
Modeling Traffic Flow With
Microscopic Discrete Event

Simulation

by

Casey Bowman
(Under the Direction of John A. Miller)

Abstract

Everyday billions of people around the world face the task of driving their
vehicles in the traffic of their region. For many this entails entering very heavy
traffic flows centered around large cities, with long commute times, on their
way to work. For others, the issue is that they need to drive to a special event, or
are just driving through the city on the way to another destination. Whatever
the reason, drivers have a strong desire to know what the general traffic flow is
along the route they plan to use.

Major cities employ traffic engineers to deal with the problem of managing
the large traffic flows for which they are responsible. From routine highway
and road maintenance, to redesigning existing interchanges, to constructing
completely new throughways, city planners face the challenge of meeting the
population’s demand for efficient road networks.

For both sets of circumstances above, the desire for tools to make traffic-
related decision-making easier is quite substantial. Microscopic traffic simula-
tion has a lot to offer for modeling and forecasting traffic flows. These simula-
tions are not only models of the overall flow of vehicles, but model the detailed
interactions of the cars themselves, allowing for a depth of analysis not possible
with other modeling techniques. Indeed, microscopic traffic simulation can
offer prescriptive solutions to traffic problems, where, for example, city plan-
ners can try out different solutions for traffic design, without having to actually
construct anything.

In order to build an effective and accurate traffic simulation model, there
are many tasks that must be completed. The specific data for an area must be
analyzed and used to build a realistic arrival model. A car-following model must
be chosen, so that the vehicles in the simulation behave in a realistic manner.

Finally, the various parameters of these models must be fine-tuned with a cali-
bration technique so that the models are as accurate (or as efficient) as possible.
This work analyzes the arrival problem, chooses two well-known car-following
models, and applies several calibration methodologies in an effort to identify
the best means by which to build the traffic simulation model.

Index words: [Microscopic Traffic Simulation, Arrival Models,
Car-Following Models, Calibration, Traffic Forecasting,
Time Series Analysis]

Modeling Traffic Flow With Microscopic Discrete
Event Simulation

by

Casey Bowman

B.S., University of Georgia, 2003
B.S., University of Georgia, 2003

M.A., University of Georgia, 2005

A Dissertation Submitted to the Graduate Faculty of the
University of Georgia in Partial Fulfillment of the Requirements for the

Degree

Doctor of Philosophy

Athens, Georgia

2022

©2022
Casey Bowman

All Rights Reserved

Modeling Traffic Flow With Microscopic Discrete
Event Simulation

by

Casey Bowman

Major Professor: John A. Miller

Committee: Maria Hybinette
Ping Ma

Electronic Version Approved:

Ron Walcott
Vice Provost for Graduate Education and Dean of the Graduate School
The University of Georgia
December 2022

Dedication

to Keysa and Cass,

my parents, Donna and Danny,

and my brother, Eric,

thank you for your love and support through the years

iv

Acknowledgments

First, I would like to thank my family who have stood by me for the very long
time it has taken me to reach this point. Through thick and thin they have been
there for me, and it truly means the world to me.

I would also like to thank my major professor, Dr. John A. Miller, for always
supporting me, and helping me believe that I truly could achieve this goal.

I thank my committee members, Dr. Hybinette and Dr. Ma, and before
his retirement, Dr. Potter. I truly appreciate the work they have done to help
me along this path.

I would like to specifically thank Hao Peng, who was co-author for the paper
that represents Chapter 3 of this manuscript. Our collaboration was a highlight
of my time in this program.

There is a long list of friends and colleagues who have been there for me,
in various ways, over the years, and helped make this possible: Dave, Mo, Ted,
Ed, Matt, Lisa, Michael, Mustafa, Yulong, and Tom have been so helpful to me
over the years.

Sometimes friendship is all that’s needed to help someone keep going.

v

Contents

Acknowledgments v

List of Figures viii

List of Tables xi

1 Overview of Dissertation 1
1.1 Purpose of Traffic Modeling and Simulation 1
1.2 Traffic Flow Modeling . 3
1.3 Microscopic Simulation . 4
1.4 Arrival Modeling . 4
1.5 Car-Following Models . 6
1.6 Calibration . 6

2 Modeling Traffic Flow Using Simulation and Big Data Analytics 8
2.1 Introduction . 8
2.2 Related Work . 9
2.3 System Structure . 11
2.4 Simulation Optimization 18
2.5 Results . 21
2.6 Conclusions and Future Work 22

3 Microscopic Discrete-Event Traffic Simulation 24
3.1 Introduction . 24
3.2 Types of Simulation Models 25
3.3 Data Collection and Analysis 30
3.4 Types of Forecasting Models 32
3.5 Challenges and Future Work 37
3.6 Conclusions . 39

vi

4 Arrival Modeling 41
4.1 Introduction . 41
4.2 Related Work . 41
4.3 Arrival Process Modeling 45
4.4 Offline Methods . 51
4.5 Online Methods . 52
4.6 Arrival Process Comparisons 53
4.7 Conclusions . 55

5 Car-Following Models 57
5.1 Introduction . 57
5.2 GHR Models . 58
5.3 Pipes’ Model . 59
5.4 Gipps’ Model . 60
5.5 Intelligent Driver Model 63
5.6 Position . 65

6 Calibration Techniques 68
6.1 Parameter Estimation . 69
6.2 Calibration of the Traffic Model 70
6.3 Optimization Algorithms 71
6.4 Calibration Methodology 79
6.5 Calibration Results . 81
6.6 Comparison with Other Calibration Efforts 110
6.7 Conclusions . 114

7 Conclusions 115
7.1 Traffic Flow Modeling (Chapter 2) 115
7.2 Microscopic Traffic Simulation (Chapter 3) 116
7.3 Arrival Modeling (Chapter 4) 116
7.4 Car-Following Models (Chapter 5) 117
7.5 Calibration (Chapter 6) . 117
7.6 Future Work . 118

Bibliography 120

Appendices 136

A Appendix 136
A.1 Parameter Estimation . 136
A.2 Extending ScalaTion for Traffic Simulation 140

vii

A.3 Genetic Algorithm Code 151

viii

List of Figures

2.1 Sample Traffic System . 12
2.2 Visualization of KS Test For Real vs. Simulated Arrivals . . . 16
2.3 Percentages for Each Turn Decision 17
2.4 Polynomials for Going Straight (Red) and Turning Left (Yellow). 18

3.1 Timeline of traffic simulation models. (Gipps, 1981), (Pipes,
1953), (Kometani & Sasaki, 1961), (Lighthill & Whitham, 1955),
(Richards, 1956), (Newell, 1961), (Gazis et al., 1961), (Prigogine
& Andrews, 1960), (Buckley, 1968), (Paveri-Fontana, 1975),
(Wiedemann, 1974), (Branston, 1976), (Bando et al., 1995), (Da-
ganzo, 1994), (Treiber et al., 2000), (Daganzo, 2002), (Wong
& Wong, 2002), (Leclercq, 2007), (Mahnke & Kühne, 2007). 26

3.2 Vehicle counts vs. a polynomial fit 31
3.3 Travel Times: Forecasted (red) vs. Actual (black) 33

4.1 Calculating Arrival Times From Λ̂(t). 44
4.2 Seasonality of Traffic Data Time Series 46
4.3 U.S. Highway 101 Network 47
4.4 Sensor Data for January 2nd, 2018 49
4.5 Spread of vehicle count data 50
4.6 KS Test between the observed vehicle count distribution and

the distribution of counts generated by an NHPP 51
4.7 Comparison of Arrival Methods Before Application of NHPPs 54
4.8 Comparison of Arrival Methods After Application of NHPPs 55

5.1 Distance Headway . 58
5.2 Stopping Distances . 62
5.3 IDM vs. Gipps’ Model . 65

6.1 Reflection transformation. The new simplex is shown in red. . 74
6.2 Expansion transformation. 75
6.3 Reverting to reflection transformation. 75

ix

6.4 Outer contraction transformation. 76
6.5 Inner contraction transformation. 76
6.6 Shrinkage transformation. 77
6.7 Results of calibration in terms of algorithm 83
6.8 Results of calibration in terms of initial starting points 84
6.9 Results of calibration in terms of random number streams . . 85
6.10 Results of calibration in terms of arrival method 86
6.11 Results of calibration in terms of car-following model 87
6.12 All execution times including outliers. 89
6.13 All execution times not including outliers. 90
6.14 Efficiency Comparison Using Means With Outliers Removed 91
6.15 Change in Objective Function Value by Epoch 92
6.16 Change in Objective Function Value by Epoch Across Initial

Points . 93
6.17 a. Calibrated acceleration value using the IDM and Nelder-

Mead. b. Calibrated acceleration value using Gipps’ Model
and Nelder-Mead. 97

6.18 a. Calibrated acceleration value using the IDM and SPSA. b.
Calibrated acceleration value using Gipps’ Model and SPSA. . 98

6.19 a. Calibrated acceleration value using the IDM and the GA. b.
Calibrated acceleration value using Gipps’ Model and the GA. 99

6.20 a. Calibrated deceleration value using the IDM and Nelder-
Mead. b. Calibrated deceleration value using Gipps’ Model
and Nelder-Mead. 100

6.21 a. Calibrated deceleration value using the IDM and SPSA. b.
Calibrated deceleration value using Gipps’ Model and SPSA. . 101

6.22 a. Calibrated deceleration value using the IDM and the GA.
b. Calibrated deceleration value using Gipps’ Model and the
GA. 102

6.23 a. Calibrated reaction time value using the IDM and Nelder-
Mead. b. Calibrated reaction time value using Gipps’ Model
and Nelder-Mead. 103

6.24 a. Calibrated reaction time value using the IDM and SPSA. b.
Calibrated reaction time value using Gipps’ Model and SPSA. 104

6.25 a. Calibrated reaction time value using the IDM and the GA.
b. Calibrated reaction time value using Gipps’ Model and the
GA. 105

x

6.26 a. Calibrated time headway value using Nelder-Mead. b. Cal-
ibrated time headway value using SPSA. c. Calibrated time
headway value using the GA. 107

6.27 a. Calibrated space headway value using Nelder-Mead. b. Cal-
ibrated space headway value using SPSA. c. Calibrated space
headway value using the GA. 108

6.28 a. Calibratedδ value using Nelder-Mead. b. Calibratedδ value
using SPSA. c. Calibrated δ value using the GA. 109

A.1 Screen Grab of Traffic System Animation 142
A.2 Screen Grab of Traffic System Animation 143
A.3 Screen Grab of Traffic System Animation 143

xi

List of Tables

4.1 Sensor IDs and Locations 46
4.2 Arrival Model Comparisons 55

5.1 Gipps’ Model Values . 61
5.2 IDM Parameters . 64

6.1 IDM Model Parameters and Domains 70
6.2 Gipps’ Model Parameters and Domains 71
6.3 Chosen Parameter Values for the Nelder-Mead Simplex Algo-

rithm . 74
6.4 Chosen SPSA Parameter Values 78
6.5 Initial Starting Points for IDM Calibration 80
6.6 Initial Starting Points for Gipps Calibration 80
6.7 Average Calibration Results Across Initial Points. 82
6.8 Average Calibration Results Across Arrival Models. 82
6.9 Average calibration results across initial points for NM and

SPSA. 83
6.10 Average calibration results across random number streams for

the GA. 86
6.11 Average calibration results across arrival models 86
6.12 Average calibration results across car-following models 86
6.13 Analysis of outliers in execution time data 88
6.14 IDM Calibrated Parameters 96
6.15 Gipps Calibrated Parameters 96
6.16 Measure-of-Performance and Goodness-of-Fit Choices From

Other Calibration Efforts 111
6.17 Car-Following Model Calibration Efforts 112
6.18 IDM Calibrated Parameters 113
6.19 Gipps’ Model Calibrated Parameters 113

A.1 Location-oriented System Classes 141
A.2 Movement-oriented System Classes 141

xii

A.3 Source Code for Determining System Coordinates 144
A.4 Source Code for Generating NHPP Event Times 145
A.5 Car case class . 147
A.6 Source Code for IDM Implementation 148
A.7 Source Code for Gipps’ Model Implementation 149
A.8 Move Method in Lane.scala 150
A.9 Solve Method for Genetic Algorithm 151
A.10 Crossover and Mutation Methods for GA 152

xiii

Chapter 1

Overview of Dissertation

1.1 Purpose of Traffic Modeling and Simulation
Traffic is a ubiquitous element of modern life in most parts of the world. A large
number of vehicles on the road can make car trips difficult and even dangerous.
Quite often a traveler will seek some sort of estimate about the condition of the
road network ahead of time. This requires the endeavor of traffic modeling, of
which traffic simulation is a popular technique.

Traffic flow and speed forecasting are of particular interest to a great number
of normal drivers because most people do not like to get stuck in traffic jams.
Traffic simulation models can be used to accurately predict traffic flow in the
future, and drivers can use this information to decide what their departure time
should be to minimize their chances for a miserable driving experience. They
can also help drivers choose the best route to arrive at their destination either
the fastest or with the least amount of stress.

Other forms of traffic models, such as machine learning models, can be
used in similar ways as those mentioned above, to help drivers with their trip
planning. However, traffic simulation models can also be used to address crucial
what-if questions that city planners and engineers need to answer to design safe
and efficient road networks. Physical changes to roads, such as lane additions,
or refashioning a stop-sign-based intersection as a roundabout, are possible to
do in a traffic simulation but would be much more difficult with a machine-
learning technique. And while other techniques might be used to discover that
a particular spot in a road is hazardous, a traffic simulation could be used to
analyze why it is hazardous.

Much has already been achieved by the traffic modeling and traffic sim-
ulation communities. From the earliest days of computers, there have been
researchers using them to study traffic flow, with a very large amount of work

1

beginning in the 1950s (Pipes, 1953) (Wilkinson, 1956) (Helly, 1959) (Gerlough,
1956). Early traffic models were mostly macroscopic in nature, meaning that
only high-level modeling of the overall traffic flow was done, usually using for-
mulations from fluid or gas dynamics.

Traffic simulation systems have been used for decades to improve traffic
flow, inform road designs, and help travelers choose routes and departure times.
Novel types of interchanges such as Diverging Diamond Interchanges and Michi-
gan Lefts have been assessed through traffic simulation. In recent years software
tools such as smartphone map apps have used traffic models to predict traffic
congestion and travel times so that drivers have a better sense of what to expect
on the road.

The work done in this dissertation has accomplished several goals. First,
the creation of a microscopic discrete event traffic simulation system within the
ScalaTion environment that can

(a) handle realistic vehicle arrivals,

(b) apply multiple car-following models to the movements of vehicles in the
system,

(c) model limited-access highways

(d) model suburban intersections with traffic lights.

Second, explore the problem of arrival modeling in more detail, and com-
pare and contrast forecasting methods for use with the arrival model. Specif-
ically, the work explores how using the latest available data can drastically im-
prove the arrival model results, which makes the simulation model much more
accurate. A justification for the use of Nonhomogeneous Poisson processes for
generating random arrival times is also provided, as well as a derivation of the
formulas for the technique.

Third, the exploration of many different optimization procedures in the
context of microscopic traffic simulation both in the process of optimizing
traffic light timings and in calibrating a traffic flow model with real-world traffic
data. Various types of optimization algorithms are compared and contrasted in
the context of traffic flow modeling and are compared in terms of calibration
accuracy, optimization improvement across epochs, and algorithm efficiency
(in execution time). It is shown that deciding which optimization algorithm to
choose from these comparisons is not straightforward and that the answer can
change depending on the criteria being used.

2

Fourth, a detailed comparison of two car-following models, Gipps’ Model,
and the Intelligent Driver Model, using the system constructed in Scala-
Tion, is given. These models are compared through their use in calibrating
the traffic system with real-world traffic data. Both similarities in performance
and a few key differences are presented.

1.2 Traffic Flow Modeling
Suburban roads are largely dependent on traffic lights to organize and control
traffic. A source of great frustration for many drivers is the perceived lack of
quality in traffic light timings, meaning how long traffic lights are green for the
various traffic directions, and how long they are red. The work in Chapter 2 is an
effort at solving some of the problems associated with optimizing traffic light
timings using a microscopic discrete event traffic simulation. Such a system
needs accurate arrival modeling, a model of traffic flow through the system, and
for specifically studying intersections, a model of turning behavior. Optimizing
the timings of the traffic light requires the testing and comparison of various
optimization algorithms.

A traffic simulation system, built in ScalaTion (Miller et al., 2010),
and the required underlying structure, was created to facilitate networks of
suburban intersections. The simulation system required the construction of
several new features such as traffic lights, car-following models, a vehicle arrival
process, and a procedure for modeling the turning behavior of vehicles.

The construction of the Gate class is discussed, which specifically allows for
the modeling of traffic lights. The details of sources, sinks, roads, and vehicles
are also discussed in the context of the simulation structure and the overall
computational system ScalaTion.

The details of the vehicle arrival process and its basis in nonhomogeneous
Poisson processes (L. M. Leemis, 1991) (L. Leemis, 2003) are given. Standard
Poisson processes have been shown to have flaws in the arrival modeling of
vehicular traffic (Q. Meng & Khoo, 2009). Traffic flow is extremely volatile and
changes drastically during the course of a single day. Nonhomogeneous Poisson
processes are needed to model arrivals with multiple busy periods, which is
definitely how most urban and suburban traffic is structured.

Finally, with the need for realistically modeling how many vehicles turn
(left or right), or go straight, at an intersection, a random variable, and turning
algorithm are shown in detail. The construction of a probability distribution
based on real traffic data is shown and how it is used to assign turning behavior
to the vehicles in the system.

3

An effort was also made to optimize traffic light timings at a series of sub-
urban intersections, as well as a discussion on what types of optimization al-
gorithms are suitable for traffic simulation is presented. Gradient-based tech-
niques, direct-search algorithms, and metamodel approaches are all discussed
and compared.

1.3 Microscopic Simulation
There has been a large amount of effort made in the past with regard to traffic
modeling. Much of this work has focused on the field of traffic simulation,
though there have also been many efforts made in other areas such as machine
learning and time series analysis. Chapter 3 presents much of the background of
various approaches to traffic modeling and forecasting, and how these models
are formulated.

First, much of the background on different approaches to traffic simula-
tion is presented, with information on the granularity of models presented.
An overview of high-level macroscopic traffic models is presented, as well as
intermediate-level mesoscopic traffic models, and low-level microscopic traffic
models. These three paradigms represent different levels of detail incorporated
into the models. A genealogy of traffic flow models is given, which shows much
of how the field has progressed, from the early 1950s through to the 2000s.

Second, some approaches in traffic forecasting from outside of the field of
simulation are discussed, as a point of contrast to the work done in simulation.
Methods such as time series analysis, machine learning, and statistical regres-
sion are discussed, as well as a rundown of some examples of traffic forecasting
software that uses these methods.

Finally, some directions for future work are presented, including challenges
in building discrete event simulation systems for traffic forecasting, the calibra-
tion and validation of such models, and the scaling of these models to facilitate
forecasting in large traffic networks. Additionally, a discussion of some of the
elements of Intelligent Traffic Systems (ITS) is presented, such as autonomous
vehicles and intelligent traffic lights.

1.4 Arrival Modeling
A crucial point to understand in traffic modeling is that drivers, and therefore
traffic, are different all over the world. To be useful a traffic model must be
calibrated with data specific to the physical road network of interest. Until

4

this process is completed there is no ability to trust that a traffic model will be
reliable.

1.4.1 Vehicle Arrivals
The vehicle arrival process is of particular interest since vehicle arrivals are so
crucial to a realistic model of traffic flow. It does not matter how accurate a
car-following model is, or any other traffic flow model for that matter, if the
number of vehicles in the system is unrealistic. Vehicles do not arrive to traffic
networks with any type of simple mathematical formulation. A probability
distribution that can generate realistic vehicle arrivals is essential for any traffic
simulation system.

This section details two aspects of building an arrival process. First, the
numerical formulation used to create the probability distribution upon which
the arrival model is based is presented. In this project, the distribution of arrival
times in various periods of the day is assumed to be exponential, which means
the number of vehicles arriving during those time periods is a Poisson counting
process. Different time periods likely have different arrival rates, however, so
the counting process is a Nonhomogeneous Poisson process (NHPP), and the
technique used for recovering the arrival times from the counts is presented in
detail.

The other aspect of the arrival process is to build techniques for creating
those forecast counts. There are many ways to forecast time series, and for this
project, five methods for how traffic data can be used to create the arrival process
are shown. Two methods use only data from prior days and weeks to compute
the approximations on which the probability distribution is built, and are there-
fore considered offline techniques. One of these methods is a simple average of
previous days’ data, while the other technique builds a seasonal autoregressive
integrated moving average (SARIMA) model to forecast the new vehicle counts.
The other three methods assume the availability of data from earlier in the day
of forecasting focus, and so are considered online forecasting methods. Two of
the methods calculate basic rates of change, one based on ratios, and one based
on differences, using prior data, and apply this to the new data to improve the
accuracy of the arrival model. The third method builds a SARIMA model us-
ing the data, including the data from earlier in the same day and forecasts the
vehicle counts.

These forecasting methods, and the resulting NHPPs, are defined and com-
pared, and an analysis of which techniques perform best is given.

5

1.5 Car-Following Models
A microscopic traffic simulation models individual vehicles, which then neces-
sitates the modeling of vehicle interactions. Car-following models give a mathe-
matical formulation to the dynamics of how vehicles react to the movement of
vehicles in front of them.

Some intuition for how car-following models work is to consider the act
of one vehicle approaching a downstream vehicle, and understanding that the
velocity of the approaching vehicle must be adjusted as the distance between
the two vehicles shrinks. Consider the simple linear relationship between ve-
locity and spacing headway, which is defined as the distance between the front
bumpers of the two cars, in Equation 1.1 (D. Meng et al., 2021):

vn(t+ τn) =
∆xn(t)− δn

τn
(1.1)

where ∆xn(t) is the spacing headway of the nth vehicle, τn is the reaction time,
vn(t) is the velocity, and δn is the safe following distance. In this simplified
model the velocity of the following vehicle decreases as the safe spacing between
the vehicles decreases, factoring in the reaction time of the following driver.

Two specific car-following models, Gipps’ Model (Gipps, 1981), and the
Intelligent Driver Model (Treiber et al., 2000), described generally below, are
the models chosen in this paper.

• Gipps’ Model computes a new velocity for each vehicle based on several
current parameters of the vehicle’s movement. This velocity can then be
used to calculate the vehicle’s next position value along the road.

• The IDM computes a new acceleration for each vehicle based on current
vehicle parameters, which then leads to the calculation of the vehicle’s
new velocity, and then the vehicle’s new position.

1.6 Calibration
A traffic simulation model is essentially a multi-parameter estimation function
that for a particular time window predicts what the traffic will be like along a
specific road network. To have confidence in the accuracy of the estimates from
the model it must be calibrated, that is a subset of real data must be used to
try to figure out what are the best parameter values for the road network under
consideration. This is achieved by using some form of optimization procedure,
of which there are many to choose from. Only a subset of the data can be used

6

for calibration because the model would typically also need to be validated with
the data not used for calibration.

Many optimization algorithms exist but specific ones were chosen for this
work. Genetic Algorithms are a global search optimization strategy based
on the theory of evolution and natural selection. Direct-search methods are
local search algorithms that are gradient-free, and therefore applicable to prob-
lem spaces that are not necessarily continuous. The Nelder-Mead Simplex
Algorithm is a popular choice from this subset of optimization algorithms.
Gradients are difficult or time-consuming to produce for optimizations involv-
ing simulations, but gradient-approximation schemes can work much better. A
popular choice in this paradigm is the Simultaneous Perturbation Stochastic
Approximation Algorithm, or SPSA.

Assessing the results of a calibration procedure can be done in multiple ways.
It is often the case that calibration accuracy is of the utmost importance, and the
algorithm that produces the closest approximations is the desired choice. How-
ever, there are certainly real-world contexts where the efficiency of the calibration
procedure is just as, if not more, important than accuracy. The optimization
procedures can also be compared by looking at their rates of improvement as
the optimization process executes.

7

Chapter 2

Modeling Traffic Flow
Using Simulation and Big

Data Analytics

2.1 Introduction
All over the world, populations are rising, and the need to create safe and effi-
cient road systems becomes more and more prescient. Developing nations have
long lagged behind industrialized nations in the number of vehicles in use on
a day-to-day basis, but this is changing, as many of these nations begin to truly
enter the ranks of the first world (Cervero, 2013). In the United States, where
large tech corporations are moving toward self-driving vehicles (D. Levin, 2015),
(Fisher, 2013), the need for coordinated and adaptive road systems, i.e. Intel-
ligent Transportation Systems (ITS) is essential (Sussman, 2008), (Ran et al.,
2012). However, the sheer volume of vehicles on our roads forces the need for
Big Data techniques in acquiring, processing, and utilizing traffic data for the
purpose of traffic system optimization (Vlahogianni, 2015).

Much work is needed to model the behavior of vehicles in such a system, and
we discuss our approach in detail. A method for modeling vehicle arrivals has
been created based on real data using time-series/regression techniques (Lippi
et al., 2013). A model for controlling the behavior of vehicles within the system
is also introduced, so that it is determined by the data, and is accomplished at
simulation time, and not by a pre-simulation route planner. The behavior of
vehicles relative to acceleration and velocity also needs to be modeled, and the
flow of vehicles within the traffic system needs to be realistic. A major contribu-
tion of our work has been to expand the capabilities of our simulation engine to
handle these modeling challenges. The engine itself is a part of ScalaTion,

8

a system for simulation, analytics, and optimization (Miller et al., 2010). We ex-
panded the capabilities of our software to handle large-scale simulations, which
are needed for simulating and optimizing traffic systems. And we have incor-
porated mathematical models for car-following behavior, as well as free-driving
behavior, to create a realistic flow of vehicles once they are in the system and
traveling along roads. In the near future, with the potential mass proliferation
of autonomous vehicles, there will be a tremendous need to use real-world traf-
fic data to create high-fidelity traffic simulation models. Our work is a first step
in an attempt to create such models.

The structure of the paper is as follows: Section 2.2 presents a summary of
previous work in the field of traffic simulation and modeling. In Section 2.3,
we present the structure of our traffic system, including the models for vehicle
arrivals, vehicle behavior and traffic flow, as well as some detail about the struc-
ture of our simulation system. In section 4 we briefly investigate optimization
techniques that could be used to optimize characteristics of a traffic system and
give some thoughts on the appropriateness of each technique in the context
of traffic simulation. Section 5 gives an accounting of our results, and section
6 presents our conclusions, and some of the ideas and avenues of research we
plan on pursuing in the future.

2.2 Related Work
There have been many efforts made at creating models and simulations of traffic
systems within the microscopic and macroscopic simulation paradigms. Macro-
scopic models have generally constrained network flow models that assume
continuous streams of traffic flow through nodes. Individual vehicles and their
behavior are not considered. This approach requires less computational cost
than other approaches but concedes a lesser amount of detail in the results of the
simulation. (Tampère et al., 2011) applied dynamic network loading to create
models of traffic systems using simple merge-and-diverge models to represent
the different types of connections roads can make inside a traffic system. These
models consider the traffic system as a network of nodes and edges, with vehicle
volumes equating to network flow, and the overall goal being to optimize this
network flow over the entire system. They focus mainly on deriving generic re-
quirements and constraints that such models must fulfill. (Flötteröd & Rohde,
2011) add to this work by building a more robust model for representing traffic
flow.

Car-following models have been used to model traffic flow and the behavior
of vehicles for a long time. One of the earliest models was proposed in (Gipps,

9

1981) and computes accelerations based on the differences between successive
vehicles’ velocities and locations. Gipps updated his models for his work on
the MULTSIM traffic simulation system (Gipps, 1986). Other car-following
models include the Optimal Velocity Model (Bando et al., 1995), the General-
ized Force Model (Helbing & Tilch, 1998), the Full Velocity Difference Model
(Jiang et al., 2001), and the Intelligent Driver Model (Treiber et al., 2000). Some-
what recently (Y. Li et al., 2011) formulated a car-following model based on the
headways, velocities, and accelerations of multiple preceding vehicles.

The majority of car-following models are time-step driven and update math-
ematical formulas for each timestep, however, some models use event-based
methods. In (Wiedemann, 1991) Wiedemann devised a psychophysical car-
following model which combines mathematical concepts with observed psy-
chological phenomena in drivers’ reactions to events while driving. Another
psychophysical model was presented in (Schulze & Fliess, 1997), where acceler-
ations are only updated when certain thresholds in distances and speeds with
leading vehicles are crossed.

Microscopic simulation models provide a much greater amount of detail
than macroscopic models since individual vehicles and their behavior are repre-
sented with much more complex algorithms to control their movement and de-
cisions. The obvious trade-off is that this requires a much greater computational
cost, as simulations will usually contain hundreds or even thousands of vehicles
in the system at the same time. The open-source traffic simulation platform
SUMO-Simulation of Urban MObility was introduced in 2001 (Behrisch et al.,
2011) which has been used by many researchers to validate their own models and
to optimize characteristics of traffic systems. Another microscopic simulation
platform is VISSIM, which is time step based and was used by researchers at the
Georgia Institute of Technology (Hunter et al., 2006) to create traffic simula-
tions based on real-world data. They generate vehicles using a Poisson counting
process to produce random interarrival times.

Many simulation systems, including SUMO and VISSIM, are capable of
using Open Street Maps to generate road networks. This feature makes model-
ing real-world traffic systems much easier, and it lends more credibility to the
traffic simulations themselves.

Modeling traffic flows and vehicle arrivals is essential to simulating traffic sys-
tems in all three paradigms, and there has been much effort put into researching
methods to create these models. (Lippi et al., 2013) used time series analysis and
support vector regression to forecast traffic flows for short-term time periods.

Many different approaches have been used to optimize traffic light timings.
(Spall & Chin, 1997) applied neural networks to the problem using the simulta-

10

neous perturbation stochastic approximation (SPSA) algorithm in the context
of macroscopic simulation. (Ezzat et al., n.d.) used the third-party simulation
software ExtendSim to create, execute, and optimize their traffic models. The
software uses an evolutionary optimization approach. They based their sys-
tem performance on both queue lengths and vehicle waiting times. (Osorio
& Chong, 2012) used metamodels to optimize simulations of transportation
systems. Their metamodel is based on a system of linear and nonlinear equa-
tions, which they test for suitability in reducing traffic congestion in a large-scale
traffic system.

2.3 System Structure
In a real-world road network, there are a few specific events that occur as vehicles
move around the system:

Arrivals In a simulation, only a restricted area of the road system is included
and there must be a model that controls the arrival of vehicles to the
network

Traffic Flow Once vehicles are in the network, their behavior as they move
along roads should be as realistic as possible

Turning When vehicles arrive at intersections, they must choose a direction
to continue their travel

In this system, we have formulated several essential models that govern the
movement, arrival, and decisions of vehicles in the network. A model for the
flow of traffic and the behavior of vehicles as they either drive freely or follow
other vehicles is given. Also, models for vehicle arrivals and turning behavior,
both of which are based on real-world vehicle count data, are presented.

2.3.1 Simulation Structure in ScalaTion

Our simulation model was built upon the ScalaTion system (Miller et al.,
2010). Figure 2.1 shows a sample traffic system built in ScalaTion. The
system uses several different types of components from the ScalaTion ar-
chitecture, as well as components that were created specifically for traffic simu-
lation purposes. ScalaTion’s simulation system is discrete-event, however,
since most car-following models are time-driven, we created a component to
regularly schedule the car-following formulas to be updated.

11

Figure 2.1: Sample Traffic System

Sources generate vehicles at interarrival times using a predefined random
variate. In our system, this random variate is powered by real-world data so
that vehicle arrivals are realistic. The construction of these random variates is
described in a later section.

The concept of a Transport is that of a component that moves actors from
place to place in a simulation. We advanced our available methods of movement
by creating a Road component. A Road is used to move vehicles from one in-
tersection to another with the motion controlled with the formulas outlined
above. Roads are lightweight components that function as a guide so that vehi-
cles have an easier time knowing their locations within the system. Functionally,
the motion of the vehicles is controlled by predefined formulas.

Traffic signals are simulated using a Gate component, which can be used to
control the flow of traffic by cycling between red and green phases. When a Gate
is shut, this means the traffic light is in a red phase, and so the motion formulas
produce a deceleration until the velocity of the lead vehicle is reduced to zero.
There is no need for following cars to care about the state of the traffic signal,
as they are merely reacting to the behavior of the car in front of them. When
the Gate opens, signifying a green light, the lead vehicle begins to accelerate and
move across the intersection. At this point, the vehicle will either turn or go
straight, which depends on a turn choice algorithm described later in the paper.

The cars themselves are modeled using a Vehicle component, which is a
specific example of a SimActor component. A Vehicle records its acceleration,
velocity, and location along a Road at each time increment, and also holds a
reference to the vehicle immediately preceding it. If there is no preceding vehicle,
then it is the lead vehicle and can drive freely, which means it will asymptotically

12

approach the maximum speed. This behavior will only change if a traffic signal
turns from green to red in front of it, which will necessitate a deceleration.

Sinks receive vehicles that are exiting the system. They also record the
amount of time a vehicle spent in the system, as well as how many vehicles ex-
ited through it, which are both important metrics for analyzing, and eventually
optimizing, the characteristics of a traffic system.

Each of the components can be located in a realistic fashion using GPS coor-
dinates so that distances between landmarks are realistic. Currently, our model
uses lines or simple curves for Roads, but we plan to implement more complex
curvature of roads in the future. The data necessary for such models are harder
to come by, but mapping services such as Google Maps, and OpenStreetMaps
can often be used to achieve such constructions.

2.3.2 Traffic Flow and Car-Following Models
A car that is either in the lead or is far enough behind the immediately preced-
ing car can be thought of as a free-driving vehicle. These vehicles will only be
affected by the distance to, and state of, a traffic signal. If the traffic signal is red
and the vehicle is close enough, then it must begin to brake. Our current brak-
ing model for freely driving vehicles is given by using the basic physics formulas

s = s0 + vt+
1

2
at2 (2.1)

u = v + at (2.2)

Assuming s0 = 0, and substituting t = (u− v)/a from Equation 2.2 into
Equation 2.1, rearranging the result yields the formula

anew = −v2

2s
(2.3)

where v is the vehicle’s current velocity and s is the distance between the vehi-
cle’s current location and the traffic signal. If the lead vehicle does not have to
brake for a red traffic signal, then we use the following free-driving acceleration
model

anew = min{|ωaf + (1− ω)a|, |δ(vf − v)|} (2.4)

where af is the maximum free acceleration, ω is a weight parameter, a is the cur-
rent acceleration, vf is the maximum free velocity, v is the current velocity, and
δ is a scaling parameter. This formula takes a weighted average of the maximum
free acceleration and the current acceleration, which has the effect of gradually

13

increasing the velocity toward the maximum. However, if the current velocity is
very close to the maximum velocity, then the new acceleration should be based
on this, which will keep the lead car from going faster than the speed limit. The
second formula is based on Gipps’ basic model (Gipps, 1981), however, there
is no component for the distance between cars since our formula is for freely
driving vehicles.

Vehicles which are following another vehicle, and are close enough that
they cannot drive freely use the Intelligent Driver Model (Treiber et al., 2000)
to update the acceleration, velocity, and location of the vehicles.

2.3.3 Modeling Arrivals
Traffic systems are extremely complex, and creating a realistic model of vehicle
arrivals is essential for simulations of traffic. To create such a model, real-world
data collection is vital. In the U.S.A. there are a growing number of munic-
ipalities and states which are setting up data collection stations on roads and
highways. The data being collected is largely in the form of vehicle counts,
that is, the data collection station counts all vehicles which pass by it in a set
time interval. Quite often, the actual times of the vehicle pass-bys are not kept.
Therefore the granularity of the time intervals is very important.

Data Collection and Processing

To create valid and realistic simulations of traffic systems real-world data must
be collected and analyzed. A large number of municipalities around the globe
have started collecting data on traffic, which provides researchers with a great
opportunity to create accurate models of traffic systems. The data used in our
project is in the form of vehicle counts collected at multiple sensors along a
suburban road in Kenmore, Washington, U.S.A. The sensors provide vehicle
counts for every 5-minute interval of the day during a 17-week period starting in
September 2013 and ending in January 2014. The data set contains information
from both directions of the main roadway, broken down by lane, as well as
information about most of the side streets.

We believe that the choice of road and intersection in our data reflects a
typical suburban traffic system and that our work can be applied to almost any
similar system. This also highlights the need for Big Data techniques for mod-
eling more complex traffic systems. A high ratio of drivers will move through
progressively busier traffic systems as they go to work each day, which means
different traffic models will be needed to represent their entire commute. This

14

will require tremendous amounts of data, and processing of that data, to create
simulations with which to work.

Vehicle Generation

There is a very large amount of vehicle count data available from around the
world, and this data can be used to create mathematical models of vehicle arrival
rates. It seems the majority of previous work in the area of traffic simulation uses
vehicle arrival models which are based on simple Poisson counting processes,
which are not necessarily even appropriate for modeling the arrivals of vehicles
into a traffic system. We chose to model arrivals using a modeling approach that
creates vehicles in times that are close to real-world data.

Two approaches are typically used. The first is to model the interarrival
times of vehicles by modeling the time headway of vehicles on a road, which is
defined as the distribution of times between vehicles passing the same geograph-
ical location on the road. The second method of vehicle generation is to model
the number of cars that should enter the traffic system in any given interval of
time.

Poisson counting processes, which are based on exponential distributions,
are quite often used to model the time headway for vehicles entering a traf-
fic system. (Q. Meng & Khoo, 2009) suggest that the Poisson process is not
appropriate for use in modeling vehicle arrivals and that a better approach is
to use self-similar processes which are used to model network traffic that ex-
hibits fractal characteristics. (Leland et al., 1994) Other distributions that have
been suggested include the Log-Normal distribution (L. Li et al., 2010), and
the Gamma distribution (Dey & Chandra, 2009).

We must account for the ebb and flow of vehicle volume, as most busy inter-
sections display a bimodal distribution of vehicle counts over the course of a nor-
mal business day. The two peaks correspond to the usual busy periods of morn-
ing and afternoon rush hours when the majority of workers are traveling to and
from work, respectively. (L. Leemis, 2003) suggests that Non-Homogeneous
Poisson Processes (NHPP) can be used to model arrivals in systems that exhibit
multiple busy periods.

Our approach is to fit each day’s vehicle count distribution with a polyno-
mial, which is then used to drive an NHPP that generates interarrival times of
vehicles to the system. Another option that we will explore in the future is using
Poisson regression to create a fit to the data, and use this instead of a polynomial.
We would likely need to use a Non-Homogeneous version of Poisson regression
in our work.

15

Standard Poisson processes use a constant rate parameterλ, which is not ap-
propriate for use in a model which will contain fluctuating arrival rates through-
out the life of that model. The NHPP solves this problem by allowing for either
a rate function λ(t), or a vector of rates. Since we are estimating the counts for
a whole hour, we use the latter approach, where we generate a discrete approx-
imation to our polynomial curve and take these function values for our rate
vector. This rate vector is used to build a cumulative rate vector, which rep-
resents how the arrivals build up over time. This cumulative rate vector is a
piecewise-constant approximation to the cumulative intensity function. Using
an exponential random variate, arrival times can be generated using linear inter-
polation. Since we have data from each direction heading into an intersection,
it is possible to generate realistic interarrival times that display the varying traffic
densities between main roads and side streets.

We validated the NHPP using a Kolmogorov-Smirnov (KS) test, which is
a widely used method to compare samples. Based on the results of the test we
believe that the vehicle counts are distributed as an NHPP. Figure 2.2 shows that
our vehicle arrivals, generated by an NHPP, are very close to the vehicle counts
from our real data set. The two samples have a KS-statistic of 0.0113026952
which passes a 95% confidence test.

Figure 2.2: Visualization of KS Test For Real vs. Simulated Arrivals

2.3.4 Turning Behavior of Vehicles
When it comes to route choice, several different approaches have been used.
(Esser & Schreckenberg, 1997) chose to give their vehicles predefined routes that
detail the roads they will travel along within the system, usually based on origin-
destination tables. Another common technique is to use simple randomizers
that choose the next road based on a discrete random variable. A simple discrete
random variable, which only uses constant probabilities to generate values, is

16

not appropriate since the probabilities of turn choices are certainly affected by
the time of day, and even which day of the week you are representing.

We feel these methodologies can be improved upon by using real lane vehicle
count data. Our approach is to use this lane data to create a probabilistic choice
model that vehicles use to decide their route when they reach an intersection.
This is fairly straightforward to do when you have access to the individual lane
vehicle counts, including turn lanes.

First, we use the lane data to decide the vehicle counts for each of the three
choices of turn left, go straight, and turn right. Second, we convert these vehicle
counts into a percentage by dividing them by the total vehicle counts for all lanes.
These percentages are shown in Figure 2.3.

Figure 2.3: Percentages for Each Turn Decision

This gives us an estimate of the percentage of cars turning left, going straight,
or turning right during each time interval throughout the day. We then generate
polynomials pl(t) and ps(t) (representing the probabilities of turning left and
going straight, respectively) using the percentage values for turning left and
going straight. These polynomials are shown in Figure 2.4.

In both Figures 2.3 and 2.4 it is quite clear that this particular intersection
has a main road and a much less traveled intersecting road since the majority of
traffic is going straight, meaning they are continuing on the main road.

Finally, we create a discrete random variable based on these polynomials
and a U(0, 1) uniform random variable:

This method of creating turn choices is, we believe, a novel approach to the
problem. It allows for much more flexibility to represent complex intersections,
where the relative percentages of turn decisions can change drastically through-
out the day. Not taking this issue into account leads to less accurate simulations
which weakens their effectiveness as tools to analyze the real world.

17

Figure 2.4: Polynomials for Going Straight (Red) and Turning Left (Yellow).

2.4 Simulation Optimization
There are many options to choose from when attempting to optimize the char-
acteristics of traffic systems. These are stochastic simulations which makes it
possible for the same input vector to yield different results from two indepen-
dent simulation runs. Also, very small changes in the characteristics of traffic
systems will likely have no real effect on the outcomes of simulations. So only
somewhat large changes in these characteristics are particularly useful. How-
ever, it can be difficult to overcome the issue of noise generated by using real-
world data, which can lead to massive differences in results when common sense
would imply there should not be. All of these issues make the selection of opti-
mization techniques a difficult one. Below, we briefly discuss the strengths and
weaknesses of a few optimization techniques.

2.4.1 Gradient Techniques
Very small changes to the values of traffic system characteristics, such as traffic
signal timings and speed limits, will not realistically result in significant changes

18

Algorithm 1 Turn Choice Algorithm
1: procedure GenerateTurnChoice(t)
2: u← U(0, 1) ▷ Uniform random variable
3: if u < pl(t) then
4: output 0 ▷ Turn left
5: else if u < pl(t) + ps(t) then
6: output 1 ▷ Go straight
7: else
8: output 2 ▷ Turn right
9: end if

10: end procedure

in the flow of traffic. This makes gradient-based techniques difficult to use
since gradients are computed using very small changes in each variable. Finding
a proper scale for these perturbations is an optimization problem in its own
right, which adds an additional layer of complexity to the optimization.

BFGS

The BFGS (Broyden, 1970), (Fletcher, 1970), (Goldfarb, 1970), (Shanno, 1970)‘
quasi-Newton method makes use of the gradient and an approximation to the
Hessian (matrix of second-order partial derivatives) of a function to iteratively
move toward a solution. Line search algorithms are usually employed to decide
how large of a step to take in each iteration. One problem with quasi-Newton
methods is that the computation of the gradient requires many simulation runs.
In fact, if the gradient is being computed using a symmetric difference quotient,
there will be two simulation runs for each variable in the input vector. Some of
this inefficiency can be removed through parallelization, but not all of it.

SPSA

The Simultaneous Perturbation Stochastic Approximation algorithm (Spall,
1998b) is an effort to remove much of the inefficiency of quasi-Newton meth-
ods by simultaneously perturbing all variables at once, resulting in only two
simulation runs regardless of the number of variables in the input vector.

19

2.4.2 Gradient-Free Optimization

Nelder-Mead Simplex

This method (Nelder & Mead, 1965) is an unconstrained, derivative-free, direct-
search optimization algorithm based on evaluating the objective function at
vertices of a simplex. Each iteration typically requires only a few objective func-
tion evaluations, and so can be computationally less expensive than many other
methods. The goal is to gradually decrease the function values at the vertices
of the simplex as it is transformed. (Barton & Ivey Jr, 1996) show that there are
some potential problems with applying the Nelder-Mead algorithm to stochas-
tic objective functions in simulations, mainly due to the fact that changes to
the simplex can take place erroneously, based on the stochastic nature of the
responses.

Tabu Search

Another technique is to apply the Tabu search algorithm (Glover, 1989) to an
integer domain of input values, as this search guarantees that you will not revisit
input vectors already deemed to be sub-optimal. (Dengiz & Alabas, 2000) used
the Tabu search algorithm for simulation optimization and found that it clearly
outperformed a random search, giving credibility to its use. According to (Fu et
al., 2005), with the cost of running each simulation being so high, the tabulation
of the search space greatly improves the time efficiency of the optimization.
With a stochastic objective function, as in simulation, there is always the chance
that points previously considered will give different results if you revisit them.

Genetic Algorithms

If we restrict the timings of traffic signals to be integers, then the set of all feasible
timing combinations is discrete. However, for most traffic systems this set is
still too large to do an exhaustive search. Genetic algorithms (Holland, 1992)
have been shown to have good optimization abilities in many applications. (L.
Wang, 2005) introduced a hybrid approach to simulation optimization using
GAs and Neural Networks (Werbos, 1974) when there is an unknown form to
the objective function.

Genetic Algorithms are well suited for optimizing many characteristics of
traffic systems because many of the values involved are discrete. It may not be
helpful to think of traffic light timings as a continuous space of possibilities
since small changes in timings are unlikely to cause noticeable differences in
real-world vehicle behavior. Other characteristics such as the number of lanes

20

on a road, and the speed limit of the road are also going to be discrete sets, which
are well suited for use with genetic algorithms.

2.4.3 Response Surface Methodology
Response surface methodology (G. Box & Wilson, 1951) holds some promise for
traffic simulation optimization because all response values are computed before
the optimization algorithm is applied, so no simulation runs are required during
the optimization process itself. The process starts with a predefined lattice of
input values and a simulation run is computed with each lattice point. This
creates an implied surface of function values which can then fit by more well-
defined surface using regression techniques. This surface can be any type of
surface, though typically quadratic surfaces are chosen for their ease of use. This
more well-defined surface can then be optimized using standard techniques.
The process can also be repeated to identify better areas of the surface on which
to focus.

This method is attractive because the stochastic nature of the simulations
is removed during the optimization phase. Also, the choice of optimization
technique is only dependent on the type of surface that has been created. Gradi-
ent and non-gradient techniques alike are all possibilities for this optimization.
There are some potential drawbacks to RSM though. Response surfaces usu-
ally need to be fairly large in scope, which might require a large lattice of points
on which to conduct simulation runs. If a multi-stage RSM process is being
used, then the number of simulation runs needed to build the response surfaces
might be too large.

2.5 Results
We believe our method of using an NHPP model for generating vehicles closely
matches observed arrival times from real-world data. Changes in vehicle con-
gestion as time passes, are handled naturally using our technique. This process
can be done ahead of time so that the simulations rely only on the random
variate constructed from the data. Our model for deciding turning behavior,
which was based on real data, seems to closely align with what can be observed at
normal intersections. And our traffic flow models show realistic movement of
vehicles as lead cars drive freely, and following vehicles decide new acceleration
and velocity changes based on the vehicles in front of them.

The implementation of these three models, namely, a vehicle arrival model,
a turning model, and a traffic flow model, has greatly improved the capabilities

21

of our traffic simulation system. While there is still work to do, we believe
we have created a system that can accurately simulate many real-world traffic
scenarios. The validation plan is to compare traffic counts over an entire day
produced by the simulation model with those recorded by the sensors for the
road system under study. Counts are affected by the sources, vehicle speeds, the
leading car model and following car model, the car turning model, the duration
of traffic lights, and the synchronization of multiple lights.

We have also researched the possibility of optimizing the various character-
istics of traffic systems through simulation optimization techniques. Several
common techniques are examined and critiqued in the context of traffic sim-
ulation, specifically the optimization of traffic light timings. It appears to be
a challenge to use gradient-based techniques in this context, as the issues with
scaling and noise make it difficult to find good search directions and step sizes.

2.6 Conclusions and Future Work
In this paper, we presented a model for simulating traffic systems in a micro-
scopic simulation paradigm. Realistic models for vehicle arrivals and turning
behavior were created which closely match real-world data. We also presented
formulas for the motion of vehicles within the system. Specifically, we imple-
mented car-following behavior as well as free-driving behavior, which improves
the quality of the overall model.

There is still much work to be done to improve our system. Currently, there
is little facility for including multiple-lane roads, and no ability for vehicles to
change lanes. There is also no current way in our system to model different
modes of traffic as all vehicles are treated exactly the same. Our future work will
include differentiating between different types of vehicles such as large trucks,
buses, and possibly even bicycles and pedestrians. There is also a need to im-
prove the mathematical formulas governing the flow of vehicles.

In the future, we plan to implement the use of open-source mapping infor-
mation to create traffic simulations of real road systems. Open Street Maps is
already being used by many traffic simulation systems, and its inclusion in our
system is a definite goal.

We also plan to refine our model so that we can apply it to the many ”what-
if” scenarios in the domain of traffic research. For example, special events near
a traffic system can greatly increase vehicle counts in that area. Another idea
is to study the response of a traffic model to traffic accidents, and perhaps to
formulate automated response plans for signal timing that can handle such

22

unforeseen occurrences. We also plan on exploring other types of traffic system
structures such as roundabouts, amongst many others.

Lastly, we would like to investigate a growing area of interest in traffic mod-
eling, which is autonomous vehicles. The future of driving is likely to include
such vehicles, and traffic simulations that include them will be needed. Traffic
systems with such vehicles will require the use of Big Data Analytics techniques
to deal with extremely large amounts of real-time data and to react to changing
conditions in an effective and timely manner. Autonomous vehicles provide
the opportunity to create truly cooperative traffic systems, where the vehicles
actually work together to improve efficiency and provide safe travel to human
occupants.

Comprehensive real-world traffic planning will require sophisticated soft-
ware systems to maximize the benefits of traffic simulation. The ability to inte-
grate our models with other traffic simulation software, in an effort to broaden
the capabilities of the entire system, could greatly aid in the use of traffic simu-
lation for city planning, which is an increasingly important endeavor.

23

Chapter 3

Microscopic
Discrete-Event Traffic

Simulation

3.1 Introduction
Our busy traffic systems only continue to get busier as the number of cars on
the road increases substantially from year to year. The challenge we all face is
to create a safe and efficient road system that can handle the ever-increasing
demands we put on it. Both simulation of traffic systems and traffic forecasting
can be essential techniques in developing such systems and will be needed to
investigate traffic scenarios ahead of time.

Consider the ability to use simulation to predict the consequences of major
road construction before a project is even started. With autonomous vehicles
on the horizon, there is an opportunity to see the impact of cooperative driving
where vehicles are also teammates instead of simply individuals (Sichitiu & Kihl,
2008). There are several major steps involved in producing a simulation of a
traffic system. For the simulation to be useful, it must be based on real-world
data of some kind. There are many types of relevant data and how each is used
to build a simulation model will be discussed (Hellinga, 1998). Once the data
has been secured, processed, and analyzed, models of the various simulation
components can be created. These include arrival models, traffic flow mod-
els, and the models of the roads themselves. Discrete-event simulations (DES)
are well-suited for accurately representing traffic systems since they allow for
modeling changes as they are needed, as opposed to discrete-time simulation
(DTS), which updates a model at specified times. For instance, when vehicles
are created, a DES can produce them at the exact time they should be, while a

24

DTS will have to use a random variable to decide how many cars were produced
since the last update, and then also calculate where they should be along their
respective roads.

Short-term traffic forecasting can be used to help drivers navigate through
or around congestions, accidents, and other complex traffic situations (Vla-
hogianni et al., 2014). Traffic parameters of interest for forecasting include
travel time, traffic volume, traffic speed, queue length, etc. Traffic apps such
as Waze, Google Traffic, and INRIX are commonly used apps for forecasting
traffic. These forecasting techniques are useful for simulation purposes for a
few reasons. First, they can provide a basis for modeling certain characteristics
of a simulation such as vehicle arrivals, or likely routes through a traffic network.
Forecasting can also be used as a means to validate a simulation’s structure and
results. Traffic forecasting is therefore an indispensable tool for the successful
modeling and simulation of traffic networks.

Recently advancements in mobile and wireless technologies have enabled an
increased amount of traffic data to be collected (Herrera et al., 2010). Increasing
numbers of permanent and temporary sensors are also collecting great volumes
of data. The availability of large quantities of high-resolution traffic data has
greatly facilitated the improvement of both simulation of traffic systems and
short-term forecasting in recent years.

Predictive modeling of traffic is inherently difficult because of variability
in drivers, variability in roads, until recently, a limited amount of data to work
with, highly chaotic and dynamic systems. In addition, many factors come into
play, including weather, events, accidents, etc. Furthermore, traffic systems
become very complex very quickly as the scale of the network is enlarged.

The rest of this paper is organized as follows: Section 2 discusses various
types of simulation models. Data collection and analysis are given in Section 3.
Section 4 focuses on different short-term traffic forecasting models. Challenges
and directions for future work to improve the accuracy and robustness of traffic
modeling and simulation are considered in Section 5. Finally, our conclusions
are presented in Section 3.5.

3.2 Types of Simulation Models
A traffic simulation model exists in any of three paradigms: macroscopic, meso-
scopic, and microscopic. A model can also be implemented using either DTS or
DES. Buss compared the results of discrete-time and discrete-event simulations
when using differential equations to calculate changes to the system (Buss &
Al Rowaei, 2010). They found that the choice of time-step has a large effect on

25

the accuracy of the DTS models, but also that errors resulting from a DES ap-
proach were smaller in general than the DTS approach. However, (Lieberman
& Rathi, 1997) believe that DTS systems are a better choice for large traffic sys-
tems that require a great amount of detail. A discrete-event simulation system
with thousands of vehicles will likely process many more updates to the system
than would a discrete-time simulation. As processors become faster with higher
parallelism and distributed computing techniques continue to improve, the ef-
ficiency of DES should get better as well, which along with the better accuracy
of such an approach, likely makes DES the better choice for traffic simulation
moving into the future.

Figure 3.1: Timeline of traffic simulation models. (Gipps, 1981), (Pipes, 1953),
(Kometani & Sasaki, 1961), (Lighthill & Whitham, 1955), (Richards, 1956),
(Newell, 1961), (Gazis et al., 1961), (Prigogine & Andrews, 1960), (Buckley, 1968),
(Paveri-Fontana, 1975), (Wiedemann, 1974), (Branston, 1976), (Bando et al.,
1995), (Daganzo, 1994), (Treiber et al., 2000), (Daganzo, 2002), (Wong & Wong,
2002), (Leclercq, 2007), (Mahnke & Kühne, 2007).

3.2.1 Macroscopic Models for Traffic Simulation
Most of the early work in traffic modeling was in the paradigm of macroscopic
traffic models. Greenshields’ work is the starting point for the traffic flow mod-
els that would come later (van Wageningen-Kessels et al., 2015). His work com-
paring velocity to traffic density led to some of the early breakthroughs in the
field and inspired many researchers to pursue traffic modeling.

A notable contribution was provided by (Lighthill & Whitham, 1955) and
(Richards, 1956), with the formulation of the Lighthill-Whitham-Richards (LWR)
kinematic wave model of traffic flow. The idea behind this application of kine-
matic wave theory is that changes in traffic flow propagate backward through
traffic in a wave-like fashion and that multiple waves can even collide form-
ing kinematic "shock waves". However, deficiencies in the basic LWR model

26

were identified (Daganzo, 1997) stemming from the fact that the LWR model
makes some unrealistic assumptions about traffic flow. First, the original model
assumed an instantaneous change of velocity, which would imply an infinite
acceleration. Secondly, all vehicles in a geographically defined neighborhood
or platoon are assumed to have the same desired velocity. However, real-world
data has shown that vehicles in a platoon will have their own desired speeds and
this will lead to the platoon getting spread out and eventually disentangling
(Daganzo, 1995).

3.2.2 Mesoscopic Models for Traffic Simulation
Mesoscopic models utilize elements of both the macroscopic and microscopic
paradigms of traffic flow modeling. Specifically, individual vehicles are consid-
ered and modeled, but the overall flow is controlled by macroscopic features
(Zhou & Taylor, 2014). (Buckley, 1968) proposed a traffic flow model based
on arrival modeling using a semi-Poisson distribution. (Branston, 1976) also
discussed a traffic flow model based on an arrival model. (Prigogine & Andrews,
1960) proposed gas-kinetic traffic models with (Paveri-Fontana, 1975) improving
on the concepts later. (Helbing, 1997) created a multilane version of this model.
Later, a generic gas-kinetic model was introduced by (S. P. Hoogendoorn &
Bovy, 2001). The INTEGRATION model (Van Aerde & Yagar, 1988) was orig-
inally mesoscopic in nature, though it has seen significant evolution since the
original formulation (Van Aerde et al., 1996).

3.2.3 Microscopic Models for Traffic Simulation
When vehicles are in close proximity in the same lane, then one car is following
another car and must change its own behavior as the car just in front of it also
changes. These changes in behavior will result in changes to either the acceler-
ation or velocity of the vehicle. The reasoning behind the changes boils down
to either a general response to stimuli or because of a desire to avoid collisions.
When humans make such decisions we either press the accelerator pedal or the
brake (decelerator) pedal. Thus, the decision boils down to what the new ac-
celeration of the vehicle should be. There have been many models proposed
for producing new accelerations for the following vehicles. The new accelera-
tion value is used to update the velocity of the vehicle, which is then used to
update the position of the vehicle. Many car-following models have been pro-
posed with most falling into the classifications below (Brackstone & McDonald,
1999).

27

Stimulus-Response Models

Stimulus-response models assume drivers change their behaviors based on dif-
ferent stimuli. If drivers are not traveling at their own desired velocities then
they will choose to either accelerate or decelerate depending on their speeds.
Drivers will also adjust their speeds depending on either the spacing between
them and the car in front of them or the relative velocity of the car in front of
them.

Some of the earliest work on car-following models was done by (Gazis et al.,
1961), creating the GHR model, which has inspired many other models. For
example, Bando et al. proposed the Optimal Velocity Model (OVM) (Bando et
al., 1995), (Bando et al., 1998), and Treiber et al. designed the Intelligent Driver
Model (IDM) (Treiber et al., 2000), (Kesting et al., 2010).

Collision Avoidance Models

Collision Avoidance models work based on the idea that drivers will maintain
distances that will prevent collisions with the vehicles in front of them. Some
of the earliest work in collision avoidance models was done by (Pipes, 1953) and
(Kometani & Sasaki, 1961). (Gipps, 1981) refined the ideas considerably and
is still considered to be the leading model in the collision avoidance paradigm
(Ciuffo et al., 2012). Several of the leading models are presented below.
The GHR model is shown below in equation 3.1

v̇n(t+ τ) = p
ẋn−1(t)− ẋn(t)

[xn−1(t)− xn(t)]l
(3.1)

The IDM is shown below in equations 3.2 and 3.3

v̇n(t+ τ) = an

(
1−

(
vn(t)

Vn

)δ

−
(
s∗(vn(t),∆vn(t))

sn(t)

))2

(3.2)

where

s∗(vn(t),∆vn(t)) = s0 + vn(t)T +
vn(t)∆vn(t)

2
√
anbn

(3.3)

The OVM is shown in equations 3.4 and 3.5

v̇n(t) = γ (v∗ (sn(t))− vn(t)) (3.4)

where

28

v∗(s) = V0 (tanh(s− c1) + c2) (3.5)

Gipps’ Model is presented in equations 3.6, 3.7, and 3.8.

vn(t+ τ) = min

[
vF (t+ τ), vC(t+ τ)

]
(3.6)

where

vF = vn(t) + 2.5anτ(1− vn(t)/Vn)(0.025 + vn(t)/Vn)
1/2 (3.7)

and

vC = bnτ +
√

b2nτ
2 − bn[2[xn−1(t)− sn−1 − xn(t)]− vn(t)τ − vn−1(t)2

(3.8)

Cellular Automata Models

Cellular Automata (CA) models are microscopic models because individual
vehicles are created for the simulation, but space is no longer continuous, and
vehicles move between “cells" that model individual locations on the road, with
a small length to allow a single vehicle to occupy a cell at any given point in time.
(Cremer & Ludwig, 1986) created an early CA system that modeled everything
using boolean operations. (Nagel & Schreckenberg, 1992) showed that the CA
approach results in behavior predicted by macroscopic models. The proposed
rules for motion in this approach were extremely simple:

1. Acceleration: if the velocity v of a vehicle is lower than vmax and if the
distance to the next car ahead is larger than v + 1, the speed is advanced
by one [v → v + 1].

2. Slowing down (due to other cars): if a vehicle at

Another expansion of the idea was proposed in (Helbing & Schreckenberg,
1999) in which the CA model is combined with the Optimal Velocity Model.

Psycho-Physical Models

Another class of car-following model is based on the idea that drivers can only
have reactions if they have perceived a driver ahead of them that they should
react to. (Wiedemann, 1974) is often credited with the early work in the field.

29

3.3 Data Collection and Analysis
Traffic systems produce large volumes of data and it is crucial to know the rel-
evant types, their availability, and how they can be used for traffic modeling
(Hellinga, 1998). Below are some of these relevant data types.

• Vehicle Count Data: Most states provide public access to vehicle count
data, usually through a web interface. The frequency of the counts is im-
portant for accurate arrival models. Hourly traffic data is very common
to find but is not nearly as accurate as five-minute intervals.

• Speed Limit Data: Speed limit data can be hard to find, but there are
sources available for estimates of the correct values. The Google maps
API provides a function for retrieval of speed limits for a particular road
segment. Google does not guarantee that these speed limits are accurate.
OpenStreetMap can also be used to estimate speed limits, but some ad-
vanced work must be done. Each state publishes the maximum speed
limit for each type of road they have. These road types are typically in-
cluded in the description of a road in OpenStreetMaps, so an indirect
estimate of the speed limit can be done. Note that this method may only
be suitable for roads in the United States. Other countries and regions
may not have published maximum speeds as in the U.S.

• Geo-Spatial Data: Traffic flow is heavily influenced by the shape of
the road, especially if collisions are a part of the simulation study. Blind
curves, steep hills, narrow lanes, etc. all have an impact on traffic. Much
of this data is publicly available and can be processed using GIS software.
Geospatial data is also often used to build the road structure in the simu-
lation even if the data is not being used to affect the traffic flow.

• Travel Time Data: Typically, these data provide travel times between
two locations. Some governments provide such data, e.g., the UK (data.
gov.uk), Ireland (data.gov.ie), and Australia (data.qld.gov.au, data.vic.
gov.au).

• Accident Data: An online system would require accident data to effi-
ciently reroute vehicles. These data are available through web interfaces
of state governments or traffic apps such as Waze.

• Event Scheduling Data: In cities, events such as sports, concerts, cele-
brations, graduations, etc. are usually available ahead of time.

30

data.gov.uk
data.gov.uk
data.gov.ie
data.qld.gov.au
data.vic.gov.au
data.vic.gov.au

• Construction Data: Road construction data are typically posted by
state and local governments.

Figure 3.2: Vehicle counts vs. a polynomial fit

Vehicle counts can be used to determine interarrival times for the system
and its sources. Figure 3.2 shows the vehicle counts on Mondays for 17 weeks
and polynomial regression is fit using the data. Speed limit data can be used
to estimate the range of speeds at which vehicles would operate. Geo-spatial
data could even be incorporated to model accelerations and decelerations due
to changes in the physical shape of the road. For instance, severe curves in a road
would necessitate decelerations. (Wilkie et al., 2012) use GIS data to create three-
dimensional models for use in traffic simulations. (X. Wang, 2005) discussed the
integration of GIS methods and data with simulation models and visualization
techniques.

The most conventional way to collect traffic data is through inductive loop
detectors that are already deployed on many roads (Leduc, 2008). Magnetic
fields are generated by loop detectors in order to detect vehicles, which are
mostly made of metals. When vehicles pass through loop detectors, traffic count
data can be recorded. If two loop detectors are very close to each other, they
can also calculate the speeds of the vehicles that pass by.

Traffic data may also be collected by probe vehicles, which can be vehicles
specifically deployed on the roads for real-time traffic data collection or com-
mercial vehicles like taxis equipped with GPS chips (Leduc, 2008). Typically
satellites and cellular networks can be used to transmit information such as lo-
cations and speeds of probe vehicles. The CarWeb system proposed by (Lo
et al., 2008) utilizes GPS and Mobile networks to obtain position and speed

31

data on non-freeway roads, which are less likely to have a comprehensive system
of in-road sensors. With the relatively recent drastic increase in the number
of smartphones, the amount of data that can potentially be collected has also
sharply increased. Popular traffic apps such as Waze, Google Traffic, and INRIX
may collect anonymous data from users who are using the apps while driving.

Other ways to collect traffic data may include using automated toll collec-
tion stations to collect travel times data (El Faouzi et al., 2009); (S. Hoogen-
doorn et al., 2003) discussed using aerial images to extract more detailed data
from road systems, specifically for use with microscopic traffic simulations; re-
cently, in (Bhaskar & Chung, 2013), the use of Bluetooth scanners to collect
traffic data was suggested.

3.4 Types of Forecasting Models
Many forecasting models have been developed for forecasting time course data.
These models may include statistical time series models and machine learning
models. The applications of forecasting traffic variables or metrics using differ-
ent models have been an area of growing research interest. Our interest in the
field results from the idea that traffic forecast models can be used to drive ele-
ments of traffic simulations. For example, an accurate forecast of traffic volume
can be used to simulate vehicle arrivals to the network.

3.4.1 ARIMA Family of Models
One of the most intuitive approaches to forecast traffic variables or metrics of
interest such as traffic volume or travel time is to use the data from the recent
past to predict the value of the variable in the immediate future. It would be
reasonable to assume that the traffic volume on a particular road fifteen minutes
later would be highly correlated to the current traffic volume. The univariate
autoregressive integrated moving average (ARIMA) family of models (G. E. Box
& Jenkins, 1970) commonly used in time series analysis can be a good candidate
for such a task.

The autoregressive (AR) portion relates the current variable of interest (e.g.,
travel time) to the same variable at the last p time points. Let Zt represent
the travel time at time t between two Traffic Control Sites, and define Yt =

Zt−µZ , where µZ is the mean of the Z time series. In particular, the pth order
autoregressive model for Yt, AR(p), may be expressed as

Yt = ϕ1Yt−1 + ϕ2Yt−2 + · · ·+ ϕpYt−p + ϵt

32

where ϕi is the parameter/coefficient associated with the ith lag Yt−i and ϵt is
the white noise process.

As an example, the ScalaTion project may be downloaded from http:
//www.cs.uga.edu/~jam/scalation_1.3/README.html. The dataset used con-
tains minute-by-minute travel time data from midnight to 1:00 pm from Traffic
Control Site 2127 to 175 in Dublin, Ireland (Council, 2016). This simple test
creates an AR(1) model to forecast travel times 15 minutes into the future. By
using the “rolling forecast origin" technique (Hyndman & Athanasopoulos,
2014) commonly used to validate time series models, only the most recent n (in
our case n = 60) instances are used as training data to produce 15-step ahead
forecast on the n+ 15-th time point. To run this test, simply type “run-main
apps.analytics.Traffic_AR" in the sbt console. An R2 value of 54.2% can be ob-
tained. The forecasted (red) and actual (black) travels times are shown in Figure
3.3.

Figure 3.3: Travel Times: Forecasted (red) vs. Actual (black)

The ARIMA family of models has been used for short-term traffic forecast-
ing for almost four decades (Ahmed & Cook, 1979), (M. Levin & Tsao, 1980).
However, a major shortcoming of the ARIMA family of models is its inability
to quickly respond to sudden changes in the traffic condition such as conges-

33

http://www.cs.uga.edu/~jam/scalation_1.3/README.html
http://www.cs.uga.edu/~jam/scalation_1.3/README.html

tion caused by an accident or sharp increase and decrease in traffic volumes
(Vlahogianni et al., 2004). In recent years, the ARIMA family of models has
mostly either been used as a baseline comparison or a component of a hybrid
or more generalized model.

An extension to ARIMA with seasonal components is called the SARIMA
model. Seasonality typically denotes similar or repeated patterns in the univari-
ate time series for every fixed period of time, such as the daily traffic volume
patterns on workdays. SARIMA was first used to forecast the traffic flow of
urban freeways in (B. Williams et al., 1998). A recent study in (Kumar & Vana-
jakshi, 2015) demonstrated the potential of SARIMA models fitted with only a
limited amount of input data for traffic flow forecasting when compared with
non-seasonal ARIMA models.

3.4.2 State-Space Models and Kalman Filter
Suppose one desires to study the relationship between a traffic metric or variable
of interest and other relevant traffic variables, the univariate ARIMA family of
models may not be sufficient for such a task. For example, information on de-
parture times and past travel times can give valuable insights into forecasting
future travel times, but the univariate ARIMA family models are not able to
take advantage of the extra information for prediction. One solution would be
to use multivariate generalizations of the ARIMA models, such as in (Schim-
binschi et al., 2017), which showed that a vector autoregressive (VAR) based
model can outperform baseline ARIMA models in traffic flow predictions. An-
other solution would be to use the Kalman Filter (Kalman et al., 1960), a widely
applied algorithm in multivariate time series analysis.

In essence, the Kalman Filter (Kalman et al., 1960) attempts to use the es-
timate of the state of a system (e.g., the state may consist of traffic volume and
velocity) and the degree of uncertainty of the estimate of the state (to account for
noise and measurement errors) at time t, and produces an estimate or forecast of
the state and its degree of uncertainty at time t+1. Any relevant measurements
of some external influences on the state (e.g., weather condition) at time t+ 1

(with its own degree of uncertainty) can also be used to adjust the estimate of
the state of the system at time t + 1. A model that utilizes the Kalman filter
algorithm falls into a more general category of state-space models.

The Kalman Filter was first used to forecast traffic volume in (Okutani &
Stephanedes, 1984). Application of travel time forecasting using the Kalman
Filter was done in (Chien & Kuchipudi, 2003). In (Stathopoulos & Karlaftis,
2003), the state-space models using the Kalman Filter outperform simple ARIMA
models in traffic volume forecasting. The difference in performance, in terms

34

of the mean absolute percent error (MAPE), is as high as 8%. A more recent
study in (Guo et al., 2014) combined the Kalman filter with univariate time
series models to produce better forecasts of traffic flow rate than the individual
models.

3.4.3 Regression
Aside from multivariate time series analysis, another way to forecast a traffic vari-
able using other traffic or traffic-related variables is regression, a very common
technique in predictive analytics. The goal of regression is to find a function
that best describes a given dataset. In other words, the differences between the
observed values of the traffic variable of interest and the fitted values (the pre-
dicted values of the traffic parameter of interest given by the function) must
be minimized. Typically, the function maps multiple predictors (traffic-related
variables) to a single response (the traffic variable of interest). A major class of
regression techniques is known as parametric regression, in which the forms
of the function (e.g., linear, quadratic, higher-order polynomials, generalized
linear models, etc.) is pre-determined and therefore the goal is to find the coef-
ficients (parameters) on the predictors so that the function may best describe
the dataset. A widely used yet simple parametric regression model is the linear
regression model

Y = b0 + b1X1 + b2X2 + · · ·+ bnXn + ϵ

where Y is the response variable; Xj is the jth predictor, j = 1, 2, . . . n, where
n is the total number of predictors; b0, b1, . . . bn are the coefficients/parameters
that need to be fit; and the ϵ random variable is used to represent residuals or
errors. This model may also be generalized to polynomial regression models by
including non-linear predictors (e.g., squared values of predictors).

In (Nikovski et al., 2005), linear regression was shown to be competitive
with some non-linear techniques such as neural networks and k-nearest neigh-
bors when performing univariate forecasting of short-term travel times. The
resolution of the data is 5 minutes and only data from the past two time points
(5 and 10 minutes prior) are used as predictors in linear regression. In (Zhang &
Rice, 2003), a linear regression-based model in which the coefficients/parame-
ters vary according to departure time (as opposed to being constant in standard
linear regression) was proposed, outperforming baseline predictors that rely
solely on current traffic information or historical averages.

35

Non-parametric regression, unlike parametric regression, does not have a
pre-determined form. Both the structure and parameters of the model must be
learned from the data.

In (Smith et al., 2002), a study is conducted to compare traffic flow fore-
casting accuracies of SARIMA and non-parametric regression. Even though
SARIMA was found to be superior in terms of MAPE, non-parametric regres-
sion can nevertheless be a valid alternative in scenarios where SARIMA may
not be applied.

3.4.4 Neural Networks
The regression techniques can provide simplicity with the pre-defined form
of the function to be fitted, but this may also be a disadvantage because traf-
fic situations are often complex, involving sudden extremes due to accidents,
bad weather, etc., which can be difficult to capture by using a fixed form of
function. Neural Networks, which can be understood as a form of multi-layer
nonlinear regression, could be an alternative for such a task. In recent years,
Neural Networks have captured the attention of many researchers in the field
of traffic forecasting (Karlaftis & Vlahogianni, 2011).

Neural Networks are a data-driven computation model in machine learning.
Since the number of parameters that need to be learned in a Neural Network can
be very large, Neural Networks typically require a lot of data. This restriction,
however, is no longer a major issue as more and more data are becoming available
in this so-called age of Big Data.

A Feedforward Neural Network is made up of interconnected layers of ar-
tificial neurons, inspired by the structure of a brain. The incoming signals of a
neuron are first aggregated, then the aggregated signal is passed through an acti-
vation function to produce an output signal for the neuron to send forward to
other connected neurons. The strength of the connections among the neurons
is learned from the input data.

Much research has been devoted to using Neural Networks for traffic fore-
casting since the early 90s (Dougherty, 1995). Recently, in (Schimbinschi et al.,
2015), a comparative study of different techniques was done on short-term traf-
fic volume forecasting techniques. The forecasting problem was formulated as
a classification problem (high traffic, low traffic). Neural Networks were found
to generally have superior performances in both forecasting accuracies and ef-
ficiencies than RUSBoost (Seiffert et al., 2010), Linear Discriminant Analysis
(LDA), classification trees, Support Vector Machines (SVM) using Radio Basis
Functions (RBF) kernel, Naive Bayes and k-Nearest Neighbors (kNN).

36

Traffic volume data collected by 1084 sensors for 2033 days were used in this
study, and there were 96 data points per day, in 15-minute intervals. In an initial
algorithm selection step, both logistic regression and forward feeding neural
networks rank high in terms of forecasting accuracies and running time, out-
performing other techniques including RUSBoost (Seiffert et al., 2010), LDA,
classification tree, SVM using RBF kernel, Naive Bayes and kNN. A more de-
tailed comparison between logistic regression and feed-forward neural networks
suggests that feed-forward neural networks generally perform better.

3.4.5 Other Forecasting Techniques
Other traffic forecasting techniques include Bayesian Networks (Sun et al.,
2006), functional regression and classification (Chiou et al., 2012), among oth-
ers. More comprehensive reviews on traffic forecasting may be found in (Vla-
hogianni et al., 2004), (Vlahogianni et al., 2014), and (Mori et al., 2015).

3.4.6 Traffic Apps
Some of the most popular traffic apps include Waze, Google Traffic, and INRIX.
Typically, those apps rely on drivers using the apps while driving to collect real-
time anonymous data through their mobile devices that are present in vehicles.
Information such as the speed of mobile devices reflecting the speed of vehicles
and the number of mobile devices moving around on different roads can be
used to provide the current traffic condition (Herring et al., 2010).

3.5 Challenges and Future Work
Below are some specific challenges that we feel are important to society and
need to be addressed in the field of traffic simulation in the future.

3.5.1 Discrete-Event Simulation
Many microscopic traffic simulation models use a DTS approach. (Florian et al.,
2008) proposed that DES is more efficient, where the system would only update
vehicles when it needs to. They mention that DES will also allow for times in
a continuous space instead of a discrete space, which should improve results
and reflect reality to a higher degree. They present a discrete-event system using
a simplified car-following model based only on the positions of the lead and
following cars, the response time of the driver in the following car, and the effec-
tive vehicle length of the following car. (Sumaryo et al., 2013) and (Salimifard &

37

Ansari, 2013) both considered the problem of using discrete-event modeling in
traffic light simulation. (Burghout et al., 2006) developed a mesoscopic traffic
simulation model for use with a discrete-event, hybrid mesoscopic-microscopic
simulation. (Thulasidasan et al., 2009) used a parallel DES system for large-scale
microscopic traffic simulation.

3.5.2 Calibration And Validation
Calibration and validation are difficult to carry out for several reasons. For
instance, collecting enough data is difficult, and there may not be enough for
calibration or validation. Also, geography is important and models are highly
dependent on the location under analysis. It can also be difficult to account for
the variability found among drivers. It is best to use real road data to validate
traffic models, but closed courses with a controlled collection of drivers have
also been used. (Henclewood et al., 2012) argued for using real-time calibration
for online traffic simulation systems. They point out that even in the same
geographic area, parameters found through calibration can be inappropriate at
other times of the day.

3.5.3 Scaling
Traffic simulations are difficult to scale up as the number of vehicles and the
complexity of their interactions can explode in even a fairly small geographic
area. Recently, with growth in the areas of parallel and distributed computation,
efforts have been made at improving the scale of traffic simulations. (Fujimoto,
2015) presented an overview of the current state of parallel and distributed sim-
ulation, and includes traffic simulation as a major motivator for the field. (Thu-
lasidasan & Eidenbenz, 2009) proposed FastTrans, a parallel simulator using
distributed memory techniques for traffic simulation. They also show how the
choice of search algorithm for routing can affect the overall performance of the
system. (Hanai et al., 2015) discussed the problem of multiple runs of what-if
scenarios for large-scale traffic simulations and proposed a filtering technique
to reduce the number of scenarios (Suzumura & Kanezashi, 2013), (Kanezashi
& Suzumura, 2015). (Zehe et al., 2015) presented a tutorial on a cloud-based sim-
ulation service, with a specific implementation example being the simulation
of urban traffic.

38

3.5.4 Autonomous Vehicles
Autonomous vehicles will open up many new avenues of research into traffic
systems and will bring about new opportunities for traffic management. A
solution could be to have inter-vehicle communication. (Sichitiu & Kihl, 2008)
gave an overview of various inter-vehicle communication methods. (Suh et al.,
2017) discussed data-driven transportation systems.

(Ishikawa & Arai, 2015) considered the impact of intelligent vehicles that can
relay important information to other vehicles to prevent traffic jams. (Fernan-
des & Nunes, 2010) discussed implementing vehicle-to-vehicle communication
within the SUMO (Simulation of Urban MObility) simulation system (Kra-
jzewicz et al., 2012). (Pereira & Rossetti, 2012) proposed microscopic traffic
simulation as a testbed for theoretical aspects of autonomous vehicles. (Hasebe
et al., 2003) formulated an extension to the Optimal Velocity Model in which
a vehicle can look ahead or behind some number of cars to calculate its new
acceleration.

3.5.5 Intelligent Traffic Lights
Intelligent traffic light systems would be highly adaptive and also cooperative
with other traffic lights. Traffic data sensors can send information to the lights
and the timings can be adjusted to meet the current demand of the intersection.
If the problem cannot be solved by a single traffic light, then other traffic lights
are adjusted within a specified radius (perhaps adjustable as well), to attempt to
reach a solution.

(Zozaya-Gorostiza & Hendrickson, 1987) and (Radwan et al., 1990) both
designed knowledge-based expert systems to adjust the parameters of traffic
lights at single intersections. (Hunt et al., 1982) created the SCOOT (Split
Cycle Offset Optimisation Technique) system which has been used extensively
in England, as well as other parts of the world, for adaptive control of traffic
lights. (Semarak, 1996) proposed a fuzzy-logic approach to controlling traffic
lights.

3.6 Conclusions
There has been a tremendous amount of work in the past decades to accurately
model and simulate traffic networks, though there are still many questions and
avenues of research to be worked on. In this paper, we have presented many
of the most important results from the past, and given an indication of the
important issues still left to be resolved. There is a discussion on autonomous

39

vehicles, which have attracted increasing attention from both researchers and
consumers. We have also briefly reviewed some techniques commonly found in
the field of traffic forecasting, which is an important goal of traffic simulation.
It is important to pursue research in both forecasting and simulation to build
more reliable traffic prediction systems. More reliable prediction and simula-
tion systems will allow us to solve many of the problems still plaguing our roads,
such as traffic congestion and safety. They will allow, as an example, for more
efficient programming of traffic lights, which could have an immediate impact
on traffic congestion. Forecasting, modeling, and simulation will also certainly
play a large role in the continued development of autonomous vehicles, which
hold the hopes of having much safer roads to travel.

40

Chapter 4

Arrival Modeling

4.1 Introduction
Many types of simulations require the modeling of entities that arrive to the
system at various randomly distributed times. This requires the generation of
a sequence of arrival times T = {t1, t2, ..., tn}where 0 ≤ t1 ≤ t2 ≤ ... ≤ tn.
Each entity ei is then generated at the corresponding arrival time ti.

Law (2007) defines an arrival process as {N(t), t ≥ 0} where N(t) =

max{i : ti ≤ t} is the number of events that occur at or before time t. An-
other important time-oriented value is defined as Ai = ti − ti−1 which is the
interarrival time between two consecutive entities. In terms of traffic model-
ing, this interarrival time Ai represents the initial time headway between two
consecutive vehicles in the same lane of traffic, which is a crucial value in terms
of safe driving behavior.

The distribution of interarrival times is not a time series, but it is related to
the time series of arrival counts of entities to the simulation. One method for
generating a random variable for interarrival times involves using the time series
of arrival counts. If arrival counts can be forecast, and a distribution is assumed
for that time series data, then it is possible to use that distribution to recover
arrival times, and therefore interarrival times for the time series. A procedure for
this process when assuming the vehicle arrivals come from a nonhomogeneous
Poisson distribution is presented in Section 4.2.1.

4.2 Related Work
The problem of determining vehicle arrival times is related to the problem of rep-
resenting time headway distributions. Time headway is defined as the amount
of time that passes between the front bumper of a lead car at a location and the

41

front bumper of the car immediately behind it. Determining the time head-
way distribution influences how one would go about modeling vehicle arrival
rates. A long-used distribution for the time headway is the exponential distri-
bution, where an associated Poisson distribution would represent the number
of arrivals in a fixed length of time t. However, there are many other proposed
distributions for time headway and arrivals. Touhbi et al. (2018) study time
headways on urban roads in Marrakesh using exponential distributions, shifted
exponential distributions, log-normal distributions, shifted log-normal distri-
butions, Pearson III distributions, and Pereto IV distributions. They applied
a parametric Kolmogorov-Smirnov (KS) Test as a goodness-of-fit analysis, and
find that for their data the Pareto distribution seemed to fit the best.

Al-Ghamdi (2001) performed an analysis of time headway in Riyadh, Saudi
Arabia, using many distributions. He states that the question of which distribu-
tion best fits the time headway is difficult, and remains so after his work. Still,
he claims that the gamma distribution seemed to work well at modeling time
headways for arterial (urban) roads in a wide range of traffic flows, an Erlang
distribution seemed to model well time headways on high-traffic freeways, and
that negative exponential, shifted exponential, and gamma distributions all per-
formed well for modeling time headways on low-to-medium traffic freeways.

Ye and Zhang (2009) also conclude that the type of time headway distri-
bution depends on the traffic flow itself, but also explore if the type of vehicle
changes the time headway distribution. The data used in their work includes
information on the length of vehicles, which they use to distinguish between
smaller and larger vehicles. They find that the vehicle type does have an effect
on the type of distribution that best fits the time headway data. They used a
KS test as a goodness-of-fit measurement of the distributions.

Li and Chen (2017) present a good literature review of time headway mod-
eling techniques through the years, with a rundown of the many distributions
that have been used to model time headway. They also present several car-
following models as a means of integrating time headway models into the larger
traffic flow theory. Their conclusion is that time headway has grown in interest
in the past few decades and that this has led to new techniques and families of
models for time headway.

4.2.1 Poisson Process Models
According to Law (2007), the Poisson process is "probably the most commonly
used model for the arrival process of customers to a queueing system." Çinlar
proved that the number of arrivals over any time length in a Poisson process is
a Poisson random variable with parameter λ (Cinlar, 1975) and that interarrival

42

times for a Poisson process are therefore independent and independently dis-
tributed exponential random variables. One advantage that Poisson processes
have over arrival processes based on other types of distributions is that Poisson
processes do only have a single rate parameter. Other types of distributions are
more complex, and necessarily the algorithms for creating arrivals from them
are complex as well.

A standard Poisson process has a single rate parameterλ, and therefore only
models arrival processes with one expected arrival rate. Any system that expe-
riences multiple busy periods, therefore, requires a model that can handle that.
The Nonhomogeneous Poisson Process (NHPP) fulfills this requirement and
utilizes a rate function λ(t) that specifies the arrival rate for any time point t.
In practice, λ(t) is estimated through various techniques and used to gener-
ate arrival (and therefore interarrival times) through a process called inversion
(Cinlar, 1975).

There have been several methods proposed for estimating λ(t). Kao and
Chang (1988) form the estimate as a piecewise polynomial rate function and use
a process proposed by Bratley et al (2011) to simulate arrival times from the rate
function. Klein and Roberts (1984) propose an algorithm that approximates
λ(t)with a piecewise linear function. They go on to show how an algorithm for
generating arrival times can be derived by integrating each of the linear pieces
and finding a stochastic expression representing the probability of the next ar-
rival time Ti being contained in the time interval [ti−1, ti], and then solving this
expression for Ti.

Leemis (1991) developed a simple discrete-time algorithm that generates ar-
rival times based on a piecewise-linear approximation Λ̂(t) of the cumulative
rate function Λ(t). Λ̂(t) can be based on any number of realizations of the
NHPP over the time period under consideration. In this project, a forecast
example of a single realization is used. Then the piecewise linear section of Λ̂(t)
between two time points is given by

Λ̂(t) =
in

n+ 1
+

n(t− ti)

(n+ 1)(ti−1 − ti)
(4.1)

for i = 0, 1, 2, ..., n and n is the number of time points in the time interval.
The algorithm produces an exponential random value Ej , where j is the

index of the arrival time being computed, and locates the time interval on which
it fits into the cumulative rate function, shown in Equation 4.2

Λ̂(ti−1) ≤ Ej ≤ Λ̂(ti) (4.2)

43

where i represents which interval in the cumulative rate function Ej fits. The
new arrival time Tj is then produced with Equation 4.3.

Tj = dt

(
i+

Ej − Λ̂(ti−1)

Λ̂(ti)− Λ̂(ti−1)

)
(4.3)

where dt represents the length of one increment of time. This formula essen-
tially interpolates on the specific piecewise linear segment of the cumulative
rate function specified by i and computes the time valueTj associated with that
point. The process is illustrated in Figure 4.1.

The procedure continues until Ej > Λ̂(tn) for some j and n represents
the last time point in the time window. The set {T1, T2, . . . , Tj−1} represents
all produced arrival times. The interarrival times can be computed by taking
all differences between consecutive arrival times. An implementation of this
algorithm can be found in the Appendices in Table A.4, and this procedure is
used in this project to generate arrivals to the simulation in a manner described
below in section 4.3.

Figure 4.1: Calculating Arrival Times From Λ̂(t).

4.2.2 Time Series Models
Naturally, the set of vehicle counts throughout the day is an example of a time
series, and as such traditional time series modeling techniques can be applied
to the problem of turning these counts into arrival times. Autoregressive inte-
grated moving average (ARIMA) models (Whittle, 1951), (G. E. Box & Jenkins,

44

1962) have been a classic method of modeling time series for a very long time
and have a rich history. Seasonal ARIMA models (G. E. Box et al., 1967) are
used to represent time series that show seasonal behavior of some kind.

Barua et al. (2015) use an ARIMA model to represent the arrivals of vehi-
cles to a traffic light. They found that ARIMA models produce more accurate
results than Poisson-based approaches, but that the formulation and optimiza-
tion of ARIMA models is more time-consuming, so there is a tradeoff between
paradigms. They mention that they believe their technique could easily be ex-
tended to predicting arrivals on freeways.

Yang et al. (2015) compare several different models for time headway dis-
tributions including an ARIMA model, a neural network, and a Generalized
Additive Model (GAM). They use MAPE as a loss function and determined
that the ARIMA model was quite worse at modeling time headway than the
other two models, with the neural network performing the best.

The use of SARIMA models is defended in (B. M. Williams & Hoel, 2003)
where they explain that using differencing spaced by one week is enough to
induce stationarity of the time series, which had previously been asserted by
Okutani and Stephanedes (Okutani & Stephanedes, 1984).

Conceptually SARIMA models seem to be an appropriate choice for a time
series model since traffic flows tend to be very similar day-to-day, e.g. Tuesdays
might look like Mondays, or they might just look like the previous Tuesday.
Either way, traffic data shows clear seasonality, which can be seen in Figure
4.2. This image was created by taking the first eight Tuesdays of 2017 and the
second eight Tuesdays of 2017 and creating two time series from those values.
The specific times of the day are only the 6:00 am to 6:00 pm time frame that
was used throughout this project. The figure shows the general seasonality of
the data, but also shows that there are days when the traffic data is different.
Whether due to traffic accidents, holidays, or special events, the fact that the
data is usually a mostly regular seasonal time series, but sometimes has entire
days of different behavior makes the problem of traffic forecasting and arrival
modeling a difficult one to solve.

4.3 Arrival Process Modeling
The physical traffic network being modeled in this work are the northbound
lanes of U.S. Highway 101 between E. San Martin Ave. and Tennant Ave. This
includes four traffic sensors, but no on-ramps or off-ramps. The first sensor,
therefore, acts as the entry point to the simulation, and the fourth sensor acts as

45

Figure 4.2: Seasonality of Traffic Data Time Series

the exit point. The identification numbers and locations of these traffic sensors
are shown in Table 4.1. The traffic network can be seen in Figure 4.3.

Table 4.1: Sensor IDs and Locations

Sensor ID GPS (Lat,Long) Detector Type
Source 409880 (37.097388, -121.60395) Dual Loop

Sensor 2 402327 (37.103108, -121.60944) Wireless Magnetometer
Sensor 3 409877 (37.107061, -121.61449) Dual Loop

Sink 402328 (37.112261, -121.62104) Wireless Magnetometer

4.3.1 Data
The raw data files come from the Caltrans PeMS system (of Transportation,
n.d.), and consist of all recorded vehicle data values for all sensors in a specified
zone for each five-minute interval for a specified month. The files are ordered
by time code, starting with 12:00 am to 12:05 am on the first day of that month,
and ending with 11:55 pm to 12:00 am on the last day of the month. There
are 12 zones throughout the state, with zone 4 representing the Bay area and
surroundings, which includes San Martin, CA.

The raw data files were processed by first splitting them according to traffic
sensor ID, and then organizing the data into 288 row by 365 column matrices for
each sensor (there are 288 five-minute intervals in a day). These matrices were

46

Figure 4.3: U.S. Highway 101 Network

then compressed into 96 rows by 365 columns by consolidating into 15-minute
time intervals following the work of Peng (Peng et al., 2018). Finally, the choice
was made to focus on Tuesdays only, to provide more consistency to the data,
so the matrices were reduced to 96 rows by 52 columns.

The raw traffic data includes a value for the % Observed at a particular sta-
tion which represents the percentage of data points that were observed versus
imputed (where the percent imputed is given by 1 - % Observed) (of Transporta-
tion, 2020). PeMS uses four main types of data imputation:

• Linear regression from neighbors based on local coefficients - Data
gaps are filled using information from the detectors in neighboring lanes
at the same location and from detectors in locations immediately up-
stream and downstream.

• Linear regression from neighbors based on global coefficients -
When PeMS determines that some detectors never report reasonable data,
the system looks at general relationships in the detector data throughout
the district to fill in gaps.

• Temporal medians - PeMS looks at data values at similar times and days
of the week over a long period. The medians of those data values are used
to fill gaps.

47

• Cluster medians - PeMS examines data from detectors with similar traf-
fic patterns over a typical week to fill data gaps.

Figure 4.4 shows the vehicle counts for the four sensors in the traffic net-
work on January 2nd, 2018. Sensors 409880 and 409877 seem to agree with each
other in the general sense of traffic flow, and sensors 402327 and 402328 also
seem to agree, but the two groups do not agree. At times there is a difference
of nearly 100 vehicles, which is not simply explained by differences in vehicle
movements. And in fact, the two groups are, in a sense, interlaced, meaning
the first group is the first and third sensor, while the second group is the second
and fourth sensor. The question is which of the two groups to trust? This is
where the % Observed value can be used. On this particular day, the % Observed
for sensors 409880 and 409877 was 100.0 for the entire day, meaning all of the
data was recorded as observed and none of the data was imputed. However, for
sensors 402327 and 402328, the % Observed value was 0.0 for the entire day,
meaning all of the data was imputed and none was observed. So the trustwor-
thy numbers come from sensors 409880 and 409877. According to the PeMS
manual (of Transportation, 2020), the imputed values for the other sensors
were calculated using one of the methods listed above. It seems clear though
that these imputations were not accurate, as the difference in vehicle counts at
consecutive sensors should not be this large.

It turns out that the % Observed value for sensors 402327 and 402328 is
actually 0.0 for all times and all days throughout 2017, 2018, and 2019. The
decision was made to include these sensors in the simulated traffic network in a
physical sense, meaning the simulation would identify those locations as where
sensors are located, but their data is not used for comparison purposes. It was
also decided to not pursue a self-designed imputation scheme, so these sensors
are, as far as the data is concerned, not being used.

A typical highway traffic system will require a dynamic arrival process be-
cause most days will see dramatic shifts in vehicle counts throughout the day.
Figure 4.5 shows the average traffic flow for all Tuesdays from 2017 through
2019 using 15-minute time intervals, as well as the spread of the data by showing
lines dividing the quartiles. The complex nature of the traffic can be seen in the
multiple busy periods evident in the shape of the graph.

4.3.2 Arrivals
The simulation system needs a way to convert vehicle count data into individual
vehicle arrival times so that the simulation source can realistically generate the
vehicles. This process first requires a forecasting technique to generate counts

48

Figure 4.4: Sensor Data for January 2nd, 2018

for the time interval of interest because only past data can be used, and then
vehicle arrival times are generated from these forecasts. One might suggest that
these forecasting techniques could be used to estimate the vehicle counts at all
sensors of the system, and forego the simulation entirely. However, the accurate
estimation of vehicle counts is not the only reason to create the simulation
system. A microscopic traffic simulation system models individual vehicles and
attempts to capture fine details of their behavior, which gives information about
traffic flow well beyond simple statistics like vehicle counts, vehicle speeds, etc.
Indeed, the simulation system allows answering what-if questions such as how
a road might be affected by the addition of a lane, or if an intersection is changed
from a four-way stop to a roundabout. The simulation system can only be built,
and these types of questions answered, if a suitable arrival model is created.

In this project, the forecast counts are used to generate the arrival times
using the process of Leemis (L. M. Leemis, 1991) described above. Once the
arrival times have been computed the inter-arrival times are calculated and used
by the simulation model as a time headway value at the simulation source. The
source creates a vehicle, then waits for the duration of the next inter-arrival
time on the list, and then creates the next vehicle. As the vehicles are created
they enter the highway, and at that point, their movement is controlled by the
car-following model until they exit the system.

There is some question as to whether or not the vehicle counts generated by
an NHPP really belong to the same distribution as the real vehicle counts. This

49

Figure 4.5: Spread of vehicle count data

question can generally be answered by using a two-sided Kolmogorov-Smirnov
Test (Kolmogorov, 1933), (Smirnov, 1948). The test calculates the maximum
distance between the two cumulative distributions and then calculates a p-value
from the sample sizes and the distance. Figure 4.6 shows a sample comparison
of a distribution of counts generated by an NHPP with a distribution of ac-
tual vehicle counts. The p-value suggests that the NHPP method is capable of
representing the actual vehicle counts for the data in this project.

Five methods of forecasting the counts are presented below. Two of the
methods use a seasonal autoregressive integrated moving average model (SARIMA)
(G. E. Box et al., 1967) which is a standard time series forecasting technique that
extends the idea of ARIMA models. ARIMA methods (Whittle, 1951), (G. E.
Box & Jenkins, 1962) have a long history of use for time series forecasting and
remain an extremely popular forecasting method. The other three forecasting
methods, which are defined below, are much simpler and require very little
training time. The five forecasting methods are defined below.

Once the forecasts are made, the arrival times are generated using an NHPP,
which is a form of Poisson process where there is an arrival rate function λ(t)

instead of a single arrival rate λ. In this project, the rate function is defined

λ(t) = ĉt (4.4)

50

Figure 4.6: KS Test between the observed vehicle count distribution and the
distribution of counts generated by an NHPP

where ĉt is the forecast vehicle count for the time interval represented by t. The
NHPP is created using the procedure described by Leemis (1991).

4.4 Offline Methods
Offline forecasting methods only use data from past days and are trained ahead
of the day being forecasted. The first offline method discussed uses a SARIMA
time series model to create the forecasts.

SARIMA models require order and differencing parameters for both the
non-seasonal and seasonal components of the model. In this project, these pa-
rameters were chosen using a brute-force optimization technique. The param-
eter set with the best average accuracy value was chosen for the model, which
yielded a SARIMA(1,0,0)(1,1,2) model. The time series consists of some num-
ber n of past days’ data over the entire 12-hour period and is used to create a
forecast for the next 12 hours, where the count at each time point is the value ĉt
used to generate the NHPP. A value of n = 6 was determined to be optimal
by the optimization procedure.

The second offline method, which could be called a Historical Average
Method (HAM), calculates a simple average of n previous Tuesdays and uses
that value as the predicted vehicle count ĉt for that time interval on the day be-
ing forecasted. In Equation 4.5, and for Equations 4.6, 4.7, 4.8, and 4.9 below,
j represents the day index within the data matrix. This calculation is made for
all time intervals to give a vector of vehicle counts for the day, and this is then
used as the basis for the rate function λ(t).

51

ĉt,j =
1

n

j−1∑
i=j−n

ct,i (4.5)

4.5 Online Methods
Online forecasting techniques assume that new data is available as time passes,
which can be incorporated into the model to improve accuracy. The methods
below all assume that for each 15-minute interval, the count of vehicles for the
previous 15-minute interval is already known in the system.

4.5.1 Online SARIMA Model
The first online method is a SARIMA model where each time series consists
of 96n time points where n again represents the number of days in the past to
use. Once again the order and differencing parameters were determined using a
brute-force optimization technique. These parameters are the same throughout
the 12-hour period being examined here, but the model is retrained for each 15-
minute interval with the new data value that is available. The data used for the
project came from two different Tuesdays so the optimization of the SARIMA
model was conducted twice. The SARIMA model found for the first day of
data is defined as a SARIMA(2,0,2)(1,1,1) model, and the model for the second
day is defined as a SARIMA(1,0,0)(2,1,1) model.

The SARIMA models are constructed with the time series data and then
used to predict the estimated vehicle count one step of 15 minutes ahead. The
prediction is then used as the rate value prediction ĉt,j for the construction of
a Nonhomogeneous Poisson Process.

4.5.2 Rate of Change Models
Both of the other methods use a simple average rate of change of past data for
each time interval that can then be applied to the new data as it arrives.

The first of these methods uses a ratio-based calculation, presented in Equa-
tions 4.6 and 4.7. This will yield a percentage of vehicles either gained or lost
in that time interval for each of the previous n weeks. Take the average of these
percentages, and apply them, starting at the last real data value available for ear-
lier that same day to construct a new forecasted count of vehicles on which to
base the arrival rate function.

52

rt =
1

n

j−1∑
i=j−n

ct,i
ct−1,i

(4.6)

ĉt,j = ct−1,j · rt (4.7)

The difference-based approach is similar to the ratio-based approach, how-
ever, instead of taking the ratio of the counts, differences are used. Equations
4.8 and 4.9 show the calculations.

dt =
1

n

j−1∑
i=j−n

[ct,i − ct−1,i] (4.8)

ĉt,j = ct−1,j + dt (4.9)

To increase the flexibility of these models, a weighted average of the new
methods with the offline method can be utilized.

4.6 Arrival Process Comparisons
Each of the methods uses some number n of past days’ data. Once again using
a brute-force optimization procedure, it was determined that all of the models
optimized their accuracy when n = 6.

The accuracy metric used throughout this work is the symmetric mean
absolute percent error (sMAPE) and is defined in the Equation 4.10.

sMAPE =
200

n

n∑
t=1

|Ft − At|
|Ft|+ |At|

(4.10)

where At is the actual value and Ft is the forecast value. sMAPE is a commonly
used accuracy metric that was chosen as one of the accuracy metrics in both
the M3 and M4 Competitions (Makridakis et al., 2020) because it is "scale-
independent and intuitive to understand". With traffic flow changing through-
out the day, it is important to have a relative error metric. An absolute error
metric can be difficult to interpret when the target values change so much over
the course of the day.

The performance of the methods was tested for 150 Tuesdays from 2017
through 2019. For each day the arrival forecasts were produced using each of
the procedures described above for each fifteen-minute interval from 6:00 am
until 6:00 pm. This time period encompasses most of the heavy traffic parts

53

Figure 4.7: Comparison of Arrival Methods Before Application of NHPPs

of the day. Each of the forecasts was compared to the actual data and sMAPE
values were calculated.

Figure 4.7 shows a comparison of the accuracy of the arrival techniques in
terms of forecasting the actual counts. As can be seen, the offline approaches are
inferior to the online methods. Figure 4.8 compares the various methods once
their forecasts have been used to generate arrival times for the simulation using
an NHPP. Figures 4.7 and 4.8 look very similar but there is a slight accuracy
loss through the process of turning the forecasts into arrival times, and then
back into vehicle counts.

A comparison of the average performance of the different arrival process
models is given in Table 4.2. Across several statistics, it can be seen that the on-
line models perform better than the offline models. The worst performer was
the offline SARIMA model, while the best performer was the online SARIMA
model, but with only a slight improvement over the other two online techniques.
With the amount of time it can take to optimize the various parameters of a
SARIMA model, and recognizing the desire for time-efficient forecasting sys-
tems, the fact that the two proposed online methods are actually quite compet-
itive with the SARIMA model, and execute very quickly due to their simplicity,
it is reasonable to investigate these methods further.

The process of using online data implies a form of ongoing calibration
where new data is used to keep the simulation model informed. An event, such

54

Figure 4.8: Comparison of Arrival Methods After Application of NHPPs

Table 4.2: Arrival Model Comparisons

sMAPE HAM Offline SARIMA Ratio Difference Online SARIMA
Mean 9.60948 9.95241 7.75968 7.75724 7.62440

Median 8.6207 8.89527 7.37368 7.40042 7.21305
Min 7.02541 7.22076 6.08701 6.16568 6.11235
Max 15.23084 15.85398 11.38149 11.29758 12.46072

as an accident, can greatly change traffic from what drivers are accustomed to,
and methods that incorporate the latest data will necessarily have a better chance
of capturing these changes and maintaining the ability to produce accurate re-
sults in these instances.

4.7 Conclusions
A traffic simulation needs a time headway model to introduce vehicles to the
roads at realistic times that closely approximate the true traffic flow. Vehicle
counts from traffic sensors can be used to create an arrival model by assuming
the counts are sampled from a nonhomogeneous Poisson distribution and then
using inversion to design an exponential arrival time model. This process re-
quires time series forecasting since the goal of the simulation is to predict future
traffic flows.

55

Several different techniques for generating these vehicle count forecasts were
compared including three methods that utilize fresh data to create an online
arrival model. Each method uses a different process to create a predicted rate
function for the NHPP, which is then constructed in the technique provided
by Leemis (L. M. Leemis, 1991). Two of the online methods are quite simple
in that they construct the rate function λ(t) using very simple calculations.
However, these methods show comparable results to a more complex and time-
intensive SARIMA model, which in an online system might require more time
to construct than is available. The amount of time needed to construct the
ratio-based and difference-based rate function predictions is negligible, whereas
the SARIMA model would potentially take a time-consuming process of opti-
mizing the internal parameters of its construction.

A worthwhile direction for future work is to explore distributions besides
the exponential and Poisson distributions, or to use a different process alto-
gether, such as a neural network. Other forecasting methods could also be uti-
lized to generate more accurate forecasts before the application of the NHPP.

56

Chapter 5

Car-Following Models

5.1 Introduction
There have been many car-following models suggested in the literature such as
(Gazis et al., 1959), (Gazis et al., 1961), (Chandler et al., 1958), (Herman et al.,
1959), (Kometani & Sasaki, 1961), (Pipes, 1953), (Newell, 1961) to highlight some
of the early contributions. Car-following models that are in wide use today are
Gipps’ Model (Gipps, 1981) and the Intelligent Driver Model (IDM) (Treiber
et al., 2000). A comprehensive genealogy of microscopic models is presented in
(van Wageningen-Kessels et al., 2015). A detailed comparison of the IDM and
Gipps’ Model was also presented (Matcha et al., 2021) whereby the two models
are compared across different formations of traffic flows. They determined that
the IDM is more appropriate for homogeneous types of traffic, but that Gipps’
Model has better performance in more heavily mixed types of traffic. Traffic
on a limited access highway is likely to be fairly homogeneous with very little
variation in the parameters of individual vehicles.

The purpose of a car-following model is to update a vehicle’s position, ve-
locity, and possibly acceleration based on the same values of the vehicle imme-
diately in front of the vehicle. A key trait of any car-following model is that
the velocity of a vehicle should asymptotically approach its desired speed in free
traffic. How quickly it approaches its desired speed results from the intricacies
of the model itself.

Figure 5.1 shows the concept of distance headway between two vehicles.
This distance is very important in many car-following models. The concept of
space headway is defined in Section 5.6.5.

57

Figure 5.1: Distance Headway

5.2 GHR Models
One of the earliest models is due to Gazis et al. (1961) and is known as a stimulus-
response model. It defined the new acceleration of the nth vehicle as

an = λ[vn−1 − vn] (5.1)

where λ is a sensitivity parameter that better controls the resulting value. The
idea is straightforward in that a vehicle’s acceleration/deceleration should de-
pend on the difference between its velocity and the velocity of the vehicle in
front of it. If a vehicle is driving faster than the vehicle in front of it, then the
velocity difference will be negative, resulting in deceleration. If the vehicle is
driving slower than its predecessor, then the difference will be positive and the
formula will output an acceleration.

The sensitivity value need not be a constant but may be determined by a
more complex function. Early on it was proposed that the sensitivity should
depend on the distance between the vehicles. Indeed, if traffic is quite sparse,
and the distance between vehicles is very large, it would make sense that the car-
following idea can almost be disregarded in favor of free-driving behavior. Two
early changes to the sensitivity are given below in Equations 5.2 (Gazis et al.,
1959) and 5.3 (Edie & Foote, 1961)

λ = λ1/[xn−1 − xn] (5.2)

λ = λ2vn/[xn−1 − xn]
2 (5.3)

The general form of the model is now represented as

58

an = λvmn
(vn−1 − vn)

(xn−1 − xn)l
(5.4)

for parameter λ and exponent parameters m and l which would be used to fit
the general model to the data.

In Equation 5.2 the sensitivity is inversely proportional to the distance be-
tween the vehicles. This distance can only get small if the following vehicle is
driving faster than the vehicle in front, which, as discussed earlier, would re-
sult in a deceleration. Combining this with the inverse proportionality of the
sensitivity relationship, this situation would result in "slamming on the brakes"
as it’s known. If the distance between the vehicles is large, then the sensitivity
value is small, and its effect on the acceleration computation is therefore small,
which makes sense at great distances.

Equation 5.3 represents the sensitivity as a mixed direct and inverse relation-
ship, where the sensitivity is directly proportional to the vehicle’s velocity and
inversely proportional to the distance between the vehicles. This means that the
impact of the relative distance between the vehicles is scaled with the velocity of
the follower vehicle so that the braking force will increase polynomially as the
speed increases.

5.3 Pipes’ Model
Another early model, known as a safe-distance model, was proposed by Pipes
(1953) and was defined as in Equation 5.5.

xn−1 = xn + d+ Tvn + lvehn−1 (5.5)

where xn−1 is the position of the front bumper of the lead vehicle, xn is the
position of the front bumper of the following vehicle, T is the time headway
between the vehicles,d is the distance between the vehicles, and lvehn−1 is the length
of the lead vehicle. This formula forms a relationship between the position of
the lead vehicle and its follower, based on the velocity of the follower and the
distance between the two. At first, it may not make sense because the reality is
that the front bumper of the lead vehicle is specifically equal to xn + d+ lvehn−1,
but the idea here is to introduce a term with the velocity of the follower vehicle
that would ensure the distance between the vehicle would always seek to be
safer than that. Pipes (1953) based his model on a "rule of thumb" given in the
state of California Motor Vehicle Code:

59

“A good rule for following another vehicle at a safe distance is to
allow yourself the length of a car (about fifteen feet) for every ten
miles per hour you are traveling.”

The term Tvn is the product of time headway and the current velocity of
the vehicle. This is equal to the distance the car will travel in the amount of time
that is equal to the time headway.

5.4 Gipps’ Model
A very important safe-distance model is Gipps’ Model (Gipps, 1981), which is
based on the assumption that drivers will try to maximize their velocities as
safely and as quickly as possible.

Gipps’ Model computes the vehicle’s new velocity vn(t+ τ) instead of the
new acceleration. This is one of the major differences between Gipps’ Model
and the IDM. Another key difference is in the model parameters which are
given below in Table 5.1. The equations for computing the new velocity are
given in Equations 5.6, 5.7, and 5.8.

vn(t+ τ) = min

[
vF (t+ τ), vC(t+ τ)

]
(5.6)

where

vF (t+ τ) = vn + 2.5anτ(1− vn(t)/V0)(0.025 + vn(t)/V0)
1/2 (5.7)

is the Free driving velocity and the Car-following velocity is given by

vC(t+ τ) = bnτ +

√
b2nτ

2 − bn[2∆xn − vn(t)τ − vn−1(t)2/b̂] (5.8)

where ∆xn = xn−1(t)− sn−1 − xn(t), with sn−1 representing the length of
the (n−1)st vehicle plus a safe distance s0 that the vehicle always wants to allow
between then and their leading vehicle, and b̂ representing an estimated decel-
eration value for the (n− 1)st vehicle (since the nth driver cannot reasonably
know this value).

The derivation of the car-following portion of Gipps’ Model requires the
classic physics equations below.

60

Table 5.1: Gipps’ Model Values

Symbol Definition
n Current vehicle
V0 Desired velocity of nth vehicle
ln Length of nth vehicle

xn(t) Location of nth vehicle
vn(t) Current velocity of nth vehicle
an Max acceleration of nth vehicle
bn Max deceleration of nth vehicle
b̂ Estimate of the (n-1)st vehicle’s deceleration
τ Reaction Time of all vehicles

d(t) =
1

2
at2 + v0t (5.9)

v(t) = at+ v0 (5.10)

Assume a lead car ℓ is traveling at constant velocity vℓ and begins to apply
the constant deceleration bℓ at time t. Using Equations 5.9 and 5.10 in t seconds
the distance d the lead vehicle will travel while braking is

d(t) = vℓt−
1

2
bℓt

2 (5.11)

Differentiating this gives v(t) = vℓ − bℓt, which is the formula for the velocity
after t seconds, so setting this equal to zero will yield the amount of time needed
for the lead vehicle to come to a stop.

0 = vℓ − bℓt

t =
vℓ
bℓ

(5.12)

Substituting this back into Equation 5.11 gives the distance needed for the lead
vehicle to come to a complete stop:

d(vℓ/bℓ) = vℓ

(
vℓ
bℓ

)
− 1

2
bℓ

(
vℓ
bℓ

)2

=
v2ℓ
2bℓ

(5.13)

61

Now considering the follower car, there is a reaction time τ that is required
once the lead vehicle first applies the brakes before the follower begins to apply
their brakes. Assuming the follower vehicle has constant acceleration af (which
could in fact already be a deceleration), and initial velocity v0, using Equation
5.10 and dropping the functional notation yields

af t = vf − v0 (5.14)

and substituting this back into Equation 5.9 gives that the distance the follower
vehicle will travel during the reaction time is

df (t+ τ) =
1

2
(vf − v0)τ + v0τ

=
(v0 + vf)τ

2

(5.15)

After the reaction time τ , the follower begins to apply deceleration bf at time
t+ τ , and the distance covered while decelerating to a complete stop is

d =
v2f
2bf

(5.16)

which gives the total stopping distance of the follower vehicle from the moment
the lead vehicle began to apply its brakes as

df =
(v0 + vf)τ

2
+

v2f
2bf

(5.17)

Figure 5.2 shows the stopping distances for the lead vehicle (red) and follower
vehicle (blue). The image is dynamic meaning the vehicles on the left are their
positions at time t while the positions on the right are at a later time. The value
s0 is considered the minimum safe gap that the follower wants to allow while
braking.

Figure 5.2: Stopping Distances

62

Gipps’ Model is a safe-distance model, so an additional term for the distance
traveled during the time needed to actually hit the brake is included. This value
is vf (τ/2). Assuming that the length of the vehicles is the same (not always
reasonable, but one made here), then the following relationship represents the
minimum gap s0

s0 = ∆x+
v2ℓ
2bℓ
−
(
(v0 + vf)τ

2
+

v2f
2bf

+
vfτ

2

)
(5.18)

Multiplying through by 2bf yields

2bfs0 = 2bf∆x+ v2ℓ

(
bf
bℓ

)
− bfv0τ − 2bfτvf − v2f (5.19)

and rearranging gives a quadratic equation in vf

v2f + (2bfτ) vf +

[
bfv0τ − v2ℓ

(
bf
bℓ

)
− 2bf (∆x− s0)

]
= 0 (5.20)

In the general case, vf is considered the safe velocity for a follower, and solving
Equation 5.20 yields the formula in Equation 5.8. Some slight alterations are
made, mostly in notation:

• vf → vn(t+ τ)

• vℓ → vn−1(t)

• v0 → vn(t)

• bℓ → b̂

• bf → bn

and ∆xn being redefined to include s0 as explained above.

5.5 Intelligent Driver Model
A more recent stimulus-response model is the Intelligent Driver Model (IDM).
The details of the IDM are presented in Equations 5.21 and 5.22, and 5.23, and
in Table 5.2.

v̇n(t+ τ) = a

(
1−

(
vn(t)

V0

)δ

−
(
s∗(vn(t),∆vn(t))

sn(t)

)2)
(5.21)

63

where

s∗(vn(t),∆vn(t)) = s0 + vn(t)T +
vn(t)∆vn(t)

2
√
ab

(5.22)

and

sn(t) = xn−1(t)− xn(t)− ln−1 (5.23)

Table 5.2: IDM Parameters

Parameter Definition
n Current vehicle
τ Reaction time

vn(t) Current velocity of nth vehicle
xn(t) Current position of the nth vehicle
V0 Desired velocity of nth vehicle
s0 Minimum distance headway
T Minimum time headway
a Maximum comfortable acceleration
b Maximum comfortable deceleration

sn(t) Current distance headway of nth vehicle
ln Length of the nth vehicle
δ IDM tuning parameter

A visual comparison of the IDM and Gipps’ Model is given in Figure 5.3.
The vertical axis shows the distance traveled, measured in meters, and the hor-
izontal axis is time, measured in seconds. In each picture, the lead vehicle is
shown in red and was artificially given instructions to slow down at specific
times, so that the car-following behavior of the models can be seen. The dark
bands seen in the graphs result from the upstream traffic slowing down to avoid
colliding with their predecessor vehicles. The two scenarios had identical initial
conditions, and some interesting conclusions can be drawn from these images.
First, it is clear that Gipps’ Model increases the lead vehicle’s speed toward its
desired speed more slowly than the IDM, or in other words, the IDM leads
to higher accelerations than Gipps’ Model. Second, the IDM responds more
severely to braking behavior than does Gipps’ Model, which can be seen from
the much darker bands evident in the IDM figure. Both of these facts lead to
the conclusion that the IDM can result in both more extreme accelerations and
more extreme decelerations (braking) than does Gipps’ Model.

64

Figure 5.3: IDM vs. Gipps’ Model

5.5.1 Velocity
Vn is defined to be the driver’s desired velocity, and the car-following model will
attempt to safely increase the velocity of the car asymptotically until it equals v0.
This progress will of course be controlled by the presence of a leading vehicle.
In such instances, the car-following model will maintain a distance behind the
vehicle, but will still factor in the desired velocity to the calculation. If there is no
leading vehicle, or if the distance between the vehicles (defined as space headway,
which is explained below) is large, then the vehicle’s velocity can eventually make
it to v0 and then stay there.

In Gipps’ model, if vn(t) is equal to V0 then Equation 5.7 will remain vn(t)

and since Equation 5.6 takes the minimum, of Equations 5.7 and 5.8, there’s no
way for the velocity to continue increasing.

In the IDM, if vn(t) is equal to V0 then the term vn(t)/V0 is equal to one
and Equation 5.21 can be at most zero, which would prevent the velocity from
going higher than V0.

5.6 Position
The current position of the nth vehicle is maintained by the value xn(t) and
is mainly used to derive the relative distances between following and leading
vehicles. The position values of the two vehicles, along with the length of the
leading vehicle, are used to compute the space headway described below in
Section 5.6.5.

65

5.6.1 Acceleration
Acceleration in both the IDM and Gipps’ Model is defined as the maximum
comfortable acceleration that a driver would prefer to use to speed up their vehi-
cle. The IDM formula can occasionally result in larger acceleration values, but
the model is structured to try to keep the new acceleration under the maximum
acceleration.

An acceleration of 1 g is equal to 9.8 m/s2, which might seem like too fast
of an acceleration for a regular vehicle, but the Tesla Plaid is reported to have
an acceleration up to 1.2 g (Richard, 2021).

5.6.2 Deceleration
Deceleration in the models is defined as the maximum comfortable deceleration
that a driver would prefer to use when braking as a follower vehicle. Decelera-
tion is usually considered a negative value, and is reported as such in this paper,
but is implicitly used as a positive value in the IDM formulation. Equation
5.22 contains the calculation

√
ab, which can be read mathematically as the

geometric mean of the maximum acceleration and maximum deceleration. If
interpreted this way, it seems the resulting value is essentially the average amount
of acceleration-type force that the driver wants to put their vehicle under.

5.6.3 Reaction Time
Reaction time determines how long it takes for the effects of the car-following
model to be assigned but essentially corresponds to how long it takes a driver
to respond to the behavior of the car in front of them. Within the workings of
the car-following model, it is the amount of time, after calculation of the new
acceleration, that the vehicle will take on that value as its new acceleration. In the
sense of a discrete event traffic simulator, this is the amount of time increment
that would be put on the system schedule for the vehicle under consideration,
and the vehicle would next be updated after that amount of time has passed in
the simulation system.

5.6.4 Time Headway
Time headway is defined as the amount of time (in seconds) it takes for a fol-
lowing vehicle to reach the same physical location that the leading vehicle just
was. In fact, many driving handbooks mention the "three-second-rule" that says
a safe following distance, 45 mph and under, is to allow three seconds of time

66

between the following car and the lead car (Georgia-DDS, 2022), (Missouri-
DOR, 2022), (California-DMV, 2022). In the case of the IDM, this parameter
is the preferred time headway value. Its function is to help control the braking
of a vehicle as it approaches the car in front of it. If the preferred time headway
is large then the follower vehicle will begin to brake sooner than a car with a
smaller time headway value. Time headway is also related to arrival modeling
and in fact, some arrival models explicitly define the arrival rate in terms of time
headway.

5.6.5 Space Headway
Space headway is defined as the physical distance between the front bumpers
of the lead car and the following car, and so includes the length of the leading
car. The parameter in the IDM is defined as a vehicle’s preferred space headway
value when following closely. Space headway also helps control the braking
behavior of a follower vehicle, and is a similar idea to time headway, however,
space headway is more of an absolute value in that it does not depend on how
fast the vehicles are moving, were time headway does depend on the vehicles’
velocities. A larger space headway value would lead to a vehicle braking earlier
than a vehicle with a smaller space headway value when approaching a lead
vehicle.

5.6.6 Parameter δ
The delta parameter is purely a model-tuning parameter and has no inherent
units or correspondence to the real world. The authors mention that in their
work it is usually set to 4.0 (Treiber et al., 2000).

67

Chapter 6

Calibration Techniques

The overall problem of building a model for a real-world system is often referred
to as model estimation and includes processes such as determining the type of
model to use, the structure of the chosen model and determining the values of
internal parameters. The work in this chapter touches on the first two elements
of this process but focuses on the third in the largest part. Two car-following
models were chosen to represent the vehicle behavior in the simulation system,
and several different arrival models were chosen to represent the time headways
of vehicles as they enter the simulation, giving eight total different models to
compare. However, the majority of this chapter is devoted to determining the
parameters for these models using techniques from parameter estimation and
calibration.

There are multiple forms of modeling errors when attempting to model a
real-world system. One error source is model error, meaning the model chosen,
and its construction, are not fully capable of representing the real-world system
that it was meant to. Another source of modeling error is parameter error, mean-
ing that the model parameters cannot be determined to a degree that allows the
model to fit the real-world system perfectly. This second source of error is the
focus of the work below, specifically the task of estimating parameter values for
the purpose of calibrating traffic models.

A model of a real-world system will contain some number of parameters. To
use the model for any worthwhile purpose these parameters must be determined
as best as possible so that the model does come close to the real-world system it is
built to represent. Defined below are the two principle paradigms for achieving
this. The first, parameter estimation, is an analytically-driven process for finding
the best parameters for the model in a kind of complete sense. That is, the idea
is that there are either exact parameters that work all the time for the model, or
there is some distribution or collection of distributions to which the parameters

68

belong, and once those have been determined, sampling that distribution is all
that is needed. So the parameter estimation problem is being solved for the
entire model over all possible data values.

The second paradigm is calibration, which is the idea that the parameters
can be set to reasonable values, or sometimes even random values, and with
data, the values can be incrementally changed until the model output and the
real output are as close as possible. This can only be done with a subset of the
data, and so parameters found with this process might not be valid with other
subsets of the data.

6.1 Parameter Estimation
Traffic flow networks are real-world dynamic systems that have a large impact
on society and are therefore of particular interest to be modeled. Real-world
systems can contain any number of measurable characteristics, and traffic is no
different. Vehicle speeds, vehicle counts, traffic congestion, and lane occupancy
are just a few of the traits traffic modelers are interested in measuring. The data
can be thought of as the output of the system and can be represented by a vector
of values x. In most real-world systems however the output data x will be very
noisy, and so the measurements are not assumed to be perfect, and therefore
the output data of the system is represented as

y = f(x;θ) + ϵ (6.1)

where ϵ represents the noise, and y represents the actual system output, f rep-
resents the model, and θ = (θ1, ..., θm) represents the vector of model param-
eters, and m represents the number of parameters.

The parameter vector θ needs to be optimized using known input and out-
put system data so that the model can get as close as possible to the real system.
There are multiple techniques for optimizing the parameter vector. Two tradi-
tional techniques, Maximum Likelihood Estimation (MLE) and Least Squares
Estimation (LSE) are shown in the appendix in terms of time series parameter
estimation.

6.1.1 Calibration
There have been many efforts made to determine the distribution of traffic flow,
but it appears that this is highly dependent on the geographic area, the type of
road, and the types of vehicles in the traffic system. The distribution also likely
depends on the time of day, the day of the week, and even the month under

69

consideration. These facts make the traditional analytical methods of parameter
estimation very difficult to carry out. For this reason, it was decided that a
calibration process using a subset of traffic data be used to determine the model
parameters for this traffic simulation. The methodology of that process and its
results are discussed below in section 6.2. This technique requires choosing a
loss function and the choice of an optimization procedure.

We can define the process as in Equation 6.2 below.

θ̂ = argmin
θ
L(f(x;θ), y) (6.2)

where θ̂ is the vector of optimized parameters, f represents the model itself,
x is the vector of input data values for the model, and y is the vector of out-
put data values. L represents the loss function, and there are many to choose
from. Common examples of loss functions are the Mean Squared Error (MSE),
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean Ab-
solute Percent Error (MAPE), and Symmetric Mean Absolute Percent Error
(sMAPE).

6.2 Calibration of the Traffic Model
The simulation system built for this project can utilize any car-following model.
The two models selected for this work are the Intelligent Driver Model (IDM)
and Gipps’ Model. The model parameters that have been chosen for the calibra-
tion of the IDM are given in Table 6.1 along with their domains. These domains
have been based partially using previous calibration efforts (Kurtc & Treiber,
2016), (Rahman et al., 2020), and partially on the modeler’s own experience.

Table 6.1: IDM Model Parameters and Domains

Definition Symbol Domains Units
Max Acceleration a [0.5, 10.0] m/sec2

Max Deceleration b [−10.0,−0.5] m/sec2

Reaction Time τ [1.0, 3.0] sec
Time Headway T [1.0, 5.0] sec
Distance Headway s [3.0, 12.0] m
IDM Parameter δ [3.0, 8.0] −

It should be noted that parameter δ is a tuning parameter that, according
to the authors, is used to control how the acceleration decreases as the vehicle
approaches its desired velocity v0. Therefore it has no units on its own and is
used simply to aid in calibrating the model to a specific data set.

70

The domains are important to the process of calibration because the opti-
mization algorithms must stay within them when searching for the optimum.
To create random values for the initial solution pool, the GA is given a uniform
random variable based on the feasible domain for each parameter. This ensures
that every solution makes sense in the real world. NM and SPSA must also
stay within the feasible domains of the parameters, and this is achieved using
penalties in the objective function if the algorithms veer outside the acceptable
region.

The model parameters chosen for the calibration of Gipps’ Model are shown
in Table 6.2, along with their domains.

Table 6.2: Gipps’ Model Parameters and Domains

Definition Symbol Domains Units
Acceleration a [0.5, 10.0] m/sec2

Deceleration b [−10.0,−0.5] m/sec2

Reaction Time τ [1.0, 3.0] sec

Gipps’ model has fewer parameters than the IDM. The parameters chosen
in here match the first three parameters chosen for the IDM, but Gipps’ model
does not explicitly use the time and distance headways in the calculations.

For both car-following models, vehicle velocity was not chosen as a model
parameter. The reasoning is that the road network under consideration is a
section of a limited-access U.S. highway, with a high-speed limit, and it is felt
that the majority of cars will try to maximize their speed. The speed limit on
this highway is 70 miles per hour, however, according to Mannering (2007),
the variance in drivers’ chosen speed for a 70 mph speed limit is around 5.24.
Therefore a constant maximum velocity ofv = 34.0meters per second (around
76 miles per hour) was chosen for all vehicles. Keep in mind that this does not
mean all of the vehicles will only ever be traveling 34 meters per second. Rather,
it means that 34 meters per second is their desired velocity. It is felt that this is
both a reasonable choice to make, and will also reduce the complexity of the
calibration by reducing the dimensionality of the parameter space.

6.3 Optimization Algorithms
The optimization algorithms that have been chosen for the calibration pro-
cedure were Genetic Algorithms (GA), the Nelder-Mead Simplex algorithm
(NM), and the Simultaneous Perturbation Stochastic Approximation algo-
rithm (SPSA). These three methods were included in a comparison of opti-

71

mization techniques for calibrating a car-following model in (L. Li et al., 2016).
These authors found similar results to the work done here. Namely that the
Nelder-Mead algorithm and Genetic Algorithm perform comparably and per-
form well in the context of parameter accuracy, but SPSA does not work as well
in this context. Details of the three algorithms are presented below in Sections
6.3.1, 6.3.2, and 6.3.3.

6.3.1 Genetic Algorithm
Genetic Algorithms are a class of optimization procedures based on the concepts
of evolution and natural selection. They use biologically inspired operators
such as mutation, crossover, and selection. They maintain a pool of candidate
solutions and then proceed to create new generations of the pool using these
operators. Details of the genetic algorithm used in this project are described in
Section A.3. An overview of the process is shown below.

Step 1 Create an initial pool of candidate solutions and order them according
to function value.

Step 2 Select the top n candidates and use them to create the next generation
of the pool by cross-breeding their values.

Step 3 Mutate the new candidate solutions.

Step 4 Reorder the pool and if a maximum number of generations have oc-
curred, or if some stopping criterion has been satisfied, end the algorithm
and output the top candidate as the solution. Otherwise, return to Step
2.

Genetic Algorithms have both advantages and disadvantages when com-
pared to other optimization algorithms. The largest advantage they have is the
ability to easily overcome getting stuck in local optimum zones. The random-
ization of the selection of points from the domains of each dimension means
that the algorithm always has a direct method to cover new ground in the overall
input space of the problem. A second advantage that GAs have over many other
algorithms is the lack of reliance on gradients to move to new points.

The genetic algorithm used in this project was designed and implemented
by the author using the basic principles of GAs. Various elements of the imple-
mentation are found in the Appendix.

Since these simulations take a long time to execute, the GA caps the number
of generations at 40. The initial generation is created using Uniform random

72

variables for each parameter, where each random variable is created using the
domain for the specific parameter. The solution pool has a constant size of
n = 15 so the initialization of the pool creates all 15 candidate solutions as a
collection of parameter vectors. The method then executes the simulation with
each vector and sorts them based on the value of the loss function.

Subsequent generations are produced using the following process:

1. Take all 6 combinations of the top 4 candidates and produce 6 new can-
didates through crossover.

2. Execute a mutation on each of the 6 new candidates.

3. Create 5 completely new candidates by using the random variables to
round out the 15 candidates in the pool.

4. Run the simulation for each candidate, sort the pool based on the results,
and repeat the process.

The cross-breeding phase generates a random index k in the range of param-
eter vector indices and another random integer j. The value of j determines
which of the two parameter vectors will be considered x1 and which will be
considered x2. The value of k determines where the split in the vector occurs.
Assuming there are m indices in the parameter space, a new vector is produced
by taking the first k values from x1 and the last m− k values from x2.

The mutation phase iterates through the vector, and for each value generates
a random value in the range [−0.2, 0.2] and adds this value to 1.0. This creates
a multiplicative factor that at most will apply a 20% change to the value in either
direction. This strategy was used to accommodate the different relative sizes
and domains of the parameters, and to prevent the mutations from being too
large. A percentage-based mutation will be applied to all parameters in a more
equal way than an additive or simple multiplicative one.

6.3.2 Nelder-Mead Simplex
The Nelder-Mead Simplex algorithm (Nelder & Mead, 1965) is a direct-search
algorithm and requires no derivatives or gradients to determine its next search
direction. A simplex is a convex hull of n + 1 vertices (where n is the dimen-
sionality of the parameter space) where the vertices cannot lie on the same hy-
perplane. A simplex is essentially a generalized tetrahedron in Rn, which would
be a triangle in R2.

73

Table 6.3: Chosen Parameter Values for the Nelder-Mead Simplex Algorithm

Parameter Transformation Value
α Reflection 1.0
β Contraction 0.5
γ Expansion 2.0
δ Shrinkage 0.5

The algorithm has several defined parameters, one each for the simplex trans-
formations defined below. The parameters and their chosen values are given in
Table 6.3

The parameter values essentially define the lengths used in computing new
points in each of the transformations defined below.

The optimization algorithm begins by constructing an initial simplex from
an initial guess x0 and the objective function f(x), and then uses simplex trans-
formations to gradually augment and reduce the size of the simplex. Once the
simplex has shrunk to a sufficiently small size the vertex with the best function
value is returned as the optimal x.

The algorithm maintains a list of the best vertex xb, the worst vertex xw, and
the second-worst vertex xs. In each iteration of the algorithm, the centroid c of
the best "side" is computed, which is the arithmetic mean of the vertices, not
including the worst vertex.

The transformations that are used to reduce the simplex are:

1. Reflection - Reflect xw around the centroid to generate the point xr using
Equation 6.3

xr = c+ α(c− xw) (6.3)

If f(xb) ≤ f(xr) < f(xs) then xr replaces xw in the simplex. Other-
wise, the algorithm moves on to the next step.

Figure 6.1: Reflection transformation. The new simplex is shown in red.

74

2. Expansion - Expansion proceeds if f(xr) < f(xb). If this is the case then
expansion point xe is produced using Equation 6.4

xe = c+ γ(xr − c) (6.4)

Then there are two cases:

1. If f(xe) < f(xr) then xe is accepted as the new vertex of the sim-
plex, replacing xw.

Figure 6.2: Expansion transformation.
2. If f(xe) ≥ f(xr) then xr is accepted as the new vertex of the sim-

plex, replacing xw.

Figure 6.3: Reverting to reflection transformation.

If expansion did not proceed then the algorithm moves on to step 3.

3. Contraction - Contraction occurs if f(xr) ≥ f(xs). There are two cases:

1. If f(xs) ≤ f(xr) < f(xw) then compute contraction point xc

outside the centroid using Equation 6.5.

75

xc = c+ β(xr − c) (6.5)

If f(xc) ≤ f(xr), accept xc as the vertex to replace xw. Otherwise,
go on to the shrink operation.

Figure 6.4: Outer contraction transformation.
2. If f(xr) ≥ f(xw) then compute contraction point xc inside the

centroid using Equation 6.6.

xc = c+ β(xw − c) (6.6)

If f(xc) < f(xw), accept xc as the vertex to replace xw. Otherwise,
go on to the shrink operation.

Figure 6.5: Inner contraction transformation.

4. Shrinkage - Compute new vertices for the entire simplex except for the
best vertex xb using the defined scaling factor δ. In two dimensions this
would be done with Equations 6.7 and 6.8.

xn1 = xb + δ(xw − xb) (6.7)

xn2 = xb + δ(xs − xb) (6.8)

This will contract the simplex down closer to the best point.

76

Figure 6.6: Shrinkage transformation.

Each iteration can end after any one of these steps depending on the out-
come of the transformation involved.

6.3.3 Simultaneous Perturbation Stochastic Approximation
Gradient-based optimization algorithms work extremely well under certain as-
sumptions, which are unfortunately not present in this context. Since the func-
tion being minimized relies on executing a microscopic discrete-event traffic
simulation every time it is evaluated, there is no expectation of requirements
for gradient techniques like continuity. However, the main reason gradient-
based optimization techniques work poorly for this context is that they rely
on executing the function twice for each dimension of the parameter space for
each iteration of the algorithm. In many instances, this would lead to far too
many executions of the simulation and would result in computation times that
are far too long. SPSA (Spall et al., 1992) solves much of the second problem
by stochastically generating a perturbation vector (typically from a Bernoulli
random variable) and calculating a gradient approximation using only two func-
tion evaluations, regardless of the size of the parameter space.

The formulas to compute the gradient approximation in each iteration are
shown below in equations 6.9 and 6.10. Equation 6.9 requires the calculation
of vector ∆k which is here determined by a Bernoulli random variable set to
output either−1 or 1, making each value ∆kn is±1. However, in the general
case, the values of vector ∆k can be determined by any zero-mean probability
distribution that satisfies the conditions found in Spall (1992), which could yield
values for ∆kn which are not±1. The exponent "−1" in Equation 6.9 for each
value ∆kn is a convenient notation for representing that these values have been
reciprocated.

ĝ(θ̂k) =
f(θ̂k + ck∆k)− f(θ̂k − ck∆k)

2ck

∆−1

k1

∆−1
k2
...

∆−1
kp

 (6.9)

77

θ̂k+1 = θ̂k − akĝk(θ̂k) (6.10)

The algorithm parameters define gain sequences ak and ck, which guide how
the step size shrinks as the process progresses. These parameters are a, c, A, α,
and γ, which are used in the gain sequences shown in equations 6.11 and 6.12.
The value k is the iteration value.

ak =
a

(A+ k + 1)α
(6.11)

ck =
c

(k + 1)γ
(6.12)

The original authors (Spall, 1998a) gives the following recommendations
for the parameter values:

1. α = 0.602, though they say the value α = 1.0 may also be used.

2. γ = 0.101, though they say the value γ = 1/6 may also be used.

3. c should be approximately equal to the standard deviation in the mea-
surement noise of the function and should be chosen so that the pertur-
bations do not get excessively large.

4. A should be much less than the maximum number of iterations expected.

5. a should be a value that makes ak keep the changes in θk small in the
early iterations.

Table 6.4 shows the parameters that were chosen for SPSA in this context.

Table 6.4: Chosen SPSA Parameter Values

Parameter Value
α 1.0
γ 0.167
c 0.5
A 2.0
a 10.0

The gain sequences should decrease as the value of k increases. This results
in gradually smaller perturbations and smaller movement in the direction of
the approximate gradient ĝ(θ̂k) defined below in Equation 6.9. In the context
of the simulation parameters given in Table 6.1 if ak and ck are too large, then

78

the algorithm could send a parameter value outside of its domain. However, if
the values of ak and ck are too small then there is likely to be no appreciable
difference in the simulation outputs. Below is the reasoning for choosing the
values of each parameter.

• The values ofα andγ were chosen directly from the advice of the authors
(Spall, 1998a).

• The perturbation in each iteration is given by ck∆k. With c set to 0.5,
the perturbations will never be too large in the context of the traffic pa-
rameters.

• The number of iterations is desired to be small in this context since the
function evaluations are so expensive. The value of A = 2.0 should be
sufficiently small to satisfy the advice of the authors.

• The distance the algorithm moves in the direction of the approximate
gradient is given by akĝk(θ̂k). This distance should be large enough in
the early iterations to not just search in a small space, but not so large
that it is moving outside of the parameter domains. The value a = 10.0

gives values for ak that put the movement distance in a desirable zone
throughout the process.

The algorithm begins with an initial guess x0 and then proceeds into the gra-
dient approximation process, which, just as a normal gradient-based procedure
would do, yields the direction of movement for the next guess xk.

The algorithm ends either once a maximum number of iterations has oc-
curred or based on some stopping criteria.

6.4 Calibration Methodology
GAs have one advantage over the other two types of search methods which
is that the creation of random solutions and random mutations will more ro-
bustly cover the surface. The NM and SPSA approaches have a higher chance of
finding local optima rather than global optima on a very bumpy surface. Both
NM and SPSA require a starting point x0, which on a very noisy surface can
have a great effect on the optimization results. The two algorithms were tested
on various starting points, which are shown in Table 6.5. For both algorithms,
the first four starting points differ only in the acceleration and deceleration pa-
rameters, where these values are chosen to divide their respective domains into
thirds.

The choice of values in x1 through x4 is summed up here:

79

• Parameter δ is usually set to 4.0 according to the original authors.

• Reaction time was chosen as a small value just inside the bottom bound-
ary of its domain.

• Time headway and distance headway were both set at values halfway
through their respective domains.

Table 6.5: Initial Starting Points for IDM Calibration

Point a b τ T s δ

x1 7.0 -3.5 1.5 3.0 7.5 4.0
x2 3.5 -7.0 1.5 3.0 7.5 4.0
x3 7.0 -7.0 1.5 3.0 7.5 4.0
x4 3.5 -3.5 1.5 3.0 7.5 4.0

Table 6.6: Initial Starting Points for Gipps Calibration

Point a b τ

x1 7.0 -3.5 1.5
x2 3.5 -7.0 1.5
x3 7.0 -7.0 1.5
x4 3.5 -3.5 1.5

To test the three different calibration approaches data from four Tuesdays
in 2018 was used to generate arrivals for the simulation using the HAM, Ratio,
Difference, and Online SARIMA arrival models defined in Section 4.3. The
Offline SARIMA model was left out due to its having the worst performance for
modeling simulation arrivals. The simulations were then calibrated over each
fifteen-minute period from 6:00 am until 6:00 pm on the four chosen Tuesdays
with each of the chosen algorithms, with NM and SPSA also being calibrated
across the four given starting points. Only data from previous time periods are
used to create the simulation, and the results are compared to the data from the
current time period, which is an out-of-sample calibration procedure.

For each time period under consideration, a cold start using the previous 15-
minute interval is used to get the proper number of simulation entities into the
model. Otherwise, the simulation would begin without enough vehicles already
on the road for the time period of focus. On this fairly short length of highway,
fifteen minutes is enough of a cold start to have the right number of vehicles on
the road. Forecasts for arrival counts are generated and the NHPP for the arrival
times is constructed as discussed in Chapter 4. The simulation continues to the

80

end of the fifteen-minute period just after the time period under consideration
to allow the vehicles to exit smoothly. The statistical comparisons using the loss
function are limited to just the time period of interest.

Fifteen-minute intervals were chosen both to avoid long simulation execu-
tion times and because intervals that are too long will not have the flexibility to
adapt to changes in traffic patterns. Each simulation execution counts the num-
ber of vehicles that pass through the sensor locations and then compares those
counts to the actual data for that day using the sMAPE calculation in Equa-
tion 4.10. The calibrated parameters, full list of optimal values over epochs, and
execution times were saved for each calibration run.

6.5 Calibration Results
The calibrations are analyzed below in a few different ways, which are shown be-
low. Within each paradigm of analysis, the calibrations were compared accord-
ing to several different characteristics. Each calibration can be analyzed accord-
ing to the car-following model, optimization algorithm, initial points/streams,
and arrival model.

• Calibration Accuracy - How accurate, in terms of sMAPE, were the cali-
brations?

• Calibration Efficiency - How efficient, in terms of total execution time,
were they?

• Calibration Improvement - How did each optimization algorithm im-
prove as they operated?

After these comparisons of the calibration process are done, an analysis of
the calibrated parameters is presented, which is then followed by a review of
other researchers’ calibration efforts in the realm of traffic model calibration.

6.5.1 Calibration Accuracy
It turns out that these four starting points yield the same results in the uncal-
ibrated model, which suggests that acceleration and deceleration are not the
most consequential parameters for this case study. The average results of cal-
ibrating the model with each initial point can be seen in Table 6.7 and show
that in general the best results came from the GA. Note that the GA does not

81

Table 6.7: Average Calibration Results Across Initial Points.

Point NM GA SPSA Uncalibrated
x1 6.93887 6.30663 7.11991 9.61395
x2 6.64965 6.25586 7.27894 9.61395
x3 6.65474 6.31105 7.02135 9.61395
x4 6.52576 6.2821 7.10472 9.61395

depend on an initial starting point so the differences in this table are the ran-
dom number streams used in the evolutionary process to create new candidate
solutions.

The model was also compared across the different types of arrival models.
These results are presented in Table 6.8. It is again clear that the GA produced
better calibration results than the Nelder-Mead Simplex and SPSA. It is also
clear that the online arrival modeling techniques are an improvement over the
HAM arrival model, though it that is not as clear for the SARIMA process. It
is unclear why the online SARIMA arrival method has performed more poorly
under calibration than the other online methods, and more investigation is
warranted.

Table 6.8: Average Calibration Results Across Arrival Models.

Method HAM Ratio Difference SARIMA
NM 6.94606 6.42806 6.37851 7.01639
GA 6.58620 5.95635 6.04709 6.56600

SPSA 7.38289 6.79691 6.80331 7.54180

Figure 6.7 shows the average calibration results in terms of sMAPE values
for the three methods throughout the 12-hour period across all other character-
istics.

Figure 6.8 shows the average calibration results across the initial starting
points for the Nelder-Mead Simplex and SPSA, while Figure 6.9 shows the
results across the random number streams for the GA.

It is fairly clear from the figure that there is little difference in terms of
starting points in the accuracy of the calibrations. The figure includes both the
Nelder-Mead Simplex and SPSA in the average, and the overall averages for each
point are shown in Table 6.9.

From both the table and the figure it appears that point x4 is slightly better
in terms of accuracy than the other points.

82

Figure 6.7: Results of calibration in terms of algorithm

Table 6.9: Average calibration results across initial points for NM and SPSA.

x1 x2 x3 x4

7.0294 6.9643 6.838 6.8152

The difference between random number streams for the genetic algorithm
is unlikely to have a large effect on the calibration results, and Figure 6.9 and
Table 6.10 show that this is indeed the case.

The calibrations were also compared across the four arrival methods. Figure
6.10 shows the average results of these calibrations.

It appears that the SARIMA model performed the worst in terms of cali-
bration accuracy, which is surprising. Table 6.11 shows the comparison of the
calibrations’ overall average sMAPE values. Within this analysis, the ratio-based
arrival model performed slightly better than the difference-based arrival model,
and the HAM arrival model came in third, with the SARIMA model finishing

83

Figure 6.8: Results of calibration in terms of initial starting points

last. This relatively poor performance of the SARIMA model requires further
study.

Figure 6.11 shows the calibration results across the two car-following models,
and once again there doesn’t appear to be a huge difference in the calibration
results in this comparison. It can be seen in the figure that Gipps’ Model appears
to outperform the IDM somewhat significantly in the very earliest part of the
day, and then only slightly during most of the rest of the 12-hour period. Table
6.12 shows the overall average for both car-following models, and Gipps’ Model
has a slightly better result.

Looking at each of Figures 6.7, 6.8, 6.9, 6.10, and 6.11 it is evident that the
same overall shape to the calibrations comes out in each one, and the largest
difference amongst all of the comparisons occurs between the optimization
algorithms, where the GA pretty clearly outperforms the other two methods,
with the Nelder-Mead Simplex coming in second place. Another comparison
that shows quite a bit of difference is the comparison across arrival models. This

84

Figure 6.9: Results of calibration in terms of random number streams

is not very surprising since the choice of arrival model determines the initial
space headways of the vehicles in the system, and the more accurate this process
is, it stands to reason that the rest of the simulation stands a greater chance of
being more accurate as well. What was very surprising was the performance of
the SARIMA arrival model in this regard. It is difficult to explain and warrants
further research.

85

Table 6.10: Average calibration results across random number streams for the
GA.

x1 x2 x3 x4

6.3066 6.2559 6.311 6.2821

Table 6.11: Average calibration results across arrival models

HAM Ratio Difference SARIMA
6.9717 6.3938 6.4096 7.0414

Table 6.12: Average calibration results across car-following models

IDM Gipps
6.802 6.6062

Figure 6.10: Results of calibration in terms of arrival method

86

Figure 6.11: Results of calibration in terms of car-following model

87

6.5.2 Calibration Efficiency
The efficiency of the calibrations is analyzed in two ways. First, the overall
execution times of each algorithm are compared and contrasted. Second, the
improvement of the calibrations over the epochs of the algorithms is compared.
Both of these efficiency paradigms are important in a system which is implicitly
an online system. In an online system, it is desired that any calibrations can be
done in a reasonable amount of time. Execution times are clearly a reasonable
metric for how efficient an optimization algorithm is, but how quickly an algo-
rithm improves is also important. If one algorithm improves more quickly than
the others, then it might be desirable in certain situations.

Figures 6.12 and 6.13 show the spread of the execution time data. It is evi-
dent that there were many outliers in the execution times. These figures were
prepared using Microsoft Excel and the exact formula for calculating outliers
has not officially been published but after some testing, it appears that they use
the common rule that any value outside of 1.5 times the inter-quartile range is
an outlier.

Table 6.13: Analysis of outliers in execution time data

Algorithm Total Calibrations Outliers Percent
NM 3072 340 11.07%
GA 3072 178 5.79%

SPSA 3072 212 6.90%

It is evident that in terms of execution times the Nelder-Mead Simplex has
a much higher chance of requiring more time to find an optimum point. The
number of iterations of each of the algorithms was controlled so as not to result
in extremely long calibration times, and it is likely that the Nelder-Mead Simplex
had to run simulations that had some sort of pathological traffic behavior. For
example, if accelerations are too low then it can lead to vehicles going very slowly.
Another example would be if the desired space between vehicles is too large,
then it could result in traffic jams at the simulation source. Still, even though
there were many more outlier execution times for the Nelder-Mead Simplex,
the Genetic Algorithm took, on average, longer to reach an optimum point.

Figure 6.14 shows the overall execution times of the algorithms. The figure
clearly shows that the GA takes much longer to reach optimum values than
the other methods. It is not surprising that SPSA performs more efficiently
than the other methods as it only requires two function executions in each
iteration of the algorithm. Combining the two perspectives reveals that neither
the Nelder-Mead nor SPSA should be overlooked for the task of calibrating

88

Figure 6.12: All execution times including outliers.

traffic models. Indeed, for an online simulation system, where recalibrations
of the model will have to be done from time to time, a time-efficient algorithm
that can still produce "pretty good" results might be the method best suited for
the purpose.

89

Figure 6.13: All execution times not including outliers.

90

Figure 6.14: Efficiency Comparison Using Means With Outliers Removed

91

The average results when comparing the improvement over epochs of the
algorithms can be seen in Figure 6.15. This figure shows that the GA overall had
the most dramatic improvement of the three methods throughout the entirety
of the optimization procedure. SPSA does not improve much throughout the
optimization procedures. The Nelder-Mead algorithm shows faster improve-
ment in the early stages than the other two methods, which could suggest it is
a good technique when the number of iterations of the calibration needs to be
kept very low.

Figure 6.15: Change in Objective Function Value by Epoch

Figure 6.16 shows the calibration improvement by epochs across the four
initial points. Note that since the GA doesn’t depend on initial points it has
been left out of this figure. It is clear from the graph that points x3 and x4 show
the best calibration and even show a slight bit more improvement in the early
iterations of the algorithms compared to the other two initial points. One com-
mon trait between points x3 and x4 is that their acceleration and deceleration
values are either both aggressive (as in x3) or more cautious (as in x4). Points
x1 and x2 have a mixture of either aggressive acceleration and cautious deceler-

92

ation or vice versa. This picture would seem to indicate that consistency in the
severity of accelerating and braking is more important.

Figure 6.16: Change in Objective Function Value by Epoch Across Initial Points

93

6.5.3 Calibrated Parameters
The car-following models being calibrated are the Intelligent Driver Model and
Gipps’ Model, which are repeated below in Equations 6.13, 6.14, and 6.15 for
the IDM, and Equations 6.16, 6.17, and 6.18 for Gipps’ Model.

v̇n(t+ τ) = a

(
1−

(
vn(t)

V0

)δ

−
(
s∗(vn(t),∆vn(t))

sn(t)

)2)
(6.13)

where

s∗(vn(t),∆vn(t)) = s0 + vn(t)T +
vn(t)∆vn(t)

2
√
ab

(6.14)

and

sn(t) = xn−1(t)− xn(t)− ln−1 (6.15)

vn(t+ τ) = min

[
vF (t+ τ), vC(t+ τ)

]
(6.16)

where

vF (t+ τ) = vn + 2.5anτ(1− vn(t)/V0)(0.025 + vn(t)/V0)
1/2 (6.17)

is the Free driving velocity and the Car-following velocity is given by

vC(t+ τ) = bnτ +

√
b2nτ

2 − bn[2∆xn − vn(t)τ − vn−1(t)2/b̂] (6.18)

The parameters calibrated for the Intelligent Driver Model are

• Acceleration a

• Deceleration b

• Reaction Time τ

• Desired Time Headway T

• Desired Space Headway s

• Model Parameter δ

94

while the parameters calibrated for Gipps’ Model are

• Acceleration a

• Deceleration b

• Reaction Time τ

Gipps’ Model does not incorporate the driver’s desired time or space head-
way into the formulas, nor does it have a model-fitting parameter such as δ.

Average values for each parameter of the IDM are shown in Table 6.14 and
are given for each of the optimization methods. Table 6.15 shows the values for
Gipps’ Model. Tables 6.14 and 6.15 also break down the calibrations by initial
point/random stream. For Nelder-Mead and SPSA, it can be seen in the tables
in the acceleration and deceleration that the choice of initial point does have
a dramatic effect on the final parameter value. This is likely a result of a very
noisy and bumpy response surface which the two algorithms found difficult to
maneuver within. The initial points for the Nelder-Mead Simplex and SPSA,
given in Tables 6.5 and 6.6, differ only in the acceleration and deceleration pa-
rameters. This resulted, for those two optimization algorithms, in essentially
a bimodal distribution of parameter values for acceleration and deceleration.
The genetic algorithm was run with four different random streams, but in each
case ended up in the same general region of values for parameters. Of course,
GAs are more resilient to bumpy surfaces and these results certainly support
that idea. This then is another good argument in favor of GAs if calibration
accuracy is the primary desire.

It is important to recall here that the calibrations were made for each 15-
minute interval from 6:00 am to 6:00 pm, with the reasoning being that the
behavior of drivers is likely to change throughout the day depending on the
volume of traffic on the highway. Therefore it is important to get an idea of the
changing parameter values throughout the day.

It is also important to note that each parameter was not calibrated in iso-
lation. All of the parameters were calibrated simultaneously, and the values of
some parameters during the optimization process could certainly have an effect
on the ultimate results of the other parameters.

95

Table 6.14: IDM Calibrated Parameters

Parameters
Initial Point Method a b τ s T δ

x1

NM 7.01 -3.45 1.78 7.62 3.10 4.47
GA 5.60 -5.54 2.01 6.63 2.25 5.62

SPSA 7.00 -3.49 1.50 7.53 3.02 3.99

x2

NM 3.52 -6.94 1.76 7.62 3.08 4.51
GA 5.34 -5.87 1.89 6.27 2.21 5.3

SPSA 4.82 -5.89 1.83 7.83 3.93 3.66

x3

NM 7.19 -7.20 1.59 7.56 3.15 4.44
GA 5.89 -5.32 2.01 6.75 2.28 5.52

SPSA 6.75 -6.77 1.51 7.73 3.13 4.03

x4

NM 3.55 -3.41 1.65 7.64 3.11 4.45
GA 5.10 -6.19 1.84 6.14 2.15 5.19

SPSA 4.10 -3.65 1.75 7.40 3.07 4.42

Table 6.15: Gipps Calibrated Parameters

Parameters
Initial Point Method a b τ

x1

NM 7.07 -3.21 1.77
GA 6.18 -4.14 2.57

SPSA 6.98 -3.55 1.49

x2

NM 3.60 -6.71 1.58
GA 5.90 -4.80 2.52

SPSA 3.83 -7.10 1.43

x3

NM 7.06 -6.67 1.73
GA 6.30 -4.05 2.58

SPSA 6.97 -7.05 1.5

x4

NM 3.53 -3.31 2.12
GA 5.96 -4.64 2.53

SPSA 3.50 -3.54 1.46

96

6.5.4 Acceleration
Consider the parameter values shown in Figure 6.17 which shows, via line graphs,
the change in the calibrated acceleration parameter value throughout the 12-
hour period for both car-following models, using the Nelder-Mead algorithm.
First, the bimodal nature of the calibrated parameters, mentioned above, can be
clearly seen in the figures. And though the parameter values are fairly consistent
throughout the day, there are some fluctuations that are important to capture.

(a)

(b)

Figure 6.17: a. Calibrated acceleration value using the IDM and Nelder-Mead.
b. Calibrated acceleration value using Gipps’ Model and Nelder-Mead.

This bimodal distribution of parameter values is seen as well with SPSA
as the optimization algorithm, in Figure 6.18, though SPSA shows somewhat
more of an ability to jump out of local optima. Random restarts could improve
the ability to escape local optima, but would likely suffer from decreased effi-
ciency performance. The internal parameters of the optimization algorithms
could also be massaged for the context, however, this would also come with the
price of decreased efficiency considering the time it can take to find the optimal
parameters of an optimization algorithm.

97

(a)

(b)

Figure 6.18: a. Calibrated acceleration value using the IDM and SPSA. b. Cali-
brated acceleration value using Gipps’ Model and SPSA.

98

The picture is quite different when examining the results for the genetic
algorithm, as can be seen in Figure 6.19. The genetic algorithm was calibrated
using four different random number streams but does not use initial points
in the algorithm. As a result, there is a sense that the optimization process
doesn’t get stuck in local optima. Still, there appear to be a large number of
inconsistencies in the actual parameter values throughout the day.

(a)

(b)

Figure 6.19: a. Calibrated acceleration value using the IDM and the GA. b.
Calibrated acceleration value using Gipps’ Model and the GA.

99

6.5.5 Deceleration
The deceleration parameter, like the acceleration parameter, was given two dif-
ferent initial values in the initial points given in Tables 6.5 and 6.6, and in Fig-
ures 6.20 and 6.21 below we can see the same type of bimodal distribution of
calibrated parameter values that was seen above for the acceleration parameter.
This is not unexpected, once again due to the likelihood that the Nelder-Mead
Simplex and SPSA algorithms can have a difficult time escaping local minima
on noisy surfaces.

(a)

(b)

Figure 6.20: a. Calibrated deceleration value using the IDM and Nelder-Mead.
b. Calibrated deceleration value using Gipps’ Model and Nelder-Mead.

100

(a)

(b)

Figure 6.21: a. Calibrated deceleration value using the IDM and SPSA. b. Cali-
brated deceleration value using Gipps’ Model and SPSA.

101

(a)

(b)

Figure 6.22: a. Calibrated deceleration value using the IDM and the GA. b.
Calibrated deceleration value using Gipps’ Model and the GA.

102

6.5.6 Reaction Time
All four initial points are identical in the initial reaction time value. Figures 6.23,
6.24, and 6.25 show the calibrated reaction time values for both car-following
models, across all three optimization techniques, and across all four initial points/ran-
dom number streams. The majority of calibrated values are between 1 and 2
seconds, which seems reasonable. Gipps’ Model, calibrated with the genetic
algorithm, actually shows calibrated reaction time values mostly between 2 and
3 seconds, which seems a little high, but there was a large amount of consis-
tency in these results across the four random number streams. The calibration
of Gipps’ Model with the Nelder-Mead Simplex algorithm also shows slightly
higher results than is seen in other situations. It appears there was a greater
amount of agreement between the three methods, generally speaking, with the
IDM.

(a)

(b)

Figure 6.23: a. Calibrated reaction time value using the IDM and Nelder-Mead.
b. Calibrated reaction time value using Gipps’ Model and Nelder-Mead.

The final three parameters are only used in the Intelligent Driver Model.
Gipps’ Model does not incorporate a driver’s desired time or space headway

103

(a)

(b)

Figure 6.24: a. Calibrated reaction time value using the IDM and SPSA. b.
Calibrated reaction time value using Gipps’ Model and SPSA.

104

(a)

(b)

Figure 6.25: a. Calibrated reaction time value using the IDM and the GA. b.
Calibrated reaction time value using Gipps’ Model and the GA.

105

into its formulas, while the IDM does. The IDM also has the parameter δ
that acts as an exponential model-fitting parameter. Gipps’ Model has no such
parameter.

6.5.7 Time Headway
The calibrated values for time headway are shown in Figure 6.26, and show
that the genetic algorithm generally settled on lower values than the other two
methods. The range of time headway values for Nelder-Mead is mostly between
3 and 3.5 seconds, which given the long tradition of the "three-second rule" seems
like a reasonable set of values.

The calibrations of time headway using SPSA show a large amount of in-
consistency across both initial points, and throughout the time period. The
calibrations are all fairly chaotic in the early part of the day, but smooth out for
initial points x1, x3, and x4. The calibration for initial point x2 continues to
be quite chaotic, and fairly far removed from the other three initial points, in
the second half of the day. Still, it seems that a majority of the calibrated values
fall into the same general range of 3 to 3.5 seconds.

The calibrated values from the genetic algorithm are fairly consistent across
random number streams but are generally lower than the calibrated values from
the other two optimization techniques. The range for these values seems to gen-
erally be from around 1.7 seconds to 2.7 seconds, which is more than a second
less than the other two techniques. The maximum allowable velocity for vehi-
cles in these simulations is 34 meters per second, so this generally translates to
possibly allowing vehicles to be 34 meters closer than the other two techniques
would allow. Though, if the goal of calibration is to fit the real-world data,
this might be more accurate, and the calibration accuracy results shown above
certainly indicate that the genetic algorithm was the most accurate technique.

106

(a)

(b)

(c)

Figure 6.26: a. Calibrated time headway value using Nelder-Mead. b. Cali-
brated time headway value using SPSA. c. Calibrated time headway value using
the GA.

107

6.5.8 Space Headway
The calibrated parameters for space headway are shown below in Figure 6.27.
The Nelder-Mean Simplex found values in a relatively much tighter range than
did SPSA or the genetic algorithm, though SPSA was also quite consistent with
the calibrated values.

(a)

(b)

(c)

Figure 6.27: a. Calibrated space headway value using Nelder-Mead. b. Cal-
ibrated space headway value using SPSA. c. Calibrated space headway value
using the GA.

108

6.5.9 Parameter δ
The calibrated values of the δ parameter are shown in Figure 6.28. This parame-
ter is an exponent in the IDM and is included as a tuning parameter. Once again
there are large differences between the three algorithms in the values found.

(a)

(b)

(c)

Figure 6.28: a. Calibrated δ value using Nelder-Mead. b. Calibrated δ value
using SPSA. c. Calibrated δ value using the GA.

109

6.6 Comparison with Other Calibration Efforts
There have been many efforts made to calibrate microscopic car-following mod-
els. With the many varied car-following models out there and the large num-
ber of optimization techniques available, it is rare to find multiple calibration
methodologies that are alike. Table 6.16 shows calibration projects along with
their choices of performance metric, and the choice of loss function or goodness-
of-fit measure.

For comparison to the work in this project, it is appropriate to compare to
another model if there is some shared aspect to the method, such as optimization
procedure, or car-following model. Table 6.17 shows several other calibration
efforts that share at least one aspect of the calibration techniques used in this
project.

As can be seen in the table, GAs were by far the most popular optimization
algorithm for calibration. This is not surprising given the long history GAs
have for robust global optimization. SPSA was also used in several papers and
the majority of the authors agree that the main appeal is their fast execution
times. Among the studies that compared multiple optimization algorithms,
there was large disagreement on which algorithms performed better. Rahman
et al. (Rahman et al., 2020) found that in addition to executing much more
quickly than a GA and a GA/SQP hybrid model, SPSA was also more accurate
in the calibration. Abdalhaq and Baker (Abdalhaq & Baker, 2014) however
found that SPSA was very inconsistent, and did not perform as well as a GA
or a Particle Swarm. They did not test execution times but did collect data on
the total number of executions by each algorithm, and the numbers for SPSA
are consistent with it executing more quickly than other methods. They also
tested the Nelder-Mead Simplex algorithm but found it to be inaccurate. Paz et
al. (Paz et al., 2015) calibrated with both a GA and SPSA, and again found that
actual execution times of the SPSA were much quicker than the GA. In fact,
when just comparing the average execution times the disparity was profound.
They conducted two experiments, one in Reno, NV, and one using synthetic
data, and used both algorithms for each one. For the Reno experiment, the GA
took 20.2 hours to return its optimal value, while SPSA took only 25.5 minutes.
which is a speed gain of around 48 times. For the synthetic data experiment,
the GA took 12.8 hours versus just 10 minutes for SPSA, resulting in a speed
gain of around 77 times. They do mention however that SPSA took 20 hours
to calibrate, due to the high sensitivity of the gain sequence parameters in the
algorithm, while the GA took only 1 hour to calibrate. In terms of accuracy,
they found that SPSA was slightly more accurate than the GA. For the Reno

110

Table 6.16: Measure-of-Performance and Goodness-of-Fit Choices From Other
Calibration Efforts

Publication Perforance Metric Loss Function/GoF
This Project Vehicle Counts sMAPE

Pourabdollah et al., 2017 Estimated Power Con-
sumption

NMSE

Rahman et al., 2020 Positions and Velocities SSE
Treiber and Kesting, 2013 Model Parameters SSE
Kurtc and Treiber, 2016 Velocities and Gaps MPSE
Vasconcelos et al., 2014 Gaps RMSE
Chiappone et al., 2016 Speed-Density WSSE
Montanino et al., 2012 Counts and Velocities RMSE, IMSE

Chen et al., 2010 Gaps Mixed
Van der Horst, 2011 Counts and Velocities RMSE

Paz et al., 2012 Counts GEH
Schultz and Rilett, 2004 Counts and Travel Time MAPE

Yu and Fan, 2017 Flow and Velocity MANE, GRE, PMAE,
PMRE

Ma et al., 2007 Road Capacity and Criti-
cal Occupancy

GEH

Balakrishna et al., 2007 Origin-Destination
Flows

RMSN, RMSPE, MPE,
Theil’s U, GEH

Abdalhaq and Baker, 2014 Travel Time ME
Paz et al., 2015 Counts and Velocities NRMS, GEH

Hale et al., 2015 Velocity and Density PE
Menneni et al., 2008 Speed-Flow Graph Comparison

Park and Qi, 2005 Travel Time Travel Time Error
Kim and Rilett, 2003 Counts MAER

experiment, they found the GA and SPSA to have an average accuracy of around
10.8% and 10%, respectively.

Another paper that compared GAs and SPSA, as well as a trial-and-error
method, is that of Ma et al. (Ma et al., 2007). Once again it is seen that SPSA per-
forms exceptionally faster than GAs, but in this case, the authors find that SPSA
was not as accurate as the GA. They also found that the optimal parameters
found by the two methods were very different. They explain that the response
surface has a high number of local optima and that SPSA is more likely to fall
into one of these than the GA is.

111

Table 6.17: Car-Following Model Calibration Efforts

Car-Following Optimization
Publication Gipps IDM Other GA NM SPSA Other
This Project x x x x x

Pourabdollah et al., 2017 x x x
Rahman et al., 2020 x x x x

Treiber and Kesting, 2013 x x x
Kurtc and Treiber, 2016 x x x
Vasconcelos et al., 2014 x x
Chiappone et al., 2016 x x

Markou et al., 2019 x x x
Punzo and Tripodi, 2007 x x

Montanino et al., 2012 x x
Chen et al., 2010 x x x

Van der Horst, 2011 x x x
Fard and Mohaymany, 2019 x x x

Ciuffo and Punzo, 2013 x x x
Paz et al., 2012 x x

Schultz and Rilett, 2004 x x
Yu and Fan, 2017 x x x

Ma et al., 2007 x x x x
Balakrishna et al., 2007 x x

Abdalhaq and Baker, 2014 x x x x x
Paz et al., 2015 x x x

Hale et al., 2015 x x x
Menneni et al., 2008 x x

Park and Qi, 2005 x x
Kim and Rilett, 2003 x x

Hale et al. (Hale et al., 2015) calibrated with SPSA as well as a Directed Brute
Force (DBF) algorithm and found both methods to have reasonable accuracy.
They suggest that a hybrid model using the extreme speed of SPSA to find a
good neighborhood, and then another algorithm, such as DBF to search in
more detail, could result in better accuracy than the two alone can return.

Vasconcelos et al. (Vasconcelos et al., 2014) calibrate Gipps’ Model with a
GA and used the gap spacing between vehicles as the metric for the objective
function, which was RMSE. The parameters they calibrate are the maximum
velocity v, maximum acceleration a, maximum deceleration b of the follower,

112

estimated maximum deceleration d′ of the leader, minimum gap s, and driver
reaction time τ , which are very similar to the parameters chosen for this project.
They report only single values for each parameter which implies that they cali-
brated the model for their entire time frame, and did not split the time frame
into subintervals as was done in this project.

Table 6.18: IDM Calibrated Parameters

Parameters
Publication Method Road a b V0 s T δ

Rahman et al.
GA HW 2.78 -2.84 30 4.04 0.71 –
SQP – 2.89 -2.77 30 4.71 0.62 –
SPSA – 1.01 -1.43 10.2 5.24 0.14 –

Treiber et al. Local (LM) Urb 0.51 -1.47 16.9 1.56 1.02 –
Global (LM) – 1.46 -0.63 16.1 1.44 1.27 –

Van der Horst LM HW 0.67 -0.21 32.51 11.31 1.07 12.23

Table 6.19: Gipps’ Model Calibrated Parameters

Parameters
Publication Method Road a b V0 τ

Vasconcelos et al.

HW 1 0.82 -2.53 26.0 0.4
HW 2 9.80 -8.87 24.47 0.5

GA Urb 1 1.53 -5.06 11.5 0.75
Urb 2 1.06 -2.87 13.05 0.79
Urb 3 1.42 -2.87 18.03 0.82

Markou et al. SPSA Urb 0.8 -3.2 14.0 0.4

Punzo et al. LS HW (fast) – -1.62 23.25 0.2
HW (slow) – -1.1 17.58 0.2

The calibrations presented in Tables 6.18 and 6.19 suggest parameter values
over long stretches of time. An assumption made in this paper is that the param-
eters will change throughout the day as the overall traffic flow changes. While
the desire by drivers to move at a certain speed may remain constant throughout
the day, their comfortable deceleration value, or their desired time headway, for
example, will likely change as the traffic density changes. To this end, the cali-
brations were made over each 15-minute interval of the period from 6:00 am to
6:00 pm, and so the optimized parameters form more of a distribution or func-
tion of values, rather than a single parameter value. Still, it is worth comparing
the parameter values from these efforts to those found in this work.

113

6.7 Conclusions
Two car-following models, the Intelligent Driver Model (Treiber et al., 2000)
and Gipps’ Model (Gipps, 1981) were calibrated. Three different optimization
algorithms, the Nelder-Mead Simplex Algorithm (Nelder & Mead, 1965), the
Simultaneous Perturbation Stochastic Approximation Algorithm (Spall et al.,
1992), and a genetic algorithm designed and implemented by the author.

The calibrations revealed that in terms of accuracy, the GA outperforms the
other two algorithms, with the Nelder-Mead Simplex performing second best,
and SPSA finishing in last place. As well, when looking at the improvement
of the algorithms over epochs, the GA shows faster improvement in the early
stages of the optimization. In terms of calibration efficiency, this could allow the
GA to compete with SPSA and the Nelder-Mead Simplex, both of which were
much faster in overall computation time. SPSA was by far the fastest algorithm,
but also the least accurate. Still, SPSA saw a significant improvement over the
uncalibrated model, so with the desire for fast predictions, has a case for being
the desired optimization algorithm.

In terms of the car-following models, there was only a slight improvement
by Gipps’ Model over the IDM, but in a practical sense, they performed very
similarly.

It should be noted that tuning the internal parameters of these algorithms
was not considered here but could result in large improvements in the perfor-
mance of each algorithm. Such optimization of the parameters of the optimiza-
tion algorithms is quite a difficult problem and one that could be investigated
in future work. There are also many other calibration techniques that could be
applied to this problem, as shown by comparison with the calibration efforts
of other researchers.

114

Chapter 7

Conclusions

Traffic congestion is a ubiquitous problem in the world today and one that most
citizens have a strong desire to solve. Vast amounts of traffic flow data have been
collected from road networks that allow researchers to develop models for this
traffic flow, however, many of these techniques deal only with the macroscopic
elements of the traffic dynamics. Microscopic traffic simulation models seek
to create behavioral relationships between the vehicles themselves, allowing
for greater flexibility in the modeling capabilities, and opening doorways to
problem-solving that macroscopic approaches cannot.

This dissertation details much of the work done to create a simulation sys-
tem and modeling approach for microscopic traffic simulation using Scala-
Tion, from the early stages of development, through to the calibration of
model parameters and some analysis of the methodologies. Below is a brief
summary of each of the chapters, followed by a look at directions for future
research.

7.1 Traffic Flow Modeling (Chapter 2)
The earliest work was done in an attempt to optimize the timing of traffic lights
at a series of urban traffic intersections in Kenmore, Washington, U.S.A. A gen-
eral framework for an arrival model was designed and code to generate random
arrivals was produced. A car-following model was also introduced to the system
which was a mixture of the Intelligent Driver Model for car-following, and a ba-
sic physics model for free-driving. A basic framework for modeling a connected
road network was presented, including the internal design elements of the traf-
fic signals themselves. An approach to turning behavior based on the traffic
data was given. Optimization procedures were utilized to attempt to optimize
the signal timings, and some key results emerged. Namely that gradient-based

115

optimization procedures can have problems in the traffic optimization field. In
the case of traffic light timings, this results from the fact that the signal timings
should probably be modeled by a discrete space instead of a continuous one.

Still, much was learned from this early work, and a promising basic frame-
work for creating a microscopic traffic simulation system in ScalaTion re-
sulted from it. But much more analysis and research of the problem needed to
be done.

7.2 Microscopic Traffic Simulation (Chapter 3)
After the initial work of attempting to optimize traffic light timings, it was clear
that a deeper dive into car-following models and traffic simulation was needed.
A comparison of the three main paradigms of traffic simulation was performed.
These are macroscopic, mesoscopic, and microscopic traffic simulations. The
various traffic flow models and car-following models that were discovered gave a
much greater understanding of the problem as a whole, and where the direction
of the research should be focused.

As a point of comparison, a treatment of alternative methods was produced
by colleague Hao Peng (2018)(2019), which shows the capabilities of other tech-
niques. Several approaches from deep learning and time series analysis were
given.

7.3 Arrival Modeling (Chapter 4)
Time headway is a crucial element of traffic flow modeling, and is directly related
to arrival modeling. The horizon of the traffic simulation creates a boundary
between what is seen and what is not seen from real-world traffic networks.
Sources within the simulation are designed to generate cars for the model, but
in the real world, these vehicles would have already existed, so the source must
introduce them to the simulation in a realistic way. This includes both time
headway, or the amount of time between the front bumpers of vehicles on a
road, and the speeds of the vehicles. The first issue is dealt with in this chapter.

Many distributions for time headway have been proposed. One classically
used distribution for time headway is the exponential distribution. And if
the distribution of arrival times is exponential, then the distribution of arrival
counts in a given period of time is Poisson, and the counts are a Poisson count-
ing process. This can be loosened a bit for a nonhomogeneous Poisson process,
which allows for a varying arrival count rate. The inversion process of Leemis
(1991) was shown which allows arrival count data to be used to recover a realistic

116

random variable for arrival times. This random arrival time generator can then
be used to recover the interarrival times which are essentially the time headway
values.

That is only half of the story though. Since the purpose of the system is
traffic flow forecasting, the generated arrival times must be for future time peri-
ods, and so the arrival count data at the sources must be forecast by some other
means before the simulation can be executed. Several methods for performing
the arrival count forecasts were proposed and tested. With an eye toward a con-
tinuously updating system in the future, several of the methods were designed
to use the most recent possible data to improve the forecasts. The results show
clearly that using these data can result in a drastic improvement to the forecasts.

Among these online forecasting methods, two were designed with a very
simple rate-of-change type calculation, and one used a much more sophisti-
cated SARIMA model. The SARIMA model was clearly the most accurate
forecasting method but took significantly longer in its derivation than the other
methods, and with efficiency a key concern in any online forecasting system,
this implies a potential for the other methods used.

7.4 Car-Following Models (Chapter 5)
The earliest work covered in Chapter 2 partially utilized the Intelligent Driver
Model (Treiber et al., 2000) for its car-following capabilities, but there was not
much of an analysis done at the time comparing car-following models. In this
chapter, a bit more of the background, and in the case of Gipps’ Model (1981) a
partial derivation, is given.

Some of the early work from the late 1940s and 1950s is introduced. The
work of Pipes (1953), Gazis, Herman, and Rothery (1959), (1959) is highlighted
as representing foundational work in the field. Other car-following models are
mentioned as well.

The focus of the chapter is the Intelligent Driver Model (IDM) and Gipps’
Model. The formulas are given, as well as a thorough rundown of their param-
eters and the meanings of those parameters. Details of the implementations of
these models are given in the appendix.

7.5 Calibration (Chapter 6)
The traffic simulation model, built from the arrival model, car-following model,
and traffic data, requires a process through which to choose the parameters of
the model to best reflect the given data. The general problem of parameter

117

estimation theoretically employs probability and statistics to analytically arrive
at an optimal set or distribution of parameters for a model. However, in the case
of an extremely complex system like traffic, it is often the case that analytical
solutions are hard to come by, and the process needs to be executed numerically.
This approach is a calibration process, and Chapter 6 presents several calibration
methodologies for the traffic simulation model, and then compares them.

This type of calibration approach requires the use of a numerical optimiza-
tion procedure, and three were chosen for this project, with their internal pa-
rameters and general algorithms detailed. The three procedures are the Nelder-
Mead Simplex Algorithm (Nelder & Mead, 1965), Simultaneous Perturbation
Stochastic Approximation Algorithm (SPSA) (Spall et al., 1992), and a self-
written Genetic Algorithm, the implementation details of which are presented
in the appendix. Nelder-Mead and SPSA require the use of initial points to
begin their algorithms, while the GA requires a random number stream for the
initialization of the first generation of candidates. Four different initial starting
points were used for the first two methods, and four different random number
streams were used for the GA.

The calibration approach was to independently calibrate each 15-minute
interval of the time period starting at 6:00 am and ending at 6:00 pm for two
different Tuesdays in 2018. These were June 26, and July 31. With forty-eight
15-minute intervals in the 12-hour time period, two car-following models, four
initial points (or random number streams), four arrival models, three optimiza-
tion procedures, and two days’ worth of data to calibrate, there were 9,216 total
calibration executions performed. Results across the various points of compar-
ison were performed.

As a final point of comparison and contrast, some details of other calibration
efforts were given at the end of the chapter.

7.6 Future Work
There are many avenues for future research with this starting point. One cru-
cial effort would be to attempt to validate the simulation model using the cal-
ibrations performed here. A validation methodology and framework can be
implemented and the optimal parameters found in this project can be used to
forecast future traffic data. Since the data is a time series, rolling validation can
be done on the time period currently calibrated. The calibrations were done for
each 15-minute time interval, so the calibrated values could be used for the next
15-minute time interval, or for some other time window just succeeding the cali-

118

bration window, for short-term validation. Each 15-minute interval calibration
can be validated by creating the rolling validation framework.

Since the time series is seasonal, with a period of 168 hours (7 days), valida-
tions can also be performed for subsequent corresponding seasons, forecasting
a longer time window. There is also the idea that for weekdays there could be a
seasonal period of 24 hours so that Tuesday parameters might be able to forecast
Wednesday traffic. This idea could definitely be explored. In either situation, an
online traffic simulation system could use the rolling validation to continuously
check the accuracy of the parameters, and if a threshold is passed, re-calibrate
the model.

The fact that the parameters were calibrated for each 15-minute interval of
the given time period lends itself to a possible parameter function or distribu-
tion, instead of just one set of parameter values. Regression could be used to gen-
erate essentially a model of the parameters’ behavior as the day moves forward. It
would be interesting to see if such a general function could be determined, pos-
sibly with its own parameters, that would allow for a general parameter model
to be developed for the overall simulation model. This would be some form of
meta-model that would determine the parameters for the simulation model for
each time period.

Another important area of work is to expand the simulated network beyond
the fairly small window used in this project. Incorporating on-ramps and off-
ramps, and even highway interchanges would be very important additions to
the capabilities of the system.

One aspect of microscopic traffic simulation that acts as a major selling point
is that it can be used prescriptively to solve traffic design problems. An avenue
of research in this direction would be to find a road network with good data
that experienced a major change in road design, and see if the simulation system
was able to capture the real-world results. In other words, model the system
before the design change, implement the change in the simulation, forecast the
results of the change, and then compare these to what is actually seen in the
post-change data.

There are also many elements of the existing model that can be fine-tuned
and elements that can be implemented. For example, currently, no lane-changing
model is being utilized, and this could impact the accuracy of the overall simu-
lation model.

119

Bibliography

Abdalhaq, B. K., & Baker, M. I. A. (2014). Using meta heuristic algorithms to
improve traffic simulation. Journal of Algorithms, 2(4), 110–128.

Ahmed, M. S., & Cook, A. R. (1979). Analysis of freeway traffic time-series data
by using box-jenkins techniques. Transportation Research Board.

Aldrich, J. (1997). Ra fisher and the making of maximum likelihood 1912-1922.
Statistical science, 12(3), 162–176.

Al-Ghamdi, A. S. (2001). Analysis of time headways on urban roads: Case
study from riyadh. Journal of Transportation Engineering, 127(4), 289–
294.

Balakrishna, R., Antoniou, C., Ben-Akiva, M., Koutsopoulos, H. N., & Wen, Y.
(2007). Calibration of microscopic traffic simulation models: Methods
and application. Transportation Research Record, 1999(1), 198–207.

Bando, M., Hasebe, K., Nakanishi, K., & Nakayama, A. (1998). Analysis of
optimal velocity model with explicit delay. Physical Review E, 58(5),
5429.

Bando, M., Hasebe, K., Nakayama, A., Shibata, A., & Sugiyama, Y. (1995). Dy-
namical model of traffic congestion and numerical simulation. Physical
review E, 51(2), 1035.

Barton, R. R., & Ivey Jr, J. S. (1996). Nelder-mead simplex modifications for
simulation optimization. Management Science, 42(7), 954–973.

Barua, S., Das, A., & Roy, K. C. (2015). Estimation of traffic arrival pattern
at signalized intersection using arima model. International Journal of
Computer Applications, 128(1), 1–6.

Behrisch, M., Bieker, L., Erdmann, J., & Krajzewicz, D. (2011). Sumo–simulation
of urban mobility: An overview. Proceedings of SIMUL 2011, The Third
International Conference on Advances in System Simulation.

Bhaskar, A., & Chung, E. (2013). Fundamental understanding on the use of
bluetooth scanner as a complementary transport data. Transportation
Research Part C: Emerging Technologies, 37, 42–72.

120

Box, G. E., & Jenkins, G. M. (1962). Some statistical aspects of adaptive opti-
mization and control. Journal of the Royal Statistical Society: Series B
(Methodological), 24(2), 297–331.

Box, G. E., & Jenkins, G. M. (1970). Time series analysis forecasting and control
(tech. rep.). DTIC Document.

Box, G. E., Jenkins, G. M., & Bacon, D. W. (1967). Models for forecasting
seasonal and non-seasonal time series. (tech. rep.). WISCONSIN UNIV
MADISON DEPT OF STATISTICS.

Box, G., & Wilson, K. (1951). On the experimental attainment of optimum
conditions. Journal of the Royal Statistical Society. Series B (Method-
ological), 13(1), 1–45.

Brackstone, M., & McDonald, M. (1999). Car-following: A historical review.
Transportation Research Part F: Traffic Psychology and Behaviour, 2(4),
181–196.

Branston, D. (1976). Models of single lane time headway distributions. Trans-
portation Science, 10(2), 125–148.

Bratley, P., Fox, B. L., & Schrage, L. E. (2011). A guide to simulation. Springer
Science & Business Media.

Broyden, C. G. (1970). The convergence of a class of double-rank minimization
algorithms 1. general considerations. IMA Journal of Applied Mathe-
matics, 6(1), 76–90.

Buckley, D. (1968). A semi-poisson model of traffic flow. Transportation Science,
2(2), 107–133.

Burghout, W., Koutsopoulos, H. N., & Andreasson, I. (2006). A discrete-
event mesoscopic traffic simulation model for hybrid traffic simulation.
Intelligent Transportation Systems Conference, 2006. ITSC’06. IEEE,
1102–1107.

Buss, A., & Al Rowaei, A. (2010). A comparison of the accuracy of discrete
event and discrete time. In B. Johansson, S. Jain, J. Montoya-Torres,
J. Hugan, & E. Yücesan (Eds.), Proceedings of the 2010 winter simulation
conference (pp. 1468–1477). Institute of Electrical; Electronics Engi-
neers, Inc.

California-DMV. (2022). California driver’s handbook. California Depart-
ment of Motor Vehicles. Sacremento, CA. https://driving-tests.org/
wp-content/uploads/2022/06/CA_DL-600-R7-2022.pdf

Cervero, R. (2013). Linking urban transport and land use in developing coun-
tries. Journal of transport and land use, 6(1), 7–24.

Chandler, R. E., Herman, R., & Montroll, E. W. (1958). Traffic dynamics:
Studies in car following. Operations research, 6(2), 165–184.

121

https://driving-tests.org/wp-content/uploads/2022/06/CA_DL-600-R7-2022.pdf
https://driving-tests.org/wp-content/uploads/2022/06/CA_DL-600-R7-2022.pdf

Chen, C., Li, L., Hu, J., & Geng, C. (2010). Calibration of mitsim and idm
car-following model based on ngsim trajectory datasets. Proceedings of
2010 IEEE International Conference on Vehicular Electronics and Safety,
48–53.

Chiappone, S., Giuffrè, O., Granà, A., Mauro, R., & Sferlazza, A. (2016). Traffic
simulation models calibration using speed–density relationship: An
automated procedure based on genetic algorithm. Expert Systems with
Applications, 44, 147–155.

Chien, S. I.-J., & Kuchipudi, C. M. (2003). Dynamic travel time prediction
with real-time and historic data. Journal of transportation engineering,
129(6), 608–616.

Chiou, J.-M. et al. (2012). Dynamical functional prediction and classification,
with application to traffic flow prediction. The Annals of Applied Statis-
tics, 6(4), 1588–1614.

Cinlar, E. (1975). Introduction to stochastic processes.
Ciuffo, B., & Punzo, V. (2013). No free lunch” theorems applied to the cali-

bration of traffic simulation models. IEEE Transactions on Intelligent
Transportation Systems, 15(2), 553–562.

Ciuffo, B., Punzo, V., & Montanino, M. (2012). Thirty years of gipps’ car-
following model: Applications, developments, and new features. Trans-
portation Research Record: Journal of the Transportation Research Board,
2315, 89–99.

Council, D. C. (2016). Journey times across dublin city, from dublin city council
traffic department’s trips system. Retrieved August 16, 2016, from https:
//data.dublinked.ie/dataset/journey-times-across-dublin-city-from-
dublin-city-council-traffic-departments-trips-system

Cremer, M., & Ludwig, J. (1986). A fast simulation model for traffic flow
on the basis of boolean operations. Mathematics and Computers in
Simulation, 28(4), 297–303.

Daganzo, C. F. (1994). The cell transmission model: A dynamic representation
of highway traffic consistent with the hydrodynamic theory. Transporta-
tion Research Part B: Methodological, 28(4), 269–287.

Daganzo, C. F. (1995). Requiem for second-order fluid approximations of traffic
flow. Transportation Research Part B: Methodological, 29(4), 277–286.

Daganzo, C. F. (1997). A continuum theory of traffic dynamics for freeways
with special lanes. Transportation Research Part B: Methodological,
31(2), 83–102.

122

https://data.dublinked.ie/dataset/journey-times-across-dublin-city-from-dublin-city-council-traffic-departments-trips-system
https://data.dublinked.ie/dataset/journey-times-across-dublin-city-from-dublin-city-council-traffic-departments-trips-system
https://data.dublinked.ie/dataset/journey-times-across-dublin-city-from-dublin-city-council-traffic-departments-trips-system

Daganzo, C. F. (2002). A behavioral theory of multi-lane traffic flow. part i:
Long homogeneous freeway sections. Transportation Research Part B:
Methodological, 36(2), 131–158.

Dengiz, B., & Alabas, C. (2000). Simulation optimization using tabu search.
2000 Winter Simulation Conference Proceedings (Cat. No. 00CH37165),
1, 805–810.

Dey, P. P., & Chandra, S. (2009). Desired time gap and time headway in steady-
state car-following on two-lane roads. Journal of transportation engi-
neering, 135(10), 687–693.

Dougherty, M. (1995). A review of neural networks applied to transport. Trans-
portation Research Part C: Emerging Technologies, 3(4), 247–260.

Edie, L. C., & Foote, R. S. (1961). Experiments on single lane flow in tunnels.
Theory of Traffic Flow Proceedings of the Theory of Traffic Flow, 175–192.

El Faouzi, N.-E., Klein, L., & De Mouzon, O. (2009). Improving travel time
estimates from inductive loop and toll collection data with dempster-
shafer data fusion. Transportation Research Record: Journal of the Trans-
portation Research Board, 2129, 73–80.

Esser, J., & Schreckenberg, M. (1997). Microscopic simulation of urban traffic
based on cellular automata. International Journal of Modern Physics C,
8(05), 1025–1036.

Ezzat, A. A., Farouk, H. A., El-Kilany, K. S., & Moneim, A. F. A. (n.d.). Opti-
mization using simulation of traffic light signal timings.

Fard, M. R., & Mohaymany, A. S. (2019). A copula-based estimation of distri-
bution algorithm for calibration of microscopic traffic models. Trans-
portation Research Part C: Emerging Technologies, 98, 449–470.

Fernandes, P., & Nunes, U. (2010). Platooning of autonomous vehicles with in-
tervehicle communications in sumo traffic simulator. Intelligent Trans-
portation Systems (ITSC), 2010 13th International IEEE Conference on,
1313–1318.

Fisher, A. (2013). Google’s road map to global domination. New York Times,
11.

Fletcher, R. (1970). A new approach to variable metric algorithms. The com-
puter journal, 13(3), 317–322.

Florian, M., Mahut, M., & Tremblay, N. (2008). Application of a simulation-
based dynamic traffic assignment model. European Journal of Opera-
tional Research, 189(3), 1381–1392.

Flötteröd, G., & Rohde, J. (2011). Operational macroscopic modeling of com-
plex urban road intersections. Transportation Research Part B: Method-
ological, 45(6), 903–922.

123

Fu, M. C., Glover, F. W., & April, J. (2005). Simulation optimization: A re-
view, new developments, and applications. Proceedings of the Winter
Simulation Conference, 2005., 13–pp.

Fujimoto, R. (2015). Parallel and distributed simulation. In L. Yilmaz, W. K. V.
Chan, I. Moon, T. M. K. Roeder, C. Macal, & M. D. Rossetti (Eds.),
Proceedings of the 2015 winter simulation conference (pp. 45–59). Insti-
tute of Electrical; Electronics Engineers, Inc.

Gazis, D. C., Herman, R., & Potts, R. B. (1959). Car-following theory of steady-
state traffic flow. Operations research, 7(4), 499–505.

Gazis, D. C., Herman, R., & Rothery, R. W. (1961). Nonlinear follow-the-leader
models of traffic flow. Operations research, 9(4), 545–567.

Georgia-DDS. (2022). 2021-2022 40-hour parent/teen driving guide. Georgia
Department of Driver Services. Atlanta, GA. https://dds.georgia.gov/
document/publication/40-hour-parent-teen-driver-guide/download

Gerlough, D. L. (1956). Simulation of freeway traffic by an electronic computer.
Highway Research Board Proceedings, 35.

Gipps, P. G. (1981). A behavioural car-following model for computer simula-
tion. Transportation Research Part B: Methodological, 15(2), 105–111.

Gipps, P. G. (1986). A model for the structure of lane-changing decisions.
Transportation Research Part B: Methodological, 20(5), 403–414.

Glover, F. (1989). Tabu search—part i. ORSA Journal on computing, 1(3), 190–
206.

Goldfarb, D. (1970). A family of variable-metric methods derived by variational
means. Mathematics of computation, 24(109), 23–26.

Guo, J., Huang, W., & Williams, B. M. (2014). Adaptive kalman filter approach
for stochastic short-term traffic flow rate prediction and uncertainty
quantification. Transportation Research Part C: Emerging Technologies,
43, 50–64.

Hale, D. K., Antoniou, C., Brackstone, M., Michalaka, D., Moreno, A. T., &
Parikh, K. (2015). Optimization-based assisted calibration of traffic sim-
ulation models. Transportation Research Part C: Emerging Technologies,
55, 100–115.

Hanai, M., Suzumura, T., Theodoropoulos, G., & Perumalla, K. S. (2015). To-
wards large-scale what-if traffic simulation with exact-differential sim-
ulation. In L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C.
Macal, & M. D. Rossetti (Eds.), Proceedings of the 2015 winter simulation
conference (pp. 748–756). Institute of Electrical; Electronics Engineers,
Inc.

124

https://dds.georgia.gov/document/publication/40-hour-parent-teen-driver-guide/download
https://dds.georgia.gov/document/publication/40-hour-parent-teen-driver-guide/download

Hasebe, K., Nakayama, A., & Sugiyama, Y. (2003). Dynamical model of a
cooperative driving system for freeway traffic. Physical review E, 68(2),
026102.

Helbing, D. (1997). Modeling multi-lane traffic flow with queuing effects. Phys-
ica A: Statistical Mechanics and its Applications, 242(1-2), 175–194.

Helbing, D., & Schreckenberg, M. (1999). Cellular automata simulating exper-
imental properties of traffic flow. Physical review E, 59(3), R2505.

Helbing, D., & Tilch, B. (1998). Generalized force model of traffic dynamics.
Physical Review E, 58(1), 133.

Hellinga, B. R. (1998). Requirements for the calibration of traffic simulation
models. Proceedings of the Canadian Society for Civil Engineering, 4,
211–222.

Helly, W. (1959). Simulation of bottlenecks in single-lane traffic flow.
Henclewood, D., Suh, W., Rodgers, M., Hunter, M., & Fujimoto, R. (2012). A

case for real-time calibration of data-driven microscopic traffic simula-
tion tools. In C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, &
A. M. Uhrmacher (Eds.), Proceedings of the 2012 winter simulation con-
ference (pp. 1670–1681). Institute of Electrical; Electronics Engineers,
Inc.

Herman, R., Montroll, E. W., Potts, R. B., & Rothery, R. W. (1959). Traffic
dynamics: Analysis of stability in car following. Operations research,
7(1), 86–106.

Herrera, J. C., Work, D. B., Herring, R., Ban, X. J., Jacobson, Q., & Bayen,
A. M. (2010). Evaluation of traffic data obtained via gps-enabled mobile
phones: The mobile century field experiment. Transportation Research
Part C: Emerging Technologies, 18(4), 568–583.

Herring, R., Hofleitner, A., Amin, S., Nasr, T., Khalek, A., Abbeel, P., & Bayen,
A. (2010). Using mobile phones to forecast arterial traffic through sta-
tistical learning. 89th Transportation Research Board Annual Meeting,
10–2493.

Holland, J. H. (1992). Adaptation in natural and artificial systems: An in-
troductory analysis with applications to biology, control, and artificial
intelligence. MIT press.

Hoogendoorn, S., Van Zuylen, H., Schreuder, M., Gorte, B., & Vosselman, G.
(2003). Microscopic traffic data collection by remote sensing. Trans-
portation Research Record: Journal of the Transportation Research Board,
1855, 121–128.

125

Hoogendoorn, S. P., & Bovy, P. H. (2001). Generic gas-kinetic traffic systems
modeling with applications to vehicular traffic flow. Transportation
Research Part B: Methodological, 35(4), 317–336.

Hunt, P., Robertson, D., Bretherton, R., & Royle, M. C. (1982). The scoot
on-line traffic signal optimisation technique. Traffic Engineering &
Control, 23(4), 190–192.

Hunter, M. P., Fujimoto, R. M., Suh, W., & Kim, H. K. (2006). An inves-
tigation of real-time dynamic data driven transportation simulation.
Proceedings of the 2006 Winter Simulation Conference, 1414–1421.

Hyndman, R. J., & Athanasopoulos, G. (2014). Forecasting: Principles and
practice. OTexts.

Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and
practice. OTexts.

Ishikawa, S., & Arai, S. (2015). Evaluating advantage of sharing information
among vehicles toward avoiding phantom traffic jam. In L. Yilmaz,
W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, & M. D. Rossetti
(Eds.), Proceedings of the 2015 winter simulation conference (pp. 300–311).
Institute of Electrical; Electronics Engineers, Inc.

Jiang, R., Wu, Q., & Zhu, Z. (2001). Full velocity difference model for a car-
following theory. Physical Review E, 64(1), 017101.

Kalman, R. E. et al. (1960). A new approach to linear filtering and prediction
problems. Journal of basic Engineering, 82(1), 35–45.

Kanezashi, H., & Suzumura, T. (2015). Performance optimization for agent-
based traffic simulation by dynamic agent assignment. In L. Yilmaz,
W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, & M. D. Rossetti
(Eds.), Proceedings of the 2015 winter simulation conference (pp. 757–766).
Institute of Electrical; Electronics Engineers, Inc.

Kao, E. P., & Chang, S.-L. (1988). Modeling time-dependent arrivals to ser-
vice systems: A case in using a piecewise-polynomial rate function in a
nonhomogeneous poisson process. Management Science, 34(11), 1367–
1379.

Karlaftis, M. G., & Vlahogianni, E. I. (2011). Statistical methods versus neural
networks in transportation research: Differences, similarities and some
insights. Transportation Research Part C: Emerging Technologies, 19(3),
387–399.

Kesting, A., Treiber, M., & Helbing, D. (2010). Enhanced intelligent driver
model to access the impact of driving strategies on traffic capacity. Philo-
sophical Transactions of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, 368(1928), 4585–4605.

126

Kim, K.-O., & Rilett, L. (2003). Simplex-based calibration of traffic microsimu-
lation models with intelligent transportation systems data. Transporta-
tion Research Record, 1855(1), 80–89.

Klein, R. W., & Roberts, S. D. (1984). A time-varying poisson arrival process
generator. Simulation, 43(4), 193–195.

Kolmogorov, A. (1933). Sulla determinazione empirica di una lgge di distribuzione.
Inst. Ital. Attuari, Giorn., 4, 83–91.

Kometani, E., & Sasaki, T. (1961). Dynamic behaviour of traffic with a nonlinear
spacing–speed relationship. Proceedings of Symposium on Theory of
Traffic Flow, 105–119.

Krajzewicz, D., Erdmann, J., Behrisch, M., & Bieker, L. (2012). Recent develop-
ment and applications of SUMO - Simulation of Urban MObility. In-
ternational Journal On Advances in Systems and Measurements, 5(3&4),
128–138.

Kumar, S. V., & Vanajakshi, L. (2015). Short-term traffic flow prediction us-
ing seasonal arima model with limited input data. European Transport
Research Review, 7(3), 1–9.

Kurtc, V., & Treiber, M. (2016). Calibrating the local and platoon dynamics
of car-following models on the reconstructed ngsim data. Traffic and
granular flow’15 (pp. 515–522). Springer.

Law, A. M., Kelton, W. D., & Kelton, W. D. (2007). Simulation modeling and
analysis (Vol. 3). Mcgraw-hill New York.

Leclercq, L. (2007). Hybrid approaches to the solutions of the “lighthill–
whitham–richards” model. Transportation Research Part B: Method-
ological, 41(7), 701–709.

Leduc, G. (2008). Road traffic data: Collection methods and applications.
Working Papers on Energy, Transport and Climate Change, 1(55).

Leemis, L. (2003). Estimating and simulating nonhomogeneous poisson pro-
cesses. Williamsburg, VA: William and Mary Mathematics Depart-
ment.

Leemis, L. M. (1991). Nonparametric estimation of the cumulative intensity
function for a nonhomogeneous poisson process. Management Science,
37(7), 886–900.

Leemis, L. M. (2004). Nonparametric estimation and variate generation for a
nonhomogeneous poisson process from event count data. IIE Trans-
actions, 36(12), 1155–1160.

Leland, W. E., Taqqu, M. S., Willinger, W., & Wilson, D. V. (1994). On the
self-similar nature of ethernet traffic (extended version). IEEE/ACM
Transactions on networking, 2(1), 1–15.

127

Levin, D. (2015). Googles self-driving cars are coming sooner than you think.
Levin, M., & Tsao, Y.-D. (1980). On forecasting freeway occupancies and vol-

umes (abridgment). Transportation Research Record, (773).
Li, L., & Chen, X. M. (2017). Vehicle headway modeling and its inferences in

macroscopic/microscopic traffic flow theory: A survey. Transportation
Research Part C: Emerging Technologies, 76, 170–188.

Li, L., Chen, X. M., & Zhang, L. (2016). A global optimization algorithm for
trajectory data based car-following model calibration. Transportation
Research Part C: Emerging Technologies, 68, 311–332.

Li, L., Fa, W., Rui, J., Jian-Ming, H., & Yan, J. (2010). A new car-following
model yielding log-normal type headways distributions. Chinese Physics
B, 19(2), 020513.

Li, Y., Sun, D., Liu, W., Zhang, M., Zhao, M., Liao, X., & Tang, L. (2011).
Modeling and simulation for microscopic traffic flow based on multiple
headway, velocity and acceleration difference. Nonlinear Dynamics,
66(1), 15–28.

Lieberman, E., & Rathi, A. K. (1997). Traffic simulation. Traffic flow theory.
Lighthill, M. J., & Whitham, G. B. (1955). On kinematic waves. ii. a theory of

traffic flow on long crowded roads. Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences, 229(1178),
317–345.

Lippi, M., Bertini, M., & Frasconi, P. (2013). Short-term traffic flow fore-
casting: An experimental comparison of time-series analysis and super-
vised learning. IEEE Transactions on Intelligent Transportation Systems,
14(2), 871–882.

Lo, C.-H., Peng, W.-C., Chen, C.-W., Lin, T.-Y., & Lin, C.-S. (2008). Carweb:
A traffic data collection platform. Mobile Data Management, 2008.
MDM’08. 9th International Conference on, 221–222.

Ma, J., Dong, H., & Zhang, H. M. (2007). Calibration of microsimulation
with heuristic optimization methods. Transportation Research Record,
1999(1), 208–217.

Mahnke, R., & Kühne, R. (2007). Probabilistic description of traffic break-
down. Traffic and Granular Flow’05, 527–536.

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2020). The m4 compe-
tition: 100,000 time series and 61 forecasting methods. International
Journal of Forecasting, 36(1), 54–74.

Mannering, F. (2007). Effects of interstate speed limits on driving speeds: Some
new evidence. Compendium of papers CD-ROM, Transportation Re-
search Board 86th Annual Meeting.

128

Markou, I., Papathanasopoulou, V., & Antoniou, C. (2019). Dynamic car–
following model calibration using spsa and isres algorithms. Periodica
Polytechnica Transportation Engineering, 47(2), 146–156.

Matcha, B., Namasivayam, S., Ng, K., Sivanesan, S., & EhNoum, S. (2021).
Mixed-traffic vehicle dynamics: Analysis and comparison of microscopic
gipp’s car-following model and intelligent driver model. Advances in
transportation studies, 55.

Meng, D., Song, G., Wu, Y., Zhai, Z., Yu, L., & Zhang, J. (2021). Modifica-
tion of newell’s car-following model incorporating multidimensional
stochastic parameters for emission estimation. Transportation Research
Part D: Transport and Environment, 91, 102692.

Meng, Q., & Khoo, H. L. (2009). Self-similar characteristics of vehicle arrival
pattern on highways. Journal of Transportation Engineering, 135(11),
864–872.

Menneni, S., Sun, C., & Vortisch, P. (2008). Microsimulation calibration using
speed-flow relationships. Transportation Research Record, 2088(1), 1–9.

Miller, J. A., Han, J., & Hybinette, M. (2010). Using domain specific language
for modeling and simulation: Scalation as a case study. Proceedings of
the 2010 Winter Simulation Conference, 741–752.

Missouri-DOR. (2022). 2022 missouri driver guide. Missouri Department of
Revenue. Jefferson City, MO. https://dor.mo.gov/forms/Driver%
20Guide.pdf

Montanino, M., Ciuffo, B., & Punzo, V. (2012). Calibration of microscopic
traffic flow models against time-series data. 2012 15th International IEEE
Conference on Intelligent Transportation Systems, 108–114.

Mori, U., Mendiburu, A., Álvarez, M., & Lozano, J. A. (2015). A review of
travel time estimation and forecasting for advanced traveller informa-
tion systems. Transportmetrica A: Transport Science, 11(2), 119–157.

Nagel, K., & Schreckenberg, M. (1992). A cellular automaton model for freeway
traffic. Journal de physique I, 2(12), 2221–2229.

Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization.
The computer journal, 7(4), 308–313.

Newell, G. F. (1961). Nonlinear effects in the dynamics of car following. Oper-
ations research, 9(2), 209–229.

Nikovski, D., Nishiuma, N., Goto, Y., & Kumazawa, H. (2005). Univariate
short-term prediction of road travel times. Intelligent Transportation
Systems, 2005. Proceedings. 2005 IEEE, 1074–1079.

of Transportation, C. D. (2020). Pems user guide.
of Transportation, C. D. (n.d.). Pems.

129

https://dor.mo.gov/forms/Driver%20Guide.pdf
https://dor.mo.gov/forms/Driver%20Guide.pdf

Okutani, I., & Stephanedes, Y. J. (1984). Dynamic prediction of traffic vol-
ume through kalman filtering theory. Transportation Research Part B:
Methodological, 18(1), 1–11.

Osorio, C., & Chong, L. (2012). An efficient simulation-based optimization
algorithm for large-scale transportation problems. In C. Laroque, J.
Himmelspach, R. Pasupathy, O. Rose, & A. M. Uhrmacher (Eds.), Pro-
ceedings of the 2012 winter simulation conference (pp. 3916–3926). Insti-
tute of Electrical; Electronics Engineers, Inc.

Park, B., & Qi, H. (2005). Development and evaluation of a procedure for
the calibration of simulation models. Transportation Research Record,
1934(1), 208–217.

Paveri-Fontana, S. (1975). On boltzmann-like treatments for traffic flow: A
critical review of the basic model and an alternative proposal for dilute
traffic analysis. Transportation research, 9(4), 225–235.

Paz, A., Molano, V., & Gaviria, C. (2012). Calibration of corsim models con-
sidering all model parameters simultaneously. 2012 15th International
IEEE Conference on Intelligent Transportation Systems, 1417–1422.

Paz, A., Molano, V., Martinez, E., Gaviria, C., & Arteaga, C. (2015). Calibra-
tion of traffic flow models using a memetic algorithm. Transportation
Research Part C: Emerging Technologies, 55, 432–443.

Peng, H., Bobade, S. U., Cotterell, M. E., & Miller, J. A. (2018). Forecasting
traffic flow: Short term, long term, and when it rains. International
Conference on Big Data, 57–71.

Peng, H., Klepp, N., Toutiaee, M., Arpinar, I. B., & Miller, J. A. (2019). Knowl-
edge and situation-aware vehicle traffic forecasting. 2019 IEEE Interna-
tional Conference on Big Data (Big Data), 3803–3812.

Pereira, J. L., & Rossetti, R. J. (2012). An integrated architecture for autonomous
vehicles simulation. Proceedings of the 27th annual ACM symposium on
applied computing, 286–292.

Petersen, K. B., Pedersen, M. S. et al. (2008). The matrix cookbook. Technical
University of Denmark, 7(15), 510.

Pipes, L. A. (1953). An operational analysis of traffic dynamics. Journal of
applied physics, 24(3), 274–281.

Pourabdollah, M., Bjärkvik, E., Fürer, F., Lindenberg, B., & Burgdorf, K. (2017).
Calibration and evaluation of car following models using real-world
driving data. 2017 IEEE 20th International conference on intelligent trans-
portation systems (ITSC), 1–6.

Prigogine, I., & Andrews, F. C. (1960). A boltzmann-like approach for traffic
flow. Operations Research, 8(6), 789–797.

130

Punzo, V., & Tripodi, A. (2007). Steady-state solutions and multiclass calibra-
tion of gipps microscopic traffic flow model. Transportation Research
Record, 1999(1), 104–114.

Radwan, E., Elahi, M., & Goul, M. (1990). Knowledge based systems applica-
tions for traffic signal control. OECD Workshop on Knowledge-Based
Expert Systems in Transportation Part 1 (of 2).

Rahman, M. M., Ismail, M. T., & Ali, M. K. M. (2020). Comparing the cali-
bration methods for intelligent driver model using beijing data. Inter-
national Journal of Vehicle Systems Modelling and Testing, 14(4), 215–
231.

Ran, B., Jin, P. J., Boyce, D., Qiu, T. Z., & Cheng, Y. (2012). Perspectives on
future transportation research: Impact of intelligent transportation sys-
tem technologies on next-generation transportation modeling. Journal
of Intelligent Transportation Systems, 16(4), 226–242.

Richard, I. (2021). Tesla model s plaid: Peak acceleration is at 1.2 g’s, elon musk
says its ’faster than failing’.

Richards, P. I. (1956). Shock waves on the highway. Operations research, 4(1),
42–51.

Salimifard, K., & Ansari, M. (2013). Modeling and simulation of urban traffic
signals. International Journal of Modeling and Optimization, 3(2), 172.

Schimbinschi, F., Moreira-Matias, L., Nguyen, V. X., & Bailey, J. (2017). Topology-
regularized universal vector autoregression for traffic forecasting in large
urban areas. Expert Systems with Applications.

Schimbinschi, F., Nguyen, X. V., Bailey, J., Leckie, C., Vu, H., & Kotagiri, R.
(2015). Traffic forecasting in complex urban networks: Leveraging big
data and machine learning. Big Data (Big Data), 2015 IEEE Interna-
tional Conference on, 1019–1024.

Schultz, G. G., & Rilett, L. (2004). Analysis of distribution and calibration of
car-following sensitivity parameters in microscopic traffic simulation
models. Transportation Research Record, 1876(1), 41–51.

Schulze, T., & Fliess, T. (1997). Urban traffic simulation with psycho-physical
vehicle-following models. Proceedings of the 29th conference on Winter
simulation, 1222–1229.

Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. (2010). Rus-
boost: A hybrid approach to alleviating class imbalance. IEEE Transac-
tions on Systems, Man, and Cybernetics-Part A: Systems and Humans,
40(1), 185–197.

Semarak, J. (1996). Intelligent traffic lights control by fuzzy logic. Malaysian
Journal of Computer Science, 9(2), 29–35.

131

Shanno, D. F. (1970). Conditioning of quasi-newton methods for function
minimization. Mathematics of computation, 24(111), 647–656.

Sichitiu, M. L., & Kihl, M. (2008). Inter-vehicle communication systems: A
survey. IEEE Communications Surveys & Tutorials, 10(2).

Smirnov, N. (1948). Table for estimating the goodness of fit of empirical distri-
butions. The annals of mathematical statistics, 19(2), 279–281.

Smith, B. L., Williams, B. M., & Oswald, R. K. (2002). Comparison of para-
metric and nonparametric models for traffic flow forecasting. Trans-
portation Research Part C: Emerging Technologies, 10(4), 303–321.

Spall, J. C. et al. (1992). Multivariate stochastic approximation using a simul-
taneous perturbation gradient approximation. IEEE transactions on
automatic control, 37(3), 332–341.

Spall, J. C. (1998a). Implementation of the simultaneous perturbation algo-
rithm for stochastic optimization. IEEE Transactions on aerospace and
electronic systems, 34(3), 817–823.

Spall, J. C. (1998b). An overview of the simultaneous perturbation method for
efficient optimization. Johns Hopkins apl technical digest, 19(4), 482–
492.

Spall, J. C., & Chin, D. C. (1997). Traffic-responsive signal timing for system-
wide traffic control. Transportation Research Part C: Emerging Tech-
nologies, 5(3-4), 153–163.

Stathopoulos, A., & Karlaftis, M. G. (2003). A multivariate state space ap-
proach for urban traffic flow modeling and prediction. Transportation
Research Part C: Emerging Technologies, 11(2), 121–135.

Stigler, S. M. (1981). Gauss and the invention of least squares. the Annals of
Statistics, 465–474.

Suh, W., Henclewood, D., Guin, A., Guensler, R., Hunter, M., & Fujimoto,
R. (2017). Dynamic data driven transportation systems. Multimedia
Tools and Applications, 1–17.

Sumaryo, S., Halim, A., & Ramli, K. (2013). Improved discrete event simulation
model of traffic light control on a single intersection. QiR (Quality in
Research), 2013 International Conference on, 116–120.

Sun, S., Zhang, C., & Yu, G. (2006). A bayesian network approach to traffic
flow forecasting. IEEE Transactions on intelligent transportation sys-
tems, 7(1), 124–132.

Sussman, J. S. (2008). Perspectives on intelligent transportation systems (its).
Springer Science & Business Media.

Suzumura, T., & Kanezashi, H. (2013). A holistic architecture for super real-
time multiagent simulation platforms. In R. P. S.-H. K. A. T. R. Hill &

132

M. E. Kuhl (Eds.), Proceedings of the 2013 winter simulation conference
(pp. 1604–1612). Institute of Electrical; Electronics Engineers, Inc.

Tampère, C. M., Corthout, R., Cattrysse, D., & Immers, L. H. (2011). A generic
class of first order node models for dynamic macroscopic simulation
of traffic flows. Transportation Research Part B: Methodological, 45(1),
289–309.

Thulasidasan, S., & Eidenbenz, S. (2009). Accelerating traffic microsimula-
tions: A parallel discrete-event queue-based approach for speed and
scale. In M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, & R. G.
Ingalls (Eds.), Proceedings of the 2009 winter simulation conference (pp. 2457–
2466). Institute of Electrical; Electronics Engineers, Inc.

Thulasidasan, S., Kasiviswanathan, S., Eidenbenz, S., Galli, E., Mniszewski,
S., & Romero, P. (2009). Designing systems for large-scale, discrete-
event simulations: Experiences with the fasttrans parallel microsimula-
tor. High Performance Computing (HiPC), 2009 International Confer-
ence on, 428–437.

Touhbi, S., Babram, M. A., Nguyen-Huu, T., Marilleau, N., Hbid, M. L., Cam-
bier, C., & Stinckwich, S. (2018). Time headway analysis on urban
roads of the city of marrakesh. Procedia computer science, 130, 111–118.

Treiber, M., Hennecke, A., & Helbing, D. (2000). Congested traffic states in
empirical observations and microscopic simulations. Physical review E,
62(2), 1805.

Treiber, M., & Kesting, A. (2013). Microscopic calibration and validation of
car-following models–a systematic approach. Procedia-Social and Be-
havioral Sciences, 80, 922–939.

Van Aerde, M., Hellinga, B., Baker, M., & Rakha, H. (1996). Integration:
An overview of traffic simulation features. Transportation Research
Records.

Van Aerde, M., & Yagar, S. (1988). Dynamic integrated freeway/traffic signal
networks: A routing-based modelling approach. Transportation Re-
search Part A: General, 22(6), 445–453.

Van der Horst, A. (2011). Calibration of the idm and metanet traffic flow models.
Delft University.

van Wageningen-Kessels, F., Van Lint, H., Vuik, K., & Hoogendoorn, S. (2015).
Genealogy of traffic flow models. EURO Journal on Transportation and
Logistics, 4(4), 445–473.

Vasconcelos, L., Neto, L., Santos, S., Silva, A. B., & Seco, Á. (2014). Calibration
of the gipps car-following model using trajectory data. Transportation
Research Procedia, 3, 952–961.

133

Vlahogianni, E. I. (2015). Computational intelligence and optimization for
transportation big data: Challenges and opportunities. Engineering
and applied sciences optimization (pp. 107–128). Springer.

Vlahogianni, E. I., Golias, J. C., & Karlaftis, M. G. (2004). Short-term traffic
forecasting: Overview of objectives and methods. Transport reviews,
24(5), 533–557.

Vlahogianni, E. I., Karlaftis, M. G., & Golias, J. C. (2014). Short-term traf-
fic forecasting: Where we are and where we’re going. Transportation
Research Part C: Emerging Technologies, 43, 3–19.

Wang, L. (2005). A hybrid genetic algorithm–neural network strategy for sim-
ulation optimization. Applied Mathematics and Computation, 170(2),
1329–1343.

Wang, X. (2005). Integrating gis, simulation models, and visualization in traffic
impact analysis. Computers, Environment and Urban Systems, 29(4),
471–496.

Werbos, P. (1974). Beyond regression:" new tools for prediction and analysis in
the behavioral sciences. Ph. D. dissertation, Harvard University.

Whittle, P. (1951). Hypothesis testing in time series analysis (Vol. 4). Almqvist &
Wiksells boktr.

Wiedemann, R. (1974). Simulation des strassenverkehrsflusses. Schriftenreihe
des Instituts fuer Verkehrswesen der Universitaet Karlsruhe (, (8).

Wiedemann, R. (1991). Modelling of rti-elements on multi-lane roads. Drive
Conference (1991: Brussels, Belgium), 2.

Wilkie, D., Sewall, J., & Lin, M. C. (2012). Transforming gis data into func-
tional road models for large-scale traffic simulation. IEEE transactions
on visualization and computer graphics, 18(6), 890–901.

Wilkinson, R. I. (1956). Theories for toll traffic engineering in the usa. Bell
System Technical Journal, 35(2), 421–514.

Williams, B., Durvasula, P., & Brown, D. (1998). Urban freeway traffic flow
prediction: Application of seasonal autoregressive integrated moving
average and exponential smoothing models. Transportation Research
Record: Journal of the Transportation Research Board, (1644), 132–141.

Williams, B. M., & Hoel, L. A. (2003). Modeling and forecasting vehicular
traffic flow as a seasonal arima process: Theoretical basis and empirical
results. Journal of transportation engineering, 129(6), 664–672.

Wong, G., & Wong, S. (2002). A multi-class traffic flow model–an extension
of lwr model with heterogeneous drivers. Transportation Research Part
A: Policy and Practice, 36(9), 827–841.

134

Yang, H., Dillon, T. S., & Chen, Y.-P. P. (2015). Evaluation of recent computa-
tional approaches in short-term traffic forecasting. IFIP International
Conference on Artificial Intelligence in Theory and Practice, 108–116.

Ye, F., & Zhang, Y. (2009). Vehicle type–specific headway analysis using freeway
traffic data. Transportation research record, 2124(1), 222–230.

Yu, M., & Fan, W. D. (2017). Calibration of microscopic traffic simulation
models using metaheuristic algorithms. International Journal of Trans-
portation Science and Technology, 6(1), 63–77.

Zehe, D., Cai, W., Knoll, A., & Aydt, H. (2015). Tutorial on a modeling and
simulation cloud service. In L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K.
Roeder, C. Macal, & M. D. Rossetti (Eds.), Proceedings of the 2015 winter
simulation conference (pp. 103–114). Institute of Electrical; Electronics
Engineers, Inc.

Zhang, X., & Rice, J. A. (2003). Short-term travel time prediction. Transporta-
tion Research Part C: Emerging Technologies, 11(3), 187–210.

Zhou, X., & Taylor, J. (2014). Dtalite: A queue-based mesoscopic traffic sim-
ulator for fast model evaluation and calibration. Cogent Engineering,
1(1), 961345.

Zozaya-Gorostiza, C., & Hendrickson, C. (1987). Expert system for traffic
signal setting assistance. Journal of Transportation Engineering, 113(2),
108–126.

135

Appendix A

Appendix

A.1 Parameter Estimation

A.1.1 Maximum Likelihood Estimation
One technique for parameter estimation is Maximum Likelihood estimation,
which is credited to Fisher (Aldrich, 1997). This assumes the data fit some
joint probability distribution. Since the data from the system is assumed to
rely on the value of the parameters, the goal is to estimate the values of the pa-
rameters such that the probability of observing this data sample is maximized.
Let f(y;θ) be the probability density function for the distribution, and let
y = (y1, y2, ..., yn). Then the likelihood function is defined

L(θ|y) = f(y|θ) (A.1)

and if y is an i.i.d. random variable, the likelihood function can be defined as

L(θ|y) =
n∏

k=1

f(yk|θ) (A.2)

where a logarithm is usually taken to produce the log-likelihood function

LL(θ|y) =
n∑

k=1

log(f(yk;θ)) (A.3)

and the maximum likelihood estimate (MLE) is defined as

θ̂ = argmax
θ

(LL(θ; y)) (A.4)

136

In the case where the distribution is aN (µ, σ2) normal distribution, the
pdf is

fk(yk|µ, σ2) =
1√
2πσ2

e
1
2(

yk−µ

σ)
2

(A.5)

where yk are the k = 1...n data values, µ, the mean of the distribution, and
σ2, the variance of the distribution, are the parameters of the model. Then the
likelihood function is given by

L(µ, σ2|y) =
n∏

k=1

1√
2πσ2

e−
1
2(

yk−µ

σ)
2

(A.6)

and the log-likelihood becomes

− LL(µ, σ2|y) = n

2
log(2πσ2) +

1

2σ2

n∑
k=1

(yk − µ)2 (A.7)

where the negative sign has been moved to the other side of the equation.
The picture is not so straightforward for time series, because the assumption

of an i.i.d. random variable is not usually true since the next data value is related
to the previous value in a typical time series.

Maximum likelihood estimation for a time series can be done by redefining
the problem as a conditional MLE problem. To begin to understand the pro-
cess, consider a simple AR(2) autoregressive time series model with a single lag
(Hyndman & Athanasopoulos, 2018):

yt = ϕ1yt−1 + ϕ2 yt−2 + εt (A.8)

where c,ϕ1, andϕ2 are real numbers and εt ∼ N (0, σ2) i.i.d. is the white noise.
Then for zero-centered time series data y = (y1, ..., yn) and parameter vector
θ = (ϕ1, ϕ2, σ) we can define the conditional PDF f(y3, ..., yn|y1, y2,θ).

Define ŷt to be the forecast value from the model as in

ŷt = ϕ1yt−1 + ϕ2 yt−2 (A.9)

Now let εt = yt − ŷt = yt − ϕ1yt−1 − ϕ2yt−2 represent the noise found in
the data for t = 3, ..., n. The white noise values are assumed to be indepen-
dently drawn from aN (0, σ2) normal random variable, and therefore give the
following form to the PDF:

137

f(y3, ..., yn|y1, y2,θ) =
n∏

t=3

1√
2πσ2

e−
ε2

2σ2

=
n∏

t=3

1√
2πσ2

e−
(yt−ϕ1yt−1−ϕ2yt−2)

2

2σ2

(A.10)

and the negative log-likelihood function is defined as:

−LL(θ|y) = n− 2

2
ln(2πσ2)+

1

2σ2

n∑
t=3

(yt−ϕ1yt−1−ϕ2 yt−2)
2 (A.11)

This process can be extended to general AR(p) models but is a complex
process. A similar process can also be carried out for moving average models
which allows for an MLE method for combined ARMA models.

As the number of parameters in the time series models rises, the complexity
of the MLE process also rises and is also susceptible to overfitting. To deal with
the problem of overfitting, various information criteria can be used to choose
the right model, rather than just choosing the model with the optimized log-
likelihood value. The Akaike information criterion (AIC) is defined

AIC = 2k − 2LL(θ|y) (A.12)

where k is the number of model parameters is the optimized likelihood value.
Among candidate models, the one with the lowest AIC will be the preferred
one. The first term of the AIC calculation increases directly with the number of
parameters, and so the method penalizes larger numbers of parameters. Overfit-
ting commonly occurs when extra parameters are included for the sole purpose
of fitting the given data, regardless of whether there is a theoretical reason to
include the extra parameters.

Another information criterion is the Bayesian information criterion (BIC)
defined

BIC = k log(n)− 2LL(θ|y) (A.13)

where n is the number of data points, and the other values have the same mean-
ing as the AIC. Like the AIC, there is a penalty assessed for increasing the
number of parameters, discouraging overfitting. Note that BIC also depends
on the number of data points n, which allows for models to be compared using
different sizes of data sets (otherwise the value of n would be constant across all

138

BIC values and have no power to differentiate models). This implies that the
model with the best performance on the smallest (reasonable) amount of data
is likely the preferred model.

A.1.2 Least Squares Estimation
The method of Least Squares Estimation (LSE) has existed since at least 1805
when Legendre published a paper on determining the orbits of comets, however,
Gauss later claimed to have known of the method since around 1795 (Stigler,
1981). Since this project deals with time series data, the method will be presented
in terms of an AR(2) autoregressive model as in the maximum likelihood esti-
mation above.

Consider once again the definitions of Equations A.8 and A.9 for zero-
centered time series data y = (y3, ..., yn)

T and parameter vectorθ = (ϕ1, ϕ2)
T.

This time series can be written as

yt = ϕ1yt−1 + ϕ2yt−2 + εt (A.14)

for t = 3, ..., n. The LSE process is to minimize the sum of squared residuals,
which yields the conditional sum of squares function:

θ̂ = argmin
θ

n∑
t=3

ε2t

= argmin
θ

n∑
t=3

(yt − ϕ1yt−1 − ϕ2yt−2)
2

(A.15)

This function is conditional on the initial values of the time series. Equation
A.14 can be written in matrix form as

y = Xθ + ε (A.16)

where

y =

y3
y4
...
yn

 ,X =

y2 y1
y3 y2
...

yn−1 yn−2

 , ε =

ε3
ε4
...
εn

Using matrix notation Equation A.15 can be rewritten as

θ̂ = argmin
θ
∥y−Xθ∥2 (A.17)

139

where ∥·∥ is the ℓ2-norm. Set S = ∥y−Xθ∥2. Then expanding S results in

S = ∥y−Xθ∥2 = (y−Xθ)T(y−Xθ)

= yTy− yTXθ − θTXTy + θTXTXθ

= yTy− 2θTXTy + θTXTXθ

(A.18)

using the fact that yTXθ = θTXTy.
Differentiating this matrix equation with respect to θ using matrix differ-

entiation rules (Petersen, Pedersen, et al., 2008) gives

∂S

∂θ
= −2XTy + 2XTXθ (A.19)

and setting this equal to zero gives the normal equation

XTXθ̂ = XTy (A.20)

where θ̂ is substituted as the theoretical minimum of the function. In practice,
however, the system in Equation A.16 would typically be solved numerically
using a matrix factorization technique such as QR, Cholesky, or SVD.

A.2 Extending ScalaTion for Traffic Simula-
tion

A microscopic traffic simulation system requires, at minimum, several essential
elements:

1. An arrival model to introduce vehicles to the system

2. A car-following model to control how vehicles move within the system

3. A network of roads on which the vehicles move

A.2.1 System Code
The system is run by the Simulation class which extends ScalaTion’s Model
class. This class sets up the traffic network by creating instances of the classes
described in Tables A.1 and A.2. Each Source must be given a random variable
for creating arrivals based on the arrival modeling defined in Sections 4.3 and
A.2.2. Once the traffic network has been created the simulation is started and

140

Table A.1: Location-oriented System Classes

Class Description
Source Vehicles are generated in the simulation at Sources
Sensor Sensors keep track of vehicle data such as counts and speeds and

correspond in location to the placement of real-world traffic
sensors

Sink Vehicles exit the simulation at Sinks

Table A.2: Movement-oriented System Classes

Class Description
Lane A Lane is a single line of traffic flow. This is where the vehicles

actually move
Section Sections are made up of multiple Lanes usually connecting

Sources to Sensors, Sensors to Sensors, or Sensors to Sinks
Highway A Highway object is a multi-lane, multi-Section stretch of a

limited access highway that will usually begin with a Source
and end with a Sink

Vehicle Vehicles are the entities that move around the traffic network.

Vehicles are introduced at Sources. Vehicles extend ScalaTion’s SimActor
class, and so must implement the act method of SimActor.

ScalaTion has an animation tool that was altered to include zooming
and shifting capabilities. Figures A.1, A.2, and A.3 show the traffic system ani-
mation at three different zoom levels.

In order to place sensor locations and the roads in the right places within
the simulation, the latitude and longitude of each sensor were used to create
the simulation structure. The simulation uses speeds measured in meters per
second so distances must be measured in meters. In this particular traffic net-
work, the direction of travel is northbound, and since the animation system
places the origin in the top left corner of the animation canvas, the first point
placed, at animation coordinate (10.0, 10.0) was the simulation sink. Then,
given the latitudes and longitudes of each sensor, the animation grid point of
the sink, and the formula for calculating the real-world distance between GPS
coordinates, each other sensor, working back to the source, could be located in
the system, where the system distances would mirror the real-world distances in
meters. The code for these calculations is given below in Table ??. The formulas

141

Figure A.1: Screen Grab of Traffic System Animation

for calculating the real-world distance between GPS coordinates are contained
in the LatitudeLongitude class in ScalaTion.

142

Figure A.2: Screen Grab of Traffic System Animation

Figure A.3: Screen Grab of Traffic System Animation

143

Table A.3: Source Code for Determining System Coordinates

1 / / :
2 / * * C o d e t o c o n v e r t l a t i t u d e and l o n g i t u d e c o o r d i n a t e s t o
3 * a n i m a t i o n c o o r d i n a t e s . T h e s e v a l u e s r e f l e c t d i s t a n c e s
4 * i n m e t e r s i n t h e r e a l w o r l d .
5 * /
6 o b j e c t L a t L o n g
7 {
8 type p t = T u p l e 2 [Double , Double]
9

10 / / :
11 / * * C a l c u l a t e t h e new g r i d p o i n t f r o m p r e v i o u s g r i d p o i n t
12 * and l a t − l o n g c o o r d i n a t e s
13 * @param l l 1 l a t − l o n g c o o r d i n a t e s f o r f i r s t p o i n t
14 * @param l l 2 l a t − l o n g c o o r d i n a t e s f o r n e x t p o i n t
15 * @param x y 1 a n i m a t i o n g r i d p o i n t f o r f i r s t p o i n t
16 * /
17 def c a l c G r i d P o i n t (l l 1 : pt , l l 2 : pt , x y 1 : p t) : p t =
18 {
19 v a l l a l o 1 = new L a t i t u d e L o n g i t u d e (l l 1 . _ 1 , l l 1 . _2)
20 v a l l a l o 2 = new L a t i t u d e L o n g i t u d e (l l 2 . _ 1 , l l 2 . _2)
21 v a l r x y = l a l o 1 . d i s t a n c e (l a l o 2)
22 v a l r l l = l l D i s t a n c e (l l 1 , l l 2)
23 v a l d i l = r x y / r l l / / s c a l e f a c t o r b e t w e e n l a t − l o n g
24 v a l d l o = l l 2 . _2 − l l 1 . _2 / / and a n i m a t i o n
25 v a l d l a = l l 2 . _ 1 − l l 1 . _ 1
26 v a l nx = x y 1 . _ 1 + d l o * d i l / / x− c o o r d f o r new p t
27 v a l ny = x y 1 . _2 − d l a * d i l / / y− c o o r d f o r new p t
28 (nx , ny)
29 } / / c a l c G r i d P o i n t
30
31 / / :
32 / * * E u c l i d e a n d i s t a n c e b e t w e e n l a t − l o n g c o o r d i n a t e s .
33 * @param p 1 l a t − l o n g c o o r d i n a t e s f o r f i r s t p o i n t
34 * @param p 2 l a t − l o n g c o o r d i n a t e s f o r n e x t p o i n t
35 * /
36 def l l D i s t a n c e (p 1 : pt , p2 : p t) : Double =
37 {
38 v a l dx = p2 . _2 − p 1 . _2
39 v a l dy = p2 . _ 1 − p 1 . _ 1
40 Math . s q r t (dx * dx + dy * dy)
41 } / / l l D i s t a n c e
42 } / / L a t L o n g

144

A.2.2 Arrival Model Code
ScalaTion handled simulation arrivals by using random variables to pro-
duce interarrival times. In principle, this is quite flexible, but there were no
built-in random variable types that could produce realistic traffic arrivals based
on real traffic data. The first step required to provide realistic arrivals was to
find an appropriate mathematical model for system arrivals with multiple busy
periods. The model that showed real promise for ease of use, flexibility, and ac-
curacy was the Nonhomogeneous Poisson Process (NHPP), and specifically the
procedure given by Leemis (L. M. Leemis, 1991), and in (L. M. Leemis, 2004).
The original paper included pseudocode for generating event times based on
the procedure, which was translated into scala code. This code is presented in
Table A.4:

Table A.4: Source Code for Generating NHPP Event Times

1 / / :
2 / * * C o m p u t e a r r i v a l t i m e s o f t h e NHPP .
3 * /
4 def genTime : Double =
5 {
6 t l a s t = t
7 e += e _ r v . g e n
8 f o r (i <− 0 u n t i l l s u m . dim i f e <= l s u m (i)) {
9 v a l l s u m _ i _ 1 = i f (i == 0) 0 . 0 e l s e l s u m (i − 1)

10 v a l d = e − l s u m _ i _ 1
11 t = d t * (i + d / (l s u m (i) − l s u m _ i _ 1))
12 r e t u r n t
13 } / /
14 f l a w (" g e n " , " c u m u l a t i v e e v a l u e l a r g e r t h a n l a s t l s u m ")
15 − 1 . 0
16 } / / g e n

Note that the for loop on line 8 contains an if-statement, and actually only
executes the body of the loop when the right interval in the cumulative rate
function has been found. Once the NHPP was coded it could be used with
the Source class provided in ScalaTion. This class produces new entities
by using a given random variable to generate a new interarrival time and then
putting that on the event scheduler.

145

A.2.3 Vehicle Code
When vehicles are created they are ultimately controlled by their act methods.
The act method directs them by telling them to move down particular roads
and sets up the vehicle’s parameters such as velocity, acceleration, etc. The act
method calls a method to choose a lane as well. The highway modeled in this
project contains three lanes, and when vehicles are created in the system, they
are placed in the lane with the fewest total number of other vehicles. If they all
have the same number of vehicles then the algorithm defaults to a randomly
chosen index. Internally, though the roads have a ScalaTion object that controls
the motion of the vehicles on that segment, there is also a multidimensional
ArrayBuffer that contains references to the vehicles. Each vehicle maintains a
reference to the vehicle in front of it and the vehicle behind it. These references
are called "pred" (for predecessor), and "succ" (for successor). This creates a basic
linked list structure, and when vehicles are placed on the road the links have to
be updated. This will eventually facilitate the inclusion of lane changing and
merging.

Once the vehicles have been assigned a lane, their velocity is set. The simula-
tion source is merely the simulation horizon on the freeway, but the vehicles are
assumed to already be driving at some speed. All vehicles desire to drive vmax
meters per second, which is a maximum velocity that can be set to a specific
value, or randomly assigned, however, it is not always possible for the vehicle
to be driving at this speed at the beginning. Once the vehicle was assigned a
lane, and its predecessor determined, it is given the minimum of its own vmax
value and the current velocity of its predecessor. However, it is possible that at
times of sparse traffic, there is not a predecessor, and in this case, the vehicle is
assumed to already be driving at its vmax value.

Now that the vehicle has been assigned a velocity, it is moved down the
corridor, which is the ScalaTion object representing the traffic network from
source to sink. The corridor handles the movement of the vehicle and updates
its position using the car-following model. Once the corridor has moved the
vehicle to the sink, the vehicle leaves the simulation at its destination. Vehicles
have a destination variable to eventually facilitate multiple exits (multiple sinks).
Once the vehicle exits the simulation the links to other vehicles must be reset.

146

Table A.5: Car case class

1 / / :
2 / * * Car c a s e c l a s s t h a t r e p r e s e n t s v e h i c l e s i n t h e
3 * n e t w o r k . The a r g u m e n t s f o r t h e V e h i c l e c o n s t r u c t o r
4 * c o m e f r o m a b o v e .
5 * /
6 c a s e c l a s s Car () e x t e n d s V e h i c l e (" c_ " + c o u n t , t h i s , V e c t o r D (τ , amax ,
7 bmax , 0 . 0 , vmax , T , s , l e n , δ))
8 {
9 / / :

10 / * * a c t m e t h o d f o r c a r s g e n e r a t e d a t t h e f i r s t
11 * s o u r c e (t h e s e c a r s a r e a l r e a d y on t h e h i g h w a y)
12 * /
13 def a c t () : U n i t =
14 {
15 v a l j = c h o o s e L a n e (l a n e C h o i c e . g e n . t o I n t) / / l a n e number
16 l a n e = j
17 t h i s += : c a r s (j)
18 i f (c a r s (j) . l e n g t h > 1) {
19 p r e d = c a r s (j) (1)
20 c a r s (j) (1) . s u c c = t h i s
21 v e l o c i t y = min (vmax , 0 . 9 * p r e d . v e l o c i t y)
22 } e l s e {
23 v e l o c i t y = vmax
24 } / / i f
25 c o r . move (j)
26 c a r s (j) −= t h i s
27 d e s t . l e a v e ()
28 i f (s u c c ! = n u l l && p r e d ! = n u l l) {
29 s u c c . p r e d = p r e d
30 p r e d . s u c c = s u c c
31 } e l s e i f (s u c c ! = n u l l) {
32 s u c c . p r e d = n u l l
33 } e l s e {
34 p r e d . s u c c = n u l l
35 } / / i f
36 } / / a c t
37
38 / / :
39 / * * Method t o c h o o s e w h i c h l a n e t h e c a r s h o u l d b e i n
40 * @param i i t h e l a n e c h o s e n randommly
41 * /
42 def c h o o s e L a n e (i i : I n t) : I n t =
43
44 var j = 0
45 var n = c o r . c a r s (i i) . l e n g t h
46 f o r (i <− c o r . c a r s . i n d i c e s) {
47 v a l nn = c o r . c a r s (i) . l e n g t h
48 i f (nn < n) {
49 n = nn
50 j = i
51 } / / i f
52 } / / f o r
53 j
54 } / / c h o o s e L a n e
55
56 } / / Car

147

A.2.4 Car-Following Code
Originally ScalaTion did not include car-following models in any way.
Movement within a simulation was controlled by setting the total time it should
take an object to move down a pathway and evenly dividing this along the path-
way itself. For vehicles on a highway, this type of movement would not work
because vehicles must be able to speed up and slow down depending on what
is happening around them. In order to achieve more realistic movement of the
vehicles, the implementation of car-following models was required. The Mo-
tion class serves as a general-purpose car-following model class, where in fact
many car-following models could be implemented.

Table A.6 shows two functions implementing the car-following mode of
the IDM, and the free-driving mode, respectively.

Table A.6: Source Code for IDM Implementation

1 / / :
2 / * * R e t u r n t h e a c c e l e r a t i o n o f t h e v e h i c l e b a s e d on t h e I n t e l l i g e n t
3 * D r i v e r m o d e l .
4 * @param an max a c c e l e r a t i o n
5 * @param bn max d e c e l e r a t i o n
6 * @param s p l e n g t h o f p r e v i o u s c a r
7 * @param V0 d e s i r e d v e l o c i t y
8 * @param xn p o s i t i o n o f c u r r e n t c a r
9 * @param vn v e l o c i t y o f c u r r e n t c a r

10 * @param x p p o s i t i o n o f p r e v i o u s c a r
11 * @param v p v e l o c i t y o f p r e v i o u s c a r
12 * @param T t i m e h e a d w a y
13 * @param s 0 d i s t a n c e h e a d w a y
14 * @param δ IDM e x p o n e n t
15 * /
16 def IDM (an : Double , bn : Double , s p : Double , V0 : Double , xn : Double ,
17 vn : Double , xp : Double , vp : Double , T : Double , s 0 : Double ,
18 δ : Double) : Double =
19 {
20 v a l ∆x = xp − xn − s p
21 v a l ∆v = vn − vp
22 v a l s s = s 0 + vn * T + (vn * ∆v) / (2 . 0 * Math . s q r t (an * bn))
23 v a l a = an * (1 . 0 − (vn / V0) ~ˆ δ − (s s / ∆x) ∼ ∧ 2 . 0)
24 a
25 } / / IDM
26
27 / / :
28 / * * R e t u r n t h e a c c e l e r a t i o n o f t h e v e h i c l e b a s e d on t h e IDM
29 * when t h e r e i s no p r e v i o u s c a r .
30 * @param an max a c c e l e r a t i o n
31 * @param V0 d e s i r e d v e l o c i t y
32 * @param vn v e l o c i t y o f c u r r e n t c a r
33 * @param δ IDM e x p o n e n t
34 * /
35 def IDMFree (an : Double , vn : Double , V0n : Double ,
36 δ : Double = 4 . 0) : Double =
37 {
38 an * (1 . 0 − (vn / V0) ∼ ∧ δ)
39 } / / IDMFree

148

The IDM was only one of the car-following models used in the work. The
other was Gipps’ Model and the code for implementing it is presented in Table
A.7.

Table A.7: Source Code for Gipps’ Model Implementation

1 / / :
2 / * * R e t u r n t h e v e l o c i t y o f t h e v e h i c l e b a s e d on G i p p s ’ m o d e l .
3 * @param an t h e max a c c e l e r a t i o n o f d r i v e r n
4 * @param bn t h e max d e c e l e r a t i o n o f d r i v e r n (n e g a t i v e #)
5 * @param s p t h e s i z e o f t h e p r e d e c e s s o r ’ s v e h i c l e
6 * @param Vn t h e d e s i r e d v e l o c i t y o f d r i v e r n
7 * @param xn t h e c u r r e n t p o s i t i o n o f d r i v e r n
8 * @param vn t h e c u r r e n t v e l o c i t y o f d r i v e r n
9 * @param x p t h e c u r r e n t p o s i t i o n o f t h e p r e d e c e s s o r

10 * @param v p t h e c u r r e n t v e l o c i t y o f t h e p r e d e c e s s o r
11 * @param τ t h e r e a c t i o n t i m e o f d r i v e r n
12 * /
13 def g i p p s (an : Double , bn : Double , s p : Double , Vn : Double ,
14 xn : Double , vn : Double , xp : Double , vp : Double ,
15 τ : Double) : Double =
16 {
17 v a l f r e e = vn + 2 . 5 * an * τ * (1 . 0 − vn / Vn) *
18 Math . s q r t (0 . 0 2 5 + vn / Vn)
19 v a l c o n g = bn * τ + Math . s q r t (bn * bn * τ * τ −
20 bn * (2 * (xp − s p − xn) − vn * τ − vp * vp / bn))
21 Math . min (f r e e , c o n g)
22 } / / g i p p s

The car-following model itself is only a part of the system that controls
vehicle movement within the simulation. Also required are details about joining
roads and exiting roads. The code needed for constructing the traffic network
is located in the following classes:

Within the Lane code, the move method is where the action takes place,
and that code can be viewed in Table A.8

The if-statement on line 18 handles the situation when a vehicle has reached
its destination exit while still in the current lane. In this case, its predecessor
and successor vehicles must be linked up to keep the order of vehicles intact and
the car-following model running correctly. There are actually several cases that
must be processed, depending on whether the vehicle exiting the simulation
actually has a predecessor or successor at all. The vehicle will remain in the while
loop inside the move method until it has either exited the system, in which case
its "done" parameter is now true, or it has reached the end of this lane (reached
the next Sensor) and will be moving on to the next Section of the Highway.

149

Table A.8: Move Method in Lane.scala

1 / / :
2 / * * Move t h e v e h i c l e down t h e l a n e u s i n g t h e v e h i c l e ’ s own
3 * u p d a t e method , w h i c h u t i l i z e s a c a r − f o l l o w i n g m o d e l
4 * t o d e t e r m i n e t h e v e h i c l e ’ s n e x t c o o r d i n a t e s .
5 * @param x The d i s t a n c e a l o n g t h e l a n e a t w h i c h t h e
6 * t h e v e h i c l e b e g i n s i f c o m i n g f r o m a ramp .
7 * /
8 def move (x : Double = 0 . 0)
9 {

10 v a l a c t o r = d i r e c t o r . t h e A c t o r . a s I n s t a n c e O f [V e h i c l e]
11 a c t o r . d i s p = x
12 t a l l y (a c t o r . τ)
13 whi le (a c t o r . d i s p < r a t i o * l e n g t h && ! a c t o r . done) {
14 t r a c e (t h i s , " moves f o r " + a c t o r . τ , a c t o r , d i r e c t o r . c l o c k)
15 a c t o r . u p d a t e ()
16 d i r e c t o r . a n i m a t e (a c t o r , MoveToken , n u l l , n u l l ,
17 c a l c P o i n t (a c t o r . d i s p / r a t i o))
18 i f (a c t o r . d e s t . x <= a c t o r . t _ d i s p) {
19 a c t o r . done = t r u e
20 var p : V e h i c l e = n u l l
21 var s : V e h i c l e = n u l l
22 i f (a c t o r . p r e d ! = n u l l) p = a c t o r . p r e d
23 i f (a c t o r . s u c c ! = n u l l) s = a c t o r . s u c c
24 i f (p ! = n u l l && s ! = n u l l) {
25 p . s u c c = s
26 s . p r e d = p
27 } e l s e i f (p ! = n u l l && s == n u l l) {
28 p . s u c c = n u l l
29 } e l s e i f (p == n u l l && s ! = n u l l) {
30 s . p r e d = n u l l
31 }
32 a c t o r . p r e d = n u l l
33 a c t o r . s u c c = n u l l
34 }
35 a c t o r . s c h e d u l e (a c t o r . τ)
36 a c t o r . y i e l d T o D i r e c t o r ()
37 } / / w h i l e
38 } / / move

150

A.3 Genetic Algorithm Code
To facilitate the calibration of the model using a GA, the decision was made
to write custom code for this purpose. The code was still written to be fairly
generic, but knowledge of this simulation system helped tailor the process to
work well with these models. The GA is a standard approach to the idea where
a pool of candidate solutions is created at the start of the procedure, here using
random variables as described earlier in the paper, and then proceeding using the
evolutionary concepts of crossover and mutation to generate new candidates as
the algorithm progresses.

Table A.9: Solve Method for Genetic Algorithm

1 / / :
2 / * * S o l v e t h e o p t i m i z a t i o n p r o b l e m .
3 * @param s e e d s a (p o s s i b l y n u l l) a r r a y o f i n i t i a l
4 * c a n d i d a t e s p r o v i d e d b y t h e u s e r .
5 * /
6 def s o l v e (s e e d s : A r r a y [V e c t o r D] = n u l l) : T u p l e 2 [Double , V e c t o r D] =
7 {
8 i n i t P o o l (s e e d s)
9 s o r t P o o l ()

10 p r i n t l n (" −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ")
11 p r i n t l n (" G e n e r a t i o n 0 : ")
12 p r i n t P o o l ()
13 b r e a k a b l e { f o r (i <− 0 u n t i l m a x _ i t e r) {
14 p r i n t l n (" −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ")
15 p r i n t l n (" G e n e r a t i o n " + (i + 1) + " : ")
16 n e x t G e n ()
17 s o r t P o o l ()
18 p r i n t P o o l ()
19 e p o c h s += p o o l (0) . _ 1
20 } }
21 p o o l (0)
22 } / / s o l v e

The solve method is the director of the optimization but crossover and mu-
tation happen in their own methods, which are actually called by the nextGen
method.

The crossover method takes the two vectors being crossed and randomly
generates an index (using value k at which to divide the parameter space. The
random integer j determines which of the two vectors is used for the first part
of the child and which is used for the second part of the child. The mutate
method applies a multiplicative change to the values in the vector being mu-
tated. Currently, these mutations are kept relatively small, with the random
variable randMut being a uniform random variable on the interval [−0.2, 0.2].
This means that any mutation is at most a 20% change from the previous value,
ensuring that mutations are not too large.

151

Table A.10: Crossover and Mutation Methods for GA

1 / / :
2 / * * C a l c u l a t e t h e c r o s s o v e r o f t w o s o l u t i o n s .
3 * @param x 1 t h e f i r s t s o l u t i o n f o r t h e c r o s s o v e r
4 * @param x 2 t h e s e c o n d s o l u t i o n f o r t h e c r o s s o v e r
5 * /
6 def c r o s s (x 1 : VectorD , x 2 : V e c t o r D) : V e c t o r D =
7 {
8 v a l k = r a n d I n d . i g e n / / g e n e r a t e a random i n d e x
9 v a l j = r a n d I n d . i g e n

10 var x = x 1
11 i f (j % 2 == 0) x = x 1 (0 u n t i l k) ++ x 2 (k u n t i l x 2 . dim)
12 e l s e x = x 2 (0 u n t i l k) ++ x 1 (k u n t i l x 1 . dim)
13 x
14 } / / c r o s s
15
16 / / :
17 / * * P e r f o r m a m u t a t i o n on a s o l u t i o n .
18 * @param x t h e s o l u t i o n on w h i c h t o p e r f o r m t h e m u t a t i o n
19 * /
20 def m u t a t e (x : V e c t o r D)
21 {
22 f o r (i <− 0 u n t i l x . dim) {
23 x (i) = x (i) * (1 . 0 + randMut . g e n) / / a p p l y a m u l t i p l i c a t i v e
24 / / f a c t o r t o t h e c u r r e n t
25 / / i n d e x − v a l u e o f t h e
26 / / s o l u t i o n .
27 }
28 } / / m u t a t e

152

	Acknowledgments
	List of Figures
	List of Tables
	Overview of Dissertation
	Purpose of Traffic Modeling and Simulation
	Traffic Flow Modeling
	Microscopic Simulation
	Arrival Modeling
	Car-Following Models
	Calibration

	Modeling Traffic Flow Using Simulation and Big Data Analytics
	Introduction
	Related Work
	System Structure
	Simulation Optimization
	Results
	Conclusions and Future Work

	Microscopic Discrete-Event Traffic Simulation
	Introduction
	Types of Simulation Models
	Data Collection and Analysis
	Types of Forecasting Models
	Challenges and Future Work
	Conclusions

	Arrival Modeling
	Introduction
	Related Work
	Arrival Process Modeling
	Offline Methods
	Online Methods
	Arrival Process Comparisons
	Conclusions

	Car-Following Models
	Introduction
	GHR Models
	Pipes' Model
	Gipps' Model
	Intelligent Driver Model
	Position

	Calibration Techniques
	Parameter Estimation
	Calibration of the Traffic Model
	Optimization Algorithms
	Calibration Methodology
	Calibration Results
	Comparison with Other Calibration Efforts
	Conclusions

	Conclusions
	Traffic Flow Modeling (Chapter 2)
	Microscopic Traffic Simulation (Chapter 3)
	Arrival Modeling (Chapter 4)
	Car-Following Models (Chapter 5)
	Calibration (Chapter 6)
	Future Work

	Bibliography
	Appendices
	Appendix
	Parameter Estimation
	Extending ScalaTion for Traffic Simulation
	Genetic Algorithm Code

