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ABSTRACT

Managing rapid engineering changes in requirements and complex computer-aided design (CAD)
models continue to increase the risk of industrial project failures in smart manufacturing. As products
evolve over time, tracking design changes across different domains has become increasingly difficult to
operate. Mismanagement incidents can derail industrial product development and result in financial
losses. Existing practices often lack connections to cross-domain analysis and rely on domain experts
to interpret engineering change propagation. To reduce the burden of this taxing process, this study
proposes computational tools as digital threads that assist engineers in understanding the correlations of
change propagation. The proposed framework investigates three components of analyzing engineering
changes within and across domains. Particularly, the work pertains to (1) a topic modeling approach
to narrow down engineering changes within requirements topics, (2) a framework for recognizing
mechanical designs based on point clouds representations, and (3) an approach to incorporating
joint embedding to learn the correlation between requirements and CAD images. The study makes
use of several datasets, including three different heterogeneous industrial requirements documents,
ShapeNetCore, and synthetic image datasets. Using this framework, engineers can generate interpretable
results and determine the correlations of text-to-text and text-to-images for complex systems. The

outcome of this study can contribute to building digital threads and assisting designers to make informed



engineering decisions, track change propagation within and across domains, and reduce unanticipated

engineering changes.
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CHAPTER I

INTRODUCTION

Solving engineering’s grand challenges and achieving sustainable
development goals requires a broad spectrum of fundamental knowledge
and interdisciplinary understanding to develop innovative solutions for
industry 4.0. The engineering skills and knowledge necessary to succeed in
the manufacturing job market of the future will continuously evolve as new
knowledge is continually generated. The development of digital threads has
emerged as a compelling topic for industries and researchers to represent
information flow within complex systems. Thus, it has become more critical
than ever before to transform today’s design and manufacturing systems from
manufacturing physical products to relying on digital threads, which has led

to this study.

1.1 Motivation

Customer requirements management determines the success of today’s
industrial projects. Mismanaging requirements can cause more than half of

the project failures and financial lost (PMI, 2014). Requirements management



' Unstructured
requirements are presented
as text-heavy natural
language data in the form
of MS Word documents
or Excel spreadsheets.

It can be challenging

for system engineers

to handle ambiguous
requirements when
analyzing unstructured

textual data.

is a formal design process starting with customers’ needs (CNs) and outputs
a structured engineering design document. At every stage of the product
lifecycle management process, requirements management plays a crucial role

in addressing, adjusting, and verifying stakeholder expectations.

Requirement Management

Requirement management is a process of assisting designers in
documenting, analyzing, and tracking information throughout all product
lifecycle stages. As requirements play a vital role in product evolution,
organizations and industries across all fields experienced project failures
and wasted program dollars due to insuflicient resource allocation for
requirement management (PMI, 2014). Moreover, unexpected engineering
changes also contribute to project management failures (B. Morkos et al., 2012).
Researchers have a broad understanding of requirements management and the
type of representations and reasoning involved. In this chapter, requirements
management refers to utilization of numerical models to identify and analyze
similar design criteria based on latent topics. Manual entry into requirements
management tools and the traceability of requirement changes still need to be
improved for current industrial practice (Kropsu-Vehkapera et al., 2009).

The ability to establish requirements correlations and track engineering
changes throughout the product life cycle is necessary to the success of a
complex design. As engineering design and manufacturing systems become
increasingly sophisticated, more unstructured requirements documents are
collected through the iterative design process (L. Wang et al, 202r1).

1

Unstructured requirements ' often contain domain-specific knowledge

and concise information (C. Chen et al, 2021), making it difficult to



understand and manage engineering changes. Extracting and analyzing useful
design information from large unstructured data requires extensive manual
intervention and communication, resulting in a human task that is taxing
and prone to errors (Hein et al., 2018; B. Morkos et al., 2012). To address
these challenges, this study examines several topic modeling approaches for
generalizing requirements documents into topics that will assist engineers in
understanding the structure of complex system with model-based systems

engineering.

Model-Based Engineering

As artificial intelligence advances manufacturing corporations, this
evolution redefines both industrial business model innovation and reforms
the manufacturing sector by introducing more data-driven decision making
for each step of the manufacturing process. One of the most promising
approaches, model-based enterprise (MBE)' , has shown its potential to drive
smart manufacturing by linking all sources of digital data through the product
lifecycle (Lubell et al., 2012). The global net value of the MBE market has
grown from $7.89 billion in 2017 (“Model Based Enterprise Report 2019
- Global Market Outlook 2017-2026 - ResearchAndMarkets.com”, 2019) to
$9.94 billion in 2019 (Global Model Based Enterprise Market - Industry
Analysis and Forecast (2020-2027) - By Deployment Type, Offering, Industry
and Region. 2020), and the forecast for the future market performance
is set at about $44 billion by 2027. Beyond upgrading the manufacturing
equipment, companies have sought a digital model-based network for higher
production efficiency and a profitable return on investment. Through

machine learning techniques, building the next generation of manufacturing

* Model-Based Enterprise
and Model-Based
Engineering are
indistinguishable terms. For
clarity, MBE is defined as

follows (Lubell et al., 2012):

o Model-Based Enterprise
refers to an
organization that
uses model-based

engineering.

o Model-Based
Engineering is a
strategy for product
development,
manufacturing, and
lifecycle while using
anetwork approach
(e.g., digital threads)
to connect

engineering activity.



3 The concept of digital
threads, as shown below,
includes link-data
methods and standard-
based approaches that
allow heterogeneous
data from a variety of
phases and systems to be
compared, synchronized,
and repaired across the

entire product lifecycle

(T. D. Hedberg et al., 2020)

networks will provide seamless product record-tracking and tracing capabilities
to all parties, from customers to government regulatory compliance agents
(Bajaj and Hedberg Jr, 2018; Davis et al., 2012).

The advances and implementation of MBE in engineering enterprises
present an opportunity to understand an area of design practice that has
been rarely explored. The MBE presents a unique opportunity to link all
digital data sources throughout the product lifecycle, allowing data to be more
adaptable to change even as manufacturing productivity increases to levels
previously unthinkable. Developing such a system would allow for the tracking
of design changes both upstream and downstream in requirements analysis
and computer-aided design (CAD). For instance, changes from requirements
can be subsequently realized in the CAD domain, and vice versa. Further,
consider how requirements in CAD may be realized in the requirement
domain. This is particularly important as requirements often serve as the
contractual agreement between parties, and thus all changes and decisions
need to align with that of the requirements. However, this is difficult to
perform as relationships between requirements and CAD are not formalized
nor fully realized. Often, it is dependent on experts to manually determine
the relationship. If this was automated, engineers and designers could make
informed decisions regarding requirements and CAD.

Note that the scope of this paper is set to develop the framework to
perform a future system within MBE. In this paper, we therefore present a
framework for research that will explore the links between requirements and
CAD. In the existence of a multilevel information framework of MBE, digital
threads * can be developed to synchronize data throughout the entire product

lifecycle (T. D. Hedberg et al., 2020). During the conceptual design phase (e.g.,



requirement management), design information, such as requirement changes,
can be classified into four categories and visualization can be performed to
determine the different change patterns over time (Giffin et al., 2009) with
the likelihood of change propagations (Clarkson et al., 2004). Researchers
can further predict the higher-order change propagations for a complex system
(B. Morkos et al., 2012). Further, requirements can be also analyzed by lexical,
syntactic, and structure analysis, and this approach has the potential to connect
with CAD (Z.Y. Chen etal.,, 2007). For the mechanical modeling (e.g., CAD),
most of the research focused on the applications related to graphics, analysis
of components, computer numerical control, and manufacturing processes
(Groover and Zimmers, 1983). Prior to this study, little research has been able to
establish the correlation between requirements and CAD models. By utilizing
machine learning techniques, engineering changes within requirements and
CAD analysis can be performed coherently.

Advances in smart factories, coupled with the disruptions of supply
chains, have created a turning point in manufacturing industries. With the
increasing application of machine learning in design automation, model-based
engineering (MBE) has become the new norm for handling manufacturing
data. Despite the improvement in manufacturing resilience, we have not
tully exploited semi-structured or unstructured data for design improvement.
How to process multi-source data to aid knowledge acquisition during
the design process has received attention in recent years from other
industry environments, such as the process industry (Mao et al., 2019), the
manufacturing execution system (Y. Wang et al., 2018), and the cyber-physical
system (Cheng et al., 2018). In response to this information gap, designing a

complex system would require the development of new tools and processes



(Castet, 2017). This means that domain experts should actively develop various

design techniques to resolve dynamic engineering change management issues.

Mechanical Designs

Using computer vision to recognize different objects and shapes has
become increasingly important in the field of manufacturing (Lyu et al., 2021),
autonomous driving (Kidono et al., 2011), and augmented reality (Alexiou
et al., 2017). To overcome certain technological limitations, many industries
have shifted from using 2D images to capturing 3D geospatial data. As
more data is being collected by various types of sensors, such as LIDAR, the
challenge of recognizing objects from point clouds has gained more attention
in recent years. In addition, the classification of targeted objects in a real-
world environment would require a more robust and computationally efficient
model (Uy et al,, 2019). In a manufacturing environment, segmenting a
point cloud into mechanical components or subassemblies can assist designers
in identifying objects as well as in detecting potential product defects in
advanced manufacturing. However, few approaches have implemented point
clouds into design manufacturing applications due to the limited availability
of benchmark datasets and the lack of algorithmic development. As a
result of the implementation of point clouds in design and manufacturing,
computer vision systems are becoming increasingly capable of recognizing
mechanical designs, geometric characteristics, and mechanical subassemblies
automatically. A more robust design tool will allow engineers to make better

decisions and achieve lean manufacturing by aiding engineering changes.



1.2 Challenges in Model-Based Enterprise

Analyzing data from a variety of sources presents its own set of challenges.
First, due to confidentiality, few design documents are publicly available
or can be used for benchmark datasets. Second, extracting meaningful
information from unstructured datasets is difficult. Unstructured data in
engineering design often takes the form of textual information, such as design
discourse (Gyory et al., 2020) or customer feedback (Song et al., 2020). Many
natural language processing techniques are often applied to retrieve useful
information from domain-specific data. In requirement management (RM),
the corresponding image datasets are rarely documented. To make up for the
missing information, image scraping is used to collect online images based
on the given requirements. With the combination of textual and visual
information, our study presents a framework for bridging the information gap
between unstructured requirements and synthetic image datasets.

Despite the potential advantages of promising technologies (e.g., MBE),
some barriers may hinder the transition (Nathan Hartman, 2018). One of the
challenges is to add a decision support layer in a local supply chain network
(Davis et al., 2012). Managing an entire information system requires a more
efficient business and operating model, which enables the model-based system
to manage automation, optimization, and decision-making across different
manufacturing infrastructures. Second, every organization employs various
product lifecycle management (PLM) tools/software to build a fully designed
model, and few companies can afford such integrated software shared with
their suppliers. In response, MBE software (e.g., Syndeia®) integrates different

domain platforms with various standard-based data, using digital threads.



* http://intercax.com/

products/syndeia/

The goals of Model-Based Engineering are data repair, synchronization, and
sharing; digital threads connect the information flow among all phases of
the product lifecycle (T. D. Hedberg et al., 2020). Furthermore, many
leaders of major manufacturing sectors accept the MBE concept and envision
that MBE can reduce the cost of the technology management process by
s0% and reduce time to market by 45% (Bajaj et al., 2016; T. Hedberg et
al,, 2016). In PLM, data management still lacks detailed techniques and
formal studies to support decision-making (J. Li et al., 2015). Therefore, this
paper proposes a fundamental framework for understanding the relationship

between requirement management and CAD modeling.

Research Challenges of Generating Digital Threads

Every design journey begins with requirements eliciting, analyzing, and
specifying design information to satisfy the needs of stakeholders. Especially
for complex systems, the large amount of engineering design documentation
collected and generated for a product can make it difficult to navigate
and retrieve specific correlations among the requirements (Saaksvuori and
Immonen, 2008). For creating digital threads, many NLP tools are employed
to tackle the challenging issues within design documents (Ball and Lewis,
2020; Gyory et al,, 2021; Joung and Kim, 2021; Saidani et al., 2021); however,
requirements documents present their own challenges when it comes to

obtaining information such as:

* Discovering, analyzing, and representing domain-specific design topics

from a small collection of requirements documents

* The extraction of useful information from sparse and high-dimensional

textual data


http://intercax.com/products/syndeia/
http://intercax.com/products/syndeia/

Depending on the requirement style, both functional and nonfunctional
requirements may contain various frequency distribution of domain-specific
terms. Current methods, however, are not adequate to capture the semantic
relationship among words with low lexical frequencies. As most requirements
contain few words, explicitly implementing NLP models may achieve limited
results. Therefore, the need for more robust models to manage requirements

in industrial applications has become increasingly important.

Challenges in Multi-source Data

Exploiting collected data from multiple sources is a challenging task that
must be accomplished to satisfy the requirements and ensure the success
of industrial projects. Various industries may utilize different formats or
standards for production and design. Often, manufacturers are unaware of
how to obtain and store design information (J. Li et al., 2015). Among the
stored information, many data-driven tools require the availability of large and
structured datasets. It is still difficult to fully exploit unstructured or semi-
structured data, including text, images, and video. To integrate unstructured
data into current PLM systems, more data-driven approaches should be

developed to provide cost-eftective solutions.

Data Challenges in PLM

Several major challenges of implementing PLM (e.g., product design,
manufacturing, and customer service) in manufacturing sectors remain. The
PLM front-end is a centralized network where vendors manage all product
information. Although data collection has grown rapidly, the “Big Data”

concept and technique still have limited application in the PLM domain (J. Li



et al., 2015). Due to the difficulty of integrating, sharing, and storing distinct
types of data, current solutions rely on software for managing, analyzing, and
simulating data. For instance, image files are often included with technical
notes in a folder tree sent to suppliers (David and Rowe, 2016). Often,
requirements exist as interface layers in PLM software, and it may be difficult

to provide designers with direct visualization.

1.3 Research Objectives and Deliverables

The motivation for this research can be categorized into four components,
as shown in Table 1.1. Each research objective is accompanied by a high-level
summary of the outcomes. Deliverables contain existing and ongoing papers
in the form of conference or journal proceedings.

The proposed study consists of two major stages: a requirement
management study and a CAD study. We aim to answer two research
questions for a given product: how to categorize requirement data into
topics and how to associate geometric models (e.g., CAD) with requirement
domains. First, an in-depth study is presented in Figure 1.1, which illustrates the
combined knowledge representation between requirements and CAD, where
digital threads correlate different design information throughout all phases of
the product lifecycle. For instance, the requirements might not necessarily
describe all the design details for CAD, and CAD component designs cannot
directly translate the design specifications back to requirements. Accordingly,
if requirement sentences and CAD data can be learned jointly, we hypothesize
that by converting natural language requirements into subspaces, we can
categorize requirements based on their semantic structures. Second, current

literature lacks a descriptive method to define the connectivity among CAD

10



learn the correlation
between
requirements and
mechanical images

improved
performance for a
fine-tune model

Objectives Outcomes Deliverable Dissertation
Investigate on how to | Estimate the Conference Chapter 3,
implement topic appropriate Paper (C. Chen | Section 3.2
modeling on number of topics etal., 2021)
requirements
documents
Explore different Analyze the Journal Paper | Chapter 3,
types of NLP model | optimal Section 3.3
combinations for combination of
representing models for each
requirements industrial
documents requirements

documents
Design a framework | Develop and Conference Chapter 3,
to cluster CAD evaluate a proposed | Paper Section 3.4
components into neural network (Mohammadi
mechanical model to classify etal., 2022)
subassembly point cloud data

into categories
Implement a joint Compare and Journal Paper | Chapter 3,
embedding model to | investigate the Section 3.5

Table 1.1: Research Objectives, Outcome, and Deliverables

components. However, by learning a joint representation, CAD parts can be

partitioned into separate groups while maintaining functional reasoning from

requirements.

1.4 Solution Overview

Many studies have modeled engineering changes using matrix-based

modeling as a general approach, such as the design structure matrix (DSM)*

(Browning, 2015; Eckert et al., 2004; Hein et al., 2018; Lee and Hong,

2017; B. Morkos et al., 2012; Tilstra et al., 2012), graph theory, and system

1I




Requirements Mechanical Design
(Text documents) (CAD)

--------- ===--={Technique ¥

Inter-cluster Intra-cluster
When there is an connections connections When changes occur
initial change of any in CAD modeling,
requirement, what is what is the upstream
the downstream effect effect to requirement

to CAD model?

model?

Figurer.1: A Flow Chart Of Coding Process To Build Digital Threads For MBE

5 A square matrix,

1
2
8
4
5
6

Element 1
Element 2
Element 3
Element 4
Element 5
Element 6

)
in which the oft-diagonal
elements represent the
dependencies between
elements. Diagonal
elements don’t contribute
significant meaning

(Browning, 2015).

modeling language (SysML), to manage the interrelation of complex system
requirements. When managing a complex system, design practitioners
can examine DSMs to track engineering changes and locate the related
requirements. The value of dependency relations depends on either rating
schemes (Browning, 2001; Helmer et al.,, 2010), keywords (Mocko et al.,
2007), scoring metrics (Yu et al., 2007), or attributes (Y. Chen et al., 2010).
However, converting requirements documents to a matrix representation
requires domain experts to interpret and maintain requirement changes.
In contrast, graph representations of complex systems are often used to
demonstrate how engineering changes affect their physical systems (Eckert et
al., 2004). Both direct and indirect graphs can analyze the likelihood of change
propagation and its downstream impact (Clarkson et al., 2004; Hein et al,,
2021; Keller et al., 2009).

For process-oriented applications, SysML simulates operations and
generates graph-based representations to trace engineering changes across

domains. Among the most common tools used in industry projects are Astah,

12



IBM Rational DOORS, NoMagic MagicDraw, IBM requirement quality
assistant (RQA), and Jama Connect (B. W. Morkos, 2012). Using these
tools, engineers can organize logical relationships among requirements, share
interpretable data among teams, and specify the capabilities of a system. Such
a process depends on intensive human efforts and specific domain expertise
at each design stage. Therefore, a more automated process is preferable
for developing a probabilistic model framework and understanding the
requirement correlations, which will provide additional relevant information
for designers to make informed decisions. Design practitioners can trace
requirement changes based on each subsystem and narrow down the potential

change paths.

1.5 Proposed Methods

One feasible way to improve requirements management is to use topic
modeling. Topic models are a type of statistical model used in natural language

processing (NLP) capable of discovering interpretable “topics” for textual

6 A ,
data. One prominent technique, latent Dirichlet allocation (LDA) ¢ (Blei A diagram of LDA’s

. . . . . . model architecture
et al., 2003) is studied extensively. LDA is a hierarchal Bayesian model for
is shown below
revealing the latent semantic structure of documents within a corpus based

on their semantics. The LDA approach, in contrast to other approaches, (}*@O—‘

o 8 z w N

such as word embedding, assumes that each corpus contains a mixture of
where topic-word and

topics and that the order is irrelevant. Each document is assumed to be N
document-word probability

a collection of topics, and each word contributes to multiple topics with disributions are computed
varying probabilities. These assumptions are also valid for requirements as part of the training
process (Commons, 2020).

documents, where documents can be randomly shuffled and then divided

into both training and hold-out sets. However, limited research is conducted

3



on applying LDA in requirements documents, though this process could
be problematic for generating differentiable and interpretable results. Other
models, such as word embedding with clustering, hierarchical Dirichlet process
(HDP), short text topic modeling (STTM), Gibbs sampling algorithm for
the Dirichlet multinomial mixture model (GSDMM), and hierarchical latent
Dirichlet allocation (hLDA), can also accomplish comparable results with
various assumptions. To avoid the need to make further assumptions for
design requirements, we have chosen LDA as a baseline model to study
design requirements. Thus, the scope of this study is to implement LDA
to requirements documents and determine topical representations for each
dataset.

Within many existing techniques for performing semantic analysis, LDA is
widely used to extract latent topics from a collection of documents (Blei, 2012).
The LDA is a generative probabilistic model that creates topics based on large
observations and predicts the topic composition of unobserved documents.
The number of interpretable topics is typically predetermined by domain
experts. However, LDA has limited performance for generalizing topics from
short documents with few words, such as tweets and Reddit posts. For short
sentences, several variations of LDA have been developed, such as short text
clustering (Qiang et al., 2020; Yin and Wang, 2014). For instance, the movie
group process analogy provides an insightful understanding of the GSDMM,
in which students can be clustered into K tables based upon their common
interests in movies. As each movie title can appear only once, the clustered
results strike a balance between completeness and homogeneity. As a result
of different model assumptions, both models can generalize words into topics

with varying levels of performance.

14



The emerging concept of identifying latent modules or subassemblies is
studied as an intermediate step for organizing changes within subsystems of
engineering products using unstructured data. To capture hidden topics or
semantic representations within design documents, a variety of approaches
in natural language processing can be utilized. As engineering changes
rarely occur alone, identifying changes in information within modules
could aid in narrowing the range of affected physical components. Several
early studies integrated DSM and clustering algorithms to determine the
modularity of product architectures (Jung and Simpson, 2017; Yu et al,
2007). On the other hand, other approaches have attempted to capture
latent modules from text documents. Early studies have employed a variety of
techniques, including term frequency-inverse document frequency (TF-IDF),
latent semantic analysis (LSA), non-negative matrix factorization (NMF), and
probabilistic latent semantic indexing (pLSI) (Ball and Lewis, 2019). To
overcome certain limitations of previously developed methods, latent Dirichlet
allocation (LDA) allows for analysis of design team communications (Gyory et
al., 2021) and product ecosystems (Zhou et al., 2020), mapping of authorship
networks (Guo et al., 2018), and filtering of key words (Joung and Kim, 2021).
As opposed to the previous approaches, LDA can generalize corpora based
on a predetermined number of word groups without relying on handcrafted
correlations. As the original LDA model fails to capture hidden semantic
similarity in short corpora, this study hypothesizes that the combination
of topic models with word embedding algorithms will improve overall
performance. Among the most popular word embedding models, sentence
embeddings using Siamese BERT-networks (sentence-BERT) is a transformer-

based neural network (Reimers and Gurevych, 2019), which is commonly pre-
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7 A product subassembly,

often represented as a tree
diagram, where the wheels
are the leaf nodes and have
three children (Kusiak and
Larson, 1995. Dependencies
are indicated by the edges.

8 Using an airplane as an

example in the Figure below,

the point cloud can
accurately represent
geometric models from
ShapeNetCore datasets.
Subsystems are represented

by colors.

trained on large-scale corpora for the purpose of learning general language
representations. Combining embedded knowledge from sentence-BERT with
topic modeling could provide a more robust representation of requirements
documents.

The different combinations of LDA and sentence-BERT will produce
interpretable correlations and visualizations between topics and words.
Using requirement topics as building blocks, engineers can further track
design changes using topic-word correlations, generalize the structure of
requirements documents, and predict the impact of forthcoming design
changes without collecting extra information. As a measure of the model’s
performance, metrics (coherence scores and silhouette scores) and human
judgment are used against three industry projects. The findings of this study
can provide valuable insights into tracking the propagation of engineering
changes in complex designs.

A product decomposition in mechanical design can be divided into
modularity of the product and structural decomposition (Kusiak and Larson,
1995). Compared to product modularity, structural decomposition focuses
on the breakdown of mechanical structures into parts and subsystems.
Subassemblies represent subsystems 7 that may consist of several components.
Few studies are conducted using data-driven approaches to identifying
subassemblies in product architectures. To create an intelligent model for the
automatic recognition of mechanical sub-assemblies for distinct designs, we
need to identify the various categories of objects first. In this study, a different
framework for recognizing geometric models is proposed using point cloud

representations °.
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A promising method for learning the correlations between requirements
and geometric models is to implement joint embedding, which is a machine
learning technique that captures the association between both types of datasets.
Early studies in this area employed different approaches to analyze texts and
images in relation to each other. The concept of correlating sub-images with
keywords (nouns and adjectives) was applied to predict the labels of new
images (Mori et al., 1999). Further, a multimodal Deep Boltzmann Machine
(DBM) model was proposed to learn joint distributions over images and texts
(Srivastava and Salakhutdinov, 2012). Convolutional networks have shown
their ability to recognize correlations within and between images and words
as further evidence of advancing vision models (Joulin et al., 2016). Difterent
deep convolutional neural network architectures were created to accurately
label images (Krizhevsky et al., 2012; G. Li et al,, 2020). As unforeseen images
may have unanticipated labels, an N-gram model approach was trained on
unlabeled datasets and predicted the possible labels for a testing set (A. Li
et al,, 2017). A contrastive language-image pre-training (CLIP) model was
recently developed to deal with out-of-distribution predictions by using zero-
shot learning (Radford et al., 2021). For typical image and text classification
problems, both training and test datasets are from the same distribution. In
contrast, the CLIP model uses a dot product to learn the joint embedding space
and perform zero-shot prediction on images with truly out-of-distribution
samples. Several pre-trained CLIP models containing general knowledge can
be further fine-tuned to learn domain-specific designs. Because of these factors,
we selected the CLIP model to learn the correspondence between requirements

documents and images.
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This work proposes a method to address the current information gap
of multi-source data issues within MBE. We present a model that can learn
domain-specific knowledge by building correlations between images and texts.
Harvesting a variety of unstructured data enables interpretable visualizations
for engineering changes, as shown in Figure 1.2. By using this method,

engineers can visualize the interconnections of subsystems and manage change

propagations.

AR
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Figure 1.2: A Conceptual Example Of The Use Of Multi-source Data In
Manufacturing

Propagating Engineering Changes Across Domains

A significant challenge during product lifecycle management is how to
automatically interpret and translate engineering changes into domain-specific
knowledge. One of the major obstacles is the absence of open-source datasets
that can be used to study the impact of design changes made to CAD models.
Little mechanical industrial design is available online and can be used as a
benchmark dataset. It is common knowledge that larger available datasets

would help to improve the performance of neural network models. In recent
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years, many popular datasets developed for computer vision have been used in
numerous fields, including IMDB-Wiki Dataset, ShapeNetCore, ImageNet,
Fashion MNIST, and CIFAR-10. Such datasets are gathered online and often
annotated by humans to ensure quality. In mechanical design, large-scale
datasets containing either 2D images or 3D CAD models associated with

multiple types of design information are highly desirable.

1.6 Research Questions

Each generated topic from LDA consists of a list of words with
corresponding probabilities, where designers can understand high-volume
requirements documents through generated topics.  Visualizing topics
correlated with requirement sentences can reduce human error (Cerpa and
Verner, 2009; Ullman, 1992) and improve design efficiency by organizing
corpora based on topics. Further, analyzing latent topics can contribute to
information tracking and developing digital threads across a product’s lifecycle
(T. D. Hedberg etal., 2020). Table 1.2 provides details on studying information
tracking by examining three fundamental research questions (RQs):

The results of this study have implications for requirement management
and the development of various phases of PLM. With the integration of our
proposed framework into digital threads, the CLIP model can create and
realize the connections between image and requirement data. By tracking
these correspondences, designers can track engineering changes across various
domains. Our findings could also impact engineering education for design
practitioners on how to infuse domain-knowledge into Al to gain an in-depth

understanding of complex systems. Further, this study could be expanded
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Research Question 1

RQ rx: Can design requirements documents be interpreted based on the
generated topics?

Hypothesis: Topic modeling may generate interpretable requirement topics
that can be verified by domain experts.

RQ 1.2: How can we determine the number of topics generated or interpreted
that adequately represent each requirement document?

Hypothesis: Depending on the perplexity and coherence values, the
appropriate number of topics for each industrial project may be determined.
RQ 1.3: Can generated topics accurately represent the subsystems in each
requirement corpus?

Hypothesis: By adjusting the relevance score, each requirement topic’s
quality can be improved.

Research Question 2

RQ 2.1: How to design a computationally efficient model for differentiating
a large database of 3D mechanical designs?

Hypothesis: The proposed model can detect various types of mechanical
designs by incorporating meta-learning and SAE techniques.

RQ 2.2: How to improve prediction accuracy for the proposed model?
Hypothesis: During training, different types of random noise can
be introduced into a point cloud dataset to achieve a greater level of
generalization.

Research Question 3

RQ 3.1: How to create a synthetic image dataset for representing the missing
mechanical design information?

Hypothesis: A image retrieval technique can be used to locate the most
relevant information.

RQ 3.2: How can transfer learning be used to establish correlations between
requirements and images of mechanical components?

Hypothesis: Using a pre-trained foundation model can serve as a starting
point for understanding domain-specific knowledge.

RQ 3.3: Can a fine-tuned model predict the most relevant sentences from
domain-specific requirements documents?

Hypothesis: A zero-shot learning procedure can test the correlation between
the most relevant image and the requirements.

Table 1.2: Research Questions and Hypothesis

to combine multiple data sources and improve PLM’s digital manufacturing

capabilities at an early stage.
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CHAPTER 2

RELEVANT LITERATURE REVIEW

To support the discussion in the remainder of this chapter, this chapter
generalizes the necessary background knowledge for building digital threads
under the framework of model-based engineering.  First, a literature
review regarding requirement management is reviewed and a research gap
is identified to demonstrate the importance of introducing topic modeling
in the development of digital threads. Second, topic modeling and word
embedding techniques are discussed in detail to support the development of

digital threads.

2.1 Requirements Management

Requirements play a critical role in the conceptual design phase, and
they are often presented as a list of documents containing product design
specifications/constraints (Hein et al., 2018; Pahl and Beitz, 2013). By
consulting stakeholders, users, customers, or suppliers, requirements clarify
design tasks and record the limitations for product development (Andreou

et al., 2003; Fricker, 2010; Nilsson and Fagerstrom, 2006). For a complex

21



system, testing and evaluating the complete requirements could prove
challenging (Bloebaum and McGowan, 2012; Giffin et al., 2009). Moreover,
the design is an iterative process, and any initial changes might result in
an unanticipated change propagation due to different representations or
insufficient communication among designers (Eckert et al., 2004; Kobayashi
and Mackawa, 2001; Ncube and Maiden, 1999). To predict the most likely
consequences, requirement propagation is defined based on their types and
purposes (Z. Y. Chen et al., 2007; Z. Y. Chen and Zeng, 2006; Giffin et al.,
2009). Much existing commercial software (e.g., IBM DOORS (Eriksson
et al., 2005) or JAMA') and many research tools (e.g., ARCPP (Hein et
al., 2018), ROM Client (Z. Y. Chen et al., 2007)) can manage requirement
repositories; however, their functionalities are incapable of representing the
CAD models. To address this challenge, this study describes a scheme to cluster
requirements as groups, using a spectral clustering method. If successful,
this work would reduce the workload related to requirement documents and
miscommunications among design engineering teams.

Document-based requirements are written in a specific format to
avoid ambiguity and ensure testability for reflecting stakeholder needs.
Requirements management consists of requirement elicitation, analysis,
specification (Jiao and Chen, 2006), and verification. In requirements analysis,
the goals include improving engineering processes such as requirements
classification, prioritization, negotiation, or change propagation. One of the
key issues in requirements analysis is the confirmation management (CM)
topic evaluators list (Kapurch, 2010), where designers must verify and trace
each design change manually. Visual analysis of requirements with topic

modeling could assist in identifying and inspecting all appropriate changes.
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Functional and Non-Functional Requirements

Engineering changes happen at different levels of requirements, which
can be generalized as functional requirements (FRs) and non-functional
requirements (NFRs) (J. Summers and Morkos, 2013). A requirement
hierarchy structure is often used to present the FRs as operational and
technical requirements, where each technical requirement must trace back
to an operational requirement (Cellucci, 2008). The concept of modeling
requirements by topic can assist engineers in predetermining the range of
requirements that may be affected during requirement management. This
allows designers to visualize the topic composition and identify the relevant

FRs or NFRs based on their domain knowledge.

Current Study Progression Based on the literature on requirements
management, this study falls within the domain of requirements analysis. We
initiated requirement management studies in our research group by managing
various industrial projects (B. Morkos et al., 2010; B. Morkos et al., 2012). As
a result of the initial study, correlations of requirements are often modeled
using handcrafted features. To improve change traceability, an automated
requirement change propagation prediction tool (ARCPP) is developed to
track engineering changes within requirements documents automatically. As
engineering changes are volatile in nature, the following study estimated
information changes across nodes to measure requirement volatility (Hein,
2018). An advantage of having such a tool is the ability to measure which
requirements are likely to lead to the most changes. This study, however,
adopts a different approach by narrowing down the range of requirement

changes using topic modeling (C. Chen et al,, 2021). Rather than narrowing
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down the range of engineering changes manually, the designer could track
changes based on pre-assigned topics. As a next step in this area of research,
it is imperative to leverage transfer learning by implementing large foundation

models for tracking and identifying engineering changes.

Engineering Changes in Product Llifecycle Management

The engineering change process involves the creation, review, and approval
of engineering change requests (ECRs) and engineering change orders (ECOs).
Many research efforts have explored the development of tools for managing
changes in reengineering processes using DSM-based methods. A literature
review reveals the change prediction method (CPM) (B. Morkos et al., 2012)
can capture requirements relationships using higher-order DSMs to track
requirements changes and anticipate change propagation. Building on selected
keywords, NLP techniques could predict engineering change propagations
on vastly different design projects (B. Morkos et al., 2014). This finding
has led to the current investigation of all words in textual information using
topic modeling, to provide an alternative to the existing requirements tracing
techniques that are based on DSMs.

The static DSM (e.g., affinity matrix, A € R™™" ) represents the internal
relationships among the requirements of a complex system for potential change
propagations (Browning, 2001; B. W. Morkos, 2012). Each element of DSM
defines a document or unique word. The off-diagonal component reveals
the dependency of the pairwise comparison between any two subcomponents.
Within DSM, various techniques can analyze and categorize requirements into
subgroups/sub-diagonal blocks based on the concepts (words) (Danilovic and

Browning, 2007; Y. Huang et al., 2012; Qiao et al., 2017; Yang et al., 2013). Since
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requirements can be generalized into a set of concepts between similar contexts,
this study approaches requirement management with the aim to reduce the
dimensionality of the dataset using a different clustering method.

Requirement management studies the areas of documenting, analyzing,
and prioritizing technical design information. For developing a complex
system, many existing approaches build the correlations among requirements
to better understand and predict the propagation of information changes.
However, the process of developing a topic layer to narrow down requirement
change propagation has not been thoroughly studied. The purpose of
this study is to improve the generation of design topics from requirements
documents. This proposed framework explores different combinations of
topic and word embedding models to determine which setting can extract
the most relevant design information for design topics. To understand the
reasoning behind this framework, the following section provides relevant
background information and topic models on requirements management
based on three industrial projects.

This study was prompted by earlier research on requirements management.
As requirements documents are collaboratively developed based on difterent
domain knowledge, tracking engineering changes within a domain can be
problematic. Different techniques were employed to elicit requirements (B.
Morkos and Summers, 2009). As the project progresses, the evolution of
requirements significantly affected the success of the team (Joshi et al., 2019; B.
Morkos et al., 2019; ]. D. Summers et al., 2014). One of the most challenging
aspects of requirement analysis is managing changes. There is evidence that
requirements may not always correlate well with other populated design

documents within a project (B. Morkos et al., 2010). Such discrepancies may
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result in information loss during the propagation of engineering changes. An
ARCPP tool has been developed to simulate the affected requirements based
on keywords as each engineering change propagates through requirements
(Hein et al., 2015; B. W. Morkos, 2012). Additionally, other methods
such as centrality measures (Htet Hein et al.,, 2017) and neural networks
(B. Morkos et al., 2014) were used to assess the properties of requirement
networks and to compare prediction accuracy. In contrast to FRs, a case study
demonstrated that engineering design decisions are often influenced by NFRs
in the automotive OEM industry (Shankar et al,, 2012). As a result of the
high complexity of design change propagation, a volatility measure is designed
to determine how engineering changes react in the following four predefined
scenarios: multiplier, absorber, transmitter and robust (Hein et al., 2021). To
reduce the risks caused by unexpected change propagation, the topic model
approach generalized requirements documents into interpretable groups from
which propagation can be estimated (C. Chen et al., 2021). However, the
propagation of requirement changes should result in the realization of the
physical components, and these connections are not well understood. For
developing such correlations, this study examines various aspects of the RM
process within PLM.

Distribution management is a process for approving engineering changes
for documents within PLM (Saaksvuori and Immonen, 2008), where
engineers spend 15-40 percent of their time searching and checking information
within PLM systems. During the change verification process, requirements are
used to ensure product design integrity and target performance. At every stage
of the product lifecycle, the configuration of customized products requires

making difficult trade-oft decisions to comply with customer requirements.
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These decisions are critical to the successful completion of complex projects
(Giflin et al., 2009). In addition to decision making, the success of the product
also depends on the allocation of appropriate resources for requirements
management.

A requirement risk is a potential mismatch between stakeholder
expectations and the outcome of a project. With the integration of RM
tools into PLM (Violante et al.,, 2017), a product-centric approach becomes
increasingly critical to trace design information related to the physical product.
Such connections within PLM’s subsystem can be classified as intra-model
or inter-model connections (T. D. Hedberg et al., 2020). By enabling digital
threads, engineering changes can be propagated across subsystems through
these connections. In recognition that solving engineering changes alone
can be viewed from many different perspectives, the leading practices can
be divided into three categories: design teams (Terwiesch and Loch, 1999),
computer-based tools (G. Huang and Mak, 1998), and model-based systems
(Madni and Sievers, 2018). Different disciplines have different approaches
to handling the challenges posed by passing design information to other
domains. Recent merging problems have included how to learn and represent
various types of data or how to improve user interface interoperability. Several
perspectives on RM are presented in the following sections to minimize

requirement risk.

Existing Tools for Analyzing Requirements Changes

Often, companies adapt existing designs of products or machines to
reduce the high costs and risks of developing new products while meeting

customer needs (Cross, 2021). As part of the product development process,
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companies strive to bring the product to market as quickly as possible (Ulrich,
2003). Therefore, understanding the structure of existing documents and
reusing such textual correlations can effectively assist engineers in redeveloping
products and mitigating unexpected changes during the early stages of design.

The requirement management involves eliciting (B. Morkos and Summers,
2013), analyzing (Browning, 2015), specifying (Shankar et al., 2010), and
verifying stakeholder needs. Requirement hierarchy and traceability are two
major aspects of requirement management (Cellucci, 2008; Hirshorn, 2017).
The requirement hierarchy indicates the level at which a set of requirements
should be verified (e.g., from system to subsystem level or from operational
to technical requirements). In confirmation management, requirement
traceability refers to the ability to manage changes within the hierarchy of
requirements throughout the entire life cycle of a product. The changes
are frequently bidirectional, as engineering changes may be propagated either
upstream or downstream. Automating the process of tracking requirements

changes within a requirement hierarchy remains an open challenge.

Latent Semantic Analysis

Early work often makes use of natural language techniques for
investigating requirements changes within design documents. One of
the most popular methods is Latent Semantic Analysis (LSA). LSA is a
statistical technique to study the semantic and contextual reasoning of text
documents (Deerwester et al., 1990; Foltz et al., 1998; Hofmann, 2013).

Text Preprocess. Text preprocess is an operation to transform every text
into its canonical form. Since requirement documents contain many non-

standard words, a standard preprocess is necessary for LSA to realize the digital
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contents. Lowercase, tokenization, lemmatization, and punctuation have
been included in this preprocessing step using Python Spacy Package. Since
some of the high-frequency words might still offer some values in representing
the structure of requirements, only certain stop words have been eliminated
under scrutiny. We also assume nouns, verbs, adverbs, and adjectives have
equally important roles in capturing the connections among requirements;
LSA analyzes those words all together. For instance, Table 3.6 shows the

difference before and after this preprocessing.
Table 2.1 & Table 2.1: One Example Of Requirements From The Project 1

Original Requirement:
2.2. Each station shall be able to accommodate casing length of API Range
Three from thirty four feet to forty eight feet.
After Pre-process:
station able accommodate case length api range three thirty
four foot forty eight foot

After the text preprocesses, the trimmed requirements have been used
as inputs for LSA for further analysis.  Typically, both bag-of-words
(square matrix) and LSA (least square matrix) can represent the structure of
requirement documents. However, the bag-of-words model is often employed
as a sparse matrix with a high sparsity, and it can be computationally expensive
since each word represents one dimension. For a large requirement document,
the bag-of-words model has often encountered the curse of dimensionality
issues. Instead, the TF-IDF model can calculate the weights for every single
unique word (e.g., feature) corresponding to each document. Based on the TF-
IDF scores, the final result shows the importance of each word for different
documents and can describe the correlations among requirements with a
low sparsity. Furthermore, N-gram models could also improve accuracy by

including unique phrases for each concept. Since both of the projects contain
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mainly bigram terms (e.g., manual inspection, lifting mechanism), an n-gram
range can potentially improve model performance for LSA.

LSA generates concepts based on correlations between a set of documents
and their words. There are four major procedures, as follows (Fu et al., 2013;
Landauer et al., 1998):

(1) For constructing a word-by-sentence matrix, each row (sentence)
refers to one requirement sentence, and every column contains a unique
word. A standard NLP preprocessing procedure, including tokenization,
normalization, and feature extraction, can reduce the noise for the training set.
Based on the occurrence of each unique word to each requirement sentence,
a Term-Frequency (TF) records the total score within the word-by-sentence
matrix.

(2) A Term Frequency - Inverse Document Frequency (TF-IDF) is a
method to reduce the effect of high-frequency words in natural language (e.g.,
“a” and “the”) (Jones, 1972; Rajaraman and Ullman, 2011). Since TF shows the
occurrence of each term, IDF offsets the weight of common terms from TF. A
reweighing and IDF-Smooth function can avoid zero divisions.

(3) Since latent semantics is based on spectral clustering, taking (a
truncated) Singular Value Decomposition (SVD) of the affinity matrix (A) can
compute the corresponding eigenpairs. The result of this matrix factorization,
L = UXVT, calculates that the columns of U and V7 are the eigenvectors
for the word-by-sentence matrix. ¥ is a diagonal matrix with non-zero singular
values. Therefore, finding the K largest eigenvectors could eliminate the noise

and approximate the solution of the optimal cut in Equation 2..2.

L =U % VT (2.1)
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then it can be approximated by a truncated representation with & components,

k
L= Z uiov; (2.2)
i=1

where m is the number of requirements, n is the number of unique words, and
k is the predominant number of singular values.

By adjusting the optimal number of % values to create a filter, we could
reduce the noise from datasets. One way to determine the k& value is to
use the Power Method by computing the eigengap of each eigenvalue until
convergence (Mavroeidis, 2011; Ng et al., 2002; Zelnik-Manor and Perona,
2005). After sorting the kth largest eigenvalues in descending order, we
used eigenvectors to determine which words are similar to each other for
each concept. Then we can list and compare the p number of common
words/phrases to determine for each intrinsic concept. Other methods to
group similar words/data can be determined by using Bayes’s theorem (Fu et
al., 2013) or k-means (Ng et al., 2002; Von Luxburg, 2007) to construct each
group.

(4) In comparison to any two sentences from a DSM (a sentence-by-
sentence matrix), evaluating eigenpairs or computing the cosine similarity
kernel can extract the hidden content from requirement documents with
similar terms. Analyzing the eigenvectors of the word-by-sentence matrix is
a common technique to study the connections among each sentence through
unique words. Likewise, cosine similarity is another approach to measure the
similarity between documents, and it could compute coherence values ranging
from independent to correlative with -1 to 1, respectively. The value o indicates
that the two documents are orthogonal in vector space and that they contain

no shared words.
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Spectral Clustering

To generalize topics for design documents, spectral clustering can be
potentially combined with LSA. In graph theory, graph partitioning is one of
the most widely used techniques for data analysis, with applications ranging
from image processing to text mining (Polanco and San Juan, 2006; Wu
and Leahy, 1993). The goal of a graph partition is to separate the graphs
and maximize the distance of within-group connections while minimizing
the number of between-group connections. Conversely, the separated
groups possess the most dissimilar “patterns” (Von Luxburg, 2007). Instead
of calculating the total cost of edge weights, another partition method,
normalized Ncut, computes the minimum cut cost as partition criteria (Shiand
Malik, 2000). Normalized spectral clustering is then used for approximating
Normalized Ncuts (Mavroeidis, 2011; Von Luxburg, 2007).

Engineering requirements can be mapped into undirected graphs, while
the value of affinity matrices (e.g., DSM) can represent the edges of graphs. For
a given graph, each vertex represents a requirement sentence or a unique word,
and the edges define the similarity between any two vertices (Wu and Leahy,
1993). The similarity could be measured by using LSA or different distance
metrics (Xing et al., 2003; Zelnik-Manor and Perona, 200s). Typically, data
samples exist in a high-dimensional feature space. Spectral methods can convert
the high dimensional data sets to eigenspace and compute eigenvectors of the
graph’s Laplacian to derive clusters (Chung and Graham, 1997; Keogh and
Mueen, 2010; Ng et al., 2002; Zelnik-Manor and Perona, 2005). By analyzing
the eigenvectors we can discover the optimal number of groups. To choose

the leading K eigenvectors to separate the clusters well, the SVD is used with
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the K-means algorithm (Bach and Jordan, 2006; N. Liu and Stewart, 2010; S.

Wang and Rohe, n.d.).

System Modeling Approaches

MBE has been widely embraced by major organizations in the industry
(Lubell etal., 2012). A survey has verified that MBE improves the entire system
lifecycle compared to the traditional drawing-based process (Bajajand Hedberg
Jr, 2018; Rangan et al., 2005). It is important to note that MBE describes a real-
time-three-dimensional digital information exchange across through product
design, and it generalizes the product lifecycle into four sections: (1) product
requirement modeling in complex systems, (2) mechanical design models
in product data management (PDM), (3) Computer-Aided Manufacturing
(CAM) models based on MTConnect data, and (4) quality inspection reports
in (check) the Quality Information Framework (QIF) derived from the Quality
Management System (QMY).

The current approach to identify possible problem areas and estimate
the range of engineering changes within subsystems requires domain experts’
judgement supported by different modeling tools (McLellan et al., 2010). The
international council on systems engineering (INCOSE) defines model-based
systems engineering (MBSE) as a formal modeling approach for supporting
the design, analysis, validation, and verification of system requirements. In
contrast to document-based information exchange, MSBE utilizes domain
models as a primary method of exchanging information. Based upon Unified
Modeling Language (UML), System Modeling Language (SysML) (Haskins
et al., 2006) is one of the popular modeling techniques for determining

logical architecture. Through the representation of requirements, behavior,
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structure, and parametric correlations of the system, the SysML can facilitate
decision-making activities, such as requirements analysis or architectural
design. For instance, with the help of a requirement diagram, designers
could view, understand, and track the propagation of changes across different
specifications. Implementing SysML can assist engineers in detecting errors,
defects, and potential problems in industries such as automotive (Nouacer et
al., 2016) and avionics systems (Gregory et al., 2020).

The electromechanical equipment of today exhibits many characteristics
of complex systems. Current practice of analyzing system-of-systems problems
often requires a combination of software (SysML) and domain experts to
identify, solve, and verify the relations between physical components and
functions (Eng et al., 2017; Merkeberg Torry-Smith et al., 2013). However,
tracing the engineering changes using traditional graphical representations of
the requirement management software may not accurately represent the higher
order change propagation. For modeling such change behavior, the DSM can
be utilized to predict engineering changes in requirements documents. Such
correlations are typically many-to-many in nature, where engineering changes
propagate between high-level requirements (operational requirements) and
low-level requirements (technical requirements) (Cellucci, 2008; Hull et al.,
200s5). Rather than graphically represent information for each requirement,
DSM maps correlations using handcrafted features designed by domain experts
(Browning, 20155 B. W. Morkos, 2012). Through interpretable correlations,
engineers can track changes in requirements documents.

Furthermore, as requirements are constantly evolving throughout a
project, maintaining a large requirement management system can be

challenging (B. Morkos et al., 2019; B. Morkos et al., 2010; J. D. Summers et
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al., 2014). To overcome this problem, ARCPP has been developed as a tool
that predicts requirements changes in real time by using the physical (nouns)
and functional (verbs) patterns derived from each sentence (Hein et al., 2015;
Htet Hein et al,, 2017; B. Morkos et al., 2012). As compared with other
approaches, ARCPP addresses the challenge of unanticipated requirements
changes within requirements documents. Other than predictive models, many
graphical packages and SysML models have helped engineers gain a better
understanding of processes and visualize the relationship between engineers’

products and stakeholder needs.

Requirements in Smart Manufacturing

For smart manufacturing to achieve higher production, higher quality, and
cost-effective rates, unstandardized or unstructured data such as requirements
must be reevaluated (L. Wang et al.,, 2021). With the integration of data
science and manufacturing, the direction of requirement managementin PLM
will undergo a paradigm shift. Future cloud manufacturing (CMfg) will
be dependent on customers’ service requirements (Tao et al., 2015), such as
decentralized production 3D printing. Users will choose from multiple cloud
services based on their needs, and the service will ofter the most optimal options
to reduce the cost.

A blockchain-based PLM system is proposed to improve data security,
allowing individual designers to store decentralized design documents across
multiple stakeholders (X. Liu et al., 2020). Design information, including
text, images (e.g., drawings) and 3D model requirements, will be stored in
cloud databases. Upon adding a new block to the network, all systems from

stakeholders will automatically verify and update synchronously based on
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historical records. As design manufacturing requirements continuously evolve,
the direction of product requirements will increase in variety, quality, and

service while maximizing the satisfaction of customers.

Requirement Datasets

There are three in-house industrial requirement datasets implemented in
this paper. First, project 1 is designed for a manufacturing company to design,
program, and install threading line equipment. It contains seventeen general
sections varying from general descriptions to technical specifications. Second,
project 2 depicts the design specifications of yarns on a spool through an
automated creel system. In the textile industry, creel is designed to hold a comb
of yarn. The project 3 consists of the design of an exhaust gas recirculation
bypass flap with an accompanying electrical design. It is important to note
that each project consists of unstructured natural language data containing
different sentence lengths and vocabulary embedded with domain-specific

knowledge.

2.2 Topic Modeling

LDA is a generative probabilistic model introduced (Blei et al., 2003) for
representing discrete data, commonly in the form of a collection of documents.
LDA arose as an improvement upon Hoftman’s probabilistic latent semantic
indexing (pLSI) model (Hofmann, 1999); whereas pLSI only provided a
probabilistic model at the level of topics, LDA incorporates an additional
probabilistic model at the documents level. LDA assumes that each document

in a corpus has a hidden, underlying structure. Each word is generated by first
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randomly selecting a topic according to the requirement’s topic composition
and then randomly selecting a word according to the chosen topic’s word
composition (Blei, 2012). Every document is modeled as a mixture of k
latent topics, where each topic is defined by a multinomial distribution over
N unique words (Blei et al., 2003). This study will implement LDA in the
previously unexplored domain of requirements documents.

After values for o, 3, and k are assigned, topic modeling algorithms
can identify the most likely topic composition for each requirement in
a requirements document. Usually, either variational or sampling-based
methods (Blei, 2012) are used to solve the LDA inference problem. For this
study, we use collapsed Gibbs sampling (CGS), a widely used sampling-based
method. CGS is a Markov-chain Monte Carlo method first applied to LDA
(Griffiths and Steyvers, 2004). We use CGS to iteratively determine the most
appropriate topic for each word given 1) the two Dirichlet hyperparameters,
2) the requirement’s current distribution over topics, and 3) the distribution
of that word over topics for the entire requirements document. CGS
accomplishes this by approximating an intractable sum, known as the posterior,
over a set number of iterations (Blei, 2012). While this paper utilizes
and presents the mathematical algorithms derived from CGS, a rigorous
mathematical description of the sampling is detailed here (Griffiths and
Steyvers, 2004; Porteous et al., 2008; Xiao and Stibor, 2010).

A fictitious example presents how LDA works to depict the hidden
topic structure for 3D-printer requirements in Figure 3.20. The topic and
word simplexes contain Dirichlet distributions of topic compositions for each
requirement and word compositions for each topic, respectively. In the topic

simplex, each corner represents a topic, and each dot represents a requirement.
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The multinomial distribution of each requirement over these three topics can
be visualized as the proximity of each dot to the three corners. The included
histogram indicates the probability values corresponding with the example
requirement’s proximity to each topic. The hyperparameter, «, influences
how requirements are dispersed throughout the simplex. For values of o
smaller than one, requirements are more likely to be focused around one of the
three topics, and when « is set equal to 1, requirements are evenly distributed
throughout the simplex. In the word simplex, the hyperparameter, [, is
similarly used to model vocabulary compositions for each topic. The charts
below the word simplex indicate the distribution of words for each topic.

Once a hidden topic structure is identified, designers must interpret an
appropriate label for each topic based on its distribution over words. Our
example in Figure 3.20 includes LDA’s resulting word distributions for each
topic, with topics initially labeled as Topic 1, Topic 2, and Topic 3. Then,
designers could interpret Topic 1 as “Printer Head,” Topic 2 as “Extrusion
Settings,” and Topic 3 as “Build Material” based on the proportions of
each word in the topic. These interpretations are subjective and should
consequently be performed by domain experts. Note that the number of
topics and words will not be equal in practice; typically, there are many more
words than topics, resulting in greater differentiation between each topic’s
word composition than is seen in this example. Additionally, words from the
example requirement that would typically be included in the LDA process,
such as “printer,” “rate,” and “buildup,” are ignored for simplicity.

After obtaining results, LDA’s performance must be evaluated. Perplexity
and coherence are applied as measures, which respectively assess the

generalization of a trained probabilistic model to an unforeseen sample (Teh et
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Figure 2.1: Conceptual Example Of Hidden Topic Structure

al., 2007) and the semantic similarities among words. Perplexity is commonly
used to evaluate linguistic models, with a low score indicating a high degree of
generalization. Intuitively, lower perplexity in LDA represents a more robust
generalization performance. Contrary to perplexity, coherence tends to align
well with human judgment and is often used to determine the number of
topics. To ensure the effectiveness of the results, domain experts validate the
generated topics.

Within many existing techniques for performing semantic analysis, LDA
is widely used to extract latent topics from a collection of documents (Blei,
2012). The literature indicates that LDA overcomes some limitations of
precursor thematic analysis models, such as TF-IDF, LSI, pLSI, and NMF
(Blei, 2012; de Paulo Faleiros and de Andrade Lopes, 2016; Gyory et al., 2021).
In LDA, each document is assumed to be a collection of topics, and each
word contributes to multiple topics with varying probabilities. The LDA is
a generative probabilistic model that creates topics based on large observations

and predicts the topic composition of unobserved documents. The number of
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interpretable topics is typically predetermined by domain experts. However,
LDA has limited capabilities for generalizing topics from short documents
with few words, such as tweets and Reddit posts. Several variations of LDA
have been developed, such as short text clustering (Qiang et al., 2020; Yin
and Wang, 2014), to enhance the performance of topic modeling in smaller
datasets. The Gibbs sampling algorithm for the Dirichlet multinomial mixture
(GSDMM) (Yin and Wang, 2014) is a variation of LDA. The movie group
process analogy provides an insightful understanding of the GSDMM, in
which students can be clustered into K tables based upon their common
interests in movies. As each movie title can appear only once, the clustered
results strike a balance between completeness and homogeneity. As a result
of different model assumptions, both models can generalize words into topics

with varying levels of performance.

2.3 Relevance to Design Research and Practice

Improvements or automation to requirements management could change
how requirements are elicited, documented, and verified.  Currently,
requirements management includes the documentation of requirements with
minimal tracing and exists mostly within its own domain of requirements
(e.g., it does not build relationships with design tasks or activities outside
of requirements). Further, understanding requirements from a topical
perspective may provide designers and managers with a mechanism for
ensuring requirements completeness.  Topics may serve to appropriate
requirements into pertinent design groups. For instance, a suspension team

could receive requirements related to components of shock absorbers.
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In design research, LDA is studied in design group cognition (Gyory et
al., 2020), idea generation (Ahmed and Fuge, 2018), and product attributes
(Joung and Kim, 2021). The concept of topic generation can also present
a mechanism for requirements automation that can be performed early in
the design process and does not require specific designer expertise once
when managing the requirements documents. In doing so, topics (and their
associated requirements) could determine resource allocations and inform
design-space exploration. Designers can further interpret latent stakeholder
needs and interests based on the generated topics to determine engineering

requirements and improve project success.

2.4 Overview of BERT Architecture

Integrating a pre-trained embedding model enhances the quality of the
design topics and improves the model’s overall performance. BERT is a
transformer-based bidirectional model used for natural language classification,
question answering, language inference, and sentence similarity tasks (Devlin
etal,, 2018). BERT models are typically trained by using more than 3.3 billion
words retrieved from open online libraries, such as Stanford Natural Language
Inference (SNLI) (Bowman etal., 2015) and Wikipedia articles (Dor etal., 2018).
For a sentence similarity task, BERT model would require n(n—1) /2 inference
computations. By adding a poolinglayer at the end, sentence-BERT overcomes
this limitation, resulting in computations that are equal to the number of
sentences analyzed. To improve performance, sentence-BERT models are
pre-trained on Wikipedia and NLI datasets and fine-tuned on STSB datasets

(Reimers and Gurevych, 2019).
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Numerous studies have evaluated the knowledge that pre-trained BERT
models can extract from large linguistic datasets. BERT can encode the
general knowledge in both syntactic and semantic representations (Lin et al,,
2019). The concept of syntactic knowledge relates to the relationships among
words to form a meaningful sentence. The BERT model encodes linguistic
information as hierarchical structures as opposed to linear structures to create
syntactic dependencies. However, this knowledge dependency has not yet
been fully understood. On a higher level of abstraction, the self-attention
mechanism represents partial syntactic structure via attention weights. Using
these attention heads, a syntactic tree can be built, often packed inside a [CLS]
token, to solve a prediction task. The notion of semantic knowledge concerns
the meaning of words and sentences. Similar to convolutional neural networks,
the lower layers contain low-level features, while the higher layers represent
semantic features (Jawahar et al., 2019). Incorporating a pre-trained Sentence-
BERT model provides general language representation to facilitate syntactic
and semantic comprehension of requirement documents. As pre-train BERT-
based models can handle a range of tasks, relying solely on the sentence-BERT
model may not be sufficient to capture design topics from domain-specific
requirements documents. The idea of combining LDA and Sentence-BERT

can mitigate the disadvantages of using a single model.

2.5 Techniques for Supporting Joint Embedding

Besides textual documents, other types of data can also be linked and
jointly represented with requirements. There are times when different types

of data might not be properly collected or saved during the product design
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process. To compensate for this loss, a synthetic image dataset can mimic real-

world data.

Image Scraping

A digital thread is more than just digital transformation - it is the ability
to extract useful information from different types of data sources. The use of
image retrieval techniques could potentially contribute to building such digital
threads and to correlating images and text, which are widely used in social
web applications. As image data may not always be available, image retrieval
is used to search and collect online images. Image retrieval can be divided
into three categories: text-based image retrieval (TBIR), content-based image
retrieval (CBIR), and semantic-based image retrieval (SBIR). For example,
search engines like Google rely on TBIR systems (van Gemert, 2003). Through
a query, text-based retrieval can be simplified into a keyword-based search, and
the returned results can be visualized as images with semantic similarity (Datta
etal., 2008).

Combined with TBIR systems, web scraping is a technique which can
collect information from Google. Such scraping tasks include reading HTML
links, image files, and audio records (Mitchell, 2018). The challenge of
collecting information online involves complicated website structures and bot
access as known as the Completely Automated Public Turing test to tell
Computers and Humans Apart (CAPTCHA). Many libraries are built to
aid designers to automatically download images based on queries, such as
the Selenium, the Google-image-download, and the Beautiful Soup libraries.

These tools allow users to search and modify the raw content through
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appropriate parsers using Python. Based on targeted image URL links,

information is downloaded for further analysis.

2.6 Point Cloud Classification

Among the major challenges of classifying 3D models is the improvement
of algorithm efficiency and real-time execution. Several deep neural networks
have been developed to address this issue, including PointNet (Qi, Su, et al.,
2017), DGCNN (Y. Wang et al., 2019), and SimpleView (Goyal et al., 2021). As
aresult of its unified architecture, PointNet utilizes the permutation invariance
of points and processes each independently with a symmetric function that
aggregates the features. EdgeConv is a block introduced by DGCNN that
exploits both local and global shape properties for each point as topological
information. In SimpleView, 3D point clouds are converted into 2D depth
images by utilizing a projection-based method. Generally, deep neural models
require alengthy training period and are dependent on a number of parameters
to achieve higher accuracy. To date, these techniques do not convert feature
space into semantic embedding space for the classification of 3D models.

Current literature of automatically perform object classification or part
segmentation has mainly focus on deep learning approaches (Bello et al.,
2020; Y. Liu, Fan, Meng, et al, 2019; Y. Liu, Fan, Xiang, et al., 2019;
Qi, Su, et al, 20173 Qi, Yi, et al., 20r7; Y. Wang et al,, 2019). The
disadvantages of deep learning approaches are expensive to train and the hidden
weights are not interpretable. Many shallow learning techniques using feature
extraction can be implemented in point cloud applications to develop more
computationally efficient models and overcome certain model limitations.

Semantic autoencoding (SAE) is a technique for learning project functions

44



from feature spaces to latent spaces (Kodirov et al., 2017). SAE is a zero-shot
learning technique that scales large-scale datasets by computing the Sylvester
equation "°(Bartels and Stewart, 1972). In point-cloud representations, this
approach has been widely implemented and is a solution to the problem of
recognizing 3D objects.

Recent advances in computing technology have made it possible
for manufacturers to combine point clouds and 3D computer vision
techniques to systemize domain experts’ knowledge for building automation
systems. Current electro-mechanical systems are capable of recognizing 3D
characteristics of objects ranging in size from nanometers to kilometers. For
smart manufacturing applications, each data point in a point cloud contains
spatial information that provides precise position information. ~While
there are many innovative algorithms for processing 2D images, 3D object
recognition has not yet been fully explored. With high precision models,
designers can quickly identify objectives or mechanical sub-assemblies, detect
manufacturing defects (Lyu et al., 2021; Nouacer et al., 2016), and reconstruct
CAD models for reverse engineering purposes (Vafaeesefat and EIMaraghy,
1999). This study is primarily focused on object recognition to build such a
framework. Further, the work could lead to an automatic system to detect

mechanical subassemblies.

Mechanical Geometric Modeling

Geometric modeling has a significant impact on the design and
manufacturing of products. The paradigm shift from engineering drawings to
computer-aided design models has significantly changed the way engineering

design products are manufactured and analyzed. The use of CAD and
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computer-aided engineering (CAE) has become common practice in the
fields of design, manufacturing, and quality inspection. By visualizing virtual
products during the early design phases of a product, CAD models can assist
in ensuring high quality and accuracy. Many 3D representations, such as point
clouds, 3D meshes, and voxels, are developed to study existing structures as 3D

CAD models become more prevalent in engineering applications.

Computer-aided Modeling

Since the 3D CAD model replaced engineering sketches/drawings, digital
documents have improved the reusability, accessibility, and quality of
engineering model designs (Frechette, 2011; Karima et al., 1985; Veiszetal., 2012).
3D CAD representation contains a set of distinct parts, such as geometric
objects generated as CAD format, including completed product components
and assemblies (e.g., product materials and manufacturing information) (T.
Hedberg et al., 2016; Wardhani and Xu, 2016). In industrial practice, design
engineers interpret system requirements and create CAD models for every step
of the product lifecycles. Any product design modification would result in a
time-consuming procedure to mitigate potential system failure (B. Morkos et
al., 2012). Inresponse, our goal is to associate CAD models with corresponding
requirements and reduce the liability of changes in a complex system. To
numerically represent CAD models, different designs can be represented using

a number of geometric techniques.

* Voxel are often viewed as 3D pixels for volumetric data, where 3D
ShapeNet (Wu et al., 2015) extract information from 2.sD depth images

to recreate the 3D shapes using cuboids. The advantage of voxel provides
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the flexibility to generate high accuracy 3D building block for object

recognition.

* 3D mesh is another method to visual objects in terms of polygons with
vertices, edges, and faces. High-fidelity models require many polygons,
which increases memory usage. It is common for mesh representations
to be sensitive to irregular elements, making them difficult to edit and

analyze.

* Point clouds contains a finite number of dots (e.g., including the values
of each point for X, Y, Z coordinates) to represent a 3D object. Typically,
point clouds data are collected using Lidar scanner or can be converted
from other types of data, such as OFF or STEP files. In practice, point
clouds data are often implemented for its high accuracy and low memory

usage.

Point clouds are computed efficiently by converting the data into a
common standard format such as HDFs. In most point cloud benchmark
datasets, such as ShapeNetCore (Yi et al., 2016) and ModelNet4o (Wu et al,,
2015), 1024 random points are sampled for each model and normalized into
a unit sphere. An individual point contains only (x, y, z) coordinates, and a
label identifies the component groups. A comparison between two different

datasets is shown in Table 2.2 below.

# of Classes  # of Samples  # of Parts

ShapeNetCore 16 16,881 2-6
ModelNet40 40 12,311 -

Table 2.2: A Comparison Of Two Popular 3D Datasets

Clustering in Computer-aided Model. The goal of clustering CAD

models is to match the subcomponents from requirements. Research in this
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area has paid little attention to building an appropriate number of clusters
(e.g., sub-assemblies) corresponding to requirements. In the current practice,
online outsource cloud platforms enable people to manually label CAD
components and to have these labels verified by domain experts for the purpose
of building machine learning datasets. Since the mechanical design space is
vast, recognizing different types of CAD subassemblies can be challenging
and requires a large amount of data to train. Aside from the challenges
associated with building such datasets, there is also the issue of matching
the CAD subassemblies with the corresponding requirement concepts (e.g.,
topics). Particularly, we realized that since requirements might not explicitly
describe how designers should create each small component for CAD models,
and a mismatched groups could occur. As a result, building a model-based

approach remains the most practical solution.

Meta-Learning

Meta-learning (Finn et al., 2017) consists of learning multiple tasks
simultaneously to train a model without adding any additional parameters. In
comparison to a standard stochastic gradient descent (SGD) method, meta-
learning updates gradient parameters based on the number of tasks. Asa result,
this step requires an additional backward pass to compute Hessian-vector
products using various Python packages. As an extension to the original study
of K-shot learning settings, zero-shot meta-learning has gained popularity in

recent years (Mohammadi et al., 2019).
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Joint Embedding

As digital threads become more prevalent in industry, computer vision
techniques are making their way into other fields, such as manufacturing. Joint
embedding learning involves mapping different types of information, such as
images, texts, speech, and video, into a common latent vector space. The most
common research challenges occur in the areas such as bi-directional image
and text retrieval (Faghri et al., 2017; L. Wang et al., 2018), visual question
answering (Antol et al., 2015), and image captioning Karpathy and Fei-Fei, 2015.
Previously, Canonical Correlation Analysis (Gong et al., 2014; Hardoon et
al., 2004) is used to find the linear combination of image and textual data
that maximizes the correlation between image-text pairs. Using this method,
correlations can be built between images (e.g., engineering drawings or photos)
and text documents (e.g., requirements documents, interview dialogues, or
project descriptions). However, this approach can present correlated image
and text features at a high memory cost. A variety of loss functions were
developed to overcome this problem, including margin-based loss (Frome et
al., 2013), bi-directional ranking loss (L. Wang et al., 2018), triplet loss function
(Schroft et al., 2015), and multi-class N-pair loss (Sohn, 2016).

A joint embedding model, CLIP ", which is trained on 400 million images
and texts from publicly available datasets, uses supervised zero-shot learning.
The zero-shot learning approach is characterized by the fact that no classes
are presented during testing that were presented during training (Socher et al.,
2013). As the CLIP model can be boiled down to image and text embeddings
during training, this structure allows diverse types of neural networks to
be applied to the image and text encoders. To scale down the number of

parameters, the image encoder typically employs either the vision transformer
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(ViT) (Dosovitskiy et al., 2020) or ResNet (He et al., 2016). Several common
building blocks are used in the construction of a text encoder, including the
BERT or transformer-base models (Sanh et al., 2019). The BERT model
supports a maximum sequence length of s12 tokens, while the transformer
model truncates the sequence length to 76 tokens to improve computation
efficiency. Depending on the type of application, a simpler model might
achieve a better generalization performance. Meanwhile, a cosine similarity
is then calculated among images and texts and evaluated with a chosen loss
function, such as cross-entropy loss. As a part of testing, the zero-shot CLIP

model provided more reliable results for out-of-distribution image prediction.
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CHAPTER 3

RESEARCH METHODOLOGY AND

FINDINGS

Based on the current literature review, this chapter discusses three

proposed methodologies for contributing to digital threads.

* Requirement Topics: A topic modeling approach is implemented on
requirements documents and creates a layer of topics to assist designers

in determining engineering changes.

* Point Cloud Classification: A neural network model is proposed to

recognize point cloud representations in mechanical design models.

* Joint Representation: Through the training of a foundation model, this
approach extends the previous two domains knowledge by learning the
associations between requirements and CAD. By fine-tuning CLIPs,

this approach can leverage both domain-specific and general knowledge.

The goal of this chapter is to present details of the implementation of

requirements topics, point cloud classification, and joint representation of
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diverse types of information. Each section begins with a description of the

proposed methodology, followed by a discussion of the results.

3.1 Experimental Study

Before the implementation of LDA, a proof-of-concept example is carried
out to show that topics can be extracted from requirements documents
using LSA. For project 1, we only considered technical requirements that are
related to the mechanical components and operations, such as operations,
general equipment concepts, benefits, description of equipment supplied,
and welded tube scope of supply with a total of 247 sentences. The
rest of requirements are considered as non-technical (description of project,
project specifications, shipping, installation and start up, documentation,
training, project management, design planning and design control, acceptance,
preliminary project schedule, delivery, notes and exceptions, warranty
containing a total of 104 sentences) requirements.

Based on the technical requirements, the word-by-sentence matrix has
been converted into eigenspace, and each concept contains unique words (p
= 8) that have a tight intrinsic relationship, as displayed in Table 3.1. Upon our
initial observation, certain unique words repeat several times within or across
concepts. For instance, the word “pipe” is often used as “pipe stops” or refers
to a physical pipe. Also, most of the unique words captured within those five
concepts are nouns, and previous research has indicated that nouns are more
likely to instigate propagation in requirements than verbs (Hein et al., 2015).
For each concept, we hypothesize that a frequency analysis could determine the
most correlated requirements. We tested this idea by comparing each concept

with requirements. For instance, we assumed the designers need to modify
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the “station” design in concept 1. In this case, “station” refers to a threading
station in Req. s..1o.1. After the keyword search, we randomly picked four
requirement sentences, including “station,” shown in Table 3.2. The results
of each sentence contain a different number of unique words highlighted
in bold. Since Req No: 5.1.4.2.3.3 and 4.2.8.2 have less than three unique
words from concept 1, we can design a minimum threshold (6 > 4 words)
to determine the affected requirements. For Req No: 5.1.4.2.3.3 and 4.2.8.2,
those two requirements have been influenced by the initial requirement change
from the cognitive perspective. This finding has been verified with ground
truth. Furthermore, since Req No: 3.49 contains key words from concept 2
as well, there will be many overlaps when cluster requirements into groups.
If each concept can represent one dimension, the total number of concepts
will depend on the parameter, K. Therefore, mapping the entire requirement

document could be computationally expensive and hard to visualize.

Table 3.1: The Five Concepts Generated From LSA With Its Unique Words
For Project 1

Concept1: Concept2: Concept3: Concept 4: Concepts:

end lift blast next member

pipe stop end blast vroller structural member
station pipe end end return weld structural
box pipe stop blast station allow pipe  structural

box end fix end next station  station frame
threading  fix pipe radial allow return

lift paddle radial roller  pipe frame

stop paddlelift  transfer transfer construct weld

In the same manner as with project 1, project 2 has been subjected to the
same threshold value. The results of the calculation are displayed in Table

3.3. For demonstration purposes, a unique word “stainless” has been chosen
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Table 3.2: The Selected Requirements Highlighted With Unique Words From
Concept1

Req No: Descriptions:

5.1.4.2.3.3  After pipe is in position within blasting station, radial rollers rise and V-rollers lower.

4.2.8.2 HMI provides overall view of status of line and station by station statuses.

3.49 Pipe is lifted off of adjustable pipe stops at thread inspection table and lowered onto station V-rollers
by paddle lifts.

5.1.10.1 Station design is identical to box end threading station.

from concept 2 shown in Table 3.4. Based on the content of this project,
“stainless”, “stainless steel”, and “steel” have similar meanings and can be
observed in all four selected requirements. After a frequency analysis, the first
two requirements are most related. Thus, with any modification on stainless
material, both first and second requirements are more likely to be affected.
Note that not all the unique words are useful, and there is some noise due
to incorrect preprocessing, such as “end end” in concept 3. For this reason,

a verification step is necessary to ensure the quality of each concept.

Table 3.3: The Five Concepts Generated From LSA With Its Unique Words
For Project 2

Concept 1: Concept 2: Concept 3: Concept 4: Concept s:

datum equipment list design maximum supplier

limit follow stainless requirement equipment system approval

document datum stainless steel engineering including following
document steel datum list including limit approve sub

limit display datum requirement maximum personnel following purchaser
follow display follow  engineering document  personnel safety prior start

drawing equipmentitem form safety including purchaser approval
purchaser document  fit securely form limit supplier equipment  start fabrication

A proof-of-concept study conducted on two industrial projects has
demonstrated that terms with intrinsic correlations can be grouped together
using LSA. Following this study, we implemented LDA to study the latent

topics from the requirement documents.
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Table 3.4: The Selected Requirements Highlighted With Unique Words From
Concept 2

Descriptions:

Major equipment items supplied by the Supplier shall be fitted with a securely mounted stainless steel nameplate displaying
the following information: Manufacturer’s model and type number.

Fabricated stainless steel shall be L-grade stainless steel unless otherwise noted.

Yarn guides shall have a one inch outside diameter ceramic eyelet on a stainless steel plate Specifications for eyelets will be
provided by Purchaser.

Stainless steel and plated surfaces shall not be painted, unless otherwise specified.

3.2 Implementation of LDA

As LDA is efficient in uncovering latent topics, a case study will present
each requirement project’s topics distribution. This section describes the
method of the case study in three phases: (1) requirement text preprocessing,

(2) LDA collapsed Gibbs sampling, and (3) hyperparameter tuning for LDA.

Phase I: Data Preprocessing

As requirements documents vary in style and format depending on the
industry and company, the performance of topics modeling may differ for
each corpus. The requirements documents for three different industrial design
projects (named Project 1, Project 2, and Project 3) (B. Morkos et al., 2012) were
selected for analysis in this study. Project 1 involves designing, manufacturing,
programming, and installing threading line equipment and contains 350
requirements. Within the threading equipment, most stations share standard
mechanical components, which causes repetitive words. Second, Project 2
specifies the design of an automated creel system, which is a piece of equipment
used in the textile industry to secure yarn combs while weaving fabrics. The
Project 2 requirements document contains 160 sentences. Third, Project

3 describes electrical cabinets and enclosures with operator panel interface
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equipment and includes 247 requirements. Each project contains different
non-alphanumeric characters and various ratios of FRs and NFRs. Based on
the number of NFRs, projects can be sorted into 2, 1, and 3 in descending order.

A data preprocessing procedure is designed to reduce the noise for three
unstructured requirement datasets. This step is frequent practice in NLP
to improve algorithmic performance by filtering out the insignificant words

»

(Joung and Kim, 2021). Both stopwords (e.g., “shall,” “etc.,” or “must”)

« »

and non-alphanumeric characters (e.g., or “%”) are eliminated by using
NLIK’s package™. After randomly shuffling each document 10 times, the
remaining English words are lowercased, tokenized, and lemmatized to create
a vocabulary of unique words. As requirements are formal writing sentences,

each word assumes a single base form. A summary of each requirement corpus

is presented in Table 3.s.

Table 3.5: Requirement Corpus Statistics

Number of Avg. Tokens

Project ) . Tokens Vocab
Requirements per Requirement
I 350 119.38 £ 7.59 41782 793
2 160 204.00 & 6.00 32641 806

247 144.31 £ 13.47 35645 1051

Phase II: LDA Collapsed Gibbs Sampling

An LDA model (Blei et al., 2003) is applied for generating the requirement
topics after preprocessing the text data. In this study, each requirement
dataset is a corpus, and every FR or NFR is treated as an individual unlabeled
document. To solve LDA inference for a corpus in equation 3.2, the collapsed
Gibbs sampling method is applied to estimate the values of latent variables. A

word-topic matrix (¢,y) is initialized after assigning a random topic to each
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word based on multinomial distribution. For each document d, we draw a
random proportion from the document-topic matrix (64;) with the Dirichlet
parameter . As every word wg, from the document-word matrix has a
preassigned topic zgy, each iteration will compute and update the word-topic
matrix ¢p, topic probability array, and document-topic matrix 64, (Teh et al.,
2007), where ¢,,; contains the Dirichlet prior 5. A maximum of 200 iterations
is used to ensure model convergence. Then a perplexity measurement

is calculated to represent the performance of the model generalization as

M
Perplexity(Diest) = exp {% }, where M is the total number of
T Zud=1"Vd

requirement documents.

M Ny
p(la.3) =T [ st6da) ( T] 3 plemlbaptunzan.5) ) doa
d=1

n=1 zqn

As perplexity ratings do not always correspond to human intuition (Chang
et al,, 2009), we calculated the coherence score, C,, a measure of topicality
that can be interpreted by humans, by using the Genism package®, as shown
in Figure 3.5. The coherence score is calculated as the average of cosine
similarity, normalized pointwise mutual information, and Boolean sliding
window measures for the various LDA models. A higher coherence score is
more likely to correlate with human judgment and to produce meaningful

topics.

Phase III: Hyperparameters Tuning

This section adopts two different methods to estimate the appropriate
number of topics. First, a line fitting technique known as the L method
(Salvador and Chan, 2004) is explored for determining the optimal number of

topics. This procedure is defined by closely fitting two lines to the data, and the
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Table 3.6: After Tuning Both a@ And 3 As Control Variables, The Bolded
Number Indicates The Lowest Perplexity Value (Averaged Over Three Runs)
Fixed At Two Hundred Iterations For Project 1.

k=15

B=01 B=02 B=0.3

a=0.01 §2.30 65.10 80.94
a=0.1 71.65 97.80 115.40
a=0.2 106.78 117.43 139.14
a=0.3 105.53 135.67 153.37
a=04 117.36 150.61 172.42
a=0.5 127.49 139.20 189.60

intercept point indicates the estimated number of groups. This technique can
provide a quick estimation of the number of topics without adding additional
analysis. Second, one popular technique for finding the number of topics is
to vary the alpha values (e.g., « = 10/k, § = 0.1) (Griffiths and Steyvers,
2004; Jacobi et al., 2016). By varying the topic range from k = 10 to 100
with an increment of 10, the lowest perplexity value indicates the appropriate
number of topics on a hold-out set. Both methods are applied for each dataset
to estimate the number of topics, as discussed in Section 14. After fixing the
number of topics, a fine-tuned procedure has determined the best value for
botha = {a|0 < a}and § = {5]0 < B < 1}, as shown in Table
3.6. A method of relevance measure is then applied to improve the quality

of generated topics by balancing the ratio between the word-topic probability,

p(n|k), and the /if, 2 SZTIS) , which is a conditional distribution over marginal
distribution. The results of topics’ quality and interpretability are shown in

the following Section 14 by adjusting the experimental value .
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RESULTS AND DISCUSSION

After applying the same data pipeline to all three heterogeneous
requirements documents, this section discusses the findings of topic
visualization, the number of topics, and the quality of sampled topics. Project

1is presented as an example of a representative project with topic distributions.

Topic Visualization

To address the first research question of how to represent requirements
documents into topic structures, a graphical representation tool named
LDAuvis (Sievert and Shirley, 2014) provides an overall view of both topic and
word distributions for topic interpretation. Each circle in Figure 3.1 represents
a latent topic in a 2D subspace, while the topics that overlap share common
words. For each topic, the top 30 most relevant words are selected based on
their probability: the gray bar represents the overall term frequency in the
corpus, and the red bar indicates the high-frequency terms for that topic.

As requirements often use modal verbs (e.g., must), high-frequency words
are expected to appear frequently in topics and contribute little information
for most topics. For this reason, designers should also consider low-frequency
words for topic interpretation. In response, LDAvis provides a weighting
parameter, A, that balances this issue. Depending on the interpretation and
domain knowledge of each topic, the optimal A value and the actual number
of words to consider may vary.

The top 30 words from LDAvis can also be visualized as a WordCloud
based on their word probability distribution, as shown in Figure 3.2. Font size
indicates the probability of p(n|k), with the most relevant words having the

largest font. For instance, topic 9 can be viewed as a group of pipe dimensions

59



Slide to adjust relevance metric:(2) ; ; ; ‘ ; i

Selected Topic: [1

] [ Previous Topic ] [ Next Topic H Clear Topic ]

A=1 0.0 0.2 0.4 0.6 0.8 1.0

Intertopic Distance Map (via multidimensional scaling)

Marginal topic distribtion

2%

5%

10%

Top-30 Most Relevant Terms for Topic 1 (22% of tokens)

0 200,000 400,000 600,000 800,000 1,000,000

PC2
end [
station
threading _
box [N
pipe I
blast I
tine. [N
ey
Ly
pin I
paddle [N
inspection _
rotector _
it
sy
fixed -
onto [N
lower -
identical -
adjustable -
roll
design -
two [l
high Il
speed .
beam .
individual [l
radial .
blasting l
present l

S~

Overall term frequency
I Estimated term frequency within the selected topic

1. saliency(term w) = frequency(w) * [sum_t p(t | w) * log(p(t | w)/p(t))] for topics t; see Chuang et. al (2012)
2. relevance(term w | topic t) = A * p(w | t) + (1 - A) * p(w | t)/p(w); see Sievert & Shirley (2014)

Figure 3.1: Fifteen Topic Word Relations For Project 1

and units. It is crucial to use such topics when redesigning products for other

unit systems because requirements engineers can use such topics to identify all

units and ensure that the conversions are correct.
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Figure 3.2: Samples Of Generated Topics With Assigned Labels For Project 1
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Quantity of Topics

The second research question studies the appropriate topics that designers
should consider for each design. After performing topic visualization analysis,
designers must make a trade-oft decision for the number of topics, and then
manually assign labels to each topic in LDA. In general, select a higher number
of topics is preferable (Wallach et al., 2009). Choosing more topics is difficult
to interpret, and fewer topics cannot capture all the necessary design details.
Ideally, well-separated topics contain distinct word distributions orthogonal
to each other in a subspace (Arun et al., 2010), meaning that topics should be
diversified, and words should be distinct. We consider that the appropriate
number of topics depends on either the design intent or the interpretation of
designers.

Perplexity and coherence measurements are utilized to determine the
optimal number of topics. As increasing the number of topics decreases the
perplexity monotonically (Blei et al., 2003), we first adopt the perplexity scores
for different values of k in Figure 3.3. After a fine turning step, each methods
(e.g., L method and a = 10/k) was estimated at 10 and 20 topics, respectively,
as shown in Figures 3.3 and 3.4. In comparison to perplexity, the coherence
score indicates an optimal range of topics between 8 and 16 in Figure 3.s.

The optimal number of topics was determined by manually examining
the combined range from 8 to 20. We observed that the majority of the
NFRs closely overlapped each other, resulting in nearly half of the total
topics. Choosing more topics would further break down topics and reduce
marginal topic distributions, producing a more refined collection of topics.
For example, topics 1 and 4 in Figure 3.2 refer to threading and pushbutton

stations, respectively, while topics 3 and 6 represent lift and transter motions
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of the pipe. However, in comparing the distribution of words across various
topics between 10 and 15, some of the terms used in topics 3 and 6 had a similar
meaning to topic 3 in Figure 3.6, which may be regarded as a merging of topics.
This is because the number of topics affects the distribution of the word-topic
matrix, ¢, document-topic matrix, 6%, and the model parameters for the

LDA when fitting the data.

Validation Detailed topics may not always align with human intuitions or
provide valuable insights. Project 1, for instance, can be generalized into 9
different manufacturing workstations based on their functionalities by domain
experts. Ideally, each generated topic should correspond to a specific station,
but topic 15 performed relatively well when identifying three stations from
the predetermined range. That is because the common word “station” has
a relatively high co-occurrence count, such as “lifting station” or “threading

station.” Selecting a higher number of topics can further segment the topics
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into more stations. Several of the NFRs are composed of low-frequency words
and selecting fewer topics can lead to greater generalization of interpretable
results. Consequently, a tradeoft decision should be based on purposeful
interpretation for various corpora.

To validate the effectiveness of the generated topics, we compare the
results with the predefined topics (e.g., section titles created by the industrial
designers). Upon comparison, it appears that there are many overlaps
between the topics, which can be applied to extract information from complex
designs. As an example, one of the captured topics is “product warranty”.
It contains many details regarding the duty of manufacturers and standard
maintenance of products. In one of the subsections, “threading station”,
various characteristics (e.g., verbs and nouns describing pipes) have been
accurately captured. Other topics, such as “life pipe” shown in Table 3.6,
describe the same components despite a slight difference in the titles. As a
concept, such topics can accurately capture the categories as compared to the
design intents of industrial partners.

Furthermore, both Project 2 and Project 3 utilize the same approach to
demonstrate the robustness of the process when applied to different sets of
requirements written by different authors for different systems of varying
scales. Project 2 contains the highest ratio of NFRs, and project 3 consists
of mostly technical requirements; each project resulted in 12 and 11 topics,
respectively. The L method tends to estimate fewer topics, whereas the 10/cv
method may overestimate the number of topics and may require a fine-tuning
to obtain a stable result. The generated topics of Project 2 are also capable of
capturing some aspects of design information based on low-frequency words,

as shown in Figure 2. Similarly, Project 3 provides further details on several
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Figure 3.6: Ten Topic Word Relations For Project 1
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mechanical components based on FRs in Figure 3.8. In sum, the various ratio

of NFRs or FRs will affect the general outcomes of the topics. As the structure

of the corpus changes, design practitioners may adjust the ratio of NFRs and

FRs during data preprocessing to achieve the desired result.

drawing issuance

major

steel

contro. manuals

Wllftlng

sec gFoup -

manufa(lurer stainless O r clarification,appropriately

m e n t requirements block =

bu)ldng deslgn lug limited spare § supplier rerhngularstructural

l ug S su p p l e supervision™" a a g hard groundsupply

d
g purchaser allow™ minimum 45t foundation form thickness Substrate tubing
Topic 6: Topic 7: Topic 9:
Lugs Datasets Constural frame

ction jdetail

1zinc carbon

Creel? ardware
norma

ap;!’e(a)rancetubu la rsurface

o approval

critéfiaspindle

q metYSYStem e gMANIMizes  cldiccion Pﬁ!i‘é{ma?:ca esi H
w'
p p l :L e r g e S l g I l fabrlcatlon em g
S Skld
oL L ! 19 St 1 o
loaders
maximum s CIree bobbin | m.mstandardscompon;?ﬂm:cm
Topic 8: Topic s: Topic 1:
Personal protection Design criteria Supplier’s scope

ustry

cordanpe

Figure 3.7: Samples Of Generated Topics With Assigned Labels For Project 2

6s



green station lighting

teach

status

button Se€nso

sensor possible lprogra‘m
5 anel!
manuaplm
step i module need s ve
automatlcl I lo MQJ

. € ihfé‘"hm];i_;i

shi

error plc

operatersoftware

Topic 5:
PLC programming

low pectlon

1llummance difficult

Topic 1x:
Air valve

indicator ogeration dlsplay fault
module | Stati
ground 1ight hmi solid v Lthou[ total rob
Topic 9: Topic 3: Topic 7:
Indicator lights Manual operation Human machine interface
programs, ll htlng require bins
1nd1cator green station Cyllndemltm” Workstatlon
e 2 T.switches Vlsua eas ”
e 5 contrast Workbench Ex}’gw or 52
mmmmmmm 2 Ch.%cek({ W k
example, programmlng top

operatorm front

color ladder ground

Topic 6:
Equipment

Figure 3.8: Samples Of Generated Topics With Assigned Labels For Project 3
Quality of Topics

For RQ3, we assessed the quality of generated topics by hypothesizing
that high-frequency terms are not important for each topic. Repeated words
such as “part” or “system” may not convey relevant information for all topics;
therefore, the variable A from LDAVvis is used to balance the impact of high-
frequency words for a more meaningful topic interpretation. To illustrate its
effectiveness, we select the top three relevant words in topic 3 of Figure 3.6 as
an example. Designers may interpret topic 3 as the rolling motion of pipes
based on its first seven words. With \ = 1, the original top three most relevant

» «

words are listed as “pipe,” “station,” and “stop” based on their probability
in descent order. The words “pipe” and “station” are high-frequency words,
occurring in approximately 40% and 30% of requirements, respectively, for the
entire corpus. Conversely, “stop” has a relatively low overall term frequency
(a smaller red and gray percentage). By setting A = 0.8, the relevance score
of “stop” bypassed “station,” meaning the word “stop” can contribute more
information for topic 3 and aids topic interpretation. Per domain expertise,

“pipe stop” is a mechanical component commonly used to lift, roll, adjust,

and transfer pipes among stations. Thus, “pipe” and “stop” should be closely
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related. Depending on the domain knowledge, designers should incorporate a
different number of top words into each generated topic to enhance the quality

of the generated topic by selecting the most suitable A value.

3.3 Generalizing Requirements into Topics

Comparing to the previous section, this segment provides a framework
for generalizing design topics from requirement documents. This study
has examined several model combinations to improve the word quality
distributions for representing requirement topics. A data processing pipeline
in Fig. 3.9 consists of four steps: (1) A data normalization step involves
exploratory data analysis and preprocessing of the unstructured text into
tokens. (2) With the standardized inputs, different models can learn the topic-
word distributions or convert the words to vector representations as tokenized
inputs. (3) A concatenation step combines two different representations as
inputs for training an autoencoder. (4) The last step entails evaluating the

performance of the models and visualizing the design topics.

Requirements | . {
-BERT

Topic-Word
Distribution

Tokenized
inputs

Figure 3.9: Requirements Documents Processing Pipeline

Exploratory Data Analysis

This section provides a general framework for generalizing design

topics from requirement documents using both topic modeling and word
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embedding. A data processing pipeline in Fig. 3.9 consists of four steps: (1)
a data normalization step involves exploratory data analysis and preprocessing
of the unstructured text into tokens, (2) with the standardized inputs, different
models can learn the topic-word distributions or convert the words to vector
representations as tokenized inputs, (3) a concatenation step combines two
different representations as inputs for training an autoencoder, and (4) the final
step entails evaluating the performance of the models and visualizing the design

topics.

Phase I: Text Normalization

Exploratory data analysis (EDA) is a common preprocessing practice for
visualizing the main characteristics of datasets. An EDA involves identifying
potential anomalies, determining the correlations among features, reducing
noise, and determining the appropriate pre-processing steps for the data.
Utilizing three in-house industrial datasets (Hein et al., 2018; B. W. Morkos,
2012), this study first applies EDA to visualize the distribution of words in
each project’s dataset. In addition to differences in design, each project has
a different word count, containing 350, 160, and 247 sentences and 793, 806,
and 1,051 unique words, respectively. In all three projects, we visualized average
sentence length as a bar plot and estimated the Gaussian kernel density over the
histogram.

To improve the performance of topic modeling, a text preprocessing step
is used to identify recurring patterns of words within the text (Schofield et al.,
2017). Several steps are performed using the NLTK Python library', including,
for example: (1) spelling check, tokenization, and lowercase operation. (2) both

stopword removal and lemmatization. These procedures decrease the number
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of inflectional forms for each word and allow the subsequent model to focus
on more meaningful words. Typically, topic modeling with text preprocessing

yields better results for topic modeling.

Phase II: Topic Modeling

Two types of model analysis are provided by the design framework to
generate design topics using three industrial requirements documents. First,
we implement topic modeling, such as LDA and GSDMM. Secondly, we
implement mixed models, LDA_BERT and GSDMM_BERT, which we
evaluate and compare with the topic models. Using Sentence-BERT alongside
topic modeling provides additional semantic and syntactic information to
generalize requirements documents into distinguishable topics and to enhance
topics’ interpretability.

Following the text preprocessing step, LDA is implemented using the
Gensim package®. To solve Equation 3.2, Gibbs sampling method is used
to determine the posterior distribution for a total of M documents and k
topics. The optimal number of topics for each project was predetermined
in our previous study (C. Chen et al.,, 2021). Both o and 3 are Dirichlet
parameters. Each iteration, preconditioned on the topic probability 24, will
compute and adjust the new topic based on the probability distributions of
the word-topic matrix ¢, and the document-topic matrix 64, for every word
Wap. A coherence metric is used to evaluate the performance of the trained
model, which is then judged by domain experts. As compared to perplexity
values, the coherence score provides more meaningful interpretations for topic
modeling (Réder et al., 2015). Among the different coherence measurements,

C_visbased on the cosine measure, normalized pointwise mutual information
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(NPMI), and boolean sliding window. It ranges between o and 1. For
requirement documents, the higher the value, the more likely the result is to

be in accordance with human’s judgment.

p(Dle ) = 1 [ p(0alo) (ﬁ zp<zdn|0d>p<wdn|zdn,m) Wb (32)

n=1 zg4n

Similarly, the goal of GSDMM estimates the posterior probability of short
documents for each topic cluster in Equation 3.3 (Yin and Wang, 2014). In
contrast to LDA, the GSDMM model assumes that each document contains
only one topic. Fora given K number of topic clusters, Dirichlet multinomial
mixture (DMM) applies the Naive Bayes assumption, which holds that the
probability of each word occurring within a document is independent. The
topic mixture components follow a multinomial distribution over words,
p(z = k) = ¢ra. The predefined K number of topics serves as an upper limit.

As aresult, assigning a large number of clusters may result in empty clusters.

p(D) =Y _[]pwlz=k)p(z = k) (33)

k=1 wed

Phase III: Concatenation

Concatenation tensors are commonly used in machine learning to
represent features jointly. This study combines the output parameters from
the LDA and the sentence-BERT models through a hyperparameter, A, as
a weight. For instance, in project 1, the LDA word-by-topic matrix has a
dimension of 15 by 793, and the BERT embedding vector has a dimension of

793 by 768, X793x783 = A+ X793x15 B (1—=X)- X793x768- Asaresult, the joint
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representation includes both topic-word correlations and word embedding
information.

When selecting LDA_BERT or GSDMM_BERT options, an autoencoder
trick is implemented to generate encoding variables, which allows the model
to compress highly dimensional features into a lower dimensional space. The
ADAM optimizer is coupled with mean squared error during the training
process. After training and predicting on X793, 783, the model learns the
hidden representations of topic word distributions. UMAP (Mclnnes et al.,
2018) is used to visualize word-topic correlations as a plot. In comparison
to other dimension reduction techniques, UMAP retains both global and
local structure in terms of inter-cluster relationships. Based on the learned
labels, the plot can better visualize each design topic by calculating the top two
eigenvalues.

Overall model performance is determined based on coherence and
Silhouette scores. The Coherence score is directly evaluated for topic modeling,
and the Silhouette score is used to evaluate the quality of created topic clusters
(Lovmar et al., 2005). Silhouette score rates each design topic on a scale of -1 to
1. A value close to zero indicates that each data point has the same probability
of belonging to other clusters. Silhouette scores that are negative indicate thata
datapointis closer to its neighbor cluster than its own cluster. The higher value
represents a better graphical representation in which the average intra-cluster
distance of a data point is smaller than its inter-cluster distance. For each word
in a topic cluster (¢ € Cf7), Equation 3.4 computes the average distance between
the word, 7, with any other words, j, in the cluster, where d(i, j) represents
the Euclidean distance between any two-word pairs. However, Equation 3.5

calculates the intra-cluster mean distance between any word, 7, from cluster Cy
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to the other clusters C';, where C'; # C. Equation 3.6 measures how similar
a word is to its own cluster compared to other clusters. We have implemented

the Sklearn library of Silhouette scores for the average value of all samples.

a(1) = |CI — Z d(i, 7) (3.4)

JGCI i#]j

(i) = min = |OJ| Z d(i, §) (3:5)

(i) — H0) —ai)
max{ali), b(i)}

Phase I'V: Data Visualization

Heatmap plot is used to visualize both the LDA and GSDMM models.
The goal of heatmap plots is to determine the correlation distance™
between vocabulary and latent topics. Topics and words are then clustered
hierarchically using Euclidean distance in a subspace.

UMAP is a dimension reduction technique that enables the detection
of the topological structure of data by computing the top eigenvalues.
Comparatively to other PCA embedding methods (such as T-SNE), UMAP
can distinguish between different clusters of words based on their correlations.
The color scale represents the different clustering labels. In each project, the

autoencoder output is directly input into UMAP for visualizing cluster word

correlations.
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Results and Discussion

In this section, we first show the sentence length distribution for each
project in Fig. 3.10. Even though each industrial project was developed
independently, their average sentence length follows a similar pattern and falls
within a narrow range of 25 words. Few studies have explored how short text
topic modeling can be used to efficiently generalize requirements documents.
As a result, we first evaluate the model’s performance by using the GSDMM to

create topic-word correlations.
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Figure 3.10: Histogram Of Word Counts For Each Project
A topic-word correlation can be identified using either LDA or GSDMM.
First, we generate a hierarchically clustered heatmap representation using the
Seaborn package. Each topic is manually interpreted and assigned a label. In

Fig. 3.11, the legend determines the degree of semantic similarity between words
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and topics. There are two interesting findings regarding the correlations. The

first finding allows designers to prioritize EC propagation at the topic level.

» o« >

For instance, the top related keywords in topic 10, such as “pipe,” “stop,’
“position,” “project,” and “adjustable,” can be interpreted as relating to the
motion of pipes. The pipe stop is an object available at every station to
stop the rolling motion. During a redesign process for replacing pipe stops,
designers could pinpoint such keywords within each requirement sentence
for tracing engineering changes and verifying engineering change propagation
paths. Then designers could use hierarchical order in the heatmap to determine
which adjacent topics are closely related to a given topic. Consequently, each
EC within topic 10 could propagate to topics1, 3, 7, 9, and 12. According to Fig.
3.11, topic 10 is highly correlated with topics of 1, 3, 7, 9, and 12, because these
topics are also related to pipe processing.

The second finding occurs on the word level, where the color scale
represents the relevance within a topic. Words with a darker scale occurring
within a topic suggest a closer word-topic correlation. This can be useful
for tracking the change propagation of a specific component within a
complex system. Tracking a keyword as a starting point enables engineers
to narrow down the most related nouns and verbs strongly associated with
the component. For instance, based on the hierarchy diagram, the highest
frequency word related to “welded” is “tube” in topic 7. On the higher level,
the term, Welded Tube, is part of the name of a company and often correlated
to “installation” and “startup.” Based on the interpretation, the company has
a responsibility to install and configure certain equipment for this project. On
the topic level, topic 7 is directly linked to topic 9, where any EC can lead to

other responsibilities for the company, including the adjustment of “threading
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line” or “conveyor” systems. Note that most functional requirements are
closely associated with high relevance words, such as “pipe.” In contrast, the
non-functional requirements contain diverse and low-frequency vocabulary,
where the keywords are often displayed with a brighter color scale.

To enhance topic modeling performance, a pre-trained sentence-BERT
model is coupled to topic modeling to incorporate the general knowledge
for representing design topics. As topic models are evaluated by coherence
score, Silhouette score measures the topic clustering performance. Table 3.7
shows the model performance among LDA, GSDMM, LDA_BERT, and
GSDMM_BERT compared for all three projects. Each value is averaged over
five runs, and the highest scores are highlighted in bold. After combining
the sentence-BERT model with topic models, each project improves their
model performance to various degrees. In general, both LDA_BERT and
GSDMM_BERT outperform the topic modeling for better representing

design topics.

Table 3.7: Model Performance With Industrial Projects (averaged over s runs)

Project 1 Project 2 Project 3

Coherence Silhouette Coherence Silhouette Coherence Silhouette

LDA

GSDMM
LDA_BERT
GSDMM_BERT

0.4124 - 0.4156 - 0.4001 -
0.4751 - 0.5346 - 0.3856 -
0.5000 0.2881 0.5579 0.3730 0.4272 0.3812
0.5480 0.3987 0.5327 0.3766 0.3716 0.3538

In Table 3.8, the topic identified as threading stations are selected and
compared across different models. For each method, top ten keywords
are selected for evaluating the quality of the word distribution. Though
certain keywords are somehow related to threading stations, they are not
related to one another in this case. Such words are highlighted in red as

they are considered irreverent. For instance, LDA contains words, such
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as “pin” and “dope,” that have no semantic contribution to the topic. In
comparison with LDA, LDA_BERT elevates more relevant words, such as
“pipe,” and excludes “dope,” to improve topic qualities. In addition to LDA-
based models, GSDMM and GSDMM_BERT can also provide competitive
results by capturing slightly different aspects of pipe processing keywords. By
incorporating the sentence-BERT model, the pre-trained syntactic relations

between words can enhance the quality of each generated topic.

Table 3.8: Different Models’ Word Distributions Of Pipe Threading Stations
In Project 1

Models Top 10 words

LDA threading, end, station, line, box, pin, inspection, protector, dope, drift
GSDMM pipe, end, station, threading, box, stop, lift, roller, paddle, inspection
LDA BERT station, end, threading, pipe, box, roller, line, protector, stop, drift

GSDMM_BERT pipe, station, stop, end, threading, fixed, box, adjustable, roll, gravity

As multiple FRs and non-FRs can refer to the same topic, tracing the
topic to requirements can be difficult. To visualize the word distributions
for each topic, Figures 3.12 and 3.13 project words in a lower-dimensional
space. Each dot represents a unique word, and each word is assigned to one
of the topics with a distinct color. Each topic has a normalized percentage
value representing the ratio of its unique words to the entire vocabulary in
Project 1. In both figures, a sampled topic is selected for further discussion
and comparison. As the main theme of Project 1 pertains to the general
pipe manufacturing process, most of the topics are adjacent to topic 1 in the
subspace. The topic 1 in Figure 3.12 represents the threading pipe station,
which has many keywords associated with the functions of pipe stations. Topic
3 in Figure 3.13 focuses on the details of project timelines, which are closely
related to non-FRs requirements, including personnel training requirements

and responsibilities for different pipe stations. As the results are presented via
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From the perspective of engineering practices, this approach implements

documents.

a formal data pipeline to determine the design topic from the requirements
Depending on the size of documents and purpose, designers
can choose an appropriate method to generalize design topics with a low

computational cost. In topic modeling, a heat map plot shows the EC based on
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the semantic correlations among words for a smaller size design requirements
document. When dealing with complex system requirements documents,
utilizing topic modeling and word embedding can help visualize and interpret
intrinsic requirements correlations in a subspace. In accordance with domain
knowledge, initial requirements change to a mechanical component should
verify keywords within each topic. A subsequent change may propagate
to adjacent topics via different keywords, influencing the actions, functions,
characteristics, and behaviors of other components. Through the generation
of hidden topics, our proposed framework provides designers with a means
to better understand the structure of requirements for complex designs and
interpret the corresponding EC propagation.

There are two major conclusions to be drawn from this study. (1) This
research provides insight into how both topic modeling and word embedding
models can be used to improve the quality of requirements design topics. This
study suggests that a combined model can better extract topics from industrial
requirements documents and provide better model performance and higher
quality word distributions than LDA alone. (2) With predetermined topics to
narrow the scope of design changes, engineers could quickly identify related
requirements. Upon further development, this work can be integrated into

commercial requirement management software in smart manufacturing.

Limitations

As discussed above, both LDA_BERT and GSDMM_BERT have several
critical limitations:(1) Automatically determining the number of topics still
need to be explored. The current data pipeline can be combined with other

models to obtain the optimal result; (2) As many of the model hyperparameters
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are determined manually, a tuning procedure is required for finding the best
values while minimizing computational cost; (3) The entire process of tracking
engineering changes using requirement topics is not fully automated. After
addressing these issues, these results can then be combined with downstream

analysis to build correlations with geometry modeling.

3.4 Point Cloud Classification

This section focuses on how we can recognize mechanical subassembly
designs from given CAD models. To improve recognition of engineering
changes (ECs) in terms of mechanical components, this framework focuses
on developing an algorithm to classify CAD models in terms of point clouds
into predefined categories. Identifying the quality of mechanical design
automatically could lead to lean manufacturing in practice. Using this
proposed model, engineers can identify, correct, and verify the qualities of

mechanical components for various applications.

Meta-SeLL

Data. In the absence of an online benchmark dataset for the field of design
and manufacturing, this study utilizes a subset of ShapeNetCore datasets to
represent mechanical CAD designs. We implement a preprocessing step to
filter out CAD models with fewer than or more than three parts (e.g., sub-
assemblies). After narrowing the datasets from 17,775 to 7,555, we divide the
filtered models into 90% for training and 10% for testing. As shown in Tables
3.10 and 3.11, the 16 categories are reduced to 10 and a detailed breakdown

of each category is provided. There is only one model left in the motorbike
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category, which has been manually removed. The following calculations are
based on filtered CAD models. There are several techniques for injecting noise
into point clouds, including normalizing the data, randomly rotating for one
of the axes (x, y, z), translating coordinates randomly, and jittering the points.
Individual and collective tests of such procedures are conducted during the
training phase to improve the generalization performance for testing datasets.

The best combination is presented and discussed in the results section.

Table 3.9: Comparison of ShapeNetCore Datasets After Filtering (Number of
Parts =3)

# of Samples  # of Filtered Samples

Training: 15,990 6,805
Testing: 1,785 749
Total: 17,775 75555

Table 3.10: Breakdown of Training Sets By Each Category

Categories:  Labels:  # of Models

Airplane: o 471
Car: 3 257
Chair: 4 2,508
Earphone: 5 31
Guitar: 6 706
Lamp: 8 1,086
Pistol: 12 244
Rocket: 13 51
Skateboard: 14 102
Table: 15 1,349
Total: 6,805

Training.  The MetaSeL algorithm is comprised of two major
components, SAE and Meta-learning techniques, as shown in Figure
3.14. For each model, the SAE is calculated first to learn their semantic
representation. MATLAB is used to implement CPU parallel processing to

speed up the training process. Using the Sylvester equation, a 3-by-3 latent
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Table 3.11: Breakdown of Testing Sets By Each Category

Categories:  Labels:  # of Models

Airplane: o SI
Car: 3 31
Chair: 4 281
Earphone: 5 2
Guitar: 6 79
Lamp: 8 115
Pistol: 2 28
Rocket: 3 6
Skateboard: 14 II
Table: Is 145
Total: 749

matrix in semantic space is calculated and solved using the Bartels-Stewart
algorithm in Equation (3.7, 3.8). An example of a single model is shown in
Figure 3.15 which consists of 1024 points with coordinates (x, y, z) on the
left-hand side. Right hand side, 3 signifies that each point has a label that
belongs to one of the three pre-assigned parts. Figure 3.16 illustrates how we

iterate this process by computing the weights for each model,

T T _ T
Sf W+ )\XBX W= (1+XNSX (3.7)
C

where X € R™N is the input data with N feature vectors and d dimensions.
S € R**N indicates the latent representation of a linear autoencoder. W' €

RFxd represents the projection matrix while k& < d.

AW + BW = C (3.8)

Testing. For each test model, we use the same procedure to determine the
SAE first, as shown in Figure 3.17. We compare the cosine similarity between

the weights between the test and training sets to determine the object category
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Figure 3.15: A Conceptual Representation Of Calculating SAE For Each Cad
Model

for testing models. As a result, we select the model with the highest probability
as its label. The classification accuracy is calculated by comparing the most

likely label with the ground truth.

Results and Discussion

By using random shuffling (RS) in Table 3.12, we demonstrate that our
method is permutation invariant for the order of models. The result will
not be affected by random shuffling of datasets. We then demonstrate that
normalizing each model into a unit sphere to improve classification efficiency.
In accordance with the normalization procedure (N), a random rotation (RR)
is performed on one of the three axes (x, y, z) but the results did not provide
a significant improvement. As a next step, we test translation, jittering, and

combinations of these methods. In translation, noise is generated by drawing
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Figure 3.17: Model Architecture of MetaSel During Testing

new samples at uniform intervals based on uniformly distributed samples. As
aresult of jittering, each coordinate is subjected to a Gaussian noise with a zero
mean and a standard deviation of o.o1. In bald, the best results are highlighted

as the final recommendation.

Meta-SeL.: ‘ Accuracy (%)
Base : 93.19
Random Shuffle (RS) 93.19
Normalization(N) 95.59
N + RR(x — axis) 90.25
N + RR(y — axis) 93.59
N + RR(z — axis) 83.97
N+ RR(z,y,2) 88.38
N+T 95.99
N+ RR+T 77.03
N+J 95.95
N+J+T 95.46

Table 3.12: Comparison of Meta-SeLL Results with Various Noise Techniques

Meta-Sel’s base model with a normalization preprocessing step was
selected as one of the best results for determining accuracy for each category.

The accuracy of each category, as well as the average recall and precision, are
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shown in Table 3.13. Skateboards and earphones have the lowest accuracy across
categories. Skateboards have the highest misclassification rate, with seven of
them being classified as lamps. The results of the study show that certain CAD
objects may share certain characteristics, causing a misclassification error. To
investigate this further, we project all the training weights into latent space
using UMAP to compare their characteristics. In Figure 3.18, all 6,805 SAE
weights (e.g., 3-by-3 matrix) are projected in a subspace labeled based on the
number of categories. Ideally, objects within the same category would be more
similar to each other than they would be to features belonging to other clusters.
However, certain models have similarities between categories, which can lead

to misclassification.
Table 3.13: Comparison of Predicted Results by Categories

Categories: ‘ Training: Testing: Recall (%) Precision (%)
Airplane: 471 SI 94.11 96
Car: 257 31 93.33 96.55
Chair: 2508 281 99.64 98.93
Earphone: 31 2 50 25
Guitar: 706 79 98.73 98.73
Lamp: 1086 115 91.30 92.10
Pistol: 244 28 100 90.32
Rocket: 51 6 100 66.66
Skateboard: 102 11 36.66 66.66
Table: 1349 145 96.55 97.90
Total/Avg Result: ‘ 6,805 749 95.99 96.12

Meta-SeL’s performance is demonstrated by comparing it to Pointnet and
DGCNN algorithms on the same datasets and setups. Figure 3.19 shows that
our model provides a competitive level of accuracy. Our model calculates SAE
and cosine similarity simultaneously, resulting in high initial accuracy. Using

a variety of input datasets and different techniques, we demonstrate that the
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Figure 3.18: Projection of Training Weights into Latent Space Using UMAP
deep learning model will eventually bypass Meta-SeL and achieve a higher level
of accuracy.

Contributions. We argue that Meta-SeLL provides competitive results
with certain state-of-the-art models. The major contributions are summarized

as follows:

* Our model can reduce training time and provide high accuracy

predictions when new CAD models are added to the dataset.

* Meta-SeL is permutation-invariant for the order of models and can

produce consistent predictions.
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Figure 3.19: Result Comparison of Meta-SeL. Other Model Architectures

* Meta-SeL is sensitive to model input, and certain noise injection

techniques can improve its performance.

Limitations There are several limitations to the current version of the
model. (1). Our approach is capable of handling models with three parts at
present, thus different number of components of point cloud representations
should be explored in the future. (2). It is necessary to perform different
preprocessing treatments to distinguish the categories with similar geometry
characters and further improve the accuracy of classification. (3) Although
our shallow learning algorithm is effective in classifying each category, other

model architectures should also be developed to further reduce memory

requirements.
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3.5 Linking Requirements to CAD Images

In this section, we present a framework for recognizing the relationships
between images and requirements. To represent requirements documents’
physical components, we generate a synthetic image dataset from an online
database based on our in-house requirements document gathered from

industry. Figure 3.20 shows the pipeline of the proposed framework using a

fine-tuned CLIP model.
Keywords Image
Verification
Requirements Text T Image I Fine-tune Zero-shot
Document Preprocessing Retrieval CLIP Model Prediction

Figure 3.20: Pipeline Of Proposed Framework

Text Preprocessing

The purpose of a text preprocessing step is to extract the most relevant
information and use it as keywords for image scraping, because particular
words contribute more to connecting visual ideas than others. Our first
step is to eliminate all non-alphanumeric characters and stopwords (e.g.,
“shall,” “etc.,” or “must”). The remainder of the corpus consists of nouns,
verbs, and adjectives filtered by part-of-speech (POS) tagging. A previous
study determined that nouns and verbs can be used to describe the physical
architecture and functional characteristics of projects (Hein etal., 2018). In this
study, adjectives were also considered relevant to describe these components.

These keywords are stored and applied to search queries.
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Synthetic Image Dataset

An industrial requirement dataset describing the design of a pipe assembly
line is implemented in this study (B. W. Morkos, 2012). In total, 350
requirements are included, containing both functional and non-functional
requirements. Project details include topics such as design specifications,
project descriptions, equipment supplies, installation procedures, and
shipping. After text preprocessing, each sentence is reduced to phrases for
retrieving online images.

A version of the search model is implemented to scrape images from online
text searches. As the order of keywords does not significantly affect the search
results, queries are automatically sent to online servers to retrieve images as
a browser user. BeautifulSoup, Request, LXML XML toolkit, and regular
expressions are used to get image links and download the original resolution
image locally. As images can be extracted from several sources, a verification
procedure is implemented to ensure that all images are accessible through the

Pillow library. For example, some images cannot be downloaded from online

PDF documents or websites protected by anti-bot tools such as CAPTCHA.

This requires manual verification to replace irrelevant images. Because images
come in a variety of sizes, we use the resampling LANCZOS'filter to rescale
each image into a 300 X 300 pixel size. By doing so, we avoid losing information

on the edges.

CLIP Model

As the number of image-requirement pairs is relatively small, directly

training the model on CLIP might not be effective. Instead, transfer
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learning allows the model to integrate previous knowledge with domain-
specific knowledge. In this experiment, we compared the performance of pre-
trained and fine-tuned CLIP models. Conducting an overall evaluation of zero-

shot prediction accuracy is beyond the scope of this study.

Prediction on Pre-trained CLIP

Using a pre-trained CLIP model, we select an image closely associated
with the industrial design to predict the most likely requirements from the
existing design document. Before passing to the image encoder, the new
image must go through the same filters. The transformer model is used to
encode requirements. By utilizing zero-shot predictions, the most relevant
requirements are identified. As the pre-trained CLIP model is trained to
perform general tasks, a fine-tuned prediction model should provide improved

performance when applied to domain-specific knowledge.

Prediction on Fine-tuned CLIP

The requirement-image pair is first randomly shuffled into a training set
with a batch size of ten. Testing the model involves implementing zero-shot
prediction, in which out-of-distribution images are manually downloaded
from variant designs. The total number of epochs is twenty. Image and text
losses are calculated individually using cross-entropy. The Adam optimizer
is implemented with a learning rate of se-6 and decoupled weight decay
regularization of o.4 for all layers. These values are adjusted based on
analysis and evaluation to fine-tune the hyperparameters. Similarly, the same
prediction procedure is implemented to output the top five requirements with

their probabilities.
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RESULT AND DISCUSSION

Study findings revealed interesting observations that could help bridge
the gap between requirements and images. Observations relating to the
type, quality, and relevance of predicted requirements are discussed. These
results will demonstrate the improvement in the fine-tuned model with its

interpretable results.

Synthetic Dataset

As the created synthetic image dataset contains various types of images,
Figure 3.21 presents several search results from the industrial trial project. In
response to different search terms, the collected images include photographs,
drawings, and document scans. Note that not all the returned images
accurately reflect the details of a search query, and we assume the top images are
the most relevant ones. If the first image is not available, the next resemblance
image is downloaded manually. Further, some images may not capture the
meaning of the requirements due to ambiguous words and short search queries.
In such cases, we consider some images to be noise. For example, in Figure 3.21
(e), upon sending the query “threading, line, Bucker, station,” the retrieved
result depicts a picture of a train departing the Buckner station.

Although a fine-tuned model may not learn valuable knowledge from
irrelevant images, it is still possible to obtain limited useful information. In
Figure 3.21 (f), many search queries related to non-functional requirements
contain the words “proposal,” “description,” “specification,” and “criteria,”
which result in a screenshot of a document. Though CLIP models may not
capture detailed content from images, they may still recognize these keywords

as representing the concept of documents. In context-rich design projects that
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Figure 3.21:  Samples Of Collected Synthetic Image Datasets With
Requirement Keywords

include more image documents, designers may fine-tune the model or combine
it with additional neural networks to further extract textual information from
images.

Similar search queries might return the same image. As an example, after
word preprocessing, query numbers 158 (‘box’, ‘end’, ‘threading’, ‘station’,
‘idler’, ‘radial’, ‘rollers’, ‘vrollers’) and 167 (‘box’, ‘end’, ‘threading’, ‘inspection’,

‘station’, ‘idler’, ‘pipe’, ‘radial’, ‘rollers’) have the same image result. As both
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sentences contain many similar words and describe similar objects, the study

uses the same pictures to represent both requirements.

Improvements in Design

With the increasing number of epochs, the total loss decreases, as shown
in Figure 3.22. The loss function is averaged based on the cross-entropy loss
between the image and the text. As a result of model fine-tuning, training loss
is significantly reduced (around 65%) after 10 epochs. As a trade-oft decision,
fine-tuning a model could result in the loss of transfer knowledge and the
acquisition of more domain-specific information while increasing the number
of epochs. Thus, we employed an early stop strategy during the fine-tuning
process to prevent overfitting. The CLIP model stops learning requirement-
image pairs after 20 epochs and provides the most interpretable results. It is
important to recognize that fine-tuning increases the risk of losing previous

knowledge and gaining excessive domain-specific knowledge.
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Figure 3.22: Variance Of Training Error With Increasing Epochs
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The search queries, as shown in Figure 3.23, represent each requirement.
A fine-tuned CLIP model is tested using an out-of-distribution image from a
variant design in Figure 3.23, which shows a portion of a storage system.

The pipe threading equipment outlined in the requirements document, as
well as the storage equipment shown in Figure 3.23, contain several types of

conveyor systems that can be potentially adapted from one to another.

Validation Rather than viewing this problem as a pure classification process,
each requirement might correspond to multiple images or vice versa. The
zero-shot prediction method is employed to compute the probability for each
requirement-image pair. As this is an early-stage study, the focus is primarily on
modeling the individual correlations rather than capturing the many-to-many
relationship. Correlations of this type are not well understood and may not
be sufficient to generate manually. Alternatively, designers can interpret the
predicted requirements based on their intuitive understanding of their domain
knowledge to the unforeseen images.

Based on the results, the best result (10.23%) is considered the most
relevant requirement for the pre-trained model. In contrast, the top prediction
result from the fine-tuned model achieves higher accuracy by providing more
relevant information. Upon interpretation, the improved results have a
closer relationship to functional requirements pertaining to “pipe stations”
or “transfer tables.” As the fine-tuned model can recognize the concept from
images and find the most relevant requirements, engineers should determine
the appropriate number of relevant requirements and make corresponding
engineering adjustments.

A particularly interesting and noteworthy observation is the use of images

that contain both image and text data. The image in Figure 3.24 is chosen as
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Fine-tuned Model

Pre-trained Model

Keywords Percentage Keywords Percentage

‘lift’, ‘pipe’, ‘entry’, ‘end’, ‘table’, ‘paddle’, 10.23% ‘vrollers’, ‘pipe’, ‘transfer’, ‘table’, ‘gravity’, 32.66%

‘threading’, ‘conveyor’, ‘transfer’, ‘box’ ‘roll’, ‘towards’, ‘exit’, ‘conveyor’

‘station’, ‘bucker’, ‘structural’, ‘contructed’, 5.09% ‘rail’,“assemblies’, spaced’, half’,‘feet’, 13.12%

‘frame’, ‘members’ ‘spanning’,length’,‘transfer’, table’

‘thirteen’, ‘table’, ‘line’, ‘threading’, ‘transfer’ 3.62% ‘pipe’,‘rest’,‘adjustable’, pipe’, stop’, 11.98%
‘exit’,‘conveyor’

‘project’, ‘description’ 3.59% ‘pipe’,‘secured’, ‘vrollers’,‘clamp’,high’, 7.31%
‘speed’,‘transfer’, table’

‘constructed’, ‘inch’, ‘structural’, ‘table’, 2.89% ‘pipe’,‘secured’,‘vrollers’,‘clamp’,‘high’, 7.31%

‘walls’, ‘tubing’, ‘transter’, ‘quarter’ ‘speed’,‘transfer’, table’

Figure 3.23 & Table 3.14: An Image Of Conveyor System* With Model
Predictions

a challenge for the fine-tuned model recognizing shapes and text information
simultaneously. The image depicts a conveyor ball transfer table, on which
hardened carbon steel balls are used to replace rollers. In such images, the fine-
tuned CLIP model did not result in significant performance improvements for
the top prediction (2.5% improvement), as shown in Figure 3.24. In images that
contained only photographic images and no text, the fine-tuned CLIP model
demonstrated superior performance (22.4% improvement).

In the pre-trained model of Figure 3.24, two distinct requirements resulted
in the same keyword phrases after the pre-processing step. Both pre-trained and
fine-tuned models can recognize the new image as a type of transfer table based
on the given functional requirements. Upon interpretation, the predicted
requirements from the fine-tuned model are more closely related to the transfer

table and its functionality.
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Pre-trained Model Fine-tuned Model
Keywords Percentage Keywords Percentage
‘threading’, ‘line’, ‘thirteen’, ‘transfer’, ‘table’ 15.76% ‘pipe’, ‘pin’, ‘threading’, ‘station’, ‘transfer’, 18.03%
‘table’, ‘towards’, ‘end’, ‘threading’, ‘inspection’,
‘pipe’, ‘next’, ‘transfer’, ‘table’ 7.65% ‘design’, ‘vrollers’, ‘many’, ‘similar’, ‘features’, 14.06%

‘vrollers’, ‘tube’, ‘uses’, ‘exception’, ‘high’,
‘temperature’, ‘designs’

‘pipe’, ‘next’, ‘transfer’, ‘table’ 7.65% ‘threading’, “station’, ‘base’, ‘design’, ‘similar’, 9.63%
‘stations’

‘pipe’, ‘gravity’, ‘roll’, ‘transfer’, ‘table’, ‘towards’, 4.87% ‘pipe’, ‘gravity’, ‘roll’, ‘transfer’, ‘table’, 5.83%

‘box’, ‘drift’, ‘threading’, ‘protector’, ‘station’ ‘towards’, ‘bucker’, ‘station’

‘transfer’, ‘table’, ‘designed’, ‘located’, ‘previous’, 3.41% ‘pin’, ‘end’, ‘blast’, ‘station’, ‘design’, 5.45%

‘next’, ‘operation’ ‘identical’, ‘box’, ‘blast’,

Figure 3.24 & Table 3.15: An Image Of Conveyor Ball Transfer Table*> With
Model Predictions

The out-of-distribution images are selected from a variant design as
indicated earlier. As similarities can be defined from different perspectives,
the out-of-distribution images may take different forms. For instance, taking
images of the same object from various angles with a variety of backgrounds
may also be considered as testing images. As notall the mechanical components
are symmetrical, different angles of the same part might have an impact on the
predictions.

The study suggests that the proposed framework could potentially be
used to visualize requirement traceability by taking images of various physical
components. The most relevant requirements should be determined for each

image and evaluated regarding engineering changes. Although the synthetic
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dataset contains some irrelevant images as noise, the fine-tuned CLIP model is
still capable of learning useful information and improving out-of-distribution
prediction.

Through a synthetic dataset, the fine-tuned model can identify standard
mechanical components from collected images. For specialized mechanical
parts, the image obtained from the internet may not accurately reflect their
physical components. A minor change in design may, however, be treated
by an out-of-distribution prediction and not necessitate a new simulation.
As requirements are often added or deleted during the reengineering process,
designers need to repeat the analysis to achieve higher accuracy. The proposed
process would allow engineers to realize the interconnection of heterogeneous
data quickly and reduce human error in the design process. Future work
should explore different rotation-invariant techniques to build a more robust
model and integrate this framework into digital threads. Rather than using
2D images, 3D point clouds could be another future direction. Further,
the fine-tuned model can be combined with augmented reality for industrial

applications.

Limitations The framework has the following limitations. (1). Currently,
we are implementing both image- and text-preservation encoders; however,
other data combinations (e.g., 3D models) should be explored for a more
comprehensive evaluation. (2). A further analysis should be conducted
to improve the model’s performance by comparing different fine-tuning
techniques and loss functions. These limitations may have an impact on the
accuracy of the zero-shot learning outputs, as well as the interpretation of the

results.

97



CHAPTER 4

CONCLUSION

Requirement Topics. The motivation of this dissertation is to build a
framework for engineers to manage the complex MBE system by identifying
engineering changes within downstream and upstream components. A key
component of managing engineering changes is the tracking of information
across different domains and data types. As part of smart manufacturing,
digital threads support the industry’s need to integrate information flow
and provide interoperability for a variety of data. To support such an
information management system, we have narrowed our study scope between
the requirements and CAD domains. The study can be divided into three parts:
requirement management, CAD, and requirement-to-CAD.

The challenge in the requirement domain is to track information through
highly domain-specific knowledge documents. As the preliminary study
utilized LSA to analyze two industrial projects, it is possible to cluster the
requirements into design concepts, with each concept corresponding to several
unique words. Further, this study extends the use of both LDA and topic
visualization techniques for analyzing requirement topics. Creating topics

allows designers to track engineering changes within most related requirements
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based on semantic correlations. Similarly, other adjacent topics containing
closely related words may also be affected by any initial change.

Three research questions have addressed the issues of applying LDA to
requirements management. For the first question, a detailed case study
explores the feasibility of generalizing requirements into topics with different
visualizations. Three industrial datasets are then implemented to demonstrate
the performance of topic analysis for requirements. The second research
question emphasizes the number of topics. Three techniques are utilized to
estimate the necessary number of topics by comparing both perplexity and
coherence scores. The initial finding reveals that topic merging occurs when
fewer topics are assigned to the model. Fewer topics can provide a general
visualization of the system, and more topics can provide lower-level design
details. A trade-off decision is made based on purposeful interpretation and
domain knowledge. In addition, the third research question focuses on the
quality of each topic by implementing the LDAvis tool to visualize the topic-
word distribution. The A value can be adjusted to improve the quality of
each topic by selecting the most relevant terms. In sum, this study provides
a framework to implement a supervised LDA model to capture the design
information from requirements documents. The results indicate that while
the generated topics are useful for some design information, they cannot
stand alone in the design process apart from human intervention. To reach a
desired performance, further study is required to explore different topic model
structures.

Further research should explore different approaches or different
variations of topic models to represent design documents in requirements

management. By making additional assumptions, other methods may
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contribute to accurately capturing the semantics of unstructured requirements
documents into subgroups. A comparison study could then be conducted to
illustrate the performance differences with the baseline LDA model. Another
option would be to label requirements into different categories; however, this
would require training in a large and diverse repository, where the trained
model can assess varied designs based on predetermined topics. Beyond
enhancing the LDA model, the development of such a model could be used
to inform design activities, such as conceptual design and geometric creation.
The topic could be used to bridge domains that allow for both upstream and
downstream analysis, a feat currently limited in design.

In line with the previous findings, a subsequent study compared
the performance of different combinations of topic modeling and word
embedding techniques to further improve the quality of each topic. We
address two major challenges of analyzing requirement documents, including
extracting information from short sentences and mapping topic-word
correlations from domain-specific documents. Following an exploratory data
analysis, the proposed framework combines topic modeling (e.g., LDA or
GSDMM) with word embedding (e.g., sentence_BERT). We validate each
model using either topic coherence or Silhouette scores. Our results indicate
that both LDA BERT and GSDMM BERT achieve comparable results
when compared to a single topic model. Although GSDMM is designed
to cluster short texts, the results demonstrate that both LDA_BERT and
GSDMM_BERT achieve similar results in generalizing design topics. We also
show thatboth models can enhance the quality of each topic by including more
relevant keywords. Overall, this study contributes to the goal of generating

high quality design topics from requirements documents in building digital
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threads for smart manufacturing. In particular, the study demonstrates what
types of analysis are critical to understanding complex system design topics.

Future work could apply this approach to diverse types of requirements
documents. This proposed framework can be combined with the concept of
ensemble learning. Hence, the final model would use a variety of topic models
or word embedding algorithms to produce different vector representations to
obtain more robust results. Furthermore, another aspect of this study could be
combined with other techniques for automatically determining the number of
topics.

Point Cloud Classification. In the second part of the study, the objective
is to recognize the various categories of CAD models and subassemblies. This
framework, however, focuses on the development of models for recognizing
mechanical objects. The Meta-SeL algorithm combines both meta-learning
and SAE to classify point clouds into ten predefined distinct model categories.
Using the ShapeNetCore dataset, which simulates real manufacturing design
data with additional part label information, this study shows that Meta-SeL
can achieve a competitive level of accuracy to deep learning models.

To improve the model’s generalization performance, several techniques
have been developed for introducing noise into the training datasets. The
combination of normalization and random noise (such as jittering or
translation) provided more accurate prediction results. Moreover, for the
purpose of understanding certain misclassification errors, we have visualized
all the training SAE weighs into a subspace to show the similarities between
each of the categories. Certain designs exhibit similar geometric resemblances,
making it difficult for the proposed model to differentiate them. In

comparison with state-of-the-art algorithms, our model achieves a high
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accuracy and utilizes only one epoch. In certain industries where time and
computation power are critical resources, this could be particularly important.
Comparing our model to deep learning applications, we find that we are more
efficient at handling new data.

As the next step of this research, much work remains to ensure that this
procedure can automatically predict mechanical sub-assemblies. As a further
extension of our research, the future work will investigate how to improve
the accuracy of classification by learning the representation function for each
category.

Linking Requirements to CAD Images. The goal of this research is
to develop a framework for automatically linking requirements and CAD -
allowing engineers and designers to analyze how a change impacts one another.
While much research exists on requirements-to-requirements and CAD-to-
CAD analysis, minimal work exists on the linking of both. This is difficult
as requirements (text) and CAD (geometric) operate in different domains.
This research proposes a framework for linking said domains to bridge the gap
between requirements and CAD.

We propose a framework for bridging gaps in and synthesizing multi-
source data to facilitate knowledge acquisition and improve design efficiency.
As image data may not always be available, we collected online images by using
keywords filtered from requirements documents using POS tagging. To collect
images from Google search results, a web scraping technique is used. Images
are manually verified and modified according to the closest interpretation of
requirements. The collected image dataset s verified and resampled to the same

size. We demonstrate an improvement in model prediction by showing the
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top five most relevant requirements after fine-tuning the CLIP model. Testing
images are selected from a variant design to assess the robustness of the model.

The major contributions of this work are threefold. First, we provide a
method for constructing a synthetic image dataset representing the physical
components of requirements.  As image data is not always available,
this technique enables a visual representation of requirements for tracking
engineering change propagation. Secondly, using transfer learning, we
combine prior knowledge with domain-specific information to understand the
connection between requirements and images.

As a result of the learned correlations, similar mechanical components
form out-of-distribution image datasets can be identified for identifying
and interpreting requirements. Third, the predicted results illustrate the
performance and limitations of the models by indicating the most relevant
requirements for invariant designs. By taking photographs of different
mechanical components and predicting the top requirements, engineers can
determine which components are affected to minimize risks for a complex
system.

Future work can be extended in several directions. Several CLIP model
architectures and other industrial design documents should be considered.
In CLIP model, various kinds of image and text encoders can be tested
and compared. As simulation performance might differ based on the
datasets, comparing various model architectures with publicly available design
documentation may provide useful insights into distinct types of product

designs.
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