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ABSTRACT 

 A “big chamber” microfluidic experiment as well as a microfluidic experiment were 

designed to demonstrate that communication existed among cells. At the macroscopic limit 

(~150,000 cells), there was a high degree of phase synchronization between cells in the artificial 

tissue. In the microwell experiment, single cells in individual wells showing phase 

synchronization provided strong evidence for the quorum sensing hypothesis and some 

information about the communication parameters that quantitate quorum sensing. The 

measurement of averages over single cell trajectories in the microwell device supported a 

deterministic quorum sensing model identified by ensemble methods for clock phase 

synchronization. A strong inference framework was used to test the communication mechanism 

in phase synchronization of quorum sensing versus cell-to-cell contact, suggesting support for 

quorum sensing. In addition, a microfluidic chip with serpentine channels was fabricated to 

capture individual hypha. Fluorescence of a mCherry recorder gene driven by a clock-controlled 

gene-2 promoter (ccg-2p) was measured simultaneously along hyphae for every half an hour for 

at least 6 days. Furthermore, hyphae also displayed temperature compensation properties, where 

the period of oscillations were stable over a physiological range of temperatures from 24 °C to 



30 °C (Q 10 = 1.00-1.10). Hyphae tracked in individual serpentine channels were highly 

synchronized (K=0.60-0.78). A clock model developed was able to mimic hyphal growth 

observed in the serpentine chip. Finally, a density-dependent metabolic switch model involving 

in Ethanol production in a qa-x background in Neurospora crassa was developed to test whether 

available RNA profiling and Continuous in vivo Metabolism-NMR data are consistent with the 

hypotheses that: (1) quorum sensing (QS) in Ethanol production is the QS mechanism in phase 

synchronization of the clock; (2) the QS signal is (are) an aromatic alcohol(s); (3) the gene 

(NCU03643) encodes the quorum sensing regulator.  Ensemble methods were used to fit this 

hypothesis successfully to RNA profiling and CIVM-NMR data in four experiments at high and 

low density in qa-x and Wildtype genetic backgrounds.  In this way a detailed biochemical 

mechanism is put forward to explain the phase synchronization of single cells in Neurospora 

crassa. 
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CHAPTER 1 

INTRODUCTION 

 Collective behavior is a form of social behavior involving the coordinated behavior of large 

group of similar individuals without central coordination. It occurs on a variety of scales of 

biological organization from fish schooling to human gathering, and from bees swarming to 

swimming bacteria5. Single-celled bacteria and fungi collectively detect chemical signals 

generated by close neighbors to synchronize their motion. The study of synchronization of 

circadian rhythm in single cells constitutes building blocks of understanding collective behavior.  

 

 Circadian rhythm is a roughly 24-hour cycle in the physiological process of most living 

things, including animals, plants, and microbes 6. It responds to light and dark primarily and is 

regulated by biological clocks which are organisms’ natural timing devices. Circadian rhythm is 

central to many cellular activities such as carbon metabolism and cell cycle, and is the internal 

clock in our bodies that is linked to biological activities such as sleeping and feeding patterns, 

hormone production, cell regeneration, and etc. 7,8. Changes in our body and environmental factors 

can affect our circadian rhythms and cause the natural light-dark cycle to be out of synchronization.  

And abrupt changes to circadian rhythms in our body can result in the dysfunction of metabolic 

pathways, and may lead to many diseases such as cancer, cardiovascular diseases, diabetes, obesity, 

and metabolic syndrome. Circadian rhythms also play a part in the reticular activating system, 

which is crucial for maintaining a state of consciousness. A reversal in the sleep–wake cycle may 

be a sign or complication of uremia or azotemia 9,10. It is essential for us to gain more insight 
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regarding genes that are responsible for circadian rhythms to significantly advance treatment and 

therapy for these diseases associated with circadian rhythms. Detailed understanding of circadian 

rhythms would also be crucial to maximize the efficiency of drugs and treatments for diseases 11. 

 

 Much of what we know about circadian rhythms at the molecular levels comes from the 

study of Neurospora crassa. Neurospora crassa is a type of red bread mold of the phylum 

Ascomycota. It is widely used as a model organism because it is easy to grow and has a haploid 

life cycle that makes genetic analysis simple. Most measurements on the biological clock of 

Neurospora crassa are made on millions of cells to understand the mechanism of telling time 12.  

 

 Previously, many studies have been done on cell communication at the macroscopic level 

13, but few have been done so on the single cell level. Single cell analysis is becoming a primary 

research method to study how circadian rhythms affect our biological clock 14-16. Preliminary data 

indicates that single cells of Neurospora crassa do have an intrinsic rhythm, but it tends to be very 

noisy and stochastic 17,18. However, when the circadian rhythms of small (2-3 cell) clusters are 

observed, there is a noticeable increase of the signal-to-noise ratio in the system. Recent 

researchers have shown that both communication hypothesis and stochastic resonance are viable 

for explaining the phase synchronization in single cells 18-20, and here we want to focus on how the 

communication mechanism of individual cells help to sidestep the stochastic and damping 

behaviors of single cells using existing experimental equipment21. This knowledge is important 

to fully understand:  

1) How do single cells communicate to overcome their stochasticity and synchronize 

their circadian rhythm with each other?  
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2) Do growing cells have a clock and can these cells synchronize their circadian 

rhythm with each other?  

3) What is the signaling molecule that single cells use to communicate with each other 

and how does the signaling molecule affect the clock?  

 

 Here we introduce novel microfluidics platforms to address these challenges. Microfluidic 

techniques provide a feasible and efficient way to conduct research on the single cell level17. By 

using new microfluidic technology, individual cells are encapsulated in microwells or chambers, 

and tagged with a fluorescent protein, providing scientists with a stable platform to track tens of 

thousands of cells with single-cell precision 17,18. This technology allows us to collect data on 

thousands of single cells simultaneously for up to 10 days, while in the past scientists were only 

able to gather averaged data from individual cells for approximately 48 hours 22. A serpentine 

device is also designed and fabricated in our research to isolate the growing filaments in single 

serpentine channels to study the communication and synchronization of growing filaments of 

Neurospora crassa on the single filament level. 

 

 The objective of this research is to investigate how single cells of the model filamentous 

fungus, Neurospora crassa, synchronize their circadian rhythm as a first step to the same problem 

in more complex eukaryotes with a clock. With a good understanding of the circadian rhythm of 

cells, we can apply our findings to many areas such as exploiting the biological clock of algae to 

make biofuel reactors more efficient 23,24, understanding the synchronization phenomenon of 

agricultural pests such as locusts to control them 25, as well as increasing the efficacy of medical 

treatment in human beings and reducing drug toxicity or adverse reactions dependent on time of 
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delivery of pharmaceuticals 26. The research is based on preliminary data demonstrating that: 1) 

the genetic network of Neurospora crassa can be used to study the synchronization of single cells; 

2) single cells of N. crassa do have a clock 18. Based on these data, the central hypothesis is that 

single cells of Neurospora crassa communicate and synchronize with each other through 

exchanging certain signaling molecules. There are two paths that a signal molecule can take from 

one cell to another. The first path is that the signal molecule diffuses directly from one cell to the 

other cell. The second path is that the signal molecule first diffuses from the intracellular space to 

the extracellular space, and then diffuses from the extracellular space into intracellular space. In 

this research, we define the two communication mechanisms in single cells as direct contact 

communication and quorum sensing communication, respectively.  

 

 To fully understand the communication and synchronization mechanism of Neurospora 

crassa, we choose numerical simulations combined with controlled laboratory experiments as our 

method. The following is the structure of this dissertation: 

1) Studying the communication and synchronization of single cells of Neurospora crassa 

using a quorum sensing genetic network and a contact genetic network, and ensemble 

simulation method. A microwell microfluidic device to trap individual cells is designed 

and fabricated to study single cells communication and synchronization and test the 

quorum sensing model versus the contact model. 

2) A filament model of Neurospora crassa is developed to simulate the communication and 

synchronization of circadian rhythm in growing filaments of Neurospora crassa. A 

serpentine device to isolate filaments is designed and fabricated to study the 

communication and synchronization of growing filaments of Neurospora crassa. 
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3) A metabolic switch model is developed to simulate the qa metabolic pathway in 

Neurospora crassa to find out the potential signaling molecule that single cells use to 

communicate with each other, and to understand how the signaling molecule involves in 

phase synchronization of the clock. 
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CHAPTER 2 

THE MACROSCOPIC LIMIT TO SYNCHRONIZATION OF CELLULAR CLOCKS IN 

SINGLE CELLS OF NEUROSPORA CRASSA27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[27] Qiu, X., Cheong J H, et al. (2022) (Scientific Report) 12(1): 1-19. Reprinted here with 

permission of the publisher. 
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Abstract.  We determined the macroscopic limit for phase synchronization of cellular clocks in 

an artificial tissue created by a “big chamber” microfluidic device to be about 150,000 cells or 

less.  The dimensions of the microfluidic chamber allowed us to calculate an upper limit on the 

radius of a hypothesized quorum sensing signal molecule of 13.05 nm using a diffusion 

approximation for signal travel within the device. The use of a second microwell microfluidic 

device allowed the refinement of the macroscopic limit to a cell density of 2166 cells per fixed 

area of the device for phase synchronization. The measurement of averages over single cell 

trajectories in the microwell device supported a deterministic quorum sensing model identified by 

ensemble methods for clock phase synchronization. A strong inference framework was used to test 

the communication mechanism in phase synchronization of quorum sensing versus cell-to-cell 

contact, suggesting support for quorum sensing. Further evidence came from showing phase 

synchronization was density dependent. 

 

Significance.  Describing and explaining the emergence of coherence in biological oscillators is 

a central unsolved problem in Collective Behavior28. Using microfluidics, the authors have 

experimentally described when the synchronization process happens as noisy single cell 

oscillators transition to the macroscopic limit of tissues and whole organisms. Using an artificial 

tissue created by microfluidics the authors observed how the clocks in single cells transitioned to 

a deterministic, macroscopic limit. This limit was refined by a second microwell device, which 

provided phase information about the oscillators through single cell tracking. Both microscopic 

single cell data together with macroscopic data integrated over the field of view on an artificial 

tissue were used to document the synchronization process. The macroscopic data identified two 

communication mechanisms that are possible with earlier macroscopic data from a variety of 
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sources including RNA profiling, protein profiling, and physiological measurements on the clock 

through race tubes. A strong inference framework was used to test quorum sensing vs. a contact 

model of communication underlying phase synchronization of cellular clocks.29 The approaches 

here provide a model for a method to use single cell data to explain emergent properties of 

tissues and whole organisms, such as circadian rhythms, and a test of two mechanisms of 

coherence between cellular oscillators at the macroscopic limit. 

 

 Collective behavior occurs on a variety of scales of biological organization, from the 

collective attack of viruses on bacterial cells30 and synchronization of clocks in single cells31 to 

collective behavior of flocks32, schools33, herds34, troops of primates35, and whole communities 

of organisms36.  Some forms of collective behavior lead to synchronized oscillations, whether the 

system is cells synchronizing their clocks or fire flies synchronizing their flashing37. A 

fundamental problem in collective behavior is understanding the synchronization of biological 

oscillators28. The focus here is on the phase synchronization of clocks in single cells31; the 

problem of understanding synchronized oscillators arises in the study of other signaling systems 

as well38,39. At the single cell level there is substantial stochastic intercellular variation in the 

phase of cellular clocks17, but as these cells transition to the macroscopic limit of 107 cells per 

milliliter (ml), the clocks become synchronized and display coherent circadian rhythms on the 

macroscopic scale of 107 cells/ml2,4. Our goal here is to understand both experimentally and 

theoretically how this phase transition to synchronized behavior takes place in moving from cells 

to tissues to whole organisms21,40.  
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There are a variety of theories on how this transition to the macroscopic limit takes place.  

One hypothesis is that some form of cellular communication, such as quorum sensing41-43 or cell-

to-cell contact44, allows the clocks in different cells to synchronize45. Models have been 

proposed for how this might happen46-48. A second possibility is that stochastic intracellular noise 

plays a positive role in synchronization49. In previous work it has been demonstrated that 

stochastic intracellular noise can lead to periodic behavior50,51, but these models do not address 

subsequent synchronization of oscillators. There is a possibility that noise could play a positive 

role in synchronizing the cellular clocks with respect to their phase when genetically identical 

cells share a common random environment as a synchronizing agent52. This hypothesis 

converges on a physical hypothesis known as Stochastic Resonance19, in which stochastic 

intracellular noise helps to solidify periodic behavior as well as oscillator synchronization. One 

of the earliest examples of invoking Stochastic Resonance to explain the origin of the clock is in 

the model clock system, Neurospora crassa53. Recently in the same clock system it has been 

shown from single cell data that there is one stochastic resonance predicted under a variety of 

Light/Dark regimens1,54. 

 

The advent of microfluidics55 allows researchers to capture and manipulate single cells to 

address experimentally the problem of cellular synchronization36,56. In order to study this 

interesting phase transition from cells with substantial phase variation31 to a state of substantial 

phase locking, two microfluidic platforms (Fig. 1.1), the “big chamber device” and microwell 

device, were developed. The purpose of the big chamber device was to reproduce the transition 

in synchronization behavior of conidial cells at the macroscopic limit of 107/ml.  Nakashima22 

developed the liquid culture assay used in most molecular studies of the clock in Neurospora 
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crassa57-60. The definition of the macroscopic limit used here throughout is reproducing the 

behavior of these Nakashima liquid cultures and the synchronization of the cellular oscillators in 

such cultures.  One of the features of these liquid conidial cultures is that the clock at the 

macroscopic limit can only be observed over a 48-hour (h) window (Fig. 1.1d). On the micro-

scale of single cells this limit on observation of circadian rhythms over 48 h can be removed 

fortunately17. The big chamber device also provides information about the size of the signaling 

molecule as discussed below. The purpose of the second microwell device (Fig. 1.1e-f) in 

contrast allows tracking of the oscillations of individual cells over 10 days and the manipulation 

of the conidial cell environment, such as density. In this way a more detailed study of phase 

synchronization can be made over 240 h. 

 

 First, the big chamber device was used to pack conidial cells of the model clock system 

(Fig. 1.1b), N. crassa, into one artificial tissue so that the emergence of circadian rhythms could 

be studied both macroscopically and microscopically simultaneously. The media was selected to 

minimize formation of filaments and cell fusion to simplify the modes of communication 

between cells17,61. The purpose of this report is to characterize this transition from disorder to 

order in an ensemble of cellular clocks in an artificial tissue. In previous work evidence was 

provided that single conidial cells have clocks and that most of their stochastic intracellular 

variation was in phase31. Using a second microwell device, in one experiment three hypotheses 

are tested: (1) phase synchronization; (2) density effect on phase synchronization; (3) contact 

model hypothesis. We demonstrate that phase synchronization takes no more than 829 cells or a 

cell density of 2166 cells per fixed area of the device and is density-dependent. Contact 

hypothesis is also evaluated as an alternative to quorum sensing. Two models for how this phase 
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synchronization takes place are developed, evaluated, and compared against the aggregate 

behavior of cells in this artificial tissue or in a microwell device. This would allow us to make 

more refined predictions on when phase synchronization would occur to guide future 

microfluidic experiments2. 

     

 

Fig. 1.1 Two microfluidic devices, the “big chamber device” and microwell device, are used to 

characterize the synchronization of cellular oscillators on the macro-scale and micro-scale. A 

microfluidic “big chamber device” is developed to pack ~150,000 cells into an artificial tissue to 
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examine the macroscopic limit to synchronization of cellular clocks in media 517.  The big 

chamber enables the fluorescence detection of conidial cells (strain MFNC93) through an 

mCherry recorder driven by clock-controlled gene-2 (ccg-2) promoter both in aggregate and 

individually3. Time fluorescence measurements were taken every half hour over 10 days. (a) An 

image of a microfluidic device that houses 5 big chamber devices for experiments. (b) Schematic 

of the big chamber device consisting of an inlet and outlet where cells (green circles) flow into 

the device from the inlet end and are gradually trapped at the barriers present at the outlet end. 

The dimensions of a main chamber are 1800 x 1150 x 10 (height) 𝜇𝑚. (c) Fluorescence image of 

the cells trapped in the big chamber device. Scale bar: 50𝜇𝑚. (d) The detrended fluorescence for 

around 140,000 cells is shown over 209 h. The plots were created in MATLAB_R2020B 

(https://www.mathworks.com/products/matlab.html). (e) A microwell microfluidic device to trap 

individual cells is constructed to test the quorum sensing model versus the contact model. Left: 

fluorescence image of MFNC9 cells in the microwell device. Scale bar: 100µm. Right: 

visualization of MFNC9 cells trapped in individual microwells at 20x magnification. (Top: 

bright field; bottom: fluorescence). Scale bar: 50µm. (f) Schematic of cells (in green) seeded in 

individual microwells of 10µm in diameter. 

 

https://www.mathworks.com/products/matlab.html
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Fig. 1.2 Periodogram of experiments done with MFNC93 conidial cells placed in different media 

solutions while running a 10 day long experiment in the big chamber microfluidic device. 

Periodograms were generated with ~145,000 cells for each experiment. The plots were created 

in MATLAB_R2020B (https://www.mathworks.com/products/matlab.html). 

 

Results 

 Packing single cells into an artificial tissue with a “big chamber” microfluidic 

device. 

 In order to determine experimentally the macroscopic limit to the synchronization of 

cellular clocks, a “big chamber” microfluidic device with chamber dimensions 1800 x 1150 x 10 

(height) 𝜇𝑚 was designed (Fig. 1.1a). The device trapped ~150,000 cells near a barrier to create 

an artificial tissue (Fig. 1.1c). Both fluorescence measurements on individual cells and aggregate 

measurements on five fields of view with ~1700 cells each were obtained. What is remarkable is 

that time-lapse photography (supplementary video) demonstrated circadian rhythms to the naked 

eye. The video is summarized in Fig. 1.1d, showing the circadian rhythm with period of 21 h in 

https://www.mathworks.com/products/matlab.html
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agreement to race tube experiments and liquid culture experiments beyond the macroscopic 

limit2; moreover, the oscillations are limited to 2 periods as in Nakashima liquid cultures22 (Fig. 

1.1d). Aggregation of cells over fields of view and over individual cells yielded similar estimates 

of the period as well as the Hilbert phase curves (see Materials and Methods) (supplementary 

Fig. S1.1). Three different media for conidial growth were tried in the big chamber with similar 

results (Fig. 1.2). 

 

The artificial tissue has about ~150,000 cells and places an upper limit of 13.5 nm on 

a hypothesized quorum sensing signal molecule’s radius for cellular clock synchronization. 

From the supplementary video and supplementary Fig. S1.2 and S1.3 it is clear that we 

are obtaining synchronized oscillations by cells over the dimensions of the device (1800 x 1150 

x 10 𝜇𝑚). This synchronous behavior is captured in the phase trajectories of a fluorescent strain 

MFNC9 with a mCherry recorder fused to the clock-controlled gene-2 promoter (ccg-2P)3 (see 

Materials and Methods for calculating phase) across different fields of view of the artificial 

tissue (Fig. 1.3)62. 
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Fig. 1.3 Pairwise phase trajectories of 5 fields of view in a transect across the artificial tissue in 

the big chamber device are highly correlated. Cells were grown in Media 517. (a) Fields of view 

are shown in the artificial tissue. Each field of view contains ~1700 cells. (b) The phases 

between all pairs of fields of view are graphed over 10 days in the big chamber device62, and 

their computation is described in Materials and Methods. The plots were created in 

MATLAB_R2020B (https://www.mathworks.com/products/matlab.html). 

 

https://www.mathworks.com/products/matlab.html
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The fields of view (as displayed in Fig. 1.3a for spatial location within the tissue) were highly 

coherent (e.g., phase synchronized) with each other as shown in Fig. 1.3b) and supplementary 

Fig. S1.2. This was measured by phase measures62 between different fields of view on the tissue 

(Fig. 1.3b) as well as by measures of sychronization63. For example, the synchronization measure 

known as the Kuramoto order parameter (K) between different fields of view is defined as: 

𝐾 = ⟨|𝑛−1 ∑ exp(𝑖M𝑗) −  ⟨𝑛−1 ∑ exp(𝑖M𝑗)

𝑛

𝑗=1

⟩

𝑛

𝑗=1

|⟩ 

where the brackets denote an expectation over time and 𝑀𝑗 is the phase of the jth “giant cell”. 

The quantity n is the number of oscillators being compared (e.g., n = 2 for two fields of view) 

and 𝑖 =  √−1. If the fields of view were perfectly synchronized, the Kuramoto K would be 1.00, 

and if the fields of view were unsynchronized, the Kuramoto K would be 0.00. The 

synchronization measure (K) observed between any two fields of view was over 0.97 (Table 1.1) 

in a transect across the artificial tissue. 

 

Fig. 1.4 The trajectories of [CCG-2] fluorescence over all 5 fields of view in Fig. 1.3a aligned 

almost perfectly.  The fluorescent intensity was normalized and detrended with a 24 h moving 
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average over time. The plots were created in MATLAB_R2020B 

(https://www.mathworks.com/products/matlab.html). 

 

   The trajectories of CCG-2 recorder for different fields of view aligned with each other, 

showing similar fluorescent trajectories over time (Fig. 1.4), a result recapitulated in three other 

experiments done with different media conditions (Fig. S1.4). (The use of the term trajectory is 

used to invoke the connection of the data on CCG-2 with the dynamic models considered below, 

but the cells themselves may or may not be moving). All of these views on the phase at different 

locations in the tissue suggest a high degree of phase synchronization across the tissue over an 

1800 x 1150 𝜇𝑚 area (supplement Fig. S1.3). A video is available showing how a quorum 

sensing signal in a model will synchronize cells in a tissue completely over time31. As the phase 

evolves, there is a fan shape in the spread of phase curves and averages over single cells1 

(supplement Fig. S1.3).This can be explained by stochastic intracellular variation that will result 

in phase variation, as well as a  quorum sensing signal that synchronizes cells to the phase mean.   

 

Table 1.1．  Measures of synchronization (K) between 5 different fields of view (FOV) along a 

transect through the artificial tissue in Fig. 1.3a  exceed 0.97 using the Kuramoto K63. 

K FOV 1 FOV2 FOV3 FOV4 

FOV1 - - - - 

FOV2 0.9563 - - - 

FOV3 0.9373 0.9531 - - 

FOV4 0.9318 0.9474 0.9513 - 

FOV5 0.9182 0.9262 0.9267 0.9441 

https://www.mathworks.com/products/matlab.html
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 If this synchronization is enabled by a chemical signal diffusing in the media between 

cells in the artificial tissue, then diffusion theory can be used to calculate an upper limit on the 

size of the communication signal (See Materials and Methods) of 13.05nm. This includes the 

possibility of the signal being a protein64.  

 

 A quorum sensing deterministic model predicts circadian oscillations of the artificial 

tissue at the macroscopic limit. 

 As the macroscopic limit is approached, the full stochastic network describing the clock 

in single cells goes to a deterministic limit1, and a deterministic model can be used to describe 

the behavior of the clock under a quorum sensing hypothesis17. Each field of view that contains 

around 1700 cells (Fig. 1.3a) can be thought of as one giant cell. The molecular counts of genes 

and their cognate products are large in number with little stochastic intracellular variation in 

molecular counts of species in Fig. 1.5.  Under the quorum sensing hypothesis, the clock reaction 

network is specified in Fig. 1.5a. This clock reaction network has a substantial body of empirical 

support at both the macroscopic and microscopic levels1,2,17,31,54,65-67. The three clock mechanism 

genes are white-collar-1 (wc-1), white-collar-2 (wc-2), and frequency (frq). The genes wc-1 and 

wc-2 are the positive elements in the clock network, and the frq gene is the negative element6. 

Meanwhile, the gene frq encodes the oscillator68. The concentration of the encoded protein FRQ, 

provides to the cell, the time of day. The FRQ protein is the pendulum on the clock, while the 

transcription factor complex WCC = WC-1/WC-2 is the hand that starts the pendulum FRQ 

moving69. The negative effect by FRQ occurs by its action as a cyclin to recruit a 

kinase/phosphatase pair to deactivate WCC60. This results in a negative feedback loop that 

explains in part how the clock mechanism produces oscillations65. The description of the 
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dynamics of the clock mechanism genes and their encoded products have been identified in 

earlier work65.   

 

 In addition to the clock mechanism genes, there are two clock-controlled genes (ccg) as 

outputs of the clock mechanism. The hypothetical gene ccg encodes the quorum sensing signal 

CCG, and the gene ccg-2 encodes a hydrophobin CCG-2, whose promoter is being used as the 

hands on the clock mechanism3. The gene ccg-2 also happens to be the best characterized clock-

controlled gene70.  The dynamics (e.g.., rate constants) of the clock-controlled genes are given in 

previous work as well67,71. All of the rate constants in these pieces of the model have been 

identified2, including transcription rates denoted with an S, translation rates, with an L, and 

decay reactions for mRNAs and proteins, with a D. The new piece in the model with unknown 

parameters identified here by ensemble methods72 (Fig. 1.5) is the communication between cells 

involving the quorum sensing signal17.   

 

Fig. 1.5 Quorum sensing and contact models for synchronizing clocks in single cells: (a) quorum 

sensing model. This is a modification of Fig. 1.4a in previous work17; (b) contact model. 
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The quorum sensing model rests on a “mean-field” assumption where the quorum sensing 

signal 𝑆𝑒 diffuses instantaneously and uniformly within the big chamber microfluidic device so 

that all cells experience the same concentration of the signal [𝑆𝑒] in the device. This assumption 

is supported by the data (Fig. 1.1d). The signal in a cell 𝑆𝑗 itself is encoded and ultimately 

produced by the ccg gene at a rate 𝐾𝑆1 and decays in the media at a rate D10 and at a rate D9 in a 

cell. This signal diffuses in or out of a giant cell, respectively, at a rate 𝜂 or 𝜂𝑒𝑥𝑡. Depending on 

the concentration inside ([𝑆𝑗]) or outside ([𝑆𝑒]) of the cell and on volumes of the field of view 

and of the cell with 8 𝜇𝑚 diameter73. This diffusion assumption about the signals has been 

successfully used, for example, in modeling the synctitium of nuclei of the Drosophila 

developing blastoderm74. Since the field of view and cell diameter are basically the same, the 

areas of the field of view and of the tissue in the field of view determine the diffusion. In 

previous work a reasonable way for the quorum sensing signal to interact with WCC was 

determined, and the interaction was argued to be a negative effect on WCC production17. With 

these assumptions the diagram in Fig. 1.5a specifies the following system of ordinary differential 

equations (ODEs)75 to describe the clock dynamics at the macroscopic limit: 

 

1. 
𝑑[𝑤𝑐−10]

𝑑𝑡
= 0     

2. 
𝑑[𝑤𝑐−1𝑟0]

𝑑𝑡
= 𝑆1 ∗ [𝑤𝑐 − 10] − 𝐷1 ∗ [𝑤𝑐 − 1𝑟0] − 𝐶1 ∗ [𝑤𝑐 − 1𝑟0] ∗ [𝐹𝑅𝑄]  

3. 
𝑑[𝑤𝑐−1𝑟1]

𝑑𝑡
= 𝐶1 ∗ [𝑤𝑐 − 1𝑟0] ∗ [𝐹𝑅𝑄] − 𝐷7 ∗ [𝑤𝑐 − 1𝑟1]    

4. 
𝑑[𝑊𝐶−1]

𝑑𝑡
= 𝐿1 ∗ [𝑤𝑐 − 1𝑟1] − 𝐷4 ∗ [𝑊𝐶 − 1] − (𝐶2 − 𝐶4 ∗ [𝑆𝑗]) ∗ [𝑊𝐶 − 2] ∗

                    [𝑊𝐶 − 1]   

5. 
𝑑[𝑤𝑐−20]

𝑑𝑡
= 0       
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6. 
𝑑[𝑤𝑐−2𝑟]

𝑑𝑡
= 𝑆2 ∗ [𝑤𝑐 − 20] − 𝐷2 ∗ [𝑤𝑐 − 2𝑟]  

7. 
𝑑[𝑊𝐶−2]

𝑑𝑡
= 𝐿2 ∗ [𝑤𝑐 − 2𝑟] − 𝐷5 ∗ [𝑊𝐶 − 2] − (𝐶2 − 𝐶4 ∗ [𝑆𝑗]) ∗ [𝑊𝐶 − 2] ∗

                    [𝑊𝐶 − 1]  + 𝑃 ∗ [𝑊𝐶𝐶] ∗ [𝐹𝑅𝑄]𝑚 

8. 
𝑑[𝑓𝑟𝑞0]

𝑑𝑡
= −𝐴 ∗ [𝑓𝑟𝑞0] ∗ [𝑊𝐶𝐶]𝑛 + Ā ∗ [𝑓𝑟𝑞1]  

9. 
𝑑[𝑓𝑟𝑞1]

𝑑𝑡
= 𝐴 ∗ [𝑓𝑟𝑞0] ∗ [𝑊𝐶𝐶]𝑛 − Ā ∗ [𝑓𝑟𝑞1]  

10. 
𝑑[𝑓𝑟𝑞𝑟]

𝑑𝑡
= S3 ∗ [𝑓𝑟𝑞0] + S4 ∗ [𝑓𝑟𝑞1] − D3 ∗ [𝑓𝑟𝑞𝑟]  

11. 
𝑑[𝐹𝑅𝑄]

𝑑𝑡
= 𝐿3 ∗ [𝑓𝑟𝑞𝑟] − 𝐷6 ∗ [𝐹𝑅𝑄]       

12. 
𝑑[𝑊𝐶𝐶]

𝑑𝑡
= −𝑛 ∗ 𝐴 ∗ [𝑓𝑟𝑞0] ∗ [𝑊𝐶𝐶]𝑛 + 𝑛 ∗ 𝐴𝑏𝑎𝑟 ∗ [𝑓𝑟𝑞1] − 𝐷8 ∗ [𝑊𝐶𝐶] 

                         +(𝐶2 − 𝐶4 ∗ [𝑆𝑗]) ∗ [𝑊𝐶 − 2] ∗ [𝑊𝐶 − 1] − 𝑃 ∗ [𝑊𝐶𝐶] ∗ [𝐹𝑅𝑄]𝑚 

13. 
𝑑[𝑐𝑐𝑔0]

𝑑𝑡
= −𝐴𝑐 ∗ [𝑐𝑐𝑔0] ∗ [𝑊𝐶𝐶]𝑛 + 𝐵𝑐 ∗ [𝑐𝑐𝑔1]  

14. 
𝑑[𝑐𝑐𝑔1]

𝑑𝑡
= 𝐴𝑐 ∗ [𝑐𝑐𝑔0] ∗ [𝑊𝐶𝐶]𝑛 − 𝐵𝑐 ∗ [𝑐𝑐𝑔1]  

15. 
𝑑[𝑐𝑐𝑔𝑟]

𝑑𝑡
= 𝑆𝑐 ∗ [𝑐𝑐𝑔1] − 𝐷𝑐𝑟 ∗ [𝑐𝑐𝑔𝑟]  

16. 
𝑑[𝐶𝐶𝐺]

𝑑𝑡
= 𝐿𝑐 ∗ [𝑐𝑐𝑔𝑟] − 𝐷𝑐𝑝 ∗ [𝐶𝐶𝐺]  

17. 
𝑑[𝑐𝑐𝑔−20]

𝑑𝑡
= −𝐴𝑐2 ∗ [𝑐𝑐𝑔 − 20] ∗ [𝑊𝐶𝐶]𝑛 + 𝐵𝑐2 ∗ [𝑐𝑐𝑔 − 21]  

18. 
𝑑[𝑐𝑐𝑔−21]

𝑑𝑡
= 𝐴𝑐2 ∗ [𝑐𝑐𝑔 − 20] ∗ [𝑊𝐶𝐶]𝑛 − 𝐵𝑐2 ∗ [𝑐𝑐𝑔 − 21]  

19. 
𝑑[𝑐𝑐𝑔−2𝑟]

𝑑𝑡
= 𝑆𝑐2 ∗ [𝑐𝑐𝑔 − 21] − 𝐷𝑐𝑟2 ∗ [𝑐𝑐𝑔 − 2𝑟]  

20. 
𝑑[𝐶𝐶𝐺−2]

𝑑𝑡
= 𝐿𝑐2 ∗ [𝑐𝑐𝑔 − 2𝑟] − 𝐷𝑐𝑝2 ∗ [𝐶𝐶𝐺 − 2]  

21. 
𝑑[𝑆𝑗]

𝑑𝑡
= −𝐷9 ∗ [𝑆𝑗] + 𝐾𝑠1 ∗ [𝐶𝐶𝐺] + 𝜂 ∗ (−[𝑆𝑗] + 〖[𝑆〗𝑒])  



 

22 

22. 
𝑑[𝑆𝑒]

𝑑𝑡
= −𝐷10 ∗ [𝑆𝑒] + 𝜂𝑒𝑥𝑡 ∗ ∑([𝑆𝑗] − [𝑆𝑒])  

For simplicity the subscript for a field of view j on all molecular species in (1)-(20) has been 

suppressed. The Hill cooperativity coefficients n and m were taken as 4 in fitting models below 

based on previous work65. This deterministic model falls in the class of transcriptional repression 

models76. 

 

 The big chamber device is not sufficient to test this quorum sensing model due to the loss 

of phase information between cells in each field of view within the big chamber device (Fig. 

1.1a-d). Hence, a new microfluidic device called a “microwell device” was constructed (see 

Materials and Methods) (Fig. 1.1e-f). There are up to 15,876 wells within this device. Each well 

is 10 𝜇m deep and 10 µm in diameter to trap one conidial cell of average size. Individual cells 

are easily tracked over 10 days, and their phase information about their individual clocks can be 

recovered62. 

 

Following the example of the classic work characterizing glycolytic oscillations in 

Saccharomyces cerevisiae with a mixing experiment77, two populations of cells that were 12 

hours out of phase were then mixed together31, and then their synchronization was observed over 

time (Fig. 1.6d). The 240 cells were clustered by their single cell trajectories (from 0 to 30 h) 

into two separate clusters known as CCG1 and CCG2. An average of the cluster is taken to create 

an equivalent of a field of view, but the phase information of each single cell trajectory is 

preserved. The averages of the single cell trajectories in cluster 1 (CCG1) and cluster 2(CCG2) 

for the CCG-2 recorder construct3 are in good agreement with their model ensemble averages for 

the quorum sensing model (Fig. 1.6a-b). An examination of the observed trajectories or the 
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expected trajectories of the  CCG-2 recorder3 also reveals that the clusters of trajectories become 

synchronized in the first 80 hours (Fig. 1.6c-d). The use of the microwell device has then refined 

the estimate of the macroscopic limit from ~150,000 cells to 15,876 cells per device area, at 

which phase synchronization of cellular oscillators is achieved. 

 

   As a control, these two cell populations used in the mixing experiment (Fig. 1.6) were 

loaded separately into 2 microwell devices with one population receiving an additional 12 h of 

light before shifting to the dark and observed over ten days. These two isolated populations were 

then mixed in computer and clustered as in the real experiment (see Materials and Methods). The 

artificial mixture was then clustered, and over 80% of the cells in the mixture on the computer 

were correctly assigned to their true subpopulation membership.   

 

 

Fig. 1.6 Data from CCG-2 trajectories fitted to an ensemble of deterministic model. (a-b) The 

trajectories of the fluorescent recorder are observed to synchronize in the first 80 hours, and in 



 

24 

the best model in the fitted model ensemble (supplement Table S1.1) under quorum sensing 

synchronization was observed as well. Single cell trajectories were clustered into two groupings. 

Then the 240 single cell trajectories were averaged to create a “field of view” similar to the big 

chamber device. These two clusters of trajectories were then fitted by the ensemble method to 

the quorum sensing model in Fig. 1.5a65. (c-d) Plots of the simulation data and experimental data 

shows trajectories that are synchronized. The plots were created in MATLAB_R2020B 

(https://www.mathworks.com/products/matlab.html). 

 

 To test the quorum sensing hypothesis at the macroscopic limit an ensemble of 

deterministic models specified by Eqns (1-22) was fitted to two CCG-2 trajectories for two 

clusters of cells in the microwell device (Fig. 1.6) (See Materials and Methods with all tests 

reported below being omnibus except as noted). All parameters in the model were estimated 

(Table 1.2). The purpose of the ensemble method is to identify models consistent with the data in 

Fig. 1.6 when the number of measurements is limited, but the number of parameters (Fig. 1.5) is 

large. Ensemble methods were originally developed by Boltzmann78,79 and were first introduced 

into systems biology in 200272,80. While an individual model in the fitted ensemble may be a 

poor predictor of the system, the average over all 40,000 models in the ensemble is quite a good 

predictor of system behavior (see Materials and Methods). Not only does it allow prediction of 

how the system behaves (Fig. 1.6a-b), but it also tells us what we know and don’t know about 

the clock network, for example. For example, in Table 1.2 the estimated lifetime of the FRQ 

protein (1/D6 in Table 1.2) is about 1.7 h. The estimated value is a little shorter than the value at 

the macroscopic limit of 4-7 h59. The estimated lifetime of the stabilized wc-1r1 is a critical 

parameter in maintaining stable circadian rhythms65. Here its estimated lifetime is 1/D7 = 24 h 

https://www.mathworks.com/products/matlab.html
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(Table 1.2), while the measured value of 128 h was also long65. In general there was concordance 

between estimates of the rates (Fig. 1.5a) at the single cell level and macro scales1. In addition to 

the estimated parameters informing how the oscillations is sustained, the model identification 

through the standard errors (Table 1.2) tells us which rates are well specified by the data and 

which are not well specified. Both decay rates, D6 and D7, are well specified; however, there are 

other rates below that are not as well constrained by the data. The focus below is on the new 

parameters related to communication between cellular oscillators. 

 

 As a control on this Markov Chain Monte Carlo (MCMC) experiment, the chi-squared 

statistic 𝜒2 was plotted as a function of sweeps (Fig. 1.7a), i.e., a visit on average of once to each 

of the 71 parameters (i.e., 28 rate constants and 43 initial conditions of molecular species) in the 

model (Fig. 1.5a). The MCMC experiment has equilibrated by sweep 2431 (Fig. 1.7a). The 

equilibration run yielded an ensemble of models with a good fit with 𝜒2 = 2016  to n = 442 time 

points or 
𝜒2

𝑛
 = 4.56. The only departure of the model ensemble from data appears in the 

amplitude predicted for peak 3. So, the equilibration run was successful in converging to a well-

fitting ensemble (Fig. 1.7a) and implies that the deterministic models collected in the 

accumulation run will fit the field of view data very well. As a second control, the 

communication parameters were plotted as a function of sweep (Fig. 1.7b) in the accumulation 

phase of MCMC. As expected, there was no systematic trend in the diffusion coefficient 𝜂 with 

sweep.  

 

 The MCMC experiment is summarized in Fig. 1.7c. The model average over the 

ensemble was used to predict successfully the two clusters of CCG-2 trajectories over time in 
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each field of view, CCG1 and CCG2. The fitted ensemble predicted the cluster 1 data quite well 

at the macroscopic limit. Some of the behavior of the ensemble is shown for the hypothetical 

signaling molecule concentrations inside and outside a cell. The signal concentrations [𝑆𝑗]  in 

each giant cell j (S1 and S2) of the hypothetical quorum sensing signal is clearly oscillating and 

driving the oscillations within each giant cell in a field of view (Fig. 1.7d). The media 

concentration of [𝑆𝑒] also appears to be oscillating. Our resulting model suggests that the signal 

concentrations in each cell appear to synchronize with the signal concentration in the media. 

 

 

Fig. 1.7 The model ensemble fitted to fluorescence of MFNC93 cells with a ccg-2 promoter in 

the microwell device averaged over two clusters of single cell trajectories initially with different 

phase (Fig. 1.3a) supported the quorum sensing hypothesis in a MCMC experiment. (a) As a 

control on the MCMC experiment the chi-squared statistic 𝜒2 was plotted as a function of 

sweeps, i.e., a visit on average to all 71 parameters in the model. The large chi-squared statistics 

for sweeps 1-29 were removed to allow the rest of the chi-squared plot to be resolved. (b) As a 

second control two of the communication parameters were plotted as a function of sweeps to 
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check that there is no trend with sweep in the MCMC experiment. (c) The MCMC experiment 

demonstrated that the measured fluorescence on one field of view fitted the quorum sensing 

model. (d) The quorum sensing signals within the two giant cells did oscillate, and they appeared 

to converge. The plots were created in MATLAB_R2020B 

(https://www.mathworks.com/products/matlab.html). 

 

 Summary statistics across the fitted ensemble for the 28 rate constants (their means and 

standard errors) are given (Table 1.2), and the best fitting model with initial conditions is found 

in supplement Table S1.1. There are four key parameters in the clock mechanism65, the rate of 

activation of the oscillator gene FRQ by WCC (A), the rate of deactivation of the oscillator gene 

FRQ by WCC(Ā), the rate of deactivation of FRQ (P), and the rate of decay (D7) of the 

stabilized wc-1 mRNA (wc-1r1). All of these values are in good agreement with their inference 

from previous data sets on a macroscopic and microscopic scale (supplement Table S1.1). 

 

 The new information is the inference about the communication parameters, KS1, C4, D9, 

𝜂,  𝜂𝑒𝑥𝑡, and D10. The product of the rate of production of signal (KS1) and the effect of the 

signal on WCC (C4) are constant. So, only one of these two parameters can vary independently. 

There is limited information about the diffusion rates as seen by plotting the chi-squared surface 

as a function of the diffusion coefficients, 𝜂 and 𝜂𝑒𝑥𝑡, with the rest of the parameters at their best 

values (Supplement Fig. S1.5).  There is a lower bound on 𝜂 𝑜f around 20 and little information 

about  𝜂𝑒𝑥𝑡. The chi-squared surface supports smaller values of  𝜂𝑒𝑥𝑡 and larger values of 𝜂 for 

the diffusion rates. The rate of production of the quorum sensing signal (KS1) is large as 

expected17. The decay rate of the signal within the cell (D9) is predicted to be quite large (D9 = 

https://www.mathworks.com/products/matlab.html
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10.484 h-1) with a lifetime of 0.1 h, and the decay rate outside of the cell (D10) is predicted to be 

quite large (D10 = 2.375 h-1) with a lifetime of 0.42 h. 

 

Table 1.2. The moments of the rate constants across the ensemble for the quorum sensing 

hypothesis derived from a microwell experiment 

Rate Constant 

Ensemble mean for each rate 

under quorum sensing for 

the microwell D/D 

experiment 

Ensemble Standard error (SE) 

of rate across ensemble 

computed under quorum sensing 

for the microwell D/D 

experiment 

A 6.946009E-03 3.313135E-06 

Ā 9.969590E-02 8.297570E-05 

S1 3.320978E+01 1.923567E-02 

S3 1.041769E-03 2.155980E-04 

S4 1.951816E+01 8.880192E-03 

D1 1.164574E+00 9.405917E-04 

D3 1.870605E+00 6.546756E-04 

C1 1.665926E-03 1.348076E-06 

L1 4.165664E+01 2.685045E-02 

L3 5.276481E+00 3.137782E-03 

D4 5.395039E-01 2.537757E-04 

D6 5.761848E-01 2.585495E-04 

D7 4.217466E-02 3.477031E-05 
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D8 4.741010E-05 8.957513E-06 

C2 3.580439E+00 2.470929E-03 

P 9.767857E+01 5.976836E-02 

Ac 1.064269E+01 5.098955E-02 

Bc 9.094971E-01 2.667601E-03 

Sc 1.490714E-03 2.502344E-06 

Lc 1.145927E-08 3.711730E-11 

Dcr 5.943974E+01 1.366934E-01 

Dcp 4.044340E-01 6.436382E-04 

KS1 2.408651E+09 2.156671E+08 

C4 1.234348E+00 5.422941E-02 

η 2.038943E+00 7.304766E-01 

ηext 2.466155E+01 2.222896E+00 

D9 1.484148E+01 2.340141E-01 

D10 2.374897E+00 7.021016E-01 
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Fig. 1.8 Periodogram or power spectrum of clock mutants and the noise model control. 

Validating the circadian signal obtained in single cells in a microwell device with clock mutants 

of different period. The periodograms are reported for 3 mutants in the microwell device. All 

detrending was done with a 24 h sliding window except for frq7 with its 26h observed period. A 

30-hour sliding window was used for frq7. An artificial dataset for a sinusoid of 30 period was 

also created to check that the moving averaging detrending behaved appropriately to generate the 

simulated period of 30 h. The plots were created in MATLAB_R2020B 

(https://www.mathworks.com/products/matlab.html). 

  

A variety of clock mutants exist in the biological clock of N. crassa. Some of the clock 

mutants (e.g., period-4 (prd-4, 18 h; frq-1, 16 h)81 have shorter periods than MFNC9 (21 h)17; 

others have longer periods (e.g., frq-7, 29 h)81. These mutants provide an independent validation 

of the circadian signals seen in single cells using fluorescent strains of these mutants. Here we 

measured the period of these clock mutants in single cells over 10 days (Fig. 1.8). The resulting 

https://www.mathworks.com/products/matlab.html
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periods (Fig. 1.8) agree with mutants observed in race tubes81. This is another example of 

circadian behavior in microwell devices being consistent with measurements on the macro scale. 

 

A contact model is also used to predict the circadian oscillations of an artificial 

tissue at the macroscopic limit. 

 An alternative to the quorum sensing hypothesis is cell-to-cell communication or a cell 

contact hypothesis (Fig. 1.5b). This mechanism operates in cell aggregation of Myxococcus 

xanthus44,82. Under this hypothesis only cells in physical contact (as in the tissue in Fig. 1.1c) can 

share their communication signal. Meanwhile, the cell contact model is much more 

straightforward because there is no signal and no decay of signal present in the medium (Fig. 

1.5b vs. 5a). The diffusion coefficients, 𝜂 and 𝜂𝑒𝑥𝑡, are replaced with one diffusion coefficient D 

of the signal between cells. So, there are 4 more parameters in the quorum sensing model (Fig. 

1.5a), [𝑆𝑒] at time 0, D10, 𝜂, and 𝜂𝑒𝑥𝑡, than are in the contact model and one added diffusion 

coefficient (D) between cells in the contact model; therefore, the contact model has 3 degrees of 

freedom less than the quorum sensing model. The model is captured in Fig. 1.5b and specifies 

the same system of ODEs in equations (1)-(20) but with equations (21-22) replaced by (23): 

 

23. 
𝑑[𝑆𝑗]

𝑑𝑡
= −𝐷9 ∗ [𝑆𝑗] + 𝐾𝑠1 ∗ [𝐶𝐶𝐺] + 𝜂 ∗ (−2[𝑆𝑗] + [𝑆𝑗+1] + [𝑆𝑗−1])], 𝑗 ≠ 1, 𝑛 

 

 To test the contact hypothesis at the macroscopic limit an ensemble of deterministic 

models specified by Eqs. (1-20, 23) was fitted to two CCG-2 trajectories for two fields of view in 

the microwell device (See Materials and Methods)65. As a control on this MCMC experiment the 

chi-squared statistic 𝜒2 was plotted as a function of sweep (Fig. 1.9a). The equilibration run 
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yielded an ensemble of models with  𝜒2 = 4372 or 
𝜒2

𝑛
 = 9.89, after 3,187 sweeps compared to 

previous results65. So, the equilibration run was not successful in converging to a well-fitting 

ensemble (Fig. 1.9a) and implies that models collected in the accumulation run do not explain 

the field of view data as well as the quorum sensing hypothesis. The MCMC fitting experiment 

is summarized in Fig. 1.9c. The model average over the ensemble was used to predict 

successfully the measured CCG2 trajectory over the first cycle (Fig. 1.9c), but not CCG1. Some 

of the behavior of the ensemble is shown for the hypothetical signaling molecule concentrations 

inside two giant cells. The hypothetical quorum sensing signal concentrations within a cell are 

clearly not oscillating in a sustained way and not driving the oscillations within each giant cell 

(Fig. 1.9d). As a consequence, the model had problems in fitting the first field of view as the 

communication between fields of view was not rapid enough for the convergence of the 

fluorescent cycles (CCG1 and CCG2). As a second control, the communication parameters were 

plotted as a function of sweep (Fig. 1.9b) in the accumulation phase of MCMC. The parameters 

displayed little trend, indicating further equilibration was not needed.   
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Fig. 1.9 The model ensemble fitted to fluorescence of MFNC93 cells with a ccg-2 promoter in 

the microwell device integrated over two fields of view (Fig. 1.3a) did not support the contact 

model in a MCMC experiment. (a) As a control on the MCMC experiment the chi-squared 

statistic 𝜒2 was plotted as a function of sweep, i.e., a visit on average to all 67 parameters in the 

model. The large chi-squared statistics for sweeps 1-50 were removed to allow the rest of the 

chi-squared plot to be resolved. (b) As a second control two of the communication parameters 

were plotted as a function of sweep to check for the presence of a trend in the MCMC 

experiment. (c) The MCMC experiment demonstrated that the measured fluorescence on one 

field of view fitted the contact model for one oscillation. (d) The quorum sensing signals (S1 and 

S2) within the two giant cells did oscillate in a damped way. The plots were created in 

MATLAB_R2020B (https://www.mathworks.com/products/matlab.html). 
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 Direct Test of the Contact Model versus quorum sensing hypothesis. 

 The microwell microfluidic device provides the opportunity to test the quorum sensing 

hypothesis against cell-to-cell communication or contact hypothesis. Based on the single cell 

data alone, the final chi-squared goodness of fit of the two models were significantly different 

(𝜒2(contact) – 𝜒2(quorum)) = 4373-2019 =2354, df = 3, P<0.0001). Relevant to distinguishing 

quorum sensing from a contact hypothesis, some of the microwells contain 2-3 cells, and other 

wells contain only 1 cell. If single cells are truly isolated and require physical contact for 

synchronization as in the big chamber device, the prediction is that the isolated single cells 

should not synchronize under the contact model. A second prediction is that under both quorum 

sensing and contact models there should be less variation and more synchronization in the 

fluorescent cells with 2 or more neighbors in a well. The results of this test are shown in Fig. 

1.10. 
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Fig. 1.10 The standard error in fluorescence of single cells is significantly higher than that of 

multiple cells in the microwell device. There were 178 single cells in microwells, and 23 cells 

that were not isolated from each other. 1000 bootstrap samples were taken at each time point and 

used to calculate a variance (and hence standard error) at each time point. At each time point a 

root mean square error for single cells (X) and multiple cells (Y) was calculated with n = (178 + 

23):  √∑ 〖(
1

𝑛
) (∑ 𝑋2 + ∑ 𝑌2〗) and used to normalize the standard errors for single and multiple 

cells.  Plots was created in MATLAB_R2020B 

(https://www.mathworks.com/products/matlab.html). 

 

 The F-ratio comparing the variances across time was highly significant (F479,479 = 

14.5144, P < 0.00001). The normalized standard error of single cells uniformly exceeded that of 

multiple cells in a well. This is consistent with there being less synchronization in single cells 

than between wells with multiple cells. The synchronization is also computed for the two cell 

populations to answer the question whether there is significant synchronization in single cells.  

  

 As a negative control the Kuramoto order parameter K was calculated on 1,644 conidial 

cells isolated in droplets in a flow-focusing microfluidic device17. The resulting Kuramoto K in 

1-cell droplets in the flow-focusing device was K = 0.0322 ± 0.000762. In contrast, the 

synchronization measure K in 1-cell microwells and multi-cell microwells were 0.7018 ± 0.0066 

(n = 178 in Kuramoto K) and 0.7220 ± 0.0055 (n = 23 in Kuramoto K) respectively, which are 

significantly greater than the negative control. The conclusion is that single cells in microwells 

are showing synchronization without physical contact with other cells. This observation provides 

support for quorum sensing.  The two Kuramoto K values for 1-cell/microwell and multiple 

https://www.mathworks.com/products/matlab.html
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cells/microwell are also significantly different ((z ≈ t1998 = 45.7035, P < 0.00001). It is possible 

that the slightly larger Kuramoto order parameter could be due to both a contact hypothesis and 

quorum sensing acting in synchrony. Hence, the contact hypothesis cannot be completely 

eliminated.  

 

 

 

Fig. 1.11 Microwell-based microfluidic chip with varying cell density gradient. (a) Fluorescence 

images of four chambers containing varying microwells of 15876(S1), 7569(S2), 3025(S3), 

2116(S4) respectively. The number of cells that was able to be tracked with Cell Profiler were 

5198(S1),2452(S2),999(S3) and 829(S4) cells. Scale bar: 100µm. (b) Robust Regression of 

Kuramoto K on density of cells for each microwell chamber using an M-estimator83 from 5 
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separate and independent microwell experiments.  The predicted robust regression line is K = 

0.70 + (3.96 ± 3.40) (10-6) x density (t17 = 1.2814, P = 0.1086).  The test was one-sided because 

the expectation is that K would increase with density.  Almost the same regression line was 

obtained with ordinary straight line regression. At least 5,000 cells were tracked in each 

microwell experiment. In all 5 replicates by themselves each experiment produced a positive 

slope between Kuramoto K and density. A sign test for a positive slope in the 5 replicates has a P 

= (½)5 = 0.03. Bootstrap resampling of 100 single cells was carried out to obtain the standard 

deviation (SE). The SE for each microwell chamber are 0.0015(S1), 0.0030(S2), 0.0039(S3), 

0.0058(S4). (c) Plot of the experimental results of phase vs. time (5 days) with the data used in 

Fig. 1.6. (d) Simulation results of the ensemble method used to obtain the Hilbert phase 

trajectories in Fig. 1.6. It displays the synchronization of two different group of cells. Plots was 

created in MATLAB_R2020B (https://www.mathworks.com/products/matlab.html). 

 

 Cell density and signal concentration affect cellular clock phase synchronization. 

 With evidence for quorum sensing one prediction of the quorum sensing hypothesis was 

tested. A hallmark of quorum sensing is a density dependent effect on the behavior. For example, 

induction of Conidial Anastomosis Tubes or CATs in N. crassa appears to be a quorum sensing 

behavior, which is density dependent84. In N. crassa one hypothesis is that cell density should 

have an effect on communication between cellular clocks and hence their synchronization85.   

 

The microwell device in Fig. 1.1e-f had a cell density of 15,876 wells per area or volume 

of the microwell chamber, which is kept constant. The second microwell device with five 

chambers was constructed on the same slide with four densities of 15,876, 7569, 3025 and 2116 

https://www.mathworks.com/products/matlab.html


 

38 

wells in separate chambers; the remaining chamber was reserved for mCherry beads as a control. 

This would allow us to measure simultaneously whether the collective behavior, such as 

synchronization of cellular oscillators displays quorum sensing, i.e., a cell density dependence of 

quorum as evidenced by cellular clock synchronization (Fig. 1.11). This experiment was 

replicated 5 times successfully to yield the relation in Fig. 1.11b. As the density increases, so 

does the synchronization of cellular clocks as measured by the Kuramoto K (Fig. 1.11b). In each 

of these 5 replicate experiments yielding the relation in Fig. 1.11b, the slope was always positive. 

By a nonparametric sign test on the 5 slopes86, this implies the P-value is (
1

2
)

5

= 0.0325, which 

is significant at the 0.05 level. These measurements begin to chart out the phase transition to 

synchronization. The conclusion is that collective behavior of synchronization depicts quorum 

sensing behavior. 

 

It is natural to ask whether or not other properties of cellular clocks have a relation to 

density as found in the cell density-dependent glycolytic oscillations in S. cerevisiae85. If cellular 

oscillators were in phase, they might be expected to reinforce the circadian signal. In fact, there 

also appears to be a significant relation between the average amplitude of cellular clocks (as 

measured by the maximum in the periodogram or power spectrum) and their density in the 

microwell device as they synchronize (Fig. S1.6a), but not with period (Fig. S1.6b) in contrast to 

glycolytic oscillations85. 

 

While the quorum sensing model has a substantial body of empirical support at both the 

macroscopic and microscopic levels1,2,17,31,54,65-67, it is sometimes useful to consider a simpler 

heuristic model at the center of both collective behavior37 and statistical physics46,87, namely the 



 

39 

Kuramoto model of phase synchronization, to highlight how phase synchronization is taking 

place. The model shares some features with our clock model of quorum sensing, such as a mean- 

field assumption about the quorum sensing signal. This Kuramoto model also focuses entirely on 

phase synchronization being described here and has been used previously to elucidate the clock 

model17. 

 

In this model there are n oscillators with constant intrinsic frequencies 𝜔𝑖 and measured 

variable Hilbert phases 𝜙𝑖. Kuramoto connected these in a system of ODEs to which stochastic 

intracellular noise has been added: 

 

𝑑𝜙𝑖

𝑑𝑡
=  𝜔𝑖 + 𝐾 ∑ sin( 𝜙𝑗 − 𝜙𝑖

𝑛

𝑗=1

) + 𝜖𝑖, 𝑖 = 1, … , 𝑛, 

 

where K is the unknown coupling constant between all of the n oscillators and 𝜖𝑖 is the stochastic 

intracellular white noise in the cellular clock with mean 0 and variance 𝜎2. A stochastic Runge-

Kutta Method(SDEs)88 and Markov chain Monte Carlo (MCMC) were applied to identify the 

Kuramoto model. The ensemble method was used to fit the phase trajectories of the stochastic 

Kuramoto model to the measured Hilbert phase trajectories of each of the oscillators in Fig. 1.7 

to examine the phase synchronization. In carrying out the fitting the initial Hilbert phase of each 

of the n oscillators at time 0 (𝜙_𝑖 (𝑡 = 0)) and the coupling constant K were the parameters to be 

identified.  The initial frequencies 𝜔𝑖 were sampled from the measured frequencies from a 

periodogram of isolated cells31. The fit was excellent with a chi-squared per data point of 𝜒2/n = 

0.69.  The resulting coupling constant of K = 10.0094 +/- 0.0018 was substantial, which provides 
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another line of evidence of the phase synchronization of the oscillators through a quorum sensing 

signal in Fig. 1.11d. Furthermore, the spread over time in Hilbert phases of the oscillators 

graphically portrays the tug of war between the quorum sensing signal to synchronize the 

oscillators and the noise 𝜖𝑖 decoupling them. 

  

Discussion 

 In previous work we have shown that by varying the microfluidic device and hence the 

cellular environment that there is the potential to test each of three hypotheses about the cause of 

the transition to phase synchronization of cellular oscillators1,54. One, there is a possibility that 

stochastic intracellular noise by itself can play a positive role in phase synchronization of cellular 

oscillators54. Experimental evidence for this neutral model was recently provided with a flow-

focusing microfluidic device that isolated cells in droplets in previous work1,54. A second 

possibility is that a chemical signal could play a role in phase synchronization17 of cellular 

clocks31. Prior evidence for this hypothesis has been provided as well31,63. A strong inference 

framework was entertained for this second signaling hypothesis29, a signal diffusing in the media 

to cause synchronization17 versus the other alternative hypothesis involving cell-to-cell contact 

as a means to synchronization44. The final possibility is that cell cycle coupling with circadian 

rhythms could provide an explanation89,90 for phase synchronization of cellular oscillators. This 

hypothesis has yet to be tested in N. crassa. By varying the microfluidic device design each of 

these hypotheses can be tested1 and used to extract information about a putative quorum sensing 

signal. 
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 A big chamber microfluidic device was designed here to create an artificial tissue that 

allowed observation of single cell oscillators in the macroscopic limit of 150,000 cells (Fig. 

1.1b).  This cell number was sufficient to reveal the emergence of circadian rhythms (Fig. 1.1d). 

Over the dimensions of the device a high degree of phase synchronization was observed (Fig. 

1.3, Table 1.1).  In fact, the dimensions of the device allowed the estimation of a bound on the 

putative quorum sensing signal radius of 13.05 nm. The synchronization recapitulated the 

behavior of Nakashima liquid cultures at the macroscopic limit22. It is possible that by increasing 

the size of the big chamber device to limit diffusion, phase variation in spatio-tempral patterns 

across the device could be seen91. In synthetic quorum sensing systems, spatio-temporal 

dynamics, such as waves, were observed over on a 400 𝜇m scale, but there are other factors 

including the lifetime of the hypothesized quorum sensing signal S in the media (1/D10 = 0.42 h) 

in N. crassa that may have led to different behavior in the big chamber device over 1800 𝜇m.  

 

 In order to refine the specification of the cell density at which a phase transition to 

synchronization takes place experimentally and to test whether collective behavior of 

synchronization was a quorum sensing behavior, a second microfluidic device known as a 

microwell device was designed to trap individual cells at varying densities. The quorum sensing 

model against a contact model of communication (Fig. 1.1e-f) was also tested. This device 

mimics a microtiter plate at a microscale for trapping single cells. Initially a total of up to 15,876 

cells in wells in the microwell device could be individually tracked and measured for their 

fluorescence over ten days (Fig. 1.6). Averaging over the single cell trajectories permitted the 

examination of phase synchronization in the macroscopic limit while preserving the phase 

information of individual trajectories (Fig. 1.7 and 9). Both the quorum sensing and contact 
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models were fitted to experimental data. The results favored the quorum sensing model as cells 

were able to synchronize at a faster pace. The single cell measurements in the microwell device 

were also validated by the use of mutants with varying period microscopically, and the 

measurements in a microwell device were concordant with those at the macroscopic scale81 (Fig. 

1.8). Yet even the quorum sensing model is a simplification. Those systems displaying quorum 

often utilize not one signal, but multiple signals92. N. crassa quorum is likely to be more 

complex than hypothesized here. Some improvements in measuring phase synchronization in 

these new microfluidic devices should be possible with better single cell tracking methods93. 

While the microwell device is an elegant design that allows simultaneous testing of phase 

synchronization, density-dependence of quorum sensing, and the contact hypothesis, it has 

limitations. It is possible to envision other more specialized designs that more strongly test the 

contact hypothesis, and these designs should be pursued. Implementing the microwell design 

required 11 trials with 5 successes to overcome problems with number of cells tracked less than 

5,000 (3 experiments failed to meet this criterion), cells growing as a failure (2), or an image 

stitching problem (1). 

 

Several results support the quorum sensing hypothesis: (Fig. 1.7) fitting of the quorum 

sensing mode; (Fig. 1.10) greater variance in single cells vs. multiple cells in microwells; (Fig. 

1.11) density effect on phase synchronization; (Fig. S1.6) density effect on amplitude. There was 

also one additional piece of data that was supportive of the quorum sensing hypothesis. Wells 

with single isolated cells in the microwell device still displayed phase synchronization (Fig. 

1.10). This observation can be explained by the theory of the existence of a diffusible signal, but 

not solely with a contact model hypothesis. This result, however, does not rule out the possibility 
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that both quorum sensing and contact could still be playing a role in chemical communication 

between cellular clocks. 

 

To test directly whether synchronization of cellular clocks was a quorum sensing 

behavior as in CAT induction in N. crassa84, the density of cells was varied in one microwell 

device with multiple chambers at different cell densities (Fig. 1.11a).  Synchronization was 

density-dependent as measured by the Kuramoto K order parameter and appeared to represent a 

second order continuous phase transition.  Synchronization appeared to be occurring over the 

range of densities from 2166 to 15,876 wells with cellular clocks (Fig. 1.11a). That raises the 

question of how density-dependence enters into the quorum sensing model. A specific 

hypothesis of how this arises will be addressed with new approaches in metabolomics of living 

systems in real time94. 

 

While conidial cells are relatively easy to manipulate, a remaining challenge is the study 

and manipulation of the filamentous stage in the fungal syncytium with microfluidic devices95-97. 

It is very likely that by considering other life stages in the fungal syncytium, other mechanisms 

of cellular communication will be uncovered and found to be involved in the phase transition to 

synchronization of cellular oscillators98.  

 

Conclusion 

 A “big chamber” microfluidic experiment was fabricated to demonstrate that 

communication existed between cells in an artificial tissue of ~150,000 cells. At this 

macroscopic limit there was a high degree of phase synchronization between cells in the artificial 
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tissue. The dimensions of the “big chamber device” provided an upper bound on of 13.05 nm 

radius for the putative quorum sensing signal, which includes the possibility that the signal is a 

protein. In a second microfluidic experiment utilizing a microwell device housing ~15,876 wells, 

the phase of individual cells could be captured. This enabled a refinement of phase 

synchronization occurring with no more than 15,876 wells per chamber. A microwell with 

varying microwell arrays assisted in confirming that cells were able to synchronize with lower 

well density of 2116 per chamber in a microwell device. With the resulting single cell 

fluorescence trajectories of single cells in the microwell device, a strong inference framework29 

was established to test a quorum sensing hypothesis versus a contact hypothesis for 

communication using ensemble methods. The ability to isolate single cells in individual wells 

showing phase synchronization provided strong evidence for the quorum sensing hypothesis and 

some information about the communication parameters that quantitate quorum sensing. Using 

the microwell devices, the collective behavior of synchronization was shown to be density-

dependent and hence a quorum sensing behavior. 

 

Materials and Methods 

Device design and fabrication. 

Microfluidic devices were made of polydimethylsiloxane (PDMS) using standard soft 

lithography techniques. The microfluidic “big chamber” device consisted of one inlet and one 

outlet for sample loading, an empty chamber with 1150 µm in width, 1800 µm in length and 10 

µm in height. The microwell microfluidic device was composed of a microwell array that are 10 

µm in diameter and 10µm deep. microwell array contains an interlaced 126 × 126 grid of wells, 

resulting in a total of 15,876 wells. An additional microfluidic device that contained five 



 

45 

chambers with varying microwells was fabricated and placed on one glass slide. The microwell 

array was 126×126 (S1), 87×87 (S2), 67×67, 55×55(S3), 46×46(S4) respectively.  

 

Strains  

A bd,ccg-2P:mCherry,A99  known as MFNC9 as well as bd,ccg-2P:mCherry,prd-4 and 

bd,ccg-2P:mCherry,frq7 , and  bd,ccg-2P:mCherry,A,frq1 were utilized for most fluorescent 

measurements.  A bd,ccg-2P:mCherry,A,frq7 and A bd,ccg-2P:mCherry,A,frq1  were created by 

the crosses MFNC9a x frq1,bd (FGSC 2670) and  MFNC9a x frq7,bd (FGSC 4878), and the prd-

4 fluorescent mutant was described previously17.  

 

Microfluidic experimental setup 

MFNC9 cells and related strains with the mCherry recorder were first placed under an 

LED light source (color temperature 6500K) for 26 h in three different media: 1) media 5 

described previously17; 2)  0.1% glucose + Vogel’s media100; 3) 0.001M quinic acid + Vogel’s 

media.  Cells were loaded into the big chamber polydimethylsiloxane (PDMS) microfluidic 

device (Fig. 1.1) using a syringe pump at a flow rate of around 5 µL min-1. For the microwell 

device, 50µL of 70% ethanol was pipetted into the inlet, followed by priming with 50µL of 1× 

PBS supplemented with 0.1%(w/v) bovine serum albumin (BSA). This was followed by 

pipetting 30µL of cell suspension. Cell concentration of 6 * 10^7 cells/ml were used. Extra cells 

that were not captured in microwells were washed away with extra media. mCherry beads 

(Takara Bio) are loaded into one of the microwell chambers as a control for all experiments. 
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Imaging and Cell Tracking 

A CCD camera (AxioCam HRm, Carl Zeiss Microscopy, LLC, Thornwood, NY) was 

used to record the fluorescence intensity of cells through a microscope (Imager. M2, Carl Zeiss, 

Microscopy, LLC,Thornwood, NY) with a motorized x-y stage (Mechanical stage 75 x 50 R, 

Carl Zeiss Microscopy, LLC, Thornwood, NY) in a dark room. The microscope consists of a 

Colibri LED light source with continuous brightness adjustment and automatic calibration. 

Images were taken every 30 minutes with an exposure time of 900 ms over the 10-day 

experiment. Loss of cell viability was measured to be 20% or less over ten days17. Autofocus was 

not used because it increased the exposure time and hence possibly photobleaching. The 

excitation light from a LED light source was guided through a filter set (Filter Set 60HE, Carl 

Zeiss Microscopy, LLC, Thornwood, NY). All experiments conducted were done in an 

environmental control enclosure chamber (InVivo Scientific) at a temperature of 30°C.  

  

CellProfiler was used to track individual cells over time17,93 and validated against our 

own MATLAB cell tracking code over time17 reported previously. The number of cells tracked 

was lower as cells that grew filaments were discarded from the tracking process. Each 

fluorescence time series were normalized with mCherry beads, log-detrended with a 24 h moving 

average17, and the periodogram computed17.  The fluorescence of the field of view was obtained 

by integration over the field of view.  In parallel for each field of view the total fluorescence was 

normalized with packed mCherry beads, log-detrended with a 24 h moving average, and used in 

deterministic model identification by ensemble methods. Prior work had demonstrated that 

variation in room temperature of the LED light source was 1.11% per 1 oC and highly correlated 
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with control bead intensity101. Thus, normalization by the intensity of the mCherry beads 

removed variation in LED light source intensity.” 

 

Estimating an upper bound on the size of the quorum sensing molecular signal 

Assuming that a quorum sensing molecule exists, we made an estimate that it would take 

24 hours for it to diffuse across the whole device with a size of 1800 µm. The molecular 

diffusion coefficient is then calculated by the following equation 𝐷𝐴 = 𝐿𝑎 2 /tD. 𝐷𝐴  is the 

diffusion coefficient of the quorum sensing molecule while La is the size of the microfluidic 

device where the cells are confined in, tD the travel time and La, the travel distance. We are able 

to obtain a diffusion coefficient of 2250 𝜇m 2/min with this following equation. Next, we used 

the Stokes-Einstein Equation to obtain an estimate of the upper limit of the size with 𝐷𝐴 =

𝑘𝐵𝑇 ̸ ( 3𝜋ƞ𝑑𝐴) where DA is the molecular diffusion coefficient, absolute temperature T, by the 

Stokes-Einstein Equation, 𝑑𝑎 the diffusants molecular diameter, ƞ the solvent viscosity. We were 

then able to obtain an upper limit of size of the quorum sensing signal as 13.05nm. 

 

Calculating phase 

To  calculate the phase for a fluorescent series x(t), first the Hilbert transform �̃�(𝑡) =

 𝑃𝑉 
1

𝜋
∫

𝑥(𝜏)

𝑡−𝜏

∞

−∞
𝑑𝜏 was computed from the Fast Fourier Transform102 of x(t). The Hilbert phase 

𝐹𝐻(𝑡) is defined as the phase angle between the Hilbert Transform �̃�(𝑡) and x(t) by 𝐹𝐻(𝑡) =

 𝑡𝑎𝑛−1 (
�̃�(𝑡)

𝑥(𝑡)
)  𝑡o avoid discontinuities in the phase angle at 𝜋 and -𝜋, the Hilbert phase was 

continuized to 𝐹𝐶(𝑡). The continuization was done recursively through the relation: 𝐹𝐶(𝑡 + 1) =

𝐹𝐶(𝑡) + 𝑚𝐶(𝑡)2𝜋, where at each step the argument m was chosen to minimize: 𝐷𝑓𝑚 =

|𝐹𝐻(𝑡 + 1) − 𝐹𝐶(𝑡) + 2𝜋𝑚|. With the continuized Hilbert Phase 𝐹𝐶(𝑡), the phase is defined 
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by: 𝑀𝐶 =
⌊𝐹𝐶(𝑡1)−𝐹𝐶(𝑡0)⌋

2𝜋
 in units of cycles. An accessible description of these phase measures and 

code to calculate them in MATLAB are available62 with associated MATLAB in GitHub. 

 

Ensemble Methods 

The quorum sensing and cell-to-cell contact models specifying the ODEs in (1)-(23) were 

identified using a Metropolis-Hastings updating scheme65. Proposed solutions during the Markov 

Chain Monte Carlo (MCMC) were with an Adaptive Runge-Kutta solver. The equilibration stage 

involved 40,000 sweeps.  The accumulation phase involved 40,000 sweeps. 

 

The data sets generated during the current study are available from the corresponding 

authors on reasonable request. 

 

 

 

 

 

 

 

 

 

 

 

 



 

49 

 

 

CHAPTER 3 

THE CLOCK IN GROWING HYPHAE AND THEIR SYNCHRONIZATION IN 

NEUROSPORA CRASSA 
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Abstract.  Utilizing a microfluidic chip with serpentine channels, we seeded the chip with 

Neurospora crassa filaments in an agar plug and successfully captured individual hyphae in 

channels. For the first time, we report the presence of an autonomous clock in hyphae. 

Fluorescence of a mCherry recorder gene driven by a clock-controlled gene-2 promoter (ccg-2p) 

was measured simultaneously along hyphae for every half an hour for a period of at least 6 days. 

Single hyphae were entrained to light over a wide range of day lengths, including 6, 12, and 36 h 

days. Furthermore, hyphae also displayed temperature compensation properties, where the period 

of oscillations were stable over a physiological range of temperatures from 24 °C to 30 °C (Q 10 

= 1.00-1.10). Hyphae tracked in individual serpentine channels were highly synchronized 

(K=0.60-0.78). A clock model developed was able to mimic hyphal growth observed in the 

serpentine chip.  

 

Significance.  One of the central problems in systems biology is understanding how clocks in 

single cells synchronize – that is, can we explain how the irregular behavior of single cell clocks 

gives rise to the highly orchestrated behavior of populations of 107 cells per ml?17,31  This 

synchronized behavior of cell populations is observed in plants103, flies104, worms, and 

mammals105 as well as fungi4,106.  The answer to this question may depend in part at which life 

stage the clock is observed to operate.  Our initial efforts to address this question have focused 

on the simpler stage of single conidial cells31.  We restricted our consideration initially to 

simplify the mechanisms at work in cell to cell synchronization.  One class of mechanisms 

involves quorum sensing operating so that cells can set their clocks by a common signal in the 

medium17.  Another class of mechanisms involves a positive role of stochastic intracellular noise 

in generating circadian oscillations107.  In both cases cells were placed in media to suppress cell 
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division and the complication of the cell cycle gating circadian rhythms90,108.  We now remove 

this restriction to examine other mechanisms of cellular clock synchronization.      

 

As these conidial cells progress to later developmental stages, there is the possibility of 

other mechanisms for cellular synchronization not present in single conidial cells coming into 

play, such as cell cycle gating of circadian rhythms108,109.  In single cells not dividing three 

mechanisms of clock synchronization may be at work. Conidial cells could by excreting a 

quorum sensing (QS) signal that serves to synchronize cells31; alternatively, cells could 

communicate by cell to cell contact as in Myxobacteria44 or possibly the filamentous 

cyanobacterium, Anabaena110.  Third, stochastic intracellular noise from a common environment 

could serve to synchronize cells as well49,107,111,112.  With cells growing as hyphae there are at 

least three additional mechanisms of synchronization between nuclei17.  A QS signal could be 

made and only be transported between nuclei in the same hyphae, or alternatively a QS signal 

could be made and excreted into the media as well transported in hyphae.  In a final mechanism 

nuclear division could be gating the synchronization process. To explore the collective behavior 

of hyphae requires new kinds of experimental approaches in microfluidics95,96 as well as new 

theoretical approaches to the study of cellular clock synchronization in hyphaes39.  

Understanding how molecules within a synctitium of nuclei in a fungal network is part of a much 

broader problem of how mRNAs and proteins are shared between nuclei under a balance of 

advection (i.e., drift within the shared cytoplasm) and diffusion of these molecules98.  

 

 The goal here is to explore three questions: (1) Can a clock model be developed and 

specified for single or few hyphae observed by microfluidics; (2) how do real hyphae actually 
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behave; and (3) does a model developed here behave like real hyphae? The beginning point of 

this work is merging growth models for filamentous fungi113,114 with existing deterministic clock 

models on conidia with experimental support2. 

 

 Here, we developed a microfluidic device with multiple serpentine channels each with a 

length of at least 32 millimeters (mm) in length to address these three questions. The present 

study is aimed to identify whether or not there are clocks in single hyphae with the setup shown 

in Fig. 2.1.  The best studied clock-controlled gene is clock-controlled gene-2 (ccg-2)70.  The 

strain MFNC9 possesses the promoter of ccg-2 attached to an mCherry recorder without the 

upstream region providing developmental control of the recorder31,70.  Cells engineered for 

fluorescence3 were inoculated into a microfluidic device and placed on a Zeiss microscope 

maintained in a temperature controlled incubator.  Media was pumped through the microfluidic 

device to support filament growth and imaged every 30 minutes (m) over at least 6 days. Our 

results will help us to understand how they behave and apply it to a clock model for growing 

hyphae. 
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Fig. 2.1. Schematic representation of experimental setup for the acquisition of fluorescence 

signal from serpentine chip. In step 1 of the protocol, a syringe pump is used to fill the chip 

with media and a small N. crassa agar block with fluorescent strain MFNC93 is inoculated into 

cell inlet port.  In Step 2, cells were entrained with at least 2 hours of light at 3700 lux. In Step 3, 

fluorescence of cells in serpentine channels were measured of every 30 minutes. For temperature 

compensation experiments, temperature is varied with the temperature control. Meanwhile, a 

LED light source was used for light entrainment, and the temperature was kept constant in the 
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enclosure. Time series of fluorescence measurement over at least a period of four days was 

obtained through the images collected. 

 

Results 

 Serpentine microfluidic device design provides a growth environment for filaments 

 The microfluidic device was developed and designed for the purpose of providing 

growing cells with sufficient media for growth and recording their fluorescence over time using 

fluorescent strain MFNC93. The diameter of N. crassa conidia is known to be around 3 to 8 µm, 

while the hyphae have a diameter of around 8-15µm. Hence, the height of the chip of 10µm was 

designed for the serpentine growth channels to ensure that their height is slightly larger than the 

N.crassa hyphal diameter, which ensures that media would be able to flow constantly through 

the serpentine channels. This was verified by simulating the flow profile with the COMSOL 

Multiphysics software (Fig. S2.1). The width of the chip was maintained at 15µm to ensure the 

possibility of media transported along the channels via diffusion to support a growing filament. 

Reducing the width of the channels may assist in the hyphal tracking process; however, we were 

still able to optimize the hyphal tracking procedure and branching did not affect our results. 

 

 An agar plug consisting of conidia was loaded into the cell inlet and sealed with a 

modified flexible tubing of the same diameter. To achieve the goal of observing hyphal growth 

for a period of at least 6 days, serpentine chips of a length of 32µm and 63mm were fabricated. 

Hyphae grew from the agar plug and elongated towards the serpentine channels due to the 

presence of nutrients being supplied from the medium channel at the other end of a channel. 

Clear oscillations were observed for serpentine chips of both lengths as seen in Fig. 2.6b. Here 



 

55 

we can observe that hyphae can be tracked in both chips, hence in the future, depending on the 

studies that need to be done either chip can be utilized. 

 

 To ensure hyphae have access to a constant supply of nutrients, media was supplied into 

the chip at a constant flow. We examined the influence of varying glucose concentration (0.1% 

,0.5%, 0.70%, 1.5% glucose) in the serpentine chip. The goal was to ensure cells were provided 

with an adequate amount of nutrients to grow as well as to oscillate. Interestingly, when the 

glucose concentration of 0.5%-1.5% was infused into the chip, hyphae only grew a quarter 

length of the serpentine channel and ceased to grow the full length. An explanation for this 

phenomenon is that when glucose concentration was increased, cells would efficiently take in 

more of nutrients provided, and hyphae branching would occur more frequently, causing a huge 

pressure buildup in the chip. As a result, media would have difficulty diffusing or flowing 

through compared to when a lower glucose concentration was utilized. Hence, considering that 

the elongation of hyphae at a higher concentration of glucose was inhibitory to hyphal extension, 

for further experiments 0.1% of glucose media was supplied into the chip. Hyphae were able to 

grow the full length, and time-lapse experiments of at least 6-10 days were successfully executed 

(Fig. 2.1).  

 

 Clock Model in a growing hypha 

 Consider a single growing hypha in one-dimension x.  The velocity of any point, such as 

the nuclei, within the growing hyphae is given by 𝑣(𝑥, 𝑡),  and the location of the furthest 

boundary of the exclusion zone to growing tip is 𝑥𝑃(𝑡) (Fig. 2.2). 
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Fig. 2.2.  A growing hypha idealized as a cylinder is shown above with the velocity distribution 

of nuclei along the hypha shown below.  The influx of nutrients and media drives the flow 

towards the tip.  The zero point of reference 𝑥𝑃(𝑡) along the hypha is the beginning of the 

exclusion zone near the tip.  The velocity distribution asymptotes to a fixed nonzero value at the 

beginning the exclusion zone and sufficiently far back from the tip. 

 

 The segment about 12 𝜇𝑚 prior to the tip is known as the exclusion zone for nuclei along 

the tip115. To a first approximation the velocity 𝑣(𝑥, 𝑡) of cytoplasm and nuclei at position x in 

the hyphae at time t is considered to have a fixed distribution, which goes to a fixed value at the 

distal boundary to the tip (the Spitzenkorper) and also goes to zero sufficiently far back from the 

tip.  If the coordinate 𝜉 is defined relative to the beginning of the exclusion zone (Fig. 2.2), i.e., 

𝜉 = 𝑥 −  𝑥𝑝(𝑡), then for a fixed velocity distribution the velocity can be written as: 
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    𝑣(𝑥, 𝑡) = 𝑉(𝑥 − 𝑥𝑝(𝑡)) = 𝑉(𝜉) 

This velocity distribution and the coordinate of the growing tip 𝑥𝑃(𝑡) can be measured in a 

microfluidics device with microscopy tools like cell profiler93. 

  

 A second variable in the model is the density 𝜌(𝑥, 𝑡)   of nuclei along the hyphae as 

captured by the fluorescence115 or luminescence of  the hyphae95.  This density is also 

measurable93.  This density is usually considered to satisfy an equation of continuity114.  If the 

flow ℱ(𝑥, 𝑡)  =  𝜐(𝑥, 𝑡) 𝜌(𝑥, 𝑡) , then the equation of continuity for the hyphae can be written: 

  

    
𝜕𝜌(𝑥,𝑡)

𝜕𝑡
=

𝜕 ℱ(𝑥,𝑡)

𝜕𝑥
+ ℙ(𝑥, 𝑡),     (1) 

 

where ℙ(𝑥, 𝑡) is the production of new hyphae nuclei from carbon sources, water, and other 

components of the growing tip. Production at the tip is thought to be a function of the component 

density at the tip 𝜌(𝑥, 𝑡)  as well as the amount of food Φ(𝑥, 𝑡) at the location x and time t.  Tip 

production ℙ(𝑥, 𝑡)  is assumed to be proportional to these two quantities, density and food: 

 

    ℙ(𝑥, 𝑡) = 𝑘𝑝𝜌(𝑥, 𝑡)Φ(𝑥, 𝑡)         (2)  

 

The rate parameter 𝑘𝑝 is the rate of tip production.  Initial conditions for the density of nuclei are 

given by the product of two step functions (one upward and one downward step function; see 

supplement).  One example of this kind of initialization is the inoculation of the tube at the 

beginning of the tube and a fall of in nuclei away from the beginning of the tube.  In the 
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simulator the initial velocity distribution can be specified from the initial density distribution (see 

supplement). 

 

 For determining the growth of the hyphae, what is left is to specify is what is happening 

to the food Φ(𝑥, 𝑡).  The food is initially distributed uniformly in a microfluidic device or race 

tube or more generally the product of two step functions (one stepping up and one stepping 

down; see supplement), and the density of the hyphae determines in part the rate at which the 

food is consumed: 

 

    
𝜕Φ(𝑥,𝑡)

𝜕𝑡
= −𝑘Φ Φ(𝑥, 𝑡)𝜌(𝑥, 𝑡)     (3) 

 

The experiment is such that the food is consumed at a rate determined by the density of the 

hyphae.  This completes the growth portion of the model, and there is no reason that this could 

not be equally well applied to a race tube as opposed to a microfluidics device.  Only the 

interpretation of the density 𝜌(𝑥, 𝑡)  of nuclei would change slightly to the density of hyphae in a 

race tube. 

 

 The rate equations for the clock components have substantial experimental basis2,65,67.  

The 3 clock components include the genes frq, wc-1, and wc-2 and their cognate mRNAs and 

proteins116.  The gene frq encodes the oscillator protein FRQ, which is a readout of the time of 

day68.  The protein WC-1 is the light receptor of the system69, and the complex WC-1/WC-2 

activates the oscillator gene frq.  The rate equations have been given65, as an example: 
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𝑑[𝐹𝑅𝑄]

𝑑𝑡
=  𝐿3[𝑓𝑟𝑞𝑟] − 𝐷6[𝐹𝑅𝑄],     (4) 

where the translation rate is 𝐿3 and the decay rate of the FRQ protein is 𝐷6.  There are similar 

rate equations for the remaining 16 molecular species that can be derived from the genetic 

network (Fig. 2.3)65. 

 

Fig. 2.3.  Genetic network for the clock in N. crassa. Boxes are species, i.e., genes, mRNAs, or 

proteins.  Proteins are in all capitals.  The circles denote reactions. A species connected to a 

double arrow is catalytic.  Reactions with no products are decay reactions. The labels of 

reactions also serve as rate constants for the cognate reaction. The Fig. 2.3 is taken from earlier 

work2. 
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 This well supported model2,65,117 applied to conidia can be tied to the hyphal growth 

model by simply realizing there are two components to the rate of change of any species in the 

clock (boxes) network (Fig. 2.3): 

 

 
𝑑[𝐹𝑅𝑄]𝑥,𝑡

𝑑𝑡
=

𝑑[𝐹𝑅𝑄]𝑐ℎ𝑒𝑚

𝑑𝑡
+  

𝑑[𝐹𝑅𝑄]𝑎𝑑𝑣

𝑑𝑡
=  𝐿3[𝑓𝑟𝑞𝑟]𝑥,𝑡 − 𝐷6[𝐹𝑅𝑄]𝑥,𝑡 +  

𝑑[𝐹𝑅𝑄]𝑎𝑑𝑣

𝑑𝑡
          (5) 

 

where the first term is the standard rate equation specification on a macroscopic scale2,65, and last 

term is an advection (or drift) term near the tip of the hyphae.  This advection term is defined by: 

 

𝑑[𝐹𝑅𝑄]𝑎𝑑𝑣

𝑑𝑡
=

𝜕

𝜕𝑥
 (𝑣(𝑥, 𝑡)[𝐹𝑅𝑄]𝑥,𝑡).     (6) 

 

This advection term captures the turbulence at the tip as new media and nutrients are added to 

the growing hypha.  

 

 There is one further feature of the model, tying the state of each gene after a nuclear 

division to its state before division.  The model as described in the supplemental manual allows 

all possible states of a gene to be passed through mitosis, i.e., on to off, on to on, off to on, and 

off to off for frq, wc-1, and ccg. The simulator, the realization of the model here, places these 

genes in a quiescent state during mitosis. 
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Fig. 2.4. Fluorescent images of hyphae stained with calcofluor white demarcate 1-4 hyphae in a 

channel. (a) Calcofluor white staining on MFNC9 shows two hyphae growing into the opening 

of the serpentine channels, while the image on the right shows multiple hyphae along the curve 

of the channel. (b) Calcofluor white staining on a Wild Type (WT strain) shows similar results 

with multiple hyphae growing into the serpentine channels. 
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 Variation of hyphal number growing along serpentine channels 

 The strain (N2281-3) with a fluorescent recorder on the H1 Histone was used to examine 

nuclei within hyphae118. This method allows us to observe nuclei moving along hyphae, which in 

turn provided us with a better observation on the number of hyphae present in serpentine channels. 

From the supplementary video, we observed varying velocity movement of nuclei in each of the 

hyphae. A total of 1-4 hyphae were observed growing along each of the serpentine channels. To 

further verify these results, hyphae grown in channels were stained with calcofluor white. It is 

known that calcofluor white is a non-specific fluorochrome that will bind with chitin and cellulose 

that are present in the cell walls. Hyphae cells walls were stained by injecting 0.01 % calcofluor 

white with 0.1% KOH solution into the serpentine chip and incubated for 10 min at room 

temperature (RT) in the dark. Images were taken under an inverted microscope with a filter set 49 

(Zeiss). The stain was effective in differentiating the number of hyphae that are present in the 

serpentine channels as they grow.  In all images observed, intense staining of cell walls and septae 

were observed in individual hyphae. We were clearly able to differentiate boundaries of the hyphae 

with the stain (Fig. 2.4). A control experiment with Wild Type (WT) strain was carried out to 

confirm our findings. This allowed us to confirm that the mCherry fluorophore did not interfere 

with the Calcofluor white staining in the MFNC9 strain. We were able to conclude there were 1-4 

hyphae growing into the serpentine channels. 
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Fig. 2.5. Diagram of the results of a U-turn hyphal tracking method we developed with 

CellProfiler. (a) Fluorescent image of hyphae growing in serpentine channels. One U-turn is 

defined as a segment from point A to point B for each individual serpentine channel. The image 

is cropped into a red rectangle as depicted before running through the pipeline on Cell Profiler. 

(b,d,f,h) Periodograms of individually tracked hyphae, the dark blue line shows the average 

normalized periodogram of the cropped segment. (c) Fluorescence image of hyphae growing in 
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the serpentine channels. Two U-turns is defined as point A to point C for each individual 

serpentine channel. The length of two U-turns of the serpentine channel segment is 1312µm.  (e) 

Fluorescence image of hyphae growing in the serpentine channels. Three U-turns is defined as 

point A to point D for each individual serpentine channel. (f) Fluorescence image of hyphae 

growing in the serpentine channels. Four U-turns is defined as point A to point E for each 

individual serpentine channel. Scale bar:100µm. 

 

 Several strategies to track hyphae were developed 

 In order to obtain the best results while tracking their fluorescence and oscillation 

strength, hyphae were tracked with three methods. One method was to measure only the hyphal 

tip as the hypha is growing. Three hyphae tips were tracked individually as they grew along the 

serpentine channel (Fig. S2.2) for a period of 30 hours. The fluorescence intensity results were 

very noisy - if oscillations were present, they were fairly weak and not very noticeable (Fig. 

S2.2). Next, we examined cropped segments across the tiled image horizontally. The segments 

were identified by the number of U-turns (1,2, 3 or 4 U-turn) across the serpentine channels in a 

field of view as presented in Fig. 2.5. Trajectories of varied segments tracked generally aligned 

with each other (Fig. S2.3) over a period of 98 hours. We observed the periodograms of varying 

sections of the serpentine channels. We observed that a similar pattern can be observed in 

periodograms of at least 2 U-turns – 4 U-turns; however, the periodogram on 1 U-turn was not 

able to capture the features seen in the other three periodograms with multiple U-turns (Fig. 

2.5a). Hence, we deduced that for further observations, while carrying out fluorescence tracking 

2 U-turns will be sufficient when we carry out the data analysis process on fluorescent filaments. 
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Another reason to use 2 U-turns was that we would not lose any spatial temporal information 

while tracking the minimal number of U-turns compared to a larger segment.  

 

 The last method - Filament tracker (FT) was used to track the individual hyphae as they 

grew across the full length of the channel individually (Fig. S2.4). We tracked the time-averaged 

fluorescence intensities for each of the individual hypha.  We were able to observe clear 

oscillations down the serpentine channel, and they aligned very well each other. These results 

imply that the hyphae are synchronized across long distances. We can conlude that both methods 

of tracking a segment including 2 U-turns as well as tracking the whole filament are 

recommended. 

 

 Behavior of hyphae in a microfluidic device 

 Hyphae from a fluorescent strain (MFNC93) were tracked in a serpentine microfluidics 

device over 2.8-4 days and their fluorescence, measured as described in Materials and Methods 

(using FT method), with cell profiler93. Each channel is designed to accommodate one or more 

hyphae118.  These fluorescent hyphae were compared with a luminescent strain4 grown in race 

tubes over 5 days (Fig. 2.6). Previous work by Dunlap has shown that circadian oscillations can 

be observed by tracking its luminescence bands in the race tubes (Fig. S2.5).                                                                    
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Fig. 2.6. A single hypha of MFNC9 (b) yielded a circadian rhythm comparable to that of the 

luciferase strain FRQ-luc-I in race tubes4 (a), but the signal to noise ratio for the hyphae was 
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8.831 vs. 33.391. Both images were log-detrended with a moving average described earlier17.  

The average periods of bands and hyphae are: (a) 20.78 h; (b) 19.20 h. 

 

  For both hyphae in serpentine channels as well as multiple hyphae in race tubes, they 

behaved similarly with regard to period of the circadian rhythm. The signal to noise ratio of race 

tubes is about 4X that of a few hyphae in serpentine channels. Although the number of hyphae 

tracked in our serpentine chip is far less compared to the race tube, from Fig. 2.6 we can observe 

that the amplitude of their oscillations is similar. The hyphae are as synchronized as the bands in 

race tubes. 

 

The signal to noise ratio (as described in Materials and Methods) was computed for 8  

bundles of hyphae of the fluorescent strain MFNC93 to obtain some idea of the variation in 

signal to noise as well in period (Takahashi). The results are in Table 2.1. 

 

Table 2.1.  The signal to noise ratio of a bundle of hyphae overlapped with that of race tubes with 

a luminescent strain (Fig. 2.6).  Each bundle of hyphae usually has a period of 23 h for strain 

MFNC93, which is similar to that measured in race tubes (21 h)3. 

Replicate Signal to Noise1 Period (h) 

1 9.381 23 

2 6.523 23 

3 2.921 23 

4 34.697 23 

5 13.552 23 
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6 3.936 23 

7 11.477 17.5 

8 21.205 23 

Average (+/- standard error) 12.9615 (+/-3.7309) 22.3125(+/-0.6875) 

1See Materials and Methods. 

 

 

Fig. 2.7. Fluorescence intensity pattern varies along positions in the serpentine channel. (a) Left: 

Florescence image of hypha located in a segment of 2 U-turns of the serpentine channel. 42 
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positions were labelled beginning from the top left corner of the image to the right as shown in 

the scheme on the left. Right: Spatio-temporal images of the fluorescence intensities observed at 

different time points for a particular position in the channel. Color bar indicates the fluorescence 

signal intensity. Scale bar:10µm. (b) Fluorescence intensities acquired at a specific cropped out 

area of a serpentine channel. Twelve positions shown the plot correspond to scheme shown on 

top. Scale bar: 100µm. 

 

 Here we showed that a circadian oscillator exists in each bundle of hyphae with little 

variation in period.  The period of MFNC9 is similar to that (21 h) in race tubes3 and in conidial 

cells in a microfluidics device17,31. 

 

 Growth dynamics on serpentine chip  

 Time-lapse images obtained during confined growth in the serpentine channels were used 

to build spatio-temporal diagrams using 42 sectors. such as the one displayed in Fig. 2.7a. This 

graphical representation allowed us to visualize the variation of fluorescence intensities spatially 

at different sections of the channel. Interestingly, on such a diagram, as we look across the time 

series for each individual position, there is no significant shift in the pattern of the fluorescence 

intensities. We do not observe oscillations or huge changes at positions that present a peak. 

These peaks seem to occur at most of the U-turn positions in the channel. To further explore the 

growth dynamics observed, we examined the mean fluorescence of a hypha in a cropped image 

consisting of one small section of a U-turn and one of the straight sections of the channel divided 

into 12 sectors. As seen in Fig. 2.7b there is a higher fluorescence intensity recorded at both ends 

of the U-turn when compared to the straight channels.  
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 Synchronization of hyphae in serpentine channels  

 Previous work showed that synchronization exists in a “big chamber device” and 

microwell devices119 while cells were in their conidial form. We sought to further explore 

whether synchronization is observed through hyphae that are growing in their own serpentine 

channels along the whole device. We examined the synchronization between channels as 

shownin Fig. S2.6. This was measure by a synchronization measure known as the Kuramoto 

order parameter (K) 87 between different segments and is defined as:  

𝐾 = ⟨|𝑛−1 ∑ exp(𝑖M𝑗) −  ⟨𝑛−1 ∑ exp(𝑖M𝑗)

𝑛

𝑗=1

⟩

𝑛

𝑗=1

|⟩ 

where K represents the phase coherence, and 𝑀𝑗 is the phase of the jth serpentine segment with 

hyphae. The quantity n is the number of hyphal segments being compared (n = 2 for two hyphae 

segments in neighboring serpentine channels). The order parameter K would be 1 if both 

channels were equally phase synchronized while it would be 0 in incoherent states. The 

synchronization measure (K) calculated between any two segments across the channels was at 

least 0.7526. The high degree of phase synchronization across channels indicates that the hyphae 

were all synchronized although they were located in separate serpentine channels. This results 

were supported by the low K value of K = 0.0322 +/- 0.0007 that were calculated on isolated 1-

cell droplets62, which were almost close to zero as expected. At the other extreme is a “big 

chamber device”, in which cells were tightly packed into an artificial tissue.  In this situation the 

measured order parameter was K >  0.91 between different fields of view in a transect across the 

artificial tissue120. Furthermore, we also looked at the K values for randomly generated white 

noise oscillations and obtained a result of 0.531 (described in Materials and Methods).  
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Table 2.2. Measures of synchronization (K) between 6 segments of different serpentine channels 

along the serpentine chip. 

Kuramoto K Serpentine 

1 

Serpentine 

2 

Serpentine 

3 

Serpentine 

4 

Serpentine 

5 

Serpentine 

6 

Serpentine 1  - - - - - - 

Serpentine 2 0.8272 - - - - - 

Serpentine 3 0.7937 0.7903 - - - - 

Serpentine 4 0.7526 0.7866 0.7901 - - - 

Serpentine 5 0.8239 0.8763 0.8193 0.8196 - - 

Serpentine 6 0.8148 0.8027 0.9045 0.8107 0.8511 - 
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Fig. 2.8.  Single hyphae display temperature compensation properties. (a) Average normalized periodogram 

at five varying temperatures over the physiological range of Neurospora crassa is shown. Each average 

normalized periodogram at each temperature is based on over 5 (24°C),12 (24°C),5 (27°C),12 (29°C),6 

(30°C) hyphae respectively. (b) The coupling of the relative amplitude squared plotted vs. relative period. 
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The x-axis is the relative period, it is calculated by the period of each tracked hypha at the observed 

temperature and dividing it by the average period at 30°C. The y-axis would be the relative amplitude 

squared. This is calculated by obtaining the maximum amplitude squared of each tracked hypha and 

dividing it by the average amplitude squared of the reference temperature (30°C). Single hyphae are color 

coded depending on their temperatures. The correlation (r) of amplitude squared and period was r = 0.2696 

(Fishers z = 0.2765, P < 0.0001) The Spearman rank correlation (rs ) was rs=0.3886 (P =0.0132 ) 

 

 Hyphae display clock-like properties 

  With the serpentine microfluidic platform developed and exhibiting circadian rhythms 

(Fig. 2.6), two further defining properties of a biological clock were examined, light entrainment 

and temperature compensation. Having demonstrated the existence of biological clocks in single 

cells121 while they were restrained in growth and in their conidial form,31 our goal here is to 

verify a biological clock exists at the next life stage, growing hyphae. Experiments were carried 

out over a range of 24-30°C as seen in Fig. 2.8. If temperature compensation is present at the 

single cell level, the period length of tracked hyphae would not change over the temperature 

range. This was quantified by the Q10 value measure as seen in Equation: 

𝑄10 = (
𝑃1

𝑃2
)

10
𝑇1−𝑇2

 

where the reference temperature is denoted as (T2) at 30°C and the periods, P1 and P2, the periods 

are at temperatures T1 and T2, respectively. The Q10 values were close to 1 (Table 2.3), 

demonstrating there were small fluctuations of period with temperature. Hence, we were able to 

show that single hyphae demonstrated temperature compensation characteristics. 

 



 

74 

 We would like to explore the mechanisms of temperature compensation from data in Fig. 

2.8b. Previous work 31 has shown that there is evidence of amplitude-period coupling that is 

consistent with presented clock models exhibiting temperature compensation properties122. We 

examined the coupling of relative amplitude to relative period in Fig. 2.b in over 40 single 

hyphae. The highly significant positive slope (P <0.0001) of relative amplitude squared on 

relative period further strengthens the prediction that coupling exists as seen in three families of 

clock models.   

  

Table 2.3.  Temperature Coefficient Q10 over a physiological range of temperatures (T1) provided 

evidence of temperature compensation. Standard Errors (SE) for temperature coefficient were 

computed using the propagation of error method. 

 

Temperature 

(T1) 

24° C 25° C 27° C 29° C 

Period (Hours) 

(+/-2SE)  

20.00  

(+/- 2.0335) 

20.00  

(+/- 0.4336) 

20.00  

(+/- 1.4320) 

20.000 

(+/- 1.8819) 

Q10 (+/-2SE) 1.0167(+/-

0.0369)  

1.113(+/-

0.0124) 

1.0337(+/- 

0.0906) 

1.1046(+/- 

0.0416) 

 

 The next attribute of a biological clock is that cells can be light entrained. We carried out 

time-lapse experiments of Neurospora crassa hyphal growth using a developed upright 

microscope setup with a LED light source for light entrainment (see Materials and Methods). In 

order to investigate the intrinsic behavior of the clock, we entrained the hyphae to a Light:Dark 
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(L/D) of 6:6hr L/D cycle and a 36:36hr L/D cycle under constant conditions (LED with 3700 

lux) and temperature (30°C), shown in Fig 2.9. This method allowed us to track growing hyphae 

in individual serpentine channels while carrying out the entrainment process.  

 

Figure 9.  Entrainment by light in N. crassa hyphae in serpentine channels to a 12 hour (a), 24 hour (b) day. 

(a) Left:  Average of 9 single hyphae trajectories detrended under 6 hour L/D regimen. Right: Average 

periodogram of hyphae of 12 day length. (b) Left: Average of 16 single hyphae trajectories detrended under 

12 hour L/D regimen. Right: Average periodogram of hyphae of 24 day length. 
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Fig. 2.10.  Overview of velocity profiles obtained with nuclei tracking in serpentine channel. (a) 

Graph of drift velocity as well as diffusion velocity on the relative time. The x-y coordinates of 

each nucleus (139 nuclei) were tracked over 11 sequential images (taken at 5s intervals) and 

plotted against time. Each point in the graph is plotted with the mean displacement travelled 

from the origin over 11 sequential images.The drift velocity calculated in the x-direction was 
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2.316µm/min. The Pearson correlation was r = 0.9961 (Fishers z =3.1146, P = 9.75e-11) and the 

Spearman rank correlation (rs ) was rs=1 (P = 0). The drift velocity in the y-direction was -

0.162µm/min. The Pearson correlation (r) for the latter was r = -0.5509 (Fishers z =-0.6197, P 

=0.0790) while the spearman rank correlation (rs ) was rs= -0.5364 (P =0.0936) .The diffusion 

coefficient in the x-direction was 12.97 µm2/min . The Pearson correlation was r = 0.9833 

(Fishers z =2.3872, P = 5.8153e-08) and the Spearman rank correlation (rs ) was rs=1 (P = 0).In 

the y-direction it was 3.57µm2/min.  The Pearson correlation was r = 0.9376 (Fishers z =1.7181 

P =2.02e-05) while the spearman rank correlation (rs ) was rs= 0.9636 (P =0) (b) Left: Histogram 

of the velocity profile for 187 nuclei was plotted. Right: Histogram of the velocity profile for 72 

hyphal tip time series. 

 

 Specifying the velocity profile, drift and diffusion velocities of the hyphal clock 

model 

 To study the nature of flow in hyphae of N.crassa, we obtained the velocity profile by 

fluorescence microscopy. The GFP-tagged histone (for imaging nuclei) provided us with the 

movement of nuclei while the hyphae elongated in the channels. CellProfiler allowed tracking of 

nuclei and obtaining their x-y coordinates. The drift velocity in the x-direction calculated was 

2.316µm/min while the drift velocity in the y-direction was -0.0014µm/sec which was almost 

close to 0. The diffusion coefficient calculated was 12.97 µm2/min while in the y-direction it was 

3.57µm2/min. The velocity profile, drift velocity (due to advection), and diffusion velocity are 

features of the hyphal clock model introduced in the modeling section. We investigated the 

relationship between the rates of the nuclei movement and hyphal elongation.  
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 Behavior of the hyphal clock model  

 First the growth of the hyphae is shown in Fig. 2. 11.  As the nuclei divides there is an 

initial growth in the density of nuclei until a steady state in nuclear density is achieved along the 

serpentine channel or race tube (Fig. 2. 11A).  The velocity profile is also constant and 

established at the beginning of the growth experiment (Fig. 2. 11B).  The velocity profile is near 

zero at the beginning of the race tube or channel and rises to a constant value as new material is 

added to growing hyphae(s). The food density is also uniform after a step up (Fig. 2.11C). To 

give more flexibility in initial conditions for the food and velocity profile these can be specified 

as a product of step functions in the simulator (see Supplement).  

 

 Previous studies were done on the measurement of nuclei movement during the growth of 

hyphae; however, the microfluidic device would introduce additional restrictions for the growth 

or branching hence additional data needs to be collected for the hyphal clock model. 
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Fig. 2.11.  The nuclear density, velocity profile, and food distribution are specified by the growth 

model as a function of spatial location (x) and time (t): (A) nuclear density 𝜌(𝑥, 𝑡);  (B) initial 

velocity profile 𝑣(𝑥, 𝑡) for the growing hyphae(s); (C) food distribution Φ(𝑥, 𝑡). 

 

 The other aspect of the model is the clock in the hyphae (Fig. 2.12).  The genes are being 

swept along in each hypha in the nuclei.  They are producing mRNAs and proteins along the race 

tube or serpentine device. Each of these molecular species have a velocity, position, and 

concentration in the growing hyphae as shown.  The model shows the characteristic 21 h period 

in the FRQ, WCC, and CCG proteins expected in the device.  The bands in all three proteins that 

are visible in race tubes have the characteristic period of 21 h similar to that in the serpentine 

B A 

C 
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device (Table 2.1).  What is also interesting is that the hypothesized communication signal in the 

media of the device around a growing hypha also displays the characteristic periodicity.  This 

hypothesized signal acts to provide the synchronization signal between nuclei. 

 

 

Fig. 2.12.  The hyphal clock model displays the “bands” observed in race tubes and the 

periodicity of the serpentine device. (A). The FRQ protein concentration is graphed as a function 

of spatial location (x) along the device and time (t); (B) the WCC protein concentration is 

graphed as a function of spatial location (x) along the device and time (t); (C) the CCG protein 

usually observed in the device is graphed as a function of spatial location (x) and time (t); (D) the 

communication signal in the media (Se) is also graphed as a function of spatial location (x) and 

time (t). 
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Discussion 

The current study provides us with a substantial insight into a rather neglected area of cell 

synchronization biology. Previously, we were able to show synchronization at a macroscopic 

limit for single cells in a big chamber microfluidic device. 119 A microwell device was also 

fabricated to observe the synchronization of cells at a much lower density.119 Despite the 

increasing evidence for phase synchronization of cells, these were limited to N. crassa cells that 

were prohibited from growing.  

 

Hence, we continued the exploration of cell synchronization by permitting hyphal growth 

with sufficient media. The chip (Fig. 2.1) was designed to allow precise control of the cellular 

environment with a fixed media flow rate. We demonstrated the existence of clocks for 

individual hyphae in a microfluidic chip (Table 2.3 and Fig. 2.10). The width of the serpentine 

channel opening was determined to restrict the number of hyphae growing into channels. This 

allowed us to track single hyphae without much difficulty. We were able to observe clear 

oscillations that were comparable to luminescent bands tracked in race tubes4. An interesting 

result seen while tracking luminescence in race tubes is that the synchronization is seen over 

long distances 30-60 mm (Fig. 2.6). While velocities of cytoplasmic flow have been measured 

from 0.2-60 𝜇𝑚/s in N. crassa, this is still two orders of magnitude two slow to explain the 

synchronization on the scale of 30-60 mm. For example, for a small metabolite with radius 

13.05nm could travel no further than 313.2nm in a day to synchronize cells at the distance of 30-

60 mm120. To test whether advection could be an explanation to how they synchronize, we 

calculated the drift velocity (advection). As the advection rate was fairly low (2.316µm/min), 

presumably it is not fast enough to promote synchronization. The diffusion coefficient for 
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N.crassa gave us an estimation of the mean size of  nuclei to be 2.269µm (Fig. 2.10), which is 

comparable with prior measurements (1.40-3.40µm3 ).The average hyphal tip velocity was 

calculated to be around 7.9188µm/min, a factor of four faster than the drift nuclei velocity. 

 

Several hypotheses have been proposed for how cell synchronization would occur in this 

microfluidic chip. Previously, we presented experimental evidence that a chemical signal 

diffusing in the media would cause synchronization between cells119,123. In this scenario where 

cells are allowed to grow, the chemical signal could be travelling across the hyphae in one-

dimension.  As we have shown that there is a drift velocity within the cells (Fig .10), and the 

signal could be carried by advection within the hyphae as they elongate. There could be a switch 

between advection/diffusion as hyphal tip velocity varies at various points in the channel. An 

alternative hypothesis suggested is cell-to-cell contact results in synchronization to occur44,110. 

There is a possibility that stochastic intracellular noise independently plays a positive role in 

phase synchronization of cellular oscillators17,63. Another possible explanation for this 

phenomenon is the presence of cell cycle components that result in synchronized nuclear 

divisions in Neurospora124. There is a possibility that there is no sole hypothesis to explain cell 

synchronization. Further research should be conducted in the future to better identify which 

hypothesis is supported. This can be done by introducing cell perturbation systems 91,125-127, for 

example time-dependent cyclic perturbations or varying media flow diffused into the serpentine 

chip96. These can be carried out by making modifications to our current device.  

 

Our fluorescence trajectories demonstrated an interesting increasing trend in fluorescence 

intensity at the U-turn sections of the serpentine channel (Fig. 2.7). We hypothesize that these 
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could be a result of higher possibility of branching around the U-turns due to the device 

geometry. There have been studies using time-lapse live cell imaging of N. crassa in maze like 

microfluidic structures to observe how constraining geometries determine fungal growth128. They 

observed a hit & split phenomenon that would occur instantly after the contact between a hypha 

and a constraining structure. Recently, a report was made that N. crassa is considered to be a 

fast-growing fungus that possesses the ability to cover new available nutrient-rich space129. 

However, when placed in spatially confined areas with obstacles, this may cause multiple new 

polarity axes to form, resulting in branching to occur129. An alternative hypothesis is the 

possibility of a change in the diffusion rate for hyphae growing in the U-turns. A decrease in the 

diffusion rate may allow branching to occur more frequently around the curved area of the 

channel compared to straight channels. To test these hypotheses, a microfluidic chip with 

varying geometries can be fabricated parallel to each other on the same device for simultaneous 

tracking.  

 

Conclusion 

 This study illustrates how a high-throughput serpentine chip was fabricated to 

demonstrate the existence of cellular clocks in individual hyphae, the dominant life stage of 

filamentous fungi. Hyphae within the device are also phase synchronized with respect to their 

individual hyphal clocks. The device used provides multiple serpentine channels to facilitate 

controlled hyphal growth of N. crassa. Trapped hyphae successfully grew and elongated across 

the serpentine channels. Th resultant hyphae grew down narrow growth channels that enabled 

measurements on their fluorescence intensities.  Since there is a possibility that clock 

communication may occur thorough phase, a new microfluidic device needs to be fabricated to 
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allow hyphae that are entrained at different phases to synchronize with each other. This is the 

first report of the existence of cell clocks in growing individual hyphae with a supporting hyphal 

clock model. The platform has the potential to aid us in our understand of the growth process of 

N.crassa and other fungal species, and provides a broadly applicable research tool to introduce 

perturbations for cells to study fundamental processes, such as the clock.. 

 

Materials and Methods 

 Fluorescent strains.  

 For observation of the clock strain bd,ccg-2P:mCherry was used3 (MFNC9), where ccg-

2P: mCherry denotes a clock-controlled gene-2 Promoter region (ccg-2P) fused in frame with a 

mCherry recorder.  For observing nuclei the fluorescent strain mat A his-3+::Pccg-1-hH1+-sgfp+ 

118 (N2218-3 ) was used.   

 

 Microfluidics Device design and fabrication.   

 The microfluidic device (Fig. 2.12) contains a cell loading channel with an inlet to load an 

agar plug, one medium loading channel, and 106 serpentine regions.  The serpentine channels 

resemble those in other devices to allow hyphae to grow several days95,130 within the device. The 

device features channels of two varying heights, where the medium loading channel (30 µm), and 

serpentine regions (15 µm) were fabricated with two photomasks. The device consists of four 

inlets, one inlet to deliver media, a medium outlet while the other two have plugs attached to ensure 

a constant flow of media across the serpentine channels, as well as xx serpentine growth channels. 

The 15 µm serpentine regions were added with SU-8 3010 (MicroChem, Westborough, MA). The 

second step was to have 30 µm medium loading channel fabricated with SU-8 2025 (MicroChem, 
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Westborough, MA).  The channel heights were measured by a profilometer (Veeco Instruments, 

Chadds Ford, PA). Prior to PDMS casting, the fabricated master mold was vapor covered with 

(tridecafluoro-1,1,2,2-teterahydroctyl) trichlorosilane for 15 minutes and subsequently heated to 

120°C for 10 minutes. The  microfluidic device were built with PDMS (10:1 w/w) by a standard 

PDMS replica molding technique131. Polydimethylsiloxane (Dow Corning, Midland, MI) were 

poured onto the silicon wafer, baked at 80°C for 2 hours, and bonded on a glass slide to produce 

the final device.  

 

 

Fig. 2.13. Microfluidic platform that was used to track hyphae growth. Serpentine 

microfluidics device allows observation on 1-95 hyphae over 6 days.  (b)The channel for hyphae 

growth is 16 microns wide and 198,241 𝜇m long.  The dimensions of the serpentine channel 

were chosen to accommodate only a few hyphae. A hypha can range from 8-15 𝜇m118.  (c) A 
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photo of the serpentine chip. The dimensions of the device are 65500 𝜇m x 20150 𝜇m and 

features 95 parallelized serpentine channels. A cell inlet port with a 2 mm diameter is located in 

the middle of the larger medium inlet channel. (d)  Visualization of a N.crassa strain N2218-3 

expressing a histone H1-GFP growing along the serpentine channels. 

  

 Inoculation of agar plug and hyphae growth into serpentine microfluidics device.  

 In a typical procedure, all microfluidic channels were initially primed with 0.1% glucose 

media to ensure the reduction of bubbles. The agar plug that was prepared is placed in the middle 

inlet and sealed with a 3D printed plug. A 3 mL syringe with 0.1% glucose media was constantly 

perfused into the medium infusion channel throughout the time lapse experiment. The waste 

outlet was connected to a conical tube to collect excess medium. The device was then placed 

under constant light exposure (5370 lux) for at least 2 hours before placing in the dark for 

imaging. Hyphal growth generally started occurring after a period of 6 hours until they begin to 

grow into the nearest serpentine channels. After required light exposure, system was placed on 

the stage microscope.  

 

 Image acquisition.  

 Live cell imaging was done with a CCD camera (AxioCam HRm, Carl Zeiss Microscopy, 

LLC, Thornwood, NY) to record the fluorescence intensity of the cells through a microscope 

(Axio Imager M2, Carl Zeiss Microscopy, LLC, Thornwood, NY) with a motorized x-y stage 

(Mechanical stage 75 × 50 R, Carl Zeiss Microscopy, LLC, Thornwood, NY) in a dark room. 

The excitation light used was guided through a filter set (Filter Set #61HE, Carl Zeiss 

Microscopy, LLC, Thornwood, NY) at 585/35 with emission at 645/60. Images were taken every 
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30 minutes with an exposure time of 1200ms. Images were stitched and exported as a 8-bit gray 

scale to accommodate for the large file size due to the length of the time-lapse experiment. Zeiss 

A2 inverted microscope was used to observe calcofluor labelling with the corresponding filters.  

 

 Processing of hyphal images.  

 Fluorescence images were tracked using a pipeline built with CellProfiler. Images were 

first converted to 8-bit files and cropped based on the segments to analyze to accommodate for 

the processing time as well as the size the software can handle. For each experiment, custom 

Python codes were written to extract required data. Data were then exported to MATLAB. 

Custom MATLAB scripts were utilized to produce periodograms or fluorescence trajectory 

plots. Each fluorescence trajectories were detrended17 with a 24-hour moving average. Their 

periodograms were computed. 

 

 Processing of race tube time lapse movie.  

 The race tube data on FRQ-luc-I were downloaded for Supplemental Movie File 4 at 

https://ec.asm.org/content/7/1/28/Fig.s-only4.  A python program(vti) was written to convert the 

video to an image sequence, which was then processed as with the hyphae images.  

 

 Measuring signal to noise ratio. 

  The estimated mean amplitudes of signal and noise from the experimental data were 

applied to calculate the signal-to-noise ratio for the fluorescent intensity signals of hypha and 

race tube data. The built-in smooth function in MATLAB was applied to the original 

experimental data to estimate the signal, and the window size of the smooth function was 2.5 

https://ec.asm.org/content/7/1/28/figures-only
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hours. The mean amplitude was calculated using the first three days of signal data. Then the 

noise was estimated by taking the absolute values of the differe1nce between the original data 

and the estimated signal. Then the mean amplitude of the noise was calculated using the first 

three days’ noise data. The signal-to-noise ratios of the hyphae’s’ fluorescent intensity signals 

were then calculated by using the mean amplitudes of signal divided by the mean amplitude of 

noise. 

  

 Generation of white noise for Kuramoto K calculation.  

 The noise model generates 127 trajectories, and each trajectory would have 480 data 

points.  All initial values of the trajectories are set to 0, and for each corresponding step, white 

noise is added to the trajectory respectively. The trajectories were detrended with a 24-hour 

moving average over time (Supplementary Fig S7).  The synchronization was calculated among 

the trajectories and Kuramoto K is 0.53. 
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CHAPTER 4 

IN VIVO METABOLOMIC AND RNA PROFILING DATA SUPPORT AN AROMATIC 

ALCOHOL AS A QUORUM SENSNING SIGNAL FOR PHASE SYNCHRONIZATION OF 

THE CLOCK IN SINGLE CELLS OF NEUROSPORA CRASSA 
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Abstract. Recent experimental evidence supports the presence of a density-dependent metabolic 

switch in Ethanol production in a qa-x background in Neurospora crassa, providing a potential 

biochemical mechanism by which aromatic alcohols serve as quorum sensing signals for the phase 

synchronization of the biological clock. Here we test whether or not available RNA profiling and 

Continuous in vivo Metabolism-NMR data are consistent with the hypotheses that: (1) quorum 

sensing (QS) in Ethanol production is the mechanism in phase synchronization of the clock; (2) 

the QS signal is (are) an aromatic alcohol(s); (3) the gene (NCU03643) encodes the quorum 

sensing regulator.  Ensemble methods were used to fit this hypothesis successfully to RNA 

profiling and CIVM-NMR data in four experiments at high and low density in qa-x and Wildtype 

genetic backgrounds.  In this way a detailed biochemical mechanism is put forward to explain the 

phase synchronization of clocks in single cells in N. crassa. 

 

Significance.   A fundamental problem in collective behavior is understanding the phase 

synchronization of cellular oscillators132.  This problem arises at the molecular level in a variety 

of contexts including in the origin of glycolytic oscillations in Saccharomyces cerevisiae77, in the 

spiking of CA++ signaling pathways38,39, in synchronizing hyphal clocks in cyanobacterial 

Anabena filaments110, and in the synchronization of cellular clocks in Neurospora crassa133. 

Using microfluidic measurements on single cells, the clocks in single cells31 of N. crassa  were 

shown to phase synchronize in a population of between 829-5198 cells through a hypothetical 

quorum sensing signal with a maximum radius of 13.05 nanometers133.  This phase 

synchronization was also shown to be density-dependent133.  The challenge is understanding the 

biochemical basis of this quorum sensing behavior for phase synchronization of a population of 

cellular oscillators. 
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 One clue to the biochemical basis of quorum sensing in N. crassa came from using new 

Continuous In Vivo Metabolism-NMR or CIVM-NMR on classic mutants of the qa gene 

cluster94, which has been studied for over 60 years as a model of eukaryotic gene 

regulation72,134,135.  This gene cluster allows N. crassa to use quinic acid (QA) as a sole carbon 

source134. There are 7 genes in this cluster tandemly arrayed in a 17.5 kilobase stretch near the 

centromere on linkage group VII136,137, but there is still one member of this cluster, the qa-x 

gene, for which there is no known function138.  Its only known phenotype is the accumulation of 

a pink-brown color in the media139,140.  Using CIVM-NMR, the function of qa-x was uncovered 

– the qa-x mutant yielded a block in metabolism with an accumulation of homogentisic acid 

(HGA), as in alkaptanuria patients141.  This block occurs downstream of Tyrosine degradation 

(Fig. 3.1). The qa-x mutant also readily displayed an interesting density dependent biochemical 

switch from Ethanol consumption at low cell density to Ethanol production at high cell 

density141.   

 

Aromatic alcohols have been implicated in quorum sensing in S. cerevisae92 and occur 

upstream of HGA (Fig. 3.1). With the block below HGA in a qa-x mutant, the flux around the 

aromatic alcohols would suggest Tyrosol should accumulate as the organism grows.  The 

implication is that Tyrosol could be utilized as a quorum sensing signal for the metabolic switch, 

allowing the switch from Ethanol consumption to production at higher density.  This is the 

hypothesis put forward141.  Based on this hypothesis a biochemical mechanism for clock phase 

synchronization is that: (1) the quorum sensing signal (QS) for the switch in Ethanol production 

is Tyrosol accumulation141 and is the same quorum sensing signal for phase synchronization of 

cellular oscillators133; (2) Tyrosol is the hypothetical QS signal in the clock for phase 
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synchronization133 (Fig. 3.1); (3) the gene NCU03643 encodes the quorum sensing regulator135.  

We now test this biochemical mechanism with both transcriptional profiling data on the qa 

cluster72 and CIVM-NMR data on central metabolism in N. crassa94. 

 

 

Fig. 3.1.  Metabolic model with allosteric clock regulation.  Across the top are the qa cluster genes 

under the control of the QA-1F transcription factor and QA-1S repressor (in blue). Additionally 

the NCU0343 encoded activator (in grey) is under QA-1F transcriptional control135. QA 

metabolism is in orange.  Aromatic amino acid metabolism is in orange.  QA pathway entry into 

the TCA cycle is in green. Quorum sensing regulation is in grey. Fermentation is in grey.  Boxes 

denote reactants and products. Circles denote reactions.  A double arrow indicates a catalytic step, 
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not reversibility of the reaction. Inactive genes, active genes, mRNAs, and proteins are denoted by 

gene0, gene1, gener, and GENE respectively.  There are 16 measured metabolites, and all mRNAs 

are measured by Northerns72. Measured species have a thicker border. 

 

Model 

The genetic network consists of the qa gene cluster and cognate mRNAs and proteins (in 

blue) and parts of metabolism under qa cluster control, including aromatic amino acid 

biosynthesis and degradation (in orange), glycolysis (in orange), TCA cycle (in green), and 

fermentation (in grey)135. Embedded in this network is a quorum sensing mechanism controlling 

the switch between Ethanol production to and from Ethanol Consumption. Key components 

include a regulator (NCU03643) and a quorum sensing signal (in grey)41. 

 

  Quorum sensing has been hypothesized to be a mechanism for the synchronization of 

cellular clocks in a mammalian system without and with noise45,48.  The model for the 

biochemical mechanism by which N. crassa synchronizes the clocks in different cells is also a 

quorum sensing model133 (Fig. 3.1). The mean field assumption about the action of the quorum 

sensing signal48 is supported experimentally with data from  a “big chamber” microfluidic device 

– the signal diffuses uniformly and instantaneously within the device133.   In the quorum sensing 

component  of the model (in grey in Fig. 3.1) the signal is taken as Tyrosol92 and the quorum 

sensing regulator as the protein encoded by NCU03643135 in the grey region controlling 

fermentation (Fig. 3.1).  The immediate phenotype of quorum is Ethanol consumption or 

production at low and high density, respectively.  The transcription factor NCU03643 is under 

the control of the qa gene cluster135. The transcription factor encoded by NCU03643 or QA-1F 
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regulates a putative alcohol dehydrogenase (NCU03415) in N. crassa135, which potentially 

connects NCU03643 to the ethanol switch. 

 

The model also explicitly incorporates the genetic network of the qa gene cluster because 

the qa-x mutant is more sensitive to density than Wildtype (WT)141 and because the hypothesized 

quorum sensing regulation is directly or indirectly (through NCU03643) under the control of the 

qa gene cluster135 through its linkage to aromatic amino acid metabolism. One of the components 

in this metabolic network includes the qa cluster genes and their corresponding mRNA and 

protein products in blue (Fig. 3.1). A genetic network for the qa cluster has been developed 

previously72,135 

 

The qa gene cluster is strongly linked to aromatic amino acid metabolism in orange (Fig. 

3.1).  For example, the QA-2 enzyme converting Dehydroquinate (DHQ) to Dehydroshikimate 

(DHS) can functionally substitute for that of AROM-9 in aromatic amino acid biosynthesis142.  

So, aromatic amino acid biosynthesis and degradation are included in this metabolic component 

of the model (Fig. 3.1). All of the other products have a known function except the protein QA-

X.  There is only one unknown step in the pathway after HGA, and the associated enzymatic role 

is assigned to QA-X in the model (Fig. 3.1). 

 

In that fermentation provides the phenotype in quorum sensing141 and in that QA 

metabolism is linked to glycolysis, fermentation, and the TCA cycle135, the TCA cycle (in green) 

and Glycolysis (in orange) are included as well (Fig. 3.1).  The in vivo CIVM NMR method 

provides the metabolic profiles in this network94.  Northerns provide mRNA profiles on the 
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products of the qa gene cluster72.  The metabolic components of the model are specified by 

CIVM-NMR measurements94 and the pathways, derived from BIOCYC143. 

 

Fig. 3.2 The Monte Carlo Experiment to fit the quorum sensing model to 1128 mRNA and 

metabolite measurements appears well equilibrated.  (a) 𝜒2  vs. sweep (i.e., a visit once on 

average to each parameter in the model) with the first 80 sweeps removed to show equilibration; 

(b) plot of Tyrosol signal production rate (C29) and Ethanol production rate ((R3) vs. sweep as a 

control on equilibration of Monte Carlo Experiment) . (c) Observed and predicted trajectories of 

Ethanol at low density in qa-x and WT. (d) Observed and predicted trajectories of Ethanol at 

high density in qa-x and WT. Dots indicate CIVM NMR data; solid lines indicated expected 



 

96 

trajectories of Ethanol. The plots were created in MATLAB_R2020B 

(https://www.mathworks.com/products/matlab.html). 

Alternative models are diagrammed is supplementary Fig. S3.1-S3.3. 

 

Results 

 A quorum sensing model with Tyrosol as the quorum sensing signal was successfully 

fitted to both RNA profiling and in vivo metabolomic data on the clock. 

 In order to determine whether or not the quorum sensing model is supported, the model 

was fitted to both RNA profiling72 data and CIVM NMR data141 on the clock on the macroscopic 

scale133 using ensemble methods72 (Fig. 3.2). 

 

 The RNA profiling data were acquired by Northerns– the result was 8 time points on 

each of the mRNAs of 6 qa cluster genes for WT.  The real time metabolic data was acquired by 

CIVM-NMR on 6 metabolites, yielding 30 time points on annotated metabolites in 2 distinct 

genotypic backgrounds (WT, qa-x) each at both high and low density for a total of 1128 data 

points in four independent experiments. 

 

 The entire genetic network was fitted by ensemble methods72,144 using the same rate 

constants for all four experiments simultaneously at low and high density in a qa-x mutant and 

wildtype (WT) background.  The challenge of fitting genetic networks to omics data is having 

limited data, but many parameters in the network117.  To overcome this problem the solution 

proposed by Boltzmann was NOT to fit one model78, but to identify an ensemble of models 

consistent with available data80. Averaging over the fitted models in the ensemble is used to 

https://www.mathworks.com/products/matlab.html
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make predictions about system dynamics (Fig. 3.2c-d)).  This approach was first introduced into 

systems biology in the context of the qa cluster and later on the clock in N. crassa72,144. 

 

 A Monte Carlo Experiment was carried out to fit the genetic network in Fig. 3.1 by 

ensemble methods144 to the data on four experiments involving WT and qa-x at high and low 

density (Fig. 3.2c-d) (see Materials and Methods).  The ensemble is well equilibrated after 300 

sweeps (i.e., the number of Monte Carlo steps taken to visit on average each parameter once), in 

which the chi-squared statistic drops to 844.38 or 844.38/1128 = 0.7486 chi-squared per data 

point, much better than in previous clock models117,144 (Fig. 3.2a). One common set of rate 

coefficients (Table S31.1) were successfully fitted to all four experiments in a qa-x and WT 

background at high and low density.  Only initial conditions varied between experiments.  Key 

parameters, such as the rate of production of the Tyrosol signal (C29) and the rates of production 

of Ethanol (R3) of the cell (Fig. 3.2b) appear well equilibrated.  The model well predicted the 

Ethanol switch at low and high densities with Ethanol consumption predicted at low density and 

ethanol consumption predicted at high density. The Ethanol concentration showed the metabolic 

switch at low and high densities in both model and experiment (Fig. 3.2c-d). There is a striking 

difference in the production response at high density in qa-x and WT - in qa-x production of 

Ethanol is sustained over 10 hours and in WT production of Ethanol is sustained only over 1 

hour (Fig. 3.4D). 
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The quorum sensing model fitted to available data displays an Ethanol metabolic 

switch, a switch on in the quorum sensing regulator from low to high density and the 

accumulation of HGA in the qa-x mutant.  

There are several results that must be accommodated by the model to fit the available 

data: (1) the CIVM data displaying a metabolic switch from Ethanol consumption to Ethanol 

production from low to high density; (2) the quorum sensing regulator (e.g., Tyrosol) turning on 

at high density to power the metabolic switch (Fig. S3.4); (3) a qa-x mutant displaying an 

accumulation of HGA to generate the rise in aromatic amino acids and aromatic alcohols.  

  

The model displays all of these behaviors as well as an excellent fit to the measured RNA 

profiles (Fig.3) and metabolic trajectories (Fig. 3.4) – measured dynamics are well predicted by 

the model (Fig. 3.1). Most of the data points fall within two standard errors of the fitted 

trajectories. 

 

The RNA profiling has the qa cluster mRNAs tracking the observed profiles of the 6 qa 

cluster genes as found in previous work72,135.  Their tends to be a maximum in expression 

between 2-4 h after shift from sucrose to QA media in both model and experiment.  This portion 

of the genetic network provides control not only of carbon metabolism but also the production of 

the hypothesized quorum sensing regulator under QA control (NCU03643). 

 

The model also has a metabolic component derived from BIOCYC143.  The carbon source 

(QA) is being consumed (Fig. 3.4b) at low density.  Ethanol is also being consumed at low 

density as well.  Tyrosine and phenylalanine are at low levels (Fig. 3.4d-e) initially. 
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At high density the system switched its behavior by producing Ethanol (Fig. 3.5c) in 

contrast to Fig 3.4c.  There was also an increase in the two aromatic amino acids (Fig. 3.5 e-f) 

that was indicative of what may be happening to the hypothesized quorum sensing signals, the 

aromatic alcohols, that were below signal detection by CIVM-NMR.  Downstream of tyrosine 

degradation is also seen the accumulation of Homogentisic acid (HGA) due to the probable block 

by qa-x (Fig. 3.1), although the metabolic trajectory of HGA predicted is a little off in its trend 

from that observed.  The model is both qualitatively and quantitatively consistent with Fig. 3.1 

being the quorum sensing mechanism for clock phase synchronization.  
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Fig. 3.3 The RNA profiles of the qa gene cluster are well fitted by the quorum sensing model for 

all for experiments on the qa-x mutant at low (a) and high density (b). Northern RNA profile of: 

(i) qa-1F encoding a transcription factor ; ii) qa-2 encoding a quinate dehydrogenase ; (iii) qa-3 

quinate dehydroquinase ; (iv) qa-4 encoding a 3-dehydroshikimate dehydratase; (v) qa-y 

encoding a QA permease; (vi) qa-x.  The dash-dotted (-.-.-) lines indicated 95% confidence 

intervals about the fitted trajectories.  The plots were created in MATLAB_R2020B 

(https://www.mathworks.com/products/matlab.html). 

https://www.mathworks.com/products/matlab.html
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Fig. 3.4.  The observed metabolic profiles by CIVM-NMR (dotted lines) for 8 metabolites in a 

qa-x mutant at low density are well fitted by the quorum sensing model (solid lines) (null 

hypothesis) in Fig. 3.1 for: (a) alanine; ( b) QA; (c) Ethanol; (d) phenylalanine; e) tyrosine; (f) 

Homogentisic Acid (HGA); (g) glutamate; (h) fumarate.  Model trajectories are an ensemble 

average.  The plots were created in MATLAB_R2020B 

(https://www.mathworks.com/products/matlab.html). 

https://www.mathworks.com/products/matlab.html
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Fig. 3.5.  The observed metabolic profiles from CIVM-NMR (dotted lines) for 8 metabolites in a 

qa-x mutant at high density are well fitted by the quorum sensing model (solid lines)  (null 

hypothesis) in Fig. 3.1 for: (a) alanine; ( b) QA; (c) Ethanol; (d) phenyalanine; e) tyrosine; (f) 

Homogentisic Acid (HGA); (g) glutamate; and (h) fumarate.  The model trajectories represent 

ensemble means.  The plots were created in MATLAB_R2020B 

(https://www.mathworks.com/products/matlab.html). 

https://www.mathworks.com/products/matlab.html
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Fig. 3.6. The RNA profiles (dotted lines) for the qa cluster genes in WT are well fitted by the 

null hypothesis of the quorum sensing model (solid lines) by the same rate coefficients at (a) low 

and (b) high density as in Fig. 3.3.  The fitted trajectories represent ensemble means.  The plots 

were created in MATLAB_R2020B (https://www.mathworks.com/products/matlab.html). 

 

Fig. 3.7.  The metabolic profiles from CIVM-NMR for 8 metabolites in WT at low density are 

well fitted by the quorum sensing model (Fig. 3.1).  Dotted lines are the CIVM-NMR 

trajectories, and solid curves are fitted ensemble means of the CIVM-NMR trajectories.  The 

plots were created in MATLAB_R2020B (https://www.mathworks.com/products/matlab.html). 

 

 

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html


 

105 

 

Fig. 3.8.  The metabolic profiles from CIVM-NMR for 8 metabolites in WT at high density are 

well fitted by the quorum sensing model (Fig. 3.1).  Dotted lines are the CIVM-NMR 

trajectories, and solid curves are fitted ensemble means of the CIVM-NMR trajectories.  The 

plots were created in MATLAB_R2020B (https://www.mathworks.com/products/matlab.html). 

 

 The quorum sensing model is less sensitive to density in WT than in qa-x 

The behavior of the metabolism of Ethanol is quite different in WT than in a qa-x 

background (Fig. 3.7-8).  At low density there is little change in Ethanol.  At high density the 

increase is slight and is sustained for about an hour.  The Ethanol switch is greatly diminished in 

WT.  Tyrosol only appears to increase in the qa-x background at high density and not in WT 

(Fig. S3.4). 

https://www.mathworks.com/products/matlab.html
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HGA also does not accumulate without the QA-X metabolic block present. Without the 

HGA block it likely there is not sufficient accumulation of the quorum sensing signal.  The 

system is then not sensitive enough to detect the density differential. 

 

 Testing that QA-X is a structural enzyme vs. a regulator of structural enzymes 

below HGA. 

The function of qa-x is unknown, but the block at HGA suggests that it is a particular 

gene encoding a metabolic step below HGA (Fig. 3.1)141.  An alternative hypothesis is its only 

annotation as a inositol monophosphatase145.  The RNA profiling and CIVM-NMR can be used 

to test one hypothesis against the other (Fig. 3.9). 

 

Under the null hypothesis the qa-x is a structural gene HGA (Fig. 3.1). Under the 

alternative hypothesis it is a regulator.  Both models were identified by ensemble methods (see 

Materials and Methods). 

 

The resulting histograms of the chi-squared statistics across each ensemble associated 

with each hypothesis suggest that both hypotheses are consistent with the available RNA 

profiling data and CIVM-NMR data.  Neither hypothesis can be eliminated as indicated by the 

overlapping chi-squared statistic histograms. 
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Fig. 3.9.  The RNA profiling data and CIVM-NMR data are consistent with qa-x being a 

structural gene in QA metabolism as in Fig. 3.1 or as an alternative regulator of QA metabolism. 

The two hypotheses are compared by the overlapping chi-squared distributions across two 

ensembles under each of these hypotheses.  The plots were created in MATLAB_R2020B 

(https://www.mathworks.com/products/matlab.html). 

 

 Testing that the quorum sensing signal is tyrosol vs. tryptophol or phenylethanol. 

 In Candida albicans the aromatic alcohols, Tyrosol and Farnesol, are both quorum 

sensing signals146.  In S. cerevisiae both Phenylethanol and Tryptophol are quorum sensing 

signals92.  It is reasonable to test whether or not Tyrosol or the other two aromatic alcohols in 

Fig. 3.1 are quorum sensing signals as the block in HGA, for example, leads to their 

accumulation.  Each hypothesis (networks available for the alternative hypotheses in Fig. S3.1-

https://www.mathworks.com/products/matlab.html
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3.3) was fitted by the ensemble method, and chi-squared statistics on ensembles from each of the 

three hypotheses were constructed (Fig. 3.1). All three hypotheses were consistent with available 

RNA profiling and CIVM-NMR data from 4 experiments and overlapping (Fig. 3.3). Anyone of 

the aromatic alcohols or a combination could be the quorum sensing signal(s). 

 

 

Fig. 3.10.  There is little to distinguish among aromatic alcohols as a quorum sensing signal 

based on the overlapping chi-squared distributions across the ensembles for each hypothesis with 

the signal being: (T) Tyrosol (null hypothesis); (Tr) Tryptophol; or (P) Phenylethanol.  The plots 

were created in MATLAB_R2020B (https://www.mathworks.com/products/matlab.html). 

  

 

 

https://www.mathworks.com/products/matlab.html
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Discussion 

 In  previous work we have provided evidence for a quorum sensing signal with a radius 

of no more than 13.05 nm for phase synchronization of the biological clock in Neurospora 

crassa using microfluidics133; moreover, we have shown that there is a classic density dependent 

response of phase synchronization of single cell oscillators that is associated with a hypothetical 

quorum sensing signal associated with the clock133.  More recently by using CIVM-NMR a 

classic metabolic mutant qa-x140 was associated with density-dependent switch in Ethanol 

production141.  The hypothesis here is that these two quorum sensing mechanisms are one and the 

same. 

 

Having shown quorum sensing in the phase synchronization of the clock, it is natural to 

ask what the biochemical mechanism is by which quorum sensing is achieved in the phase 

synchronization of cellular clocks to produce a clock on a macroscopic scale of tissues and the 

whole organism.  One clue to such a biochemical mechanism comes from the application of 

CIVM-NMR in real time to living N. crassa cells. 

 

Metabolic trajectories provide further clues to the identity of the metabolic signal.  The 

fact that a density dependent switch in Ethanol production and consumption exists in qa-x 

background suggests what metabolites could act a quorum sensing signal. 

 

The block in HGA generated by qa-x would imply an accumulation of aromatic alcohols 

as an indicator of growth (Fig. 3.1). Such a mechanism has been demonstrated in other fungi, 

such as C. albicans146 and S. cerevisiae92. To test this hypothesis a biochemical model was 
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developed and fitted by ensemble methods to RNA profiling and CIVM-NMR and was self 

consistent with the hypothesis that Tyrosol was the quorum sensing signal.  In fitting this model, 

only one set of rate coefficients were needed to explain all 4 experiments on qa-x and WT at high 

and low density. 

 

There were limitations in this conclusion.  The ability to distinguish a regulatory role for 

qa-x or a role as a structural gene could not be distinguished.  The Monte Carlo experiments 

suggest the next round of experiments to isolate the QS signal.  In previous work activity-guided 

fractionation147 was used to isolating the mating pheromone in Canerohabditis elegans148 .  An 

assay for activity-guided fraction has been developed141.  The assay involves using media 

conditioned by cells at high density to treat cells grown at low density and observing the 

production of Ethanol.  This simple assay is to be applied repeatedly to fraction libraries to 

isolate the signal to confirm whether or not the quorum sensing signal is a particular aromatic 

alcohol or set of aromatic alcohols92. 

 

Conclusion 

 A detailed biochemical mechanism was developed to explain the phase synchronization 

of a population of cellular clocks by quorum sensing in N. crassa.  The mechanism involves an 

aromatic alcohol as the quorum sensing signal and gene NCU03643 as the quorum sensing 

regulator141.  The model is consistent with both RNA profiling data on the qa gene cluster linked 

to aromatic amino acid synthesis as well as real time CIVM-NMR data94 on living cells of N. 

crassa.  The fitted model predicts that one or more aromatic alcohols may be the quorum sensing 
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signal, a prediction that can be tested by activity-guided fractionation147 using media conditioned 

by cells grown at high density141 

 

Materials and Methods 

Model 

The full genetic network is specified in Fig. 3.1, and a script specifies the detailed system

 of ODEs (supplement S1) in MATLAB_R2020B (https://www.mathworks.com/products/matlab

.html). 

 

Quantification of RNA profiles and Metabolic Features 

The RNA profiling data were acquired by Northerns using RNA isolated by shifting 

liquid cultures from 1.5% sucrose to 0.3% quinic acid in Fries media72 – the result was 8 time 

points on each of the mRNAs of 6 qa cluster genes.  The same RNA profile is used for both the 

qa-x and WT background with the exception of qa-x itself.   

 

Time-series metabolism was recorded by CIVM-NMR94 and extracted by RTExtract149. 

Compound annotation followed the original CIVM-NMR publication, and ridges were selected 

for quantification94. The absolute quantification was computed though quinic acid concentration 

at the start time point and based on extracted ridge intensities. More details on data processing 

and feature extraction can be found here150. The real time metabolic data was acquired by CIVM-

NMR on 6 metabolites, yielding 30 time points on annotated metabolites in 2 distinct genotypic 

backgrounds (WT, qa-x) each at both high and low density for a total of 1128 data points in four 

independent experiments. 

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html


 

112 

Calculating phase 

To  calculate the phase for a fluorescent series x(t), first the Hilbert transform �̃�(𝑡) =

 𝑃𝑉 
1

𝜋
∫

𝑥(𝜏)

𝑡−𝜏

∞

−∞
𝑑𝜏 was computed from the Fast Fourier Transform102 of x(t). The Hilbert phase 

𝐹𝐻(𝑡) is defined as the phase angle between the Hilbert Transform �̃�(𝑡) and x(t) by 𝐹𝐻(𝑡) =

 𝑡𝑎𝑛−1 (
�̃�(𝑡)

𝑥(𝑡)
)  𝑡o avoid discontinuities in the phase angle at 𝜋 and -𝜋, the Hilbert phase was 

continuized to 𝐹𝐶(𝑡). The continuization was done recursively through the relation: 𝐹𝐶(𝑡 + 1) =

𝐹𝐶(𝑡) + 𝑚𝐶(𝑡)2𝜋, where at each step the argument m was chosen to minimize: 𝐷𝑓𝑚 =

|𝐹𝐻(𝑡 + 1) − 𝐹𝐶(𝑡) + 2𝜋𝑚|. With the continuized Hilbert Phase 𝐹𝐶(𝑡), the phase is defined 

by: 𝑀𝐶 =
⌊𝐹𝐶(𝑡1)−𝐹𝐶(𝑡0)⌋

2𝜋
 in units of cycles. An accessible description of these phase measures and 

code to calculate them in MATLAB are available62 with associated MATLAB in GitHub. 

 

Ensemble Methods 

The quorum sensing and cell-to-cell contact models specifying the ODEs in (1)-(23) were 

identified using a Metropolis-Hastings updating scheme65. Proposed solutions during the Markov 

Chain Monte Carlo (MCMC) were with an Adaptive Runge-Kutta solver. The equilibration stage 

involved 300 sweeps.  The accumulation phase involved 300 sweeps. 

 

The data sets generated during the current study are available from the corresponding 

authors on reasonable request. 
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CHAPTER 5 

CONCLUSION 

 As a summary, by applying a method that combines numerical simulations with 

controlled laboratory experiments, we have addressed the previous three questions that are raised 

in the introduction.  

 

 First, to have a better understanding of how single cells communicate to overcome their 

stochasticity and synchronize their circadian rhythm with each other, a “big chamber” 

microfluidic experiment as well as a microfluidic experiment were designed to demonstrate that 

communication existed among cells. At the macroscopic limit (~150,000 cell), there was a high 

degree of phase synchronization between cells in the artificial tissue. In the microwell 

experiment, the ability to isolate single cells in individual wells showing phase synchronization 

provided strong evidence for the quorum sensing hypothesis and some information about the 

communication parameters that quantitate quorum sensing. Using the microwell devices, the 

collective behavior of synchronization was shown to be density-dependent and hence a quorum 

sensing behavior. While conidial cells are relatively easy to manipulate, a remaining challenge is 

the study and manipulation of the filamentous stage in the fungal syncytium with microfluidic 

devices95-98. It is very likely that by considering other life stages in the fungal syncytium, other 

mechanisms of cellular communication will be uncovered and found to be involved in the phase 

transition to synchronization of cellular oscillators. 
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 In addition, to fill the knowledge gap of how growing cells communicate and synchronize 

their circadian rhythm with each other, a microfluidic chip with serpentine channels was 

fabricated to demonstrate the existence of cellular clocks in individual hyphae, the dominant life 

stage of filamentous fungi. Hyphae within the device are also phase synchronized with respect to 

their individual hyphal clocks.   Since there is a possibility that clock communication may occur 

thorough phase, a new microfluidic device needs to be fabricated to allow hyphae that are 

entrained at different phases to synchronize with each other. 

 

 Finally, to answer the questions that what the signaling molecule is that single cells use to 

communicate with each other and how the signaling molecule affect the clock, a detailed 

biochemical mechanism was developed to explain the phase synchronization of a population of 

cellular clocks by quorum sensing.  The mechanism involves an aromatic alcohol as the quorum 

sensing signal and gene NCU03643 as the quorum sensing regulator141.  The model is consistent 

with both RNA profiling data on the qa gene cluster linked to aromatic amino acid synthesis as 

well as real time CIVM-NMR data94 on living cells of N. crassa.  The fitted model predicts that 

one or more aromatic alcohols may be the quorum sensing signal, a prediction that can be tested 

by activity-guided147 fractionation using media condition by cells grown at high density141. 
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APPENDICES A 

Supplementary Materials for  

The macroscopic limit to synchronization of cellular clocks in single cells of Neurospora crassa  

 

Table S1.1 The rate constants for the quorum sensing (column 3)  are similar to isolated single 

cells1 (column 2) and those at the macroscopic limit of 107cells per ml2 (column 4) 

Parameter Initial 

Parameter 

values from 

published 

ensemble 

(column 4) 

computed by 

Parallel 

tempering for 

D/D experiment1 

Best parameter 

values from model 

ensemble 

computed by 

microwell D/D 

experiment under 

quorum sensing 

model 

Initial Parameter 

values from 

published 

ensemble (column 

3) computed by 

Parallel tempering 

for D/D 

experiment2 

Number of 

communicating cells 

1  240 ~107 cells/ml 

A 2.56E−10 6.852861E-03 0.0313 

Ā 1.589532708 1.013056E-01 0.1108 

S1 80.12566921 3.352361E+01 0.000420 

S3 0.400641074 1.708023E-03 5.47E-5 

S4 8,316.020583 1.932607E+01 1.252 

D1 1.294999006 1.195490E+00 6.607 

D3 4.382612039 1.855057E+00 0.798 

C1 0.000932789 1.685434E-03 1.047 
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L1 4.777735371 4.268960E+01 94.39 

L3 0.665600817 5.283324E+00 63.93 

D4 0.08474029 5.428893E-01 0.00451 

D6 0.193685712 5.775316E-01 0.205 

D7 2.130911791 4.301660E-02 0.135 

D8 0.007744621 6.586861E-05 0.0122 

C2 1.515554675 3.583455E+00 3.322 

P 2.72E−09 9.845228E+01 0.2233 

Ac 1.86E−08 1.109814E+01 0.1293 

Bc 2.581096866 9.345902E-01 0.6091 

Sc 61.51499414 1.458434E-03 2.572 

Lc 1.61524392 1.256038E-08 3.664 

Dcr 0.150810052 6.049845E+01 0.579 

Dcp 0.54063952 3.940957E-01 0.5536 

KS1 -- 4.612788E+09 -- 

C4 -- 2.646258E+00 -- 

η -- 1.445784E-05 -- 

ηext -- 4.094524E-01 -- 

D9 -- 2.150455E+01 -- 

D10 -- 3.057320E-08 -- 
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Fig. S1.1 Mean single cell trajectories from the chamber microfluidic device tracked the whole 

field of view average intensity very well. The plots were created in MATLAB_R2020B 

(https://www.mathworks.com/products/matlab.html). 

 

  

  

https://www.mathworks.com/products/matlab.html
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Fig. S1.2 Average Phase of single cells tracks phase of a field of view across 10 fields of view in 

the big chamber device.  The strain is MFNC9 (see Materials and Methods). Cells were grown in 

media 5 (see Materials and Methods) to block cell division. Fluorescence was measured every 

half hour over 10 days. The plots were created in MATLAB_R2020B 

(https://www.mathworks.com/products/matlab.html). 

  

https://www.mathworks.com/products/matlab.html
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Fig. S1.3 While the phase curves do track each other, they also fan out over time.  The  Hilbert 

phase curves from single cell trajectories were computed as described earlier62.  (A) average of 

image (B) average of cells tracked. Single cell tracking was done with CellProfiler93.  The plots 

were created in MATLAB_R2020B (https://www.mathworks.com/products/matlab.html). 

 

  

https://www.mathworks.com/products/matlab.html


 

129 

 

 

Fig. S1.4 There is limited information about the diffusion parameters (𝜂 and 𝜂𝑒𝑥𝑡) for 

communication under the quorum sensing model as indicated by the chi-squared statistic surface 

as a function of 𝜂 and 𝜂𝑒𝑥𝑡.  For example, the surface is nearly flat with respect to 𝜂𝑒𝑥𝑡.  There is 

more information about 𝜂 – the surface increases sharply for 𝜂𝑒𝑥𝑡around ~20 or below. Other 

parameters are set at their best values with respect to the chi-squared statistic in supplement 

Table S1. The plots were created in MATLAB_R2020B 

(https://www.mathworks.com/products/matlab.html). 

 

 

 

 

 

 

https://www.mathworks.com/products/matlab.html
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APPENDICES B 

Supplementary Materials for 

The clock in growing hyphae and their synchronization in Neurospora crassa  

 

 

Figure S2.1. Numerical simulation of flow profiles within the channels using COMSOL 

Multiphysics software. (a) Simulated velocity flow profile in the whole serpentine chip shows 

constant flow of media. The right panel- color bar indicates the velocity.  (b) (Left) Magnified 

image of the simulated velocity flow profile in random selected serpentine channels. Flow is 
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present in the serpentine channel. (Right) Magnified image of the velocity profile at the 

sepentine inlet closest to the media flow.  

 

 

Figure S2.2. Fluorescence trajectories of three individual hyphal tips tracked. (a) Raw 

fluorescence trajectories of hyphal tip tracked over a period of 30 hours.  (b) Detrended 

fluorescence trajectories of hyphal trip tracked.(c)  The average periodogram of hyphal tips 

present a period of 15.75 hours.  
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Figure S2.3. Fluorescence trajectories of seven individual segments of hyphae in serpentine 

channels. (a-d) Top left graph show raw fluorescence trajectories of seven individual segments 

while the top right graph is the detrended trajectories that were carried out with a 24-hour 

detrending window. The bottom left graph is the average raw fluorescence trajectories while the 

bottom right graph is the average detrended trajectories. The corresponsing number of U-turns 

tracked for each graph is labelled in the image.  
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Figure S2.4. Fluorescence trajectories of four individual of hyphae in serpentine channels. (a) 

Raw fluoresence tracjectories of individual hypha growing in the channel (b) Detrended 

fluorescnece trajectories of four individual hyphae with a 24-hour detrending window. 

 

 

 

Figure S2.5. Image of luminescence band in a race tube4. Numbers labeled in the image 

correspond to the bands tracked over time in Fig 2.6.  
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Figure S2.6. Image of the segment (segment 2) consisting of six serpentine channels tracked to 

calculate Kuramoto K values in Table 2.2.  
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Figure S2.7. Hilbert phase151 of 127 trajectories of generated white noise for a period of 240h. 

Hilbert phase was plotted to calculate the Kuramoto (K) number. 
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APPENDICES C 

Supplementary Materials for 

In vivo metabolomic and RNA profiling data support an aromatic alcohol as a quorum sensing 

signal for phase synchronization of the clock in single cells of Neurospora crassa 

 

Table S3.1 The rate coefficients of the quorum sensing model as null hypothesis are tabulated. 

Ensemble means and ensemble standard errors are reported for each rate coefficient in Fig. 3.1.  

The means and standard errors are computed from the accumulation run of the Monte Carlo 

Experiment. 

qa cluster genes QA metabolic pathway 

reaction 

coefficient 
mean 

standard 

error 

reaction 

coefficient 
mean 

standard 

error 

P1 4.92E-19 5.56E-36 C1 2.39E-17 1.17E-17 

P2 5.27E-16 0.00E+00 C2 1.75E-16 4.33E-17 

Af 5.25E-01 0.00E+00 C3 3.46E-16 1.54E-16 

Afbar 8.07E+00 0.00E+00 C4 6.79E-03 6.20E-05 

Bf 8.17E+00 0.00E+00 C5 1.93E-24 3.54E-25 

Sf 2.41E+01 0.00E+00 C6 1.46E-19 4.28E-20 

Sfw 1.17E-22 1.36E-39 C7 2.89E-29 9.40E-30 

Lf 1.29E+00 1.28E-17 C8 5.75E-05 1.04E-05 

As 1.65E-01 1.60E-18 C9 1.71E-33 3.38E-34 



 

138 

Asbar 3.56E-20 3.48E-37 C10 2.78E-10 4.97E-11 

Bs 2.13E-17 0.00E+00 C11 6.24E-17 2.16E-17 

Ss 1.84E+01 0.00E+00 C12 1.49E-11 4.15E-12 

Ssw 2.92E-21 2.17E-38 C13 2.60E-04 3.88E-07 

Ls 2.89E+00 5.13E-17 C14 7.25E-03 2.06E-05 

Ay 7.25E-01 1.28E-17 C15 2.38E-02 2.01E-04 

A3 6.26E-20 0.00E+00 C16 2.25E-03 1.91E-04 

A2 1.11E-22 1.36E-39 C17 1.77E-07 4.38E-08 

A4 1.97E-21 0.00E+00 C18 4.13E-10 8.01E-11 

Ax 1.28E-20 1.74E-37 C19 6.09E-02 4.74E-05 

Aybar 1.16E-23 1.70E-40 C20 2.70E-16 7.29E-17 

A3bar 5.30E-01 0.00E+00 C21 7.29E-01 2.27E-04 

A2bar 7.33E-01 6.41E-18 C22 5.81E-04 4.78E-07 

A4bar 4.72E+00 1.03E-16 C23 8.74E-11 3.08E-11 

Axbar 4.88E+00 5.13E-17 C24 1.70E-01 2.73E-04 

By 2.49E+01 4.10E-16 C25 7.80E-04 1.67E-04 

B3 2.80E+00 2.56E-17 C26 6.99E-03 1.41E-03 

B2 3.29E+00 2.56E-17 C27 2.32E-05 5.16E-08 

B4 1.70E+00 1.28E-17 C28 3.31E-17 5.27E-18 

Bx 1.66E+01 0.00E+00 C29 2.45E-22 7.53E-23 

Sy 6.20E+01 0.00E+00 C30 3.60E-02 4.01E-19 

S3 1.49E+03 0.00E+00 C31 7.59E-02 6.49E-03 
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S2 1.76E+01 2.05E-16 C32 3.01E-19 8.09E-20 

S4 2.21E+02 1.64E-15 C33 3.42E-02 1.43E-04 

Sx 2.65E+02 0.00E+00 C34 7.56E-21 1.26E-21 

Syw 5.14E-21 4.34E-38 C35 6.63E-04 3.23E-06 

S3w 6.37E-21 0.00E+00 C36 9.63E-21 2.02E-21 

S2w 2.79E-17 0.00E+00 C37 2.67E-05 8.05E-06 

S4w 2.52E-22 0.00E+00 C38 2.69E-16 1.02E-16 

Sxw 1.47E-20 1.74E-37 C39 1.62E-26 8.00E-27 

Ly 3.44E-20 3.48E-37 C40 6.17E-03 5.46E-04 

L3 3.26E-20 3.48E-37 C41 7.10E-04 1.23E-05 

L2 2.57E-19 0.00E+00 C42 5.74E-02 3.11E-05 

L4 1.76E-21 0.00E+00 

   
Lx 1.23E-21 1.09E-38 

   
D1 2.31E+00 3.60E-05 

   
D2 3.68E+00 4.61E-04 

   
D3 3.81E-32 8.48E-33 

   
D4 6.81E+00 1.54E-16 

   
D5 2.02E-15 4.38E-16 

   
D6 2.33E+00 5.55E-04 

   
D7 2.96E-34 6.99E-35 

   
D8 7.73E+01 2.42E-02 

   
D9 7.00E-42 2.80E-42 
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D10 2.01E+00 1.98E-04 

   
D11 9.46E-35 1.64E-35 

   
D12 2.19E+00 7.83E-04 

   
D13 6.29E-37 1.42E-37 

   
D14 4.12E+00 2.15E-03 

   
D15 4.86E-35 1.61E-35 

   
D20 2.49E-18 5.81E-19 

   
 

quorum sensing regulation TCA cycle 

reaction 

coefficient 
mean 

standard 

error 

reaction 

coefficient 
mean 

standard 

error 

eta 2.39E-20 7.03E-21 T1 7.59E-02 9.24E-06 

etaext 7.52E-25 1.53E-25 T2 5.51E-02 4.01E-19 

adh 7.66E+01 8.72E-02 T3 5.34E-02 7.57E-05 

AN 2.45E-21 6.89E-22 T4 2.25E-03 4.08E-05 

ANbar 4.36E-24 9.04E-25 T5 0.00E+00 0.00E+00 

BN 8.88E-24 2.74E-24 T6 3.71E+00 4.64E-03 

SN 4.14E-13 1.44E-13 T7 4.63E-03 3.62E-06 

SNw 1.86E-27 4.02E-28 T8 0.00E+00 0.00E+00 

LN 6.07E-27 1.79E-27 T9 4.30E-04 1.28E-06 

R1 1.60E-18 3.23E-19 T10 8.81E-03 3.15E-06 

R2 4.67E-03 2.34E-05    
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R3 3.99E-01 4.17E-04    

R4 6.18E-04 7.32E-07    

R5 1.53E-03 1.46E-06    

R6 3.13E+00 8.04E-04    

R7 1.80E-17 8.73E-18    

R8 1.37E-24 5.52E-25    

R9 8.29E-03 1.00E-19    

R10 8.62E-03 2.83E-07    

R11 7.63E-02 5.91E-05    

D16 2.96E-02 1.45E-05    

D17 1.07E-24 3.89E-25    

D18 2.16E-19 4.13E-20    

D19 1.39E-13 3.15E-14    

D21 7.99E-22 1.88E-22    
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Fig S3.1.  Metabolic model with QA-X as a regulator 
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Fig S3.2.  Metabolic model with phenylethanol as signaling molecule 
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Fig S3.3.  Metabolic model with tryptophol as signaling molecule 
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Fig S3.4. Ensemble simulation for Tyrosol. 

 


