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Abstract

The nematode Caenorhabditis elegans (C. elegans) is a model organism, commonly studied

due to ease of maintenance and comparative simplicity of its neurological structure. We

investigate C. elegans ’ locomotion using dynamic diffraction and nonlinear dynamics. Ob-

served diffraction intensity time-series relate to the net electric field diffracted from all points

of the worm at any point in the far-field diffraction pattern [1]. Consequently, key features

of locomotion can be recovered by analyzing the intensity time-series. We found significant

markers of low-dimensional chaos which prove that C. elegans locomotion satisfies the chaos

criteria outlined by David Feldman [2]: determinism, aperiodic orbits, bounded orbits, and

sensitive dependence on initial conditions. To prove that C. elegans locomotion meets the

aforementioned criteria, we use nonlinear analysis - e.g., Takens (1981) embedding [3], mu-

tual information (MI), lag plots, false nearest neighbors (FNN), largest Lyapunov exponent

(LLE), correlation dimension, recurrence plots, and surrogate data analysis - to characterize

and analyze the time-series.

First, we take the Fourier transform (FT) of the time-series and observe a broad frequency

spectrum, which provides evidence that the criteria of aperiodic orbits is satisfied. Second,



we generate lag plots of our locomotion data and explain how the plots satisfy all four of

the chaos criteria. Third, our time-series fulfills the criteria for low-dimensional chaos with a

typical positive LLE value (base e) around 1.39± 0.02 s−1, at optimal embedding dimension

n = 4, indicating sensitive dependence on initial conditions. Next, our calculated non-integer

average correlation dimension of ∼ 2.08±0.24 means that our data may have characteristics

of both 2D and 3D space, which would indicate possible chaotic dynamics. Furthermore,

the correlation dimension value stabilizes with increasing embedding dimension, indicating

deterministic dynamics. We also visualize the locomotion dynamics using recurrence plots

because the resulting plots can prove our data satisfies determinism, aperiodic orbits, and

sensitive dependence on initial conditions. As a final measure to test for chaos, we also use

surrogate data analysis to prove that our time-series is nonlinear. All results provide strong

evidence that C. elegans locomotion is indeed chaotic.

Index words: nonlinear dynamics, chaos, C. elegans, far-field diffraction, fast Fourier
transform, entropy, false nearest neighbor, Lyapunov exponent,
recurrence plots, surrogate data analysis
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mentorship within the field of academia and beyond.

To my family, thank you for being there to encourage me and comfort me; my husband,

Shengming Zhang, for his support and helping me finish my dream of a PhD; my father,

Captain Donald Earl Rosenberger, for always telling me to do my best, knowing that my

internal desire to always be better would take over; my siblings, Don Paul Rosenberger and

Danielle Rosenberger, for being awesome growing up companions. And special thanks to my

son, Alan, for lighting up some of my darkest days by telling me to believe in myself, because

he believed in me. This dissertation is dedicated to my family, both present and future.

iv



Table of Contents

Page

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Chapter

1 Introduction and Literature Review . . . . . . . . . . . . . . . . . 1

2 Experimental Methods and Setup . . . . . . . . . . . . . . . . . . . 5

2.1 Experimental Setups . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Dynamic Diffraction Patterns . . . . . . . . . . . . . . . . . 8

3 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Fourier Transforms . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Applications to Diffraction . . . . . . . . . . . . . . . . . . 14

3.3 Applications to Time-Series: Experimental Data Sets . . . 17

4 Analysis of Complex Systems . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Frequency Spectrum . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Phase Space Generation . . . . . . . . . . . . . . . . . . . . . 23

4.3 Embedding Dimension . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Largest Lyapunov Exponent . . . . . . . . . . . . . . . . . . 35

4.5 Correlation Dimension . . . . . . . . . . . . . . . . . . . . . . 41

4.6 Recurrence Plots . . . . . . . . . . . . . . . . . . . . . . . . . 44

v



4.7 Surrogate Data Analysis . . . . . . . . . . . . . . . . . . . . 56

4.8 Summary of Results and Discussion . . . . . . . . . . . . . . 67

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

vi



List of Figures

1.1 Image of a C. elegans at Vassar College. A transparent adult nematode that

is ∼1 mm long and ∼100 µm wide. . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Illustration of two types of C. elegans locomotion. The time labels are such

that 0 < t1 < t2 < t3. (a) Wildtype locomotory pattern moving in an “s”

shape. (b) Roller locomotory pattern curling in a “c” shape. . . . . . . . . . 2

2.1 Setup used to collect data analyzed in this thesis. The full setup can be

seen in the above view in (a), while the vertical displacement of the laser

beam through the cuvette (C) is more clearly displayed in (b). HeNe Laser

passes through a neutral density filter (ND) to reduce laser intensity, then

the laser beam is redirected downwards by mirror M1 towards the cuvette C

holding the swimming worm. The diffraction pattern is redirected towards a

photodiode PD by mirror M2 such that the central maximum is off-center to

not saturate the detector. In the side view (b), the mirror M2 directs the beam

into the page where it propagates towards the photodiode PD. The intensity

measured by the PD is sent to the Oscilloscope, then sent to the computer

CMP. Distances are not drawn to scale. [5, 23] . . . . . . . . . . . . . . . . 6

vii



2.2 New setup for future experiments. HeNe Laser is redirected by two mirrors

(M1 and M2), then passes through a neutral density filter (ND) to reduce

laser intensity. Next, the beam is cleaned by a spatial filter (SF), before going

through a series of lenses (L1, L2, and L3) that work together to collimate the

beam to a desired beam diameter of about 3 mm before reaching the cuvette

(C) holding the swimming worm. The resulting time-dependent diffraction

pattern is then focused by a lens (L4) into our CMOS detector. Please note

that distances are not drawn to scale. . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Illustration of dynamic diffraction generation and intensity versus time data

generation. On the left, we show a simplified version of our experimental setup

shown in Figure 2.1 where the diffraction pattern is imaged on a screen with a

photodiode (PD). In the middle, we show an sample diffraction pattern with

a red dot denoting the placement of the photodiode. As the worm moves, the

diffraction pattern, hence the intensity at the PD, changes in response to that

motion. These time dependent intensity fluctuations are then recorded by the

PD to generate a 1D dynamic diffraction data set, as shown on the right. . . 9

2.4 Experimental example of the different diffraction patterns present from both

the width of the worm (spread out single slit pattern) and the length of the

worm (more closely spaced single slit diffraction pattern) [28]. . . . . . . . . 11

3.1 Example aperture function for a single slit (equation (3.4)) in blue with width

a. The Fourier Transform (equation (3.6)) is shown in red. We can notice

that if we make the width, a, larger and larger, then the width of the Fourier

Transform’s central peak gets smaller and smaller. This is reflective that

larger slits/objects cause tighter diffraction patterns, just as observed for our

worm in Figure 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

viii



4.1 Wildtype time-series, y(tµ), with its corresponding power spectrum, S(νk).

Left: Original experimental intensity versus time.

Right: Resulting broad frequency spectrum from FFT (νavg = 1.32 Hz). . . . 23

4.2 Visualization of mutual information, MI(τ) [44]. (a) Shows a simple example

of data sequence y(tγ) and a delayed data sequence y(tγ + τ) on the same

axis. (b) Venn diagram showing the information (entropy) from the data

shown in (a). The optimal lag τ is found when there is the least amount of

overlap (mutual information in purple) in information between un-lagged y(tγ)

(H0 denoted by red circle) and lagged y(tγ + τ) (Hτ denoted by blue circle).

(c) Showcases an experimental time-series of wildtype C. elegans locomotion

obtained from the experimental setup described by Magnes et al. [1]. (d) Plot

of MI versus lag (in units of data points) generated from experimental time-

series in (c) where red circles highlight local minima. The first local minimum

gives the “optimal” lag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Example 2D projection of a lag plot generated from the dynamic diffraction

time-series of a swimming C. elegans in Figure 4.2c [44]. The colors reflect

a progression in time where dark blue reflects earlier tγ values and dark red

reflects later tγ values. The first component y(tγ) is plotted on the x-axis,

and the second component y(tγ + τ) is plotted on the y-axis with τ = 0.1716

s. Based on the apparent crossings in this projection, we need a higher em-

bedding dimension than 2 to fully resolve the dynamics and eliminate false

crossings. Determining the best embedding dimension will be discussed in

section 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

ix
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Chapter 1

Introduction and Literature Review

This thesis will provide a multifaceted approach to characterize the locomotion of Caenorhab-

ditis elegans (C. elegans) in a 3D environment. In this chapter, we will cover our motivation

for this project and cover the general outline of this thesis. First, we begin by explaining

what are C. elegans and why we chose this organism.

C. elegans are transparent nematodes that inhabit soil in temperate environments. They

are usually studied under a microscope with limited mobility; i.e., in a 2D environment.

In addition, these worms change their behavior when exposed to blue/violet light [4]. We

use red light, which causes no known interference with its locomotion. The protocol for the

growth and culturing of the worms in the lab is described by Magnes et al 2017 [5]. These

nematodes are about 1 mm long and 100 µm wide (Figure 1.1) with only 302 neurons. The

neurons are similar in form and function to that of humans and are therefore of interest to

the neurological and biological community. The small size and quick maturation (∼4 days

at 20◦ C [5]) of this “complete microorganism” make it a model organism to observe and

characterize locomotion.

Some of the over 70 different mutants of C. elegans have neurological defects that affect

the locomotion [6]. We are working on a method that can distinguish these different mutants

based on the complexity of their locomotion. As this worm’s nervous system has been fully

mapped [7, 8, 9], and 75 of the worm’s neurons are motor neurons that are responsible for

controlling the 79 body wall muscles [10, 8, 11], our results with regards to the dynamics of

this neurological system will help us better understand human neurology due to C. elegans
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having neurons that are similar to those of humans.

Figure 1.1 Image of a C. elegans at Vassar College. A transparent adult nematode that is
∼1 mm long and ∼100 µm wide.

We will focus on two phenotypes in particular: Wildtype (N2) and Roller (OH7547).

Wildtype have no genetic defects that affect their locomotory pattern. They tend to undulate

in a sinusoidal-like pattern [12, 13]. Rollers have a genetic defect that helically twists their

whole body and alters their locomotory pattern such that adult rollers move by curling into

a “c” shape in one direction only and then straighten [14]. An example of these two types

of locomotion can be seen in Figure 1.2.

(a) Wildtype

(b) Roller

Figure 1.2 Illustration of two types of C. elegans locomotion. The time labels are such that
0 < t1 < t2 < t3. (a) Wildtype locomotory pattern moving in an “s” shape. (b) Roller
locomotory pattern curling in a “c” shape.

The locomotion of C. elegans in 2D environments has been studied with over 10,000

references available and is well-understood [15]. C. elegans have also been studied in 3D

environments [16]. Our extension to 3D environments uses far-field (Fraunhofer) diffraction
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(“diffraction microscopy”) [1, 17] to supplement conventional microscopic imaging, the latter

being restricted to a 2D focal plane. Diffraction microscopy allows the species to be probed

in more natural environments [18] since the species does not have to adhere to a focal plane.

Another feature of diffraction microscopy is that motions can be detected across multiple

scaling regions to less than a wavelength with less computing power than video analysis.

Intensity fluctuations at one point in the far-field (Fraunhofer) diffraction pattern of a

microscopic worm form a one-dimensional time-series [5]. The intensity at each point in the

diffraction pattern is the result of the superimposed light rays from each point on the worm;

hence the time-series represents a record in time of the undulation causing the locomotion.

A typical experimental time-series has a sampling rate of 1.3 kHz and is recorded over about

30-50 seconds, resulting in 40,000 - 65,000 data points. Our experimental setup and a brief

overview of experimental diffraction patterns obtained are covered in chapter 2. Additionally,

Fourier transforms and how they relate to this project are covered in chapter 3.

Analytic methods for characterizing the chaotic locomotion of C. elegans is presented

in chapter 4. We first seek to reconstruct the underlying dynamics by using phase space

embedding. One method uses lag plots (section 4.2), which are constructed by embedding

the time-series in phase space by choosing an appropriate time delay, τ , and plotting n-

tuples {(y(t), y(t+τ), y(t+2τ), · · · , y(t+(n−1)τ)}. The resulting trajectories in phase space

then characterize the underlying dynamics, where frequencies and amplitudes evolve through

time. The embedding dimension (section 4.3), n, indicates how many variables/differential

equations the locomotion depends on, giving the first clue of the complexity of the system.

In addition, the largest Lyapunov exponent (LLE) (section 4.4), which is sometimes denoted

as MLE for maximum Lyapunov exponent, indicates how quickly the nearby trajectories

in phase space diverge, giving a measure of the chaos of the system. The final chaotic

marker that we calculated is the correlation dimension (section 4.5), which indicates chaotic

dynamics in the case of a non-integer value in addition to stabilizing in higher embedding
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dimensions.

We also explored the temporal evolution of the diffraction signal generated by C. ele-

gans locomotion using recurrence plots (RPs) (section 4.6) [19] and surrogate data methods

(section 4.7) [20, 21]. Recurrence plots provide a straightforward visualization of periodicity

and near-periodicity in the system. Recurrence plots can thus be used to further identify

determinism associated with low-dimensional chaos, which is absent in truly stochastic sys-

tems [22]. Surrogate data methods are frequently used to test for and quantify time reversal

asymmetry, which is a further indication of nonlinear causality, another marker of chaos. In

addition, surrogate data methods can be used to test for the statistical significance of other

markers of chaos such as the correlation dimension.

This thesis is organized as follows: chapter 2 outlines the experimental setup used to

collect worm locomotion data and explains the related physical mechanisms. Then, chapter

3 explains use of Fourier Transforms and their applications to diffraction and time-series

analysis. In chapter 4, we explain how to calculate and interpret markers of chaos as well as

various visual representations of phase space trajectories. Finally, we summarize the thesis

and detail future work.
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Chapter 2

Experimental Methods and Setup

This chapter describes the setup for a dynamic diffraction experiment in the visible spectrum

as well as how we obtain an intensity versus time data from the resulting diffraction pattern.

2.1 Experimental Setups

In this section, we will initially describe the experimental setup used to collect the data

analyzed in chapter 4. Using this setup as shown in Figure 2.1, we study the locomotion

of live C. elegans. Additionally, later parts of this section will discuss improvements to the

setup for future experiments. Specifics of the equipment used in both optical setups are

detailed below.

In the initial setup (Figure 2.1), a HeNe (Helium-Neon) laser is used to generate a 632 nm

laser beam of about 2mW. Before the beam reaches the worm, it encounters a variable neutral

density filter (maximum ND = 3.0) to reduce the laser’s intensity to prevent saturation of

the detector. The beam then travels through a water-filled cuvette (C) holding the freely

swimming worm. The resulting dynamic diffraction pattern is imaged on a screen in the

far-field, such as the initial setup as described by Magnes et al. 2012 [1]. We can obtain

an intensity versus time data set collected at 1.3 kHz by a digital oscilloscope (PicoScope

made by Pico Technology) through a photodiode (DET10A from ThorLabs) placed off center

away from the central maximum to avoid saturation but still within the diffraction pattern.

The 1D time-dependent diffraction time-series obtained contains information about the time

evolution of superimposed light rays from every single point along the worm. Each time-series
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(a) Top View (b) Side View

Figure 2.1 Setup used to collect data analyzed in this thesis. The full setup can be seen in
the above view in (a), while the vertical displacement of the laser beam through the cuvette
(C) is more clearly displayed in (b). HeNe Laser passes through a neutral density filter (ND)
to reduce laser intensity, then the laser beam is redirected downwards by mirror M1 towards
the cuvette C holding the swimming worm. The diffraction pattern is redirected towards a
photodiode PD by mirror M2 such that the central maximum is off-center to not saturate
the detector. In the side view (b), the mirror M2 directs the beam into the page where it
propagates towards the photodiode PD. The intensity measured by the PD is sent to the
Oscilloscope, then sent to the computer CMP. Distances are not drawn to scale. [5, 23]

was typically 50 seconds long allowing for enough data points to determine the evolution of

the dynamical system.

While the setup in Figure 2.1 is sufficient for obtaining data, we have since made some

optimizations to our setup for future work, which will be described in the following para-

graphs and is illustrated in Figure 2.2. In the new setup, we still have a neutral density

filter to reduce the laser’s intensity to prevent saturation of the camera. Then, the laser

beam travels through a spatial filter (SF) in order to reduce aberrations in the beam and

output a uniform, Gaussian intensity profile, or a plane wave. A spatial filter does this by

effectively performing a Fourier Transform on the beam. To accomplish this, the spatial

filter contains two components to it: an objective lens and a pinhole aperture. First, the

objective lens Fourier transforms the beam into a very tight spot. The resulting pattern at

the beam waist, that is the point at which the beam is most tightly focused, sorts the spatial
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frequencies. The higher maxima represent higher order spatial frequencies in the object’s

plane [24]. Using this method, irregularities in the beam can be removed before reaching the

nematode. To successfully eliminate the higher order intensity maxima of the input laser

beam, the focused beam then passes through a pinhole aperture positioned exactly at the

focal point of the objective lens to filter out the concentric rings. To ensure that this filtering

happens at the optimal level, the correct objective lens and pinhole combination must be

chosen. Details outlining the proper way to calculate that combination for a HeNe laser is

detailed by Edmund Optics [25]. Our spatial filter uses a microscope objective lens (10x,

0.25 NA, 16.5 mm Focal Length) paired with a pinhole of 25 µm [26].

Figure 2.2 New setup for future experiments. HeNe Laser is redirected by two mirrors (M1
and M2), then passes through a neutral density filter (ND) to reduce laser intensity. Next,
the beam is cleaned by a spatial filter (SF), before going through a series of lenses (L1, L2,
and L3) that work together to collimate the beam to a desired beam diameter of about 3 mm
before reaching the cuvette (C) holding the swimming worm. The resulting time-dependent
diffraction pattern is then focused by a lens (L4) into our CMOS detector. Please note that
distances are not drawn to scale.

After the pinhole aperture of the spatial filter, it would be ideal to place a single lens that

would collimate the beam to a beam diameter of 3 mm and then place the cuvette holding

the worm within the beam. However, the beam exiting the spatial filter’s pinhole expands

so quickly that a single collimating lens was not sufficient due to the physical limitations

of our optical table. Instead, the setup will include three lenses: one to collimate after the
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spatial filter pinhole (L1), one to refocus the beam to a tighter beam diameter (L2), and one

to collimate the beam at the desired beam diameter (L3). The first lens (L1) is placed such

that the distance between the pinhole and the lens exactly equals the focal length of that

lens. This collimates the beam to prevent further beam expansion. The achieved collimation

at this stage is too large for our worm sample, so we focus the light using another lens (L2)

through an Iris (I). After the focused beam begins to expand again, we place a different

lens (L3) with a focal length equal to the distance between the focused beam position from

lens (L2) and where the beam diameter reaches 3 mm to achieve a collimated 3 mm beam

diameter.

As the worm swims within the laser beam, the beam diffracts at all points along the worm.

That diffraction pattern is then focused (L4) into our detector, which is a complementary

metal-oxide semiconductor (CMOS) camera. A CMOS sensor takes the diffraction pattern

intensities in space and converts light intensity signals at various locations to a voltage at

that pixel location. These voltages are then used to reconstruct the diffraction pattern on a

computer. With a new, cleaner beam due to the spatial filter, this new improved setup will

be used for future data collection. However, all data analyzed in this thesis was taken using

the setup in Figure 2.1.

2.2 Dynamic Diffraction Patterns

As the worm swims in the laser beam, the dynamic diffraction pattern originates from the

outline of the worm as illustrated in Figure 2.3. Based on Huygens principle, each point along

the worm’s body will generate a new source that will interact with all other new sources along

the worm. Each new orientation of the worm while swimming will reposition the interacting

sources that reach the screen, thus changing the phase and therefore the diffraction pattern.

Each point within the diffraction pattern contains time-dependent intensity information

relating to the phase changes. In other words, the dynamics of the worm’s locomotion can
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be retrieved from a single point within the diffraction pattern. These intensity fluctuations

are captured by a photodiode placed at a point within the diffraction pattern similar to the

position of the red dot labeled PD in Figure 2.3. Since the resulting intensity at that point

is due to diffraction about all points of the worm simultaneously, the information about the

3D locomotory shapes is folded into a 1D time-series. The 1D time series obtained will later

be unfolded in phase space using techniques of chaos theory in chapter 4.

Figure 2.3 Illustration of dynamic diffraction generation and intensity versus time data gen-
eration. On the left, we show a simplified version of our experimental setup shown in Figure
2.1 where the diffraction pattern is imaged on a screen with a photodiode (PD). In the
middle, we show an sample diffraction pattern with a red dot denoting the placement of
the photodiode. As the worm moves, the diffraction pattern, hence the intensity at the PD,
changes in response to that motion. These time dependent intensity fluctuations are then
recorded by the PD to generate a 1D dynamic diffraction data set, as shown on the right.

To determine the limiting case of how wide/long the worm can be and still generate

a diffraction pattern when interacting with coherent, laser light, we will approximate the

worm’s body with a straight line to illustrate the concepts. Using the equations of single

slit diffraction from introductory physics, we describe the relationship between slit width

(object width/length), a, spreading angle, θ, screen distance away from slit (object), L, and

the spacing between the central maximum and the mth region of destructive interference

(minimum), ym.

a sin θ = mλ (2.1)

tan θ =
ym
L

. (2.2)
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The laser wavelength is λ = 632.8 nm and the smallest dimension that the laser will

interact with is the width of the worm around a ≈ 100 µm. Using the small angle approx-

imation (sin θ ≈ tan θ ≈ θ for angles less than 10◦ ≈ π

18
radians [27]) will hold true, even

for larger order minima, m. We can simplify equations (2.1) and (2.2) into a single equation

showing the direct relationship between a and ym.

mλ

a
=
ym
L

. (2.3)

Based on equation (2.3), the smaller the object length, a, the larger the spacing between

the minima, ym. This means that the diffraction pattern generated by the width of the worm

will be spaced further apart compared to the diffraction pattern generated by the length of

the worm. A depiction of this can be seen in Figure 2.4.

Far field diffraction using visible, coherent laser light can be observed if the diffracting

object’s dimensions are comparable to the wavelength of the light used. The sample size

consideration can be shown by applying a limiting condition to the equations for single slit

diffraction. The limiting condition is that the width of the central maximum, w, exactly

equals the slit width (meaning the spreading angle, θ, will be close to zero). Applying this

condition to equation (2.3) gives an equation for the largest sample size, ac, that will cause

visible diffraction.

λ

a
=

w

2L

w = a = ac

ac =
√
2Lλ . (2.4)

For a more exact measure of the limiting size of a sample for a particular setup, you need

only to know the distance from the sample to the imaging screen, L, and the wavelength of
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Figure 2.4 Experimental example of the different diffraction patterns present from both the
width of the worm (spread out single slit pattern) and the length of the worm (more closely
spaced single slit diffraction pattern) [28].
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the laser being used, λ, to calculate the maximum size of a sample where diffraction will be

observed, ac. The typical value of ac is approximately 1 mm for L = 1 m and λ in the visible

range.

Based on the size considerations mentioned in the previous paragraph as well as the width

and length of a C. elegans, we will be able to get diffraction arising from all parts of the worm

if the laser beam diameter is larger than the length of the worm. Placing the worm within

a laser beam larger than its dimensions will provide data by oversampling, which is when

the ratio of the photons that are not incident on the worm are at least 4 times larger than

the photons that do interact with the worm [29]. Oversampling is required to retrieve all

the phases, which are needed to fully describe the worm’s dynamics. However, too large of a

beam will drown out the diffraction pattern. To ensure that we have oversampling without

drowning the signal, the size of the laser beam diameter is set around 3 mm.

Considering the size difference between the length and width of the worms, we can then

obtain a diffraction pattern on a screen in the far-field such as the example shown in Figure

2.4. However, going forward, we will look at the intensity versus time obtained from a

photodiode at just a single point in the diffraction pattern, as illustrated in Figure 2.3.
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Chapter 3

Fourier Transform

Many topics in the physical sciences relate to vibrations, waves, and oscillations. If we want

to understand these phenomena, we need to have a way to extract the various frequencies

present, which is where Fourier Transforms (FT) come in. Within this thesis, we will use

the FT in two main ways. The first is interpreting diffraction pattern intensities as a FT,

which will be described in the section (3.2). The second is calculating the broad frequency

spectrum of the swimming C. elegans, which is discussed in Section (3.3) and at the beginning

of Chapter 4. We will start with the basic definition of FT and build from there.

3.1 Fourier Transforms

Fourier transforms are used to represent non-periodic functions by assuming infinitely long

periods for the integration (−∞ to ∞). For non-periodic functions, the fundamental fre-

quency approaches zero and the harmonics become more closely packed. In exponential

form, a single, complex valued function, Φ(ν), gives the amplitude of respective waves with

frequency of ν as well as their phase, hence a frequency spectrum.

F (t) =

∫ ∞

−∞
Φ(ν)e−2πiνt dν (3.1)

Based on the Fourier Inversion Theorem, the function Φ(ν) is related to F (t) in the following

way:

Φ(ν) =

∫ ∞

−∞
F (t)e2πiνt dt (3.2)
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The variables frequency and time (ν and t) here are conjugate variables, and they form

a ‘Fourier Pair’ in reciprocal spaces (equations (3.1) and (3.2)). This Fourier Pair is used

when we use FT to extract frequencies and phases from our time series (Section 3.3). With

regards to applying FT to diffraction, we use the Fourier Pair of x (position) and p = sin θ/λ

(diffraction angle divided by wavelength). The following sections will detail the two main

ways that we will use FT: Diffraction (3.2) and Frequency Spectrum Calculation (3.3).

3.2 Applications to Diffraction

The electric field at a point, and hence the intensity distribution, within a far-field (Fraun-

hofer) diffraction pattern can be calculated using an FT. As the laser beam propagates along

the optical axis (z-axis, as shown in Figure 2.3), it encounters the diffracting object. Based

on Huygens’ principle, we have many new sources arising from that interaction, all of which

can interfere either constructively or destructively. The resulting electric field at a point P,

Ẽ, in the far field can be found using the following equation relating to the angle, θ, with

respect to the optical axis: [30]

Ẽ = E0e
−2πir0/λ

∫ ∞

−∞
A(x)e2πipx dx . (3.3)

E0 is the initial amplitude of the electric field at the position of the slit. r0 is the distance

from the center of the slit to the point of interest P. λ is the wavelength of the incident light

on the slit. The Fourier pair of x and p are position and sine of diffraction angle, θ, divided

by λ, respectively. A(x) is the ’aperture function’, which varies depending on the type of

obstruction in the propagation path of the laser beam. For a single slit of slit width a, the
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aperture function is a top hat function, Πa(x).

Πa(x) =

 0, |x| > a/2

1, |x| < a/2
(3.4)

Figure 3.1 Example aperture function for a single slit (equation (3.4)) in blue with width
a. The Fourier Transform (equation (3.6)) is shown in red. We can notice that if we make
the width, a, larger and larger, then the width of the Fourier Transform’s central peak
gets smaller and smaller. This is reflective that larger slits/objects cause tighter diffraction
patterns, just as observed for our worm in Figure 2.4

Since the ratio between the worm’s width and length is similar to that of a single slit

(1/10), we can use the aperture function for a single slit to approximate the electric field at

point P of the diffraction pattern [23]. This function is nonzero only for the width of the

respective slit. If we place the center of the slit at the origin, then our bounds for the FT

within equation (3.3) simplifies to −a/2 → a/2, giving us the following:
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Φ(p) =

∫ ∞

−∞
A(x)e2πipx dx =

∫ ∞

−∞
Πa(x)e

2πipx dx =

∫ a/2

−a/2
e2πipx dx (3.5)

= a sinc(πpa) . (3.6)

where we have defined sinc(x) as
sin(x)

x
. Other sources may define sinc(x) as

sin(πx)

πx
, such

as MATLAB. [31] Both the original top hat function written in equation (3.4) and the Fourier

transform of it found through equation (3.6) can be seen in Figure 3.1. Putting equation

(3.6) into equation (3.3), then multiplying the resulting expression by its complex conjugate

computes the intensity, I(p), of the diffraction pattern [30].

I(p) ∝ |Φ(p)|2 = |a sinc(πpa)|2 (3.7)

A real worm will not remain a stationary, straight line while swimming, but rather, will

undergo undulations similar to those depicted in Figure 1.2. To expand our approximation

of the intensity, we include two different segments of the worm that have a distance apart, b,

that oscillates with a frequency ν and amplitude b0. Applying the shift theorem then gives

us a time dependent equation for the intensity profile [30, 23].

F (x+ b/2) + F (x− b/2) ⇄ 2Φ(p) cos(2πp(b/2)) (3.8)

I(p, t) ∝ |2Φ(p) cos(πpb)|2 = |2a sinc(πpa) cos(πp[b0sin(2πνt)])|2 (3.9)

With this intensity equation, we can approximate how the intensity of the diffraction pattern

changes in space and time. Focusing on a single, fixed point in the diffraction pattern, as

we do when placing a photodiode into the diffraction pattern, we can focus on the time-

dependence of the intensity, I(t), affected by the frequency of undulation of the swimming

worm.
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3.3 Applications to Time-Series: Experimental Data Sets

In this work, we also use a discrete FT (DFT) for temporal frequency analysis since our

data consists of discrete points; to be more exact, the fast Fourier transform (FFT) provides

a computationally efficient method to evaluate the frequencies of discrete data. An FFT is

an algorithm to calculate a (DFT) with less computational operations. To illustrate this for

our data, we will redefine our function I(t) to be y(tµ), which will be used throughout the

rest of this thesis. Our experimental time-series of intensity values, y(tµ), are recorded at

equidistant time intervals, tµ, where µ is our time index. With a time step of ∆texp, we can

express any time recorded as follows:

tµ = (µ− 1)∆texp (3.10)

with µ = 1, 2, · · ·N , where N is the total number of observed time points. The total duration

of the experimental time-series is therefore:

texp = N∆texp . (3.11)

Typical values of ∆texp and N for our data were ∼ 0.000769 s and ∼ 60, 000 data points,

respectively. Making our typical value for texp around 50 s as mentioned in chapter 2. The

frequency spectrum that is generated for plotting the FFT is based on the length of the

data, texp, and our time step, ∆texp. The inverse of texp determines the frequency step, ∆ν,

or minimum frequency resolution, and the inverse of ∆texp determines the largest frequency,

νmax, i.e.,

∆ν =
1

texp
(3.12)

νmax =
1

∆texp
. (3.13)
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This means that like our experimentally recorded time-series, our frequency spectrum is a

sequence of equidistant points, νk, where

νk = (k − 1)∆ν (3.14)

with k = 1, 2, · · ·N . However, please take note that experimentally, the Nyquist sampling

theorem denotes that the maximum observable frequency possible is half of νmax [32, 33], i.e.

νmaxexp =
νmax

2
(3.15)

kexp = 1, 2, · · · (N/2 + 1) (3.16)

With our times and frequencies defined, we are ready to calculate the DFT using the

following method [30].

ŷ(νk) =
N∑
µ=1

y(tµ) e
2πi(k−1)(µ−1)/N =

N∑
µ=1

y(tµ) e
2πiνktµ (3.17)

Each ŷ(νk) coefficient relates to the weight that a particular frequency, νk, appears in the

data y(tµ). The inverse FT that retrieves y(tµ) is defined as follows [30]:

y(tµ) =
1

N

N∑
k=1

ŷ(νk) e
−2πi(µ−1)(k−1)/N =

1

N

N∑
k=1

ŷ(νk) e
−2πitµνk (3.18)

Note that equation (3.17) defines ŷ(νk) for all integer values k = 0,±1,±2, · · · , i.e., an

infinite sequence of FT coefficients ŷ(νk). However, this infinite sequence is redundant, since

it has the periodicity property

ŷ(νk) = ŷ(νk±N) for all integer k (3.19)
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or, equivalently:

ŷ(νk) = ŷ(νk ± νmax) for all integer k. (3.20)

Therefore, only a finite contiguous integer k-set, of length N , is needed to recover the original

time-series values, y(tµ), from the FT coefficients, as seen in equation (3.18).

For our experimental time-series data, y(tµ) is real-valued, and, for any real-valued time-

series, y(tµ), the FT coefficients have the additional symmetry property

ŷ(−νk) ≡ ŷ(ν2−k) = (ŷ(νk))
∗ for all integer k (3.21)

where (ŷ(νk))
∗ denotes the complex conjugate of ŷ(νk). Using equations (3.11) - (3.14) and

(3.20), this can also be written as

ŷ(νmax − νk) ≡ ŷ(νN+2−k) = (ŷ(νk))
∗ for all integer k (3.22)

or as

ŷ
(νmax

2
− νk

)
=
(
ŷ
(νmax

2
+ νk

))∗
for all integer k. (3.23)

In reverse, any time series y(tµ) is guaranteed to be real-valued if its FT satisfies either

equation (3.21), (3.22) or (3.23). This will be of some importance in the construction of

surrogate time series, to be discussed in section 4.7.

A time-series with N values, requires N2 operations to complete the calculation of the

DFT, while an FFT takes only N logN operations to complete. To accomplish this reduction

in operations, we can break the valueN into smaller chunks. The most common algorithm for

doing this is the Cooley–Tukey algorithm, which recursively breaks apart the original time-

series with N values into a product of smaller chunks (N = N1N2) [34, 35, 36]. Breaking

apart N into smaller chunks can be done in many ways, one of which is N1 = N2 = N/2,

which only works well for powers-of-two. To help our FT work more smoothly, we used the
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technique of zero padding to lengthen data to the next integer power of 2 so that FFT can

be applied. We primarily use MatLab to conduct our calculations, which calculates FFT

using a library called the Fastest Fourier Transform in the West (FFTW) [37, 38]. FFTW

is a versatile, free C subroutine library for computing DFT.

Squaring the result of an FT gives rise to the power spectral density, which is sometimes

called merely the power spectrum, S(νk).

S(νk) = |ŷ(νk)|2 = ŷ∗(νk) ŷ(νk) (3.24)

where ŷ∗(νk) is the complex conjugate of ŷ(νk). For our dynamic diffraction data, the power

spectrum relates to the energy per time of the analyzed system, hence also relates to the

measured intensity. An example of a calculated power spectrum can be seen in Figure 4.1,

where a broad frequency spectrum is obtained when calculating the FT of a time-series. This

is a first indicator, or marker, of chaotic dynamics. The definition of chaos as well as chaotic

markers will be discussed in detail in Chapter 4.
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Chapter 4

Analysis of Complex Systems

Based on our data analysis results detailed in this chapter, we find that the dynamic diffrac-

tion time-series obtained from freely swimming C. elegans is nonlinear, deterministic, aperi-

odic, bounded, and oscillatory. Several of these characteristics are also criteria for complexity.

If the system satisfies the following four criteria as listed by David Feldman [2], then chaos

exists:

1. deterministic

2. orbits are aperiodic

3. orbits are bounded

4. sensitive dependence on initial conditions

There are several markers of chaos that help determine if the above criteria are satisfied.

These markers help to distinguish deterministic time-series from non-deterministic signals

such as noise or random signals. Note in this context that random means an outcome that is

patternless and incompressible as explained in detail in [39]. A time-series that is patternless,

hence random, is neither short-term nor long-term predictable. Technically, deterministic

chaos can still be considered random since it is incompressible due to sensitivity on initial

conditions [39]. The main difference is that deterministic chaos is short-term predictable

from initial conditions.
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The following sections will describe calculating markers of chaos and the significance of

these markers in proving the statements above, such as a broad frequency spectrum (Section

4.1), largest Lyapunov exponent (LLE) (Section 4.4), and correlation dimension (Section

4.5), while also detailing the intermediate steps to measure/calculate the markers, such as

mutual information (MI) (Section 4.2) and false nearest neighbors (FNN) (Section 4.3).

Graphical representations such as lag plots (Section 4.2) and recurrence plots (Section 4.6)

are another way to show that these criteria are met. We will also do an additional check for

nonlinearity using surrogate data analysis (Section 4.7). We will start with defining variables

associated with our analysis in the next section.

4.1 Frequency Spectrum

A seemingly random pattern can undergo a first check for chaotic motion by considering the

frequency spectrum. We use the FT of the experimentally obtained time-series, y(tµ), and

calculate the power spectrum, S(νk), as described in section 3.3. For a periodic system with

a finite discrete set of frequencies present in the signal, there will be distinct peaks appearing

at those frequencies. On the other hand, the power spectrum of a complex dynamic system

with chaotic markers will reveal a broad frequency spectrum such as that seen on the right in

Figure 4.1. Broad frequency peaks in the C. elegans locomotion are due to some frequencies

being closer to each other than our minimum resolution of 1/texp = 1/(50 s) = 0.02 Hz. This

slight variability in frequencies is caused by the gait of the worm not exactly replicating itself

as the worm oscillates within the laser beam, much like the chaos of human locomotion [40].

The mean or average frequency, νavg, of the frequency values, νk, can be obtained through:

νavg =

∑N
k νk S(νk)∑N
k S(νk)

. (4.1)
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Then the inverse of the average frequency gives us the average period of the dynamics.

Tavg =
1

νavg
(4.2)

This average frequency and average period will be used in later sections such as calculating

LLE (section 4.4) and surrogate data analysis (section 4.7).

This broad frequency spectrum, such as that plotted in Figure 4.1, is our first indication

that the dynamics of C. elegans locomotion is complex because the slight variability in

the gait satisfies the chaos criteria of aperiodic phase space orbits (see next section). To

determine if other chaotic markers are present, further analysis can be done and will be

detailed in the following sections.

Figure 4.1 Wildtype time-series, y(tµ), with its corresponding power spectrum, S(νk).
Left: Original experimental intensity versus time.
Right: Resulting broad frequency spectrum from FFT (νavg = 1.32 Hz).

4.2 Phase Space Generation

In this section, we will define phase space and visualize it using lag plots. We choose to do

this next because lag plots are a powerful visualization that can single-handedly prove that

all four criteria for chaos are satisfied for a complex system. To construct the lag plot, we
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need to employ Takens (1981) embedding theorem [3] and mutual information (MI) [41, 42]

to generate additional components from our original time-series y(tµ). We will begin with

an explanation of phase space, phase trajectories, and orbits.

Phase space is a multidimensional space that represents each state of the system as a

unique point. This is done by assigning each axis of the space to a component that defines the

physical system of interest. Therefore, the full phase space construction requires the number

of axes to equal the number of components required to fully define the system. For example,

we can define a 2D phase space for a pendulum by plotting angular displacement along

one coordinate axis and angular velocity along the other. Adding another axis for angular

acceleration generates a 3D plot of the phase space. Once the phase space is constructed, we

can start at a point in phase space, and follow its evolution in time, in other words, move

along its phase trajectory. Phase trajectories can refer to any contiguous segment of time

points within phase space and can start and end at any point in phase space. As we move

along a trajectory, the shape, structure, or curve generated in phase space is known as the

orbit of the trajectory. A phase trajectory is defined as a function of time whose function

values are points in phase space. The phase trajectory thus gives a complete description of

how the state of the physical system evolves in time. In chaos theory, we usually focus on

pairs of phase space points or pairs of trajectories. Finding neighboring phase space points

and trajectories are important in our analysis and will be explained in more detail in future

sections.

If we can observe and measure only one component of a system with a multi-dimensional

phase space, then we need a method to generate the other components (phase space dimen-

sions) that define the system. The process of generating all the phase space components is

referred to as unfolding the dynamics. For a continuously defined time-dependent function,

unfolding the dynamics can be accomplished by taking the time derivative of the original

function until all components are generated, i.e., when the derivative equals zero. Going back
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to our pendulum example, taking the first and second derivative of the angular displacement

gives us two additional components of angular velocity and angular acceleration, respectively.

Then the state of the dynamics at a time t can be uniquely defined by a vector containing

these three components at that time. When the time-dependent function is known only on a

grid of discrete time points, such as for our dynamic diffraction data, then another technique

is needed to extrapolate the additional components needed to fully unfold the dynamics in

phase space, then generate the lag plot. The technique we will use to unfold our discrete

time-series data is Takens (1981) embedding theorem, which states that constructing the

phase space trajectories, using so-called delay embedding to reconstruct the components of

a dynamical system, is equivalent to using derivatives [3]. A visual illustration that both

taking the derivative and using delay embedding produce equivalent results for unfolding

the dynamics can be seen through recurrence plots (Figure 4.11), which will be discussed in

Section 4.6.

The process of delay embedding requires a lag, τ . The lag, τ , is chosen such that it is an

integer multiple of ∆texp, i.e.,

τ = ∆texpµτ (4.3)

where µτ is a non-negative integer less than N that corresponds to the lag in units of data

points. With a single time-series (a single component of dynamics vs. time) and a lag, τ ,

delay embedding generates a reconstruction that is a one-to-one mapping of the original

state space dynamics by generating a higher, n dimensional vector time-series, yn(tγ), from

an experimental time-series, y(tµ), where tµ defines the experimentally observed time grid

defined in equation (3.10):

yn(tγ) = {(y(tγ), y(tγ + τ), y(tγ + 2τ), · · · y(tγ + (n− 1)τ))} . (4.4)

Here γ = 1, 2, · · ·Nτ is the truncated index sequence of µ such that each component in
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the vector time-series has the same length Nτ . The length of the truncated sub-sequences

(generated components) Nτ depends on the lag in units of data points, µτ , and the desired

final vector time-series dimension, n, i.e.,

Nτ = N − (n− 1)µτ . (4.5)

In other words, the original time-series, y(tµ), is a projection onto a single dimension

and is being unfolded so that all dynamic variables are accounted for and ambiguities are

removed. The new components generated from the vector time-series are reconstructions

of the phase space, or variables, that affect the dynamics of the original system. Takens

embedding theorem implies that this phase space reconstruction preserves mathematical

properties such as the topology of the dynamics and the Lyapunov exponents (section 4.4),

making it a powerful tool for unfolding the characteristics of the dynamical system [3].

With Takens embedding theorem and the delay embedding formula (equation (4.4)), we

use a method to find the lag, τ , that maximizes the unfolding of the phase trajectory. There

are a few techniques for finding an optimal lag, τ . As shown by Cellucci et al. [41], the

technique of mutual information (MI) is comparatively best for finding the optimal time lag,

τ , as it minimizes the shared information between lagged data time-series. The information,

H0 (detailed below), contained in a typical data point, φ, within y(tγ) is represented by the

Shannon entropy (or information). We use the symbol H to denote information rather than

I to avoid confusion with the intensity, I, defined in section 3.2. To compare the amount of

shared information between y(tγ) and y(tγ + τ), we first need to calculate two probabilities

pφ|0 and pψ|τ , respectively, as defined below. Since our data were collected at finite intervals,

we will define a finite-width bin centered at φ or ψ, respectively, with a width of ∆φ to

calculate the probabilities, where ∆φ is defined below. Therefore, pφ|0 is the probability

that the value of y(tγ) will fall within a bin of width ∆φ centered around an intensity value
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of φ. Similarly, pψ|τ is the probability that the value of y(tγ + τ) will fall within a bin of

width ∆φ centered around an intensity value of ψ. Hence we define a proximity threshold

of εφ =
∆φ

2
to assist in calculating the probabilities pφ|0 and pψ|τ .

pφ|0 =
1

Nτ

Nτ∑
γ

Θ
(
εφ −

∣∣φ− y(tγ)
∣∣) (4.6)

pψ|τ =
1

Nτ

Nτ∑
γ

Θ
(
εφ −

∣∣ψ − y(tγ + τ)
∣∣) (4.7)

where |...| is the absolute value. Here, Θ is the Heaviside function, i.e.,

Θ(y) :=

 1, y ≥ 0

0, y < 0
(4.8)

The overlap of information between y(tγ) and y(tγ+τ) relates to their individual probabilities

to fall within ∆φ as well as the joint probability, pφ|0,ψ|τ . The joint probability for y(tγ) to

fall within

(
φ− ∆φ

2
, φ+

∆φ

2

)
and for y(tγ + τ) to fall within

(
ψ − ∆φ

2
, ψ +

∆φ

2

)
is

given by:

pφ|0,ψ|τ (τ) =
1

Nτ

Nτ∑
γ

Θ
(
εφ −

∣∣φ− y(tγ)
∣∣) Θ

(
εφ −

∣∣ψ − y(tγ + τ)
∣∣) . (4.9)

To calculate the entropy (information), and later the mutual information, the values of

φ and ψ are restricted to a discrete grid bounded by the minimum and maximum values of

the original, un-truncated time-series, y(tµ).

φmin = ψmin = min
µ=1...N

y(tµ) (4.10)

φmax = ψmax = max
µ=1...N

y(tµ) (4.11)
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Therefore, the grid used for the entropy and mutual information summations is given by:

Φ :=

{
φmin +

∆φ

2
, φmin +

3∆φ

2
, φmin +

5∆φ

2
, · · · , φmax −

∆φ

2

}
(4.12)

because our defined bins are centered about the φ values. The width of each bin in terms

of the min and max values of φ is defined as ∆φ := (φmax − φmin)/Nbins, where Nbins is the

total number of bins and typically equals 256. Then the information contained in y(tγ) and

y(tγ + τ) are, respectively, given by: [43, 42]:

H0 = −
∑
φ∈Φ

pφ|0 log2(pφ|0) (4.13)

Hτ = −
∑
ψ∈Φ

pψ|τ log2(pψ|τ ) (4.14)

The entropy is analogous to information with the difference that information is usually

calculated using base 2 in computer science accounting for a binary system. The mutual

information measures the overlap of information of two data series; in this case, the same data

series but lagged. This method to determine the lag measures overlap using a probabilistic

measure of overlap rather than the more traditional way of minimizing linear correlation.

Alternatively, the overlap in information of a second data series at a later time (tγ+τ) can be

measured by computing the mutual information between the first and second observations

y(tγ) and y(tγ + τ). We use one standard method for determining the“optimal” lag, τ ,

which is to minimize the mutual information, MI(τ), between the two time-series y(tγ) and

y(tγ + τ) as seen in Figure 4.2. The mutual information can be calculated as follows [42]:

MI(τ) = −
∑
φ,ψ∈Φ

pφ|0,ψ|τ (τ) log2

(
pφ|0,ψ|τ (τ)

pφ|0pψ|τ

)
(4.15)

In the forgoing entropy and mutual information summations, the summand is set to zero if
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(a) y(tγ) in red. y(tγ + τ) in blue.

(b) Information from y(tγ), H0, in red.
Information from y(tγ + τ), Hτ , in blue.
Information overlap, MI(τ), in purple.

(c) Experimental time-series. (d) MI plot generated from (c).

Figure 4.2 Visualization of mutual information, MI(τ) [44]. (a) Shows a simple example
of data sequence y(tγ) and a delayed data sequence y(tγ + τ) on the same axis. (b) Venn
diagram showing the information (entropy) from the data shown in (a). The optimal lag
τ is found when there is the least amount of overlap (mutual information in purple) in
information between un-lagged y(tγ) (H0 denoted by red circle) and lagged y(tγ + τ) (Hτ

denoted by blue circle). (c) Showcases an experimental time-series of wildtype C. elegans
locomotion obtained from the experimental setup described by Magnes et al. [1]. (d) Plot of
MI versus lag (in units of data points) generated from experimental time-series in (c) where
red circles highlight local minima. The first local minimum gives the “optimal” lag.
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pφ|0 = 0 or pψ|τ = 0, since

lim
p→0

p log(p) = 0 .

Notice that pφ|0 = 0 for a given φ implies pφ|0,ψ|τ (τ) = 0 for that φ and all ψ. Likewise,

pψ|τ = 0 for given ψ implies pφ|0,ψ|τ (τ) = 0 for that ψ and all φ.

MI is a nonlinear correlation that quantifies an average of the information shared by

two time-series, and does not depend on the values themselves. Rather, mutual information

depends on the probabilities of these values occurring, while the joint probability depends

on the lag τ . As shown in reference [41], the first local minimum in the MI(τ) plot is the

best choice for the lag τ as it is the first point that maximizes the information added by the

lagged series y(tγ + τ) while minimizing the loss in data when creating an n number of time-

series (yn(tγ) components). A graph created from an experimental time-series illustrating

this concept can be seen in Figure 4.2d. For the set of experimental time-series studied in

this work, the optimal µτ values obtained were in the range of approximately 150 - 325 data

points, corresponding to τ values in the range of around 0.11 - 0.25 seconds.

To view the dynamic trajectories of the time-series in phase space, we use the visual

representation of a lag plot, where each axis is a component generated from delay embedding.

This representation serves two purposes: (1) test if the time-series has structure (e.g. no

crossings in phase space, bounded) and (2) if not structured, provide justification for needing

higher order embedding (see next section) to fully resolve the trajectory. Combining the delay

embedding formula (yn(tγ)) and MI’s lag (τ) together to generate at least two components

(n = 2), we get a lag plot shown in Figure 4.3. The result in 2D could be described as a

picture of a wound-up yarn ball that appears to contain crossing trajectories; however, if we

think about the analogy of a yarn ball, a 2D picture is not sufficient to fully characterize

it because the yarn ball is a 3D object with a certain thickness to it, so not all of the yarn

that appears to cross in 2D actually does, but rather, is separated by a finite amount of
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space or thickness. Similarly, the trajectories pictured in a 2D plot do not actually cross but

are a projection onto a 2D plane with false crossings that can be resolved with embedding

in the proper dimension for the trajectories in question (see next section). In fact, for a

deterministic system, the trajectories will never cross in phase space because each point is

uniquely defined if embedded properly.

Figure 4.3 Example 2D projection of a lag plot generated from the dynamic diffraction time-
series of a swimming C. elegans in Figure 4.2c [44]. The colors reflect a progression in time
where dark blue reflects earlier tγ values and dark red reflects later tγ values. The first
component y(tγ) is plotted on the x-axis, and the second component y(tγ + τ) is plotted
on the y-axis with τ = 0.1716 s. Based on the apparent crossings in this projection, we
need a higher embedding dimension than 2 to fully resolve the dynamics and eliminate false
crossings. Determining the best embedding dimension will be discussed in section 4.3.

Re-plotting Figure 4.3 in 3D (n = 3) eliminates trajectory crossings, hence reveals false
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crossings, indicating that an embedding dimension higher than 2 is needed to fully resolve the

dynamics. For our data, a 3D lag plot satisfies all of David Feldman’s chaos criteria listed at

the beginning of this chapter. Determinism is satisfied because at n = 3, the trajectories of

our data do not cross each other, thus every point in phase space is unique and deterministic.

The orbits are aperiodic since there are no crossings in phase space - at least not on the time

scales of our experimental observations, texp. The orbits of the trajectories are bounded in a

finite region in the 2D lag plot in Figure 4.3. Using the color bar on the right-hand side to

track the temporal evolution of the trajectories, sensitive dependence on initial conditions is

seen to be satisfied because close points on different temporal lines eventually diverge.

Visual inspection of the 3D lag plot, generated using 3D plotting software, indicates that

the 3D lag plot fully resolves the trajectories. That is, in the 3D lag plots, no crossings of

trajectories are observed. Nevertheless, the required embedding dimension will be discussed

in more detail in the following section (4.3).

4.3 Embedding Dimension

This section will detail how we determine the embedding dimension, n needed to generate

a vector time-series yn(tγ) that fully separates the phase space trajectories, hence unfolding

the dynamics present from our original time-series y(tµ). The value of n is the last value

needed to fully implement delay embedding of our data to take advantage of Takens embed-

ding theorem. We determine the embedding dimension n using the method of false nearest

neighbors (FNN). FNN occur when neighboring trajectory points in phase space, yñ(tγi) and

yñ(tγj), overlap in lower embedding dimensions, ñ, but separate at a higher embedding di-

mension n. The term overlap here means that some distance measure in phase space, defined

below, falls below some small threshold value, εd. First we calculate the Euclidean distance,

32



Dγi,γj(ñ) between two points yñ(tγi) and y
ñ(tγj) using a norm

∥∥∥ · · · ∥∥∥ as defined below.

Dγi,γj(ñ) =
∥∥∥yñ(tγi)− yñ(tγj)

∥∥∥ (4.16)

=

√√√√ ñ∑
c = 1

[
y(tγi + (c− 1)τ)− y(tγj + (c− 1)τ)

]2
(4.17)

where c = 1, 2, · · · ñ and indexes the coordinates generated during delay embedding. Using

Dγi,γj(ñ), the number of FNN along the vector time-series for embedding dimension ñ are

tabulated with the following quantity, FNN(ñ), based on Kennel’s algorithm [45, 41]:

FNN(ñ) =
Nτ∑

γi=1,γj=γi+1

Θ

(√
(Dγi,γj(ñ+ 1))2 − (Dγi,γj(ñ))

2

(Dγi,γj(ñ))
2

− εd

)
. (4.18)

There are several other methods for calculating FNN [46, 47, 48, 49], but we are using

Kennel’s algorithm here, due to its demonstrated ability to reproducibly calculate accurate

values of the largest Lyapunov exponent (LLE) (see next section) for various systems [45, 41].

Instead of the change in absolute Euclidean distance itself, equation (4.18) uses the relative

difference of the squares of the Euclidean distance to quantify the change in separation be-

tween two trajectory points when the embedding dimension is increased from ñ to ñ+1. The

square-root term on the right-hand side of equation (4.18) provides a relative measure of the

change of separation between the two trajectory points, and εd is a dimensionless quantity.

A pair of trajectory points is identified as a FNN if that relative change in separation exceeds

the threshold value εd. All FNNs are eliminated when the change in relative separation does

not change anymore as the embedding dimension, ñ, is increased [50, 51]. The number of

FNNs is plotted vs. embedding dimension, ñ, as shown on a percentage scale in Figure

4.4. The embedding dimension, ñ, where the FNN approaches zero or stabilizes is then the

minimum embedding dimension, n, needed to embed the trajectory without FNNs.
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Figure 4.4 Percentage, qFNN = FNN(ñ)/FNN(1), of remaining FNN count versus embedding
dimension, ñ, generated from the locomotory time-series in Figure 4.2c [44]. The FNN count
is shown as a percentage of the reference count at ñ = 1. At ñ = 3, qFNN falls to 0.85%,
then 0.02% at ñ = 4. The FNN percentage falls to zero at higher embedding dimensions.
We therefore use n = 4 as the minimal embedding dimension that completely unfolds the
dynamics of C. elegans locomotion for this experimental time-series. The same minimal
embedding dimension was found and used for all other experimental time-series studied.

Our goal is to determine the lowest embedding dimension that fully resolves the topology

of the system since higher dimensions can amplify experimental noise and are computation-

ally taxing [52]. We accomplish this by choosing the lowest embedding dimension n that

eliminates FNN (false crossings) [50]. The threshold εd is chosen larger than the noise fluc-
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tuations in the original time-series, y(tµ), but small enough to fully separate the phase space

trajectories. If εd is too small and within the noise, then the percentage of FNN can become

greater than 100%, which is not possible. If εd is too large, a significant number of FNNs

will not be identified, and the resulting n found will be smaller than needed to fully unfold

the dynamics. Using the correlation dimension (see section 4.5, Figure 4.8) and recurrence

plots (see section 4.6, Figure 4.13) can help verify that our embedding dimension n, and

hence our threshold εd, are appropriate for our system.

For our data as seen in Figure 4.4, the embedding dimension stabilizes around dimensions

3 or 4. As a rule of thumb, to reliably embed a trajectory in embedding dimension n, 10n

data points are needed [53]; however, there are methods that have reliably estimated LLEs

with less data points [54]. Since our time-series is typically larger than 104, we can safely

embed in n = 4 indicating a low-dimensional complexity. Testing the stability of higher

embedding dimension increases the confidence in our results. The FNN percentage in Figure

4.4 stabilizes at or near zero indicating that the data is relatively noise-free [50]. This same

type of embedding dimension analysis has also been performed for multiple experimental

time-series, both wildtype and roller worms. For all time-series analyzed, the resulting

minimal embedding dimension was found to be around n = 4.

4.4 Largest Lyapunov Exponent

Once the time-series is embedded in the optimal dimension, n, based on the results from

Figure 4.4, the next marker of chaos can be calculated: the largest Lyapunov exponent (LLE).

The LLE quantifies the growth in separation between neighboring trajectories. Trajectories,

of course, both converge and diverge in phase space; however, an LLE is a measure of how

sensitive a system can be to initial conditions. This section will detail how to calculate the

LLE starting with identifying initially neighboring points, then observing how they diverge

in time.
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With the lag, τ , and embedding dimension, n, from previous sections to completely apply

delay embedding, the LLE is readily determined using the Rosenstein algorithm [55]. To

start, we need to initially find pairs of vector time-series points (yn(tγi), y
n(tγj)) in phase

space, at a pair of observation time points (tγi , tγj) that satisfy the following conditions:

Tavg ≤ |tγi − tγj | (4.19)∥∥∥yn(tγi)− yn(tγj)
∥∥∥ = min

γ

∥∥∥yn(tγ)− yn(tγj)
∥∥∥ (4.20)

max(tγi , tγj) ≤ texp − tLLE (4.21)

Here, Tavg refers to the average period obtained from the FT of the original time-series y(tµ),

as defined in equation (4.2). Also, tLLE is an integer multiple of ∆texp and denotes the total

time duration of the neighboring trajectories for which a divergence (see below) is being

calculated.

For a vector time-series of given length, Nτ , there will be Nτ − tLLE/(∆texp) =: NLLE

time points tγj . For each such tγj there is one unique partner, tγi , for which equations (4.19),

(4.20), and (4.21) will be satisfied. For a given γj, the corresponding partner index, γi, will

now be denoted as γj
′, i.e., γj

′ ≡ γi. We refer to these particular pairs of time points, (tγj ,

tγj ′), as the LLE pairs of the time-series. A pair of trajectories starting from (tγj , tγj ′) can

be evolved in time for a duration of tLLE to calculate the trajectory divergence, Ddiv(tγj , t̄β),

defined by

Ddiv(tγj , t̄β) =
∥∥∥yn(tγj + t̄β))− yn(tγj ′ + t̄β))

∥∥∥ (4.22)

where

t̄β = β∆texp β = 0, 1, 2, · · · tLLE/(∆texp) . (4.23)

An illustration of the change in separation distance between an LLE pair, (tγj , tγj ′), as
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Figure 4.5 An illustration of an LLE pair , (tγj , tγj ′), that satisfies the criteria listed in
equations (4.19) - (4.21) at some initial time t̄β = 0 s, shown on the left. Following each
point along their respective trajectory for a set evolution time t̄β, we can calculate the new
separation distance, or the divergence, Ddiv(tγj , t̄β), such as the separation depicted on the
right.

the trajectories evolve in time from an initial time t̄β = 0 s to a final t̄β maximum value

based on equation (4.23) is shown in Figure 4.5. For each LLE pair, (tγj , tγj ′), we now

introduce an LLE value, λ̄LLE(γj), based on the assumption that Ddiv(tγj , t̄β) converges or

diverges exponentially as a function of t̄β [55]:.

Ddiv(tγj , t̄β) ≈ C(tγj) exp
(
λ̄LLE(γj)t̄β

)
(4.24)

where

C(tγj) =
∥∥∥yn(tγj)− yn(tγj ′)

∥∥∥ (4.25)

and

Ddiv(tγj , 0) ≡ C(tγj). (4.26)

The quantity λ̄LLE(γj) in equation (4.24) represents a time-dependent value of the LLE at

a particular time tγj in the time-series. In the present study, we will not explicitly extract
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λ̄LLE(γj) from the time-series, but rather, we will extract an average LLE by averaging

λ̄LLE(γj) over all γj values, γj = 1, 2, · · ·NLLE. To do so, we take the natural logarithm

of both sides of equation (4.24), and obtain a linear relationship where the time-dependent

LLE, λ̄LLE(γj), is the slope:

ln
(
Ddiv(tγj , t̄β)

)
≈ ln(C(tγj)) + λ̄LLE(γj) t̄β (4.27)

Averaging equation (4.27) over all γj values, we get the following equation

Ldiv(t̄β) = LC + λLLE t̄β (4.28)

where

Ldiv(t̄β) :=
1

NLLE

NLLE∑
γj=1

ln
(
Ddiv(tγj , t̄β)

)
(4.29)

LC :=
1

NLLE

NLLE∑
γj=1

ln(C(tγj)) (4.30)

λLLE :=
1

NLLE

NLLE∑
γj=1

λ̄LLE(γj) . (4.31)

The quantity λLLE is the average of the time-dependent LLE quantities, λ̄LLE(γj), over

the entire time-series. It is this quantity, λLLE, that we will report as the LLE of the time-

series going forward. To extract λLLE from the time-series data, notice that Ldiv(t̄β) can

be calculated for each t̄β, from the original time-series data, y(tµ), transformed into the

truncated vector time-series, yn(tγj), by equation (4.4), and then using equation (4.22) and

(4.29).

Based on equation (4.28), which is equivalent to the assumption of exponential depen-

dence stated in equation (4.24), we expect that a plot of Ldiv(t̄β) versus t̄β will follow a

38



straight line whose slope is given by the average LLE of the time-series, λLLE. Therefore, we

can extract the λLLE from the linear fit of the plot of Ldiv(t̄β) versus t̄β. The linearization in

equation (4.28) is only valid for short time durations. Therefore, the quantity, Ldiv(t̄β) must

be plotted versus time, t̄β, and visually inspected, to identify the early range of t̄β where

the linearization holds. We then extract λLLE by fitting a straight line to the Ldiv(t̄β) data

points across the t̄β region where linearity holds [56].

The magnitude and sign of the LLE is a measure of convergence (−) or divergence (+).

If the LLE value is negative, then trajectories converge, hence the system does not have a

sensitive dependence on initial conditions. However, if the LLE is positive, then trajectories

diverge exponentially. Obtaining a positive LLE indicates that the trajectories are diverging,

which is a marker of chaos (criteria 4 [2]) but not sufficient alone to define a chaotic system

[57]. An example of determining the LLE value for the C. elegans locomotion can be seen

in Figure 4.6. Our positive LLE values obtained graphically such as in Figure 4.6 provide

a quantifiable and reproducible measure of the locomotion while also indicating possible

chaotic dynamics.

In comparison to our swimming C. elegans in a 3D environment, Ahamed et al. obtained

a smaller LLE from position data for C. elegans crawling on a 2D agar surface, namely 0.69

s−1 [58]. However, our LLE was obtained in Figure 4.6 by fitting the beginning of our graph

(t̄β < 1 s) to characterize a single thrashing cycle of a swimming worm. Ahamed’s method

applied a fit to a later region (from 1 s to 4 s) to characterize the trajectory of a crawling

worm. If we apply a linear fit to the same region as Ahamed, then we obtain comparable

results.

We used this method for numerous other experimental time-series, and in all cases stud-

ied, the LLE was found to be positive. This gives further evidence that C. elegans locomotion

is chaotic. In this section, we used the entire time-series to calculate the LLE value; however,

LLE values can also be calculated for sub-sequences of the time-series if different sections of
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Figure 4.6 Ldiv(t̄β), calculated from the experimental time-series data, y(tµ), by equations
(4.4), (4.22), and (4.29), is plotted versus evolution time t̄β in blue for the time-series shown
in Figure 4.2c [44]. By inspection of the blue curve, the time points from ∼ 0 s to 1 s are
identified as the region where the linearization holds, as stated in equation (4.28). Only
these time points were included in the linear fit shown in red. The slope of the fitted red
line gives a λLLE value of 1.39± 0.02 s−1.

locomotion are determined. This process of determining multiple LLE from a single time-

series will be described in more detail in section 4.6. A quantitative summary of these results

is given in Table 4.2 in the last section in this chapter.
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4.5 Correlation Dimension

Another measure of complexity is the correlation dimension [59, 60, 61]. The correlation

dimension, dcor, is a measure of complexity because it details the degrees of freedom and

is a type of fractal dimension of the system. The correlation dimension takes into account

the density and distribution of points in phase space. Again using the n-dimensional vector

time-series generated by delay embedding (Equation 4.4), yn(tγ), with a total number of Nτ

points, the correlation dimension can be obtained by first calculating the following quantity,

C(εd2) [60]:

C(εd2) = lim
Nτ→∞

1

N2
τ

Nτ∑
γi=1,γj=γi+1

Θ
(
εd2 − ||yn(tγi)− yn(tγj)||

)
(4.32)

C(εd2) ∝ εdcord2
(4.33)

Equation (4.32) simply calculates the number of points within-range of point yn(tγi) using

a Heaviside Function, Θ, as an indicator function. The acceptable proximity of two points

is defined by a threshold, εd2 . A point yn(tγi) that is in a more densely packed region of the

phase space orbit will generate a larger value compared to a point yn(tγi) located at a more

sparsely packed region. To remove the dependence on the point position, yn(tγi), we take the

average of these values to fully evaluate the correlation integral, C(εd2), giving us a measure

of how densely packed our phase space orbit is. C(εd2) is proportional to ε
dcor
d2

through the

relationship in equation (4.33). Therefore, the correlation dimension is found by plotting the

log of the correlation integral (Equation (4.32)) versus the log of εd2 and finding the slope.

This is illustrated in Figure 4.7 where ln (C(εd2)) is plotted vs. ln (εd2) for the C(εd2)-results

extracted by equation (4.32) from the vector time-series, yn(tγ), of one single experimental

time-series, y(tµ), with embedding dimension n = 4. The slope of the straight line fitted to

the graph in Figure 4.7 is the correlation dimension, dcor, for that experimental time-series
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and embedding dimension.

Figure 4.7 ln (C(εd2)), calculated from the experimental time-series data, y(tµ), by equations
(4.4) and (4.32), is plotted versus ln (εd2) in blue. By inspection of the blue curve, the points
from ∼ 0.0198 to ∼ 0.2485 are identified as the region where the linearization holds, as
insinuated in the proportionality in equation (4.33). Only these points were included in
the linear fit shown in red, which illustrates how linear regions are chosen for generating
correlation dimension values, dcor, of our experimental time-series.

The correlation dimension calculation depends on the value of the embedding dimen-

sion dimension n. An experimental time-series can be shown to be random or determin-

istic depending on how the correlation dimension value changes with increased embedding

dimension, n [62]. A time-series is random if the correlation dimension and embedding di-

mension continue to equal each other as the embedding dimension approaches infinity. If

the correlation dimension stabilizes as the embedding dimension increases, then the data is

deterministic (See Figure 4.8) [62]. Moreover, a correlation dimension above 2 is a necessary

condition for a trajectory to be aperiodic, bounded, and not cross in phase space [63]. We

find that time-series obtained from the dynamic diffraction (10 Wildtype and 18 Roller) has
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Figure 4.8 Plot of calculated correlation dimension as embedding dimension is increased.
Random data (red) obtained from random.org increases linearly as the embedding dimension
is increased, but our C. elegans data (black) stabilizes around a correlation dimension slightly
above 2, indicating deterministic behavior [62]. Additionally, our locomotion data distinctly
differs from the linear behavior exhibited by the random data at embedding dimension 3,
which verifies that our locomotion data needs an embedding dimension of 3 or higher to
unfold the dynamics.

an average correlation dimension ∼ 2.08± 0.24, for embedding dimension n = 4, which adds

to the evidence of chaotic behavior in C. elegans locomotion. The possible non-integer value

of the correlation dimension may indicate a fractal dimension, which could be due to chaotic

dynamics. In our case, with a correlation dimension between 2 and 3, our phase space orbit

has characteristics of 2D and 3D space [64]. Another way to graphically represent pairs of

close points in phase space is through Recurrence plots, which will be discussed in more

detail in section 4.6.
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4.6 Recurrence Plots

More information about the locomotory system of C. elegans can be gained through other

analytical methods for chaotic systems, such as distance matrix heatmaps and recurrence

plots (RP), for visualization of phase space trajectory proximity [65, 66]. These visualiza-

tion methods allow us to quickly identify essential dynamical structures in the time-series

under study [67, 68, 69]. An RP can be used to investigate periodicity that may appear

in a complex time-series [70, 71]. Given an experimental time-series, y(tµ), of a nematode,

we can construct a heat map or an RP. An RP is a binarized distance matrix that allows

the visualization of characteristics in a time-series, including drifts in frequencies, recurrence

rates, and complexity. Before discussing the application of heatmaps and RPs methods to

experimental C. elegans locomotion time-series, I will first present a few illustrations of how

distance matrix heatmaps and RPs allow us to identify and visualize essential dynamical

features of a system, using very simple synthetic time-series data based on sinusoidal oscilla-

tion models. These illustrations will help us in applying these visualization methods in the

analysis of real experimental time-series data.

Before evaluating the full RP matrix, we first start by looking at the so-called distance

matrix, Dι,κ, which calculates the distances between pairs of phase space points using the

norm (see equation (4.17)).

Dι,κ =
∥∥∥yn(tι)− yn(tκ)

∥∥∥ ι, κ = 1, 2, · · · , Nτ (4.34)

where Nτ is the total length of the vector time-series, yn(tι), as defined in equation (4.5)

for a time lag of τ . The distance matrix can be used to create two different graphical

representations of recurrences in trajectories, yn(tι): a heatmap and an RP. In each graphical

representation, the graph plots time on both axes (x-axis = tι and y-axis = tκ) allowing

comparison of different times to each other. The distance matrix, Dι,κ, can be displayed as a
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heatmap, showing the range and variation of distances between different trajectories within

the vector time-series. As already explained earlier, the term trajectory here refers to any

contiguous sub-series of the vector time-series. Each heatmap contains a color scale that

represents the value of the matrix element Dι,κ between any pair of time points tι and tκ.

All heatmaps shown in this section were calculated with 1D embedding (n = 1).

As an example, we can look at the 1D heatmap generated from a simple sine wave (Figure

4.9a) as seen in Figure 4.9b. In the heatmaps, yellow denotes a smaller difference between

compared points, while green denotes a larger difference. Heatmaps (and as later defined

RPs) reveal vector time-series points that are close together in phase space. These (tι, tκ)-

points are referred to as recurrences. For example, the yellow points, forming yellow lines,

such as those in Figure 4.9b, are recurrences. Along the diagonal where ι = κ will always

return a difference of zero, hence also a recurrence, and this line is called the line of identity

(LOI), which is labeled with a red line in the heatmap/RP figures in this section. The other

diagonal lines parallel to the LOI can be explained as two separate trajectories repeating

over a time duration related to the length of the diagonal line. Take for instance a trajectory

starting at t = 0 and another starting at t = 2π (highlighted in pink in Figure 4.9c). If

we move one time step at a time along those two paths simultaneously and compare their

amplitudes, we calculate a difference of zero at every pair of times, which generates the

diagonal line highlighted in pink in Figure 4.9d, parallel to the LOI. The (tι, tκ)-points along

this pink line are an example of so-called true recurrences because not only are the amplitudes

the same, but also the slopes are the same at every pair of points compared. In this context,

we distinguish between true recurrences and false recurrences. True recurrences are defined

by the condition that both the signal values, yn(tι) and yn(tκ) are in close proximity and

their time derivatives are also in close proximity. In contrast, false recurrences are defined

by the condition that both the signal values, yn(tι) and yn(tκ) are in close proximity, but

their time derivatives are substantially different.
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(a) Simple Sine Wave

(c) Pink highlight of repeated state

(e) Blue highlight of a false repeat

(b) 1D Heatmap of (a)

(d) Recurrences generated from (c)

(f) False recurrences from (e)

Figure 4.9 1D Heatmap examples generated from a simple sine wave. Part (b) shows the 1D
Heatmap with only the LOI highlighted in red. Parts (c) and (d) showcase a line parallel to
the LOI and how it is generated in pink while parts (e) and (f) showcase a line perpendicular
to the LOI and how it is generated in blue.

46



Diagonal lines that are perpendicular to the LOI can be explained as false recurrences

and are a hint that a higher embedding dimension is needed to fully resolve the trajectories.

This phenomenon can be explained by considering a trajectory that starts at 0 radians and

another starting at 5π radians (highlighted in blue in Figure 4.9e). If we move one time step

forward from t = 0 and one time step backwards from t = 5π simultaneously and compare

their amplitudes, we calculate a difference of zero at every pair of times, which generates the

diagonal line highlighted in blue in Figure 4.9f. The points along this line are not exactly the

same state because even though the amplitudes are the same, the slopes are different. For

instance, two different points that are compared along the blue line are the two yellow dots

in Figure 4.9e (t = π/6 and t = 29π/6), which have the same amplitude, but different slopes,

meaning different states that would be eliminated from the heatmap if a higher embedding

dimension was used. This process of eliminating the lines perpendicular to the LOI will be

discussed later in this section and is visualized in Figure 4.11.

Before we eliminate the perpendicular lines, we will look at how changing amplitude

and/or frequency can alter the structures present in an under-embedded heatmap (Figure

4.10). In Figure 4.10a, time-series sections of the same and unlike amplitudes are compared.

Comparing time-series sections with mismatched amplitudes, such as amplitude jumps oc-

curring at times 4π and 8π, reveals oscillating lines in the heatmap. Figure 4.10b shows how

the RP changes by suddenly changing the frequency of the function. Sections comparing like

frequencies form diamond shaped boxes which are of uniform size along both time axes and

whose size relates to the period, whereas sections comparing unlike frequencies form boxes

that are squished rhombi. In both cases, when there is a sudden shift in the function, or a

sudden switching of behavior, there is a clear division, partitioning off the various sections.

Extending to real signals, it is very unlikely that there will be a sudden shift in amplitude

and/or frequency, but rather, a more gradual change. Figure 4.10c shows a gradually time

dependent frequency, which causes the boxes in the heatmap to gradually stretch out along
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the LOI axis. Figure 4.10d shows a heatmap generated by a signal with random amplitudes

(random numbers obtained from https://www.random.org). While the box-like structures

are still present, they are much more difficult to see. However, the RP of these time-series

data, as defined below, with an appropriate threshold, ε, and proper, higher, embedding

dimension, n, will unfold the dynamics and result in more sharply defined lines. These

considerations will be explored next, then applied to experimental time-series.

A heatmap is useful for visualizing a single time-series, but if we want to get quantitative

information relating to chaos, we need additional steps, such as implementing the proper

embedding dimension and sensible threshold. This leads to the second graphical represen-

tation, an RP. In constructing an RP, we apply a threshold, ε, to define the radius of the

acceptable proximity tolerance between any pair of vector time-series points, by way of the

so-called recurrence matrix R defined to have matrix elements [72]:

Rι,κ = Θ
(
ε−

∥∥∥yn(tι)− yn(tκ)
∥∥∥) ι, κ = 1, 2, · · · , Nτ (4.35)

Here, Θ denotes the Heaviside function defined in equation (4.8), which ensures that the

R-matrix elements take on only the values of 0 or 1. In corresponding RPs, shown in figures

below, the R-matrix can thus be displayed in a black-and-white (BW) format: R-matrix

elements with value 1 or 0 are displayed by black or white pixels, respectively, again with

tι and tκ plotted along the x- and y-axis, respectively. The embedding dimension, n, of the

vector time-series, yn(tι), entering into equation (4.35), is also referred to as the dimension of

the RP. For example, in the following, the term “2D RP” refers to the RP of the recurrence

matrix, Rι,κ, calculated from vector time-series, yn(tι), with embedding dimension n = 2.

The threshold, ε, should be small enough to account for critical features in the dynamics

but large enough so that noise does not affect the RP. For our experimental time-series, the

method we used to determine the threshold is to use a percentage of the maximum signal,
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(a) Change in Amplitude

(c) Time varying Frequency

(b) Change in Frequency

(d) Random Amplitude

Figure 4.10 Changing various parameters to observe the effects on the 1D Heatmap for
several synthetic sine waves. (a) shows amplitude reduced by half at t = 4π, then returned
to the original amplitude at t = 8π. (b) shows the frequency tripled at t = 4π, then returned
to the original frequency at t = 8π. (c) shows the frequency gradually changing with time
based on the function f = 2t−cos(t). (d) shows constant frequency and random amplitudes.

or rather, a percentage, pr, of the range of amplitudes, ∆φA = φmax −φmin, where φmax and
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φmin are defined in equations (4.10) and (4.11), respectively.

ε = pr∆φA (4.36)

In Figure 4.11a, we plot the 1D RP of the recurrence matrix elements, Rι,κ, from equation

(4.35), for our simple sine wave from Figure 4.9a. The resulting 1D RP is a black and white

picture where our originally yellow recurrence lines have become thinner black lines. The

lines perpendicular to the LOI are false recurrences that were observed in Figures 4.9e

and 4.9f and are still present in the 1D RP. There are two ways to eliminate these false,

perpendicular-line recurrences in the sine wave’s 1D RP. One way is to combine the original

time-series, y(tι), with its time derivative, ẏ(tι), to form a two-component vector time-

series, thereby embedding the original time-series in a 2D phase space. This is illustrated

in Figure 4.11c, where the perpendicular-lines have vanished. Hence, the 2D phase space

separates the points with the same amplitude, but different slope. The second method to

eliminate false recurrences is to generate a second vector component by applying a lag to

the original time-series, y(tι), as done in Figure 4.11d. The lagged function is shown in

pink and is synonymous to the derivative of the sine function shown in blue in Figure 4.11b.

Both methods obtain the same final RP result. This is an illustration of Takens (1981)

embedding theorem: embedding a time-series in a higher dimensional phase space by means

of time lagging is entirely equivalent to an embedding that uses, instead, first and/or higher

order derivatives to generate the components of a vector time-series. For inevitably noisy

experimental time-series, it would be extremely difficult to produce accurate estimates for

the time derivatives of y(tµ), as required for a derivative based embedding. On the other

hand, the experimental time-series can produce accurate results for all time lagged vector

components, even in the presence of noise. For this reason, we have used exclusively the

time lagged delay embedding method in analyses where embedding was required.
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(a) Figure 4.9a 1D RP

(b) 2nd component: d/dt = Cosine

(d) 2nd component: τ = π/2

(c) Figure 4.9a 2D RP: d/dt

(e) Figure 4.9a 2D RP: τ

Figure 4.11 RPs with ε = π/128 of the simple sine wave from Figure 4.9a. (a) shows the
1D RP of the sine curve. (b) plots the first (original sine) and second (derivative in blue)
component to generate 2D embedding of the simple sine wave. These two curves will serve as
the two input vector components of a 2D vector time-series to be displayed as an RP in (c).
(d) plots the second method to generate 2D embedding (delay embedding) using the first
(original sine) and second component (lagged function in pink) to generate 2D embedding
of the simple sine wave, then the resulting 2D RP is plotted in (e). Both methods of 2D
embedding generate the same RP plot. 51



Having reviewed the basic concepts of the RP representation, we will now display and

discuss RPs for real experimental C. elegans locomotion time-series. The 1D RP in Figure

4.12 shows how the locomotion of a swimming wildtype C. elegans evolves over time as well

as recurrence feature evolution, such as those features in the Figure 4.10. Figure 4.12a shows

that the locomotion evolves over time since the periodicity of the RP changes, while Figure

4.12b shows that the locomotion is not random with minimal noise but structured down to

the smallest detail and never repeating exactly. The crossings of the recurrence features, aka

lines perpendicular to the LOI, indicate that a higher embedding dimension than n = 1 is

needed to resolve this time-series as we already observed through our FNN test.

(a) Total time-series (b) Section from t = 5.35− 12s

Figure 4.12 1D RPs of an experimental time-series of a swimming wildtype C. elegans on
two different time scales [44]. Features emerge on various time scales in these RPs. The
threshold, ε, used was pr = 10% of the range of amplitudes, ∆φA. (a) RP for a swimming
C. elegans. The system is evolving over time with the patterns changing along the LOI at
about 5.35 s, 12 s, 16 s, 25.3 s, 31.6 s, 34.2 s, 39.5 s, 41.6 s, and 45.2 s. (b) Highly resolved
details of the swimming C. elegans over about 6 seconds (5.35 - 12s). Diagonal lines parallel
to the LOI relate to the predictability of the system and can be used to determine the LLE.
The diagonal from 8.48 s to 8.84 s has a length of 0.509 s, which relates to an LLE frequency
of 1.96 s−1. The frequency of about 2 Hz matches the swimming frequencies of wildtype C.
elegans [15]. The crossing lines and lines perpendicular to the LOI indicate that a higher
embedding dimension is needed to fully resolve the features.

Figure 4.13 shows the contrast between 1D embedding and the proper embedding di-
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(a) 1D Heatmap (b) 1D RP

(c) 4D RP

Figure 4.13 Generating embedded recurrence plots for experimental C. elegans time-series,
with tι and tκ plotted along the x-axis and y-axis, respectively [44]. The red line showcases
the LOI, and the blue boxes showcase different sections of the motion. (a) Heatmap of the
distance matrix Dι,κ for the 1D vector time-series, y1(tµ), i.e., for embedding dimension
n = 1. (b) RP of recurrence matrix Rι,κ for the 1D vector time-series, y1(tµ). A threshold
calculated using pr = 0.1% of the range of amplitudes, ∆φA, has been added to the 1D
embedded RP. (c) RP of recurrence matrix Rι,κ for the 4D vector time-series, y4(tµ), i.e.,
for embedding dimension n = 4. The time-series is now embedded in 4D with threshold
calculated using pr = 0.3% of the range of amplitudes, ∆φA. The embedding dimension is
proven sufficient to unfold the dynamics because all perpendicular lines (FNN) are eliminated
(as illustrated in Figure 4.11). The diagonal lines that are parallel with the LOI indicate
how long a particular state lasts.
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mension, n = 4, for the same experimental time-series. Focusing on a shorter sub-series

of that time-series, we can go through the steps of generating the fully embedded RP for

our experimental data: plotting the 1D distance matrix heatmap, plotting the 1D RP, and

plotting the 4D RP. First, we display the 1D heatmap of the distance matrix, Dι,κ, as shown

in Figure 4.13a, in order to get an overview of the recurrence patterns. These patterns of

observed recurrences are displayed with a sharper contrast in the 1D recurrence matrix, Rι,κ,

as shown in Figure 4.13b. Lastly, imposing the n = 4 embedding dimension eliminates the

perpendicular structures and reveals only lines parallel to the LOI, as seen in Figure 4.13c.

The blue boxes in each panel of Figure 4.13 showcase different sections of the time-series

exhibiting different types of locomotion based on the patterns observed within the RP. After

embedding the time-series in the proper phase space dimension, n = 4, as shown in Figure

4.13c, the recurrences now form a pattern of almost straight diagonal lines parallel to the

LOI. These diagonal lines are not contiguous, but rather, consist of line segments of varying

lengths in time. Each of these diagonal line segments represent time periods during which

two trajectories are in close proximity to each other. The diagonal line lengths therefore

depict how quickly trajectories diverge. On the basis of these line lengths, we can then

roughly estimate LLE values for individual trajectories, with typical estimated LLE values

around 2.0 s−1 for experimental time-series such as the time-series shown in Figure 4.13c.

Over the duration of the full time-series, it is possible that the locomotion dynamics may

qualitatively change its pattern of motion. We can identify such changes in the pattern of

motion either by visual inspection of the time-series itself or by visual inspection of the RP.

Based on the observed times where such changes of the motion pattern occur, we can then

partition the full time-series into smaller sub-series, referred to as “sections” in the following.

The boundaries of these sections are determined by the time points where a change in the

pattern of motion occurs. Inside of each such section, the pattern of motion should be stable.

As the pattern of motion changes from one section to another, we should also expect that

54



(a) (b)

Figure 4.14 Identification of scaling sections in a recurrence plot generated for an experi-
mental time-series [44]. RP with 4D embedding and threshold calculated using pr = 0.3%
of the range of amplitudes, ∆φA. The time-series is plotted on both axes and is color coded
into three sections based on visual inspection of the time-series alone. (a) The three colored
sections in the time-series are also sectioned in the RP: 0-11.49 s in blue, 11.49-36 s in red,
and 36-43.38 s in green. Using these sections each LLE was calculated using an algorithm
by Rosenstein et al. [55], LLET1 = 2.22± 0.06 s−1, LLET2 = 1.83± 0.01 s−1, and LLET3 =
2.74± 0.01 s−1 were calculated. (b) Through visual inspection of the RP, different sections
are identified, which are inside blue boxes in the RP: 0 - 10 s, 10 - 24.5 s, and 24.5 - 42.5
s. These sections were used to calculate LLER1 = 2.22± 0.01 s−1, LLER2 = 1.70± 0.01 s−1,
and LLER3 = 1.83± 0.01 s−1.

the LLE, calculated individually for each section, varies from one section to the next. Figure

4.14a illustrates the presence of three such sections. The sections were determined through

visual inspection of the time-series, y(tµ), to attempt to identify times where a switch in

locomotory gait had occurred, i.e., identify times when the oscillation in the time-series

changes. Along the axes of Figure 4.14a, the sections are color coded, in order to indicate

their extent and boundaries. A grid of rectangular boxes, centered with their diagonals on

the LOI, is added to the RP in Figure 4.14a to highlight the recurrence patterns in each of

those three sections.

However, visually inspecting the RP, instead of the time-series, to identify switches in
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locomotory gait leads to different partitioning into three different sections that are indicated

by the boxes in Figure 4.14b. For comparison, the color coding for the time-series identified

sections used in Figure 4.14a is shown along the axes of Figure 4.14b as well, which clearly

shows that the sections in Figure 4.14b are of different length than in Figure 4.14a.

For each of the sections, in Figure 4.14a and 4.14b, the individual LLE values were

calculated based on the method described in section 4.4. The values of the individual LLEs,

as well as their linear fit standard deviations, are noted in the caption of Figure 4.14. In

comparing the LLE standard deviations from Figure 4.14a to those of 4.14b, we see that

the LLE standard deviation from Figure 4.14b of the first section are smaller by a factor of

approximately six. We therefore conclude that the partitioning by visual inspection of the

RP allows us to obtain more accurate results for the LLE values of individual sections.

Through our exploration of RPs, we see that using RP as a visual representation of the

dynamics has several advantages. First, we can observe the time evolution of the dynamics

based on how the RP features change in time along the LOI. Second, determining different

locomotory sections of the time-series is more accurate using RPs rather than the time-series

alone. Additionally, RPs satisfy three of the four chaos criteria defined by David Feldman

[2]: determinism, aperiodic orbits, and sensitive dependence on initial conditions. The finite

lengths of the the lines parallel to the LOI indicate that our data is short-term predictable,

hence short-term deterministic. RP can also justify that our locomotion data is aperiodic

because the lines parallel to the LOI do not span across the whole graph as with a periodic

signal, but rather have finite diagonal line lengths related to the LLE of the system. Based

on this connection to LLE, RP can also justify sensitive dependence on initial conditions.

4.7 Surrogate Data Analysis

In this section, we investigate one additional criterion for chaos for our C. elegans locomotion

data: the presence of nonlinearity. The results of this section will prove that our observed
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diffraction intensity time-series, y(tµ), are nonlinear using the method of surrogate data

analysis, which will be described below. To implement surrogate data analysis, we first

generate a large sample of surrogate time-series data, y̆s(tµ), from an observed time-series,

y(tµ), where s labels the elements of the sample. Then we calculate a quantity, to be referred

to as the nonlinear test observable (NTO), Λs, for each surrogate and the original data, y(tµ)

in order to compare using a rank-order test [21, 73], which will also be detailed below.

The technique of surrogate data analysis is a test for nonlinearity that employs a proof

by contradiction as detailed by Schreiber and Schmitz [20, 21, 74]. Surrogate data analysis

is based on the null hypothesis that the time evolution of the original data, y(tµ), is linear. If

we disprove that null hypothesis, then the time evolution of the original time-series must be

nonlinear. For purposes of our null hypothesis, the time evolution of any time-series, such as

y(tµ), is defined to be linear if it can be represented as a so-called “rescaled linear Gaussian

process”, having the following general mathematical form [75]:

y(tµ) = h(x(tµ)) (4.37)

x(tµ) =

Ldet∑
i=1

ai x(tµ−i) +
Lsto∑
i=1

bi η(tµ−i) (4.38)

The observed original time-series, y(tµ), is assumed here to be related to the so-called hidden

time-series, x(tµ), by way of a possibly nonlinear, but invertible single-variable transforma-

tion function, h(x), in equation (4.37). Hence, x(tµ) = h−1(y(tµ)), where h
−1(y) is the inverse

function of h(x). This nonlinear transformation, h(x), is intended to account for spurious

nonlinearities introduced into the y(tµ) time-series data, for example, due to nonlinear re-

sponses of the experimental measurement apparatus.

The actual linearity of the time evolution is then expressed in terms of the hidden time-

series, x(tµ), by way of equation (4.38). The first term on the right hand side of equation

(4.38) specifies a deterministic contribution to the time evolution of x(tµ), with summation
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over i = 1, · · · , Ldet, and with some arbitrary choice of linear coefficients ai. This term has

the basic structure of a linear “memory”: the signal value x(tµ) at the present time, tµ, is

a linear superposition of the signal values x(tµ−i) at earlier times tµ−i. The Ldet specifies

a finite memorization time, Ldet ∆texp, for this linear memory: at the present time, tµ, the

system “remembers” the signal values, x(tµ−i), up to and including Ldet time steps into

the past. The x(tµ) contribution at the present time tµ is then determined by the linear

combination of only those x(tµ−i) that are remembered from the past. The domain of the

µ-index of the hidden time-series is allowed to extend back to non-positive values, including

µ = 0,−1, · · · ,−(Ldet − 1). The corresponding hidden signal values x0, x−1, · · · , x−(Ldet−1),

can be chosen arbitrarily, to specify the initial conditions of the time evolution.

The second term on the righthand side of equation (4.38) specifies a stochastic (random

noise) contribution to the time evolution of x(tµ), with summation over i = 1, · · · , Lsto, and

with some arbitrary choice of linear coefficients bi. The noise variables η(tµ−i) are statistically

independent, normally distributed (Gaussian) random variables of zero mean, sharing some

arbitrary, but common choice of variance, σ2
sto. This term also has the basic structure of a

linear memory, with a memorization time specified by Lsto. In a strictly deterministic system,

this stochastic term would obviously be set to zero, by setting bi = 0 for all i. However, for

real experimental time-series data, some level of noise will always be present and must be

accounted for.

Equation (4.38) encompasses the most general possible expression of an autonomous

linear time evolution of a single variable, x, for a discretized time variable, tµ, subject to

causality and subject to an arbitrary choice of linear coefficients, ai and bi, memorization

times, Ldet ∆texp and Lsto ∆texp, and initial conditions x0, x1, · · · , x(Ldet−1). Causality here

means that the signal, x(tµ), at any time, tµ, depends only on the past signal values, x(tµ−i),

but not on any future signal values, x(tµ+i), with i > 0. By way of time discretization,

equation (4.38) also encompasses causal linear time evolutions for a continuous time variable
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if, e.g., x(t) evolves in causal manner according to a linear differential, integral, or integro-

differential equation.

Our null hypothesis, to be disproved below, can now be precisely stated as follows:

Null Hypothesis: The original time-series, y(tµ), at all observation time points,

tµ, with µ = 1, 2, · · · , N , can be represented by a rescaled linear Gaussian pro-

cess, as defined by equations (4.37) and (4.38), with some choice of a nonlin-

ear transformation function, h(x), linear coefficients, ai and bi, memorization

times, Ldet ∆texp and Lsto ∆texp, initial conditions x0, x1, · · · , x(Ldet−1), and

Gaussian noise variance σ2
sto.

To refute the null hypothesis for C. elegans locomotion data, we will refer to a time-

series, y(tµ), as our “original time-series”, then generate a large random sample of so-called

surrogate time-series from the original, y(tµ), using a randomizing time-series transformation.

This transformation is outlined below and described in detail, as the “amplitude adjusted

Fourier transform” (AAFT) method, by Lancaster et al. in [75]. The random surrogate

time-series generated from y(tµ) are to be denoted by y̆s(tµ) with s = 1, · · · ,M . Here s

labels the different elements of the sample and M denotes the size of that surrogate sample.

Figure 4.15 shows an example of an original time-series, y(tµ), and nine different surrogate

time-series, y̆s(tµ), generated from that original.

To compare original and surrogate time-series, we will then also define, for any time-series,

a test statistic, the so-called “nonlinearity test observable” (NTO), described in more detail

below and in [75]. The NTO value calculated from the original experimental time-series,

y(tµ), is then denoted by Λ0 and the NTO values calculated from the surrogate time-series,

y̆s(tµ), are denoted by Λs with s = 1, · · · ,M . There are many different NTOs to choose from,

but “asymmetry under time reversal” is an NTO that is very commonly used [20]. The steps

for generating the random sample of surrogate time-series and the precise definition of the
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NTO variable will be detailed further below.

The surrogate-based hypothesis testing approach then rests on the following crucial math-

ematical property, which I will refer to as “linearity compliance” hereafter and which our

surrogate construction, in combination with the chosen NTO definition, must exhibit:

Linearity Compliance: For any original time-series, y(tµ), which is linear in

the sense of equations (4.37) and (4.38), the random surrogate values of the

NTO, Λs for s = 1, · · · ,M , must agree, within statistical uncertainties, with

the NTO of the original time-series, y(tµ), Λ0.

If the surrogate and NTO construction is linearity compliant, but the data analysis reveals

that Λ0 is significantly different from the sample of surrogate NTO values, Λs for s =

1, · · · ,M , then the null hypothesis, i.e., the hypothesis that the original experimental time-

series, y(tµ), is representable in the form of equations (4.37) and (4.38), can be rejected.

In other words, if Λ0 differs significantly from the sample of surrogate NTO values, Λs for

s = 1, · · · ,M , then the time evolution of the original experimental time-series, y(tµ), must

be nonlinear.

The term “significantly different” in this context is defined by way of a rank ordering of

the sequence of all (M + 1) NTO values, [Λ0,Λ1, · · ·ΛM ], including the original time-series

NTO, Λ0, i.e., s = 0, as well as the surrogate NTO values, Λs for s = 1, 2, · · ·M . Rank

ordering this sequence of Λ-values, e.g., in ascending order, assigns a rank index, denoted by

ranks, to each s-value from s ∈ {0, 1, · · · ,M}. Given this rank ordering, the value of Λ0 is

then defined to be significantly different from the sequence of surrogate values, [Λ1, · · ·ΛM ],

if

rank0 = 1 or rank0 =M + 1 . (4.39)

An alternative way to state this definition is to say that Λ0 is defined to be significantly
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different from the sequence of surrogate values, [Λ1, · · ·ΛM ], if

Λ0 < min[Λ1, · · ·ΛM ] or Λ0 > max[Λ1, · · ·ΛM ] . (4.40)

Clearly, the value of Λ0 must lie far outside the width of the Λ-distribution of the surrogates,

in order to satisfy the significantly difference condition equation (4.39) or (4.40). This is

illustrated in the two panels of Figure 4.16, which shows the histogram of the surrogate

values, Λs for s = 1, · · · ,M , and the value of Λ0 as a vertical red line, for two different

experimental diffraction intensity time-series, y(tµ).

As in any hypothesis testing approach based on random samples of data, the decision to

reject the null hypothesis is a probabilistic one. There is always a finite residual probability,

referred to as the “p-value” in statistics, for the null hypothesis to be true even if the rejection

criterion, such as equation (4.39), is satisfied. In the present surrogate-based approach, the

reliability of the null hypothesis rejection will increase with the surrogate sample size, M .

In particular, it has been shown [21] that the residual probability in our approach [68] will

be less than a prescribed upper limit if M exceeds a certain minimum value, given by

Mmin =
2K

α
− 1 . (4.41)

Here, α is the prescribed upper limit for the residual probability, i.e., is an upper limit to

the p-value of our null hypothesis rejection criterion, and K is a positive integer. In other

words, the α-value represents an upper limit for the probability of the null hypothesis being

true and 1-α is a lower limit for the probability of the negation of the null hypothesis being

true. Larger values of K will increase the sensitivity of our test, but K = 1 is sufficient

and reduces computational effort. If we require a minimal significance of 95%, then α is 5%

(0.05) leading to a minimal required number of surrogates ofM = 39. To further increase our

discriminating power, I generated 1000 surrogates (K ≈ 25, α = 0.05) for each time-series
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described in this section to more irrefutably disprove the linear hypothesis for C. elegans

locomotion data.

The first step in the surrogate data analysis technique is the AAFT surrogate construc-

tion. Since AAFT is discussed in detail in Lancaster et al. [75], I will present here only a

brief summary of the computational steps of the AAFT random transformation, to generate

one single, random AAFT surrogate time-series, y̆s(tµ), from the original time-series, y(tµ):

Step 1: Rank-order the sequence of original y-values, [y(t1), · · · , y(tN)], in ascending

order, with an integer rank index r(µ), defined such that r(µ) ∈ {1, · · · , N}, and r(µ) ̸= r(µ′)

if µ ̸= µ′ and r(µ) < r(µ′) if y(tµ) < y(tµ′). So, for example, r(µ) = 7 if y(tµ) is the 7th

smallest y-value in [y(t1), · · · , y(tN)]. Also sort the [y(t1), · · · , y(tN)], in ascending order

to generate the rank-ordered, ascending sequence of y-values, denoted by [ỹ(t1), · · · , ỹ(tN)],

i.e., set

ỹ(tr(µ)) := y(tµ) for µ = 1, 2, · · ·N . (4.42)

Step 2: Draw a random time-series, of length N , of statistically independent, zero-mean

Gaussian random variables, all of common variance σ2
ζ , denoted by ζ(tµ) with µ = 1, 2, · · ·N .

Step 3: Sort the sequence [ζ(t1), · · · , ζ(tN)] in ascending order to generate the rank-

ordered, ascending sequence of ζ-values, denoted by [ζ̃(t1), · · · , ζ̃(tN)].

Step 4: Re-order the sequence [ζ̃(t1), · · · , ζ̃(tN)] according to the rank index order, r(µ),

found in Step 1. Denote the resulting sequence of ζ-values by [ξ(t1), · · · , ξ(tN)]. In other

words, ξ(tµ) is defined by:

ξ(tµ) := ζ̃(tr(µ)) . (4.43)

Step 5: From the time-series ξ(tµ), generate a “FT surrogate” time-series, denoted by

ξ̆(tµ). The procedure of FT surrogate time-series generation is described separately below,

with multiple sub-steps, Step 5.1, 5.2, · · ·

Step 6: Rank-order the sequence of original ξ̆-values from Step 5 [ξ̆(t1), · · · , ξ̆(tN)], in
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ascending order, with an integer rank index s(µ), defined such that s(µ) ∈ {1, · · · , N}, and

s(µ) ̸= s(µ′) if µ ̸= µ′ and s(µ) < s(µ′) if ξ̆(tµ) < ξ̆(tµ′). So, for example, s(µ) = 4 if ξ̆(tµ) is

4th smallest ξ̆-value in [ξ̆(t1), · · · , ξ̆(tN)].

Step 7: Re-order the sequence [ỹ(t1), · · · , ỹ(tN)] from Step 1 according to the rank index

s(µ) from step 6, to generate the desired, final surrogate time-series, y̆s(tµ), i.e.,

y̆s(tµ) := ỹ(ts(µ)) . (4.44)

The FT surrogate construction in Step 5 above, for a given input time-series, ξ(tµ),

proceeds by the following sub-steps:

Step 5.1: From ξ(tµ) for µ = 1, 2, · · ·N , calculate the discrete FT, ξ̂k(νk), of ξ(tµ) for

µ = 1, 2, · · ·N , based on equation (3.17) for k = 1, 2, · · ·N .

Step 5.2: Generate a sequence of statistically independent, random phase angles βk, each

βk, drawn from a uniform distribution over the interval [0, 2π], for k = 2, 3, · · ·N/2.

Step 5.3: Set βk = 0 for k = 0 and k = N/2 + 1.

Step 5.4: Expand the sequence of N/2 + 1 phase angles βk, defined in Steps 5.2 and 5.3,

into a sequence of length N , by setting

βk := −βN+2−k (4.45)

for k = N/2 + 2, N/2 + 3, · · ·N .

Step 5.5: Multiply each ξ̂k(νk) with its random phase factor eiβk , to generate the phase-

randomized FT

ξ̂βk := ξ̂k(νk)e
iβk (4.46)

for k = 0, 1, · · ·N .

Step 5.6: The desired FT surrogate, ξ̆k(tµ), for µ = 1, 2, · · ·N , is then given by the inverse
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FT applied to the phase-randomized FT, ξ̂βk , using equation (3.18).

Notice that the input time series in Step 5.1, ξ(tµ), is real-valued and therefore, its

FT, ξ̂k(νk), obeys the symmetry relations stated in equations (3.21)-(3.23). The construc-

tion of the random phase angle sequence, [β1, · · · , βN ], in Steps 5.2-5.4, ensures that the

phase-randomized FT, ξ̂βk , will also obey those symmetry relations in equations (3.21)-(3.23).

Consequently, the FT surrogate, ξ̆k(tµ), is guaranteed to be real-valued for µ = 1, 2, · · ·N .

The second step in the surrogate data analysis technique is to evaluate the NTO variable,

Λs, for each surrogate time-series, y̆s(tµ), and NTO value Λ0 for the original time-series y(tµ).

Using the so-called “time reversal asymmetry” observable as our NTO [75], Λs is given by

[20, 21, 74, 75]:

Λs =
1

Nτ

Nτ∑
µ

(y̆s(tµ + τ)− y̆s(tµ))
3 (4.47)

for s = 0, 1, · · · ,M and we set y̆0(tµ) ≡ y(tµ) when s = 0.

As noted above, the AAFT surrogate construction, in combination with the time reversal

asymmetry NTO defined in equation (4.47), does satisfy the condition of linearity compliance

stated above and can therefore be used to test the linearity null hypothesis stated above.

Furthermore, for the specific case of the time reversal asymmetry NTO, it can be shown

[75] that the original time-series NTO, Λ0, should be close to zero and most of the random

surrogate NTO values, Λs, should be clustered in close proximity to zero, if the linearity null

hypothesis was true. A failure of the NTO values to exhibit this close proximity to zero could

therefore be taken as additional evidence that the null hypothesis is not true. I have carried

out this hypothesis test, based on AAFT surrogates and time reversal asymmetry NTOs,

for altogether 28 different experimental diffraction intensity time-series, y(tµ), including 10

time-series observed on wildtype worms and 18 time-series observed on the roller mutant

worms. (These are the same 28 time-series that were also used in the correlation dimension

analysis discussed above in section 4.5.)
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Figure 4.15 Example set (9 out of 1000) of surrogate time-series, y̆s(tµ), (red) generated
from an original time-series, y(tµ), (blue) using the AAFT method of surrogate time-series
construction.
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The results from these 28 hypothesis tests overwhelmingly support the rejection of the null

hypothesis. These results therefore provide strong evidence that the locomotion dynamics of

C. elegans is indeed governed, in both wildtype and in the roller mutant, by a nonlinear time

evolution. Specifically, in 27 out of the 28 time-series observed, the hypothesis test showed

that Λ0 does in fact differ significantly, in the sense of equations (4.39) or (4.40), from the

random sample of surrogate NTO values, for a surrogate sample size of M = 1000. For only

one of the 28 time-series observed did the test not reject the null hypothesis, i.e., Λ0 failed

to differ significantly from the surrogate NTO sample.

(a) Typical: rank0 = 1 out of M = 1000. (b) Outlier: rank0 = 521 out of M = 1000.

Figure 4.16 Rankings and histograms of the time reversal asymmetry NTO values , Λ0 and
Λs, for original and surrogate time-series, respectively [44]. In each panel, (a) and (b), the
NTO value, Λ0, from an original time-series is shown as a vertical red line. The sample
of surrogate NTOs, Λs for s = 1, · · · ,M , is generated from the original time series by the
AAFT method and is shown as a histogram. Panel (a) is for a typical original time-series of
experimental observations, out of 27 observed time-series total, for which the null hypothesis
was rejected. Panel (b) is for the outlier time-series, i.e., for the one and only original time-
series of experimental observations, for which the null hypothesis was not rejected.

Figure 4.16 shows representative results from two of these 28 hypothesis tests, i.e., for

two different experimental diffraction intensity time-series, y(tµ), out of the 28 time-series

observed. The results in the left panel are for the “typical” case, i.e., for one of the 27

observed time-series where the null hypothesis was rejected. The results in the right panel
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are for the “outlier” case, i.e., for the one and only observed time-series where the null

hypothesis was not rejected. In both panels, the respective random sample of surrogate

NTO values, i.e., Λs for s = 1, 2, · · · ,M is displayed as a histogram and the original time-

series NTO value, Λ0, is shown as a vertical red line. In the left panel of Figure 4.16, Λ0

is seen to lie far outside of the range of the surrogate histogram and it indeed satisfies the

criterion of “significant difference” by equation (4.39), namely rank0 = 1, relative to the

surrogate sample size of M = 1000. In the right panel of Figure 4.16, Λ0 lies roughly within

the middle of the range of the surrogate histogram, with a rank0 = 521, relative to the

surrogate sample size of M = 1000.

4.8 Summary of Results and Discussion

Table 4.1 Chaos criteria [2] and how to satisfy them
Chaos Criteria C. elegans locomotion met criteria by:

deterministic lag plot, correlation dimension, recurrence plots

aperiodic orbits broad frequency spectrum, lag plots, recurrence plots

bounded orbits lag plots

sensitive dependence on
initial conditions

lag plot, LLE, recurrence plots

Throughout this chapter, we have shown that C. elegans locomotion is chaotic, as defined

by David Feldman [2] and nonlinear. A breakdown of what quantities justify each criterion

of chaos can be found in Table 4.1. This summary section details how each measure satisfies

those criteria. We will also conclude with a summary of the common numerical results of C.

elegans locomotion, compiled in Table 4.2.

The first chaotic marker that we calculate is a broad frequency spectrum in section 4.1.

The chaotic criterion that this marker justifies is an aperiodic orbit. Having these broad
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frequency spectra, rather than well defined, sharp peaks, shows that the motion is not

periodic.

Section 4.2 of this chapter discussed Takens delay embedding approach as a means to

unfold the dynamics contained in experimentally observed scalar time-series, y(tµ). The

Takens delay embedding is achieved by transforming the original time-series, y(tµ), into a

vector time-series, yn(tγ), where the vector components consist of truncated, time lagged

replicas of the original time-series. The method of MI was then applied to determine an

optimal lag τ . By plotting a 2D projection of the vector time-series, we illustrated that a

2D embedding leads to frequent trajectory crossings in the plane of projection. In 2D, the

orbits are bounded in a shape that resembles a wound up yarn ball. Much like a yarn ball

projected into a 2D plane, the trajectories appear to cross each other in phase space. The

presence of these crossings is a clear indication that a higher embedding dimension, n > 2,

is required to unfold the dynamics of C. elegans.

In section 4.3, we use the technique of FNN to determine the proper embedding dimension

for dynamic diffraction time-series of C. elegans locomotion. At embedding dimension n = 3,

we find a FNN percentage less than 1% so that the vector time-series trajectories in the 3D

lag plots of C. elegans locomotion do not cross each other, thus proving that each value in

phase space is unique, hence deterministic. Vector time-series trajectories of sufficiently high

embedding dimension do not cross, which proves that the time-series is not periodic. These

same vector time-series trajectories occupy a finite region of phase space, as verified by visual

inspection in n = 3; hence the orbits are bounded. Lastly, there is a sensitive dependence on

initial conditions because close vector time-series trajectories eventually diverge apart. Lag

plots are a powerful visual representation of time-series data presumed to be chaotic because

lag plots can test every chaos criterion.

The second chaotic marker that we calculated was the LLE in Section 4.4. An LLE

quantifies the system’s sensitivity on initial conditions because it measures how fast two

68



trajectory points, that are close in phase space but separated in time, diverge exponentially

away from each other. The larger the positive LLE, the more sensitive the system is to initial

conditions. Given our LLE values of ∼ +2 s−1, we conclude that C. elegans locomotion

exhibits sensitive dependence on initial conditions.

The third chaotic marker that we calculated was the correlation dimension, dcor, in section

4.5. If the correlation dimension and embedding dimension are approximately equal to each

other for all embedding dimensions, including n→ ∞, then the time-series is random. This

was not the case with our C. elegans time-series because our correlation dimension, as a

function of embedding dimension, leveled off as the embedding dimension increased beyond

n = 4, which indicates deterministic behavior. Furthermore, a correlation dimension above

2 is a necessary condition for a time-series to be aperiodic, bounded, and not cross in phase

space. Additionally, our non-integer average correlation dimension, dcor ≈ 2.08 ± 0.24, falls

between 2 and 3. This means that our data may have characteristics of both 2D and 3D

space, which would be an indication of chaotic dynamics.

In section 4.6, we looked at other visual representations of our data, specifically through

distance matrix heatmaps and recurrence plots (RP). In embedding dimension n = 4, the

RP of our C. elegans time-series data exhibits recurrences that form line segments of finite

length running parallel to the LOI. The finite lengths of the lines parallel to the LOI in the

RP indicate that our data is short-term predictable, hence deterministic. RP can also justify

that our locomotion data are aperiodic. For periodic signals, the lines parallel to the LOI

span across the whole graph, while our RPs have diagonal lines that are disrupted by non-

recurrent gaps, and therefore have a finite length related to the LLE of the system. Hence,

our RP results also support the criterion of sensitive dependence on initial conditions.

Finally, in addition to proving criteria of chaotic dynamics, we also investigated potential

nonlinearity of C. elegans locomotion dynamics in section 4.7. The creation and analysis of a

large sample of surrogate time-series, randomly generated from the original time-series, plays
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an essential role in this search for nonlinearity. Using time reversal asymmetry observable as

our NTO and a rank order test, applied to the original data and 1000 surrogates generated

from the original, we consistently found that the criterion for nonlinearity was satisfied in

27 out of 28 experimental time-series analyzed.

Table 4.2 Summary of typical C. elegans Results
Quantity (average) Value

mean frequency(1) νavg = 1.32 Hz
lag τ = 0.18± 0.07 s

embedding dimension n = 4

largest Lyapunov exponent(2) λLLE = 1.39± 0.02 s−1

correlation dimension dcor ≈ 2.08± 0.24

(1) The mean, or average, frequency was obtained from a single C. elegans time-series

shown in Figure 4.1. This value is representative of mean frequencies obtained from numerous

other time-series experiments on the locomotion of C. elegans.

(2) The LLE value shown here was obtained from a single C. elegans time-series by

averaging over all Lyapunov starting times as described in section 4.4. This LLE value is

representative of LLE values obtained from numerous other time-series experiments on the

locomotion of C. elegans.
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Chapter 5

Conclusion

In this thesis, we have described the use of Fraunhofer diffraction combined with nonlinear

dynamics to explore the locomotion of freely swimming C. elegans, similar to its natural

environment in soil [76]. The intensity fluctuations at one point in the diffraction pattern

form a single time-series containing information about the undulations of the entire worm.

These one-dimensional time-series show complex dynamical patterns.

The analysis of the locomotion revealed nonlinear deterministic dynamics in a complex

system with quantifiable and repeatable results. In every case, the FFT of the dynamic

diffraction time-series shows a broadened frequency spectrum indicating an aperiodic struc-

ture. This is the first indication that the locomotion of C. elegans is complex. The swimming

frequencies oscillate around a mean frequency, but never repeat as demonstrated by lag plots.

Using the false nearest neighbors (FNN) method, we determined that the necessary embed-

ding dimension is 3 or 4 in all cases. We saw markers of low-dimensional (∼4) deterministic

chaos in 50-second recordings of the diffraction signal (See Table 4.1). We also found a key

marker of chaos, namely a positive largest Lyapunov exponent, LLE, (∼ 2.0/sec ± 0.7). This

means that the Lyapunov time is about ∼ 1.0 sec indicating that it is possible to predict the

locomotion about ∼ 1.0 into the future.

We used Recurrence Plots (RP) to graphically visualize the time evolution and periodicity

of C. elegans locomotion. Properly embedded RP are another way to view the trajectories

visualized in a lag plot. Unlike a lag plot, determining the duration that two trajectories are

close to each other is easily done by measuring the lengths of the lines parallel to the LOI.
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These finite line lengths indicate short term predictability, which is a measure of determinism.

These parallel lines also relate to the LLE of the system, indicating sensitive dependence

on initial conditions. Each time the locomotion of the C. elegans switched to a new gait,

there was a visible difference in the RP. The dynamic regions identified in RP reduced the

uncertainty of our LLE calculations by a factor of six.

In order to focus on our approach to finding markers of chaos in the undulation of C.

elegans, this thesis only presents results obtained from studying two genotypes of C. elegans

(the wildtype and roller) in a single 3D medium (water). Both types of worms displayed

chaotic markers, but no statistically significant differences were detected since the roller

defect is muscular rather than neuronal. In future experimental work, we plan to expand to

other mutants, age studies, and effect of the medium in which the C. elegans moves. We

also plan to explore mechanisms for generating complex undulation patterns seen in real C.

elegans.

In summary, dynamic diffraction has opened a gateway to characterizing locomotion in

microscopic species across multiple scales. This type of study will lead to more a accurate

quantification and understanding of neuronal dynamics.
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