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ABSTRACT 

 Microplastics are a ubiquitous contaminant of emerging concern and their movement 

through freshwater systems is an understudied part of the “plastic cycle.” To assess spatial and 

temporal variation in the composition and concentration of microplastics in a river system, I 

collected monthly surface water samples from 16 sites in an agriculturally dominated watershed 

in southwestern Georgia. I used generalized linear models (GLMMs) to investigate relationships 

among plastics, land use variables, and physicochemical properties. The analyses suggested that 

microplastic concentrations are strongly related to soluble reactive phosphorous (SRP) in the 

water column. These findings enhance our understanding of plastic pollution dynamics in rural 

watersheds.  
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CHAPTER 1 

INTRODUCTION 

Microplastics are a contaminant of emerging concern pervasive in terrestrial and aquatic 

ecosystems worldwide (Rochman et al. 2019, Hoellein et al. 2019, Li et al. 2020). Due to their 

microscopic size (<5 mm), diversity, and resistance to degradation (Geyer et al. 2017), 

microplastics’ ubiquity in natural environments has sparked concern about the potential effects 

on human health and ecosystem function, particularly in aquatic systems. Microplastic pollution 

presents various toxicological risks to human health (Vethaak and Legler 2021). Additionally, 

research has shown that microplastics can concentrate pollutants, move through food webs, and 

affect microbial communities (McCormick et al. 2014, Wright and Kelly 2017). Recent 

projections of global plastic production and consumption indicate that emissions into aquatic 

environments will continue to increase unless the global plastic economy experiences drastic 

change (Borrelle 2020). However, our understanding of how microplastics cycle within and 

move throughout ecosystems is still limited, especially in freshwater systems (Hoellein and 

Rochman 2021). 

Early microplastic research focused on marine and coastal environments and assumed 

that rivers acted as conduits for transporting plastic directly from terrestrial to marine systems, 

neglecting to consider patterns in retention or resuspension within watersheds (Hoellein et al. 

2019, Rillig 2020). This is unsurprising as the diversity of sources and forms of microplastic 

pollution make it difficult to estimate inputs to freshwater environments (Rochman et al. 2019). 

Recently, a framework of the "plastic cycle" has been proposed for terrestrial and freshwater 



 

2 

systems that conceptually demonstrates how plastics travel through and interact with the 

environment (Hoellein and Rochman 2021). Hoellein & Rochman (2021) argue that scientists 

should consider modeling plastics as an element possessing a unique biogeochemical cycle. To 

support this type of approach, additional empirical data are needed to generate a comprehensive 

understanding of microplastic sources, sinks, and fluxes in freshwater systems. 

Due to the heterogeneous distribution of microplastic contamination and poor 

understanding of non-point sources, watershed-scale approaches to modeling plastic may better 

allow scientists to elucidate the driving factors behind microplastic fluxes in riverine systems 

(Barrows et al., 2018). Due to the anthropogenic nature of plastic pollution, most studies have 

been conducted in urban watersheds. Relatively less attention has been directed toward 

understanding plastic dynamics in rural watersheds, presenting a knowledge gap in how 

microplastics are accumulated and exported in a diversity of settings (Eibes and Gabel 2022). 

This information is critical for estimating microplastic loads and fluxes in a broader context. For 

example, plastic pollution in watersheds dominated by agriculture may experience increased 

topsoil loading of microplastics due to practices such as biosolid application, plasticulture, and 

composting (Brandes et al. 2021). As a result, agricultural fields susceptible to topsoil erosion 

could be a considerable source of microplastic pollution in aquatic systems (Rehm et al. 2021).  

 Research suggests that microplastic, an allochthonous form of carbon, behaves similarly 

to naturally occurring particles relative to transport, deposition, and breakdown patterns in 

riverine systems (Kumar et al. 2021, Yan et al. 2021). For instance, microplastic has been shown 

to follow depositional patterns of natural particles in rivers in experimental settings (Khatmullina 

and Isachenko 2017, Waldschläger and Schüttrumpf 2019, Hoellein et al. 2019). However, there 

is little empirical evidence available on the relationship between microplastic and natural 
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particulate dynamics in non-experimental situations (Vincent and Hoellein 2021). Collecting 

data that provide evidence for patterns of microplastic deposition and transport could allow 

scientists to harness hydrodynamic models initially created for natural particles to estimate 

microplastic flux and retention in riverine systems (Besseling et al. 2017). We must quantify 

these metrics reliably to define practical solutions to the global plastic pollution issue (Nizzetto 

et al. 2016). 

This study aims to address the knowledge gap of microplastic distribution in rural 

riverine systems by quantifying abundance and composition in the Lower Flint River watershed 

in southwestern Georgia. The Lower Flint provides an ideal setting to investigate gaps in 

knowledge about the relationship between microplastic pollution and land cover, and to 

determine how certain physicochemical parameters relate to microplastic dynamics. I predicted 

that instream microplastic abundance would positively correlate with urban and agricultural land 

use in the Lower Flint watershed (McNeish et al. 2018). I also predicted that plastic 

concentrations would positively relate to measures of naturally occurring particles (Hoellein et 

al. 2019). 
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CHAPTER 2 

METHODS 

Data Collection 

Study Area 

I conducted longitudinal microplastics and water chemistry sampling at 16 sites on the 

mainstem and major tributaries of the Lower Flint River in southwestern Georgia (Figure 1). 

Additionally, I sampled directly below the Jim Woodruff Dam at the start of the Apalachicola 

River and at two additional tributaries that supply water to Lake Seminole (i.e., Spring Creek and 

the Chattahoochee River). I used established stations of a long-term water quality network, most 

of which had a corresponding United States Geological Survey (USGS) continuous stream flow 

monitoring station (Table 1). The mainstem Flint, Chattahoochee, and Spring Creek have urban 

areas and wastewater treatment plants, while Ichawaynochaway and Chickasawhatchee Creeks 

are dominated by agricultural land cover. 

Spatial Data 

I obtained Digital Elevation Models (DEMs) and land cover of the study area from the 

USGS 3D Elevation Program (3DEP) (USGS 2022) and the National Land Cover Database 

(NLCD) (USGS 2021), respectively. I delineated subwatersheds and recorded drainage areas for 

each sampling site using DEMs and ArcGIS Pro 2.9.2. I extracted 2019 NLCD data by 

individual subwatershed to estimate the basin land cover composition upstream of each stream 

sampling site. Land cover was categorized into Urban, Agricultural, and Forested. The Urban  
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Figure 1. Map of the stream sampling sites (red dots), USGS gages (yellow dots), and land cover 

in southwestern Georgia, USA. Urban areas are shown in pink, forested areas in green, and 

agricultural land in yellow. Blue indicates major streams, rivers, and lakes. 
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Table 1. Summary of sampling site information. Stream sites are categorized into headwaters 

(H), midreaches (M), and rivers (R). Land cover types are forested (F), agricultural (A), and 

urban (U). 

 

 

 

 

 

 

 

 

 

 

  Stream USGS   Drainage Land Cover (%) 

# Size Gage # Latitude Longitude Area (km2) F A U 

1 M 2354350 31.59350 -84.45290 303.93 25 44 6 

2 R 2352500 31.57839 -84.14710 13,690.61 43 25 9 

3 H          - 31.52630 -84.13670 18.61 13 59 16 

4 M 2353265 31.52700 -84.58270 771.89 34 40 4 

5 H 2354475 31.46570 -84.44930 37.35 27 42 3 

6 M 2353500 31.38290 -84.54640 1,644.12 32 39 4 

7 M 2354500 31.35070 -84.48259 808.41 28 30 4 

8 R 2353000 31.30900 -84.33529 14,930.25 42 25 10 

9 M 2354800 31.30170 -84.48690 2,568.49 31 37 4 

10 M 2355350 31.21660 -84.47000 2,758.31 31 37 4 

11 M         - 31.17390 -84.74490 733.07 19 44 5 

12 R 2355662 31.15909 -84.47789 17,961.89 40 28 9 

13 M        - 30.97529 -84.74559 1,530.56 18 51 5 

14 R        - 30.97380 -85.00579 21,997.87 55 12 16 

15 R 2356000 30.90670 -84.58260 19,312.62 40 29 8 

16 R 2358000 30.70079 -84.85729 44,532.27 46 22 12 
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categories included "Developed, Open Space," "Developed, Low Intensity," "Developed, 

Medium Intensity," and "Developed, High Intensity." The agricultural category included 

"Cultivated Crops" and "Hay/Pasture." The forested category included "Deciduous Forest," 

"Evergreen Forest," and "Mixed Forest." The remaining NLCD classifications were combined as 

“Other” and excluded from the statistical analysis. Sampled streams were categorized by Strahler 

Stream Order into Headwaters (1-3), Midreaches (4-6), and Rivers (>6). Discharge was recorded 

for the corresponding USGS streamflow station from the USGS Current Conditions website 

using the measurement from the nearest 15-minute increment to the time of sample collection. 

Sample Collection 

Four water samples for microplastic analysis were collected in pre-washed and DI-rinsed 

1-L amber Nalgene® bottles. Surface water samples were collected by submerging the bottle 

under the surface in a well-mixed area and then removing the cap until it filled with water. The 

bottle was held facing upstream, with the cap alongside, but below the mouth to avoid 

contamination. The cap was replaced while underwater to prevent contamination from the 

atmosphere. Microplastic water samples were stored in the lab at room temperature until 

processed. 

Three water chemistry samples were collected directly below the water surface in acid-

washed and DI-rinsed 1-L clear Nalgene® bottles. Bottles were rinsed three times with sample 

water before being filled. Water chemistry samples were put on ice and returned to the lab, 

where they were stored between 2-4 °C until processed. Conductivity, pH, and water temperature 

were measured using a Hydrolab Quanta Sonde (Hach Laboratories) or a Pocket Pro+ Multi 2 

Tester (Hach Laboratories) when the Hydrolab was unavailable. 
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Laboratory Processing 

Lab Preparation 

All microplastic samples were processed in a designated lab where only individuals 

working on microplastics were permitted to enter. All technicians wore bright yellow cotton T-

shirts and pants to render contamination from clothing easily identifiable, given that bright 

yellow fibers were rare in the field samples. The yellow clothing was worn during all fieldwork 

and laboratory sample processing. Lab surfaces were cleaned daily before any processing began 

to minimize contamination. 

Microplastics Processing 

Samples were shaken and poured through an 8-cm diameter, 25-µm sieve into an 8-cm 

diameter graduated cylinder. Beforehand, the sieve and graduated cylinder were washed and 

rinsed with 0.45-µm filtered DI water. The volume of the water sample was recorded. The 

sample bottle, cap, and sides of the sieve were rinsed three times each with filtered DI water 

through the sieve. Next, the contents of the sieve were rinsed with filtered DI water into a pre-

washed and rinsed 4-oz. specimen cup. The sieve was rinsed with filtered DI water to remove 

any adhered material before processing the next sample. The sieve was washed and rinsed with 

filtered DI water between each set of four replicates. Thirty percent H2O2 was vacuum filtered 

through a cellulose acetate filter (Whatman™ ME 25/21 ST 0.45-µm gridded filter, 47 mm). 

Subsequently, 30 mL of 30% H2O2 was added to each specimen cup to digest non-plastic organic 

material (Wiggin & Holland, 2019). Sample cups were placed in a drying oven at 45 °C 

overnight (approximately 16 hours). 

Following digestion, I used vacuum filtration to transfer the particulate contents of the 

specimen cups onto filters. Two of the four replicates for each sampling event were filtered onto 
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cellulose acetate filters, while the remaining two were filtered onto polycarbonate membrane 

filters (Isopore™ 0.8-µm PC Membrane, 47 mm). Before filtering, a chemically resistant marker 

was used to draw two intersecting lines on each filter to divide the filter into four equal 

quadrants. Next, samples were swirled and poured into the filter funnel, and specimen cups, lids, 

and the filter funnel were rinsed three times with filtered DI water. Between uses, the filter 

apparatus was covered with aluminum foil to avoid atmospheric contamination (Rochman et al. 

2019). Cellulose acetate filters were stored in individual 51-mm aluminum weigh boats and 

covered with aluminum foil. Polycarbonate filters were stored in individual 47-mm petri slides 

for subsequent Nile Red staining. 

The filters were examined under a dissection microscope at 25x-50x magnification 

(McNeish et al. 2018). Each quadrant of the filter was visually inspected in a clockwise 

direction, and microplastic particles were categorized and quantified. Particles were 

morphologically categorized as fibers, fiber bundles, foam, film, fragments, or pellets, and their 

color was recorded (McNeish et al. 2018, Rochman et al. 2019). If bright yellow fibers were 

detected, they were recorded but excluded from the final counts. Each filter was checked a 

second time by a different researcher or the same researcher at least two weeks after the initial 

count (McNeish et al. 2018). First and second counts that differed by more than four particles 

were counted a third time. If there was doubt that a particle was composed of plastic, it was 

subjected to the hot needle test (de Witte et al. 2014, Devriese et al. 2015). If the particle melted, 

it was considered plastic. If it singed, the particle was considered natural. 

Polycarbonate filters were stained with 0.8-µm filtered Nile Red to detect fragments that 

were too small to be detected with standard visual identification (Maes et al. 2017, Wiggin and 

Holland 2019, Primpke et al. 2020). First, filters were placed in disposable filtration cups with 
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rinsed forceps. Next, 5 mL of Nile Red solution (10 µg/mL) was added. The solution was created 

with 99 mL of n-hexane and 1 mL of Nile Red stock solution. To make the 1 mg/mL stock 

solution, 10 mg of Nile Red was combined with 10 mL of acetone. The filtration cups were 

incubated in the staining solution in the dark for 30 minutes at room temperature. Next, the 

solution was removed via vacuum filtration, and each filter was rinsed with 5 mL of n-hexane 

three times. Filters were returned to their petri slides and covered with aluminum foil to avoid 

light exposure. Once dry, the filters underwent another round of visual inspection at 25-50x 

magnification under a microscope with light at a 455 nm wavelength. Fluorescent particles were 

considered plastic and categorized as fibers, fiber bundles, foam, film, fragments, or pellets. The 

counts of Nile Red stained filters were not included in final counts or statistical analyses. 

Water Chemistry Processing 

Water quality samples were vacuum filtered through a previously ashed and weighed 0.7-

µm glass fiber filter. Sample aliquots were stored below 0 °C (NO3-N and PO4-P) or between 0-5 

°C (DOC and NH4-N). Filters were dried at 45 °C for 24 hours and weighed. Then, they were 

ashed (550 °C, 1 hour) and weighed again to calculate the dry mass (DM) and ash-free dry mass 

(AFDM). The concentrations of fine particulate organic matter (FPOM) and total suspended 

solids (TSS) were calculated from DM and AFDM. A Lachat QuickChem 8500 series two flow 

injection analyzer was used to measure NO3-N (Lachat Method 10-107-04-1-B, 10-107-06-1-G), 

PO4-P (Lachat Method 10-115-001-B), and NH4-N (Lachat Method 10-107-06-1-G). Dissolved 

organic carbon (DOC), total dissolved carbon (TC), and dissolved inorganic carbon (DIC) were 

measured using a Shimadzu TOC-V total organic carbon analyzer. 

 

 



 

11 

Contamination Control 

Four microplastic field blanks were taken each sampling day to account for 

contamination (Miller et al. 2021). The bottles were prepared identically to the field sample 

bottles and were taken on the sampling trip. The bottles were never opened, but the caps were 

twisted once to loosen and then retightened to mimic the bottle's opening. These blanks were 

then run through the entire microplastic analysis process. The average contamination per 

sampling day was calculated and then subtracted from total microplastic counts by morphology. 

Final counts were not corrected for particle color. The mean (± SD) contamination of blank 

samples was 1.85 ± 0.02 fibers and 1.59 ± 0.02 fragments per sample; therefore, two fibers and 

fragments were subtracted from each filter to account for contamination prior to statistical 

analyses. Three water chemistry field blanks were taken on each sampling day. Acid-washed, 1-

L clear Nalgene® bottles were filled with DI water and brought on the sampling trip. The blanks 

were run through each nutrient and carbon analysis process. The average blank measurement per 

sampling day was taken and subtracted from the corresponding field collection day sample 

measurements. Three blank filters were used per sampling day for AFDM measurements. The 

average DM and AFDM per day were subtracted from sample measurements from the 

corresponding collection day. 

Statistical Analysis 

All statistical analyses were conducted using R version 4.0.4 (R Core Team 2021). 

Principal component analysis (PCA) was used as an exploratory analysis to investigate patterns 

in water chemistry, watershed features, and microplastic concentration and inform subsequent 

analyses (pcrcomp(), stats package; R Core Team 2021). Water chemistry data were collected as 

part of the sampling activities of a long-term water quality monitoring network with a previously 
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established sampling scheme and sites. For this reason, not all water quality measurements were 

taken at each sampling event, resulting in gaps in the data. The data were subset into variables of 

interest, and gaps were removed (na.omit(); R Core Team 2021). The resulting PCA included 

data collected from 15 sites on 22 sampling days. 

Generalized linear mixed models (GLMMs) were conducted based on the PCA results to 

assess whether water chemistry variables or watershed features of interest explained instream 

microplastic concentration (glmmTMB(), glmmTMB package; Brooks et al. 2017). These 

statistical methods were modeled after those described by Hall et al. (2018), Nix et al. (2018), 

and Hou et al. (2021). Data gaps were removed before analysis, resulting in GLMMs generated 

from data collected at 12 sites on 21 sampling days. I used model selection (model.sel(), MuMIn 

package; Barton 2020) and Akaike's Information Criterion corrected for sample size (AICc) to 

identify the best-fitting statistical distribution for microplastic concentration (i.e., Gaussian, 

Poisson, negative binomial [NB], zero-inflated Poisson [ZIP], or zero-inflated negative binomial 

[ZINB]). Subsequently, the data were analyzed using the top-ranked negative binomial 

distribution (Table 2). 

Univariate models were built for each explanatory variable as the fixed effect, with 

microplastic concentration as the response variable and site and sampling date as random effects 

(Table 3). Explanatory variables were assessed for correlation (rcorr(), Hmisc package; Harrell & 

Dupont 2021) and were considered correlated if they had an r ≥ 0.3 (Appendix 1, Table 1). 

Bivariate GLMMs were built using all possible combinations of variables, excluding correlated 

ones. Site and sampling day were used as random effects. I conducted model selection to 

determine the best-fitting univariate, bivariate, and overall models by ranking them by AICc and 

model weights (wi). Models were considered competing if the difference between their AICc and 
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the AICc of the top model (ΔAICc) was < 2. Using the best fitting models based on model 

selection, I created estimates of microplastic concentration based on significant predictors using 

back-transformed data (emmeans(), emmeans package; Lenth 2021). An additional GLMM was 

built to assess the impact of sampling site on microplastic concentration. The model included 

microplastic concentration as the response variable, sampling site as the fixed effect, and 

sampling day as a random effect. ANOVA Type III deviance models were used to determine if 

microplastic concentration varied across sampling sites, streams, and stream sizes (Anova(), car 

package; Fox & Weisberg 2019). The relative abundance of microplastic morphology was 

calculated for each sampling site, and a Chi Square Test of Independence (chisq.test(), stats 

package, R Core Team 2021) was used to examine if there was a significant association between 

relative abundance by morphology and site (McNeish et al. 2018). 

 

Table 2: Akaike’s information criterion corrected values for sample sizes (AICc) for the 

statistical distribution of microplastic concentration in the GLMM data subset. Distributions 

tested included the negative binomial (NB), zero-inflated negative binomial (ZINB), zero-

inflated Poisson (ZIP), Poisson, and Gaussian. 

 

 

 

 

 

 

 

Distribution AICc wi 

NB 750.79 0.7097 

ZINB 752.58 0.2903 

ZIP 814.30 < 0.0001 

Poisson 955.04 < 0.0001 

Gaussian 987.87 < 0.0001 
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Table 3. Physicochemical parameters and watershed features used as explanatory variables with 

corresponding abbreviations and units. 

Explanatory Variable Abbreviation Units 

Physicochemical parameters   

     Total suspended solids TSS mg/L 

     Fine particulate organic matter FPOM mg/L 

     Total dissolved carbon TC mg/L 

     Dissolved organic carbon DOC mg/L 

     Dissolved inorganic carbon DIC mg/L 

     Ammonium NH4 ug/L 

     Nitrate NO3 ug/L 

     Soluble reactive phosphorous SRP ug/L 

     Conductivity - mS/cm 

     pH - - 

     Water temperature - °C 

Watershed features   

     Discharge - m3/s 

     Drainage area - km2 

     Stream - - 

     Stream order - - 

     Stream size - - 

     Percent urban - % 

     Percent forest - % 

     Percent agriculture - % 
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CHAPTER 3 

RESULTS 

Microplastic Abundance  

Microplastics were detected at all sampling sites and were observed in 59% of 352 

samples. The mean (± SD) microplastic concentration (particles/L) in the samples was 1.64 ± 

2.17 (Table 4). The most abundant particle morphology was fragments (n = 291 particles, 49%), 

followed by fibers (n = 240 particles, 40%), fiber bundles (n = 33 particles, 6%), film (n = 15 

particles, 3%), foam (n = 9 particles, 1%), and pellets (n = 9 particles, 1%) (Figure 2). The 

relative abundance of particle morphologies varied significantly with sampling site (χ2 = 968.33, 

df = 95, P < 0.001). In the 189 samples stained with Nile Red, 1,087 fragments were detected, 

for an average of 10.29 ± 22.65 fragments per sample. 

 

Table 4. Morphology composition and average concentrations of all microplastic particles 

detected. 

Morphology Count % Average Concentration (particles/L) ± SD 

Fragment 291 49 0.77 ± 1.56 

Fiber 240 40 0.63 ± 1.19 

Fiber Bundle 33 6 0.09 ± 0.28 

Film 15 3 0.04 ± 0.21 

Foam 9 1 0.02 ± 0.14 

Pellet 9 1 0.02 ± 0.16 

Total 597   1.64 ± 2.17 
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Figure 2. Percent abundance by particle morphology for each sampling site. The data presented 

represent the proportion of plastics collected from the sum of all the plastics collected from each 

sampling date at each sampling site. 

 

Water Chemistry and Land Use 

I focused on two dimensions of the PCA, principal components (PC) 1 and 3, which 

explained 39.9% and 11.6% of the variation, respectively (Table 5, Figure 3). I selected these 

components because the factor loadings of PC1 were strongly related to land use, and PC3 was 

associated with measures of particles, which were relationships of interest (Table 5). Sampling 

events tended to group by stream size, with rivers trending with higher measures of 

microplastics, fine organic particles, and phosphorous (i.e., SRP). Therefore, these relationships 

were explored in the subsequent GLMMs. Although PC1 represents a land use gradient, no clear 

land use patterns were related to microplastic concentration or stream size. 
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Table 5. Factor loadings of Principal Component (PC) 1-3.  

  PC1 PC2 PC3 

Microplastic -0.1361 -0.2027 0.4784 

FPOM -0.1421 0.00127 0.20382 

DOC 0.27346 0.42082 0.03052 

DIC 0.36983 -0.2992 -0.2773 

NH4 -0.1658 0.21672 -0.5268 

SRP -0.2414 -0.2918 0.35298 

NO3 0.14068 -0.6082 -0.0475 

Conductivity 0.32311 -0.3889 -0.2867 

% Urban -0.4066 -0.1195 -0.2926 

% Agriculture 0.41838 0.10664 0.24011 

% Forest -0.4465 -0.1158 -0.1479 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Projection of sampling events (dots) on the plane defined by PC1 and PC3. Arrows 

represent the direction and weight of vectors that demonstrate how water chemistry and land use 

variables explain variation. Ellipses (level = 0.95) and dot color indicate the stream size of the 

sampling site (green = headwaters, orange = midreaches, purple = rivers). 



 

18 

The headwater sites, which were primarily groundwater-fed, trended with DIC and conductivity, 

an expected pattern because these measures are indicative of groundwater influence in this 

region. 

The best-fitting GLMM included SRP as the single fixed effect (Table 6). As the 

strongest predictor for microplastic concentration, SRP was included in all nine competing 

models and contributed to over 88% of the competing model weight. SRP was a significant 

positive coefficient for instream microplastic concentration (Table 7, Figure 4). Similar to 

patterns in the PCA, I found no significant relationship between land cover type (urban, 

agricultural, forested) and microplastic concentration (p = 0.157, p = 0.941, p = 0.881; 

respectively). Furthermore, sampling site did not explain microplastic concentration (χ2 = 17.86, 

df = 11, P = 0.085), nor did stream (χ2 = 3.06, df = 4, P = 0.548) (Figure 5). In contrast with my 

PCA results, stream size was not a significant explanatory variable for microplastic 

concentration (χ2 = 1.69, df = 2, P = 0.429) (Figure 5). 

Contamination Control 

 Field controls contained a mean (± SD) contamination of 0.58 ± 1.21 microplastic 

particles per sample. Fibers were the dominant particle morphology found in the field control 

samples, with an average of 1.85 ± 0.02 particles/sample. There was an average contamination of 

1.59 ± 0.02 fragments, 0.05 ± 0 fiber bundles, and 0.02 ± 0 film particles/sample. I detected no 

foam or pellets in the field controls.  
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Table 6. Model selection results evaluating the best and competing models for instream 

microplastic concentration as predicted by water chemistry and watershed features. Null models 

were included as a reference regardless of if they were competing models. LL is the log-link 

ratio; AICc is Akaike’s information criterion corrected for sample sizes; ΔAICc is the difference 

from the best model; wi is the AICc weight. 

Model df LL AICc ΔAICc wi 

SRP 5 -353.48 717.25 0 0.1665 

SRP + FPOM 6 -352.75 717.91 0.66 0.1198 

SRP + NO3 6 -353.01 718.44 1.19 0.0919 

SRP + Conductivity 6 -353.10 718.62 1.37 0.0840 

SRP + TSS 6 -353.18 718.76 1.51 0.0781 

SRP + NH4 6 -353.22 718.84 1.59 0.0750 

SRP + pH 6 -353.25 718.91 1.67 0.0724 

SRP + Temperature 6 -353.32 719.06 1.81 0.0674 

SRP + DIC 6 -353.39 719.19 1.94 0.0630 

SRP + Drainage Area 6 -353.41 719.22 1.97 0.0620 

Null (intercept with random effects) 4 -357.30 722.80 5.55 0.0104 

 

 

Table 7. Model coefficients, statistical results, and 95% confidence intervals for the best-fitting 

model evaluating the effects of soluble reactive phosphorous on instream microplastic 

concentration. 

 

 

 

 

 

 

     95% CI 

Coefficient Estimate SE Z P Lower Upper 

     Intercept -0.3466 0.3061 -1.132 0.2575 -0.947 0.253 

     SRP 0.0758 0.0276 2.749 0.0060 0.022 0.130 
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Figure 4. Microplastic concentration as predicted by soluble reactive phosphorus (SRP). 

Estimations were generated using the best-fitting GLMM (Table 6).  

 

 

 

 

 

 

 

 

 



 

21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Boxplots of the average microplastic concentrations among sampling sites, streams, 

and stream sizes. 
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CHAPTER 4 

DISCUSSION 

 Investigating microplastic dynamics within watersheds is critical to understanding the 

"plastic cycle" and estimating plastic storage and fluxes through freshwater systems. The results 

of this study provide additional insights into the plastic contamination of large, rural watersheds 

and evaluate relationships between the physicochemical conditions of the water column and 

plastic dynamics in river networks. By increasing our knowledge of microplastic dynamics in 

freshwater, we can better estimate global plastic budgets and inform strategies to reduce plastic 

emissions. 

Effective management of emerging contaminants, such as microplastic, must occur at the 

watershed scale to account for point and non-point sources of contamination associated with 

variable land use. This is particularly true in agricultural watersheds, where non-point sources 

contribute substantially to surface water pollution. My research found that microplastic pollution 

is pervasive in the Lower Flint River basin's surface waters, as I could consistently detect 

contamination in surface waters despite the comparatively low human population density. The 

average concentration of microplastic I detected throughout the study area of 1.6 particles/L was 

similar to concentrations found in other studies conducted in rural settings (e.g., Chen et al., 

2021; Talbot et al., 2022). I also found that the morphological composition of microplastic 

contamination depended on the sampling site, suggesting that local drivers and sources affected 

concentrations of particles. However, the sampling site, stream, and stream size did not predict 

microplastic concentrations, despite the large size of the study area. 
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An essential aspect of generalizing watershed-level plastic budgets is understanding how 

land cover relates to instream microplastic dynamics. Research has documented patterns in 

plastic contamination that were related to land use. For example, McNeish et al. (2018) found 

that human-dominated watersheds had elevated instream concentrations of microplastic 

compared to primarily forested watersheds due to both point- and non-point sources of plastic 

emissions. In contrast, I found no significant relationship between surface water microplastic 

concentration and the proportion of urban, agricultural, and forested land cover in the watershed. 

The results from my work could be attributed to the relatively short time frame of the study or 

the large drainage areas considered within the explanatory variables related to land use. To 

investigate patterns at a more local spatial scale, future work should consider taking a more 

nuanced approach to land use by constricting watershed sizes and integrating additional potential 

sources of plastic inputs, including boat ramps or road crossings, into the analyses. 

Weather and climate patterns that influence stream discharge may also influence patterns 

in plastic dynamics (Barrows et al. 2018, Piñon-Colin et al. 2020). Barrows et al. (2018) found 

that discharge was negatively correlated with instream microplastic concentration in a mixed 

land-use watershed, suggesting that high flows diluted microplastic concentrations. 

Alternatively, results from Piñon-Colin et al. (2020) demonstrated that microplastic 

concentrations were positively associated with rainfall events in an urban setting, suggesting 

runoff-driven microplastic contamination. The sampling period of this study (June to November 

of 2021) was abnormally wet, and discharge within the Lower Flint was often above normal 

seasonal levels. Hence, I was unable to compare microplastic abundance during high- and low-

flow scenarios. In the Lower Flint River basin, agriculture is typically concentrated in the 

uplands, away from direct runoff. Mature riparian forests may act as water quality filters, 
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mitigating plastic pollution entering the stream through overland flow. Notably, the study area is 

characterized by low surface water drainage density, with base flows in the karst landscape 

largely attributable to groundwater discharge. In this scenario, plastics may be retained in surface 

soils rather than transported through surface runoff. More empirical evidence is needed to 

understand the impacts of precipitation and runoff on microplastic concentrations in 

agriculturally dominated watersheds. Future work should conduct event-driven sampling over 

flow pulses to explore the hydrologic impacts of microplastic contamination in agriculturally 

dominated watersheds. 

Relationships between discharge and plastic concentrations are essential to predict the 

contribution of individual watersheds to the plastic load entering lacustrine and marine 

environments. By coupling microplastic concentration estimates and average monthly discharge 

in dominant watersheds of the Lower Flint (readNWISdv, dataRetrieval package; de Cicco et al. 

2022), I estimated microplastic flux in billions of microplastic particles per day entering and 

exiting Lake Seminole in southwestern Georgia (Appendix 1, Tables 3 & 4). Though there are 

limitations associated with estimates made over such a relatively short period with small 

volumes of water, on average, approximately 90.9 billion microplastic particles per day entered 

the reservoir via the three main branches (i.e., the Chattahoochee and Flint Rivers and Spring 

Creek) and 82.6 billion particles per day leave the dam and enter the Apalachicola River, 

traveling to the Gulf of Mexico. These estimates highlight the potential storage rates of 

microplastic pollution in reservoirs (~8.3 billion particles per day) and that billions of plastic 

particles flow from the Flint downstream daily. Reservoirs have been found to play an important 

role in removing and sequestering other human contaminants in river drainages (Webster et al. 
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2021), and it has been proposed that microplastics may also follow these deposition patterns 

(Hübner et al. 2020). 

Soluble reactive phosphorous, or SRP, was the strongest predictor for microplastic 

abundance of all the explanatory variables tested. SRP is a measure of the bioavailable form of 

phosphorus in the water column, which readily absorbs to charged particles, such as clays, and 

often enters streams as sediment runoff. The relationship between microplastic and SRP in this 

study is notable because they both have major anthropogenic sources, including, but not limited 

to, industrial and municipal wastewater, urban and agricultural runoff, effluent from wastewater 

treatment plants, and atmospheric deposition (Jambeck et al. 2015, Allan et al. 2021). SRP is 

often measured in water quality monitoring programs; thus, if the relationship I documented 

between microplastic and SRP is ubiquitous in rural watersheds, the large body of knowledge 

related to temporal and spatial patterns in SRP dynamics could be harnessed in innovative ways 

to estimate microplastic fluxes through river systems with less labor-intensive methods.  

Microplastic research has repeatedly demonstrated that plastic particles often behave 

similarly to natural particles in their movement through watersheds (Hoellein et al. 2019, Yan et 

al. 2021, Vincent and Hoellein 2021). As an allochthonous form of particulate carbon, 

microplastic is subject to the same chemical and physical processes that dictate the deposition 

and transport of natural particles in river systems. For natural particles, the concentration can be 

predicted from the rate of discharge on the rising limb of storm hydrographs (Golladay et al. 

1987). The results of Chen et al. (2021) indicate that instream microplastic concentrations were 

positively associated with measures of suspended sediment concentrations, supporting the idea 

that microplastics follow natural particulate patterns. However, microplastics' physical and 

chemical properties differ from natural particles, which may cause them to behave differently in 
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the water column. Vincent & Hoellein (2021) found that FPOM and microplastics were retained 

together in a river system; however, due to differences in shape and densities, microplastics were 

more likely to become resuspended and were transported farther downstream. In this study, I 

found that when considered in univariate models, measures of natural suspended particles 

(FPOM and TSS) significantly explained microplastic concentrations in the Lower Flint 

(Appendix Table 2). Furthermore, the bivariate models that included SRP and either FPOM or 

TSS were among the top competing models, although the constituents were not significant 

predictors for microplastic concentration in the water column. Future work should further 

explore the relationship between microplastics and natural suspended particles relative to 

deposition, transport, and hydrologic drivers to comprehensively understand the similarities and 

differences between how they behave instream. This information will help identify possibilities 

and limitations of quantifying microplastic fluxes based on measures of natural particles.  

Due to the microscopic size and ubiquity of microplastic pollution, analyzing 

environmental water samples for microplastics presents challenges related to contamination and 

identification (Miller et al. 2021). In this study, all microplastic counts were blank corrected by 

morphology, but not by color and size, potentially causing the final counts to underestimate 

particle concentrations. Furthermore, I found an average of 0.49 microplastic fragments per 

sample; however, the Nile Red stained filters had an average of 10.29 fragments per sample. The 

underestimation of microplastic fragments in final counts could be attributed to the fluorescence 

from Nile Red stained particles allowing the observer to detect smaller particles than they 

originally could from visual inspection only. All samples were collected at the water surface, and 

the remaining water column was not considered in this study. For this reason, overall 
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microplastic abundance may have been underestimated (Barrows et al. 2017), although I 

generally sampled shallow rivers in well-mixed areas. 

The implications of this study suggest that microplastic contamination is ubiquitous 

throughout the globe, and this work demonstrated that microplastic pollution is also pervasive in 

agriculturally dominated rural watersheds. This research builds upon the findings of others to 

suggest that plastics may behave similarly to natural particles, and they appear to have a strong 

relationship with concentrations of bioavailable phosphorus in the water column. Though we can 

leverage our knowledge of the behavior of natural particles and existing hydrodynamic models 

that estimate transport, sedimentation, and resuspension to understand microplastic movement, 

more empirical studies are needed to investigate these relationships to elucidate the contribution 

of river networks on plastic transport and retention over broad spatial and temporal scales. 

Nizzetto et al. (2016) argues that it is impractical to clean up plastic pollution once it reaches the 

ocean; therefore, we must focus on terrestrial transport processes and managing our emissions 

into the natural environment to combat the global problem of plastic pollution. We can estimate 

global plastic budgets more reliably by developing a comprehensive understanding of plastic 

movement through freshwater systems. Consequently, this information will allow us to advise 

plastic pollution reduction strategies and shape global policy change. 
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APPENDIX 1 

Appendix Table 1. Correlation matrix of explanatory variables. Q is the rate of discharge in 

meters3/second. Temp. is water temperature in °C. Cond. is conductivity in mS/cm. % Urban, 

Forest, and Ag indicate the percent of urban, forested, and agricultural land cover in the 

watershed, respectively.  

 

 

Appendix Table 2. Model coefficients, statistical results, and 95% confidence intervals for the 

univariate models evaluating the effects of TSS and FPOM on instream microplastic 

concentration. 

TSS FPOM DOC TC DIC NH4 SRP NO3 Q Temp. Cond. pH Area % Urban % Forest

TSS

FPOM 0.83

DOC 0.27 0.06

TC -0.28 -0.16 0.47

DIC -0.39 -0.20 0.23 0.96

NH4 0.25 0.41 0.12 0.03 -0.01

SRP 0.29 0.21 -0.26 -0.32 -0.28 -0.19

NO3 -0.23 0.01 -0.40 0.34 0.47 -0.25 -0.02

Q 0.36 0.27 -0.05 -0.27 -0.29 0.12 0.36 -0.16

Temp. -0.04 0.03 -0.02 -0.16 -0.17 0.22 0.02 -0.46 -0.05

Cond. -0.39 -0.17 0.14 0.87 0.91 -0.04 -0.11 0.50 -0.20 -0.15

pH -0.32 -0.05 -0.48 0.08 0.24 0.09 0.01 0.22 0.03 0.06 0.28

Area 0.01 0.13 -0.42 -0.28 -0.19 0.09 0.29 -0.01 0.83 0.03 -0.08 0.33

% Urban 0.09 0.15 -0.45 -0.42 -0.33 0.09 0.58 -0.12 0.76 0.07 -0.18 0.28 0.89

% Forest 0.14 0.16 -0.53 -0.54 -0.44 -0.14 0.58 -0.04 0.70 0.03 -0.30 0.17 0.82 0.89

% Ag -0.06 -0.09 0.34 0.28 0.20 0.12 -0.56 0.13 -0.68 -0.04 0.08 -0.30 -0.80 -0.87 -0.90

     95% CI 

Coefficient Estimate SE Z P Lower Upper 

     Intercept -0.1401 0.2684 -0.522 0.602 -0.666 0.386 

     FPOM 0.2003 0.0861 2.326 0.020 0.032 0.369 

       

     Intercept -0.1141 0.2774 -0.411 0.681 -0.658 0.430 

     TSS 0.0460 0.0213 2.164 0.030 0.004 0.088 
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Appendix Table 3. Estimated microplastic flux of inputs and output of Lake Seminole. The three 

inputs are Site 14 on the Chattahoochee River, Site 13 on Spring Creek, and Site 15 on the Flint 

River. Site 16 is the start of the Apalachicola River below the Jim Woodruff Dam and is 

considered the output. The USGS stations used for discharge are #02343801 for Site 14 and 

#02357000 for Site 13. The stations for Sites 15 and 16 are given in Table 1. MP is microplastic 

and BLD is billion liters per day. I did not estimate flux for the months and sites I did not detect 

any microplastics, shown by a dash (-).  

Month Site 

Average MP Concentration 

(particles/L) 

Average Monthly 

Discharge (BLD) 

Flux (Billion 

MP/Day) 

June 14 3.33 ± 1.59 18.04 ± 9.58 60.12 

 13 2.12 ± 1.92 0.37 ± 0.23 0.79 

 15 6.71 ± 0.92 12.83 ± 3.73 86.13 

 16 1.85 ± 2.06 35.32 ± 9.83 65.41 

July 14 - 26.83 ± 12.01                 - 

 13 0.31 ± 0.45 1.49 ± 0.34 0.46 

 15 1.82 ± 2.02 17.06 ± 2.24 31.02 

 16 - 51.38 ± 12.57                - 

August 14 1.82 ± 1.31 27.63 ± 15.85 50.24 

 13 0.69 ± 0.78 1.53 ± 0.00 1.06 

 15 0.93 ± 0.95 17.42 ± 0.00 16.14 

 16 0.69 ± 0.40 51.90 ± 0.02 35.60 

September 14 0.93 ± 0.95 26.14 ± 7.09 24.20 

 13 - 1.81 ± 0.88               - 

 15 1.64 ± 1.97 18.05 ± 4.76 29.63 

 16 4.02 ± 2.92 50.43 ± 11.40 202.72 

October 14 3.19 ± 2.50 31.29 ± 29.88 99.83 

 13 0.69 ± 0.77 1.04 ± 0.37 0.71 

 15 2.50 ± 2.57 22.87 ± 12.23 57.17 

 16 1.38 ± 0.81 62.28 ± 37.27 85.99 

November 14 1.42 ± 1.45 17.87 ± 3.80 25.29 

 13 1.87 ± 0.02 0.66 ± 0.26 1.24 

 15 0.69 ± 0.41 12.56 ± 2.36 8.72 

  16 0.72 ± 0.81 32.35 ± 2.30 23.18 
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Appendix Table 4. Average microplastic flux entering and exiting Lake Seminole from the three 

riverine arms into the reservoir. The three inputs are the Chattahoochee River, Spring Creek, and 

Flint River and the output is the Apalachicola River. The total average input flux is the sum of 

the average fluxes for Sites 13, 14, and 15. Output flux is the average flux of Site 16. MP/L is 

microplastic particles/liter. 

Site Average Input (Billions MP/L) Average Output (Billions MP/L) 

14 51.94 - 

13 0.85 - 

15 38.14 - 

16 - 82.58 

Total 90.92 82.58 

 

 

 


