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Abstract

Computer-based assessments have become prevalent in many educational assessments. These assess-

ments are usually in mixed formats. That is, they contain different item formats such as multiple-choice

(MC) and constructed-response (CR) items. These items, regardless of the item formats, are developed

to measure the examinee’s skill or ability related to the construct of interest, e.g., problem-solving or

critical thinking. Item response models are frequently used to calibrate the examinee’s latent trait based

on their response score patterns. One concern with the scores examinees receive is the scores alone may

not completely convey sufficient information to help understand the targeted latent trait. For example,

scores may not necessarily provide information about specific thinking or reasoning examinees used in

their responses. In this study, we focus on extracting additional information from examinees’ responses

that may provide this kind of additional construct relevant information. In this regard, we explore the

information contained in examinees’ sequential actions as recorded in the log file of a computer-based



assessment. This information is referred to as response process data, or more simply process data. The

process data generated by examinees in their responses to a computer-based assessment have been shown

to be related to information in their responses given to both MC and CR items.

This dissertation consists of two studies. The first study examines a novel exploratory methodology

for extracting process data from the log files of a computer-based assessment. This methodology is called

reservoir computing and is implemented with an optimization algorithm. This first study is used for

analyzing and extracting process data in the log file from an administration of MC items. This method

will be studied for its use in extracting features of the response data with an eye to help interpret the

latent information in the response processes associated with the measurement of the latent construct.

The second study examines the use of a natural language method using a probabilistic topic model to

extract the latent features in the textual responses to CR items. In this second study, the utility of the

unsupervised and supervised topic models will be studied for the analysis of textual responses with an

eye to extracting construct-relevant information from the process data that can be used to help interpret

examinees’ status on the latent construct. The combination of the two studies is intended to help provide

a way for extracting and studying the combination of item response scores and item response process data

to improve interpretations of examinees’ latent proficiencies.

Index words: Mixed-format assessment, Process data, Reservoir computing, Topic model,

Latent variable modeling, Feature extraction
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Chapter 1

Introduction

This Chapter introduces the mixed-format assessment, research questions, study purpose, and dissertation

layout.

1.1 The mixed-format assessment

Item response theory (IRT) models are a well-known family of psychometric models that are used to

infer an examinee’s status on latent traits based on their responses to assessment items. These models are

often employed in large-scale assessment programs. This is true in statewide assessment programs (e.g.,

the Florida Comprehensive Assessment Tests) as well as in computer-based assessment programs like the

Graduate Record Examination and the Graduate Management Admission Test. The most common usage

in large-scale computer-based assessment programs has been to employ some type of selected-response

item such as a multiple-choice (MC) item. Analysis of this kind of question focuses primarily on the

correctness of the choice the examinees make. An important benefit of this kind of question is that it can
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be scored rapidly and with high reliability. Open-ended or constructed-response (CR) items, on the other

hand, are used less often, mainly because they require hand grading, which is relatively more costly and

takes much longer than scoring MC items. MC items are usually scored dichotomously, that is, as either

correct or incorrect. CR items are often scored polytomously, and their appeal is that they can sometimes

be useful for assessing higher-order cognitive skills (Nickerson, 1989). Table 1.1 lists some commonly seen

formats of both item types with detailed descriptions. For example, there are single–select response and

multi-select response MC items, with different correct answer numbers. In addition, there are short-

answer and extended-response CR items, with different constraints on examinees’ textual responses.

Table 1.1: Some types of items used in educational assessments
Format Description

Single-select Selected-response items have answer choices usually with one correct key and
distractors. Distractors typically represent common misconceptions or com-
mon errors that examinees might make.

Multi-select Multi-select items have multiple possible answer choices with multiple correct
responses. The incorrect choices usually reflect common errors or common
misconceptions.

Short-answer response Short answer items are CR items that ask examinees to generate a short response
to a prompt (e.g., a task or question). They are usually scored using a rubric.

Extended-response Extended-response items are CR items that may ask examinees to provide a
longer response to a task or question than a short-answer item. Examples are
items requiring narratives, informative explanatory, opinion, or argumentative
responses to a prompt. They are usually scored using a rubric.

There are also some other types of items, despite differences in the item formats, which are still within

the scope of MC items, and CR items. For example, Table 1.2 lists two additional types of assessments, per-

formance assessments (Eisner, 1999), and game-based assessments (Mislevy et al., 2016). The performance

assessment is a type of open-ended learning activity or assessment that asks examinees to perform or create

a product to demonstrate their knowledge and skills. Game-based assessments consist of learning activities

embedded in assessments that are designed to assess examinees’ knowledge and skills in the context of

2



an activity, such as a learning activity. Examinees may respond to either an MC or CR item through

interacting with a game or learning activity involved in the item. The response score patterns from these

two types of items are usually either dichotomous or polytomous and can be modeled by appropriate

psychometric models such as by IRT models (Uto and Ueno, 2018) or by Bayesian statistical networks

(Cui et al., 2019).

Table 1.2: Two additional types of assessments
Format Description

Performance assessments Performance assessments are usually open-ended assessments embedded
in learning activities that ask examinees to perform or to create a product
to demonstrate their knowledge and skills. Performance tasks typically
provide a scenario/situation so examinees can apply their knowledge and
skills in authentic contexts. Performance tasks can be multi-faceted and
can provide opportunities to assess knowledge and skills across content
areas.

Games-based assessments Game-based assessments are usually assessments embedded in game-based
learning activities that can assess examinees’ knowledge and skills through
an engaging platform. Game-based assessments provide an alternative to
traditional assessments in that they can often integrate seamlessly into the
learning activity, such as used as formative items to monitor learning and
to assess examinees’ ability to transfer the knowledge and skills learned
during instruction. Game-based assessments can provide a scenario in
which examinees can apply their knowledge or skills, such as in a realistic
game-like context.

More generally, MC items are considered to be useful for measuring static knowledge (Tatsuoka, 1991),

while CR items are considered appropriate for assessing higher cognitive performance (Nickerson, 1989).

Many researchers believe that the use of mixed-format items can sometimes capitalize on the benefits of

both item types and increase overall measurement accuracy because these two item formats complement

each other. For example, Ercikan et al. (1998) suggested that CR items can provide information about

extremely low- or extremely high-ability examinees that may be otherwise poorly assessed by MC items.

The mixed use of both MC items and CR items has been reported in large-scale assessments (Hendrickson

3



et al., 2010; Y. Kim, 2009; Kuechler and Simkin, 2010) based on the requirement that both MC and CR

item formats measure the same underlying trait (Swygert et al., 2001).

Computer-based assessments consisting of both MC and CR items are becoming increasingly com-

mon due, in part, to improvements in the scoring of CR items (e.g., Shermis, 2014), and to different and

complementary ways they provide for measuring different aspects of a given domain or set of domains

(Hendrickson et al., 2010). Assessments of English and language arts (ELA), for example, are often com-

posed of both MC items, to assess mechanics of writing, and CR items, to assess higher-order types of

reasoning (Choi et al., 2017). Figure 1.1 shows an illustration of a mixed-format ELA assessment con-

taining both two types of questions for Grades 1-2 (https://www.lennections.com/assesslets-ela). In the

assessment, examinees are asked to read a prompt such as a story or passage, then to select an answer for

the MC item, and finally, to construct a textual answer for the CR items.

1.2 Statement of the Research Problem

One concern with the usual use of IRT for these assessments is that they only model the response score

patterns. This works well for the calibration of MC and CR response scores but, once the items have

been calibrated and the latent ability scores have been estimated, little attention is further given to any

additional information contained in the assessment process. For instance, for the two additional types of

assessments listed in Table 1.2, IRT models are useful for modeling item response patterns but may not

be that useful for understanding information contained in the item response process data.

Behrens et al. (2019) suggested applying recent advances in measurement models, analytic techniques,

and digital tools and environments such as machine learning and artificial intelligence techniques to enrich

4



Figure 1.1: An example of a mixed-format ELA assessment for Grades 1 and 2
(taken from the website https://www.lennections.com/assesslets-ela)
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assessment, since these advances may provide additional construct-related information. Currently, some

computer-based assessments have a user-friendly interface making it easy to capture the additional aspects

of the responding process during the assessment including examinees’ interactions in assessments that in-

volve communication with the computer, detailed traces of actions as examinees navigate the assessment’s

environment, possibly to solve problems, and to store all these activities in the computer log file. A thesis

of this dissertation is that these activities have the potential to provide a rich source of information about

the reasoning process during the assessment (Ercikan et al., 2020). Therefore, an important challenge is

making sense of these kinds of process data.

For the MC items, the response actions during the assessment process typically consist of sequences

of actions with corresponding time points. These sequential time-stamped data are usually referred to

as the process data (El Aouifi et al., 2021; Liu and Israel, 2022; Nebel and Ninaus, 2019). Research has

been reported on the analysis of these process data either from machine learning algorithms (Auer et

al., 2022) or from Bayesian networks (Cui et al., 2019), based on the assumption that these process data

occur during and as a result of examinees answering assessment questions, and therefore, are related to

examinees’ reasoning process. For example, Figure 1.2 shows a problem-solving item from the Programme

for International Student Assessment (PISA) which asks the examinee to calculate the best selection based

on the item description. There are three selections on the item interface, city subway, country trains, and

cancel. Once the examinee selected one of the options, proceeding sets of options will be given, until

the completion of this item. All the sequential steps by the examinee, including any reversals to previous

steps in making the response, are recorded in the process data. These process data have been shown to

provide additional information along with the response score analysis (X. Tang et al., 2020). Therefore,

the combination of steps during the response may have the potential to indicate the examinee’s reasoning

6



and thinking process on this item. Examining these data will help to extract and understand the utility of

this information.

Figure 1.2: A problem-solving item interface from the PISA
(https://www.oecd.org/pisa/test-2012/testquestions/question4/)

In this same regard, there is also abundant process information in the examinees’ CR item responding

process. The textual responses are also considered process data created by each examinee to the CR items.

This textual information has been found to contain useful information in addition to the IRT analysis.

For instance, recent research has shown that CR items, however, do offer the possibility of providing

evidence beyond just the correctness of the answer (S. Kim et al., 2017). They can provide potentially

useful information that is often ignored in the scoring process, but which can provide useful additional

information about the thinking and reasoning of examinees not typically accounted for in the scoring

(Xiong et al., 2019). As a result, potentially useful but ignored information could enhance what can be

learned about what examinees know and what they do not know. The developments in machine learning
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may also be able to improve the speed of scoring and also the kinds of additional information that can be

extracted from these CR items (Cardozo-Gaibisso et al., 2020). Similarly, research on process data has also

revealed abundant information that can help to understand examinee response behaviors (Meyer, 2010)

and suggest item selection in adaptive testing (van der Linden, 2008). Models have also been proposed

to incorporate both item responses and response time to provide additional information in cognitive

assessments (Zhan et al., 2018) and to calibrate personal latent ability (T. Wang and Hanson, 2005). These

studies suggest that incorporating process data in the modeling can provide useful information when

combined with the usual item response modeling.

1.3 Purpose of the Study

In this dissertation, an important objective is to provide exploratory analyses to process data. In this way,

we suggest it may be possible to improve what we can learn about examinees’ thinking and reasoning by

the use of process data. That is, we propose to analyze the additional information in the response process

that can then be added to the information we already can obtain from the response score patterns for

mixed-format assessments. This dissertation will explore the process data from mixed-format assessments

for the following purposes:

1. How might we analyze the process data and interpret the results?

2. What are some applications of process data analysis?

3. In what aspects and to what extent might the use of process data contribute to the latent trait

measurement?
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1.4 Dissertation Overview

This chapter introduced the background of mixed-format assessments, the types of data that will be

analyzed, and the kinds of research questions to be addressed. The remainder of this dissertation will

consist of the following. The second chapter reviews related references and introduces the challenges

and progress in dealing with process data. Chapter 3 focuses on the analysis of MC item process data,

as contained in the log file, with a description of the methodology, simulation designs for studying this

methodology, and an illustration of the methodology using empirical data. Chapter 4 analyzes the CR

item process data consisting of the textual responses, using both supervised and unsupervised algorithms.

Empirical data sets will be utilized in this chapter to illustrate the algorithms, with a focus on automated

scoring, writing profile analysis, and a combination of both. Finally, Chapter 5 summarizes the findings

and conclusions and points out possible future directions. References and appendices are also attached

after Chapter 5. A general overview of summarizing all chapters is given in Table 1.3.

Table 1.3: Overview of the chapters in this dissertation
Chapter Content description

Chapter 1 Introduction to the mixed-format assessments, data types, and research
purposes of this dissertation.

Chapter 2 Review of literature and possible challenges that will be addressed in this
dissertation.

Chapter 3 The analysis of MC process data, or computer log file data, with simula-
tion studies and empirical example illustration.

Chapter 4 The analysis of CR process data, or textual responses, with both super-
vised and unsupervised learning algorithms. The emphases of this chapter
are about automated scoring, writing profile analysis, and a combination
of both.

Chapter 5 Summary of the findings and conclusions generated in this dissertation
with a possible future direction related to this dissertation.

Reference References that were used in this dissertation.
Appendix Some codes used in this dissertation.
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Chapter 2

Literature Review

2.1 Theoretical Framework

A major objective of assessments is to provide information about the status of examinees on the construct

of interest. Current computer-based assessments can measure latent traits with complex collaborative

problem-solving items with a virtual interactive interface (Kozma, 2009; Co-operation and Development,

2012). For example, Figure 1.1 in Chapter 1 shows the PISA item employs a virtual interactive interface

to track examinees’ problem-solving processes. These computer-based assessments can use the dynamic

virtual environment to record both the final responses and examinees’ real-time response-related activities

realized during the responding process (Mislevy, 2019). These kinds of information are associated with

examinees’ cognitive activities and may be useful for understanding the latent traits that are the focus

of the assessment (Han and Wilson, 2022; von Davier, 2017; Wilson et al., 2017; Yuan et al., 2019). A

conjecture in this study is that the use of process data, such as the log file data and the textual responses,

may add useful information to what we can obtain from the rubric-based scores alone. By analyzing
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these process data in addition to the item response data, we can potentially make use of extra information

that would reveal patterns that could otherwise be missed. Recent research on response process data has

focused on this general issue (Leighton, 2017; Oranje et al., 2017). The assumption in that research is that

the process data can be used to augment the information in the scores by attending to potential additional

information in the responses that may reflect the process of thinking and reasoning (Clifton Jr et al., 2016;

Ercikan and Pellegrino, 2017; van der Linden, 2011; S. Wang et al., 2021).

Mislevy (2019) suggested that two basic types of analytic procedures can be used to contribute to ana-

lyzing and modeling these behavior data. The first type of procedure is to characterize the evidence in the

process data. In other words, we may extract features from the process data using techniques such as data

mining, knowledge engineering, and computational linguistics (Bejar et al., 2016). This type of procedure

is akin to the processes applied by human raters when they evaluate the performance items using the

scoring rubic with human judgement instead of computing scores using mathematical equations with

features (Mislevy, 2019). The second type of analytic procedure uses measurement models to operational-

ize variables related to the constructs of interest. That is, by tracking, accumulating, and synthesizing

evidence across examinees’ ongoing behaviors, it is possible to construct operationalized variables related

to the targeted constructs. Then, the latent traits can be modeled probabilistically, depending on the

constructed variables, through measurement models. Current methodologies and models developed to

learn the process data are primarily within these two basic types of analytic procedures.
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2.2 Multiple-choice Item Process Data Analysis: Challenges and

Progress

The process data for MC items, obtained from examinees interacting with a computer-based assessment

item, are recorded in the computer log files. These data often come in the form of sequences of events

with time stamps. For example, an examinee may select response “A” at the time t, and switch to response

“C” at the time (t+ 1). In this way, the record of each item response comes with a sequence of ordered

and time-stamped actions. These are also sometimes referred to as sequential data. Figure 2.1 illustrates

this type of data, from which we can see the varying-length and diverse set of activities contained in log

files produced by the responses of different examinees. These types of data are more readily available

in responses obtained with the use of computer-based assessments. One direction for applying these

process data is the use of response time (Oranje et al., 2017). Differences in response times, for example,

could be important indicators of differences in assessment-taking strategy, differences in the difficulty of

questions, assessment speededness, or possible lack of motivation for the assessment (Guo et al., 2016; van

der Linden, 2011). Information from response times might also include the effects of cognitive demands

in the assessment item to understand item content, item format, and context (Wise and DeMars, 2006;

Wise and Kong, 2005). Differences in response time, in other words, can potentially be used to support

inferences on score meaning, the interpretation of the validity of assessment results, and performance

differences of different examinee groups (Ercikan et al., 2020; Wise and DeMars, 2006).

In addition to the response time, the associated actions that are not captured by final solutions and

responses may be important indicators to identify examinees’ final performance level as the features in
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Figure 2.1: An illustration of the MC item’s time-wrapped process data

the process data may provide information on how examinees from various backgrounds engage with the

assessment (X. Tang et al., 2020). In this way, process data provide supporting evidence about individual

performance in addition to scores reflecting the correctness of answers. Yuan et al. (2019) pointed out that

the feature extraction methods can be divided into two types, the theory-driven method, and the data-

driven method. The theory-driven method, for example, derives some indicator variables from the process

data based on a scoring rubric. The use of the theory-driven method explicitly connects the construct

being measured by the assessment with the process performance of examinees. In this way, it can be

analyzed with appropriate measurement models to obtain information about the examinees’ status on

the latent trait(s). One concern with this approach, however, is that it may also introduce a high cost in

terms of human effort and can only focus on the rule-based actions while ignoring information in other

actions (Han and Wilson, 2022).
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On the other hand, the data-driven method may overcome some of the disadvantages of the theory-

driven method by employing statistical and data science methods to extract features. A challenge in

handling the complex and diverse process data using the data-driven method, as illustrated in Figure 2.1, is

that unlike the response data analyzed with IRT, the length of the sequence for each examinee on each item

is not fixed but depends on the number of actions the examinee takes. To handle this type of data, Xu et al.

(2020), for example, proposed a latent topic model with a Markov transition process to model process

data that consist of time-stamped events. For each examinee, the sequence of latent topics can be viewed

as the examinee’s latent state. In the model, each topic can be viewed as a group of event types sharing

similar meanings. By using topic transition probabilities along with response times, Xu et al. found that

the behavior patterns in the data captured examinees’ learning strategies.

Neural networks (Rojas, 2013) are another commonly used approach in the data-driven method. Neu-

ral networks are computer algorithms based on a collection of connected units or nodes called artificial

neurons. The structure of a neural network is diagrammed in Figure 2.2. This is intended to provide

a generative diagram about how the way the human brain receives and analyzes information from the

signal input to the results output. Neural networks constitute core information processing technology in

the artificial intelligence and machine learning fields and can be described as using forward or backward

propagation (Cui et al., 2016; Knierim, 2014). From the input data to the output layer, this process is

called forward propagation. The neural networks computes the loss after each iteration and then restarts

the process from the input layer to update the estimation. This process is called backward propagation.

The technology is designed to recognize patterns and store them in vectors into which real-world data,

such as text or time series, can be translated.
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Figure 2.2: The structure of a neural network

Recurrent Neural Networks (RNNs; Medsker and Jain, 2001) are generalizations of feedback neu-

ral networks with the addition of internal memory. RNNs are a class of neural networks that allow the

previous outputs to be used as inputs to the next state while having hidden states, which are used for the

processing of sequential data (Rumelhart et al., 1986). RNNs consider the current input and the knowl-

edge it has learned from the past state to make a decision. RNNs have important advantages over other

statistical methods in that they do not require the explicit encoding of domain knowledge, do not depend

on the test item’s prior knowledge, and can capture more complex representations of examinees’ response

15



actions (Goodfellow et al., 2016). X. Tang et al. (2021) suggested a sequence-to-sequence autoencoder

that takes an action sequence and produces a reconstructed action sequence which can then be used to

compress response processes into standard numerical vectors. The sequence-to-sequence autoencoder

uses RNNs that allow previous outputs to be used as inputs while having hidden states as components

of the encoder and decoder. The method automatically extracts numerical features from a computer log

file and does not require manual feature engineering using domain knowledge.

Figure 2.3: An illustration of principal component analysis showing an orthogonal projection πx of the
original vector x on a lower space U spanned by e1, e2
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One commonly adapted way to interpret the extracted features is to use principal component analysis

(PCA; X. Tang et al., 2020; X. Tang et al., 2021). PCA reduces the dimension of the original data and

finds a lower-dimensional representation in a subspace. Figure 2.3 shows the illustration of how PCA

reduces the data dimension. For a vector x ∈ R3, PCA finds an orthogonal projection of πx of x in a

two-dimensional subspace U : P{e1, e2}. It can be seen that the vector πx is a representation of x in a

lower dimension, since it is the closet vector to x in the space U , where the minimum distance is equal to

||πx − x||.

Although it is applicable to a wide range of process data, training RNNs is both challenging and

computationally expensive, due to more complex signal movements (Pascanu et al., 2013). This is because

RNNs can have signals traveling both forward and backward, and may also contain complex iteration

loops. Therefore, some methods that could utilize the advantage of an RNN and at the same time over-

come its computational disadvantages could be a possible direction to learn features from the process data.

Reservoir computing (Verstraeten et al., 2007) is a computational method derived from RNNs theory

that learns data representations through the dynamics of a fixed, non-linear system called a reservoir. It is

a kind of machine learning algorithm for processing information generated by dynamical systems with

time-dependent data (Gauthier et al., 2021). The detailed structure of the reservoir computing will be

introduced in Chapter 3. It has been shown that reservoir computing only requires very small training

data sets and may be used with linear optimization, thereby requiring lower computing resources, but

performing as well as other machine learning methods, such as regular RNNs and deep learning (Bompas

et al., 2020; Vlachas et al., 2020). The use of reservoir computing instead of traditional RNNs has been

reported in applications such as text classification (Schaetti, 2019), feature extraction for images (Tong and
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Tanaka, 2018), and time-series representation and prediction (Bianchi et al., 2020; Wyffels and Schrauwen,

2010).

The use of reservoir computing does not yet appear to have been reported in modeling process data

in educational assessments. Since neural networks have been shown to be useful in extracting process

data using regular RNNs, exploring the use of reservoir computing on educational process data could

be a useful technique since it provides the capability of solving both the data processing challenge and

the costs of computing of a complex RNN. The use of the reservoir computing method on educational

process data, in other words, may also facilitate investigating examinees’ actions, understanding where

important user interactions are, and aligning both with whatever data are captured and available in the

system.

2.3 Recent Advances in Constructed-response Item Research

The response process data for the CR items are different from those for the MC items. As mentioned

previously, we suggest that there is information in the text of the responses in addition to that which is

modeled by IRT in the scores of the item. The focus on the analysis of the text of examinees’ responses is

made possible given recent advances in the development of natural language processing (NLP) techniques

(Chapelle and Chung, 2010; R. M. Kaplan, 1992) such as topic models (S. Kim et al., 2017) and neural

networks (Nam et al., 2014; S. Tang et al., 2016). The original goal of NLP was to develop algorithms to

allow computers to extract information from the natural language to perform some tasks such as speech

processing (Kamath et al., 2019), text summarization (Lai et al., 2015), and text classification (Merchant
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and Pande, 2018). The use of NLP on educational texts has been reported on objects such as automated

scoring (Flor and Hao, 2021) and response time prediction (Baldwin et al., 2021).

NLP methods may be able to learn and select features from texts based on neural networks with less

human effort (Cai, 2019; Liang et al., 2018). The extracted features from neural networks, however, are

not necessarily easy to interpret (Montavon et al., 2018). Among the many NLP models, probabilistic

topic models include supervised and unsupervised techniques designed to detect the latent topics which

occur in a collection of textual documents. These topics are the latent themes (referred to as latent topics,

or more simply as topics) that occur in a collection of textual documents. Topic models have been used

to determine the latent topics in examinees’ answers to CR items by detecting patterns and recurring

vocabularies (e.g., S. Kim et al., 2017; Xiong et al., 2019). Each word in a corpus of documents has a

probability of occurring in each topic in the model. The topic model is characterized by the number of

latent topics in the model, by the probability of use of each topic in each document, and by the probability

of each word in the corpus in each topic in the model. In this way, analyzing CR answers with topic

models do not require pre-defining features but can provide interpretable topics for use in understanding

examinees’ thinking and reasoning as exhibited in their responses (Choi et al., 2021). The results from the

topic model have been found to provide useful and important information to reflect examinees’ thinking

and reasoning in their CR responses (Cardozo-Gaibisso et al., 2020). The topic model has been used in

exploring topics in CR response data. For example, in an assessment designed to measure the effects of an

instructional intervention teaching middle grades examinees the process of science inquiry, S. Kim et al.

(2017) found no differences in performance between the instructional treatment group and a business-

as-usual group in their scores on the CR items. Significant pre-assessment to post-assessment differences
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were detected, however, in the use of the latent themes detected by topic models in the CR responses by

examinees receiving the instructional intervention.

Figure 2.4 describes the general process of estimating the topic model. First, the major results of the

topic model are given as the word distributions of the topics (γ) and the topic distributions of the docu-

ments (η). The word distributions of the topics γ give an overview of the corpus. This allows us to detect

the latent themes in the text. The word distributions of the topics γ are a set of multinomial distribu-

tions. Next, the words in the examinees’ answers are grouped into topics based on the probabilities of

co-occurrence. Each topic may have different response proportions for each examinee. The distributions

of words in each of the topics indicate the different proportions of an examinee’s use of each topic in the

model.

Topic models based on latent Dirichlet allocation (LDA; Blei et al., 2003) were originally developed

to evaluate the text of large corpora, such as abstracts of scientific journals, over an extended period of

time. LDA was applied to the CR answers of university teachers’ self-assessment surveys for the sake

of understanding strategies used by teachers to improve student retention (Buenaño-Fernandez et al.,

2020). LDA also has been used to understand examinees’ CR responses. For example, LDA was used

to detect changes in topic use in students’ writing (Southavilay et al., 2013). Results indicated that the

evolution of topics based on LDA analysis clearly showed the changes and improvements in students’

writing. Ramesh et al. (2014) explored the use of topic models to analyze the latent themes students use

in discussion forums in massive open online courses (MOOCs) as indicators of student retention in the

course. Results indicated that features detected by the topic model helped predict student retention in

the courses. Chen et al. (2016) applied LDA to explore themes in pre-service teachers’ journals about their

teaching experiences. Results of the topic model analysis were found to help predict course grades. Xing et
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Figure 2.4: A description of the general process of a topic model

al. (2020) also used the LDA as a content analysis tool to identify underlying patterns in students’ scientific

argumentation. Their results indicated that LDA could discover semantic patterns from students’ writing

within particular domains and help teachers to improve students’ writing.

Both the unsupervised LDA and supervised LDA can be used to help interpret and expand the in-

formation obtained from examinees’ responses to the CR items. We suggest, therefore, that the results

from the LDA analysis can provide useful and important information that can augment the information

provided by the scores on examinees’ CR responses, thus amplifying what is learned about the measured

construct.
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Chapter 3

Sequence Reservoir Model: a New

Perspective for Enhancing

Multiple-choice Item Process

Data

This chapter discusses the exploratory MC item’s process data analysis.

3.1 Computer Log File Containing Non-uniform Action Sequences

In this chapter, we present an investigation of the use of reservoir computing for extracting features or

learning representations from the process data of MC items. As mentioned above, the examinee’s sequence

of actions for each MC item is recorded in the computer log file along with the timestamps of each action.
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These data are thought to provide a detailed picture of steps each examinee has made in responding to an

item. This includes such information as the order of actions, the revision of answers, and the amount of

time spent on that item. The sequence of actions by each examinee on each item is likely to be different

within a single test and between examinees in the population. Thus, it is the case that these process data

usually will not be in a uniform fixed format that can be directly analyzed by a traditional statistical model.

In this chapter, therefore, a sequence reservoir model is proposed to extract the standard format fea-

tures for each examinee. Two challenges are addressed in this chapter. First, each action is a categorical

variable and it is mapped into a numerical representation. Second, the non-uniform sequences are trans-

formed into fixed-length features that can be used to infer information about each examinee. A simulation

study is proposed to examine the utility of this model under practical testing conditions, and an illustration

using empirical data is also presented.

3.2 Methodology

3.2.1 Action embedding

Categorical actions can not be always be easily processed directly, so actions are transformed into numerical

representations, referred to as action embedding. For the zth item, suppose there exist a total ofnz possible

unique actions which are denoted as S = (sz1, . . . , s
z
nz
). The lth examinee may use one of the nz actions

at each time point twhen responding to the item. Suppose the lth examinee employs a time ofTl to finish

that item, and at each time point t, the examinee’s action is dt, where dt ∈ S(t = 1, . . . , Tl), then in the

computer log file, the final record data has a data structure as shown in Equation 3.1
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D = (d1, · · · ,dl)T

=


d11 · · · d1T1

... . . . ...

dl1 · · · dlTl


(3.1)

where the lth row represents a sequence of actionsdl given by the lth examinee, and each row has a unique

length dl = (dl1, . . . , d
l
Tl
) because Tl varies among different examinees.

The objective of embedding is to first map each of the nz unique categorical actions to a Nu dimen-

sional vector e, where Nu is called embedding size which was learned by our model. So for all nz unique

actions, there are nz unique Nu dimensional embedding vectors and each corresponds to an action szn.

The embedding matrix is a nz × Nu dimensional matrix consisting of all embedding vectors such that

E = (e1, . . . , enz)
T .

One-hot matrices were employed to map each action. A one-hot matrix X l has dimension Tl × nz in

which each row has a “1” representing the action taken by examinee l at time point t, and the remaining

nz −1 elements are all “0”. For example, if the second action sz2 is employed by lth examinee at time point

t, then the tth row of the one-hot matrix X l can be represented as (0, 1, . . . , 0) in which the “1” appears

at the second element of this vector. Therefore, each embedded action sequencedl can be represented as a

matrix Al ∈ RTl×Nu , which is the multiplication of the one-hot matrix X l and the embedding matrix E.

In this matrix, each row represents an embedded action. Mathematically, this can be denoted by Equation

3.2

Al = X lE (3.2)
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Denote each row vector of Al as al. This can be viewed as a result of selecting and reordering each row of

the embedding matrix E based on each examinee’s action order.

3.2.2 Recurrent Neural Networks (RNNs)

RNNs can be used for processing sequential data by embedding the time-dependent actions of the inputs

into their recurrent structure. RNNs are capable of representing a dynamical system driven by sequential

inputs, due in part to their feedback relationships with other inputs in the sequence (i.e., the previous

outputs from the RNN that can be used as inputs for the next step).

Figure 3.1: The architecture of a traditional RNN

Figure 3.1 shows a common type of RNN called a Many-to-Many (Luong et al., 2015). This structure

basically has three components: input, hidden states, and output. Each input node stands for the action

at a time point. The RNN makes use of the current input xt and a summary of previous states f (t− 1)

by activation function p(·) to produce updated state f t as shown in Equation 3.3. This, in turn, produces

an output ŷt at each time step t using another function g(·) and Equation 3.4. The functions p(·) and
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g(·) are estimated from the training data. In this learning process, the inputs xt’s are M dimensional

vectors, and the hidden states f t’s are Nf dimensional and served as the neural memory that helps transit

the input information sequentially. In summary, the sequence of actions is processed consecutively in

the input layer, and a hidden state is computed from both the input action and the previous hidden state.

The final outputs are yielded as a function of the hidden states f t at each time point t.

f t = p(xt,f t−1) (3.3)

ŷt = g(f t) (3.4)

Although RNNs are capable of capturing complex nonlinear information from sequential data, they

are not easy to train, because they are different from the feed-forward networks. In feed-forward neural

networks, signals only travel one way, from an input layer to one or more hidden layers, finally moving

forward to the output layer. Signals in RNNs, however, can travel both forward and backward and may

contain various “loops” in the network, where numbers or values are fed back into the network. In

addition, information at a distant point in the network is sometimes lost, because it is considered lower

in information than that which is close by.

Addressing that problem has led to research on reservoir computing methods, such as Echo State

Networks (ESNs; Jaeger, 2001) and Liquid State Machines (LSMs; Maass et al., 2002). These methods

required less learning time to converge and achieved good model accuracy (Chouikhi et al., 2019). The

work of reservoir computing with sequential data has been reported in other areas such as time series

prediction (Bianchi et al., 2020), human brain signal processing (Sun et al., 2019), and document classifi-

cation (Schaetti, 2019). There does not yet appear to be research reported, however, on the performance
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of reservoir computing for educational process data, although the MC items’ process data is also a type of

time-dependent data. These data have been successfully analyzed by RNNs as discussed in Chapter 2 liter-

ature reviews. Therefore, this research was designed to employ reservoir computing with an optimization

algorithm to handle the log file for MC items.

3.2.3 Echo State Network (ESN)

The ESN contains an RNN-based computational framework, making it suitable for processing sequential

data (Jaeger, 2001). The ESN has been reported with high classification and prediction accuracy for time

series problems (Ma et al., 2016) and has successfully been used to extract useful features from time-

series data (Sun et al., 2019). The ESN has been shown to achieve comparably good performance and

significantly lower training times with respect to RNN processing of sequential data (Jirak et al., 2020).

This is because the ESN reduces the training-related challenges by fixing the dynamics of the reservoir

and only training the linear output layer. As shown in Figure 3.2, a general ESN system consists of three

components: an input layer for sequential data, a random sparse recurrent hidden layer called a reservoir

layer, which consists of an untrained RNN that functions as a temporal kernel by mapping the input

into a high-dimensional feature space, and an output layer for training the high-dimensional features

resulting from the reservoir. The reservoir in ESN is the internal structure of the system. The dynamic

neurons interconnected within the reservoir are activated by a nonlinear function such as a hyperbolic

tangent. Each of the dark bubbles in Figure 3.2 represents a neuron within the reservoir. The major

roles of the reservoir in reservoir computing are to first nonlinearly transform the sequential inputs to a

high-dimensional space and then store information by use of recurrent neuron loops.
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Figure 3.2: A reservoir computing framework with three components

The reservoir computing model differs from conventional RNNs in that the input weights, Win, and

the weights of the recurrent connections within the reservoir, Wres, are not trained, whereas the output

weights,Wout, are trained with a simple learning algorithm such as regression or classification. The output

is a layer that performs a simple linear transformation on the output of the reservoir. The solid lines in the

figure represent fixed connections while the dashed lines define connections that need to be learned by the

reservoir computing system. In this way, by using the embedded information from short-time memory

(i.e., close-by neurons), reservoir computing can achieve the same performance as provided by utilizing the

information from the complete RNN (Gallicchio, 2018; Takens, 1981). The training of only the output

instead of all the weights in the network indicates that, as long as an RNN possesses the property of using

the short-time memory, i.e., close-by embedded information, supervised adaption of all interconnection
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weights is not necessary, and only training a supervised output that has no memory is sufficient to obtain

accurate performance. The supervised output means that the extracted features from the reservoir are

guided or supervised by a label, such as the actions themselves, examinees’ responses, or teachers’ grades.

This relatively simple and fast training process is an advantage of reservoir computing and makes it possible

to reduce the cost involved in computing all the weights in a conventional RNN.

Suppose we have a total of L examinees for a test, and for the lth examinee, the ESN model updates

the hidden state of each input with Equation 3.5 and 3.6

x̃l(t+ 1) = f
(
Win

(
al(t+ 1)

)T
+Wresx

l(t)
)

(3.5)

xl(t+ 1) = (1− α)xl(t) + αx̃l(t+ 1) (3.6)

where al(t) ∈ RNu is the input embedded vector at time point t from the matrix Equation 3.2, xl(t) ∈

RNx×Nu is a matrix of reservoir neuron activation and x̃l(t + 1) ∈ RNx×Nu is its update, f(·) is the

activation function which is usually a hyperbolic function tanh(·), Win ∈ RNx×1, Wres ∈ RNx×Nx

are the input and reservoir weight matrices respectively, and α ∈ (0, 1] is the leaking rate. In order to

use Equation 3.5 and 3.6 to update the model parameters, one additional thing that should be noted is

that the maximal absolute eigenvalue of the reservoir matrix Wres should be less than 1. The maximal

absolute eigenvalue of the reservoir matrix Wres is a central parameter of an ESN, which is also named as

the spectral radius ρ of the reservoir weight matrix. When the ESN maintains ρ < 1, this is also called the

echo state property, the ESN can properly work and use Equations 3.5 and 3.6 to update mode parameters.
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Denote the vertical concatenation of state vector and input vector at each time point as in Equation

3.7

H l(t) =
[
xl(t) :

(
αl(t)

)T] ∈ R(1+Nx)×Nu (3.7)

then keep the last output matrix as a summary of information, then the output layer is defined as in

Equation 3.8 (
yl(t)

)T
= WoutH

l(t) (3.8)

where yl(t) ∈ RN
u is the target vector, the Wout ∈ R1(1+Nx) is an output weight matrix, which can be

learned by a regression or classification model.

Given the structure of ESN, the following hyper-parameters are first initialized and not trained in

ESN. These are the ESN reservoir size Nx, the leaking rate α, spectral radius ρ, the reservoir weight matrix

Wres and input weight matrix Win. The input of the model is the embedded action sequence matrix Al

for each examinee. Calculate the last output summary of information H l(t) as from Equation 3.5 to 3.7,

and calculate the average of each column to get a vector hl ∈ RNu , which is the raw representation vector

for the lth examinee. Conduct a principal component analysis (PCA) of the raw representation matrix

consisting of all l examinees, yields a resulting matrix which contains final representation vectors for all l

examinees. This whole process given by ESN can be described as in Table 3.1.

3.2.4 Particle swarm optimization and singular value decomposition

In ESN, because the input weight matrix Win, reservoir size Nu and reservoir weight matrix Wres are

randomly generated but not trained, the initialization of these parameters influences the ESN model per-

formance. Specifically, research has shown that the singular value spectrum of the reservoir weight matrix
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Table 3.1: The process of a simple ESN applied on the MC item process data
Process Step

1 Initialize the ESN by constructing the input weight matrix, reservoir weight
matrix, and leaking rate.

2 Calculate the representation matrix H l(t) consisting of the vertical concatena-
tion of state vector and input vector for the lth examinee by Equations 3.5 to
3.7.

3 Calculate the last output summary of information H l(t) and calculate the
average of each column to get a horizontal vector hl ∈ RNu , which is the
extracted feature representation vector for the lth examinee.

4 Denote the row combination of each horizontal vector hl as a representation
matrix H, in which each row is a representation vector to the lth examinee.

closely affects the ESN performance (F.-J. Li and Li, 2017; Strauss et al., 2012). Therefore, as optimizing the

parameters of the reservoir weight matrix may provide a better ESN structure, an optimization algorithm

called particle swarm optimization (PSO; Kennedy and Eberhart, 1995) with singular value decomposition

(SVD; Wall et al., 2003) is introduced and utilized in this chapter with the ESN.

PSO is an evolutionary learning method for optimizing parameters. PSO has demonstrated its supe-

riority with the artificial neural network on nonlinear pattern classification (Garro and Vázquez, 2015)

and recurrent neural network on the sequence prediction (Juang, 2004). It has been further compared

with the commonly used backpropagation method for the neural network training, and results indicated

that the neural network parameters would converge faster with the PSO than with the backpropagation

(Gudise and Venayagamoorthy, 2003). Chouikhi et al. (2017) used PSO in ESN to pre-train the fixed

reservoir matrix weights and the trained reservoir matrix weight was then applied in ESN to process time

series. Their results suggested that using PSO can enhance the learning results of ESN for time series

forecasting.
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This system searches for optimal solutions by iteratively updating values. The system of PSO is first

initialized with a group of random particles. In this system, each particle is a single solution (a set of

singular values) that will move through the search space to a global optimum. Each particle r can be

marked by a pair of values called position and velocity, denoted as (pr, vr). Some terms will be introduced

such as the personal best pr,best, which is the best solution the rth particle has achieved so far, and the

global bestgbest, which is the best value obtained by any particle in the whole system. If the algorithm stops

running, the global best value would be taken as the optimal value. For the obtained best value at each

step, some constants serve as controlling coefficients and determine their importance for calculating the

movement of the particle, as described in Equations 3.9 and 3.10. The particle’s velocity and the position

of the rth particle at the kth time point in a search space can be updated with the following Equations 3.9

and 3.10:

vr,k+1 = Wtiavr,k + C1 × rand[0, 1]× (pr,best − pr,k) + C2 × rand[0, 1]× (gbest − pr,k) (3.9)

pr,k+1 = pr,k + v[r, k + 1] (3.10)

where the Wtia represents the inertia weight that is applied to control the search, C1 and C2 are constants

controlling the displacements of particles toward the local or the global optima, and the rand[0, 1] gives

a random value in the range of [0, 1]. The updated solutions are evaluated by a fitness function, which

was defined to indicate the quality and convergence of optimization.

SVD is a statistical method for matrix factorization. It generalizes the eigenvalue decomposition of a

square normal matrix with an orthonormal eigen-basis to any dimensional matrix. It has been used for
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training neural networks such as deep neural networks (Qasem and Mohammadzadeh, 2021) and growing

ESN (Y. Li and Li, 2019) due to its significantly better prediction accuracy and higher estimation perfor-

mance with less tunable parameters and less time. It was further suggested that using SVD for training

neural networks can reduce the high dimensionality and efficiently improve the network performance

(C. H. Li and Park, 2009). The equation for SVD of an m× n matrix X with rank r can be written as

Equation 3.11,

X = USV T (3.11)

where U is an m×n matrix, S is an n×n diagonal matrix, and V T is also an n×n matrix. The columns

of U , uk, are left singular vectors, and uiuj = 1 for i = j and uiuj = 0 for i ̸= j. The rows of V T , vk,

are right singular vectors, and v′
iv

′
j = 1 for i = j and v′

iv
′
j = 0 for i ̸= j. Each element of matrix S is

only nonzero on the diagonal. These are named the singular values. Therefore, S = diag(s1, · · · , sn)

and sk > 0 for 1 ≤ k ≤ r, and sk = 0 for (r + 1) ≤ k ≤ n. The ordering of the singular vectors is

usually determined by high-to-low sorting of the singular values, with the highest singular value in the

upper left index of the S matrix.

3.2.5 Sequential reservoir model: ESN with SVD based PSO for the process

data

The Sequential reservoir model (SRM) in this chapter is constructed by employing the ESN with SVD

based PSO to create the reservoir weight matrix with optimized singular values. That is, the PSO optimizes

the singular values first, and then the singular values are used to construct a reservoir weight matrix by SVD.

Once the reservoir has been constructed, the ESN can train the data, as it does in the simple ESN. The
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common feedback RNN models, as introduced above, use the internal recurrence to iteratively process

data from one layer to another in order to obtain the optimal parameters. So, SRM results in lower

computation costs than repeated training of the output layer, as is required by the common RNN models.

Given the SVD in Equation 3.11, the reservoir weight matrix Wres ∈ RNx×Nx , can be decomposed as in

Equation 3.12

Wres = USV T (3.12)

where UTU = V TV = I , I is an identity matrix, and U and V are two orthogonal matrices. S =

diag(σ1, . . . , σNx), where σ’s are singular values and are optimized by PSO. According to PSO, Wres and

S have the same singular values. Therefore, once the σ’s are optimized, the reservoir weight matrix Wres

constructed by Equation 3.12 yields the optimized reservoir. Recall that max(σ)<1 can maintain the echo

state property.

In ESN, for the lth examinee, we obtain the state matrixH l(t) =
[
xl(t) :

(
αl(t)

)T] ∈ R(1+Nx)Nu as

a vertical concatenation of state vector and input vector, then keep the last output summary of information

H l(t) and calculate the average of each column to get a vectorhl ∈ R(Nu), which is the representation vec-

tor for the lth examinee. Given the output yl(t) = αl(t) ∈ R(Nu) (because the output is set to be equal

to the input in order to realize vector recovery), then the output space as Ll = span(αl(1), · · · ,αl(t)),

so the Gram-Schmidt process can be applied to yield Equation 3.13


ζl
i = αl(i)−

∑i−1
j=1 < αl(i), ξli > ξli, i ∈ [1, t]

ξli =
ζl
i

|ζ| , i ∈ [1, t]

(3.13)
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where the < αl(i), ξli > indicates the inner product of two vectors αl(i) and ξli. Then the orthonormal

vectors ξli =
(
ξl1, · · · , ξlt

)
are the basis of the space Ll. Given the representation vector learned at the

kth time point in the PSO as el
k = hl, the distance between the representation vector and space Ll is

defined in Equation 3.14.

d(el
k,Ll) =

√√√√|el
k| −

t∑
i=1

< el
k, ξ

l
i > (3.14)

The distance reflects the distance between the latent representation and desired output vector space.

Therefore, a smaller distance indicates that a better latent representation was extracted. For all the exami-

nees, the fitness function can be defined as in Equation 3.15.

fitness(k) =

√√√√ L∑
l=1

(
d(el

k,Ll)
)2 (3.15)

Different reservoir sizes are attempted in this chapter. They are 500, 1000, 2000, 3000, 4000, and

5000, respectively. This whole process given by the SRM can be described as in Table 3.2.

3.3 Design of Experiment

3.3.1 Experiment purposes and controlled parameters

This experiment design considers employing two simulation studies to demonstrate the performance

of SMR. The simulations have two purposes. The first is that the simulation can be used to mimic

examinees’ action sequences for an item, and the second purpose is to show that the features extracted

from the simulated action sequences contain useful information about examinees. In the simulation,
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Table 3.2: The process of a simple ESN applied on the MC item process data
Process Step

1 For each of the reservoir sizes (500, 1000, 2000, 3000, 4000, 5000): Initialize
the particles, each particle stands a single solution (a set of singular values) to
the reservoir weight matrix.

2 Optimize the particles by the following steps:

1. For each particle, calculate the fitness value by the following steps:

(a) Construct the reservoir weight matrix by Equation 3.12;
(b) Calculate the feature vector hl ∈ RNu for the lth examinee by

Equations 3.9, 3.10, and 3.12;
(c) Apply the Gram-Schmidt process to the output space Ll =

span
(
ul(1), · · · ,ul(t)

)
for the lth examinee to yield orthonor-

mal vectors ul
i = (ξl1, · · · , ξlt) by Equation 3.13;

(d) Calculate the distance between the feature vector hl and space Ll

by Equation 3.14 for the lth examinee;
(e) Calculate the fitness value by Equation 3.15.

2. Record the personal best solution and the global best solution.

3. Update the particles according to Equations 3.9 and 3.10.

4. Repeat until the termination or convergence condition was satisfied.

3 Record the optimal solution.
4 Extract the feature vector hl ∈ RNu for the lth examinee using steps 2 to 4 in

Table 3.1.

several sequences of actions to an item were generated and the proposed SMR model was applied to the

simulated response process for extracting features.

In real test situations, many factors are associated with the process data such as the sample size and

the total number of unique actions for a single item. As shown in Table 3.3, two factors are explored in

generating action sequences, the total number of unique actions nz and the total number of examinees l.

For each of the factors, three levels are considered and each level will be selected sequentially to generate
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data in the corresponding simulation scenario. For example, the combination of nz = 10 and l = 150

in simulated data indicates that each of the 150 examines may respond to an item with an unlimited

number of actions but each action is selected from 10 unique actions. One advantage given by the SRM

is the adjustable reservoir weight matrix that is based on PSO and SVD. Therefore, six different levels of

reservoir size (Nx = 500, 1000, 2000, 3000, 4000, and 5000) are employed when simulating the SRM to

test the effects caused by different reservoir sizes. In the learning process, determining how many features

should be extracted by the SRM model for each data set is an exploratory process, which indicates a set

of pre-defined numbers that will be used. The SRM will pick up each of the pre-defined numbers to see

which one will produce the most accurate results. In this study, the SRM will select the optimal feature

number for the process data from the list of (25, 50, 75, 100, 125, 150, 175, 200).

Table 3.3: Factors and levels that are used for generating action sequences in the simulation
Factor Level and value

The total number of unique actions (nz) 0: 10
1: 25
2: 50

The total number of examinees (l) 0: 150
1: 1,500
2: 3,000

3.3.2 Markov chain

For the sake of simulating sequences and extracting features, and inspired by the work of X. Tang et al.

(2020) and X. Tang et al. (2021), action sequences were generated by the Markov chain (Athreya et al.,

1996) in this chapter. Markov chain is a stochastic model that describes a sequence of actions where the

probability of each action simply depends on its previous action. Analyzing behavior processes with the

Markov chain has been reported in the literature (e.g., D. Kaplan, 2008; Weingart et al., 1999). A Markov
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chain has also been used with process data, such as generating log actions and associated timestamps

using the Markov chain (X. Tang et al., 2020; X. Tang et al., 2021). In this way, the Markov chain can

simulate the probability associated with a sequence of actions occurring based on the previous action. It

was adapted to simulate the process sequence in this chapter.

For zth item, suppose there exist a total of nz possible unique actions which are denoted as S =

(sz1, . . . , s
z
nz
), i.e., a total of nz possible unique actions. In addition, let s1 indicate the start action and let

snz indicate the end action for the zth item. Therefore, all examinees’ action sequences start from s1 and

end at snz . For all the nz actions in a process, Markov chain will transit from one action to another, and

given an action at at a particular moment t, the probability of making the next transition at+1 will only

depend on the action at the given time t. In this way, at+1 is one of the nz actions that the process can

transit to. In the Markov chain, the probability of transiting from an action ai to another ai+1 is defined

by a square transition matrix P as shown in Equation 3.16.

P =



p1,1 p1,2 · · · p1,nz

p2,1 p2,2 · · · p2,nz

...
... . . . ...

pnz ,1 pnz ,2 · · · pnz ,nz


(3.16)

This matrixP = [pi,j]1≤i,j≤nz indicates the probability from one action ai to another aj(i < j), and

pi,j = P (aj = at+1|ai = at), and serves as the guiding rule of employing actions. Therefore, examinees’

action sequences that were generated from the same Markov chain are believed to have a common latent

connection and to have similar test behavior patterns since they have the same guiding rule.
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Since s1 indicates the start action and snz indicates the end action for the zth item, two rules should be

applied. First, the probability of transitioning from any other action to s1 is 0 (i.e., there is no transitioning

backward to the start action). Second, probabilities of transitioning from snz to any other actions are

0, but the probability of transitioning from snz to itself is 1. That means, in both transition matrices,

Pi,1 = 0 for any i, Pnz ,i = 0 for i = 1, . . . , nz − 1, and Pnz ,nz = 1. The two matrices have the following

format in Equation 3.17.

P =


0 · · · p1,nz

... . . . ...

0 · · · 1

 (3.17)

3.3.3 Simulation study I: group classification based on action sequences

This simulation considers the utilization of SMR on the problem of group classification. Three latent

groups were employed in simulation study I, so three latent Markov chains with corresponding Markov

matrices were generated. Denote the upper right sub-matrix with dimension (nz − 1) × (nz − 1) in

Equation 3.17 as P ′, then the objective of the first simulation is to generate three matrices P ′(1), P ′(2), and

P
′(3) in order to generate three Markov groups.

First, three uniform matrices U (1), U (2), and U (3) each with dimension (nz − 1)× (nz − 1), were

generated. Denote elements of the three uniform matrices as u(1)
i,j , u(2)

i,j , and u
(3)
i,j for U (1), U (2), and U (3),

respectively. All elements were generated independently from a uniform distribution U(−15, 15). Then,

three matrices P ′(1) =
(
p
(1)
i,j

)
1≤i,j≤(nz−1)

, P ′(2) =
(
p
(2)
i,j

)
1≤i,j≤(nz−1)

, and P
′(3) =

(
p
(3)
i,j

)
1≤i,j≤(nz−1)
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were generated using the following equations in Equation 3.18.



p
(1)
i,j =

expu
(1)
i,j∑nk−1

j=1 expu
(1)
i,j

p
(2)
i,j =

expu
(2)
i,j∑nk−1

j=1 expu
(2)
i,j

p
(3)
i,j =

expu
(3)
i,j∑nk−1

j=1 expu
(3)
i,j

(3.18)

where p(i, j)(1), p(i, j)(2), and p(i, j)
(3) are elements of the three matrices P ′(1), P ′(2), and P

′(3). Given

these three matrices, three Markov matrices were formed using Equation 3.17 and therefore three different

guiding rules were generated.

Each sequence of actions is generated by one of the three Markov matrices, and all sequences will be

analyzed by the SRM. The feature vectors hl ∈ RNu extracted from the sequences by the SRM are used

to classify each examinee’s latent group with a generalized logit model. For comparison, the average of

each input vector al is computed as baseline features.

3.3.4 Simulation study II: latent trait prediction based on action sequences

This simulation considers the utilization of SMR on the problem of latent trait prediction. Compared

with simulation I, each of the l action sequences in simulation II was generated from a unique Markov

chain, but all l chains were associated with a common uniform matrix U (4), given the studies of X. Tang

et al. (2020) and X. Tang et al. (2021). Similarly, in each Markov matrix, Pi,1 = 0 for any i, Pnz ,i = 0 for

i = 1, · · · , nz − 1, and Pnz ,nz = 1 as shown in Equation 3.17.

First, examinees’ latent abilities, θ1, · · · , θl, were randomly generated from a normal distribution

N(0, 1). Then the uniform matrix U (4), with element u(4)
i,j and dimension (nz − 1) × (nz − 1), was
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generated from a uniform distribution U(−15, 15) as was done in simulation study I. We again denote

the upper right sub-matrix with dimension (nz − 1)× (nz − 1) in Equation 3.15 as P ′(l) . These matrices

P
′(l) were generated by both the latent abilities θ1 and the common uniform matrix U (4). That is, for

each examinee, the unique matrix P ′(l) = (p
(l)
i,j)1≤i,j≤(nz−1) was generated using Equation 3.19

p
(l)
i,j =

exp θlu
(4)
i,j∑nk−1

j=1 exp θlu
(4)
i,j

(3.19)

where p(l)i,j represents elements of the unique matrix P ′(l). Given these matrices, l different Markov matri-

ces were formed using Equation 3.17 as we did in simulation study I.

Since each sequence of actions is generated by its unique Markov matrix, the features extracted by

applying the SRM on all sequences are used to predict examinees’ latent abilities θl. Similarly, the average

of each input vector al is used as baseline features for predicting examinees’ latent abilities.

3.3.5 Evaluation metrics

Accuracy is used to demonstrate the classification ability of the extracted features in Simulation I. Table

3.4 shows a confusion matrix example, with each entry showing the number of results.

Table 3.4: Confusion matrix for classification with three categories.
Model predicted group

1 2 3
1 N11 N12 N13

Actual Markov Group 2 N21 N22 N23

3 N31 N32 N33

Given the numbers, the classification accuracy is defined in Equation 3.20. In this table, each entry

shows the number of results corresponding to the actual group of the row and the model predicted group

of the column.
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CA =

∑
Ni=j∑

(Ni=j +Ni ̸=j)
(3.20)

Prediction accuracy of the latent trait estimates was evaluated using the root mean square error

(RMSE), between the generating and estimated parameters. Assuming we have L examinees, the RMSE

for the latent trait estimates is calculated by Equation 3.21

RMSE =

√√√√ 1

L

L∑
l=1

(θ̂l − θl)2 (3.21)

where θl stands for the generating ability estimation for lth examinee, and θ̂l is the estimated parameter for

lth examinee using LASSO (least absolute shrinkage and selection operator) regression. In the simulation

studies, each simulation condition was replicated 50 times, therefore, average CA and average RMSE are

obtained by taking the average to the CA and RMSE values from these replications.

LASSO regression selects variables and regularizes the model to enhance the prediction accuracy and

interpretability of the model by adding a penalty term in the error function. The LASSO coefficients, β̂λ,

minimize the quantity in Equation 3.22

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2 + λ

p∑
j=1

|βj| (3.22)

where
∑n

i=1(yi − β0 −
∑p

j=1 βjxij)
2 is the sum of squared residuals given by the regression, λ is the

LASSO constant, and βj is the L1 norm of the coefficient vector βj .
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3.4 Results of Simulation Studies

3.4.1 Results of study I

Applying the SRM to the simulated dataset yields a feature matrix with dimensions l × Nu, in which

each row represents an examinee and each column is one feature. We first conducted a PCA analysis on

one of the feature matrices which was extracted for the condition of l = 3000 and nz = 10 (i.e., 3, 000

examinees and10 features). Generally, for the data set with a total ofp extracted principal components, the

eigenvalue of each principal component would be decreasing, so it is common to retain the first k principal

components (Dunteman, 1989). The selection of k is usually based on two objectives. The first is that k

should be as small as possible for the sake of having the simplest component interpretation. For example,

if we can explain a large portion of the overall data variation with the first two principal components, then

use of the first two principal components alone would simplify our description of the data. The second

objective is that the portion of the overall data variation explained by the selected principal components

should be as large as possible in order to reduce the loss of information. That is, the ratio between the

sum of the eigenvalues of the selected principal components and the sum of the eigenvalues of all selected

principal components should be as close to 1 as possible. This is shown in Equation 3.24

∑k
1 λi∑p
1 λi

≈ 1 (3.23)

where λi(i = 1, . . . , p) indicates the eigenvalue of each principal component.

The first two principal components for each examinee were selected since they would account for

75.3% of the total variation (i.e., 1st principal component: 59.6%, 2nd principal component: 15.7%).

43



Figure 3.3 plots these two components. In this figure, the x-axis and y-axis are the first and second principal

components, respectively. Each dot represents an examinee. The three groups indicate which group each

examinee was generated from. It appears clear that three different groups can be distinguished by the

features that were extracted from the generated action sequence.

Figure 3.3: Principal component analysis of the features extracted by SRM from Simulation Study I with
l = 3000 and nz = 10

The extracted SRM features and baseline features are used to predict the group classification under

each simulation condition, respectively. Table 3.5 reports the average of the best classification accuracies

associated with standard deviations in the parenthesis yielded by the most optimal reservoir size. The

smallest and highest classification accuracies yielded by using the SRM features are 0.825 and 0.902,

respectively, while values from the baseline features are 0.391 and 0.454, respectively. It can be seen from
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the table that first, the accuracy yielded by using the SRM features is much higher than that yielded by

using the baseline features under each of the conditions. This indicates that the features extracted by SRM

may successfully contain sufficient information about the different Markov groups. Second, it can be

observed that, when the sample size increases, the accuracy produced by using the SRM features increases

as well. This suggests that by including more cases in the SRM, it is possible to extract features that contain

more sequence information. The number of unique actions does not appear to have a consistent effect.

We don’t find, however, that increasing the number of unique actions either increases or decreases the

accuracy. For example, with l = 150, when nz increases from 10 to 25 and further to 50, the accuracy

changes only happed at the second or third decimal.

Table 3.5: Average best group classification accuracy with the standard deviations by the extracted features
and baseline features using the multinomial logistic regression

l n SRM features Baseline features
10 0.825 (0.074) 0.391 (0.137)

150 25 0.836 (0.102) 0.400 (0.098)
50 0.829 (0.096) 0.398 (0.115)
10 0.851 (0.068) 0.427 (0.168)

1500 25 0.862 (0.057) 0.414 (0.151)
50 0.865 (0.062) 0.401 (0.099)
10 0.891 (0.059) 0.431 (0.103)

3000 25 0.902 (0.047) 0.454 (0.077)
50 0.900 (0.051) 0.448 (0.102)

Classification accuracies for the simulation study are plotted in Figure 3.4 for 500 to 5, 000 examinees.

The plots in Figure 3.4 show that average classification accuracy increased with an increase in the number

of examinees for each of three different numbers of features. The red lines are changes of the average

classification accuracies, and the segments above and below each point are standard deviations. The

general trend observed in the figure shows that a larger reservoir size (i.e., a larger number of examinees)

increased the accuracy of classifying each generated sequence.
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The best accuracies under each combination were all observed when the reservoir size was 5000. In

addition, when the reservoir size changed from 500 to 1000, the accuracy increased more rapidly, and

the standard deviation yielded by the reservoir of 500 was larger than the other sizes. This suggests that a

reservoir of 500 may provide a less classification accuracy than the desired level of accuracy. The results

from an increase in sample size also suggests that including more cases in the sample should improve the

classification accuracy. Finally, the patterns in each of the plots in Figure 3.4 appear roughly the same

suggesting that the number of unique actions, nz , does not have much differential impact on the accuracy

of feature extraction.

Figure 3.4: Average group classification accuracy with standard deviation yielded by an increasing reservoir
for each combination of Number of Examinees and Number of Features
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3.4.2 Results of study II

After applying the SRM on the simulated dataset in Simulation Study II, we obtained a feature matrix

with dimension l ×Nu, in which each row represents an examinee and each column is one feature. The

PCA analysis was applied to the feature matrix that was extracted for the l = 3000 andnz = 10 condition.

Figure 3.5: Principal component analysis to the features extracted by SRM from Simulation II with l =
3000 and nz = 10
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As shown in Study I, in Figure 3.5 we again show a plot of the first and second principal components

for each examinee from the PCA analysis. In this figure, the x-axis and y-axis are the first and second

principal components, respectively. Each dot represents an examinee. The legend on the right of the

figure indicates the generated θ for each examinee. The darker dots indicate a higher value θ and the

lighter dots indicate a lower value θ. It is interesting to see a clear fading pattern from higher ability to

lower ability levels by the two principal components analyzed from the features that were extracted from

the generated action sequence. In another word, the examinees located closer to each other have similar

latent trait levels, and their ability information can be well represented and compressed in the features

extracted by SRM.

The extracted SRM features and baseline features are used to predict the latent abilities θj under

each simulation condition, respectively. Table 3.6 reports the average of the RMSEs associated with their

stand errors yielded by the most optimal reservoir size. The smallest and highest RMSEs yielded using

the baseline features are 0.896 and 1.636, respectively. RMSE values from using the SRM features were

only 0.301 and 0.587, respectively. This is similar to what was obtained in Simulation Study I. First, the

RMSEs obtained by using the SRM features were much lower than those from using the baseline features

in each of the conditions. Second, using a larger sample size appeared to reduce the prediction error. That

is, the RMSE produced by using the SRM features decreased with an increase in simulated examinees.

Compared with the group classification, however, a larger number of nz seems to have a negative on the

latent trait prediction. It can be seen that, when the number of nz increased, the RMSEs increased under

each of the three levels of l. For example, when l = 150, for nz = 10, 25, and 50, the regression RMSEs

yielded by using the extracted features were 0.481, 0.532, and 0.587, respectively. This may indicate that
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the extracted SRM features could have a better representation of the sequence and latent abilities, if an

item has fewer unique actions for examinees.

Table 3.6: Average best latent trait RMSEs with standard deviations by extracted features and baseline
features using the LASSO regression

l n SRM features Baseline features
10 0.481 (0.104) 1.048 (0.187)

150 25 0.532 (0.115) 1.397 (0.214)
50 0.587 (0.138) 1.636 (0.296)
10 0.408 (0.045) 0.965 (0.095)

1500 25 0.465 (0.085) 0.999 (0.101)
50 0.496 (0.117) 0.994 (0.099)
10 0.301 (0.036) 0.896 (0.083)

3000 25 0.358 (0.041) 0.925 (0.094)
50 0.383 (0.042) 0.913 (0.091)

The RMSEs in Figure 3.6 indicate the change of average RMSEs and standard deviations along with

this training process. The general trend observed from the figure shows that a larger reservoir size can

better predict the latent trait for each generated sequence. Similarly, the lowest RMSEs were all obtained

for the reservoir size of 5000. The highest RMSEs were obtained when the reservoir size was lower than

1000. The standard errors yielded by the reservoir of 500 were also larger than the other reservoir sizes.

This further suggests that the use of at least a reservoir size of 1000 may be able to extract useful features.

Based on the increase of sample size, we can see that by incorporating larger samples in the model, the

features may be able to extract more information and a subsequently higher regression prediction. From

this figure, a higher number of unique actions nz seems to hurt the feature extraction. This is because,

when the number of actions changes from 10 to 25 and from 25 to 50, the prediction errors increased

under each condition.
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Figure 3.6: Average latent trait RMSEs with standard deviations yielded by an increasing reservoir for each
combination of two factors

3.5 An Exploratory Study Using both Process Data and Response

Data

In the two simulation studies above, two types of datasets were simulated. The use of extracted features in

group classification and the variable prediction was shown for each type. In the second simulation study,

we found that the features extracted from the process data could be used to recover the latent trait with a

low RMSE when the sample size and the reservoir size were large. However, the use of the features is still

separated from the use of response data such as the commonly used dichotomous or polytomous data in
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IRT models. That is, we didn’t include the response score patterns when constructing the classification

and regression models with the extracted features in Study I and II. In this section, we compare two

conditions, one is the use of both the process data plus the response data and the other is the use of only

the response data. A new simulation study is described below using the Rasch model (Rasch, 1966; Rasch,

1993) to generate item responses and using a Markov chain to generate associated action sequences.

3.5.1 Rasch model

Among all latent trait models proposed for examinees’ ability measurement, the Rasch model has the

simplest parameterization. It has one ability parameter θl for each examinee and one difficulty parameter

bz for each item. Rasch model has been used in many assessments with dichotomous item response data

to show the positions of both examinees and items on the latent variable scale (Engelhard Jr, 2013). The

model assumes that all the items have identical item discriminations of 1. The model takes the form as

shown in Equation 3.24

Pz(θl) =
1

1 + exp−(θl − bz)
(3.24)

where Pz(θl) is the probability that an examinee with trait level θl can be expected to answer correctly that

item with a difficulty level of bz .

3.5.2 Design of the experiment

Based on the preliminary conclusion from the previous simulation studies, we use l = 3000, nz = 10,

and a reservoir size of 5000. Six test lengths were generated in this study : z = 5, 15, 25, 35, 45, and

55 items. For each of the six test length conditions, we assume that all items have the same number of
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unique actions, and different examinees will have different guiding rules, but an examinee will use the

same guiding rule for all items. Here the guiding rule refers to the transition probability among actions

for each examinee (i.e., the Markov matrix). Therefore, these two assumptions indicate that, first, the

numbers of unique actions provided for all items are the same but each individual item’s unique actions

and their meanings could be different. For example, for a test with 5 items, each item may have 10 unique

actions for examinees to use during the test, but the 10 actions for item 1 could be different from those

in item 2 except for the actions of “begin item” and “end item”. Second, by assuming that an examinee

will use the same guiding rule for each item, we make sure that each simulated individual examinee may

respond to items following a consistent testing behavioral rule.

For each test length condition, examinees’ latent abilities, θ1, · · · , θ3000, and the item difficulty param-

eters bz were randomly generated from a normal distribution N(0, 1). By employing the Rasch model in

Equation 3.22, the response matrix can be generated, and each examinee’s response vector can be repre-

sented as πl. Then, by using the same latent abilities, we generated 3000 sequences for each item using the

method of simulation study II. That is, for each of the z items, each of the 3000 sequences was generated

from a unique Markov chain, and all 3000 chains were associated with a common uniform matrix as we

saw in Simulation Study II (i.e., section 3.3.4 the common uniform matrix U (4)).

3.5.3 Linear model and fit indices

For each item, the features are extracted by applying the SRM on its 3000 sequences. For all items, their

feature matrices will be column concatenated together such that h = (h1 : · · · : hz). The features

are used together with the generated responses to predict examinees’ latent abilities in a linear model as
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specified below, in Equation 3.25.

θ = Xβ + ϵ (3.25)

where X = [1 : π : h] means the column concatenation of vector 1, response matrix π, and feature

matrix h. LASSO regression is used for selecting useful features for training this linear model. LASSO

selects meaningful features and adds them as additional exploratory variables into the model with only

the responses to predict the latent ability values. As a comparison, the response matrix itself is also fit into

the other linear model with the matrix specification of X = [1 : π].

Denote the linear model using only responses as RspData, and the other linear model with both

responses and features as Rsp+ProcData. We then can evaluate the two models by the recovery of ability

and model fit indices. RMSEs are used to help indicate the accuracy of the recovery of the simulated latent

ability. Model fit indices used in this study are residual standard error (RSE) and R-squared (R2). Both are

used to measure how well a regression model fits the data and predicts the latent variable. RSE measures

the standard deviation of the residuals in a regression model by calculating Equation 3.26

RSE =

√∑
(y − ŷ)2

df
(3.26)

The measure ofR2 represents the proportion of the variance for the predicted variable that is explained

by the predictors in the regression model by computing Equation 3.27

R2 = 1− RSS

TSS
(3.27)

where the RSS is the residual sum of squares and TSS is the total sum of squares.
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3.5.4 Results discussion

The RMSE values of the recovery of the latent ability given by the two models are shown in Table 3.7. The

linear model with the addition of process data provides better ability recovery than the linear model with

only the response data. In addition, by using more items in the test, two linear models both yield higher

ability recovery accuracy, but the improvement based on the Rsp+ProcData model is smaller than the

RspData model. For example, the ranges of RMSE values from the Rsp+ProcData model and RspData

model are (0.263, 0.399) and (0.298, 0.711), respectively. When the number of items is small, such as 5

items, adding process data into the response data yielded a lower RMSE value than the model using only

the response data. The recovery analysis confirms that the addition of process data can provide additional

useful information about examinees’ latent ability information.

Table 3.7: RMSEs of the latent ability recovery given by the Rsp+ProcData model and the RspData model
Number of items in the test

5 15 25 35 45 55
Rsp+ProcData 0.399 0.351 0.331 0.303 0.287 0.263

RspData 0.711 0.513 0.430 0.387 0.346 0.298

Figure 3.7 plots the two model fit indices of the Rsp+ProcData model versus the RspData model. In

this figure, the x-axis indicates the fit index values from the RspData model and the y-axis indicates the

fit index values from the Rsp+ProcData model. The number of items used in the test is represented by

increasing radius sizes in this figure, i.e, 5, 15, 25, 35, 45, and 55. Red and green colors indicate the index

of RSE and R2, respectively. The diagonal line separates an upper triangle section and a lower triangle

section, and the dots on this separating line are relatively close to the line suggesting the two fit indices

from the two models indicate similar levels of fit. The symbols in the upper triangle section indicate that

the fit index value from the Rsp+ProcData model is higher than those from the RspData model, and the
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dots in the lower triangle indicate the fit from the Rsp+ProcData model is lower than from the RspData

model. Further, all R2 values fall into the upper triangle section, while all RSE values fall into the lower

triangle section.

Figure 3.7: The model fit index values of the Rsp+ProcData model versus the RspData model

This figure tells us that the model fit given by the Rsp+ProcData model is better than by the RspData

model. In other words, the additional information from the process data appears to result in a better fit

to the linear model than the use of only response data. Further, adding more item responses in the linear
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model appears to result in the symbols trending toward the line. This may indicate that the differences

between the two models might diminish if more item responses are included.

3.6 Application of Sequence Reservoir Model (SRM) to the Em-

pirical Data

In this section, an empirical dataset is analyzed to demonstrate the SRM model performance. The empir-

ical data set contains individual event process histories that are used by examinees during the assessment.

In this section, we illustrate that the extracted features have some actual meaning and can be used for

predicting examinees’ ability information.

This empirical dataset is from the National Assessment of Educational Progress and Educational Test-

ing Service (https://sites.google.com/view/dataminingcompetition2019/home). It contains a deidentified

compilation of action sequences made by 2, 463 examinees who took an 8th-grade mathematics test in

the 2016−2017 academic year. This mathematics test covered the domains of algebra and geometry. The

items included stimulus material in a text or figural format. The assessment was digitally administered

on tablet computers with keyboards. The tests contained mixed-format items such that examinees were

provided with multiple-choice items, drag and drop response items, or constructed-response questions.

For some items, an on-screen calculator and drawing tools were available. This enabled examinees to

calculate some operations and make handwritten annotations to some questions. There was also a text-

to-speech feature that allowed examinees to listen to the task materials. Therefore, the process data set of

this assessment included each examinee’s actions and the associated response time for each item. These

actions include starting an item, clicking a response, typing something for constructed-response items,
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response revisions, and use of additional tools such as text-to-speech, calculator, or drawing tool. Table

3.8 lists the names and associated interpretations of each variable in this data.

Table 3.8: Variables of the NAEP process data
Variable Meaning

STUDENTID Examinees’ unique identification number
Block Block number in the NAEP assessment

AccessionNumber Item unique identification number
ItemType Type of the item

Observable The action that is used by the examinee at the current moment
ExtendedInfo Additional information on the examinee action

EventTime The timestamp of when the action was taken
EfficientlyCompletedBlockB Examinees’ efficiency level of block B

In this assessment, examinees responded to two "blocks", here we refer to them as Blocks A and B.

Examinees were able to navigate between items within the same block. Block A contained 19 items and

Block B contained 15 items. Each examinee had a 30-minute time limit to complete the problems in a

given block. After finishing the last item in each block, a review screen was presented to examinees which

indicated the end of the block. At that point, the examinee could either navigate away from the review

screen back to given items to make changes, move forward to the next block, or end the test.

The nature of the exam allowed examinees to complete items at their own pace and, if so desired,

to skip items. Once the 30 minutes was reached, the examinee was automatically cut off from further

activities in the block, regardless of how many problems they have completed. The purpose of using these

data in the analysis was to apply the SRM to the process data to extract features and to identify whether

these features could be useful for helping to understand examinees’ test-taking behaviors or to predict

examinees’ latent ability status.
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3.6.1 Exploratory data analysis

A response variable was assigned to each examinee after they completed the block to determine whether

an examinee efficiently finished block B. Examinees who were able to allocate a reasonable amount of

time on each item and complete the block were labeled as having efficiently finished block B. On the other

hand, some examinees went too fast and may not have actually carefully read the items. Responding fast,

for example, may be a sign of guessing or responding based on item preknowledge (D. Wang et al., 2018).

On the other hand, some examinees may respond to each item at a slower pace with the result that they

miss a certain number of items due to the time limit. Examinees were identified for these two scenarios as

not efficiently finishing each block.

The process data set was split into two subsets. The first subset (Subset 1) contained 1, 232 examinees’

action sequences within the30minutes for each item in block A. Also included were the response variables

and efficiency rating for each examinee on block B. The second subset (Subset 2) contains the remaining

log data for the 1, 232 examinees obtained within the time limit allotted for block A. This second subset

was stratified into three portions. The first portion contained 411 examinees’ first 10 minutes of process

data from the beginning of Block A. The second portion contained another 411 examinees’ first 20

minutes of process data from the beginning of Block A. The third and last portion had the remaining

410 examinees’ process data for the complete 30 minutes allotted for Block A. The structure of these two

subsets and two blocks is presented in Figure 3.8.

The descriptive statistics about the two subsets are listed in Table 3.9. In this table, Subset 1 means the

first subset, and from Portion 1 to Portion 3 they indicate the three portions from Subset 2. The meaning

of each column is presented as follows: Total length means the total number of actions for all examinees
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Figure 3.8: Data sets and assessment block structure
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stored in each data set; Item stands for the total number of item formats in the data; Unique actions mean

the number of unique actions in the log data; and Average length represents the mean action length per

examinee with standard deviations in the parenthesis about the data.

Table 3.9: Descriptive statistics for the NAEP math assessment Subset 1 and Subset 2 process data
Total length Item Unique actions Average length Efficient Inefficient

Subset 1 438,291 10 42 356 (166) 744 488
Portion 1 47,563 9 39 116 (57) 248 163
Portion 2 110,481 9 41 269 (116) 248 163
Portion 3 143,880 10 42 351 (158) 248 162

The number of examinees falling into each efficiency level for each subset is also included in this table.

For example, the numbers of examinees that completed Block B efficiently and inefficiently are 744 and

488 for Subset 1, respectively. If we sum up the two columns for the three portions of Subset 2, we find

the numbers of examinees that completed Block B efficiently and inefficiently are also 744 and 488. The

plots in Figure 3.9 show the action frequency rank for all actions appearing in each subset. It can be seen

from the figure that the top two highest frequency actions are Draw and Math Keypress. These indicate

examinees’ annotations and keyboard click actions. The action frequency ranks of Subset 1 and Subset

2-portion 3 are similar to each other, since they were both 30-minute time periods, although they have

different numbers of examinees.

3.6.2 Support vector machine and evaluation metrics

Extraction of process data from the feature matrices is enabled by the use of a support vector machine

(SVM; Noble, 2006). The SVM is a supervised algorithm that learns either the linear or nonlinear deci-

sion boundary to classify samples with labels. For example, for the input data x ∈ RO, the SVM can

transform the input data into a newly created feature space, in order to make classifications by identifying
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Figure 3.9: Action frequency in each of the subsets of process data
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a boundary between classes based on the transformed features f = ϕ(x) ∈ RD. Figure 3.10 describes

this transformation process in which new features are created from the original data points. In this way,

they provide the boundary to distinguish between classes. It is important to note that, sometimes the

dimension of the created new feature space might be higher (i.e., RO ⊆ RD) than the original space, as

shown in Figure 3.10. In such a case, it is possible to map two-dimensional data onto a three-dimensional

coordinate system to achieve clear separation between the two classes, Efficient and Inefficient.

Figure 3.10: SVM transformation process

This decision boundary is a separator that divides data points into their respective classes, where the

separator is referred to as a hyperplane. Figure 3.11 shows that the SVM uses the transformed features ϕ(x)

to decide the hyperplane H : g(ϕ(x)) = 0 and distinguish the classes, where the transformed feature

data points are indicated above the upper dotted and below the lower dashed boundaries with distances d1
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and d2 to the hyperplane. These are the support vectors and the distances d1 and d2 from the hyperplane

to the support vectors are called the margins.

Figure 3.11: SVM decision boundary and margins

Although there are many possible candidate hyperplanes, the SVM maximizes the minimum distance

to decide the optimal hyperplane rather than minimizing the margin. One thing that needs to note here

is that some classification models, such as logistic regression, predict the probability of each class as the

outcome instead of predicting the labels themselves directly. That is, a data point may be classified as

positive if the predicted probability of a positive class is greater than or equal to a threshold such as 0.5.
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We know that SVM can give each data point’s class directly as the outcome but not the class probability.

As shown in Figure 3.11, the SVM transforms the original data into a new space and uses a hyperplane to

distinguish new features by the two margins d1 and d2.

To reiterate, the objective in this study of using the process data was to predict examinee efficiency

on Block B. In this section, the model prediction is evaluated with the adjusted Area Under the Curve

(AUC; Myerson et al., 2001; Rakotomamonjy, 2004). AUC compares the false positive rate to the true

positive rate from the model and measures how well the model can predict the outcome. We know that,

for a classification task with two classes, random guessing will yield an accuracy of 0.5. So the adjusted

AUC measure is defined as in Equation 3.28:

AUCadj = 2× (AUCori − 0.5) (3.28)

where AUCori is the original area value under the curve. Basically the value of AUCori ≥ 0.5 means this

model’s performance is not worse than random guessing.

3.6.3 Feature extraction and model evaluation based on Subset 1

The objective of this study using Subset 1 is to extract features from Block A process data for each ex-

aminee and then to construct a classification model to predict each examinee’s efficiency level on Block

B. The original process data in this subset was split by personal ID. We reorganize the process data by

both the personal ID and the item identification number. That is, the actions for each item are first

aggregated, then we further organize the actions produced by different examinees. Therefore, the SRM

is applied to the process information for each item for the 1, 232 examinees in this subset. Suppose for

64



zth item, the extracted high-dimensional feature matrix with a certain number of columns (i.e., a certain

number of features) is denoted as h(z). Finally, a series of SVM models are constructed, with each done

by adding a given item’s feature matrix one at a time. The adding of a given item’s feature matrix is done

by horizontally (column) concatenating all examinees’ matrices as we showed in section 3.5.3 such that

H = (h(1) : · · · : h(z)). In this study, SVM-Recursive Feature Elimination (SVM-RFE; Guyon et al.,

2002; Rakotomamonjy, 2003) method is used to determine a set of selected features. It ranked features

concerning their relevance to the cost function based on a backward sequential selection. That means one

starts with all the candidate features and removes chunks of features at a time, and finally finds a subset of

features that may produce the best classification result. The removed features are the ones whose removals

have the least effect on the variation of the SVM weight vector norm.

One thing that needs to be noted is, we have introduced an advantage with the SRM. This is the

adjustable reservoir weight matrix in section 3.3.1. It has been described in sections 3.4.1 and 3.4.2. In this

study, the same set of reservoir sizes, i.e., from 500, 1000, 2000, 3000, 4000, and 5000, was applied and

the model was trained for each of the sizes to learn features as shown in sections 3.4.1 and 3.4.2. Similarly,

the same set of feature numbers is used by the SRM to select the optimal feature for the log data of each

item as we indicated in section 3.3.1. The SRM will attempt to use each of the pre-defined numbers (from

25, 50, 75, 100, 125, 150, 175, 200), and select the one producing the best result. These indicate that, for

each item’s log data, one of the feature numbers will be selected by the SRM.

Table 3.10 shows the length of all action sequences for each item and the corresponding optimal feature

number selected from the pre-defined number set. From this table, it can be seen that SRM selected

different feature numbers for each item, per the sample size and data dimension. The smallest number of

features is 50, and the largest number of features is 150 for both item VH134366 and item VH139196. The
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feature matrices for all items were successively horizontal-concatenated by the list order in Table 3.10. That

means, at each time, a feature matrix for the next item will be concatenated to the previous one, so this set

of concatenated feature matrices can be used to predict each examinee’s efficiency level using information

from the different number of items.

Table 3.10: Item sequence length and number of features
Item Number of examinees Length of sequence Number of Features

VH098519 1232 16,768 100
VH098522 1057 18,837 100
VH098556 1097 6,808 50
VH098597 1121 9,286 50
VH098740 1229 12,235 75
VH098753 1229 19,270 100
VH098759 1229 20,905 100
VH098779 1083 8,897 50
VH098783 1219 18,584 100
VH098808 1229 18,756 100
VH098810 1232 9,178 50
VH098812 1210 11,823 75
VH098834 1070 8,351 50
VH098839 1157 11,896 75
VH134366 1230 71,979 150
VH134373 1184 34,382 100
VH134387 1226 34,118 100
VH139047 1228 29,260 100
VH139196 1201 61,587 150

Figure 3.12 presents the AUCadj changes against the adding of a given item’s feature matrix one at a

time in the SVM models. Each tick on the x-axis indicates the addition of the corresponding item’s features

into the SVM classification model. The initially used features in the SVM are from item VH098519, which

creates an AUCadj of 0.006. We can also observe that, first, the addition of item process information can

help to classify examinees’ efficiency levels. It is possible to see that, with more items incorporated, the

SVM model AUCadj gradually increases and finally results in a value of 0.481.
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Figure 3.12: Adjusted AUC value changes against the addition of new item’s features in the SVM

The other finding is that some item process information appears to contribute more than other items.

That is, the addition of some process features for some items may be more useful for classification accu-

racy. Table 3.11 shows the number of unique actions and the corresponding increase of AUCadj value

for each of these items. The top three highest AUCadj values are bolded. From this table, we can see

that the use of features from item VH134366 resulted in the AUCadj values of 0.107; while the addition
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of Item VH098522 or Item VH098779 only resulted in a slight increase of 0.006 in the AUCadj . The

correlation between the number of unique actions and the corresponding increase of AUCadj values was

only 0.221, which suggests there is no strong relationship between the number of unique actions and the

corresponding increase of AUCadj values.

Table 3.11: Number of unique actions provided by each item and their corresponding contribution to the
model classification AUCadj values

Item Number of unique actions Corresponding increase of AUC
VH098519 29 -
VH098522 29 0.006
VH098556 27 0.014
VH098597 27 0.051
VH098740 30 0.011
VH098753 29 0.007
VH098759 28 0.023
VH098779 25 0.006
VH098783 29 0.007
VH098808 30 0.012
VH098810 27 0.007
VH098812 30 0.010
VH098834 25 0.071
VH098839 28 0.008
VH134366 32 0.107
VH134373 32 0.011
VH134387 32 0.046
VH139047 28 0.029
VH139196 34 0.049

The final SVM model with the areas under the curve for all items features. Variable importance analysis

is performed along with the SVM-RFE. The variable importance refers to the measure of the extent to

which the model uses a given variable to make an accurate prediction or classification. The more that

model relies on a variable to make the inference, the more important that variable is for that model. The use

of variable importance has been reported in machine learning and regression studies to select important

features (e.g., Dewi and Chen, 2019; James et al., 2013; Sanz et al., 2018; H. Wang et al., 2015). It does not
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restrict how one should define the measure of variable importance. gave several definitions to the process

of measuring a variable’s importance. Based on those definitions, Wei et al. (2015) further summarize

a number of measures to identify a variable’s importance with respect to different methods such as the

entropy-based measure and variance-based measures. In the importance analysis, then, importance is

defined as the weight of each feature in the SVM (Guyon et al., 2002; Huang et al., 2014). This weight is

scaled to be between 0 and 100. In Figure 3.13, we plot the top ten important features (i.e., V1-V10). From

this figure, we can see that some of the top features may have close values of importance. See, for example,

Features 3, 4, also of Features 8, 9, and 10. Below, we interpret the meanings of the importance of these

ten features in Table 3.12.

Since the features were automatically selected by the SRM and they don’t have any pre-defined mean-

ings, an exploratory analysis is used. In this analysis, correlations are computed between each feature

vector and specific actions in Block A (see Table 3.12). The defined variables (i.e., actions) for each item

include each examinee’s median action length, each examinee’s action length, how many changes each

examinee made when responding to MC items, and how many items each examinee responded to more

than one time.

Table 3.12 lists each feature and the defined variable that has the highest correlation with this feature.

The feature will be interpreted using the meaning of the defined variable. For instance, the 1st feature

has a correlation of −0.43 with the defined variable of action length of item VH134387. The critical

correlation value, r∗, is used to decide to reject or not reject a null hypothesis of a correlation significance

test. Here the critical correlation value for the two-tail test is r∗(df = 1230, α = 0.05) = 0.056,

therefore −0.43 is significant under the α = 0.05 level because | − 0.43| > 0.056. Similarly, all the

correlations were significant for the two-tail test under the α = 0.05 level. The action length of item
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VH134387 represents each examinee’s sequence length of item VH134387. This may be interpreted to

indicate that, if the examinee’s sequence length of item VH134387 is high, then this feature would have

a lower value, suggesting that it could result in an important change to the determination of level in the

SVM. On the countrary, the 8th feature can be explained as representing the number of eliminating

choices, since this variable has a correlation of 0.38 with the 8th feature. So, it could be interpreted to

mean that, if an examinee had a larger number of eliminated choices, the examinee would have a higher

value on the 8th feature.

Table 3.12: Interpretation to the first ten important features
Feature Interpretation of this feature Correlation

V1 Action length of item VH134387 -0.43*
V2 Action length of item VH098834 -0.54*
V3 Action length of item VH098759 -0.62*
V4 Action length of item VH134366 -0.67*
V5 Number of eliminating choice 0.38*
V6 Action length of item VH139196 -0.55*
V7 Action length of item VH098597 -0.61*
V8 Number of clicking progress navigator 0.40*
V9 Action length of item VH139047 -0.44*
V10 Number of opening calculator -0.39*

* indicate a significant correlation at α = 0.05

3.6.4 Feature extraction and model evaluation based on Subset 2

Subset 2 contains three different process portions, each standing for different testing periods for the three

random groups of examinees. Using the results for these three different groups could potentially be used to

help us to explore two questions: first, whether processes across different items can be combined together,

and second, whether a proportion of the whole process is sufficient to predict the examinees’ efficiency

level.
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Figure 3.13: The first ten important features from subset 1 used in the final SVM model
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Within each portion, below we applied the SRM to examinees’ process information for that amount

of time. An increasing reservoir from 500 to 5000 was applied and the model was trained to learn features

with numbers from (25, 50, 75, 100, 125, 150, 175, 200). Table 3.13 shows the sample size, sequence

length, extracted feature numbers, and AUCadj values for each portion. The SRM appears to select more

features for data with a longer sequence. The AUCadj values for the three portions are 0.12, 0.34, and

0.39, respectively. This suggests at least two results. First, longer process information appears to yield a

higher classification accuracy, although the result from the 20-minute data group is close to that from

the 30-minute data group. One take-away is that this may suggest that a proportion of the whole process

might contain some useful information and a 20-minute set of the data might be sufficient to predict the

examinees’ efficiency levels. Second, it is interesting to see that combined processes from different items

can also be used to predict examinees’ efficiency levels. However, although the classification AUCadj

seems to be lower than what we obtained from subset 1, in which we first separated the item process and

then combined the features from different items, it does not indicate that using features extracted from

processes combined across different items will reduce the classification accuracy. Possibly this is because

the sample size in this study for each of the three portions (411, 411, and 410) is smaller than the larger

sample of 1, 232 that we had for subset 1.

Table 3.13: Feature number and adjust AUC value for each portion in Subset 2
Data Sample size Length of sequence Feature number AUCadj

Portion 1 411 47,563 75 0.12
Portion 2 411 110,481 100 0.34
Portion 3 410 143,880 150 0.39

The plot and interpretation of the top ten important features from data portion 3 is given as an

example. Figure 3.14 similarly shows that the importance among these features could be different, and

this could be because these features are not extracted from only one item’s process so features may focus
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on different aspects of the combination of item processes. Similarly, the correlation analysis between

each feature vector and the defined variables was conducted. Table 3.14 lists some possible interpretative

information regarding each feature. For instance, the 1st feature can be interpreted as demonstrating the

importance of the total sequence length of all items in Block A. The 2nd feature has a correlation of

0.64 with the number of items the examinee responded to more than once. This may suggest that, if

the examinee responds with a given activity for more items more than one time, this feature value will

likely be higher. One possible reason is that the examinee may have sufficient time to go back to items.

Compared with the features extracted from subset 1, which mainly focuses on the information from a

single item, the feature extracted based upon a combination of all item processes tends to contain some

global information such as how many times the examinee used the math keypress or how many items

did the examinee responded to more than one time. The critical correlation value for the two-tail test

here is r∗(df = 1230, α = 0.05) ≈ 0.097, therefore all the correlation values are significant under the

α = 0.05 level.

Table 3.14: Interpretation to the first ten important features
Feature Interpretation of this feature Correlation

V1 The total sequence length of all items in Block A -0.59*
V2 The number of items did the examinee enter more than once 0.64*
V3 Action length of item VH098834 -0.58*
V4 The median number of times the examinee enter each item 0.47*
V5 Action length of item VH134366 -0.66*
V6 The median number of changes made to each item -0.48*
V7 Action length of item VH139196 -0.71*
V8 Action length of item VH098597 -0.39*
V9 The total number of times the examinee used the math keypress -0.44*
V10 The median number of times the examinee losing focus -0.37*

* indicate a significant correlation at α = 0.05
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Figure 3.14: The first ten important features from subset 2 portion 3 used in the final SVM model
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3.7 Summary and Discussion

In this chapter, the SRM is investigated with a focus on feature extraction from the process data from

MC items. The sequence of actions by each examinee on each item is likely to be different within a single

test and between examinees in the population. By applying the SRM, the varying-length sequence data

was shown to be successfully transformed for each examinee into different fixed-length vectors that can

be stored into a single feature matrix. Three simulation studies were used to demonstrate SMR feature

utilization. Simulation Study I used SMR to classify samples that were generated from three different

Markov groups. Results suggest that the group classification accuracy using the SRM features was much

higher than that from using the baseline features. So, it seems possible that the features extracted by

the SRM may contain meaningful process information about the different Markov groups. Results

also suggest that a larger sample size and a larger reservoir could produce a more accurate classification.

Simulation Study II attempted to merge examinees’ latent trait values into the process data. It then used

the extracted features to predict each examinee’s latent trait value. Similar to Simulation Study I, results

from Simulation Study II suggested that using the SRM features can produce lower errors with respect

to the estimate of the latent trait than using the baseline features. Another interesting result from Study

II was that the extracted SRM features appear to have a potentially better representation of the sequence

and the latent abilities, if the item has fewer unique actions for examinees.

Based on these two simulations, it appears that features can be extracted from the simulated two

genres of datasets (i.e., the RspData data set and the Rsp+ProcData data set). Further, the features appear

to be useful for group classification and latent trait prediction. In the second simulation study, results

suggested that the features can be used to recover the generating latent trait values. Therefore, in the
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third simulation study, we tried to used both the extracted features and the response score pattern to see

whether the addition of features could provide a more accurate ability parameter estimate and a better

model fit. In that study, RSE and R2 were used as model fit indices for two linear models, one RspData

model contained only response patterns and the other Rsp+ProcData model contained both the response

patterns and process features. Results suggest that the model fit given by the Rsp+ProcData model was

better than that by the RspData model. Thus, the use of process data appears to provide better fit to the

linear model than the use of response patterns alone.

Results from the application of the SRM to the empirical data from the NAEP math assessment were

in agreement with some of the conclusions from the simulation studies. The NAEP assessment was split

into two subsets, and both subsets were modeled by the SRM to extract features that were later used by the

SVM. In subset 1, examinees’ process information was divided by item identifications and ll item features

matrices were concatenated together. These were then analyzed by the SVM to predict each examinee’s

efficiency on Block B. Results suggested that with more items, the SVM model AUCadj increased, and

finally resulted in a value of 0.481. In addition, some item process information may contribute to greater

effect than other items. Thus, addition of the process of these features may be more useful for classification

accuracy. The important features were interpreted based on their correlations with the defined variables

noted, such as the item’s sequence length. In subset 2, each examinee’s process information was used

based on the whole 30-minute time limit. Results suggest that a proportion of the whole process, i.e., the

20-minute period, may contain some information for predicting examinees’ efficiency level. In addition,

longer strings of process information might yield a better classification result. Finally, features extracted

based upon a combination of all item processes tended to contain some useful information with respect
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to predicting ability such as how many times did the examinee use the math keypress and how many items

did the examinee enter for more than one time.
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Chapter 4

Topic model: an interpretable

algorithm for analyzing

constructed-response item

process data

In this chapter, the use of the topic model and its extensions is applied to the textual responses collected

from the examinees’ CR item responses. Specifically, the unsupervised topic model and supervised topic

model are both applied to empirical data to help understand examinees’ writing structure and to predict

examinees’ writing scores. Next, a framework is provided describing an automated CR scoring engine

using a supervised topic model. Finally, a reliability study is presented using a Rasch model and a topic

model.
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4.1 Unsupervised and Supervised Latent Dirichlet Allocation

LDA is an unsupervised learning algorithm. It is referred to as unsupervised as the only information

used to guide the model in detecting latent topics are the words in the documents in the corpus. LDA

assumes that the order of words in a response does not matter, and this is referred to as the “bag-of-words”

assumption. Based on this assumption, LDA is designed to detect topics in a corpus and the proportions

of topics in each response. In the LDA, each response is made up of various words, and each topic also

has various words belonging to it. The goal of LDA is to find topics in a response based on the words in

the response. In other words, the words are the observed variables. Given a collection of responses, let

us assume there are K topics, where the number K is assumed to be known and fixed. Then for each of

the K topics, the words that belong to the topic or the probability of words belonging to the topic will be

estimated by the LDA.

The LDA algorithm is a generative probabilistic model. That is, the term generative means this is

an assumption that describes how the word-topic distribution and the topic-document distribution in

a corpus are generated. This means that fitting the generative model is fitting a statistical model. It does

not necessarily mean that this is an indication of model validity.

Suppose we have a response in a corpus such that d ∈ D = {d1, ..., dM}, and also we have each of

the words in a response such that w ∈ W = {w1, ..., wN}. Then LDA defines the following generative

steps for each response in the corpus D:

1. Select a response di with probability Pdi ;
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2. Choose the number of words Ni from the Poisson distribution with parameter ξ, i.e., Ni ∼

Poisson(ξ);

3. Draw the topic distribution θi from the Dirichlet distribution with parameterα, i.e., θi ∼ Dir(α);

4. For each of the N words wn in the response di:

(a) choose a topiczi,j from the Multinomial distribution with parameterθi, i.e., zi,j ∼ Multinomial(θi);

(b) draw a word distribution ϕzi,j from Dirichlet distribution with parameter β, i.e., ϕzi,j ∼

Dir(β);

(c) choose a word wi,j from the Multinomial distribution ϕzi,j , i.e., wi,j ∼ p(wi,j|zi,j, β), a

Multinomial probability conditioned on topic zi,j .

Some notations are explained as follows:

• ϕk: the probability distribution of the words for topic k;

• θi: the probability distribution of topics for response i;

• α: the prior distribution parameter to the topic distribution θi;

• β: the prior distribution parameter to the word distribution ϕk;

• Ni: total number of words for a response;

• M : total number of responses in the corpus.

The Dirichlet distribution is the conjugate prior distribution to the multinomial distribution. The

basic idea behind the conjugate prior is that the prior distribution and the posterior distribution are of

80



the same form. The graphical model representation of the above steps can be given in Figure 4.1, and

there are three levels in the LDA model. The parameters α and β are at the corpus level, which will be

sampled once in the process of generating a corpus. The variables θi’s, sampled once per response, are

at the response level, Finally, the variables zi,j , wi,j and ϕk are at the word level, and they are sampled

once for each word in each response. In this model, the only observable variable is the wi,j , which is the

observed response data. The other variables such as ϕ, z, and θ are all unknown variables.

Figure 4.1: A graphical model representation of the LDA model*

*drawn based on (Blei et al., 2003)
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Given the parameters α and β, the joint distribution of a topic mixture θi, a set of topics zi,j , and a

set of words wi,j is given by Equation 4.1:

p(w, z, θ) =

Ni∏
j=1

p(zi,j|θi)p(wi,j|zi,j) (4.1)

Supervised LDA (sLDA; Mcauliffe and Blei, 2007) uses external information to help guide the LDA

model. In this way, sLDA is an extension of the LDA model that includes additional information, referred

to as labels. In the context of CR answers, the labels are the rubric-based scores of examinees’ responses.

sLDA is different from the unsupervised LDA model in that it jointly models the text along with the

associated supervisory label to estimate appropriate latent topics which can predict the label for future

responses. The label could be of various types such as real values or ordered class labels as might be obtained

as a rubric-based score.

Suppose there areK topicsβ1:K in the responses. With the Dirichlet parameterα, response parameter

η and σ2, the sLDA model estimates the response and response label in the following steps:

1. The topic proportions θ|α are drawn from Dir(α).

2. The topic assignments zn|θ are drawn from Multinomial(θ).

3. The word wn|zn is dawn from each topic zn, where β1:K follows Mult(βzn).

4. The response variable y|z1:N , η, σ2 is then drawn from N(η′, z̄, σ2).

where the z̄ here is defined to be 1
N

∑N
n=1 zn. The natural parameter ζ and dispersion parameter δ were

used in the canonical link function under the generalized linear model. Therefore, the response variable
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has the following distribution Equation 4.2 under the general version of sLDA:

p(y|z1:N , η, δ) = h(y, δ) exp
η′(z̄y)− A(η′z̄)

δ
(4.2)

where η′z̄ is the linear predictor and is set to be identical to the parameter ζ ; h(y, δ) is the base measure; y

is a sufficient statistic; and A(η′z̄) is the log-normalizer. The graphical model representation of the sLDA

steps is shown in Figure 4.2.

Figure 4.2: A graphical model representation of the sLDA model*

*drawn based on (Mcauliffe and Blei, 2007)

The sLDA model uses a linear model to predict an outcome variable using the topic model proportions.

For instance, if the outcome variable indicates the rubric-based score, then this score is regressed on the

83



topic proportions. Then the following Equation 4.3 is the regression model for the sLDA:

Yi = βX (4.3)

where Yi = (y1, . . . , yn)
′ is the observed label, X is the topic proportion matrix, and β represents regres-

sion coefficients.

4.2 Comparison of Unsupervised and Supervised Model Analy-

ses of Constructed-response Answers on Two Social Study

Assessments: An Empirical Example

In this section, results for two different topic models, latent Dirichlet allocation (LDA) and supervised

LDA, were compared for their utility in detecting different latent thematic patterns in examinees’ responses

to two social studies assessments: A U.S. History assessment and an Economics assessment. Their results

are also compared.

Topic models have been used in the past in social science research. For example, Roberts et al. (2013)

used a topic model to detect the latent structure in open-ended responses to a social science survey; Grim-

mer (2010) used a topic model to detect the latent structure in political rhetoric; and Yang et al. (2011)

used topic modeling to detect historical trends from passages.
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4.2.1 Data description

Responses from two items were analyzed in this study: one are the answers to a CR item from a U.S.

History assessment, and the other the answers to a CR item from an Economics assessment. The U.S.

History assessment was administered to 722 examinees in Grade 9 to Grade 12. The economics assessment

was administered to 663 examinees in Grades 9 to Grade 12.

Both assessments were developed to be aligned to the state standards in the respective subjects. There

were 22 multiple-choice items, 2 short-answer CR items, and 1 extended CR in each assessment. The

CR items were designed to require extended reasoning and critical thinking. The two short-answer CR

items were scored from 0 to 2 points and the extended response item was scored from 0 to 4 points. Only

the answers to the extended response items in each assessment were analyzed. For both assessments, the

extended response item consisted of a question followed by two passages describing the context for the

response.

4.2.2 Data cleaning

A series of pre-processing steps was applied to clean the original data. The pre-processing procedure

included word stemming, lemmatization, removal of stop words and whitespaces, changing numerical

digits to text, changing upper case letters to lower case, correcting typo graphical errors or other possibly

non-standard English, and removal of punctuation characters. Some examples are changing the plural

words into singular words, and changing gerunds and past tense into the stem format. The lemmatization

uses the context in which the word is being used and changes the word into the base forms for irregular

verbs and irregular plural nouns.
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The stop word refers to commonly used words such as "the". These are considered high frequency,

low information words. Removal of these kinds of wods is necessary to encourage the algorithm to make

interpretable clusters. Stop words are a necessary aspect of the language but need to be ignored in topic

modeling. The stopwords for this study are shown in Table 4.1.

Table 4.1: Stop words for the U.S. History assessment and the Economics assessment
U.S. History item Economics item

next into according not their this next not their this only one
much can yet for every and yet for and are that what
what him with but out his but out his who from will
will they also which other you which other you still our all
all how than two after many two after many have both there

there just now have one that every into its when while then
only are who still from our much can they also just now
both him with how than about yes

Responses with less than 10 words after data cleaning were also excluded from the analysis as words

with such low frequencies would be too sparse to be detected as belonging to a topic. Therefore, the

number of responses was reduced following data cleaning. Descriptive statistics of the numbers of words,

number of responses, and average response length are given in Table 4.2. It can be seen that all the numbers

are reduced for both items after processing. This also saves the model estimation and computation time.

Table 4.2: Number of responses, number of words, and average response length before and after data
cleaning

U.S. History Economics
Before cleaning After cleaning Before cleaning After cleaning

Number of responses 722 416 663 482
Number of unique words 583 296 332 145
Total Number of words 22,203 9726 19,526 9,143

Average length 53 23 40 19

86



4.2.3 Model selection

Exploratory use of a topic model typically consists of estimating models with different numbers of latent

topics. The best-fitting model of these candidate models then needs to be determined. As topic models

are not nested, selecting the best fitting model typically is informed using one or more information crite-

rion indices. When the topic model is estimated using a Bayesian algorithm, the Deviance Information

Criterion (DIC; Spiegelhalter et al., 1998) is often used to inform model selection. Denote the deviance

in Equation 4.4:

D(θ) = −2log(p(y|θ)) + C (4.4)

where y indicates the data, θ is the unknown model parameter, p(y|θ) is the model likelihood, and C is a

constant. Then DIC can be defined as follows in Equation 4.5

DIC = D(θ̄) + 2pD (4.5)

where pD is the difference between the ¯D(θ) and the D(θ̄) based on the posterior means. Therefore,

lower DIC values may indicate a better model fit. The plots of DIC values for with from 2 to 10 latent

topics for two assessments are given in Figure 4.3. In this study, DIC suggested a 4-topic model for the

U.S. History item and a 3-topic model for the Economics item, since the lowest DIC for each assessment

is taken as the suggested model.

The plots of DIC values for with from 2 to 10 latent topics for two assessments are given in Figure

4.3. In this study, DIC suggested a 4-topic model for the U.S. History item and a 3-topic model for the

Economics item, since the lowest DIC for each assessment is taken as the suggested model.
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Figure 4.3: Plots of DIC for topic models estimated for the U.S. History and Economics items

4.2.4 LDA analysis results

The top 15 highest probability words for each topic extracted from the U.S. History item are given in

Table 4.3. Inspection of these high probability words for each topic can often help to interpret the latent

theme captured by the topic. Topic 3 contains high-frequency words that could be characterized as the

use of Everyday Language in their responses to the item. Topic 4 consists of words about U.S. Presidents

and Civil Rights. Examinees who used these words followed instructions from the prompt and tried to

integrate information in the passages for the item and used this information as evidence to support their

responses.

The correlation between the rubric-based score and the topics estimated in the 4-topic model is also

given in Table 4.3. Correlations between the topic and the rubric-based score are listed in the heading

for each topic. Correlation is calculated between item score and logit of the proportion of topic usage.

For example, Topic 1 has a moderate negative correlation (r = −0.361) with the rubric-based score, and

Topic 4 has a moderate positive correlation (r = 0.443) with the rubric-based score. It also is useful to
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analyze responses by examinees who make the highest use of each topic. For example, examinees who had

the highest use of Topic 1 typically wrote responses to the question that simply copied the information in

the stem or passages. Topic 2 has some important words from the item, but examinees using this topic

tended to take sentences directly from the item question or passage without trying to integrate them into

a response. Topic 3 consists of an integrated structure of both everyday words with language from the

passages, however, the response did not include a clear argument. Examinees who made most use of Topic

4 typically used words from the passages and integrated them to provide evidence for their conclusions.
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Table 4.4 presents the topic structure of the Economics response. Topic 1 has a moderate negative

correlation (r = −0.403) with the score and Topic 3 has a positive correlation (r = 0.272) with the

score. The correlation for Topic 2 (r = 0.124) is low albeit positive. Topic 2 and Topic 3 can both be

characterized as the use of academic language related to interest calculation. Examinees who use words

mainly from Topic 2 were typically repeating the definitions in the passages while calculating the simple

interest posed in the question. Examinees who use more words from Topic 3 provided responses that

included choices and computation of the principle. Their responses also provided a convincing rationale.

Topic 1 contains simple words but does not directly relate to the question. Some of the words for Topic 1

are not relevant for the response to the item.

Table 4.4: Top 15 highest probability words for the 3-topic LDA model for the Economics item
Topic 1 (r = −0.403) Topic 2 (r = 0.124) Topic 3 (r = −0.010)
part 0.385 interest 0.236 interest 0.196
money 0.047 compound 0.055 compound 0.079
compound 0.034 principal 0.053 amount 0.068
because 0.025 simple 0.051 pay 0.057
dollar 0.022 rate 0.038 money 0.049
interest 0.020 loan 0.035 simple 0.049
rate 0.019 time 0.026 year 0.048
know 0.019 calculate 0.023 because 0.036
simple 0.019 retire 0.016 beneficial 0.022
time 0.016 deposit 0.012 part 0.015
take 0.013 save 0.012 rate 0.011
make 0.012 period 0.012 add 0.011
add 0.010 addition 0.010 save 0.010
retire 0.009 get 0.010 investment 0.009
good 0.009 good 0.010 time 0.009

4.2.5 sLDA analysis results

One thing to be noted here is that there is no intercept β0 in the sLDA regression model as the topic

proportions sum to 1, i.e.,
∑k

1 θnk = 1. The topic structure of the 4-topic sLDA model for the U.S.
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History item from the sLDA analysis is given in Table 4.5. This model shows a similar pattern of topic

proportions to those obtained from the LDA model.

Table 4.5: Top 15 highest probability words of the 4-topic sLDA model for U.S. History item
Topic 1 (β = −0.159) Topic 2 (β = −0.015) Topic 3 (β = 1.169) Topic 4 (β = 2.530)
part 0.533 randolph 0.063 right 0.153 march 0.098
know 0.078 labor 0.041 civil 0.100 randolph 0.082
help 0.058 black 0.039 protest 0.065 america 0.079
want 0.054 america 0.030 people 0.061 african 0.063
get 0.048 racial 0.022 movement 0.060 discrimination 0.035
make 0.028 war 0.021 because 0.034 lead 0.033
give 0.022 first 0.020 fight 0.031 work 0.033
thing 0.014 african 0.020 equal 0.029 president 0.031
same 0.012 union 0.019 impact 0.028 industry 0.027
null 0.012 during 0.019 influence 0.027 leader 0.025
everyone 0.012 social 0.019 direct 0.023 federal 0.024
stand 0.009 world 0.018 leader 0.022 order 0.019
cause 0.008 car 0.017 like 0.020 threat 0.019
good 0.008 philip 0.017 follow 0.020 equality 0.018
man 0.008 group 0.016 peace 0.018 government 0.018

The regression coefficients are computed for the regression of Observed Score on Topic Proportions.

Topic 1 has a coefficient of β = −0.159 which means examinees who mostly used words from Topic 1

tend to have a low score. Similarly, Topic 2 has a coefficient of β = −0.015, which also means examinees

who used words mostly from Topic 2 also have a low score. Topic 4 has a coefficient of β = 2.530, which

means examinees who used words from this topic tended to have a score of 2.53 points. Differences

between the observed score and the predicted score from the sLDA model are shown in the scatter plot

in the left graph of Figure 4.4. The mean for these differences is given by µ =
∑n

i=1 |yi − ŷi| = 0.598

and the standard deviation 0.538. Compared with the score range from 0 to 4, the average difference of

0.598 between the obversed human rater score and predicted score is relatively small and indicates that

the predicted scores are close to the obversed scores.
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After ranking examinees’ observed scores according to each topic’s proportion, we took the top 50

examinees’ observed scores because top 50 observed scores can be used as representatives to the small size

data (i.e., less than 1000). The frequency of each score is shown in the histogram in the right graph in

Figure 4.4. As is evident from the regression coefficients in Table 4.5, examinees who used words mainly

from Topic 3 or Topic 4 have higher scores than examinees who used words mainly from Topic 1 or Topic

2. A full credit score of 4 does not occur for examinees who used words mostly from Topics 1 or 2. In

addition, by comparing the number of zero scores among all the topics, the number of examinees who

used Topic 4 is the lowest.

Figure 4.4: The left graph is a plot of the difference between the observed scores and predicted scores; the
Right graph is a histogram of topic proportions for each observed score category

The topic structure of the Economics item in Table 4.6 shows similar characteristics to the results

of the LDA. Topic 1 has a coefficient of β = −0.281, which indicates that the examinees who mostly

used words from Topic 1 tended to have a lower score. Topic 2 has a coefficient of β = 0.400, which

93



indicates the examinees who mostly use words from Topic 2 may get few points. Topic 3 has a coefficient

of β = 3.671, which indicates that examinees who used mostly words from Topic 3 tended to have the

highest scores.

Table 4.6: Top 15 highest probability words of the 4-topic sLDA model for the Economics item
Topic 1 (β = −0.281) Topic 2 (β = 0.400) Topic 3 (β = 3.671)
part 0.485 interest 0.305 interest 0.203
simple 0.092 pay 0.070 compound 0.190
because 0.076 rate 0.068 amount 0.092
money 0.054 principal 0.067 year 0.068
save 0.033 simple 0.052 money 0.060
know 0.028 loan 0.042 time 0.056
get 0.027 retire 0.034 add 0.030
take 0.026 calculate 0.029 beneficial 0.029
make 0.018 good 0.020 over 0.023
bank 0.018 charge 0.017 principle 0.021
back 0.015 deposit 0.017 account 0.017
null 0.014 period 0.016 earn 0.017
little 0.010 investment 0.013 build 0.014
double 0.009 long 0.011 borrow 0.013
help 0.009 sum 0.011 end 0.013

Differences between the observed score and the predicted score from the sLDA model are shown in the

scatter plot in the left graph of Figure 4.5. The mean for these differences is given byµ =
∑n

i=1 |yi− ŷi| =

0.695 and the standard deviation is 0.530. Similar to what we explained for the U.S. History item, the

average difference of 0.695 between the observed human rater score and predicted score is relatively small

to the score range and which indicates that the predicted scores are close to the obversed scores.

Similarly, after ranking examinees’ observed scores according to each topic’s proportion, we took

the top 50 examinees’ observed scores and present the frequencies of each score in the histogram in the

right graph in Figure 5. Examinees who used words mainly from Topic 3 tend to have higher scores than

examinees who used words mainly from Topic 1 or Topic 2. Few examinees who used more words from
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Topic 3 had zero scores. A score of 4 does was not observed for examinees who used words mostly from

Topic 1.

Figure 4.5: The left graph is a plot of the difference between the observed scores and predicted scores; the
Right graph is a histogram of topic proportions for each observed score category

4.2.6 Discussion

The topic structures detected by LDA and sLDA show similar topic structures for the responses for

each of the two items. Correlations for the U.S. History item between the observed score and the topic

proportions from the LDA model indicate that the use of Topic 4 was modestly related to a higher score

and the use of Topics 1 or 2 was more likely related to a lower score. The regression coefficients from the

sLDA suggest a similar outcome as the use of words from Topic 4 was associated with a higher predicted

score than the use of words from Topics 1 or 2. For the Economics item, correlations between topic

proportions from the LDA and observed score suggested use of words from Topic 3 were moderately
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related to higher scores and use of Topic 1 was moderately related to lower scores. Similarly, the use of

words from Topic 3 was associated with a high predicted score and the use of words from Topic 1 was

associated with a low score of effectively zero. Furthermore, what seems evident from the results from

both assessments is that information about the latent thematic structure of the responses can extend what

can be learned from the analysis of CR answers. The topic structure can also provide information on the

examinees’ thinking. For example, some topics in the example indicate that examinees simply copied the

information in the stem or passages, and some topics indicate that examinees tried to use everyday words

but integrated them with language from the passages to answer the questions.

4.3 Developing an Automated CR Answer Scoring Engine Using

SLDA and A Generalized Logit Model

Constructed responses may be scored by human raters or through an automated scoring engine. Topic

modeling provides a tool for mining textual data in an effort to detect the latent semantic structures. The

supervised Latent Dirichlet Allocation model is one of the topic models widely used in text analysis. In

the previous sections, we described use of the sLDA for a history test item and an economics test item. In

this section, we examine the utility of different sLDA models for detecting the latent topic structure and

scoring under a generalized logit model framework of an English American Literature test.

Onan et al. (2016) used LDA to extract topic proportions and constructed several different models in-

cluding a logistic model and a support vector machine for sentiment analysis. In this section, the response

variable is polytomous, therefore, a generalized logit model is used.
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Generalized logit models describe the effects of covariates on the log odds of being in each category

compared to some reference category, which is often taken to be the first or last category. In general, for a

total ofK category responses, the generalized logit model takes the form yi ∼ Multinomial(πi) and we

assume the last category K as a reference level. This can be changed, however, to whichever score category

might be desired. Here the logit models take the following Equation 4.6



log( πi1

πiK
) = XT

i B1

log( πi2

πiK
) = XT

i B2

...

log(
πi(K−1)

πiK
) = XT

i BK−1

(4.6)

where Xi stands for the explanatory variable matrix and BK represents model coefficients.

4.3.1 4.4.1. Constructed response item and its scoring

Constructed responses can be scored by human raters or through an automated essay scoring algorithm.

Conventional human-rater scoring typically requires a rubric that clearly defines scoring procedures to

maximize the reliability and the validity of the final scores (Hogan and Murphy, 2007). The ratings from

different raters, however, could be prone to some error due to variation and discrepancies in rater training

from one testing time to another (Ercikan et al., 1998). To minimize the differences between individual

raters, this process usually requires rater training and monitoring of the score accuracy. Consequently,

the associated time and expense involved in the scoring process are two important concerns in human

scoring.
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Compared with the human raters, the automated essay scoring algorithms have attracted many re-

searchers due to their stable scoring results and their economical property. The accuracy and reliability of

automated scores for writing assessments have been found to have a high agreement with human raters (At-

tali, 2004; Landauer et al., 1997; Nichols, 2005; Sebrechts et al., 1991). Traditional automated essay scoring

algorithms depend on the linguistic features of the response content (Dzikovska et al., 2012; Livingston,

2009).

4.3.2 Data description

The data used in this example were written responses to an extended CR item from an English American

Literature narrative assessment administered to high school 9th Grade examinees (n = 1, 273). This item

notes that surrealist artists often use symbolism and bizarre visual images to create dream-like landscapes in

their artwork. As a result, the prompt asked examinees to imagine themselves inside a surrealistic painting,

and to write a narrative describing their experience. The scores by human rater are used as the supervisor

label for each response in the sLDA analysis. The scores for this item were ordered categorically and are

summarized in Table 4.7. There were no extremely low or high numbers of examinees across the five score

categories, so this training set could be considered as providing a relatively balanced distribution of labels.

Table 4.7: Number of scores in each score category of the extended CR item
0 1 2 3 4

Count 351 221 273 318 109

Examinees’ responses to the extended CR item were cleaned using the same procedure as described

in the previous section. The remaining responses after cleaning were used in the sLDA model. Table 4.8

shows descriptive statistics for the number of words before and after the data cleaning process. It can be
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seen that the number of words decreased after cleaning although only 9 answer documents were actually

dropped from the sample.

Table 4.8: Descriptive statistics before and after the data clean
Number of responses Total words Unique words

Before data clean 1,070 312,226 11,752
After data clean 1,061 131,659 6,544

4.3.3 Evaluation criteria

The classification accuracy (CA) was used again for evaluating the classification results. As described in

Chapter 3, CA is defined as the fraction of correct predictions from the model. For a classifier with N

classes, an N ×N confusion matrix is created and a CA measure is calculated by Equation 4.7:

CA =

∑N
i

∑N
j nij(i ̸=j)∑N

i

∑N
j nij

(4.7)

where the nij are the counts in the ith row and jth column in the matrix. In this study, the accuracy of

the predicted scores by sLDA for the human raters’ scores was of primary interest.

In addition to the CA, the other criterion used here was the Quadratic-Weighted Kappa (QW − κ;

Fleiss and Cohen, 1973). The classical Kappa coefficient Landis and Koch (1977) proposed divisions on

the Kappa coefficient and suggested the following intervals for interpretation: poor (≤ 0.00), slight

(0.00− 0.20), fair (0.21− 0.40), moderate (0.41− 0.60), substantial (0.61− 0.80), and almost perfect

(0.81 − 1.00). QW − κ varies from 0 (trivial agreement between ratings) to 1 (complete agreement

between ratings) and was used in this study to quantify the amount of agreement among multiple raters.

For a given N ×N confusion matrix, the QW − κ score can be represented as in Equation 4.8
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Kw =

∑
i

∑
j wijPij −

∑
i

∑
j wijPi·Pj·

1−
∑

i

∑
j wijPi·Pj·

(4.8)

where thewij = 1− (i−j)2

(N−1)2
are the quadratic weights andPi· andPj· are marginal probabilities of the ith

row and jth column of the matrix, respectively. In machine learning,QW −κ is typically used to measure

the agreement between a human rater’s label and an algorithm’s prediction on the same observation. This

paper adopted a QW − κ threshold of 0.70 which suggests a high human-machine score agreement

(Williamson et al., 2012).

Different n-grams were used as tokens in building up the various sLDA models because one of the

n-gram models might be useful depending on the empirical data and sometimes the use of unigram,

bigram, trigram, and their combination may yield a better result (Tripathy et al., 2016). N-gram means a

contiguous sequence of n items from a given sample of responses. In this study, we estimated four models

using four different n-gram sizes, namely, unigram, bigram, trigram, and mix-gram models since they were

commonly seen in references (Beebe et al., 2013; Dey et al., 2018; Tripathy et al., 2016), where the mix-gram

model used a combination of unigrams and bigrams. Each model’s performance was compared over real

data. The response length was also included in each of the four models as a covariate. These four n-grams

were evaluated in terms of accuracy to predict the response label in sLDA.

4.3.4 Classification results

One of the steps in fitting an sLDA model is to determine the number of topics. More topics does not

necessarily indicate better model fit. There are many model selection measures, such as the log-likelihood,

deviance information criterion, and harmonic mean (Griffiths and Steyvers, 2004; Wallach et al., 2009;
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Xiong et al., 2019), however, there is no standard method of selecting the number of topics in advance.

Since the ultimate goal of the sLDA is prediction, this study considered the CA as a measurement criterion

for selecting the optimal number of topics. Figure 4.6 presents CA results for each condition. It shows the

optimal number of topics is not identical across the different n-gram models. The CA selects three topics

for the unigram and bigram model, six topics for the trigram model, and five topics for the mix-gram

model.

Figure 4.6: Classification accuracy yielded by the number of topics under each n-gram condition

After determining the number of topics, four separate augmented n-gram sLDA models were esti-

mated using the sLDA topic proportions and scaled response length. The response length is the length of

the examinee’s response after data cleaning. The scaled response means that for a response length counted

by the number of words in that response, we scale the length between 0 and 1, because the topic propor-
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tions used in the generalized model range between 0 and 1. If we directly use the response length, the

value of a response length could be much larger than the topic proportion, which may yield a very small

coefficient for topic proportion. The sample of examinees’ responses was randomly split into five folds

(i.e., mutually exclusive subsets). For each model, four of the five folds were used as the training set and

the remaining fold was used as the test set to measure the model’s performance. This process was used

repeatedly so that each fold was used as the test set once. Figure 4.7 presents the accuracy and QW − κ

scores from the 5-fold cross-validation in the four n-grams augmented models. All models used the scaled

response length as a covariate within the generalized logit model.

Figure 4.7: Different model classification accuracy and QW − κ scores under optimal topic numbers
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The average CA and QW − κ scores from the five folds for each of the four models are summarized

in Table 4.9. The Unigram model shows the highest CA and QW − κ and the trigram model shows the

lowest CA and QW − κ scores.

Table 4.9: The average of classification accuracy and quadratic weighted kappa for different n-grams
Models CA QW − κ

Unigram 0.702 0.880
Bigram 0.628 0.822
Trigram 0.502 0.440

Mixgram 0.656 0.822

The classification accuracy indicated the unigram model was optimal, so the augmented unigram

generalized logit model was fitted to all of the response data. The results from the multi-category sLDA

model provided the following logits for each score category as shown in Equation 4.9



log(π1

π0
) = −1.49β0 + 1.98β1 + 0.93β2 − 1.99β3

log(π2

π0
) = 2.19β0 + 7.09β1 + 3.60β2 − 2.78β3

log(π3

π0
) = 4.99β0 + 8.73β1 + 3.06β2 − 9.76β3

log(π4

π0
) = 6.53β0 + 7.928β1 − 1.67β2 − 16.65β3

(4.9)

where the πi(i = 0 ∼ 4) is the probability of getting a score i; β0 is the scaled response length; and

βj(j = 1 ∼ 3) are the topic proportions for each response. The overall accuracy from the unigram

model is 0.702, and the QW − κ score is 0.880, which surpasses the threshold of 0.70.

The confusion matrix in Table 4.10 shows the predictions against the human rater scores for each

score category. The cells on the diagonal show the number of cases where the unigram model and human

raters are in good agreement. We were also interested in the diagonal cells because they can provide

information beyond the model precision, such as categorical sensitivity. Sensitivity means the number

103



of correctly classified numbers divided by the total classified number. For example, for responses that

received a score of 3 by the human rater, the unigram model predicts 240 correctly, which indicates a 76%

( 240
240+56+21

= 76%) sensitivity for score 3. The unigram model classifies 49 responses into score 3 that

were a human-rater score of 4, so sensitivity for score 4 is only 55% ( 59
59+49

= 55%), which means the

unigram model may be less accuracy to higher scores than lower scores.

Table 4.10: The confusion matrix yielded by the unigram 3-topic sLDA model
Human rater score

Prediction 0 1 2 3 4
0 84 43 3 0 0
1 38 147 23 0 0
2 8 31 197 56 0
3 4 0 50 240 49
4 0 0 0 21 59

The examinees’ responses can also be reflected in the unigram model topic structures table. Table

4.11 summarizes the top 10 words from each of the three topics in the unigram model. Since this item

asked examinees to imagine themself inside a surrealistic painting, and to write a narrative describing their

experience, Topic 1 can be identified as a topic related to the Prompt of the Item. For example, examinees

may use words from this topic to begin with their experience description. Topic 2 can be understood as

actions related with the Experience, and Topic 3 can be identified as containing words about the Surrealistic

Painting.

4.3.5 Discussion and conclusion

This study proposed an automated scoring engine using the sLDA and generalized logit model as the

foundation. The sLDA uses a supervisor variable that estimates latent topics to help understand the

examinee’s written response in relation to the supervisor label. A critical question in this study was to find
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Table 4.11: Unigram model topic structures
Topic 1 Topic 2 Topic 3

clock 0.018 paint 0.024 paint 0.064
see 0.016 see 0.021 art 0.027
around 0.013 know 0.014 surrealist 0.022
walk 0.010 think 0.012 world 0.017
eye 0.009 wake 0.011 artist 0.015
feel 0.009 ask 0.010 feel 0.013
melt 0.008 start 0.010 mean 0.012
begin 0.007 walk 0.009 movement 0.010
myself 0.007 come 0.008 time 0.010
open 0.007 dream 0.008 surrealism 0.009

the appropriate token dimension to represent the item response. Four different n-gram tokens, namely,

unigram, bigram, trigram, and mix-gram were used to compare model performance. The classification

accuracy was used as a criterion to select the best number of topics for each sLDA model. Four augmented

generalized logit model models based on the n-gram tokens and scaled response length were built and

compared.

The results from the empirical data showed that the sLDA and generalized logit model with unigram

performed best with the highest human-machine score agreement. The models were tested further using

the 5-fold cross-validation. Each model incorporated a covariate for the response length. Among these

four models, the unigram, bigram, and mix-gram models yield similar model precision, but the unigram

sLDA model showed the highest classification accuracy based on a 0.880QW − κ score. The overall CA

from the unigram model was 0.702, however, the classification sensitivity for the perfect scores was not

ideal as we discussed above, which suggests the unigram model might be less accuracy to higher scores

than lower scores. Future studies could consider word embedding or suchlike to overcome the problem.

The model could also be further pruned to yield higher accuracy by adding effective features.
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4.4 A Hybrid Framework Using Rasch Measurement Models and

Topic Model

In this study, an analytic framework is proposed to assess the reliability of a mixed-format assessments. The

mixed format assessment consisted of responses to multiple-choice and CR items. A five-step framework

is proposed and an empirical dataset from a Grade 8 English Language Arts test was used for illustration.

4.4.1 Analytic framework

In this study, we propose an analytic framework with five steps.

1. Step 1: examine the dimensionality of the assessment by applying exploratory factor analysis to the

mixed-format score data;

2. Step 2: select and apply candidate measurement models to assess the internal structure of the mixed-

format data;

3. Step 3: evaluate model-data fit to determine the best model for measuring the underlying constructs;

4. Step 4: explore examinees writing with topic models to uncover their writing structures;

5. Step 5: use the resulting topic structures to help interpret calibration results.

Exploratory factor analysis (EFA; Fabrigar and Wegener, 2011) was used to determine the dimension-

ality of the score data. Each latent factor indicates a dimension in the EFA. The eigenvalues for each of

the latent factors were calculated and used to aid in determining the best number of factors for the data.
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This study uses parallel analysis (Horn, 1965) to evaluate the best number of factors. The parallel

analysis uses the number of eigenvalues that are larger than those which result from factoring random

data. In other words, the parallel analysis compares the eigenvalues generated from the data matrix to the

eigenvalues generated from a Monte-Carlo simulated matrix created from random data of the same size.

Longman et al. (1989) recommended comparing the original data’s eigenvalues with 95th percentile from

the parallel samples for the sake of determining the best number of factors.

4.4.2 The partial credit model and the bi-factor model

The partial credit model (PCM; Masters, 1982) is a unidimensional IRT Model that can be used with

polytomous items. In this regard, polytomous responses to items are viewed as ordered as 0, 1, 2, . . . , ki.

Each examinee j is assumed to have an ability θn, and each item is assumed to have a set of ki parameters

δi1, δi2, · · · , δiki , each of which can be represented as a location on the latent variable being measured (θ).

The parameter δik indicates the probability of scoring k rather than k − 1 on item i. The PCM assumes

that an examinee’s ability of scoring k rather than k − 1 is independent of all other possible outcomes.

The model can be specified in Equation 4.10

ln

[
Pj(xi=k)

Pj(xi=k−1)

]
= θj − δik (4.10)

where the Pj(xi=k) represents the probability of examinee j receiving a score k on item i.

The bi-factor model (Md Desa, 2012) is a confirmatory factor model with a specification of two di-

mensions. The model assumes that every item is dominated by two types of factors, a general factor and a

specific factor. This general factor influences all items, and the other specific factors affect different and
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mutually exclusive groups of items. In addition, all the specific factors are orthogonal with each other and

with the general factor. Therefore, the model restriction requires that each item load on a primary dimen-

sion of interest and no more than one secondary dimension or subdomain. The secondary dimension can

be nuisance variable such as the content domain from which the items are sampled. For example, Tanaka

et al. (2020) used the bi-factor model to measure the food insecurity from Household Food Security

Survey Module (Bickel et al., 2000) data, and the general factor used in that study referred to household

food insecurity while the specific factors were about adult and child food insecurity, respectively.

Figure 4.8: A structure illustration of the bi-factor model

A general structure of a bi-factor model is shown in Figure 4.8. Fk’s are specific factors and g denotes

the general factor. The general factor is measured by all the items while the specific factors are measured

by a subset of one or more items possibly within the same content domain. The general factor and the
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specific factors are statistically independent in the bi-factor model. The bi-factor analytic model can be

expressed in Equation 4.11:

P (Xi|θjg, θjs) = αigθjg + αisθjs + δik (4.11)

where θjg means examinee j’s ability on the general factor, θjs means examinee j’s ability on the specific

factor, αig is item i coefficient on the general factor, αis means item i coefficient on the specific factor,

and δik stands for step k coefficient to item i. When the bi-factor model is constrained, referred to as the

constrained bi-factor model, the item slope parameters are fixed to be equal within the general (domain)

and specific (sub-domains) factors (Tanaka et al., 2020).

4.4.3 Fit indices

Fit indices were used to compare the model fit of candidate models. For example, the item and person

fits of the PCM are evaluated using Infit and Outfit statistics. Infit and Outfit statistics are Rasch-based

individual-level fit indices. They are based on residuals and quantify the distance between observed pro-

portions and model-based probabilities. The Outfit statistic is outlier sensitive and the Infit statistic is

sensitive to unexpected response patterns. The expected value for both Infit and Outfit statistics is 1.0.

Infit and Outfit can be expressed as follows in Equations 4.12 and 4.13 (Wright and Masters, 1982)

Outfit =
N∑

n=1

z2ni
N

(4.12)
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Infit =

∑N
n=1 z

2
niwni∑N

n=1 wni

=

∑N
n=1 y

2
ni∑N

n=1wni

(4.13)

where N is the number of examinees, xni is the observed response, yni = xni − Eni stands for score

residual while Eni is the expected mean of xni, Wni represents the variance of xni. and zni = yni√
wni

means

the standardized residual.

In addition, Akaike’s information criterion (AIC) and Bayesian information criterion (BIC) were

used to inform model selection. Models with lower AIC and BIC values may indicate better model-data

fit (Burnham and Anderson, 2004). Stucky and Edelen (2014) suggested comparing the general factor to

the specific factors to identify subsets of items for which the multidimensionality might be weak enough

to ignore. In this study, this comparison is achieved by indicators called explained common variances

(ECVs; Bentler, 2009). ECVs can be calculated using the estimated factor loadings of the general and

specific factors of a bi-factor model, the general form of an item ECV can be given as

ECV =

∑
λ2
g∑

λ2
g +

∑
λ2
s

(4.14)

where λg is the factor loading for the general factor, and λs is the factor loading for the specific factors.

Based on ECV values, recommendations can be made for choosing between unidimensional or multi-

dimensional models, as well as whether sub-domain scores have added value over a total domain score.

Estimated results that have a large general factor loading compared to specific factors have high ECV. An-

other commonly used ECV value, ECV_SG, stands for ECV of a specific factor concerning the general
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factor, was simply referred to as specific-dimension ECV (Stucky and Edelen, 2014). The ECV_SG is com-

puted for the items of the general factor using the specific factor loadings in the numerator in Equation

4.14. The analysis was done using the R package mirt (Chalmers, 2012).

4.4.4 Data description

The ELA mixed-format data used in this study are from a formative assessment designed to measure

examinees’ understanding of the information in a passage and usage of the information in the written

response. The assessments are aligned to the state standards of a Southeastern state in the U.S. and are

used in statewide assessments for end-of-grade and end-of-course assessments.

The assessment was administered to 5, 986 examinees in local schools in the state. The assessment

contains one reading passage with five questions. There were three MC items and two CR items in the

assessment: One of the CR items was a short-answer item and the other an extended response item. The

MC items assess examinee comprehension of the reading passage and were scored dichotomously (i.e., 0

for incorrect and 1 for correct). The short-answer CR item was scored from 0 to 2. The extended response

item was scored from 0 to 4. A summary of the five questions and the rating categories for this assessment

is given in Table 4.12.

Table 4.12: Description of items on ELA assessment
Items Description Item format Score type Category

1 MC1 Selected-response item Binary 0, 1
2 MC2 Selected-response item Binary 0, 1
3 MC3 Selected-response item Binary 0, 1
4 CR1 Constructed-response item Polytomous 0, 1, 2
5 CR2 Extended writing prompt Polytomous 0, 1, 2, 3, 4
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4.4.5 Results

Step1: Examine dimensionality of assessment

Figure 4.9 indicates the result of the EFA based on a parallel analysis. Parallel analysis is used for determin-

ing the number of factors to retain from factor analysis. It creates a random dataset with the same size

and same number of variables as the original data. After that, a correlation matrix is computed from the

randomly generated dataset and then eigenvalues of the correlation matrix are computed (Franklin et al.,

1995). The 95% of the generated data eigenvalue and average eigenvalue are compared to the original data

eigenvalue. The comparison between these eigenvalue indicates that a single factor seems to be supported

for this data set and the two-factor model is right about the same as the 95% and Average eigenvalue lines.

Next, a specific exploratory study showing the factor loadings of the one-factor model and the two-factor

model was conducted to determine the optimal number of factors.

Table 4.13: Factor loadings for two EFA models
One-factor model Two-factor model

Items Factor 1 Factor 1 Factor 2
MC1 0.032 0.998 -0.002
MC2 0.205 0.010 0.302
MC3 -0.074 0.006 -0.474
CR1 0.653 -0.003 0.654
CR2 0.622 0.000 0.621

Factor loadings from the two EFA models are given in Table 4.13. Factor loadings indicate that the

first and third items do not load on the single factor very well. The factor loading for the first MC item is

0.032 while the factor loading for the third MC item is −0.074. On the other hand, the factor loadings

for the two-factor model show that the first MC item primarily loads on the first factor and the other

items load on the second factor, although the MC2 and MC3 loadings are lower than the two CR items
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Figure 4.9: Parallel analysis of the ELA data

on the second factor. The correlation between the two factors is −0.035 which indicates that two factors

are independent. If we adopt 0.3 as a low factor loading criterion based on Shevlin and Miles (1998), then

the two-factor model shows better factor loading than the first one-factor model because under one factor,

the loading of item MC3 is lower (−0.074) but all the loadings of all items are higher than 0.3 or lower

than −0.3 when using two factors. Therefore, in the following steps, the PCM, bi-factor model, and

constrained bi-factor model, are fitted to the mixed-format data.
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Step2: Apply candidate measurement models

The item parameter estimates for the PCM are listed in Table 4.14. The first column shows the discrimi-

nation parameter, which is equal to “1” for all items in the PCM. In the following columns, we see the

estimated item difficulty (d), and thresholds or step parameters (δi1, δi2, δi3, δi4). From this table, MC3 is

the most difficult item and CR2 step 1 is the easiest one.

Table 4.14: Item parameter estimates from the PCM
a d δi1 δi2 δi3 δi4

MC1 1 0.450 - - - -
MC2 1 -1.577 - - - -
MC3 1 1.997 - - - -
CR1 1 - 0.010 0.329 - -
CR2 1 - -2.222 -0.109 0.624 2.102

The Infit and outfit statistics for the PCM are shown in Table 4.15. From this table, we can see the

mean ability measure for the examinees is 0.00with a standard deviation of 0.38. The Outfit and Infit MS

statistics are residual-based statistics with an expectation of 1.0. The mean Infit is 0.89 with a standard

deviation of 0.66, while the Outfit is 1.17 with a standard deviation of 1.58. As for the item measure

summary, the mean item measure for the 5 items is 0.178 with a standard deviation of 1.425. The mean

Infit is 1.00 with a standard deviation of 0.21, while the Outfit MS is 1.30 with a standard deviation of

0.56.

Table 4.15: Summary statistics from PCM
Examinee Item

Measure Mean 0.000 0.178
SD 0.380 1.425

Infit Mean 0.890 1.000
SD 0.660 0.210

Outfit Mean 1.170 1.300
SD 1.580 0.560
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The constrained bi-factor model in this example considers a general factor (English language profi-

ciency) that is measured by all the items and two specific factors (Reading proficiency and writing pro-

ficiency) with each factor being measured by items in different formats (MC and CR). The item slope

parameters on the general factor are equal, which means a11 = a21 = a31 = a41 = a51. The first three

MC items measure the first specific factor, and their slope parameters are constrained to be equal. The

two CR items were designed to measure the second specific factor also with equal slope parameters. That

is, a12 = a22 = a32 and a43 = a53. Therefore, the constrained bi-factor model employed in this study

can be illustrated using the matrix B as shown in Equation 4.15,

B =



a11 a12 0

a21 a22 0

a31 a32 0

a41 0 a43

a51 0 a53


(4.15)

The estimated coefficients from the bi-factor and constrained bi-factor model are given in Table 4.16.

The bi-factor model has varying item slope coefficients for each item. The MC3 has a negative coefficient

value. This suggests caution in accepting these results as the probability of endorsing the correct response

should not decrease as the examinee’s ability increases. Considering that MC3 is the most difficult item, it

may be that this item is measuring something other than what the rest of the assessment is measuring. In

other words, this item may need to be dropped from the assessment. For the constrained bi-factor model,

the item slope estimate is 0.388 for the general factor, 0.002 for the first specific factor for MC items, and

1.632 for CR items. The item step coefficient estimates for MC items indicate the difficulty of reaching
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category 1 from 0. For CR items, the difficulty estimate of each category reflects how difficult it is to reach

the next adjacent category. For both models, easier items have higher step difficulty estimates.

Table 4.16: Item coefficients from the bi-factor and constrained bi-factor model
α1 α2 α3 d δi1 δi2 δi3 δi4

MC1 0.074 0.408 - -0.431 - - - -
MC2 0.664 0.098 - 1.599 - - - -

Bi-factor mode MC3 -0.248 0.090 - -0.893 - - - -
CR1 1.749 - 1.008 - 0.805 -1.479 - -
CR2 1.328 - 0.644 - 3.722 0.580 -1.434 -3.976
MC1 0.388 0.002 - -0.429 - - - -
MC2 0.388 0.002 - 1.513 - - - -

Constrained bi-factor model MC3 0.388 0.002 - -1.922 - - - -
CR1 0.388 - 1.632 0.732 -1.333 - -
CR2 0.388 - 1.632 3.939 0.625 -1.526 -4.209

4.4.6 Step 3: Evaluate model-data fit

Statistics listed in Table 4.17 show that the bi-factor model and the constrained bi-factor model fit better

than the PCM. The bi-factor model (AIC=46680.66; BIC=46807.90) provides the best fit compared

with the constrained bi-factor model (AIC=46833.54; BIC=46913.91). This suggests further examina-

tion might be appropriate for the bi-factor model for the ELA measurement.

Table 4.17: Model-fit statistics for ELA measurement models
AIC BIC

PCM 47384.90 47451.87
Bi-factor model 46680.66 46807.90

Constrained bi-factor model 46833.54 46913.91

Estimates of factor-loading parameters for the PCM and two bi-factor models are presented in Tables

4.18 and 4.19. The h2 statistic represents the factor communality estimates. The communality is defined

as the proportion of observed variance due to common factors. The communality for the ith item is

computed by taking the sum of the squared loadings for that item. For example, the factor loadings for all
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items are 0.308, then communalities for all items were 0.3082 = 0.0949. The communality for an item

can be interpreted as the proportion of variation in that item explained by the factors. For instance, the

0.0949 for each item by the PCM indicates that about 9.49% of the variation in each item was explained

by the factor model. The result suggests that the single factor does not explain variation well in each item.

Table 4.18: Single-factor loadings from PCM for ELA data
Factor h

MC1 0.308 0.0949
MC2 0.308 0.0949
MC3 0.308 0.0949
CR1 0.308 0.0949
CR2 0.308 0.0949

The factor loadings for each item and ECV values from the two bi-factor models are displayed in

Table 19. The first columns under both models represent the general factor loadings, while the second and

third column represents the two specific factor loadings, respectively. Although the constrained factor

loadings were expected to be equal across the 5 items on the general factor, there was variation related

to the specific factors which influenced the estimation of general factor loadings. The ECV_SG can be

interpreted as the proportion of common variance of all items which is due to the specific factor. In

the bi-factor model, the ECV_SG for the general factor and two specific factors were 76.6%, 4.9%, and

18.6%, respectively. However, the constrained bi-factor model had only an ECV_SG of 17.7% for the

general factor, and 0% and 82.3% for the two specific factors, respectively. The result from the bi-factor

model indicates there is a strong general factor, which appears to represent English language proficiency,

and there is additional evidence for interpretable specific factors representing reading and writing ability.

But the results from the constrained bi-factor model show clear multidimensionality of the ELA data.

The ECVs indicating how well each item represents the general factor are also listed in this Table. A low

ECV value indicates there is a strong association between that item and that specific factor (reading or

117



writing), and a high ECV value reflects a strong association. In the bi-factor model, except for the MC1,

all other items were highly associated with the general factor. In the constrained bi-factor model, the MC

items were highly associated with the general factor and the CR items were highly associated with the

specific factor (writing).

Table 4.19: Factor loadings from two bi-factor models for ELA data
Bi-factor model Constrained bi-factor model

g S1 S2 h2 ECV g S1 S2 h2 ECV
MC1 0.042 0.233 - 0.056 0.032 0.222 0.001 - 0.050 0.999
MC2 0.363 0.053 - 0.135 0.979 0.222 0.001 - 0.050 0.999
MC3 -0.144 0.052 - 0.024 0.884 0.222 0.001 - 0.050 0.999
CR1 0.662 - 0.382 0.585 0.750 0.163 - 0.683 0.493 0.054
CR2 0.589 - 0.286 0.429 0.809 0.163 - 0.683 0.493 0.054

ECV_SG 0.766 0.049 0.186 0.177 0.000 0.823

The comparisons of the ability measures from three measurement models are shown in Table 4.20.

Under each model, the mean ability measures are close to 0. The standard deviation for the general factor

in the bi-factor model is the largest (SD = 0.69). The standard deviation for the reading factor in the

constrained bi-factor model is the smallest (SD = 0.001), which indicates that examinees’ latent traits

for the reading dimension are almost around 0. The reliability of the writing factor under the constrained

bi-factor model is the highest.
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Table 4.20: Ability measure summary from three measurement models

Factor Mean SD Reliability

PCM - 0.000 0.381 0.393

General factor -0.000 0.690 0.476

Bi-factor model Reading factor -0.000 0.198 0.039

Writing factor -0.000 0.370 0.137

General factor 0.000 0.310 0.096

Constrained bi-factor model Reading factor -0.000 0.001 0.000

Writing factor -0.000 0.740 0.548

4.4.7 Step 4: Topic model selection

DIC was used to determine the number of topics. Figure 4.10 shows the DIC change against the number

of topics from 2 to 10 to the CR answers. The model with 5 topics had the lowest DIC value. The results

suggest the 5 topic model was the best fit to the ELA data of the models considered.

The top 20 highest probability words for each of the five topics are given in Table 4.21. Topic 1 and

Topic 5 can be both characterized as Integrative Borrowing. This indicates these topics contain responses

that examinees used from the passage to support their argument. Topic 2 is Everyday Language. Use of

this topic indicated that examinees used everyday language in their responses. Responses of examinees

who used this topic indicated lack of necessary details and evidence relative to what was requested in the

prompt. Topic 3 and Topic 4 can be viewed as Simply Borrowing of Words. This means that examinees

simply borrowed vocabulary from the passage or stem rather than integrating them in a way that supported

their arguments.
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Figure 4.10: DIC index on different number of topics

Correlations with the scores assigned by human rater scores were calculated for each topic as a way

of further characterizing the topics. Topic 5 was characterized as reflecting integratively borrowing. This

topic is positively related to the human rater scores: Topic 5 had a correlation of r = 0.3802). The

topics indicating simplely borrowing of words were Topic 1, Topic 3 and Topic 4. These three topics had

correlations almost close to 0 with the scores such that Topic 1 had a correlation of r = 0.03, Topic 3 had

a correlation of r = −0.0597, and Topic 4 correlates r = −0.0474 with the scores. These values may

indicate that the proportion of this topic may not have strong correlation to the response score. Topic 2
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Table 4.21: LDA topic structure with top 20 words for the ELA CR answer
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

see 0.039 jessie 0.059 jared 0.080 friend 0.022 jared 0.020
door 0.037 say 0.045 friend 0.074 school 0.022 like 0.017
change 0.036 glass 0.021 jessie 0.045 class 0.021 look 0.017
jessie 0.028 jared 0.018 new 0.032 tell 0.021 say 0.017
new 0.024 see 0.018 come 0.024 summer 0.019 think 0.016
story 0.023 hear 0.016 say 0.023 creek 0.018 girl 0.015
character 0.019 walk 0.016 leave 0.023 house 0.017 come 0.015
friend 0.018 help 0.015 get 0.021 mud 0.017 get 0.013
dynamic 0.017 get 0.014 summer 0.020 leave 0.017 back 0.012
back 0.017 day 0.014 want 0.020 walk 0.015 feel 0.009
hair 0.015 come 0.012 good 0.018 day 0.015 know 0.009
dress 0.014 other 0.012 back 0.017 begin 0.014 friend 0.009
wear 0.014 time 0.012 start 0.016 sit 0.013 walk 0.009
talk 0.014 tell 0.011 school 0.015 other 0.013 want 0.009
make 0.013 leave 0.011 york 0.015 seat 0.013 good 0.009
jared 0.012 hand 0.010 talk 0.015 together 0.012 make 0.008
show 0.012 school 0.009 like 0.014 only 0.012 door 0.007
open 0.012 kid 0.009 tell 0.012 behind 0.011 time 0.007
summer 0.011 door 0.009 again 0.012 cool 0.011 even 0.007
know 0.010 bike 0.009 mad 0.011 next 0.011 thing 0.007

was characterized as indicating use of everyday language. It had a negative correlation to the score as well

(r = −0.2981).

The probability of use of each topic can be provided for each examinee. This means the structure of

the response could be vectorized into 5-dimension vectors, in which each dimension denotes the words

proportion of use of every topic. For example, one examinee’s topic proportion vector was (0.73, 0.06,

0.06, 0.09, 0.06). This indicates that the examinee’s writing largely consisted of use of words from Topic

1 with use evenly distributed over the other four topics.
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4.4.8 Step5: Interpretation of LDA results with constrained bi-factor model

calibration results

The correlations of the topics with the human rater scores can help to interpret the topic meaning of the

topics. In this regard, it reflects a possible way to associate the topic structure with the estimate of ability.

As indicated in the previous step, the constrained bi-factor model produced three sets of ability levels, one

for the general ability (English proficiency), one for the specific ability 1 (reading proficiency), and one for

the specific ability 2 (writing proficiency). The estimated abilities from the constrained bi-factor model

reflects examinees’ abilities on each latent scale. The scores for the CR items were shown to be associated

with specific ability 2, writing proficiency.

In the estimation results of the constrained bi-factor model, the minimal writing proficiency value was

−1.572 and the maximum was1.673. The specific ability 2 by quartile is as follows: Q1 : (−1.572,−0.390),

Q2 : (−0.390, 0.098), Q3 : (0.098, 0.566), Q4 : (0.566, 1.673). Figure 4.11 plots the distribution of

topic proportions for Topic 2 and Topic 5 for each quartile. Topic 2 and Topic 5 are topics that were

modestly related to the raw CR scores: Topic 2 has the lowest correlation r=-0.2981 and Topic 5 has the

highest correlation r = 0.3802. Since Topic 5 proportions represent the integrative borrowing of words

to certain topics, a larger proportion of use of Topic 5 would be likely to be associated with higher scores.

A larger proportion of use of Topic 2, on the other hand, would be likely to be associated with lower scores.

Figure 4.11 presents the distributions of all examinees’ Topic 2 and Topic 5 proportions within each ability

quaitile, and we see that proportion of use of Topic 5 increasing from Q1 to Q4. Use of Topic 2 showed a

decreasing trend from Q1 to Q4.
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Figure 4.11: Two topic distributions in each ability category
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4.4.9 Discussion and conclusion

This study proposed a hybrid framework consisting of a five-step procedure to evaluate the mixed-format

score patterns and textual data. This framework was illustrated with data from a mixed-format ELA

assessment. The unidimensional PCM and multidimensional bi-factor models provided a potentially

useful framework for exploring the dimensionality of scores from the assessment and for a more detailed

approach for evaluating the factor loadings and reliability of the assessment. The PCM is sometimes

used when a single construct is being measured in an assessment with mixed-format items as it can ac-

commodate polytomous scoring of item responses. The bi-factor models, including the measurement

of a general factor and more than one specific factor, may have better factor loadings and model fit with

multidimensional data. A factor analysis indicated a unidimensional test.

In the ELA assessment, the MC items measured reading proficiency (specific factor 1), and the CR

items measured writing proficiency (specific factor 2). A general factor was interpreted to be English lan-

guage proficiency. Results suggested the bi-factor model was a better fit for this assessment. Item analysis

results based on the PCM indicated that item MC3 did not fit the model very well. A topic model analysis

using LDA was applied to detect the latent thematic structure of the constructed responses. The five top-

ics detected from the responses were identified as different word groups with different interpretations. For

example, Topic 1 and Topic 5 are both Integrative Borrowing, and examinees used words from these two

topics to support their argument. Topic 2 is Everyday Language, and examinees used everyday language

in their responses may indicate a lack of necessary details and evidence relative to what was requested in

the prompt. Topic 3 and Topic 4 are interpreted as Simply Borrowing of Words, and examinees simply

borrowed vocabulary from the passage or stem rather than integrating them in a way that supported their
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arguments. Additionally, a correlation analysis between each topic and human rater scores was done to

help further interpret the different topics with respect to scores on the CR items. The topic probability

distributions were discussed in the context of ability levels and suggested that topics having a modest cor-

relation with the raw scores may be useful as partial indicators of writing proficiency for different levels of

ability. This hybrid assessment framework to the mixed-format score patterns and textual data shields light

on the possibility of combining the traditional item response analysis and the start-of-art topic model.

4.5 Summary and Discussion

This chapter discussed the use of topic modeling and its extensions from both unsupervised and supervised

models for the analysis of textual data in examinees’ CR responses. Specifically, the unsupervised topic

model and supervised topic model were applied to understand examinees’ writing structure and to predict

examinees’ writing scores.

In the first study, results for two types of topic models, LDA and sLDA, were applied and compared

for two social studies assessments, a U.S. History assessment and an Economics assessment, to detect

different latent thematic patterns from examinees’ responses. The topic structures detected by LDA and

sLDA showed similar topic structures for each CR item. For the U.S. History item, the correlations

between the human rater score and the topic proportions from the LDA model indicated that the use of

Topic 4 was modestly related to a higher score and the use of Topics 1 or 2 was related to a lower score. The

regression coefficients from the sLDA suggested a similar outcome as the use of words from Topic 4 was

associated with a higher predicted score than the use of words from Topics 1 or 2. For the Economics item,

correlations between topic proportions from the LDA and human rater score suggested use of words
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from Topic 3 was modestly related to higher scores and use of Topic 1 was modestly related to lower scores.

Similarly, the use of words from Topic 3 was modestly associated with a higher predicted score and the

use of words from Topic 1 was modestly associated with a score of effectively zero. In addition, it was

shown that the latent thematic structure of the text of responses could extend what could be learned

from the analysis of CR answers beyond the scores alone. The topic structure can be used to provide

information on how examinees come up with their answers, that is, it can provide information about

examinees’ reasoning and thinking as reflected in their textual answes. What appears to be evident from

the topic model results is that differences in examinees’ reasoning might be reflected in differences in their

use of topics in the model. It would be useful to examine this conjecture in future research.

The second study proposed a framework for an automated scoring engine using the sLDA and gener-

alized logit model as the foundation. Constructed responses may be scored by human raters or through

an automated scoring engine. Topic modeling provides a tool for mining textual data in an effort to de-

tect the latent semantic structures. Therefore, the use of sLDA may be useful to both detect the latent

semantic structure and to predict the scores. The utility of different sLDA models for detecting the latent

topic structure and scoring on an item of English and language arts were compared. Specifically, four

different n-gram tokens, namely, unigram, bigram, trigram, and mix-gram were employed and compared.

Classification accuracy (CA) of the different tokens was used as a criterion to select the best number of

topics for each sLDA model. The results from the empirical data showed that the model with unigram to-

kens performed best in that it had the highest human-machine score agreement. The models were tested

further using 5-fold cross-validation. Each model model incorporated a covariate, the scaled response

length which value is between 0 and 1, to predict examinee’s writing score. Among these four models,

the unigram, bigram, and mix-gram models yielded similar model classification. The unigram sLDA
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model showed the highest CA of a 0.880QW − κ score. The overall CA from the unigram model was

0.702. The model dimensionality problem caused by token complexity would seem to be a useful issue

to be explored in future research. This might be done by employing methods such as word embedding.

In addition, the sLDA model could be further studied to improve higher accuracy by adding effective

features.

The third study proposed a five-step analytic framework to analyze and understand both the mixed-

format data and textual responses. Along with the introduction of this framework, we showed how the

analytic framework worked with an English Language Arts data set. The results of this study aimed to

contribute to the literature on mixed-format assessments in several ways. First, the analytic framework

provides a conceptual method for modeling mixed-format data. Specifically, it considered the Rasch mea-

surement model for the unidimensional model as well as a structural equation modeling approach for

the multidimensional model. Second, by discussing the ability measures estimated from the multidimen-

sional models and the unidimensional model, we advance our understanding of the implications of the

multidimensionality that is sometimes present in mixed-format assessments. Finally, by applying topic

modeling to analyze the constructed responses, we show the extent to which the ability measures were

related to writing structures.
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Chapter 5

Conclusion

The central topic of this dissertation was an exploratory analysis of the kind of process data collected from

a mixed-format assessment containing both the MC items and CR items. The analysis focused on ways of

extracting information from the data of a mixed-format assessment that could improve estimates of ability.

This is important because the process data collected during the assessment may provide information that

can help to determine which strategies are used by examinees in their answers. Therefore, one conjecture is

that the use of process data may help provide additional information about examinees’ latent information

related to their strategies and behaviors as reflected in their responses.

The process data generated during examinees’ responses to the MC items are referred to as the log-file

data, and the process data generated during examinees’ responses to the CR items, are referred to as the

textual responses. This dissertation began by first reviewing studies that focus on the same or similar issues

in mixed format tests. Then it described two methods to deal with the two types of process data, i.e., the

log file data and the textual response data. The sequential reservoir model (SRM), which consists of the

echo state network, was used to analyze the log-file data and extract features from examinees’ sequential
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actions in responding to the items on a test. The topic model and its extensions were then used to analyze

examinees’ textual responses into topics. In the first section of this dissertation, the exploratory analysis

of MC item process data was discussed. In the second section, the analysis of the CR item process data

was discussed. Within each section, several studies were conducted with an eye to understanding process

data and the information that could be extracted from those data. Exploratory approaches to combining

the response scores and process data information were also investigated. For example, in the MC item

process data section, scores and extracted information were simultaneously used in a linear model to

predict examinees’ latent ability scores. In the CR item process data, the analytic framework provided a

way to both understand examinees’ thinking and reasoning and access examinees’ latent ability estimates.

The results of these were discussed with an eye to providing a better understanding of what we might

expect to obtain from examinees’ assessment process data, and the extent to which the process data might

be able to help understand examinees’ latent abilities.

In the description of an exploratory methodology for extracting process data from a log file, the

SRM using an optimization algorithm was presented. The original process data in the log file contain

the sequence of actions by each examinee on each MC item. Each examinee’s process data are likely to

differ in length from those of other examinees possibly reflecting use of different response strategies. By

applying the SRM, the varying-length sequence data can be successfully transformed into fixed-length

vectors that can be stored in a feature matrix. This feature matrix is assumed to contain information that

can be used to help interpret the latent information in the response processes associated with the item

responses. Three simulation studies were presented to demonstrate the SMR application. Results from

Simulation I suggest that the group classification accuracy using the extracted features was higher than

that from using the baseline features, where baseline feature are simply those averaged from the input
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embedded features. Results from Simulation II used the extracted features to predict each examinee’s

latent ability score. Results from use of the features extracted using the SRM suggest that a lower error was

produced when estimating latent ability than when using the baseline features alone. Results from the

third simulation study used both the extracted features and the response scores to predict each examinee’s

ability. Results suggested a better model fit could be obtained than that from using only the response

scores.

Results from the simulation studies in this chapter suggested at least two conclusions. First, SMR ap-

pears to be useful for extracting features from examinees’ response actions during the assessment. Second,

the extracted features appear to be useful for classifying examinees’ latent groups, predicting more accurate

latent ability estimates, and yielding a better model fit. Based on the results of the simulations, an example

using empirical data was presented. Data for this example were taken from a NAEP math assessment.

Results from using the SRM on the empirical data were in agreement with some of the conclusions from

the simulation studies. In the main, results suggested that a proportion of the process data may contain

useful information for predicting whether an examinee efficiently responded to the assessment or not.

Although the simulations and empirical examples provided helpful solutions to understanding the

process data, one limitation is that the exploratory study only considered the action in responding itself.

It ignored the time points that were associated with each action sequence. Log files typically contain a

time point for each response action. Using this timing data, it may be possible to determine the difference

in response times between consecutive actions. This could lead to future research on how time could be

modeled and the extent to which that information could help to improve the estimate of ability.

The use of the topic model and its use in extracting features of the process data was discussed next.

The conjecture for this aspect of the research is that by utilizing topic models, it would be possible to
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improve estimates of ability by including information about the latent thematic structure of their written

responses. Both unsupervised and supervised topic models were studied to determine their utility for

helping detect the use of the latent themes in examinees’ responses and for prediction of writing scores.

Use of both types of models provided useful information about how response scores and process data

might be combined to enhance the interpretations of the estimates of examinees’ ability.

The study of CR item process data showed results for the LDA and sLDA for two social studies

assessments, a U.S. History assessment and an Economics assessment. The topic structures detected

by LDA and sLDA showed similar topic structures for each CR item. Correlations between the topic

proportions and scores suggested that both LDA and sLDA could be usefully employed to understand

the relationship between examinees’ use of latent themes in their responses and their scores on the writing

assessment.

Based on results from the first study of CR item process data using sLDA, therefore, the next study

described a proposed automated scoring engine using the sLDA and generalized logit model. The use

of different sLDA models for detecting the latent topic structure and scoring on an item of English and

language arts were compared. Classification accuracy was used as a criterion to select the best number

of topics for each sLDA and generalized logit model. A comparison of four different n-gram tokens, the

unigram, bigram, trigram, and mix-gram, on empirical data suggested that the sLDA and generalized

logit model with unigram tokens performed best in terms of the highest human-machine score agreement.

The unigram sLDA and generalized logit model showed the highest classification accuracy of 0.702 and

a QW − κ score of .88.

A third study in this chapter proposed a five-step framework to simultaneously analyze and inter-

pret both the mixed-format data and the textual response data. An empirical dataset from an English
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Language Arts assessment was used. Results suggested the use of a constrained bi-factor model for the

mixed-format response data and a five-topic model for the CR answers. A correlation analysis between

the topic proportions and constrained bi-factor model scaled ability estimates indicated that use of some

topics were modestly related to a higher ability score and use of other topics were modestly related to a

lower ability score. These results may suggest that use of different topics in the model could be used as

additional indicators of writing proficiency in estimating examinees’ ability. Future research might be

considered focusing on how to use these process data to improve the latent ability estimates.
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Appendix A

Code

A.1 R code

A.1.1 Sequence log data simulation studies

#generate two groups’ classification data

#library

library(markovchain)

library(tsne)

library(corrplot)

library(ggplot2)

library(caret)

library(factoextra)

library(glmnet)
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rm(list=ls())

all=10

person=3000

L=2000

ACTIONS=c(letters,LETTERS)

P1=matrix(runif((all-1)^2,-15,15),nrow = all-1, byrow = TRUE)

U=P1

for (i in 1:dim(P1)[1]) {

U[i,]=exp(P1[i,])/sum(exp(P1[i,]))

}

U_1=cbind(rep(0,all-1),U)

U1=rbind(U_1,c(rep(0,all-1),1))

statesNames <- ACTIONS[1:all]

rownames(U1)<-statesNames

colnames(U1)<-statesNames

#simulate the sequences

out<-NULL

total<-person/2

for (i in 1:total) {

out[[i]] <- markovchainSequence(n = L, markovchain =
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new("markovchain", states = statesNames,

transitionMatrix = U1),

t0 = "a", include.t0 = T)

}

outs=out

#sequence 1

for (i in 1:length(outs)) {

a=NULL

b=NULL

for (j in 1:length(outs[[i]])) {

if (outs[[i]][j]==statesNames[all]){

a=c(a,j)

}

}

b=a[-1]

outs[[i]]=outs[[i]][-b]

}

P2=matrix(runif((all-1)^2,-15,15),nrow = all-1, byrow = TRUE)

U_2=P2

for (i in 1:dim(P2)[1]) {

U_2[i,]=exp(P2[i,])/sum(exp(P2[i,]))
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}

U_3=cbind(rep(0,all-1),U_2)

U2=rbind(U_3,c(rep(0,all-1),1))

#generate matrix

statesNames <- ACTIONS[1:all]

rownames(U2)<-statesNames

colnames(U2)<-statesNames

out2<-NULL

total2<-person/2

for (i in 1:total2) {

out2[[i]] <- markovchainSequence(n = L, markovchain =

new("markovchain", states = statesNames,

transitionMatrix = U2),

t0 = "a", include.t0 = T)

}

outs2=out2

for (i in 1:length(outs2)) {

a=NULL

b=NULL

for (j in 1:length(outs2[[i]])) {

if (outs2[[i]][j]==statesNames[all]){

a=c(a,j)
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}

}

b=a[-1]

outs2[[i]]=outs2[[i]][-b]

}

#data frame

data1=outs

for (i in 1:length(outs)) {

data1[[i]]=paste(outs[[i]],collapse =",")

}

data1_2<-data.frame(action=matrix(unlist(data1), ncol=1, byrow=TRUE),label="0")

data2=outs2

for (i in 1:length(outs2)) {

data2[[i]]=paste(outs2[[i]],collapse =",")

}

data2_2<-data.frame(action=matrix(unlist(data2), ncol=1, byrow=TRUE),label="1")

#combine and shuffle dataframes

df <- rbind(data1_2,data2_2)

rows <- sample(nrow(df))

df2 <- df[rows, ]

df2$id=1:person

write.csv(df2,"JX\\simulation1.csv",row.names = F)
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########################################################################

#generate sequence with latent information merged for each chain

rm(list=ls())

all=10

person=3000

L=100

ACTIONS=c(letters,LETTERS)

actionNames <- ACTIONS[1:all]

theta=rnorm(person,0,1)

##generate transition matrix P and U

P=matrix(runif((all-1)^2,-15,15),nrow = all-1, byrow = TRUE)

U1=NULL

for (j in 1:person) {

U=matrix(rep(0,(all-1)^2),nrow = all-1, byrow = TRUE)

for (i in 1:dim(U)[1]) {

U[i,]=exp(theta[j]*P[i,])/sum(exp(theta[j]*P[i,]))

}

U_1=cbind(rep(0,all-1),U)

U1[[j]]=rbind(U_1,c(rep(0,all-1),1))

rownames(U1[[j]])<-actionNames
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colnames(U1[[j]])<-actionNames

}

#simulate the sequences

out<-NULL

for (i in 1:person) {

out[[i]] <- markovchainSequence(n = L, markovchain =

new("markovchain", states = actionNames,

transitionMatrix = U1[[i]]),

t0 = "a", include.t0 = T)

}

outs=out

for (i in 1:length(outs)) {

a=NULL

b=NULL

for (j in 1:length(outs[[i]])) {

if (outs[[i]][j]==actionNames[all]){

a=c(a,j)

}

}

b=a[-1]

outs[[i]]=outs[[i]][-b]

}
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#data frame

data1=outs

for (i in 1:length(outs)) {

data1[[i]]=paste(outs[[i]],collapse =",")

}

data1_2<-data.frame(action=matrix(unlist(data1), ncol=1, byrow=TRUE),theta=theta)

#combine and shuffle dataframes

data1_2$id=1:person

write.csv(data1_2,"JX\\simulation2.csv",row.names = F)

########################################################################

#generate responses together

z=55 #item numbers

b_mc=rnorm(z,0,1)

#generating data pars framework

g_p=shape_df(par.dc=list(a=rep(1,z),b=b_mc,g=NULL),

item.id=c(paste(rep("item", z),

seq(1,z,1), sep = " ")),

cats=rep(2,z),

model=rep("1PLM",z))
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sularesponse<-data.frame(response=simdat(x=g_p, theta=theta, D=1))

#read into extracted features

feature=read.csv("extracted.csv",header=T)

x.data=as.matrix(cbind(sularesponse,feature))

#ridge regression

lambdas <- 10^seq(2, -3, by = -.1)

ridge_reg = glmnet(x.data, theta, nlambda = 25,

alpha = 0.5, family = ’gaussian’, lambda = lambdas)

cv_ridge <- cv.glmnet(x.data, theta, alpha = 0, lambda = lambdas)

optimal_lambda <- cv_ridge$lambda.min

predictions <- predict(ridge_reg, s = optimal_lambda, newx = x.data)

pile=as.matrix(coef(ridge_reg))

#linear model

baseline=sularesponse

baseline$y=theta

lm1=lm(y~.,data=baseline)

summary(lm1)

predictions2 <- predict(lm1,newx = sularesponse)
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eval_results(theta, predictions, x.data)

eval_results(theta, predictions2, sularesponse)

A.1.2 Plot

library(ggplot2)

#PCA on the raw features

theta_pca<- prcomp(feature)

#Graph of individuals

fviz_pca_ind(theta_pca, geom = c("point"),

#col.ind = "contrib",

gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07")

)

#personal PCAs

res.ind <- get_pca_ind(theta_pca)

#plot of PCA by group

theta_plot <- data.frame(x = res.ind$coord[,1], y = res.ind$coord[,2],

label =df2$label)

ggplot(theta_plot) +xlab("PCA1") + ylab("PCA2")+

geom_point(aes(x=x, y=y,color=label),size=2)+ theme_bw()+
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scale_colour_discrete("Levels")

A.1.3 LDA

#LDA

rm(list=ls())

library(tm)

library(slam)

library(lda)

library(psych)

library(car)

data1 = read.csv(file= ’JX\\SS_Economics_Cumulative_Assesslet_noID.csv’,

header=T, sep=",", fill=T)

data2 = data1[,c(1,6,8,109,110,111)]

data3 = data2

colnames(data3)[4] <- "ER"

colnames(data3)[5] <- "ERScore"

colnames(data3)[6] <- "ERfeedback"

data4=data3
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data4$text <- paste(data4$ER)

ScoreofER<- data4$ERScore

data4$Score<- paste(ScoreofER)

data5=data4[,c(1,3,7,8)]

data6 = data5[as.character(data5$text)!=" ",] #delete blank records

na.list = substr(data6$text,1,2) == "NA" #delete missing data

data7 = data6[na.list==F,]

text1<-data7$text

id<-data7$stuID

score<-data7$Score

length(text1)

length(score)

length(id)

text1 <- gsub("^[[:space:]]+", "", text1)

text2 <- gsub("[[:space:]]+$", "", text1)

text3 =sub("\\.", " ", text2) #remove periods

text4 = gsub("\\’s", "", text3) #remove "’s"

text5 = gsub("[[:punct:]]", " ", text4) #remove punctuation characters

text6 = gsub("[[:digit:]]", " ", text5) #remove digits

text7 = tolower(text6) #to lower case
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head(text7)

#change sample size

max<-length(text7)

sample_size<-max

start_size<-max-sample_size+1

text7<-text7[start_size:max]

length(text7)

doc.list <- strsplit(text7, "[[:space:]]+")

doc.unlist<-unlist(doc.list)

#delete stop words and words that apprear less than 5 times

term.table = table(doc.unlist)

del = term.table < 5

new.term.table <- term.table[!del]

vocab <- names(new.term.table)

length(vocab)

#write.table(vocab, file=JX/3narra.txt")

#get document length

d.length = unlist(lapply(doc.list,length))
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new.doc.list=list()

s=0

for(l in 1:length(d.length)){

e = s + d.length[l]

new.doc.list[[l]] = doc.unlist[(s+1):e]

s = e

}

# now put the documents into the format required by the lda package:

get.terms <- function(x) {

index <- match(x, vocab)

index <- index[!is.na(index)]

rbind(as.integer(index - 1), as.integer(rep(1, length(index))))

}

documents <- lapply(new.doc.list, get.terms)

documents[1]

# Compute some statistics related to the data set before preprocessing:

D <- length(documents) # number of documents

W <- length(vocab) # number of terms in the vocab

# number of tokens per document
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doc.length <- sapply(documents, function(x) sum(x[2, ]))

N <- sum(doc.length) # total number of tokens in the data

# frequencies of terms in the corpus

term.frequency <- as.integer(new.term.table)

N/D

#load stemming list

source("JX/economics_Stemming_lda.R")

d.length = unlist(lapply(doc.list,length))

new.doc.list=list()

s=0

for(l in 1:length(d.length)){

e = s + d.length[l]

new.doc.list[[l]] = doc.unlist[(s+1):e]

s = e

}

# now put the documents into the format required by the lda package:

new.doc.unlist<-unlist(new.doc.list)

term.table = table(new.doc.unlist)
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del = term.table < 5

new.term.table <- term.table[!del]

vocab <- names(new.term.table)

# now put the documents into the format required by the lda package:

get.terms <- function(x) {

index <- match(x, vocab)

index <- index[!is.na(index)]

rbind(as.integer(index - 1), as.integer(rep(1, length(index))))

}

documents.new <- lapply(new.doc.list, get.terms)

#delete documents that has length less than 10

del.doc = which(sapply(documents.new,length)<10)

id_doc_new<-id[-del.doc]

documents.new = documents.new[-del.doc]

score_new<-score[-del.doc]

length(id_doc_new)

length(documents.new)

length(score_new)
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assign<-function(x){vocab[x[1,]+1]}

text7<-lapply(documents.new, assign)

text7<-lapply(text7, toString)

text7 <- gsub("^[[:space:]]+", "", text7)

text7 <- gsub("[[:space:]]+$", "", text7)

text7 =sub("\\.", " ", text7) #remove periods

text7 = gsub("\\’s", "", text7) #remove "’s"

text7 = gsub("[[:punct:]]", " ", text7) #remove punctuation characters

text7 = gsub("[[:digit:]]", " ", text7) #remove digits

text7 <- gsub("^[[:space:]]+", "", text7)

text7 = tolower(text7) #to lower case

tm0_total<-Corpus(VectorSource(text7))

pstP_dtm0_total<-

DocumentTermMatrix(tm0_total, control=list(stemming=F,

minWordLength = 1))

#select words that have more than 2 frequency

#two0_total<-findFreqTerms(pstP_dtm0_total,5) #

pstP_two.total<-pstP_dtm0_total
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rownames(pstP_two.total)<-id_doc_new

term_tfidf <-tapply(pstP_two.total$v/row_sums(pstP_two.total)[pstP_two.total$i],

pstP_two.total$j, mean)*log2(nDocs(pstP_two.total)/col_sums(pstP_two.total > 0))

summary(term_tfidf)

quantile(term_tfidf,0.05)

medi<-unlist(summary(term_tfidf)[2])

a<-sort(term_tfidf)

barplot(a)

#stop words

#cv<-as.numeric(term_tfidf[order(term_tfidf)[30]])

q1=c("next", "not","their","this","only","one","much", "can",

"yet","for","and","are","that","what","him","with","but","out"

,"his","who","from","will","they","also","which",

"other", "you","still","our",

"all","how","than", "two","after","many","have",

"both","there","just","now", "every",

"into","its","when","while","then","about","yes"

)
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pstP_two2.total<-pstP_two.total[,setdiff(pstP_two.total$dimnames$Terms, q1)]

rownames(pstP_two2.total)<-id_doc_new

pstP_two3.total <- pstP_two2.total[row_sums(pstP_two2.total) > 0,]

pstP_two3.total <- pstP_two3.total[col_sums(pstP_two3.total) > 0,]

W.total<-pstP_two3.total$ncol

id.new.2<-rownames(pstP_two3.total)

#stopword list

stvoca.list<-q1

stvoca.list

####Corpus Statistics after preprocessing###

W.total<-pstP_two3.total$ncol # number of terms in the vocab

D1 <- pstP_two3.total$nrow # number of documents

N1 <- sum(pstP_two3.total$v) # total number of tokens in the data

N1/D1 # average length of document

head(text7)
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####################################

############Estimation##############

####################################

library(topicmodels)

# Setting estimation conditions

iter<-10000

keep<-1

burnin<-5000

#set up library

# generate numerous topic models with different numbers of topics

sequ <- seq(2, 10, 1)

alpha<-30/sequ

#alpha<-1/sequ

#delta<-300/W.total

delta<-1.8

SEED<-3423

test <- lapply(sequ, function(k) LDA(pstP_two3.total,

169



k = k, method = "Gibbs",control=list(alpha=alpha,

delta=delta, seed=SEED,

burnin=burnin, iter = iter, keep = keep) ))

#train <- lapply(sequ, function(k) LDA(pstP_two3.training,

k = k, method = "Gibbs",

control=list(alpha=alpha, delta=delta, seed=SEED,

burnin=burnin, iter = iter, keep = keep) ))

#test<- lapply(train, function(l) LDA(pstP_two.test3, model=l,

k = sequ, method = "Gibbs",

control=list(alpha=alpha, delta=delta, seed=SEED,

burnin=burnin, iter = iter, keep = keep)))

# extract logliks from each topic

logLiks_many <- lapply(test,

function(q) q@logLiks[-c(1:(burnin/keep))])

hm_many2 <- sapply(logLiks_many, function(h) harmonic.mean(h))

average<-function(v){mean(unlist(logLiks_many[v]))}

t<-sequ-1

dbar<--2*sapply(t, function(g) average(g))
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num.par<-sequ*D1+sequ*W.total

dhat<--2*hm_many2

Pd<-dbar-(dhat)

aicc.penalty<-2*(num.par*(num.par+1)/(D1-num.par-1))

dic<-dbar+2*Pd

bic<--2*hm_many2+num.par*log(D1)

aic<--2*hm_many2+num.par

aicc<-aic+aicc.penalty

ssa_bic<--2*hm_many2+num.par*log((D1+2)/24)

plot(sequ,dic,type="o",

main="Model Selection by Deviance Information Criterion",

col="red",xlab="number of topics", ylab="DIC")

# inspect(likelihood & perplexity)

plot(sequ,dic, type="l")

plot(sequ,bic, type="l")
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plot(sequ,aic, type="l")

plot(sequ,aicc, type="l")

plot(sequ,ssa_bic, type="l")

#Extracting

k<- 3 #number of topics

alpha<-30/k #dirichlet prior

#delta<-200/W.total #dirichlet prior

#alpha<-1/k #dirichlet prior

SEED<-7845652

m <-LDA(pstP_two3.total, k=k,

method = "Gibbs", control=list(alpha=alpha,

delta=delta, seed=SEED, burnin=burnin, iter=20000))

pstP_two3.total

n1<-table(m@z)[1]

n2<-table(m@z)[2]

n3<-table(m@z)[3]
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##simple one

Topic_k<-topics(m,3)

Terms_k<-terms(m,30)

term.prob<-posterior(m, pstP_two3.total)$terms

data_post<-m@gamma # topic-document distribution

write.table(data_post, "JX\\mydata_post4.txt", sep="\t")

#term.prob<-posterior(m, pstP_two.total)$terms

#Support of the phi

list.m.t1<-order(term.prob[1,], decreasing=TRUE)[1:30]

list.m.t2<-order(term.prob[2,], decreasing=TRUE)[1:30]

list.m.t3<-order(term.prob[3,], decreasing=TRUE)[1:30]

#Posterior distribution of phi

m.t1<-term.prob[1,list.m.t1]

m.t2<-term.prob[2,list.m.t2]

m.t3<-term.prob[3,list.m.t3]
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data1<-round(as.data.frame(m.t1),3)

data2<-round(as.data.frame(m.t2),3)

data3<-round(as.data.frame(m.t3),3)

#list document by topics

topic_pro<-m@gamma

final<-as.data.frame(cbind(id_doc_new,score_new))

id.label<-as.numeric(id.new.2)

small.rep<-length(id.label)

score_final_vec<-matrix(rep(NA, small.rep*2), nrow=small.rep)

for (i in 1:small.rep){

score_final<-final[which(final$id_doc_new==id.label[i]),]

score_final_vec[i,]<-matrix(as.numeric(score_final),ncol=2)

}

final_0<-cbind(id.new.2,topic_pro, score_final_vec[,2])

head(final_0)

final_0[id.new.2==407]
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#topic 1

final_0[order(final_0[,2], decreasing=T),][1:5]

#topic 2

final_0[order(final_0[,3], decreasing=T),][1:5]

#topic 3

final_0[order(final_0[,4], decreasing=T),][1:5]

topic_pro<-m@gamma

score_final<-score[as.numeric(id.new.2)]

final_0<-cbind(id.new.2,topic_pro, score_final)

head(final_0)

final_0[id.new.2==2]
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cor.used.topic<-3

logit<-function(x){log(x/(1-x))}

transform.topic.portion<-sapply(as.numeric(final_0[,cor.used.topic+1]),logit)

cor(transform.topic.portion,as.numeric(final_0[,5]),

use="pairwise.complete.obs")

cor.used.topic<-2

logit<-function(x){log(x/(1-x))}

transform.topic.portion<-sapply(as.numeric(final_0[,cor.used.topic+1]),logit)

cor(transform.topic.portion,as.numeric(final_0[,5]),

use="pairwise.complete.obs")

cor.used.topic<-1

logit<-function(x){log(x/(1-x))}

transform.topic.portion<-sapply(as.numeric(final_0[,cor.used.topic+1]),logit)

cor(transform.topic.portion,as.numeric(final_0[,5]),

use="pairwise.complete.obs")

A.1.4 Supervised LDA

rm(list=ls())

library(tm)

library(slam)
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library(lda)

library(psych)

library(car)

library(stringr)

library(ltm)

library(psych)

library(QuantPsyc)

library(janitor)

library(xlsx)

#input raw file

dat0 = read.csv(file=’JX\\SS_U.S._History_Cumulative_Assesslet_noID.csv’,

header=T, sep=",", fill=T)

names(dat0)

#create new file

data00 = dat0[,c(1,109,110)]

dat2.1.0 = data00

colnames(dat2.1.0)[1] <- "id"

colnames(dat2.1.0)[2] <- "ERresponse"

colnames(dat2.1.0)[3] <- "score"
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dim(dat2.1.0)

# choose ER response

dat2.1.1= dat2.1.0[(dat2.1.0$ERresponse)!="",] #delete blank records

dim(dat2.1.1)

na.list = substr(dat2.1.1$ERresponse,1,2) == "NA" #delete missing data

dat2.1.1 = dat2.1.1[na.list==F,]

dat2.1 = dat2.1.1

# dat 2

text1<-dat2.1$ERresponse

id<-dat2.1$id

dim(dat2.1)

#check

length(text1)

length(id)

#processing

text1 <- gsub("^[[:space:]]+", "", text1)

text2 <- gsub("[[:space:]]+$", "", text1)
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text3 =sub("\\.", " ", text2) #remove periods

text4 = gsub("\\’s", "", text3) #remove "’s"

text5 = gsub("[[:punct:]]", " ", text4)

text6 = gsub("[[:digit:]]", " ", text5)

text7 = tolower(text6) #to lower case

head(text7)

head(dat2.1)

#sample size

max<-length(text7)

sample_size<-max

start_size<-max-sample_size+1

dat2.1<-dat2.1[start_size:max,]

text7<-text7[start_size:max]

length(text7)

dim(dat2.1)

#sampling documents

#set.seed(15423)

#text7<-sample(text7,1500, replace=F)
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doc.list <- strsplit(text7, "[[:space:]]+")

doc.unlist<-unlist(doc.list)

#delete stop words and words that apprear less than 5 times

term.table = table(doc.unlist)

del = term.table < 5

new.term.table <- term.table[!del]

vocab <- names(new.term.table)

length(vocab)

#write.table(vocab, file="JX/3narra.txt")

#get document length

d.length = unlist(lapply(doc.list,length))

new.doc.list=list()

s=0

for(l in 1:length(d.length)){

e = s + d.length[l]

new.doc.list[[l]] = doc.unlist[(s+1):e]

s = e

}

# now put the documents into the format required by the lda package:

get.terms <- function(x) {
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index <- match(x, vocab)

index <- index[!is.na(index)]

rbind(as.integer(index - 1), as.integer(rep(1, length(index))))

}

documents <- lapply(new.doc.list, get.terms)

documents[1]

# Compute some statistics related to the data set before preprocessing:

D <- length(documents) # number of documents

W <- length(vocab) # number of terms in the vocab

doc.length <- sapply(documents, function(x) sum(x[2, ]))

N <- sum(doc.length) # total number of tokens in the data

term.frequency <- as.integer(new.term.table)

N/D

#load stemming list

source("JX/history_Stemming_lda.R")

d.length = unlist(lapply(doc.list,length))

new.doc.list=list()

s=0
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for(l in 1:length(d.length)){

e = s + d.length[l]

new.doc.list[[l]] = doc.unlist[(s+1):e]

s = e

}

documents.new <- lapply(new.doc.list, get.terms)

documents.new[1]

assign<-function(x){vocab[x[1,]+1]}

text7<-lapply(documents.new, assign)

text7<-lapply(text7, toString)

text7 <- gsub("^[[:space:]]+", "", text7)

text7 <- gsub("[[:space:]]+$", "", text7) # remove whitespace

text7 =sub("\\.", " ", text7) #remove periods

text7 = gsub("\\’s", "", text7) #remove "’s"

text7 = gsub("[[:punct:]]", " ", text7) #remove punctuation characters

text7 = gsub("[[:digit:]]", " ", text7) #remove digits

text7 <- gsub("^[[:space:]]+", "", text7)

text7 = tolower(text7) #to lower case
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tm<-Corpus(VectorSource(text7))

#Remove stopwords

tm3<-tm_map(tm, removeNumbers)

source("JX/sub_stopwords.R")

#check;

lapply(tm3[1:1], as.character)

all_dtm<-DocumentTermMatrix(tm3,

control=list(stemming=F, minWordLength = 2, stopwords=stop_words))

v<-all_dtm$dimnames$Terms

#select words that have more than 5 frequency

thr<-findFreqTerms(all_dtm,5) #

all_thr<-all_dtm[,thr]
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# now put the documents into the format required by the lda package:

get.terms <- function(x) {

index <- match(x, v)

index <- index[!is.na(index)]

rbind(as.integer(index - 1), as.integer(rep(1, length(index))))

}

documents.new <- lapply(new.doc.list, get.terms)

#####Statistics after preprocessing######

W.total<-all_thr$ncol # number of terms in the vocab

D1 <- all_thr$nrow # number of documents

N1 <- sum(all_thr$v) # total number of tokens in the data

N1/D1 # average length of document

################################

##########topic model###########

################################
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#determine the number of topics

K <- 4

G <- 5000 # the number of iterations

alpha <- 30/K #0.06/K

eta <- 0.01 #1/W

# Fit SLDA

# ER score

annotations<-dat2.1$score

annotations[is.na(annotations)] <- 0

dim(dat2.1)[1]

length(annotations)

length(documents.new)

variacne<-1/var(annotations,na.rm=T)

params<-c(0,0,0,0)

table(annotations)

annotations<-as.integer(annotations)

#only positive documents can be used

documents.new1=documents.new[lapply(documents.new,length)>0]

min(sapply(documents.new1, length))
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del.doc.list<-id[lapply(documents.new,length)==0]

id.new<-id[lapply(documents.new,length)>0]

annotations.new<-annotations[lapply(documents.new,length)>0]

length(del.doc.list)

length(id)

length(id.new)

length(annotations)

length(annotations.new)

length(documents.new)

length(documents.new1)

#slda

num.e<-500

num.m<-20

t1 <- Sys.time()

fit5_slda <- slda.em(documents= documents.new1,

K = K, vocab = v,

num.e.iterations=num.e, num.m.iterations=num.m,

alpha = alpha,

eta = eta, annotations=annotations.new,
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params=params, variance=variacne,

logistic = FALSE, lambda = 10, regularise = FALSE,

method = "sLDA", trace = 0L, MaxNWts=3000)

t2 <- Sys.time()

t2 - t1

# model summary

fit5_slda$model

fit5_slda$coefs

fit5_slda$topic_sums

fit5_slda

topic.prop.docs<-fit5_slda$document_sums

#get indivisual’s topic proportion

for (i in 1: length(colSums(fit5_slda$document_sums))){

topic.prop.docs[,i]<-fit5_slda$document_sums[,i]/colSums(fit5_slda$document_sums)[i]

}

#check

sum(topic.prop.docs[,2])

#gain the transpose matrix

smatrix=topic.prop.docs
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tsmatrix=t(smatrix)

# top words

top.words <- top.topic.words(fit5_slda$topics, 30, by.score = F)

top.words

#A function to organize the results

topics = function(fit,K){

top.words <- top.topic.words(fit5_slda$topics, 30, by.score = F)

dim(fit5_slda$topics)

tot = apply(fit5_slda$topics,1,sum)

p.word = fit5_slda$topics

results = list()

for(k in 1:K){

p.word[k,] = fit5_slda$topics[k,]/tot[k]

results[[k]] = round(as.data.frame(sort(p.word[k,],

decreasing=T)[1:30]),3)

results[[K+k]] = as.data.frame(sort(fit5_slda$topics[k, ],

decreasing = TRUE)[1:30])

}

return(results)

}
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#topics

A=topics(fit5_slda,4)[1]

B=topics(fit5_slda,4)[2]

C=topics(fit5_slda,4)[3]

D=topics(fit5_slda,4)[4]

write.csv(A, file = "JX/topic1.csv")

write.csv(B, file = "JX/topic2.csv")

write.csv(C, file = "JX/topic3.csv")

write.csv(D, file = "JX/topic4.csv")

top.topic.words(fit5_slda$topics, 30, by.score = F)

#call each of the score categories

#list document by topics

topic_pro<-tsmatrix

final<-cbind(id.new,topic_pro,annotations.new)

final_0=data.frame(final)
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colnames(final_0)[6]<-"score"

colnames(final_0)[5]<-"topic4pro"

colnames(final_0)[4]<-"topic3pro"

colnames(final_0)[3]<-"topic2pro"

colnames(final_0)[2]<-"topic1pro"

colnames(final_0)[1]<-"id"

head(final_0)

dim(final_0)

#rank

#topic 1

topic1list=head(final_0[order(final_0$topic1,decreasing = T),],n=50)

#topic 2

topic2list=head(final_0[order(final_0$topic2,decreasing = T),],n=50)

#topic 3

topic3list=head(final_0[order(final_0$topic3,decreasing = T),],n=50)

#topic 4

topic4list=head(final_0[order(final_0$topic4,decreasing = T),],n=50)

#number of students in each score for top 50 studenst in each topic

table(topic1list[,6])

table(topic2list[,6])
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table(topic3list[,6])

table(topic4list[,6])

data111 = t(data.frame(c(10,20,30)))

colnames(data111) = c("A","B", "C")

barplot(data111, main="Column Chart", xlab="Grades")

#call 7 score

final_0[final_0$score==7,]

#call 6 score

final_0[final_0$score==6,]

#call 5 score

final_0[final_0$score==5,]

#call 4 score

final_0[final_0$score==4,]

#call 3 score

final_0[final_0$score==3,]

#call 2 score

final_0[final_0$score==2,]

#call 1 score
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final_0[final_0$score==1,]

#call 0 sccore

final_0[final_0$score==0,]

#check

final_0[,2:5]

fin=predict(fit5_slda$model,final_0[,2:5])

fina=final_0

fina$scorepre=fin

pred=fina[,c(1,6,7)]

#residual

pred$dif=pred$score-pred$scorepre

plot(pred$dif, main="Scatterplot between Raw Score and Predicted Score",

xlab="Student ", ylab="Difference ")

#mean and stand deviation

mean(abs(pred$dif))

sd(abs(pred$dif))
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#SSE

sum(pred$dif^2)

#SST

sum((pred$score-mean(pred$dif))^2)

#SSR

sum((pred$score-mean(pred$dif))^2)-sum(pred$dif^2)

#r^2

(sum((pred$score-mean(pred$dif))^2)-

sum(pred$dif^2))/sum((pred$score-mean(pred$dif))^2)

predc=pred[c(2,3)]

predc_2=as.numeric(as.vector(as.matrix(predc)))

datapred<-data.frame(id=rep(c(1:409),2),

student=rep(c("A","B"),each=409),

value=c(predc_2)

)
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A.2 Matlab

A.2.1 A simple ESN

Thanks to Dr. Mantas Lukoševičius.(https : //mantas.info/code/simpleesn/)

clear all

% seed random generator

tic

rand(’state’, sum(100*clock));

donTr=load(’simulation_1.txt’);

donTs=load(’simulation_2.txt’);

don=[donTr(:,2:end);donTs(:,2:end)];

don=don’;

donT=[donTr(:,1);donTs(:,1)];

% unit counts (input, hidden, output)

IUC = 100; #change

HUC = 200; #change

OUC = 100; #change

IPP=don;

TPP=IPP;
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probInp = [ 1.00 ];

rngInp = [ 1 ];

probRec = [ 0.01];

rngRec = [ -0.6 ];

probBack = [ 0.0 ];

rngBack = [0.0 ];

w_in = zeros(HUC, IUC, length(probInp));

w_rec = zeros(HUC, HUC, length(probRec));

%w_back = zeros(HUC, OUC, length(probBack));

for d=(1:length(probInp))

w_in(:,:,d) = init_weights(w_in(:,:,d), probInp(d),rngInp(d));

end;

for d=(1:length(probRec))

w_rec(:,:,d) = init_weights(w_rec(:,:,d), probRec(d),rngRec(d));

end;

% for d=(1:length(probBack))

% w_back(:,:,d) = init_weights(w_back(:,:,d), probBack(d),rngBack(d));

% end;

SpecRad = max(abs(eig(w_rec(:,:,1))));
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if SpecRad>0,

w_rec = w_rec ./ SpecRad;

end

SpecRad;

x = zeros(HUC,size(TPP,2));

x(:,1) = rand(1,HUC);

w_out=rand(OUC,HUC);

for t=2:size(TPP,2),

%run without any learning/training in reservoir and readout unit

x(:,t) = tanh(w_in*IPP(:,t) + w_rec*x(:,t-1));

end

% plot(x);

w_out = TPP(:,10:end)*pinv(x(:,10:end));

% w_in=w_out’;

% for t=2:size(TPP,2),

%run without any learning/training in reservoir and readout unit

%

% x(:,t) = tanh(w_in*IPP(:,t) + w_rec*x(:,t-1));

%

% end
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IP=x(:,1:100)’;

TP=donT(1:100,:);

IPT=x(:,101:end)’;

TPT=donT(101:end,:);

svmStruct = fitcsvm(IP,TP);

Group = ClssificationSVM(svmStruct,IPT);

SVMStruct1 = fitcsvm(IP,TP);

Group1 = ClssificationSVM(SVMStruct1,IPT);

RD=0;

for(z=1:size(TPT,1));

if (Group1(z,:) == TPT(z,:))

RD=RD+1;

end

end

precision= RD/size(TPT,1)

figure;

plot(x)

title(’Hidden neurons activations: new data representation’)

xlabel(’hidden neurons’)

ylabel(’Activation’)
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