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Black Rails (Laterallus jamaicensis) are small migratory marshbirds that occur in emergent, 

fresh- and saltwater wetlands. Little is known about even the basic ecology and life history of 
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Telemetry Systems (ARTS) as they relate to Black Rail research. I developed a vocalization-
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user to control false positive rates of vocalization detection. Additionally, I present a case study 

for the application of radio signal strength (RSS)-based ARTS to Black Rail research.  
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CHAPTER 1 

INTRODUCTION 

 

BACKGROUND 

Black Rail Species Summary 

Black Rails (Laterallus jamaicensis) are small migratory marshbirds that occur in 

emergent, fresh- and saltwater wetlands (Eddleman et al. 2020). Black Rails require dense 

herbaceous cover and shallow (~2cm) water coverage (Flores and Eddleman 1995). These birds 

are rare and have a reputation for elusivity beyond that of even other rails, a group known for 

their secretive habits, making them a highly sought-after quarry by recreational birders 

(Eddleman et al. 2020). 

Black Rail populations, like populations of many North American rail species, are 

currently in decline, primarily due to wetland degradation and loss (Eddleman et al. 1988, 

Conway et al. 1994). The Black Rail has experienced population declines, breeding range 

retractions, and reductions in the number of breeding locations within its core range (Davidson 

1992, Watts 2016). The eastern subspecies (L. j. jamaicensis) is listed as Threatened under the 

Endangered Species Act (83 Fed. Reg. 195). The Southeast U.S. Regional Waterbird Plan 

(Hunter et al. 2006) identifies the Black Rail as a species of continental and regional concern in 

need of immediate management action. In the U.S., the eastern subspecies historically occurred 

along the Atlantic Coast from Massachusetts south to Florida and along the Gulf Coast from 

Florida to south Texas, with inland locations scattered from east of the Appalachian Mountains 



2 
 

westward to Colorado and north to the Great Lakes (Eddleman et al. 2020). However, the 

distribution of recent observations indicates a substantial southward contraction in the 

subspecies’ range by approximately 450km (Watts 2016). Coastal areas support most remaining 

breeding populations and almost all wintering populations (Hunter et al. 2006, Watts 2016). 

Black Rails are rarely seen, and managers rely almost exclusively on vocalizations to 

assess site occupancy and abundance for this species. Peak vocalization times for Black Rails in 

Maryland were reported 1-2h after sunset and 1-2h before sunrise, with individuals rarely heard 

during the day (Weske 1969, Reynard 1974). In Florida, peak vocalizations were reported 1-2h 

before sunset and 1-2h after sunrise (Eddleman et al. 2020). Vocalization times varied between 

two populations in New Jersey, with one never vocalizing at night and another vocalizing 

primarily at night (Kerlinger and Wiedner 1991). 

Legare and Eddleman (2001) reported a larger home range size for Eastern males (0.82-

3.1ha) compared to females (0.51-0.86ha) during the nesting season. Similarly, Tsao et al. (2009) 

found that male California Black Rails (L. j. coturniculus) have home ranges 46% larger than 

females’ during the breeding season. Additional home range reports include winter-spring home 

ranges of 0.52-0.91ha in Texas (Moore et al. 2018) and 0.22-1.59ha in Louisiana (Johnson and 

Lehman 2019) for the Eastern subspecies (both sexes). The largest reported territory was 3.34ha 

of a male in Maryland (Weske 1969). California Black Rails have reported home ranges of 0.26-

0.43ha (Flores and Eddleman 1991, Tsao et al. 2009).  The smaller home range of the California 

subspecies relative to Eastern Black Rails could be due to the larger size of the Eastern 

subspecies or differences in predation risk, food nutritive value, or habitat availability (Tsao et 

al. 2009). Other rails have smaller home ranges during the breeding season compared to the non-

breeding season (Bookhout and Stenzel 1987, Conway et al. 1993); however, Kolts and McRae 
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(2017) reported larger home ranges for King Rail (Rallus elegans) during the brood-rearing 

period when parents are no longer constrained to the nest. Flores and Eddleman (1991) reported 

that home ranges did not differ between seasons for the California Black Rail, possibly due to 

stable year-round water levels. 

 

Autonomous Recording Units 

Conducting auditory point count surveys using intermittent broadcasts of conspecific 

vocalizations has been the primary method for surveying Black Rails (Conway et al. 2004). 

However, recent studies have started to investigate the use of Autonomous Recording Units 

(ARUs) for secretive marshbirds in general (Sidie‐Slettedahl et al. 2015, Drake et al. 2016, 

Schroeder and McRae 2020, Znidersic et al. 2020) and Black Rails specifically (Butler et al. 

2015, Bobay et al. 2018, Znidersic et al. 2021). ARUs are weatherproof devices that can record 

audio for long periods of time. ARUs can be set to record continuously or be programmed to 

record at specific times of interest. These units allow vocalization data to be collected over long 

periods of time relative to manual surveys (e.g., point counts) and/or at times when in-person 

surveying is logistically challenging (e.g., nighttime hours). ARUs may be a particularly useful 

technology for detecting elusive species that vocalize infrequently (Celis-Murillo et al. 2009, 

Hutto and Stutzman 2009, Drake et al. 2016, Bobay et al. 2018). 

ARUs can help mitigate some of challenges related to surveying Black Rails such as their 

scarcity, infrequent vocalizations, difficult-to-navigate terrain, and high variability in peak 

vocalization times across populations. However, efficient and cost-effective identification of 

vocalizations from ARU-produced libraries is one of the greatest challenges for data collection 

via ARUs (Hutto and Stutzman 2009, Shonfield and Bayne 2017).  
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Automated recognizers reduce review time and can make data processing more 

manageable for large audio file libraries (Knight et al. 2017). However, automated analysis is 

prone to higher false positive and false negative rates compared to manual review (Sidie‐

Slettedahl et al. 2015, Bobay et al. 2018). Bobay et al. (2018) reported a high false positive rate 

(91 true positives out of 11,872 predictions of vocalization) and an unknown false negative rate 

using Kaleidoscope software (Wildlife Acoustics 2017) to detect Black Rail vocalizations. Butler 

et al. (2015) reported a 37% false positive and a 9% false negative rate when using Song Scope 

software (Wildlife Acoustics 2011) for Black Rail.  

 

Automated Radio-Telemetry Systems 

 Much of the basic ecology and life history of Black Rails remains unknown, and 

telemetry studies may offer the best opportunity to study this cryptic species (Case and McCool 

2009). Automated radio-telemetry systems (ARTS) use receivers that automatically record 

signals from radio transmitters. ARTS were introduced in one of the earliest wildlife telemetry 

studies (Cochran et al. 1965), but many studies favor manual radio-tracking due to the high cost 

associated with automated telemetry (Ward et al. 2013). However, ARTS are not as costly as 

they once were. Additionally, the advent of digitally coded tags that all transmit on the same 

frequency now allows ARTS to track multiple animals simultaneously. ARTS can achieve large 

sample sizes through higher sampling frequencies compared to manual radio-tracking (Paxton et 

al. 2022), and ARTS are particularly valuable for species that are too small to carry global 

positioning system (GPS) trackers or for species where recovery of position-logging trackers is 

unlikely due to low recapture rates.  
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 A relatively recent form of ARTS is the use of a network or grid of omnidirectional 

receivers that use radio signal strength (RSS) to estimate an animal’s location (Krull et al. 2018, 

Paxton et al. 2022, Wallace et al. 2022). RSS-based ARTS use a known relationship between 

RSS values and distance, established through in situ calibrations, to determine tag position via 

multilateration. 

 

STUDY SIGNIFICANCE 

 Black Rails are difficult to study because of their scarcity and elusive habits. Much 

remains to be learned about the life history of this species, and mapping of populations and 

assessing patterns of occurrence and abundance are vital for conservation efforts (Hands et al. 

1989). ARUs are an emerging tool for surveying Black Rail occupancy but are currently limited 

by the lack of accurate automated classifiers. RSS-based ARTS are a recently developed tool for 

wildlife monitoring that have never before been applied to Black Rails. ARTS have great 

potential in exploring breeding ecology, movement ecology, habitat selection, and patterns of 

activity in Black Rails. The overarching goal of this thesis is to further explore these two 

emerging technologies and their applications to Black Rails. Specifically, my objectives were to 

1) investigate the potential of the Animal Sound Identifier framework (ASI; Ovaskainen et al. 

2018) to build vocalization-specific recognizers for Black Rails and compare my recognizer with 

previous classifiers for the species, 2) present a case study using a RSS-based ARTS to track a 

transmittered Black Rail and discuss best practices and potential applications, and 3) summarize 

potential applications of both ARUs and ARTS and areas for future research as they apply to 

Black Rails. 
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THESIS STRUCTURE 

This chapter provides a general overview and background information on Black Rails and 

introduces emerging tools, ARUs and ARTS, with potential applications to aid research of this 

difficult to study species.  

In chapter two, I introduce the ASI framework (Ovaskainen et al. 2018) and adapt it to 

build Black Rail recognizers that are vocalization-type specific and validated against an 

independent audio library (i.e., a separate library than the one used to build the models). I then 

compare this method to prior recognizers for this species and discuss limitations and potential 

next steps for the application of ARUs to Black Rail research.  

In chapter three, I present a case study of the first RSS-based ARTS to be applied to 

Black Rail research. This chapter discusses best practices and potential applications of this 

method.  

The fourth chapter summarizes major findings and conclusions and highlights areas for 

future work based on the findings from each study and the relevant knowledge gaps for the 

species. 
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ABSTRACT 

Targeted surveys for Black Rails have commonly consisted of auditory point count 

surveys using intermittent broadcasts of conspecific vocalizations. However, these surveys are 

labor-intensive, and survey reliability can be affected by temporal calling behavior, surveyor 

experience, survey effort, and environmental factors. For these reasons, autonomous recording 

units (ARUs) are receiving increased popularity for passive acoustic monitoring. However, 

efficient and cost-effective identification of vocalizations from ARU-produced libraries is one of 

the greatest limitations of this method of data collection. In this paper, we apply the Animal 

Sound Identifier (ASI) framework to develop vocalization-specific classifiers that allow the user 

to control false positive rates. We then validated the most common vocalization type, the Black 

Rail’s ki-ki-doo song, and found ASI predicted probability was strongly related to the presence 

of the vocalization (z = 7.14, p < 0.0001). Lastly, we discuss the potential of further development 

of vocalization-specific classifiers and their application to Black Rails.  

 

INTRODUCTION 

Black Rails (Laterallus jamaicensis) are small migratory marshbirds that occur in 

emergent, fresh- and saltwater wetlands (Eddleman et al. 2020). These birds have a reputation 

for elusivity beyond that of other rails, a group known for their secretive habits. The Black Rail 

has experienced population declines, breeding range retractions, and reductions in the number of 

breeding locations within its core range (Davidson 1992, Watts 2016). Additionally, the Eastern 

subspecies (L. j. jamaicensis) is listed as Threatened under the Endangered Species Act (83 Fed. 

Reg. 195). 
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Targeted surveys for this species have commonly consisted of auditory point count 

surveys using intermittent broadcasts of conspecific vocalizations (Conway et al. 2004). 

However, survey reliability of labor-intensive point count surveys for secretive marshbirds can 

be affected by temporally-varying calling behavior, surveyor experience, survey effort, and 

environmental factors (Conway and Gibbs 2011). Furthermore, wetlands can be logistically 

challenging to survey over multiple repeated visits due to their mucky terrain and often dense 

vegetation (Bobay et al. 2018, Znidersic et al. 2020). For these reasons, recent studies have 

started to investigate the use of autonomous recording units (ARUs) for secretive marshbirds in 

general (Sidie‐Slettedahl et al. 2015, Drake et al. 2016, Schroeder and McRae 2020, Znidersic et 

al. 2020) and Black Rails specifically (Butler et al. 2015, Bobay et al. 2018, Znidersic et al. 

2021). 

Efficient and cost-effective identification of vocalizations from ARU-produced libraries 

is one of the greatest challenges for data collection via ARUs (Hutto and Stutzman 2009, 

Shonfield and Bayne 2017). Manual review of audio recordings or spectrograms to identify 

vocalizations is time intensive, often requiring more time per file than the length of the audio 

itself (Celis-Murillo et al. 2009, Hutto and Stutzman 2009). Manual inspection is often not 

feasible for large audio libraries that can include days or months of audio recordings. Automated 

recognizers can reduce review time and make data processing more manageable for large audio 

file libraries (Knight et al. 2017). However, automated analysis is prone to higher false positive 

and false negative rates compared to manual review (Sidie‐Slettedahl et al. 2015, Bobay et al. 

2018), and accuracy may be particularly low for less complex vocalizations (Swiston and 

Mennill 2009, Sidie‐Slettedahl et al. 2015, Bobay et al. 2018, Schroeder and McRae 2020).  
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Recognizers are typically scored using human listening and/or manual inspection of 

spectrograms as a benchmark, and two common score metrics of recognizer performance are 

precision and recall (Knight et al. 2017). Precision is the proportion of recognizer-suggested 

positives that are true detections of the vocalization of interest, and recall is the proportion of 

true vocalizations that the recognizer correctly identifies (Knight et al. 2017). Users often select a 

score threshold according to their specific objectives to balance the tradeoff between precision, 

to minimize false positives, and recall, to minimize missed detections (Knight and Bayne 2019).  

In this study, we adapted the Animal Sound Identifier framework (hereafter ASI; 

Ovaskainen et al. 2018) to build Black Rail recognizers that are vocalization-type specific. We 

then validated the model for the most common Black Rail vocalization against an independent 

audio library (i.e., a separate library than the one used to build the models) and compared our 

findings with previous recognizers for Black Rails. Finally, we discuss the current applicability 

of ARUs to Black Rail studies and highlight areas for continued development.   

 

METHODS 

Building the Audio Library 

We built recognizers in ASI for four general Black Rail vocalizations – ki-ki-doo, growl, 

churt, and ik-ik (Eddleman et al. 2020). The most distinct and common Black Rail vocalization is 

their song, ki-ki-doo, primarily given by males (Reynard 1974, Flores and Eddleman 1991). 

While typically 3 notes, there is some variation with 1-3 ki’s and occasionally 2 doo’s. Thus, we 

also constructed a recognizer that incorporated partial components of the ki-ki-doo song. The 

second most common call type is an agitated “growl”, a multi-note grr-grr-grr-grr that can 
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continue in extended sequences. Other vocalizations include churt calls that can occur singly or 

in groups of twos or threes and ik-ik calls that occur in clusters of two to several notes.  

Our reference library was collected or solicited from partners throughout the Eastern 

Black Rail’s breeding range (CO, FL, NC, SC, TX) and was made using various Song Meter 

(Wildlife Acoustics, Inc., Maynard, MA) and iPhone (Apple Inc., Cupertino, CA) devices. We 

sought audio files of diverse vocalization strength and quality resulting from varied recording 

environments (e.g., distance from ARU, background noise and non-target species composition, 

type of recording device). Prior to use with ASI, audio files were divided into ≤ 1-minute 

segments using the open-source SoX – Sound eXchange audio editor (v. 14.4.2; 

https://sourceforge.net/projects/sox/files/sox/). Our full reference library contained the subset of 

segments known or suspected to include Black Rail vocalizations. We further subset from this 

library those segments known a priori to contain Black Rail vocalizations.  

 

Setting ASI Parameters 

The audio file conversion and cross-correlation calculation parameters used are available 

on GitHub (Script_0_defining_project_parameters.m; https://github.com/adamdsmith/BLRA

_ASI_scripts). In general, we used ASI default parameters as identified in Ovaskainen et al. 

(2018), with the primary exceptions that we adjusted the frequency parameters with which to 

search for Black Rail vocalization letter candidates (parts of animal vocalizations potentially 

useful for identification). We searched for letter candidates with frequencies between 450 - 4500 

Hz and allowed for letters to occupy 500 - 3500 Hz bandwidth. Other modifications were minor 

and are noted in the Script_0_defining_project_parameters.m as noted above. 
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Identifying Letter Candidates 

The first steps of ASI (Ovaskainen et al. 2018) involve the selection, refinement, and 

annotation of parts of animal vocalizations that are useful for identification. These audio 

segments, termed “letters” by Ovaskainen et al. (2018), form the basis from which the 

vocalization-specific recognizer models are built. Although ASI can auto-select letter candidates, 

we found this feature inadequate for Black Rails given the relative infrequency of vocalizations 

in audio recordings, especially the rarer call types (i.e., churt and ik-ik). Instead, we manually 

identified letters representing the focal call types from our selection of one-minute reference 

segments known a priori to contain Black Rail vocalizations. More than one letter for a given 

vocalization type can be created per reference segment for those containing multiple 

vocalizations or constructed from vocalization fragments.  

We considered two recognizers for the ki-ki-doo song – a general ki-ki-doo recognizer 

that included letters representing a complete 3-part song as well as letters comprising fragments 

of the song (i.e., the ki-ki, ki-doo, and doo components; hereafter the KKD recognizer) and a 

recognizer including only letters containing the complete 3-part ki-ki-doo vocalizations (hereafter 

the KKD0 recognizer). Growl calls can be long and variable, so we standardized our construction 

of letters for this vocalization by extracting the opening sequence of 3 notes, and alternating 

sequences of 4 and 3 notes for the duration of a particular growl vocalization. Letters from ik-ik 

calls were selected from their natural groupings of 2+ notes. Letters from churt calls were always 

selected using single notes, even if given in a series as doubles or triples.  
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Turning Letters into Vocalization-Specific Models 

Each letter was then cross-correlated with our full reference library of one-minute 

segments known or suspected to include Black Rail vocalizations from which a letter-specific, 

probit regression model was constructed for each individual letter (described here, but see 

Ovaskainen et al. 2018 for more details). This step requires the user to classify potential letter 

matches as a positive/negative match while ASI adaptively refines the letter-specific models with 

each input. Models span the entire predictor space, but ASI prompts particular focus on areas of 

high vocalization uncertainty (i.e., potential matches occurring near the inflection point on the 

probit models). Model training continues until the mapping from correlation to classification 

probability converges and classifying additional potential matches no longer exerts a meaningful 

change on the fitted model. 

Next, all letters of a particular vocalization are used collectively to generate predictors of 

probability that a given vocalization type occurs in a particular audio segment. Those predictors 

are then used to build vocalization-specific probit models, in a way similar to the letter-specific 

model construction described previously (see Figures 2.1 & 2.2 for examples of ASI-generated 

models). ASI presents model quality in terms of its discrimination power, measured by Tjur R2 

(Tjur 2009). Each model report includes an observed R2 (R2T) from the training data and a 

predicted R2 (R2A). Note, R2A often exceeds that of R2T because training data are specifically 

selected to involve cases that are especially difficult to classify when fitting the vocalization 

probit models (Ovaskainen et al. 2018). We build all vocalization-specific models, except the 

KKD, from 50 inspected and classified segments; we used 110 segments for the KKD model due 

to its more variable vocalization fragments.  
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When ASI uses a vocalization-specific model to estimate the probability of an audio 

segment containing a given vocalization, the first predictor is the highest probability/correlation 

of that audio segment with the letters constructed for that vocalization type (called Lmax, for 

maximum letter probability). For example, of the set of KKD0 letters used to build the KKD0 

species model, the first predictor is the highest correlation among all those letters and the new, 

unknown audio segment. The second predictor is a modified first principal component capturing 

variation not explained by Lmax. It can represent various information, including the predictive 

combinations of several letters, their frequencies, or their autocorrelation structures (additional 

detail provided in Ovaskainen et al. 2018). The second predictor typically explains much less 

variation than Lmax, and we evaluated its usefulness on a vocalization-specific basis.    

 

Validation 

We validated one of our fitted models, the KKD0 classifier, against an independent set of 

data from South Carolina containing 1440 one-minute segments randomly sampled from nearly 

720 hours of audio recordings from South Carolina. Of these, we selected 276 audio segments 

spanning the full range of output probabilities and manually inspected them for the presence of a 

full ki-ki-doo vocalization to evaluate our model’s predictive ability. For each audio segment, we 

also noted whether incomplete forms of the vocalizations were present (e.g., ki-doo only) and if 

the vocalization was so faint as to be detectable audibly but visually absent (or nearly so) from 

the corresponding spectrogram (generated by Audacity v. 3.1.3; The Audacity Team 2021). We 

then constructed a logistic generalized linear model to estimate the relationship between 

predicted probability of presence of vocalization and true presence in R v. 4.2.1 (R Core Team 

2022). This allowed us to explore false positive rates, model precision, and recall a function of 
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predicted probability of the KKD0 model. Precision is defined as TP/(TP+FP), where TP 

represents true positives and FP represents false positives (Knight and Bayne 2019). Recall is 

defined as TP/(TP+FN), where FN represents false negatives (Knight and Bayne 2019). We did 

not validate the KKD model (i.e., containing partial call fragments), because we found it more 

prone to mistaking vocalizations from non-target species for Black Rail. We also lacked 

sufficient independent audio segments to validate growl, churt, or ik-ik calls, although this could 

be completed in the future once enough relevant audio is compiled. 

All ASI-related code was run in MATLAB version 2020a (The MathWorks Inc. 2020) 

and is available at https://github.com/adamdsmith/BLRA_ASI_scripts. 

 

RESULTS 

Our full reference library was comprised of 6149 one-minute segments. Of these, 251 

segments were known a priori to contain Black Rail vocalizations. We created 1564 letters 

representing the four Black Rail vocalization types from the reference segments of known 

vocalizations (Table 2.1). Most letters (61%) derived from recordings collected in North 

Carolina, and the remainder derived from 4 other states representative of the Eastern Black 

Rail’s breeding range (Table 2.2). In 276 audio segments obtained from our validation data set, 

we determined that the full ki-ki-doo vocalization occurred in 74 of them and incomplete 

vocalizations occurred in 37 others. 

The model for complete ki-ki-doo vocalizations (KKD0; R2T = 0.72, R2A = 0.90; Figure 

2.1) far outperformed the ki-ki-doo model that included incomplete vocalization fragments 

(KKD; R2T = 0.48, R2A = 0.62; Figure 2.2). The vocalization-specific models for ik-ik and 

growl also performed well with high expected predictive ability for new files (i.e., R2A > 0.8), 
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while the churt model appeared to lack predictive ability (R2A = 0.31; Table 2.2). For all 

models, we report predictive ability based on a model containing the first two predictors. In all 

cases, the first predictor (Lmax) was the most important, with the second predictor expected to 

explain less than 3% variation in independent audio segments in all models. Figures for churt, ik-

ik, and growl models are available in the supplementary (S2) figures (Figures 2.5-2.7).  

ASI predicted probability of KKD0 vocalization in an independent data set was strongly 

related to the presence of the vocalization from manual review (z = 7.14, p < 0.0001; Figure 

2.3A). This model offers insight into expected false positive rates based on the predicted ASI 

probability. To put expected rates of false positives into perspective, for example, at an ASI 

probability 0.75, the logistic model estimated a 44% chance of containing KKD, or roughly 

equal parts true vocalizations and false positives. Many of the segments with ASI probabilities 

greater than 0.7 classified as not containing a full KKD0 did contain incomplete KKD 

vocalizations. When we relaxed our definition of a successful identification to include those 

audio segments with incomplete KKD, the predictive power of the logistic model improved 

substantially at higher ASI probabilities (Figure 2.3B), with an ASI probability of 0.75 

corresponding to an estimated 67% chance of a segment containing a KKD0 or incomplete KKD 

vocalization (equivalent to a 2:1 true positive to false positive ratio, or 33% false positive rate).  

 We observed similar effects in the precision and recall of the vocalizations from the 

KKD0 model (Figure 2.4). Recall of ki-ki-doo vocalizations declines steadily with predicted 

probability but is relatively consistent whether we used a strict (Figure 2.4A) or relaxed (Figure 

2.4B) definition of a successful identification. In other words, the relative proportion of true 

positives and false negatives was consistent between the two definitions of successful 

classification. Precision increases with the predicted probability used to identify vocalizations 
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but is distinctly improved when using a relaxed definition of a successful Black Rail vocalization 

in manually-reviewed files, reflecting the relative decrease in false positives under this scenario.  

 Processing new audio files to generate estimates of the probability of containing a given 

vocalization related nearly 1:1 with audio file length. For example, the time to process 24 hours 

of 1-minute segments with the final model to generate the probability of files containing KKD0 

vocalizations took approximately 24 hours of runtime (Intel® Core i7 11th generation processor). 

However, we sped up the runtime considerably by performing the calculation in parallel 

(approximately 4 hours on 8 threads with the same processor). 

 

DISCUSSION 

Classification of Black Rail vocalizations directly from field data rather than from a 

reference library is difficult due to the relative infrequency of vocalizations. This is particularly 

true for rarer call types. However, we feel that it is important to use field recordings 

representative of the natural variation in call strength and non-target sounds found in field data. 

Training recognizers on only “clean” vocalizations where the desired call-type is dominant in its 

frequency band may lead to poorer performance for audio when these ideal conditions are not 

met (Znidersic et al. 2021). We found it necessary to curate a reference library that had a higher 

number of files containing Black Rail vocalizations than expected from a single field effort. 

Even so, Black Rail vocalizations were so infrequent relative to non-target species that we opted 

for manual letter selection over ASI’s auto-selection feature for letter candidates. We were also 

unable to find sufficient audio containing any target call-type for model validation except the 

most common Black Rail vocalization, the ki-ki-doo song.  
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Our validation model of the KKD0 classifier and evaluations of precision and recall may 

allow researchers to a priori set their threshold of model performance based on their preferences 

and ability to manually review audio. The selected ASI threshold theoretically quantifies the 

expected maximum proportion of false positives. For example, with a KKD0 ASI probability > 

0.75, less than ½ of the files should be false positives since higher probability files should have 

fewer false positives according to the logistic model (under the relaxed definition of success). 

Our classifier is likely most practically used to identify files with a high probability of containing 

KKD0 calls while offering reasonable false positive rates. Researchers will likely want to 

balance precision and recall, but they may prioritize one over the other depending on their 

specific goals. Setting excessively strict false negative rates likely results in unacceptable false 

positive rates for most studies, and so precision may be the more important metric. However, if 

the main goal is to document the presence of Black Rail vocalizations in each audio file 

regardless of how many false positives must be reviewed, then recall becomes more important.  

Under the relaxed definition of successful identification, our inferred false positive rate is 

33%  at a threshold of 0.75 ASI probability. This is a lower false positive rate than previous 

studies using Kaleidoscope (99.2%; Wildlife Acoustics 2017; Bobay et al. 2018) and Song Scope 

(37%; Wildlife Acoustics 2011; Butler et al. 2015). Black Rail KKD0 calls in audio segments 

with ASI probability < 0.25 were very faint and not easily discernible on the spectrogram. This 

was expected because letters are built from spectrogram characteristics of the audio (i.e., it is not 

possible to build letters from audio that is visually absent from the spectrogram). It is important 

to note that these faint vocalizations are prone to false negatives with any classifier and even 

with manual review. In fact, many of these faint calls were incorrectly annotated as negative in 
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initial stages of validation and were only corrected after comparing notes between multiple 

reviewers and revisiting audio with discrepancies. 

Our model for complete ki-ki-doo vocalizations (KKD0) far outperformed our KKD 

model including vocalization fragments. Vocalization fragments from non-target species, 

particularly Icterids, were often mistaken for KKD fragments, particularly the doo- and ki-ki-

only letters. This can likely be attributed to the relative simplicity of these letters. Likewise, 

churt calls have little complexity, and identifiability may have been improved had we also 

included letters from the occasional double or triple churt. For example, the ik-ik model had the 

highest R2 value and single notes are similarly noncomplex; but unlike churt calls, ik-ik calls 

almost always occur in clusters of 2+ notes and all our letters included multiple notes.  

ASI and other recognizers require computational skills that may be beyond the training of 

some ecologists (Znidersic et al. 2021). BirdNET (Kahl et al. 2021), an analysis software that 

can be applied to extremely large collections of audio, is a more user-friendly alternative but 

costs money and is yet unevaluated for Black Rails. ASI is performed in MATLAB which 

requires a paid license unlike some other programming platforms (e.g., R). Additionally, ASI 

requires some modest pre-processing (e.g., splitting the files into 1-minute segments), and 

processing new audio files to generate probabilities of vocalization occurrence in MATLAB 

requires running in parallel on multicore processers or running on more powerful high-

performance computing (HPC) clusters to reduce processing times.  

While recognizers for Black Rails are still limited, our study demonstrates the potential of 

classifiers that allow the user to control false positive rates and successfully identify Black Rail 

vocalizations. We also highlight areas for continued investigation, specifically the development 

of vocalization-specific models for less frequent call-types. Ki-ki-doo songs are given primarily 
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during the breeding season, but little is known about the temporal frequency of other 

vocalization types, which may be important for developing survey methods for occupancy during 

the non-breeding season. Another area of potential research is the development of chick and 

juvenile call-type recognizers. We briefly explored this, but it quickly became apparent that our 

library contained far too few of these vocalizations to make the models. However, if developed, 

these recognizers could be instrumental in surveys of breeding occupancy and success. 

 

CONCLUSIONS 

 We expect to see an increased popularity of passive acoustic monitoring via ARUs as 

field equipment both improves and becomes less costly. Augmenting point-count surveys with 

ARU surveys may increase detection probability for Black Rails and thus increase the ability to 

make statistical inferences about occupancy (Bobay et al. 2018). ARUs have the capacity to 

greatly increase the temporal span of acoustic surveys while reducing visits to easily disturbed 

sites with hazardous access. Additionally, ARUs could be used to survey occupancy across 

larger tracts of land allowing for a more targeted approach for in-person abundance surveys.  

 ARUs may one day replace in-person surveys as the preferred method of surveying 

occupancy for Black Rails and similar species. However, a few barriers must be crossed before 

this becomes possible. First, classifiers must be made more accessible. This can be achieved by 

developing classifiers that are more user-friendly to users with limited computational skills or by 

making outsourcing classification less cost prohibitive. Second, the time between ARU 

deployment and the acquisition of actionable data for analysis and evaluation must be reduced. 

In-person surveys produce data that is actionable as soon as it is collected and entered. 

Conversely, audio files collected via ARUs may sit on hard drives indefinitely due to limited 
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time for review. Developing automated classifiers that can process audio quickly and accurately 

is the key to unlocking the full potential of ARUs. Lastly, we encourage clear evaluation of false 

positive and false negative rates, precision, and recall for all classifiers. This will allow 

researchers to clearly define goals for their monitoring programs based on their ability to review 

output from automated classification.  
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TABLES 
 
Table 2.1. Number of letters identified for each vocalization type from 251 one-minute reference 

segments. 
 
Vocalization type # letters identified 
KKD 1274  
 KKD0 368  
 KK 257  
 KD 368  
 D 281  
GRR 99  
IKIK 100  
CHURT 91  
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Table 2.2. Number of letters identified from each state throughout the Eastern Black Rail’s  
breeding range.  

 

State # letters identified 

NC 960  
SC 228  
CO 177  
TX 169  
FL 30  
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Table 2.3. Observed (R2T) and predicted (R2A) Tjur R2 (Tjur 2009) values for fitted  
vocalization-specific models based on both predictors for each.  

 
Model R2T R2A 
KKD0 0.72 0.90 
KKD 0.48 0.62 
IKIK 0.88 0.90 
GROWL 0.66 0.83 
CHURT 0.55 0.31 
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FIGURES 
 

    

 
 
Figure 2.1. Vocalization-specific model built from letters containing only full ki-ki-doo 
vocalizations (KKD0), estimated from a sample of 50 manually classified segments. Panels 
illustrate the predictive ability using only predictor 1 (A; horizontal axis; the letter with 
maximum correlation, Lmax; see text for details), the predictive ability of a second predictor 
alone (B; horizontal axis), and the combined predictive ability of both predictors (C; predictor 1 
along horizontal axis, predictor 2 along vertical axis). Red points indicate audio files not 
containing the vocalization and black points indicate files containing the vocalization; points are 
jittered to improve visibility. Predicted probability of a file containing the KKD0 vocalization is 
displayed as the vertical axis in panels A and B and is displayed as contour isoclines and a color 
ramp in panel C.   

A) 

B) 

C) 
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Figure 2.2. Vocalization-specific model built from letters containing full or fragmented ki-ki-doo 
vocalizations (KKD), estimated from a sample of 110 manually classified segments. Panels 
illustrate the predictive ability using only predictor 1 (A; horizontal axis; the letter with 
maximum correlation, Lmax; see text for details), the predictive ability of a second predictor 
alone (B; horizontal axis), and the combined predictive ability of both predictors (C; predictor 1 
along horizontal axis, predictor 2 along vertical axis). Red points indicate audio files not 
containing the vocalization and black points indicate files containing the vocalization; points are 
jittered to improve visibility. Predicted probability of a file containing the KKD vocalization is 
displayed as the vertical axis in panels A and B and is displayed as contour isoclines and a color 
ramp in panel C. 
  

A) 

B) 

C) 
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Figure 2.3. Logistic generalized linear model displaying the estimated relationship between 
KKD0 model-predicted probability and occurrence of a KKD0 vocalization. Audio containing 
incomplete KKD vocalizations only are classified as no-detection under a strict definition of 
success (A; i.e., requiring a complete vocalization to consider a vocalization present) and 
positive-detections under a relaxed definition of success (B; i.e., partial vocalizations accepted as 
a positive identification). The shaded areas represent 95% pointwise confidence intervals. 
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Figure 2.4. Recall and precision in the KKD0 model relative to the ASI model probability used 
to classify an audio file as containing Black Rail vocalization. Panel (A) reports recall and 
precision when requiring a complete vocalization to consider a vocalization present, whereas 
panel (B) reports recall and precision when accepting partial vocalizations as a positive 
identification. 
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SUPPLEMENTARY (S2) FIGURES 

 

Figure 2.5. Vocalization-specific churt model, estimated from a sample of 50 manually classified 
segments. Panels illustrate the predictive ability using only predictor 1 (A; horizontal axis; the 
letter with maximum correlation, Lmax; see text for details), the predictive ability of a second 
predictor alone (B; horizontal axis), and the combined predictive ability of both predictors (C; 
predictor 1 along horizontal axis, predictor 2 along vertical axis). Red points indicate audio files 
not containing the vocalization and black points indicate files containing the vocalization; points 
are jittered to improve visibility. Predicted probability of a file containing the churt vocalization 
is displayed as the vertical axis in panels A and B and is displayed as contour isoclines and a 
color ramp in panel C. 

  

A) 

B) 

C) 
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Figure 2.6. Vocalization-specific growl model, estimated from a sample of 50 manually 
classified segments. Panels illustrate the predictive ability using only predictor 1 (A; horizontal 
axis; the letter with maximum correlation, Lmax; see text for details), the predictive ability of a 
second predictor alone (B; horizontal axis), and the combined predictive ability of both 
predictors (C; predictor 1 along horizontal axis, predictor 2 along vertical axis). Red points 
indicate audio files not containing the vocalization and black points indicate files containing the 
vocalization; points are jittered to improve visibility. Predicted probability of a file containing 
the growl vocalization is displayed as the vertical axis in panels A and B and is displayed as 
contour isoclines and a color ramp in panel C. 

  

A) 

B) 

C) 
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Figure 2.7. Vocalization-specific ik-ik model, estimated from a sample of 50 manually classified 
segments. Panels illustrate the predictive ability using only predictor 1 (A; horizontal axis; the 
letter with maximum correlation, Lmax; see text for details), the predictive ability of a second 
predictor alone (B; horizontal axis), and the combined predictive ability of both predictors (C; 
predictor 1 along horizontal axis, predictor 2 along vertical axis). Red points indicate audio files 
not containing the vocalization and black points indicate files containing the vocalization; points 
are jittered to improve visibility. Predicted probability of a file containing the ik-ik vocalization 
is displayed as the vertical axis in panels A and B and is displayed as contour isoclines and a 
color ramp in panel C. 

  

A) 

B) 

C) 
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CHAPTER 3 

MULTILATERATION TRACKING OF A BLACK RAIL USING AN AUTOMATED RADIO-

TELEMETRY SYSTEM1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Tilson, D.A. and A.D. Smith. To be submitted to Methods in Ecology & Evolution.  
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ABSTRACT 

Much of the basic ecology and life history of Black Rails (Laterallus jamaicensis) 

remains unknown, and telemetry studies may offer the best opportunity to study this cryptic 

species. Automated radio-telemetry systems (ARTS) use receivers that automatically record 

signals from radio transmitters and can achieve large sample sizes through higher sampling 

frequencies. ARTS may be particularly valuable for species where GPS tracking is not feasible. 

A relatively recent form of ARTS is the use of a network or grid of omnidirectional receivers 

that use radio signal strength (RSS) to estimate an animal’s location through multilateration 

based on a known distance-RSS relationship. However, the RSS-based approach is poorly 

understood in different outdoor environments. We present a case study demonstrating the 

application of RSS-based ARTS for researching Black Rail movement, home range, and habitat 

uses. ARTS are well suited for researching life history patterns of rails and other marshbirds. The 

relative structural simplicity of marshes (i.e., lacking structural complexity and containing 

limited topographic variation) makes it easy to deploy node arrays with even spacing, and radio 

signals have a lower tendency to bounce and attenuate.  

 

INTRODUCTION 

Wildlife telemetry was introduced in the 1960s (Adams 1965, Cochran et al. 1965) and 

has proven a valuable method for studying animals in the wild. Automated radio-telemetry 

systems (ARTS) use receivers that automatically record signals from radio transmitters. ARTS 

were introduced in one of the earliest telemetry studies (Cochran et al. 1965), but most studies 

use manual radio-tracking due to the high equipment cost associated with automated telemetry 

(Ward et al. 2013). However, ARTS are not as costly as they once were. Additionally, the advent 
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of digitally coded tags that all transmit on the same frequency now allows ARTS to track 

multiple animals simultaneously. ARTS are being applied to a wide range of taxa including 

reptiles (Ward et al. 2013, Tucker 2014), mammals (Wallace et al. 2022), insects (Fisher et al. 

2020), and birds (Lenske 2018, Schofield et al. 2018, Bircher et al. 2020). Like global 

positioning system (GPS) datasets, ARTS can achieve high temporal resolution through higher 

sampling frequencies (Paxton et al. 2022), but ARTS are particularly valuable for species that are 

too small to carry GPS trackers or for species where recovery of position-logging trackers is 

unlikely due to low recapture rates.  

 A relatively recent form of ARTS uses a network or grid of omnidirectional receivers 

(nodes) to record radio signal strength (RSS) from which an animal’s location can be estimated 

(Krull et al. 2018, Paxton et al. 2022, Wallace et al. 2022). RSS-based localization requires an 

established relationship between RSS values and distance in the focal environment. Factors such 

as background radio noise, weather, and structural environment can affect the accuracy of such 

localizations (Paxton et al. 2022), making in situ calibrations vital for studies using a RSS-based 

approach (Krull et al. 2018). In situ calibrations are also used to estimate the signal strength at 

which RSS values no longer convey useful information for localization. Inclusion of RSS 

information from all nodes in a network can produce inaccurate localizations; therefore, it is 

important to filter the nodes contributing to a given localization (Paxton et al. 2022).  

 RSS-based localization can produce large sample sizes of fine-scale movement data for 

species previously difficult to study due to their rare and elusive nature. However, the RSS-based 

approach is poorly understood in different outdoor environments. In this paper, we apply the 

approach to the Black Rail (Laterallus jamaicensis), North America’s rarest and most elusive rail 

species. Black Rails are small migratory marshbirds that occur in emergent, fresh- and saltwater 
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wetlands (Eddleman et al. 2020). Much of the basic ecology and life history of Black Rails 

remains unknown, and telemetry studies may offer the best opportunity to study this cryptic 

species (Case and McCool 2009). The objectives of this study were to present a case study using 

an RSS-based ARTS to track a transmittered Black Rail and discuss best practices and potential 

applications, as well as areas for future research.  

 

 MATERIALS AND METHODS 

Study Area 

We evaluated RSS-based localization for Black Rails at St. Johns National Wildlife 

Refuge (SJNWR) located 5-km west of Titusville, Brevard County, Florida. SJNWR is located in 

a relict saltwater basin bordering the St. Johns River. SJNWR is dominated by emergent marsh 

that is maintained in a structurally simple state through regular controlled burns to reduce woody 

vegetation. Dominant plant species are sand cordgrass (Sporobolus bakeri), Jamaican swamp 

sawgrass (Cladium jamaicensis), black needle rush (Juncus roemerianus), and wax myrtle 

(Morrella cerifera).  

 

Trapping & Transmitter Attachment 

We captured a Black Rail in March 2022 using double-door box traps placed along drift 

fences made from polyethylene netting, similar to the method used previously at the site (Legare 

and Eddleman 2001, Legare et al. 1999). The trapline was placed between an area of standing 

surface water and a salt pan in an area that had mud and dense vegetation where rails were 

expected to move. Once we heard a Black Rail vocalizing, we used an audio lure on the opposite 

side of the trapline. The captured rail was given a U.S. Geological Survey (USGS) aluminum leg 
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band placed above the intertarsal joint on the right leg. The rail was fitted with a digitally-coded 

UHF transmitter (CTT PowerTag, Cellular Tracking Technologies, Rio Grande, New Jersey, 

USA) using a modified leg-loop harness (Haramis and Kearns 2000) that includes a waist loop 

due to the short caudal region of rails. The PowerTag transmitted a signal every 27s, weighed 

just more than 1g with the harness (less than 3% of bird’s body weight), and had an expected 

battery life of ~90-200 days. 

 

 Tracking 

We monitored rail movements using an array composed of a network of independent, 

solar-powered receiving nodes (CTT Node v. 2, Cellular Tracking Technologies, Rio Grande, 

New Jersey, USA) within and surrounding the bird’s territory. Detection data from the nodes was 

transmitted and offloaded to a larger base station composed of a SensorStation (v.2, Cellular 

Tracking Technologies, Rio Grande, New Jersey, USA) and Yagi antennas fixed to the top of a 

6-meter mast and tripod.  

 Prior to capture, we approximated the center of activity for the bird based on patterns of 

the presumed individual’s vocalizations. We employed a soft deployment method for nodes by 

evaluating patterns of detection on a daily basis from the partial node array to hone in on the 

bird’s center of activity, allowing us to actively refine the array as it was being constructed. 

Initial node deployment focused on surrounding the bird’s area of use rather than increasing node 

density, so areas of interest were identified based on total node detection activity (i.e., strongest 

average signal strength on a daily time frame) rather than localization. The complete node array 

was deployed over the course of approximately 1.5 weeks. Nodes were installed on the top of 3-

meter electric metallic tube (EMT) conduit inserted 0.6m into the ground, leaving the node 2.4m 
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above ground level when fully installed. Nodes were organized at the centers of a hexagonal grid 

resulting in a distance of 25m between nodes within an east to west within a row and ~22m north 

to south between rows, centered on our expected activity center (Figure 3.1).   

 

Tag and Node Calibration 

ARTS should be calibrated to their particular application (e.g., species habits and the 

habitat or landscape composition and structure). Presumably, tags exhibit some degree of 

variation in the signal strength they emit. Likewise, nodes may vary in reception ability and 

measurement of signal strength for a given tag detection. We conducted tag and node 

calibrations to quantify internode and intertag variation and enable tag and node-specific 

adjustments to RSS prior to localization (see the Supplementary Information S3 for calibration 

details). 

 In addition to internode and intertag variability, a key relationship that must be estimated 

for RSS-based localization is the decrease in received signal strength as a function of tag 

distance from a node. The objective of RSS vs. distance calibrations is to quantify the relative 

change in received signal power of a tag in situ as a function of distance from a node. We 

conducted this calibration, in representative habitat (i.e., vegetation composition, structure, and 

density) on SJNWR known to have breeding Black Rails. The specifics of the calibration are 

provided in Supplementary Information (S3), but the resulting data set comprises an average of 

RSS measurement within two-minute intervals at specific and known distances from a node. The 

average RSS measurements at each distance were then used to fit a statistical model describing 

this relationship and its uncertainty (Supplementary Information S3). Paxton et al. (2022) used 

an exponential decay model to describe this relationship. We evaluated the exponential decay 
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model, but also considered a model based on the inverse square law for electromagnetic radiation 

given the relatively simple environmental structure of Black Rail habitat at SJNWR 

(Supplementary Information S3).  

We selected an RSS value of -90 as our filter threshold based on the inverse square law 

and exponential decay models nearing asymptotic behavior at this RSS, as well as the increasing 

uncertainty associated with the estimated distance (see Supplementary Information S3). We 

expected RSS values above this threshold to be useful for localization estimates. Due to the 

increasing uncertainty in predicted distance from node with weaker RSS values, we also 

weighted node detections by the inverse of their estimated distance from the transmitter, thus 

giving longer range detections less weight in the multilateration process. Like Paxton et al. 

(2022), we did not incorporate uncertainty in the estimate of RSS0 or K into the estimate of 

distance from node, and thus this uncertainty was not propagated into the localization estimate. 

Doing so is possible (e.g., via bootstrapping), but would be computationally intensive and time-

consuming to propagate into the multilateration estimates for such high temporal resolution data. 

 

Localization Validation 

Because distance estimation error scales with distance, grid design should affect 

localization (i.e., estimation of tag location) accuracy. To evaluate the localization accuracy 

provided by our grid, we generated a test set of tag detections at 37 random, spatially-balanced 

locations within and around the node array. At each location, we allowed the ARTS to measure 

RSS of a tag for two minutes (see Supplementary Information S3 for additional details). We then 

localized the tag at each test location using the filtering threshold and multilateration approach 

described previously. We also explored the localization accuracy using a reduced node array to 
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simulate a sparser grid with increased node spacing. Specifically, we omitted data from nodes in 

every other row to produce an array with a node spacing of 25m east to west within row, and 

~45m north to south between rows reducing the number of nodes by approximately 33% (Figure 

3.1). For additional comparison, we calculated the location accuracy of a naïve approach where 

the tag was assigned the location of the node with the highest RSS value (i.e., the strongest 

average signal strength).  

 We evaluated the relationship between multilateration error (i.e., absolute distance 

between estimated location and known location) and the number of nodes detecting the tag (i.e., 

those meeting our RSS criterion) using a generalized linear model with the MASS package in R. 

We modeled multilateration error as Gamma, with a log link function, given the continuous but 

non-negative multilateration error. We only considered validation points located within the 

minimum bounding polygon of the node grid and meeting our RSS filter criteria. 

 

Home Range & Diel Patterns of Activity 

We compared home range sizes by generating autocorrelated Kernel Density Estimations 

(aKDE) as described in Signer and Fieberg (2021) for the multilateration and naïve approaches 

for full and reduced grids. Because ARTS typically produce data at much higher temporal 

resolution compared to manual telemetry, we also compared home range estimates of the 

multilateration full grid at four different temporal resolutions: localization occurring every 15 

minutes, 1 hour, 4 hours, and 8 hours. We estimated all home ranges at two different home-range 

levels (50% and 95%). 

 We inferred Black Rail activity from fluctuations in RSS from one or more nodes. 

Received RSS will fluctuate more when rails are active, as the attached transmitter is moving and 
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antenna orientation is changing. Receivers should record more consistent RSS values when rails 

are at rest and the transmitter remains consistently oriented. Our estimate of activity was a 

weighted average of the standard deviation of received RSS among detecting nodes; weights 

were based on the number of detections available to calculate the standard deviation. To 

summarize activity on a daily timeframe, we aggregated our estimate of activity into 30-minute 

time intervals on the 24-hour clock to explore diel activity patterns.  

All analyses were conducted in the R Statistical Software Environment version 4.2.1 (R 

Core Team 2022). 

 

RESULTS 

 Estimated parameters of the inverse square model for the distance-RSS relationship were 

K = 35.72 (SE = 1.08) and RSS0 = -29.47 (SE = 0.61). At the filtering threshold value of RSS =  

-90, the model-predicted mean distance was 69.5m (95% parametric bootstrap confidence 

interval 61.4 – 70.5m).  

We captured and transmittered an adult male Black Rail on March 18, 2022. Soft 

deployment of the node array started on March 20th and was refined over 10 days with the 

finalized grid completely deployed on March 30th. In the days following April 14, 2022, it 

became apparent from very consistent RSS values that the bird had either lost its transmitter or 

died. Investigation confirmed the latter with strong evidence pointing towards predation by a bird 

of prey. We thus report on continuous tracking period of 14 days under the complete grid, March 

31 – April 13, 2022. From vocal and movement behavior, the bird was presumed unmated and 

no nesting activity was indicated for the duration of its monitoring period.  
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Our validation of the RSS-based localization approach using multilateration resulted in a 

median absolute localization error of 13.2m for the full grid and 23.0m for the reduced grid 

(Figure 3.2A). Under the naïve approach, median absolute errors were 13.8m and 19.8m for the 

full and reduced grids, respectively (Figure 3.2B). For our evaluation of multilateration error and 

number of detecting nodes, 44 validation locations met our criteria (24 with the full grid and 20 

with the reduced grid). Multilateration error decreased with the number of nodes used in the 

estimation (t41 = -4.22, p < 0.0001; Figure 3.3) but was similar in the full node grid and the 

reduced node grid (t41 = -0.9935 p = 0.33). We considered whether the relationship between 

number of detecting nodes and multilateration error varied between grid configurations. There 

was little support for this interaction (t40 = -1.35 p = 0.18), so we did not include this interaction 

in the final model. Each additional detecting node reduced average multilateration error by 

approximately 12%. 

Home range estimates for the tagged bird were larger under the naïve approach at either 

node grid density (Figure 3.4). Using a full grid, the home range estimated from the 

multilateration and naïve approaches overlapped by 90.5% and 84.6% at the 95% and 50% 

kernel density levels, respectively. The reduced grid resulted in a similar but slightly smaller 

home range estimation compared to the full grid for the multilateration approach. Conversely, 

grid reduction resulted in a slightly larger home range estimation for the naïve approach. Under 

the multilateration approach, home range estimated from the full and half grids overlapped by 

81.0% and 84.6% at the 90.5% and 50% kernel density levels, respectively. Temporal resolution 

of localization had a relatively small effect on home range size and overlap for the full grid under 

the multilateration approach (Figure 3.5). 
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Over the two weeks of continuous tracking, the Black Rail exhibited very consistent 

activity patterns relative to civil sunrise and sunset, as inferred from RSS variation. Specifically, 

the rail was consistently diurnal, showing increased movement during daylight hours (Figure 

3.6). On two occasions (April 10 and April 11), the bird left its typical territory, and both 

occurred during the day. Nightly activity was more variable, with most nights indicating little 

activity throughout, but occasional periods of activity throughout the nighttime period (Figure 

3.6). Estimates of activity aggregated into 30-minute time intervals over the course of its tracking 

additionally highlights the largely diurnal nature of this individual (Figure 3.7).  

 

DISCUSSION 

 In some ways, Black Rails are a model species to investigate monitoring via ARTS, both 

in terms of methodology and conservation. The relative simplicity of marshes (i.e., lacking 

structural complexity and containing limited topographic variation) makes it easy to deploy node 

arrays with even spacing and radio signals have a lower tendency to bounce and attenuate. Black 

Rails primarily move by walking and rarely fly except when migrating. Their profile so near to 

the ground simplifies methods by removing the need for vertical calibrations, but also greatly 

reduces the detection range to achieve RSS measurements adequate for localization. The Black 

Rail is one of North America’s least studied species and ARTS have great potential to inform 

knowledge gaps vital to conservation efforts.  

 The soft deployment of node arrays allows for the adaptive refinement of grid placement 

during construction, saving time and effort and reducing disturbance to sensitive habitats by 

mitigating the need to readjust the grid after deployment. We recommend node spacing at ~75% 

of the maximum detection range within the filtering parameters as a good starting point. Once 
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the grid has been centered and encompasses the area of interest, then nodes can be added to reach 

the desired final grid density.   

Median absolute localization errors for the full grids were relatively similar under the 

multilateration and naïve approaches. However, median absolute error for the reduced grid was 

lower for the naïve approach than for the multilateration approach. With the naïve approach, 

there is a more clearly defined upper threshold for error. Validation points within the grid are not 

expected to have an absolute error greater than approximately half the distance of the spacing 

between nodes when using the naïve approach. Points occurring outside the grid are capped at 

the maximum distance of detection meeting our filtering parameters (i.e., RSS > -90), which our 

calibrations suggest is likely to be just above 60 meters. Multilateration error decreases with 

more detecting nodes above the filter threshold. This suggests that the multilateration approach 

performs best when an array is large enough so that the target animal’s home range falls within 

the grid, as locations near the grid edge will have fewer surrounding nodes. This is supported by 

the findings of Paxton et al. (2022), that reported a decrease in localization error inside the grid 

with increased distance from the array edge. Our system is structurally simple, but in more 

complex environments, radio signals may bounce and attenuate more readily (Paxton et al. 

2022), likely increasing error for both approaches but disproportionately so for naïve approaches.  

 General biological inferences about home range cannot be made over 14 days of tracking 

of a single bird; however, the experience did provide preliminary insight about effects of spatial 

and temporal resolution of localization on home range estimation. Full and reduced grids had 

similar home range estimations in both size and overlap under the multilateration approach. This 

suggests a tighter spacing in the full grid than required for our tagged bird. In situ range tests are 

valuable to inform node spacing to balance both localization accuracy and area coverage. Range 
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tests require only two nodes, a transmitter, and a base station and can be performed prior to 

larger equipment purchases as an economic way to a priori evaluate equipment needs and 

feasibility for a given ARTS application. We note that removing alternate rows of nodes (along 

the north-south gradient; Figure 3.1) to create the reduced grid could have introduced a spatial 

bias in home range estimation. In practice, at any node density, node spacing in orthogonal 

directions should be consistent.  

Temporal resolution had a relatively low effect on home range estimations for the 

resolutions investigated for this individual. Researchers must weigh costs and benefits of 

temporal resolution with tag longevity based on their study objectives.  

The tagged Black Rail was more active during the day than at night. This result matches 

the findings of Legare and Eddleman (2001) showing Black Rails were active throughout the 

daylight hours when not incubating. However, changes in Black Rail activity during the day are 

not well understood. Flores and Eddleman (1995) reported Black Rails in Arizona to be inactive 

at night but did not investigate changes in activity patterns during the day. Diel patterns of 

vocalization are highly variable among Black Rail populations (Eddleman et al. 2020). Two 

avenues of future research that ARTS would be well suited to investigate are 1) do diel patterns 

of movement activity likewise vary by population? and 2) what is the relationship between 

vocalization rates and movement activity? 

A potential application of ARTS that we were unable to investigate with our unmated 

bird, is the theoretical ability to determine the start and cessation of incubation. Male and female 

Black Rails share incubation duties (Eddleman et al. 2020), so evidence of a bird’s inactivity, in 

a single location, for approximately half of its normally active time is a good indicator that the 

bird has started incubating. This could be particularly useful for studies investigating nest 



49 
 

success and/or sources of nest mortality. Only a few nodes are needed to monitor nesting activity 

if localization is not required for a study’s research objectives.  

 ARTS can provide very robust datasets in both location estimation and diel patterns of 

activity. These values can be summarized to explore activity differences at different times of day, 

in different seasons, among age and sex classes, and to inform the identification of behavioral 

states (e.g., onset and cessation of nest incubation). As the technology and methodology 

continues to develop, ARTS are likely to see increased prevalence in ecological research.  
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FIGURES 

 

Figure 3.1. Initial placement of 31 receiving nodes (circles) around the presumed center of a 
transmittered Black Rail’s activity. Spacing between nodes is 25 m east to west within a row, and 
~ 22 m north to south between rows. Alternate rows are shifted so traps occur halfway (east to 
west) between nodes in adjacent rows. Gray circles represent nodes from which data was omitted 
for the reduced grid.   
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Figure 3.2. Absolute errors of validation points (n = 37) under full and reduced grids using 
multilateration and naïve approaches. Red dashed lines represent the median absolute error.  
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Figure 3.3. Gamma generalized linear model fit (line) between absolute errors of validation 
points over the number of detecting nodes. Shaded area represents 95% confidence interval.  



55 
 

 

Figure 3.4. Autocorrelated kernel density home range estimates under full and reduced grids 
using multilateration and naïve approaches. Home ranges represent a single tagged Black Rail 
from March 31, 2022 - April 13, 2022.  
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Figure 3.5. Autocorrelated kernel density home range estimates at four different temporal 
resolutions. Home ranges represent a single tagged Black Rail from March 31, 2022 - April 13, 
2022.  
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Figure 3.6. Patterns of activity of a tagged Black Rail from March 31, 2022 – April 13, 2022. A 
higher weighted average standard deviation indicates more activity in a given 3-minute interval. 
White and black circles indicate periods of activity during the day (dawn to dusk) and night 
(dusk to dawn), respectively. Periods without activity indicate periods of time where the 
individual left the monitored area and could not be adequately tracked.    



58 
 

 
 
Figure 3.7. Boxplots summarizing diel patterns of activity of a tagged Black Rail from March 31, 
2022 – April 13, 2022. A higher weighted average standard deviation indicates more activity in a 
given 30-minute window. Background shading indicates the extent of the nighttime period (dusk 
to dawn) during this date range.  
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SUPPLEMENTARY INFORMATION TEXT (S3) 

 

Node Calibration 

Nodes presumably will vary to some extent in the signal strength they record for a given 

tag detection. Quantifying that variation in a controlled environment is helpful to estimate node-

specific RSS corrections to put all nodes on the same RSS scale.  

In this calibration, a node was placed every 30o in a circle of 2m radius around a single 

tag, for a total of 12 nodes per trial. Nodes were installed at an equal height of 1.34m above the 

ground. The tag was secured vertically, with the antenna pointed up, on top of a non-conductive 

pole at a height of 1.05m above the ground. Each group of nodes was calibrated for a total of 3 

minutes and the start and end times were noted according to the 0Official U.S. Time (time.gov) 

to facilitate matching with detection data. The same tag was used in all calibrations. We assumed 

that amplitude magnitude (signal strength) in the cyclical spline model (below) was not 

dependent on the specific tag used, but this is an assumption that could be further investigated by 

repeating the calibration with other tags. We estimated node-specific corrections for 191 nodes. 

It was expected that the specific position a node occupied in the circle around the tag may 

influence its received RSS due to an imperfect antenna (i.e., the tag antenna may not emit signals 

in a perfectly omnidirectional manner). Thus, to allow for estimates of node-specific RSS 

corrections, we tested 24 nodes a second time in a different position from their initial test; these 

nodes had their positions shifted 30o clockwise and we selected nodes such that replicate 

measurements occurred at all 12 node positions. Received RSS data support the idea of an effect 

of node position (Figure 3.8). 
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To calculate node-specific adjustments to RSS, we estimated a generalized additive 

model (Wood 2006) that related measured RSS by each node’s identity as well as a cyclical 

spline for node position around the tag using the `mgcv` package, v. 1.8.40 in R v. 4.2.1 (R Core 

Team 2022). RSS measurements were centered prior to fitting, and we suppressed the intercept 

from the model so that node-specific corrections were generated directly as model output. Node 

position was an important factor in node RSS (Figure 3.9). Node-specific RSS corrections 

ranged from -14.9 to 6.3 (mean ± SD: 0.15 ± 3.50; Figure 3.10). See GitHub 

(https://github.com/adamdsmith/blra_telemetry) for code. 

 

PowerTag RSS Calibration 

Likewise, tags vary to some extent in the strength of the signal they emit. Quantifying the 

variation in a controlled environment is helpful to estimate tag-specific RSS corrections 

necessary to put all tags on the same RSS scale.  

This calibration used a similar, but importantly distinct, setup to the node calibration. For 

this calibration, a single tag was placed at a horizontal distance of 1m from each of four nodes 

placed in the four cardinal directions. The tag was mounted horizontally (antenna parallel to 

ground) at a height of 1.20m above the ground on a non-conductive pole. All nodes were 

installed on EMT conduit at a height of 1.38m above the ground. 

To start each trial, the tag’s antenna was oriented directly at the node located to its due 

North. Every four minutes, the non-conductive pole holding the tag was rotated 90o such that the 

tag’s antenna pointed directly at the next node around the array. Thus, each tag spent 4 minutes 

with its antenna pointed directly at, directly away from and perpendicular (right and left) to each 

node. Tags were calibrated for a total of 16 minutes. Calibration timing was noted according to 
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the Official U.S. Time (time.gov) to facilitate matching with detection data. All tags (n = 20) 

were calibrated using identical arrangements and node identities. We assumed calibration model 

results (below) were not dependent on these specific four nodes, but this is an assumption that 

could be further investigated by repeating the calibration with other nodes. Upon inspection of 

the data, there was consistent RSS information recorded when the tag antenna was oriented 

perpendicular to the receiving node, but considerable variation when the tag antenna was 

oriented towards or away from the receiving node. Thus, we used only detection data for 

detections with the tag oriented perpendicular to the receiving node, although we retained 

antenna orientation information (left vs. right).  

To calculate tag-specific corrections to RSS, we first applied the node-specific RSS 

adjustment for each node used in the calibration as calculated in the `Node Calibration` section. 

We then estimated a generalized additive mixed model (Wood 2006) that related measured RSS 

by each tag’s identity as well as a fixed effect for antenna orientation (left vs. right) using the 

`mgcv` package, v. 1.8.40 in R v. 4.2.1 (R Core Team 2022). As with node calibration, we 

suppressed the intercept from the model so that node-specific corrections were generated directly 

as model output. We included a random effect for node identification. Tag-specific RSS 

corrections were bimodal but ranged from -8.44 to 2.83 (mean ± SD: -4.05 ± 4.59; Figure 3.11). 

See GitHub (https://github.com/adamdsmith/blra_telemetry) for code. 

 

RSS vs Distance Calibration 

The objective of RSS vs. distance calibrations is to quantify the relative change in received 

signal power of a tag in situ as a function of distance from a node. 
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 For this calibration, a node, installed atop conduit in the same fashion as in our arrays, 

was placed on each end of a 60-m transect (i.e., nodes were 60m apart). A test tag was secured 6-

8cm above the bottom of a non-conductive 1-m pole with the tag near horizontal but with the 

antenna angled slightly downward. This tag arrangement was consistent with the height and 

orientation of tags when deployed on Black Rails. To start the calibration, the pole with the tag 

was placed directly under the starting node (distance = 0m) so that the bottom of the pole 

touched the ground. The pole was held at arm’s length, with the user standing on either side of 

the tag relative to the transect such that the user did not obstruct the sight line between the tag 

and either node. The pole was rotated slowly such that the tag completed a full turn each minute 

for a total of two minutes. Calibration times were tracked according to the Official U.S. Time 

(time.gov). This procedure was conducted at 15 different distances along each transect: 0, 1, 2, 4, 

8, 15, 25, 30, 35, 45, 52, 56, 58, 59, and 60 m. We repeated this procedure for a total of seven 

transects using the same tag. We assumed calibration model results (below) were not dependent 

on the specific tag and nodes used, but this is an assumption that could be further investigated by 

repeating the calibration with other tags and nodes. 

 Paxton et al. (2022) used an exponential decay model to describe this relationship. We 

evaluated the exponential decay model, but also considered a model based on the inverse square 

law for electromagnetic radiation given the relatively simple environmental structure of Black 

Rail habitat at SJNWR. In short, RSS is proportional to distance as described by the following 

linear equation: 

RSS ∝ -K * log10(Distance) + RSS0 

where K is proportional to a signal propagation constant or exponent describing the particular 

relationship between RSS and distance in our system, and RSS0 is essentially the RSS measured 
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at distance 0 (intercept). We estimated K and RSS0 using a linear mixed model relating RSS to 

log10(distance) using the lme4 package (v. 1.1.30; Bates et al. 2015) in R v. 4.2.1 (R Core Team 

2022). We included a random effect for the transect (n = 7) of data collection. See GitHub 

(https://github.com/adamdsmith/blra_telemetry) for code. 

In our particular application, the inverse square law and exponential decay models 

produced relatively similar relationships (Figures 3.12 & 3.13), although the inverse square law 

had better predictive ability as evaluated by RMSE over 500 parametric bootstrap iterations of 

the fitted model (Figure 3.14). Thus, we report results from the inverse square law model in the 

manuscript. With estimates of K and RSS0 from the linear mixed model, we can estimate tag 

distance from a node using: 

Distance = 10^((RSS0 – RSSaverage)/K) 

where RSSaverage is the average RSS over a given time interval (2 or 3 minutes in our 

application), corrected according to tag- and node-specific variations in RSS. A visualization of 

the uncertainty around estimated distances as a function of RSSI from the inverse square law 

model is illustrated in Figures 3.15 and Figure 3.16. 
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SUPPLEMENTARY (S3) FIGURES 
 

 

 
 
Figure 3.8. Received signal strength by Node position during calibration. Each node (n = 191) is 
colored distinctly. 24 nodes were calibrated at two positions. Points are jittered to improve 
clarity. 
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Figure 3.9. Estimated effect on node position during calibration on received signal strength. 
Band indicate pointwise standard error. 
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Figure 3.10. Histogram of node-specific corrections for received signal strength (RSS). 
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Figure 3.11. Histogram of tag-specific corrections for received signal strength (RSS). 
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Figure 3.12. Fitted relationship between calibration-adjusted RSS values (averaged over two 
minutes) and distance from the detecting receiver node modelled as an exponential decay 
function and according to the inverse square law for electromagnetic radiation. Values represent 
a single test tag used on 4 transects with 2 nodes per transect. 
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Figure 3.13. Residuals from fitted relationship between calibration-adjusted RSS values 
(averaged over two minutes) and distance from the detecting receiver node modelled as an 
exponential decay function and according to the inverse square law for electromagnetic 
radiation. 
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Figure 3.14. Violin plots illustrating density of root mean square error (RMSE) for 500 
bootstrapped simulations from the modelled relationship between calibration-adjusted RSS 
values (averaged over two minutes) and distance from the detecting receiver node using an 
exponential decay function and according to the inverse square law for electromagnetic 
radiation. 
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Figure 3.15. Bootstrapped simulations from the final modelled relationship between calibration-
adjusted RSS values (averaged over two minutes) and distance from the detecting receiver node 
using the inverse square law for electromagnetic radiation. The variation in the fitted lines 
illustrate the relative uncertainty in estimated distance from node for a given RSS value. 
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Figure 3.16. Uncertainty (standard deviation) in the predicted distance of a transmitter from the 
detecting node as a function of average received signal strength (RSS).  
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Chapter 4 

CONCLUSIONS 

 Broadly, the goal of this thesis was to evaluate technological advances and their potential 

to shed light on an understudied species, the Black Rail (Laterallus jamaicensis). Specifically, 

our objectives were to 1) investigate Animal Sound Identifier (ASI) software (Ovaskainen et al., 

2018) to see if it was suitable to develop vocalization-specific recognizers that aid users in 

classifying large audio libraries of field data collected by autonomous recording units (ARUs), 2) 

to demonstrate the use of radio signal strength (RSS)-based automated radio-telemetry systems 

(ARTS) for researching Black Rails, and 3) to summarize potential applications of both ARUs 

and ARTS and areas for future research as they apply to Black Rails. 

 Both ARUs and ARTS are likely to see increased use as the technologies and 

methodologies continue to advance. This may be especially true for species like the Black Rail 

that are difficult to research by conventional methods because of their relative rarity, cryptic 

behavior, and the difficult-to-access habitat. Black Rails are an ideal species to investigate 

monitoring via ARUs and ARTS, both in terms of methodology and conservation.  

Population and occupancy surveys for this species are conducted almost exclusively by 

auditory surveys, and ARUs have great potential to increase the accuracy and cost-effectiveness 

of surveys and may provide higher quality estimates to inform management decisions. ARUs can 

be used to augment in-person surveys of occupancy, increasing the detection probability for 

Black Rails and thus increasing the quality of statistical inferences about occupancy. 

Additionally, ARUs could be used to survey occupancy across larger tracts of land allowing for a 

more targeted approach for in-person abundance surveys.  
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ARUs may one day replace in-person surveys as the preferred method of surveying 

occupancy for Black Rails and similar species; however, a few barriers must be crossed before 

this becomes possible. First, classifiers must be made more accessible to users with limited 

computational skills and/or to those with limited funds for outsourcing classification. Second, the 

time between ARU deployment and the acquisition of actionable data for analysis and evaluation 

must be reduced. In-person surveys produce data that is actionable as soon as it is collected and 

entered, while audio files collected via ARUs may sit on hard drives indefinitely due to limited 

time for review. Developing automated classifiers that can process audio quickly and accurately 

is the key to unlocking the full potential of ARUs. Lastly, we encourage clear evaluation of false 

positive and false negative rates, precision, and recall for all classifiers. This will allow 

researchers to clearly define goals for their monitoring programs based on their ability to review 

output from automated classification. 

While vocalization recognizers for Black Rails are still limited, our study demonstrates 

the potential of classifiers to identify Black Rail vocalizations reasonably well with user control 

of false positive rates. Continued research applying ARUs to Black Rails is needed, specifically 

1) improving existing recognizers for the species, 2) continued development and standardization 

of occupancy and abundance modeling methods specific to ARU data collection, and 3) building 

recognizers for all Black Rail vocalization types (including vocalizations by non-adult birds) and 

evaluating their potential to inform studies of vocalization behavior and occupancy.  

RSS-based ARTS have great potential to inform knowledge gaps vital to the conservation 

efforts of Black Rails, such as studies of movement, activity patterns, habitat selection, and 

breeding ecology. It is our hope that this study can provide a reference baseline from which 

future work applying ARTS to Black Rails and similar species can stem. We recommend 
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researchers interested in RSS-based ARTS perform in situ range tests prior to larger equipment 

purchases as an economical way to inform node spacing and study feasibility for the given 

application. For researchers interested in home range and location monitoring via node arrays, 

we recommend soft deployment of arrays to allow for the adaptive refinement of grid placement 

during construction, saving time and effort and reducing disturbance to sensitive habitats by 

mitigating the need to readjust the grid after deployment.  
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