quality

distributions for representing requirement topics. A data processing pipeline

in Fig. 3.9 consists of four steps: (1) A data normalization step involves

exploratory data analysis and preprocessing of the unstructured text into

tokens. (2) With the standardized inputs, different models can learn the topic-

word distributions or convert the words to vector representations as tokenized

inputs. (3) A concatenation step combines two different representations as

inputs for training an autoencoder. (4) The last step entails evaluating the

performance of the models and visualizing the design topics.

Figure 3.9: Requirements Documents Processing Pipeline

Exploratory Data Analysis

This section provides a general framework for generalizing design

topics from requirement documents using both topic modeling and word
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embedding. A data processing pipeline in Fig. 3.9 consists of four steps: (1)

a data normalization step involves exploratory data analysis and preprocessing

of the unstructured text into tokens, (2) with the standardized inputs, different

models can learn the topic-word distributions or convert the words to vector

representations as tokenized inputs, (3) a concatenation step combines two

different representations as inputs for training an autoencoder, and (4) the final

step entails evaluating the performance of themodels and visualizing the design

topics.

Phase I: Text Normalization

Exploratory data analysis (EDA) is a common preprocessing practice for

visualizing the main characteristics of datasets. An EDA involves identifying

potential anomalies, determining the correlations among features, reducing

noise, and determining the appropriate pre-processing steps for the data.

Utilizing three in-house industrial datasets (Hein et al., 2018; B. W. Morkos,

2012), this study first applies EDA to visualize the distribution of words in

each project’s dataset. In addition to differences in design, each project has

a different word count, containing 350, 160, and 247 sentences and 793, 806,

and 1,051 unique words, respectively. In all three projects, we visualized average

sentence length as a bar plot and estimated theGaussian kernel density over the

histogram.

To improve the performance of topic modeling, a text preprocessing step

is used to identify recurring patterns of words within the text (Schofield et al.,

2017). Several steps are performed using theNLTKPython library14, including,

for example: (1) spelling check, tokenization, and lowercase operation. (2) both

stopword removal and lemmatization. These procedures decrease the number
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of inflectional forms for each word and allow the subsequent model to focus

onmore meaningful words. Typically, topic modeling with text preprocessing

yields better results for topic modeling.

Phase II: Topic Modeling

Two types of model analysis are provided by the design framework to

generate design topics using three industrial requirements documents. First,

we implement topic modeling, such as LDA and GSDMM. Secondly, we

implement mixed models, LDA_BERT and GSDMM_BERT, which we

evaluate and compare with the topic models. Using Sentence-BERT alongside

topic modeling provides additional semantic and syntactic information to

generalize requirements documents into distinguishable topics and to enhance

topics’ interpretability.

Following the text preprocessing step, LDA is implemented using the

Gensim package15. To solve Equation 3.2, Gibbs sampling method is used

to determine the posterior distribution for a total of M documents and k

topics. The optimal number of topics for each project was predetermined

in our previous study (C. Chen et al., 2021). Both α and β are Dirichlet

parameters. Each iteration, preconditioned on the topic probability zdn, will

compute and adjust the new topic based on the probability distributions of

the word-topic matrix ϕnk and the document-topic matrix θdk for every word

wdn. A coherence metric is used to evaluate the performance of the trained

model, which is then judged by domain experts. As compared to perplexity

values, the coherence score providesmoremeaningful interpretations for topic

modeling (Röder et al., 2015). Among the different coherence measurements,

C_v is based on the cosinemeasure, normalized pointwise mutual information

69

https://radimrehurek.com/gensim/models/ldamodel.html
https://radimrehurek.com/gensim/models/ldamodel.html
https://radimrehurek.com/gensim/models/ldamodel.html


(NPMI), and boolean sliding window. It ranges between 0 and 1. For

requirement documents, the higher the value, the more likely the result is to

be in accordance with human’s judgment.

p(D|α, β) =
M∏
d=1

∫
p(θd|α)

(
Nd∏
n=1

∑
zdn

p(zdn|θd)p(wdn|zdn, β)
)
dθd (3.2)

Similarly, the goal of GSDMMestimates the posterior probability of short

documents for each topic cluster in Equation 3.3 (Yin and Wang, 2014). In

contrast to LDA, the GSDMMmodel assumes that each document contains

only one topic. For a givenK number of topic clusters, Dirichlet multinomial

mixture (DMM) applies the Naive Bayes assumption, which holds that the

probability of each word occurring within a document is independent. The

topic mixture components follow a multinomial distribution over words,

p(z = k) = ϕkd. The predefinedK number of topics serves as an upper limit.

As a result, assigning a large number of clusters may result in empty clusters.

p(D) =
K∑
k=1

∏
w∈d

p(w|z = k)p(z = k) (3.3)

Phase III: Concatenation

Concatenation tensors are commonly used in machine learning to

represent features jointly. This study combines the output parameters from

the LDA and the sentence-BERT models through a hyperparameter, λ, as

a weight. For instance, in project 1, the LDA word-by-topic matrix has a

dimension of 15 by 793, and the BERT embedding vector has a dimension of

793 by 768,X793×783 = λ ·X793×15⊕ (1−λ) ·X793×768. As a result, the joint
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representation includes both topic-word correlations and word embedding

information.

When selectingLDA_BERTorGSDMM_BERToptions, an autoencoder

trick is implemented to generate encoding variables, which allows the model

to compress highly dimensional features into a lower dimensional space. The

ADAM optimizer is coupled with mean squared error during the training

process. After training and predicting on X793×783, the model learns the

hidden representations of topic word distributions. UMAP (McInnes et al.,

2018) is used to visualize word-topic correlations as a plot. In comparison

to other dimension reduction techniques, UMAP retains both global and

local structure in terms of inter-cluster relationships. Based on the learned

labels, the plot can better visualize each design topic by calculating the top two

eigenvalues.

Overall model performance is determined based on coherence and

Silhouette scores. TheCoherence score is directly evaluated for topicmodeling,

and the Silhouette score is used to evaluate the quality of created topic clusters

(Lovmar et al., 2005). Silhouette score rates each design topic on a scale of -1 to

1. A value close to zero indicates that each data point has the same probability

of belonging to other clusters. Silhouette scores that are negative indicate that a

datapoint is closer to its neighbor cluster than its own cluster. The higher value

represents a better graphical representation in which the average intra-cluster

distance of a data point is smaller than its inter-cluster distance. For each word

in a topic cluster (i ∈ CI), Equation 3.4 computes the average distancebetween

the word, i, with any other words, j, in the cluster, where d(i, j) represents

the Euclidean distance between any two-word pairs. However, Equation 3.5

calculates the intra-clustermean distance between anyword, j, from clusterCI
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to the other clusters CJ , where CJ ̸= CI . Equation 3.6 measures how similar

a word is to its own cluster compared to other clusters. We have implemented

the Sklearn library of Silhouette scores for the average value of all samples.

a(i) =
1

|CI − 1|
∑

j∈CI ,i ̸=j

d(i, j) (3.4)

b(i) = min
J ̸=I

1

|CJ |
∑
j∈CJ

d(i, j) (3.5)

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(3.6)

Phase IV: Data Visualization

Heatmap plot is used to visualize both the LDA and GSDMM models.

The goal of heatmap plots is to determine the correlation distance16

between vocabulary and latent topics. Topics and words are then clustered

hierarchically using Euclidean distance in a subspace.

UMAP is a dimension reduction technique that enables the detection

of the topological structure of data by computing the top eigenvalues.

Comparatively to other PCA embedding methods (such as T-SNE), UMAP

can distinguish between different clusters of words based on their correlations.

The color scale represents the different clustering labels. In each project, the

autoencoder output is directly input into UMAP for visualizing cluster word

correlations.
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Results and Discussion

In this section, we first show the sentence length distribution for each

project in Fig. 3.10. Even though each industrial project was developed

independently, their average sentence length follows a similar pattern and falls

within a narrow range of 25 words. Few studies have explored how short text

topic modeling can be used to efficiently generalize requirements documents.

As a result, we first evaluate themodel’s performance by using theGSDMMto

create topic-word correlations.

Figure 3.10: HistogramOfWord Counts For Each Project

A topic-word correlation can be identified using either LDA or GSDMM.

First, we generate a hierarchically clustered heatmap representation using the

Seaborn package. Each topic is manually interpreted and assigned a label. In

Fig. 3.11, the legenddetermines the degree of semantic similarity betweenwords
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and topics. There are two interesting findings regarding the correlations. The

first finding allows designers to prioritize EC propagation at the topic level.

For instance, the top related keywords in topic 10, such as “pipe,” “stop,”

“position,” “project,” and “adjustable,” can be interpreted as relating to the

motion of pipes. The pipe stop is an object available at every station to

stop the rolling motion. During a redesign process for replacing pipe stops,

designers could pinpoint such keywords within each requirement sentence

for tracing engineering changes and verifying engineering change propagation

paths. Thendesigners coulduse hierarchical order in the heatmap todetermine

which adjacent topics are closely related to a given topic. Consequently, each

ECwithin topic 10 could propagate to topics 1, 3, 7, 9, and 12. According to Fig.

3.11, topic 10 is highly correlated with topics of 1, 3, 7, 9, and 12, because these

topics are also related to pipe processing.

The second finding occurs on the word level, where the color scale

represents the relevance within a topic. Words with a darker scale occurring

within a topic suggest a closer word-topic correlation. This can be useful

for tracking the change propagation of a specific component within a

complex system. Tracking a keyword as a starting point enables engineers

to narrow down the most related nouns and verbs strongly associated with

the component. For instance, based on the hierarchy diagram, the highest

frequency word related to “welded” is “tube” in topic 7. On the higher level,

the term,Welded Tube, is part of the name of a company and often correlated

to “installation” and “startup.” Based on the interpretation, the company has

a responsibility to install and configure certain equipment for this project. On

the topic level, topic 7 is directly linked to topic 9, where any EC can lead to

other responsibilities for the company, including the adjustment of “threading
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Figure 3.11: Topics AndWords Distribution From LDA For Project 1
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line” or “conveyor” systems. Note that most functional requirements are

closely associated with high relevance words, such as “pipe.” In contrast, the

non-functional requirements contain diverse and low-frequency vocabulary,

where the keywords are often displayed with a brighter color scale.

To enhance topic modeling performance, a pre-trained sentence-BERT

model is coupled to topic modeling to incorporate the general knowledge

for representing design topics. As topic models are evaluated by coherence

score, Silhouette score measures the topic clustering performance. Table 3.7

shows the model performance among LDA, GSDMM, LDA_BERT, and

GSDMM_BERT compared for all three projects. Each value is averaged over

five runs, and the highest scores are highlighted in bold. After combining

the sentence-BERT model with topic models, each project improves their

model performance to various degrees. In general, both LDA_BERT and

GSDMM_BERT outperform the topic modeling for better representing

design topics.
Table 3.7: Model PerformanceWith Industrial Projects (averaged over 5 runs)

Project 1 Project 2 Project 3

Coherence Silhouette Coherence Silhouette Coherence Silhouette

LDA 0.4124 - 0.4156 - 0.4001 -
GSDMM 0.4751 - 0.5346 - 0.3856 -
LDA_BERT 0.5000 0.2881 0.5579 0.3730 0.4272 0.3812
GSDMM_BERT 0.5480 0.3987 0.5327 0.3766 0.3716 0.3538

In Table 3.8, the topic identified as threading stations are selected and

compared across different models. For each method, top ten keywords

are selected for evaluating the quality of the word distribution. Though

certain keywords are somehow related to threading stations, they are not

related to one another in this case. Such words are highlighted in red as

they are considered irreverent. For instance, LDA contains words, such
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as “pin” and “dope,” that have no semantic contribution to the topic. In

comparison with LDA, LDA_BERT elevates more relevant words, such as

“pipe,” and excludes “dope,” to improve topic qualities. In addition to LDA-

based models, GSDMM and GSDMM_BERT can also provide competitive

results by capturing slightly different aspects of pipe processing keywords. By

incorporating the sentence-BERT model, the pre-trained syntactic relations

between words can enhance the quality of each generated topic.
Table 3.8: Different Models’ Word Distributions Of Pipe Threading Stations
In Project 1

Models Top 10 words

LDA threading, end, station, line, box, pin, inspection, protector, dope, drift
GSDMM pipe, end, station, threading, box, stop, lift, roller, paddle, inspection
LDA_BERT station, end, threading, pipe, box, roller, line, protector, stop, drift
GSDMM_BERT pipe, station, stop, end, threading, fixed, box, adjustable, roll, gravity

As multiple FRs and non-FRs can refer to the same topic, tracing the

topic to requirements can be difficult. To visualize the word distributions

for each topic, Figures 3.12 and 3.13 project words in a lower-dimensional

space. Each dot represents a unique word, and each word is assigned to one

of the topics with a distinct color. Each topic has a normalized percentage

value representing the ratio of its unique words to the entire vocabulary in

Project 1. In both figures, a sampled topic is selected for further discussion

and comparison. As the main theme of Project 1 pertains to the general

pipe manufacturing process, most of the topics are adjacent to topic 1 in the

subspace. The topic 1 in Figure 3.12 represents the threading pipe station,

which hasmany keywords associatedwith the functions of pipe stations. Topic

3 in Figure 3.13 focuses on the details of project timelines, which are closely

related to non-FRs requirements, including personnel training requirements

and responsibilities for different pipe stations. As the results are presented via
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dimensional reduction techniques, the approach can efficiently handle large

corpora.

Figure 3.12: Topics And Words Distribution In Subspace With A Highlighted Topic 1 For
Project 1

Figure 3.13: Topics And Words Distribution In Subspace With A Highlighted Topic 3 For
Project 1

From the perspective of engineering practices, this approach implements

a formal data pipeline to determine the design topic from the requirements

documents. Depending on the size of documents and purpose, designers

can choose an appropriate method to generalize design topics with a low

computational cost. In topicmodeling, a heatmapplot shows the ECbased on
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the semantic correlations among words for a smaller size design requirements

document. When dealing with complex system requirements documents,

utilizing topic modeling and word embedding can help visualize and interpret

intrinsic requirements correlations in a subspace. In accordance with domain

knowledge, initial requirements change to a mechanical component should

verify keywords within each topic. A subsequent change may propagate

to adjacent topics via different keywords, influencing the actions, functions,

characteristics, and behaviors of other components. Through the generation

of hidden topics, our proposed framework provides designers with a means

to better understand the structure of requirements for complex designs and

interpret the corresponding EC propagation.

There are two major conclusions to be drawn from this study. (1) This

research provides insight into how both topic modeling and word embedding

models can be used to improve the quality of requirements design topics. This

study suggests that a combinedmodel can better extract topics from industrial

requirements documents and provide better model performance and higher

quality word distributions than LDA alone. (2) With predetermined topics to

narrow the scope of design changes, engineers could quickly identify related

requirements. Upon further development, this work can be integrated into

commercial requirement management software in smart manufacturing.

Limitations

As discussed above, both LDA_BERT and GSDMM_BERT have several

critical limitations:(1) Automatically determining the number of topics still

need to be explored. The current data pipeline can be combined with other

models to obtain the optimal result; (2)Asmany of themodel hyperparameters
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are determined manually, a tuning procedure is required for finding the best

values while minimizing computational cost; (3) The entire process of tracking

engineering changes using requirement topics is not fully automated. After

addressing these issues, these results can then be combined with downstream

analysis to build correlations with geometry modeling.

3.4 Point Cloud Classification

This section focuses on how we can recognize mechanical subassembly

designs from given CAD models. To improve recognition of engineering

changes (ECs) in terms of mechanical components, this framework focuses

on developing an algorithm to classify CAD models in terms of point clouds

into predefined categories. Identifying the quality of mechanical design

automatically could lead to lean manufacturing in practice. Using this

proposed model, engineers can identify, correct, and verify the qualities of

mechanical components for various applications.

Meta-SeL

Data. In the absence of an online benchmark dataset for the field of design

and manufacturing, this study utilizes a subset of ShapeNetCore datasets to

represent mechanical CAD designs. We implement a preprocessing step to

filter out CAD models with fewer than or more than three parts (e.g., sub-

assemblies). After narrowing the datasets from 17,775 to 7,555, we divide the

filtered models into 90% for training and 10% for testing. As shown in Tables

3.10 and 3.11, the 16 categories are reduced to 10 and a detailed breakdown

of each category is provided. There is only one model left in the motorbike
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category, which has been manually removed. The following calculations are

based on filteredCADmodels. There are several techniques for injecting noise

into point clouds, including normalizing the data, randomly rotating for one

of the axes (x, y, z), translating coordinates randomly, and jittering the points.

Individual and collective tests of such procedures are conducted during the

training phase to improve the generalization performance for testing datasets.

The best combination is presented and discussed in the results section.
Table 3.9: Comparison of ShapeNetCoreDatasets After Filtering (Number of
Parts = 3)

# of Samples # of Filtered Samples

Training: 15,990 6,805
Testing: 1,785 749

Total: 17,775 7,555

Table 3.10: Breakdown of Training Sets By Each Category

Categories: Labels: # of Models

Airplane: 0 471
Car: 3 257
Chair: 4 2,508
Earphone: 5 31
Guitar: 6 706
Lamp: 8 1,086
Pistol: 12 244
Rocket: 13 51
Skateboard: 14 102
Table: 15 1,349

Total: 6,805

Training. The MetaSeL algorithm is comprised of two major

components, SAE and Meta-learning techniques, as shown in Figure

3.14. For each model, the SAE is calculated first to learn their semantic

representation. MATLAB is used to implement CPU parallel processing to

speed up the training process. Using the Sylvester equation, a 3-by-3 latent
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Table 3.11: Breakdown of Testing Sets By Each Category

Categories: Labels: # of Models

Airplane: 0 51
Car: 3 31
Chair: 4 281
Earphone: 5 2
Guitar: 6 79
Lamp: 8 115
Pistol: 12 28
Rocket: 13 6
Skateboard: 14 11
Table: 15 145

Total: 749

matrix in semantic space is calculated and solved using the Bartels-Stewart

algorithm in Equation (3.7, 3.8). An example of a single model is shown in

Figure 3.15 which consists of 1024 points with coordinates (x, y, z) on the

left-hand side. Right hand side, 3 signifies that each point has a label that

belongs to one of the three pre-assigned parts. Figure 3.16 illustrates how we

iterate this process by computing the weights for each model,

SST︸︷︷︸
A

W + λXXT︸ ︷︷ ︸
B

W = (1 + λ)SXT︸ ︷︷ ︸
C

(3.7)

whereX ∈ Rd×N is the input data withN feature vectors and d dimensions.

S ∈ Rk×N indicates the latent representation of a linear autoencoder. W ∈

Rk×d represents the projection matrix while k < d.

AW +BW = C (3.8)

Testing. For each test model, we use the same procedure to determine the

SAE first, as shown in Figure 3.17. We compare the cosine similarity between

the weights between the test and training sets to determine the object category
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Figure 3.14: MetaSel Model System Level Component

Figure 3.15: A Conceptual Representation Of Calculating SAE For Each Cad
Model

for testingmodels. As a result, we select themodel with the highest probability

as its label. The classification accuracy is calculated by comparing the most

likely label with the ground truth.

Results and Discussion

By using random shuffling (RS) in Table 3.12, we demonstrate that our

method is permutation invariant for the order of models. The result will

not be affected by random shuffling of datasets. We then demonstrate that

normalizing each model into a unit sphere to improve classification efficiency.

In accordance with the normalization procedure (N), a random rotation (RR)

is performed on one of the three axes (x, y, z) but the results did not provide

a significant improvement. As a next step, we test translation, jittering, and

combinations of these methods. In translation, noise is generated by drawing
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Figure 3.16: Model Architecture OfMetaSel During Training

Figure 3.17: Model Architecture of MetaSel During Testing

new samples at uniform intervals based on uniformly distributed samples. As

a result of jittering, each coordinate is subjected to aGaussian noise with a zero

mean and a standard deviation of 0.01. In bald, the best results are highlighted

as the final recommendation.

Meta-SeL: Accuracy (%)

Base : 93.19
Random Shuffle (RS) 93.19
Normalization(N) 95.59
N +RR(x− axis) 90.25
N +RR(y − axis) 93.59
N +RR(z − axis) 83.97
N +RR(x, y, z) 88.38
N + T 95.99
N +RR + T 77.03
N + J 95.95
N + J + T 95.46

Table 3.12: Comparison of Meta-SeL Results with Various Noise Techniques

Meta-SeL’s base model with a normalization preprocessing step was

selected as one of the best results for determining accuracy for each category.

The accuracy of each category, as well as the average recall and precision, are
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shown inTable 3.13. Skateboards and earphones have the lowest accuracy across

categories. Skateboards have the highest misclassification rate, with seven of

thembeing classified as lamps. The results of the study show that certainCAD

objects may share certain characteristics, causing a misclassification error. To

investigate this further, we project all the training weights into latent space

using UMAP to compare their characteristics. In Figure 3.18, all 6,805 SAE

weights (e.g., 3-by-3 matrix) are projected in a subspace labeled based on the

number of categories. Ideally, objects within the same category would bemore

similar to each other than theywould be to features belonging to other clusters.

However, certain models have similarities between categories, which can lead

to misclassification.
Table 3.13: Comparison of Predicted Results by Categories

Categories: Training: Testing: Recall (%) Precision (%)

Airplane: 471 51 94.11 96
Car: 257 31 93.33 96.55
Chair: 2508 281 99.64 98.93
Earphone: 31 2 50 25
Guitar: 706 79 98.73 98.73
Lamp: 1086 115 91.30 92.10
Pistol: 244 28 100 90.32
Rocket: 51 6 100 66.66
Skateboard: 102 11 36.66 66.66
Table: 1349 145 96.55 97.90

Total/Avg Result: 6,805 749 95.99 96.12

Meta-SeL’s performance is demonstrated by comparing it to Pointnet and

DGCNN algorithms on the same datasets and setups. Figure 3.19 shows that

our model provides a competitive level of accuracy. Our model calculates SAE

and cosine similarity simultaneously, resulting in high initial accuracy. Using

a variety of input datasets and different techniques, we demonstrate that the
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Figure 3.18: Projection of TrainingWeights into Latent Space Using UMAP

deep learningmodel will eventually bypassMeta-SeL and achieve a higher level

of accuracy.

Contributions. We argue that Meta-SeL provides competitive results

with certain state-of-the-art models. The major contributions are summarized

as follows:

• Our model can reduce training time and provide high accuracy

predictions when new CADmodels are added to the dataset.

• Meta-SeL is permutation-invariant for the order of models and can

produce consistent predictions.

86



Figure 3.19: Result Comparison of Meta-SeL Other Model Architectures

• Meta-SeL is sensitive to model input, and certain noise injection

techniques can improve its performance.

Limitations There are several limitations to the current version of the

model. (1). Our approach is capable of handling models with three parts at

present, thus different number of components of point cloud representations

should be explored in the future. (2). It is necessary to perform different

preprocessing treatments to distinguish the categories with similar geometry

characters and further improve the accuracy of classification. (3) Although

our shallow learning algorithm is effective in classifying each category, other

model architectures should also be developed to further reduce memory

requirements.
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3.5 Linking Requirements to CAD Images

In this section, we present a framework for recognizing the relationships

between images and requirements. To represent requirements documents’

physical components, we generate a synthetic image dataset from an online

database based on our in-house requirements document gathered from

industry. Figure 3.20 shows the pipeline of the proposed framework using a

fine-tuned CLIP model.

Requirements
Document

Text
Preprocessing

Image
Retrieval

Fine-tune
CLIPModel

Zero-shot
Prediction

Keywords Image
Verification

Figure 3.20: Pipeline Of Proposed Framework

Text Preprocessing

The purpose of a text preprocessing step is to extract the most relevant

information and use it as keywords for image scraping, because particular

words contribute more to connecting visual ideas than others. Our first

step is to eliminate all non-alphanumeric characters and stopwords (e.g.,

“shall,” “etc.,” or “must”). The remainder of the corpus consists of nouns,

verbs, and adjectives filtered by part-of-speech (POS) tagging. A previous

study determined that nouns and verbs can be used to describe the physical

architecture and functional characteristics of projects (Hein et al., 2018). In this

study, adjectives were also considered relevant to describe these components.

These keywords are stored and applied to search queries.
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17 https://pillow.

readthedocs.io/en/stable/

releasenotes/2.7.0.html

Synthetic Image Dataset

An industrial requirement dataset describing the design of a pipe assembly

line is implemented in this study (B. W. Morkos, 2012). In total, 350

requirements are included, containing both functional and non-functional

requirements. Project details include topics such as design specifications,

project descriptions, equipment supplies, installation procedures, and

shipping. After text preprocessing, each sentence is reduced to phrases for

retrieving online images.

A version of the searchmodel is implemented to scrape images fromonline

text searches. As the order of keywords does not significantly affect the search

results, queries are automatically sent to online servers to retrieve images as

a browser user. BeautifulSoup, Request, LXML XML toolkit, and regular

expressions are used to get image links and download the original resolution

image locally. As images can be extracted from several sources, a verification

procedure is implemented to ensure that all images are accessible through the

Pillow library. For example, some images cannot be downloaded from online

PDF documents or websites protected by anti-bot tools such as CAPTCHA.

This requires manual verification to replace irrelevant images. Because images

come in a variety of sizes, we use the resampling LANCZOS1filter to rescale

each image into a 300× 300pixel size. By doing so, we avoid losing information

on the edges.

CLIP Model

As the number of image-requirement pairs is relatively small, directly

training the model on CLIP might not be effective. Instead, transfer
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learning allows the model to integrate previous knowledge with domain-

specific knowledge. In this experiment, we compared the performance of pre-

trained andfine-tunedCLIPmodels. Conducting anoverall evaluationof zero-

shot prediction accuracy is beyond the scope of this study.

Prediction on Pre-trained CLIP

Using a pre-trained CLIP model, we select an image closely associated

with the industrial design to predict the most likely requirements from the

existing design document. Before passing to the image encoder, the new

image must go through the same filters. The transformer model is used to

encode requirements. By utilizing zero-shot predictions, the most relevant

requirements are identified. As the pre-trained CLIP model is trained to

perform general tasks, a fine-tuned predictionmodel should provide improved

performance when applied to domain-specific knowledge.

Prediction on Fine-tuned CLIP

The requirement-image pair is first randomly shuffled into a training set

with a batch size of ten. Testing the model involves implementing zero-shot

prediction, in which out-of-distribution images are manually downloaded

from variant designs. The total number of epochs is twenty. Image and text

losses are calculated individually using cross-entropy. The Adam optimizer

is implemented with a learning rate of 5e-6 and decoupled weight decay

regularization of 0.4 for all layers. These values are adjusted based on

analysis and evaluation to fine-tune the hyperparameters. Similarly, the same

prediction procedure is implemented to output the top five requirements with

their probabilities.
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RESULT AND DISCUSSION

Study findings revealed interesting observations that could help bridge

the gap between requirements and images. Observations relating to the

type, quality, and relevance of predicted requirements are discussed. These

results will demonstrate the improvement in the fine-tuned model with its

interpretable results.

Synthetic Dataset

As the created synthetic image dataset contains various types of images,

Figure 3.21 presents several search results from the industrial trial project. In

response to different search terms, the collected images include photographs,

drawings, and document scans. Note that not all the returned images

accurately reflect the details of a search query, andwe assume the top images are

the most relevant ones. If the first image is not available, the next resemblance

image is downloaded manually. Further, some images may not capture the

meaning of the requirements due to ambiguouswords and short searchqueries.

In such cases, we consider some images to be noise. For example, in Figure 3.21

(e), upon sending the query “threading, line, Bucker, station,” the retrieved

result depicts a picture of a train departing the Buckner station.

Although a fine-tuned model may not learn valuable knowledge from

irrelevant images, it is still possible to obtain limited useful information. In

Figure 3.21 (f), many search queries related to non-functional requirements

contain the words “proposal,” “description,” “specification,” and “criteria,”

which result in a screenshot of a document. Though CLIP models may not

capture detailed content from images, they may still recognize these keywords

as representing the concept of documents. In context-rich design projects that
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pipe, vrollers, high, speed, transfer, table

(a)

powered, radial, rollers, vrollers

(b)
radial, rollers, lift, pipe, stop, designed,

attached, base, frame, overall, base, design,
station, similar, require, much, expertise,

maintain

(c)

assemblies, vrollers, pneumatic, cylinders,
center, line, based, pipe, outer, diameter,

recipe

(d)

threading, line, bucker, station

(e)

confirmation, delivery, reassessed, time, order,
receipt, orders, thirty, days, date, proposal

(f)
Figure 3.21: Samples Of Collected Synthetic Image Datasets With
Requirement Keywords

includemore image documents, designersmayfine-tune themodel or combine

it with additional neural networks to further extract textual information from

images.

Similar search queries might return the same image. As an example, after

word preprocessing, query numbers 158 (‘box’, ‘end’, ‘threading’, ‘station’,

‘idler’, ‘radial’, ‘rollers’, ‘vrollers’) and 167 (‘box’, ‘end’, ‘threading’, ‘inspection’,

‘station’, ‘idler’, ‘pipe’, ‘radial’, ‘rollers’) have the same image result. As both
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sentences contain many similar words and describe similar objects, the study

uses the same pictures to represent both requirements.

Improvements in Design

With the increasing number of epochs, the total loss decreases, as shown

in Figure 3.22. The loss function is averaged based on the cross-entropy loss

between the image and the text. As a result of model fine-tuning, training loss

is significantly reduced (around 65%) after 10 epochs. As a trade-off decision,

fine-tuning a model could result in the loss of transfer knowledge and the

acquisition of more domain-specific information while increasing the number

of epochs. Thus, we employed an early stop strategy during the fine-tuning

process to prevent overfitting. The CLIP model stops learning requirement-

image pairs after 20 epochs and provides the most interpretable results. It is

important to recognize that fine-tuning increases the risk of losing previous

knowledge and gaining excessive domain-specific knowledge.

Figure 3.22: Variance Of Training Error With Increasing Epochs
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18 https://omtec.com/

catalog/f1-conveyor-table/

The search queries, as shown in Figure 3.23, represent each requirement.

A fine-tuned CLIP model is tested using an out-of-distribution image from a

variant design in Figure 3.23, which shows a portion of a storage system.

The pipe threading equipment outlined in the requirements document, as

well as the storage equipment shown in Figure 3.23, contain several types of

conveyor systems that can be potentially adapted from one to another.

Validation Rather than viewing this problem as a pure classification process,

each requirement might correspond to multiple images or vice versa. The

zero-shot prediction method is employed to compute the probability for each

requirement-image pair. As this is an early-stage study, the focus is primarily on

modeling the individual correlations rather than capturing the many-to-many

relationship. Correlations of this type are not well understood and may not

be sufficient to generate manually. Alternatively, designers can interpret the

predicted requirements based on their intuitive understanding of their domain

knowledge to the unforeseen images.

Based on the results, the best result (10.23%) is considered the most

relevant requirement for the pre-trainedmodel. In contrast, the top prediction

result from the fine-tuned model achieves higher accuracy by providing more

relevant information. Upon interpretation, the improved results have a

closer relationship to functional requirements pertaining to “pipe stations”

or “transfer tables.” As the fine-tuned model can recognize the concept from

images and find the most relevant requirements, engineers should determine

the appropriate number of relevant requirements and make corresponding

engineering adjustments.

A particularly interesting and noteworthy observation is the use of images

that contain both image and text data. The image in Figure 3.24 is chosen as
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Pre-trainedModel Fine-tunedModel

Keywords Percentage Keywords Percentage

‘lift’, ‘pipe’, ‘entry’, ‘end’, ‘table’, ‘paddle’,
‘threading’, ‘conveyor’, ‘transfer’, ‘box’

10.23% ‘vrollers’, ‘pipe’, ‘transfer’, ‘table’, ‘gravity’,
‘roll’, ‘towards’, ‘exit’, ‘conveyor’

32.66%

‘station’, ‘bucker’, ‘structural’, ‘contructed’,
‘frame’, ‘members’

5.09% ‘rail’,‘assemblies’,‘spaced’,‘half’,‘feet’,
‘spanning’,‘length’,‘transfer’,‘table’

13.12%

‘thirteen’, ‘table’, ‘line’, ‘threading’, ‘transfer’ 3.62% ‘pipe’,‘rest’,‘adjustable’,‘pipe’,‘stop’,
‘exit’,‘conveyor’

11.98%

‘project’, ‘description’ 3.59% ‘pipe’,‘secured’, ‘vrollers’,‘clamp’,‘high’,
‘speed’,‘transfer’,‘table’

7.31%

‘constructed’, ‘inch’, ‘structural’, ‘table’,
‘walls’, ‘tubing’, ‘transfer’, ‘quarter’

2.89% ‘pipe’,‘secured’,‘vrollers’,‘clamp’,‘high’,
‘speed’,‘transfer’,‘table’

7.31%

Figure 3.23 & Table 3.14: An Image Of Conveyor System2 With Model
Predictions

a challenge for the fine-tuned model recognizing shapes and text information

simultaneously. The image depicts a conveyor ball transfer table, on which

hardened carbon steel balls are used to replace rollers. In such images, the fine-

tunedCLIPmodel did not result in significant performance improvements for

the top prediction (2.5% improvement), as shown in Figure 3.24. In images that

contained only photographic images and no text, the fine-tuned CLIP model

demonstrated superior performance (22.4% improvement).

In the pre-trainedmodel of Figure 3.24, two distinct requirements resulted

in the samekeywordphrases after thepre-processing step. Bothpre-trained and

fine-tunedmodels can recognize the new image as a type of transfer table based

on the given functional requirements. Upon interpretation, the predicted

requirements from the fine-tunedmodel aremore closely related to the transfer

table and its functionality.
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Pre-trainedModel Fine-tunedModel

Keywords Percentage Keywords Percentage

‘threading’, ‘line’, ‘thirteen’, ‘transfer’, ‘table’ 15.76% ‘pipe’, ‘pin’, ‘threading’, ‘station’, ‘transfer’,
‘table’, ‘towards’, ‘end’, ‘threading’, ‘inspection’,

18.03%

‘pipe’, ‘next’, ‘transfer’, ‘table’ 7.65% ‘design’, ‘vrollers’, ‘many’, ‘similar’, ‘features’,
‘vrollers’, ‘tube’, ‘uses’, ‘exception’, ‘high’,
‘temperature’, ‘designs’

14.06%

‘pipe’, ‘next’, ‘transfer’, ‘table’ 7.65% ‘threading’, ‘station’, ‘base’, ‘design’, ‘similar’,
‘stations’

9.63%

‘pipe’, ‘gravity’, ‘roll’, ‘transfer’, ‘table’, ‘towards’,
‘box’, ‘drift’, ‘threading’, ‘protector’, ‘station’

4.87% ‘pipe’, ‘gravity’, ‘roll’, ‘transfer’, ‘table’,
‘towards’, ‘bucker’, ‘station’

5.83%

‘transfer’, ‘table’, ‘designed’, ‘located’, ‘previous’,
‘next’, ‘operation’

3.41% ‘pin’, ‘end’, ‘blast’, ‘station’, ‘design’,
‘identical’, ‘box’, ‘blast’,

5.45%

Figure 3.24 & Table 3.15: An Image Of Conveyor Ball Transfer Table3 With
Model Predictions

The out-of-distribution images are selected from a variant design as

indicated earlier. As similarities can be defined from different perspectives,

the out-of-distribution images may take different forms. For instance, taking

images of the same object from various angles with a variety of backgrounds

may alsobe considered as testing images. Asnot all themechanical components

are symmetrical, different angles of the same part might have an impact on the

predictions.

The study suggests that the proposed framework could potentially be

used to visualize requirement traceability by taking images of various physical

components. The most relevant requirements should be determined for each

image and evaluated regarding engineering changes. Although the synthetic
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dataset contains some irrelevant images as noise, the fine-tuned CLIPmodel is

still capable of learning useful information and improving out-of-distribution

prediction.

Through a synthetic dataset, the fine-tuned model can identify standard

mechanical components from collected images. For specialized mechanical

parts, the image obtained from the internet may not accurately reflect their

physical components. A minor change in design may, however, be treated

by an out-of-distribution prediction and not necessitate a new simulation.

As requirements are often added or deleted during the reengineering process,

designers need to repeat the analysis to achieve higher accuracy. The proposed

process would allow engineers to realize the interconnection of heterogeneous

data quickly and reduce human error in the design process. Future work

should explore different rotation-invariant techniques to build a more robust

model and integrate this framework into digital threads. Rather than using

2D images, 3D point clouds could be another future direction. Further,

the fine-tuned model can be combined with augmented reality for industrial

applications.

Limitations The framework has the following limitations. (1). Currently,

we are implementing both image- and text-preservation encoders; however,

other data combinations (e.g., 3D models) should be explored for a more

comprehensive evaluation. (2). A further analysis should be conducted

to improve the model’s performance by comparing different fine-tuning

techniques and loss functions. These limitations may have an impact on the

accuracy of the zero-shot learning outputs, as well as the interpretation of the

results.
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Chapter 4

Conclusion

Requirement Topics. The motivation of this dissertation is to build a

framework for engineers to manage the complex MBE system by identifying

engineering changes within downstream and upstream components. A key

component of managing engineering changes is the tracking of information

across different domains and data types. As part of smart manufacturing,

digital threads support the industry’s need to integrate information flow

and provide interoperability for a variety of data. To support such an

information management system, we have narrowed our study scope between

the requirements andCADdomains. The study canbedivided into threeparts:

requirement management, CAD, and requirement-to-CAD.

The challenge in the requirement domain is to track information through

highly domain-specific knowledge documents. As the preliminary study

utilized LSA to analyze two industrial projects, it is possible to cluster the

requirements into design concepts, with each concept corresponding to several

unique words. Further, this study extends the use of both LDA and topic

visualization techniques for analyzing requirement topics. Creating topics

allows designers to track engineering changeswithinmost related requirements
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based on semantic correlations. Similarly, other adjacent topics containing

closely related words may also be affected by any initial change.

Three research questions have addressed the issues of applying LDA to

requirements management. For the first question, a detailed case study

explores the feasibility of generalizing requirements into topics with different

visualizations. Three industrial datasets are then implemented to demonstrate

the performance of topic analysis for requirements. The second research

question emphasizes the number of topics. Three techniques are utilized to

estimate the necessary number of topics by comparing both perplexity and

coherence scores. The initial finding reveals that topic merging occurs when

fewer topics are assigned to the model. Fewer topics can provide a general

visualization of the system, and more topics can provide lower-level design

details. A trade-off decision is made based on purposeful interpretation and

domain knowledge. In addition, the third research question focuses on the

quality of each topic by implementing the LDAvis tool to visualize the topic-

word distribution. The λ value can be adjusted to improve the quality of

each topic by selecting the most relevant terms. In sum, this study provides

a framework to implement a supervised LDA model to capture the design

information from requirements documents. The results indicate that while

the generated topics are useful for some design information, they cannot

stand alone in the design process apart from human intervention. To reach a

desired performance, further study is required to explore different topicmodel

structures.

Further research should explore different approaches or different

variations of topic models to represent design documents in requirements

management. By making additional assumptions, other methods may
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contribute to accurately capturing the semantics of unstructured requirements

documents into subgroups. A comparison study could then be conducted to

illustrate the performance differences with the baseline LDA model. Another

option would be to label requirements into different categories; however, this

would require training in a large and diverse repository, where the trained

model can assess varied designs based on predetermined topics. Beyond

enhancing the LDA model, the development of such a model could be used

to inform design activities, such as conceptual design and geometric creation.

The topic could be used to bridge domains that allow for both upstream and

downstream analysis, a feat currently limited in design.

In line with the previous findings, a subsequent study compared

the performance of different combinations of topic modeling and word

embedding techniques to further improve the quality of each topic. We

address two major challenges of analyzing requirement documents, including

extracting information from short sentences and mapping topic-word

correlations from domain-specific documents. Following an exploratory data

analysis, the proposed framework combines topic modeling (e.g., LDA or

GSDMM) with word embedding (e.g., sentence_BERT). We validate each

model using either topic coherence or Silhouette scores. Our results indicate

that both LDA BERT and GSDMM BERT achieve comparable results

when compared to a single topic model. Although GSDMM is designed

to cluster short texts, the results demonstrate that both LDA_BERT and

GSDMM_BERT achieve similar results in generalizing design topics. We also

show that bothmodels can enhance thequality of each topic by includingmore

relevant keywords. Overall, this study contributes to the goal of generating

high quality design topics from requirements documents in building digital
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threads for smart manufacturing. In particular, the study demonstrates what

types of analysis are critical to understanding complex system design topics.

Future work could apply this approach to diverse types of requirements

documents. This proposed framework can be combined with the concept of

ensemble learning. Hence, the final model would use a variety of topic models

or word embedding algorithms to produce different vector representations to

obtainmore robust results. Furthermore, another aspect of this study could be

combinedwith other techniques for automatically determining the number of

topics.

Point Cloud Classification. In the second part of the study, the objective

is to recognize the various categories of CADmodels and subassemblies. This

framework, however, focuses on the development of models for recognizing

mechanical objects. The Meta-SeL algorithm combines both meta-learning

and SAE to classify point clouds into ten predefined distinct model categories.

Using the ShapeNetCore dataset, which simulates real manufacturing design

data with additional part label information, this study shows that Meta-SeL

can achieve a competitive level of accuracy to deep learning models.

To improve the model’s generalization performance, several techniques

have been developed for introducing noise into the training datasets. The

combination of normalization and random noise (such as jittering or

translation) provided more accurate prediction results. Moreover, for the

purpose of understanding certain misclassification errors, we have visualized

all the training SAE weighs into a subspace to show the similarities between

each of the categories. Certain designs exhibit similar geometric resemblances,

making it difficult for the proposed model to differentiate them. In

comparison with state-of-the-art algorithms, our model achieves a high
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accuracy and utilizes only one epoch. In certain industries where time and

computation power are critical resources, this could be particularly important.

Comparing our model to deep learning applications, we find that we are more

efficient at handling new data.

As the next step of this research, much work remains to ensure that this

procedure can automatically predict mechanical sub-assemblies. As a further

extension of our research, the future work will investigate how to improve

the accuracy of classification by learning the representation function for each

category.

Linking Requirements to CAD Images. The goal of this research is

to develop a framework for automatically linking requirements and CAD -

allowing engineers and designers to analyze how a change impacts one another.

While much research exists on requirements-to-requirements and CAD-to-

CAD analysis, minimal work exists on the linking of both. This is difficult

as requirements (text) and CAD (geometric) operate in different domains.

This research proposes a framework for linking said domains to bridge the gap

between requirements and CAD.

We propose a framework for bridging gaps in and synthesizing multi-

source data to facilitate knowledge acquisition and improve design efficiency.

As image data may not always be available, we collected online images by using

keywords filtered from requirements documents using POS tagging. To collect

images from Google search results, a web scraping technique is used. Images

are manually verified and modified according to the closest interpretation of

requirements. The collected image dataset is verified and resampled to the same

size. We demonstrate an improvement in model prediction by showing the
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top fivemost relevant requirements after fine-tuning the CLIPmodel. Testing

images are selected from a variant design to assess the robustness of the model.

The major contributions of this work are threefold. First, we provide a

method for constructing a synthetic image dataset representing the physical

components of requirements. As image data is not always available,

this technique enables a visual representation of requirements for tracking

engineering change propagation. Secondly, using transfer learning, we

combine prior knowledgewith domain-specific information tounderstand the

connection between requirements and images.

As a result of the learned correlations, similar mechanical components

form out-of-distribution image datasets can be identified for identifying

and interpreting requirements. Third, the predicted results illustrate the

performance and limitations of the models by indicating the most relevant

requirements for invariant designs. By taking photographs of different

mechanical components and predicting the top requirements, engineers can

determine which components are affected to minimize risks for a complex

system.

Future work can be extended in several directions. Several CLIP model

architectures and other industrial design documents should be considered.

In CLIP model, various kinds of image and text encoders can be tested

and compared. As simulation performance might differ based on the

datasets, comparing various model architectures with publicly available design

documentation may provide useful insights into distinct types of product

designs.
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