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Abstract

Antimicrobial Resistance (AMR) in bacteria is a global threat with increased prevalence found in

isolates from food animals including those in the United States. This is due to the emergence of new

mechanisms giving rise to multi-drug-resistant bacterial strains. In this research project, retrospective

Antimicrobial Susceptibility Testing (AST) surveillance datasets for Salmonella and Enterococcus bacteria

collected by the Food and Drug Administration (FDA) were utilized to determine the co-occurrence of

AMR to different antibiotics. For this purpose, a Bayesian Network was implemented and trained and

interesting rules were generated using association rule mining. Whole genomic sequence (WGS) data was

also used to detect AMR genes and check for co-occurrence.
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CHAPTER 1

INTRODUCTION

Antimicrobial resistance (AMR) has emerged as one of the most serious and growing global public health

threats. Antimicrobial products and compounds have been used to kill or slow the spread of microor-

ganisms such as bacteria, viruses, fungi, etc. These products successfully treat various diseases and are

used in human and veterinary medicine. But, resistance to these compounds was demonstrated in target

pathogens only a few years after their therapeutic use in humans began (Alanis, 2005). According to the

2019 Centers for Disease Control and Prevention (CDC) report, more than 2.8 million antimicrobial-

resistant infections occur each year resulting in nearly 35,000 deaths in the United States (US) (Centers for

Disease Control, 2019). This is due to the rise and spread of multi-drug resistance (MDR) bacteria, also

called "superbugs" (Davies & Davies, 2010). Superbugs are strains of bacteria that have become resistant

to most antibiotics and other medications used to treat the infections caused by them.

In this research, the whole-genome sequencing (WGS) dataset for Salmonella and Enterococcus col-

lected from the National Center for Biotechnology Information (NCBI) website was used initially to

train a Bayesian network to check for the co-occurrence of AMR genes and find patterns. Secondly, associ-

ations between resistance to different antibiotics in both Salmonella and Enterococcus were also identified.

This paper focuses on finding interesting association rules with high support and confidence for AMR

in different strains of bacteria. The main objective of the paper is to build and generate patterns in the

AMR analysis using Bayesian Networks and Association Rule Mining.

This thesis is organized into four sections along with an appendix. Chapter 2 contains all the required

information on background, techniques, and algorithms to understand the outputs that will be generated

in Chapters 3 and 4. It contains information related to AMR in bacteria, Bayesian networks, and asso-

ciation rule mining. This thesis utilizes the past collected genome samples along with the Antimicrobial
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Susceptibility Testing (AST) data and uses that knowledge to train the Bayesian networks and find co-

occurrence among AMR genes and relationships between resistance to different antibiotics. In Chapter

3, the collection and feature extraction of the WGS dataset is covered. Before training the Bayesian net-

work for Salmonella, hierarchical clustering was performed. Chapter 4 covers the details about the dataset

and setup of the experiments and the selection of metrics for finding the associations among antibiotic

resistance. The AST dataset for Salmonella and Enterococcus was collected by the U.S. Food and Drug

Administration (FDA) from different locations across the United States during the period 2014-2019.

For training the Bayesian Network, the Hill-climbing approach was used along with Bayesian Informa-

tion Criterion (BIC) as the scoring metric. For checking the quality of the association rules, five interest

measures (IMs) such as support, lift, confidence, leverage, and conviction were evaluated. In Chapter 5,

conclusions on the findings and potential future work are presented.

2



CHAPTER 2

LITERATURE REVIEW AND BACKGROUND

§ 2.1 Antimicrobial Resistance (AMR)

Antimicrobial agents have been widely used in livestock and poultry since the 1950s (Mathew AG, 2007).

The use of antimicrobial agents in the production of food animals has offered proven benefits such as im-

proved animal health, higher production, and, in some cases, reduction in foodborne pathogens (Mathew

AG, 2007). But resistance to these agents has emerged posing a serious global threat of increasing concern

for human, animal, and environmental health. There has been an increase in the prevalence of Antimi-

crobial Resistance (AMR), including multi-drug resistance (MDR) in bacteria isolated from U.S food

animals (Frye & Jackson, 2013). The phenotypic expression of antimicrobial resistance to a particular

antimicrobial agent may be encoded by a number of different resistance genes.

In the case of MDR, multiple unrelated resistance genes exist within the same bacterium, resulting

in simultaneous resistance to multiple antimicrobial agents of different classes (Alanis, 2005). These

MDR mechanisms imply that antimicrobial use can select not only for resistance to one drug but also for

resistance to other antimicrobials. Therefore, finding the patterns of associations between resistance to

multiple antimicrobials is important in order to reduce the subsequent development of AMR. Salmonella

infections are the second most common cause of bacterial foodborne illness in the United States. It

is estimated that approximately 1.4 million Salmonella infections occur each year, resulting in 17,000

hospitalizations and 585 deaths in the United States (Mead et al., 1999; Voetsch et al., 2004). Enterococcus

faecalis and Enterococcus faecium have emerged as MDR pathogens in critically ill patients (Sood et al.,

2008). Different mechanisms for antibiotic resistance in Salmonella and Enterococcus have been described

in Frye and Jackson (2013).
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§ 2.2 Probability

A random variable is a quantity with an associated probability distribution. It can be either discrete

(i.e., have a countable range) or continuous (have an uncountable range). The probability of a random

variable X taking on a value from set A is defined as the probability measure of X , denoted by P (X ∈

A). In particular, the probability distribution associated with a discrete random variable is a probability

mass function (pmf), whereas one associated with a continuous random variable is a probability density

function (pdf). The cumulative distribution function (CDF) is the probability that the random variable

is less than or equal to a certain value x and is defined asFX(x) = P (X ≤ x) in both cases. For a discrete

random variable, the pmf is given by the difference.

pX(xk) = FX(xk)− FX(xk−1) (2.1)

and the pdf for a continuous random variable is given by the derivative.

fX(x) =
d

dx
FX(x) (2.2)

There are three types of probabilities:

• Joint Probability

A joint probability is the probability of two different events occurring at the same time. For the

discrete random variables X and Y, the joint pmf is given as:

pX,Y (x, y) = P (X = x, Y = y) (2.3)

where (x, y) is a possible pair of values for the random variables X and Y.

• Marginal Probability

From a joint pmf, a marginal pmf can be derived. The marginal PMFs for the random variables X

and Y are given as:
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pX(x) = P (X = x) =
∑
j

pX,Y (x, yj) (2.4)

pY (y) = P (Y = y) =
∑
i

pX,Y (xi, y) (2.5)

where i and j correspond to all possible values of random variables X and Y respectively.

• Conditional Probability

Conditional probability is the probability of an event X occurring, given that another event Y

is known to have occurred. It is denoted mathematically as P (X | Y ). A conditional pmf is

calculated as follows:

pX|Y (x | y) = P (X = x | Y = y) =
pX,Y (x, y)

pY (y)
(2.6)

§ 2.3 Bayes’ Theorem on Conditional Probability

The conditional probability is often found in the following form based on Bayes’ rule.

P (A | B) =
P(B | A) P(A)

P(B)
(2.7)

Under Bayes’ rule, P(A) is known as the prior probability, P(B | A) as the likelihood, P(B) as the evidence,

and P(A | B) as the posterior probability. If this conditional probability is presented simply as P(A), that

is, P(A | B) = P(A) then A and B are independent events as knowing about event B tells nothing about

the probability of event A. Similarly, it is possible for A and B to be conditionally independent given the

occurrence of another event C: P(A ∩B | C) = P(A | C) P(B | C). This statement says that, given that

C has occurred, and knowing that B has also occurred tells nothing about the probability of A having

occurred.

5



§ 2.4 Bayesian Network

Bayesian networks (BNs) are a part of the probabilistic graphical models family. Their graphic structures

can be used to represent causal knowledge about an uncertain domain and can be referenced to reflect the

interpretation of particular input data (Pearl, 1985). A Bayesian network is a directed acyclic graph (DAG)

where the nodes represent the random variables and the edges between the nodes express probabilistic

relationships between these variables. Thus, if the graph G = (V, E), where V is a finite set of vertices

or nodes and E is a finite set of edges, contains a set of random variables X = {X1, X2, . . . Xn}, then

an edge between node Xi and Xj represents a statistical dependence between the two corresponding

variables. Also, a directed arrow indicates that the value of variable Xj is dependent on the value of Xi.

Here, the node Xi is referred to as a parent node and Xj as a child node. The factorization of the joint

probability distribution P(X) can be written as the product of individual density functions depending

on the parent variables:

P (X) =
n∏

j=1

P (Xj | ΠXj
) (2.8)

where ΠXj
is the set of parents for node Xj and n is the total number of nodes in G. With Bayesian

structure learning, we want to find the optimal DAG that best captures the statistical dependencies among

variables in a given dataset. There are two approaches that can be used to search throughout the DAG space

and find the best-fitting one for the given dataset. The first is score-based algorithms, which search for all

possible DAGs and a score is assigned to each DAG based on how well it fits the data. The DAG with the

best score is then kept as the final structure (D. Heckerman, 1999). This approach seems computationally

intractable as the number of possible DAGs is massive and the time-complexity increases exponentially

with the number of nodes (Robinson, 1977). There are many scores that have been proposed for finding

the optimal DAG that maximizes the posterior probability (Daly et al., 2011). Scores such as BDeu, BDs,

and BDla which belong to the Bayesian Dirichlet (BD) family, Bayesian Information Criterion (BIC),

Akaike Information Criterion (AIC), and Minimum Description Length (MDL) have been proposed

(Daly et al., 2011). The BIC was used as the scoring metric for training the Bayesian network. BIC score
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gives an estimate of the model’s performance where a model with a lower BIC score is selected. The BIC

score is calculated as follows:

BIC = −2 ∗ Loglikelihood+ k ∗ log(N) (2.9)

where N is the sample size of the training dataset and k is the number of parameters. A Likelihood function

is a measure of how well a particular model fits the data and is given by:

L(θ) = L(θ | x1, x2, . . . xn) = f(x1, x2, . . . xn | θ) (2.10)

where f is the probability mass function. The logarithmic transformation to the base e of the likeli-

hood function is called the Log-likelihood. The score-based approaches are basically searching problems

consisting of two parts: the search algorithm to find the optimal DAG from the search space of all pos-

sible DAGs and the scoring metric to generalize how well the BN fits the given dataset. The different

score-based search algorithms are as follows:

1. Exhaustive Search: The Exhaustive search approach scores each possible DAG and returns the DAG

with the highest score. But, this search algorithm is only effective for small networks, preventing

local optimization algorithms from finding optimal structures consistently. Therefore, finding the

ideal DAG is not always possible.

2. HillClimb Search: The HillClimb search approach is a heuristic approach that works well with

larger networks. It uses a greedy local search approach that starts with an empty DAG and keeps on

adding-removing edges to maximize the score. But, this search algorithm stops when local maxima

are achieved.

3. Chow-Liu: The Chow-Liu algorithm is a type of search approach which finds the maximum-

likelihood tree-structure graph where each node has exactly one parent. This approach can de-

termine the DAG quickly on large datasets, as the complexity can be limited by restricting it to

a tree structure. But, for this algorithm to work a root node needs to be set. The algorithm has
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three steps, viz. compute the mutual information (MI) for all pairs of variables, find the maximum

weight spanning tree that connects all vertices in a graph and pick any node as root node assigning

an outward going arrow.

§ 2.5 Inference via Bayesian Network

Bayesian networks can be used to compute the posterior probability distribution of one or more variables

in the network by conditioning the observed values for the other variables in the network. This can be done

by using variable elimination which performs marginalization over Joint Probability Distribution (JPD)

(Cooper, 1999). A trained Bayesian network encodes a joint probability distribution, so it contains all the

information needed to compute the marginal or conditional probabilities of the nodes in the network. In

our case, we will be able to ask the network questions as follows:

• P(X1 = present | X5 = absent and X6 = present)

• P(X3 = absent | X1 = present)

• P(X7 = present | X1 = present and X1 = present)

whereX1,X2,....,Xn represent different antibiotics and present, absence denotes the AMR resistance.

§ 2.6 Association Rule Mining

Agrawal first stated the formal explanation of the association rule mining problem in Agrawal et al. (1993).

Given a set of items, I = {I1, I2, . . . In}, and a set of transactions T such that T ⊆ I , D be the database

with different transaction records T’s. Then, the association rule is an implication of form X → Y ,

where X, Y ⊂ I are a disjoint set of items called itemsets. Here, X is called the antecedent, and Y is called

the consequent, the association rule stating X gives rise to Y. Association rule mining has two important

basic measures: support and confidence which can be used to prune the rules that are not interesting as

we are only interested in frequently seen patterns.
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Table 2.1: Example database with 6 items and different transactions at a supermarket store

Transaction_id Milk Eggs Bread Butter Diaper Coke Beer

1000 0 1 0 0 1 0 1

1001 1 0 1 1 0 1 0

1002 1 1 1 1 1 1 0

1003 0 1 0 0 0 1 0

1004 1 0 1 0 1 0 1

1005 1 0 1 1 1 1 0

§ 2.7 Interest Measures (IM)

1. Support

Support is defined as the frequency or number of times an itemset occurs in the given transactional

database (Agrawal et al., 1993). So, by the above definition, support is the statistical significance of

the association rule. Suppose the support of an itemset or item is 0.05%, then it means that the

itemset or item occurs in only 0.05 percent of the total transactions in the database. In many cases,

such low-support items can appear randomly, so it may not be interesting to watch. We can prune

or filter the itemsets with a specified minimum-support threshold to find the "frequent itemsets".

Support is calculated by the following formula:

Support(X → Y ) = P (X ∩ Y ) =
number of transactions containing X & Y

Total number of transactions in D
(2.11)

Using Table 2.1 as an example, the itemset {Milk, Bread} has a support of 4/6 = 0.66 meaning it

occurs in 66% of all transactions.

2. Confidence

While support corresponds to the rule’s statistical significance, confidence is a measure of the rule’s

strength (Agrawal et al., 1993). Confidence is defined as the conditional probability P(X | Y), which
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is the probability of X and Y occurring together given that the transaction already contains X.

Suppose the confidence of a rule is 90%, then it means that 90 percent of the transactions that

contain X also contain Y giving us a great measure to validate the rule. The confidence is 1 or 100%

if the antecedent and consequent always occur together. Confidence is given as follows:

Confidence(X → Y ) = P (X | Y ) =
Support (X → Y )

Support (X)
(2.12)

Again, looking at Table 2.1, the rule {Milk, Bread} → {Butter} is (3/6)/(4,6) = 0.75, meaning that

every time a customer buys milk and bread, 75% of the time they also buy butter along with it.

3. Lift

Lift is a measure of the rule’s importance (Brin et al., 1997). Lift is the ratio of the confidence of the

rule and the expected confidence of the rule. It is used to measure how often a rule’s antecedents and

consequences occur together more than would be expected if they were statistically independent.

Lift for a rule is defined as follows:

Lift(X → Y ) =
Confidence (X → Y )

Support (Y)
=

Support (X → Y )
Support (X) Support(Y)

(2.13)

• A lift value > 1 indicates that the antecedent and consequent occur more often together than

expected, meaning that the occurrence of one item has a positive effect on the occurrence of

other items.

• A lift value < 1 indicates that the antecedent and consequent occur less often together than

expected, meaning that the occurrence of one item has a negative effect on the occurrence of

other items.

• A lift value = 1 indicates that the antecedent and consequent occur almost as often together

as expected, meaning that the occurrence of both items is independent of each other.

For example, the rule {Diaper} → {Beer} has a lift of (2/6) / ((4/6) × (2/6)) = 1.5 which means

that there is a direct implication between purchasing diapers and beer.
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4. Leverage

Leverage calculates the difference between the observed frequency of items (in an itemset) occurring

together and the frequency that would be expected if the items were independent (Piatetsky-Shapiro,

1991). This definition is almost identical to lift, except that lift calculates the ratio while leverage finds

the difference because of which leverage is able to favor itemsets with higher support. A leverage

value of 0 means that both X and Y are independent, a value greater than 0 indicates a positive

correlation between X and Y while a value less than 0 shows that X and Y are negatively correlated.

The leverage of a rule is calculated as follows:

Leverage(X → Y ) = Support(X → Y )− Support(X)× Support(Y ) (2.14)

5. Conviction

A conviction can be interpreted as the ratio of the probability of X occurring without Y, given they

are dependent on the actual frequency of occurrence of X without Y (Brin et al., 1997). Unlike lift,

conviction is sensitive to rule direction as it also uses information about the absence of consequent.

A conviction value of 1 indicates that X and Y are independent.

Conviction(X → Y ) =
1 - Support (Y)

1 - Confidence (X → Y )
(2.15)

For example, the rule {Diaper}→ {Beer} has a conviction of 1−(2/6)
1−(1/2)

= 1.33 stating that the two given

itemsets are positively related.

§ 2.8 The Apriori Algorithm

Association rule mining can be broken down into two sub-problems: The first problem is to find the

itemsets whose number of occurrences exceeds a certain defined threshold. In the database, these itemsets

are called frequent or large itemsets. The second problem is generating association rules from these large

itemsets using minimum confidence constraints (Agrawal et al., 1993). Once we have determined the
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large itemsets, the solution to the second sub-problem is straightforward. Hence, many of the approaches

focus on solving the first sub-problem. One such approach that is efficient and used widely for finding

large itemsets is called the Apriori Algorithm. It was introduced by R. Agrawal and R. Srikant in 1994

(Agrawal, Srikant, et al., 1994). The first problem can be further decomposed into two sub-problems:

firstly generating candidate large itemsets and second generation of frequent itemsets (Zhao & Bhowmick,

2003). The itemsets whose support exceeds the minimum support threshold are called large or frequent

itemsets, while those itemsets that are expected to be large or frequent are called candidate itemsets.

There are two processes involved in finding all the large or frequent itemsets in a given database D in

the Apriori algorithm. Initially, the candidate itemsets are generated, and then the database is scanned

to check the support count for all corresponding itemsets. During the first scan of the database, the

support count for each item is calculated and the large 1-itemsets are generated by removing those itemsets

whose supports are below the minimum support threshold. Only candidate itemsets containing the same

specified number of items are generated and checked in each pass. The candidate k-itemsets are generated

after the (k-1)th passes over the database by combining the frequently used k-1-itemsets. According to the

Apriori property, all the candidate k-itemsets are pruned by checking if their sub (k-1)-itemsets are present

in the frequent itemsets. If not, they should be removed as the Apriori property states that every sub

(k-1)-itemsets of the frequent k-itemsets should be frequent.
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CHAPTER 3

CO-OCCURRENCE OF AMR GENES IN BACTERIA

§ 3.1 Dataset Overview

The genome assembly dataset downloaded from the NCBI website for Salmonella enterica, Enterococcus

faecalis, and Enterococcus faecium (Wheeler et al., 2007) was used in the analysis. This can be done using

the command-line tool called datasets which is used to query and download genome sequence data for

the required organism from the NCBI database. For example, for downloading the genome data for E.

faecalis, the following command was used:

datasets download genome taxon "Enterococcus faecalis" –filename filename.zip

In total, around 325,000 genomes for Salmonella, 15,124 genomes for E. faecium, and 7,631 genomes for

E. faecalis were downloaded. This dataset mostly contains bacteria genomes collected from humans and

some from retail food animals. Since we were interested in finding the co-occurrence of AMR genes in

these bacteria, all the AMR genes present in these genome files were identified. The AMRFinderPlus tool

was used for finding all the AMR, metal, heat, and virulence resistance genes from the genome assembly.

§ 3.2 AMRFinderPlus

AMRFinderPlus is a bioinformatics tool that is used to identify AMR genes, point mutations, and other

classes of genes including stress, acid, biocide, metal, heat, and virulence resistance genes in both protein

and nucleotide sequences (Feldgarden et al., 2021). The tool uses the Reference Gene Catalog database

along with a tool like Basic Local Alignment Search Tool (BLAST) internally to match the given sequence

with the genes from the database. This tool also provides other details such as gene class, subclass, full-

sequence name, element type, etc. There is also an option to only retrieve the AMR genes by removing

the –plus option.
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AMRFinderPlus with the –plus option was used for all the genome sequences for both Salmonella

and Enterococcus. The total number of AMR genes along with other resistant genes is shown in Table 3.1

below.

Table 3.1: Genome Sequence Dataset Along with the AMR Genes for Salmonella and Enterococcus

Bacterial Species Salmonella Enterococcus faecalis Enterococcus faecium

Number of Genomes 310743 6706 14617

AMR genes 369 129 142

§ 3.3 Hierarchical Clustering

The Bayesian network was first trained before with random 10K genomes from the WGS dataset for

Salmonella which contains 310K genomes collected from the NCBI website. Due to computational

constraints, the entire network with the 310K genomes along with the 369 AMR gene nodes could not be

trained as the computational complexity is more than exponential in N nodes for the greedy search-based

hill-climbing algorithm (Scutari et al., 2019). Since the first 10k genomes were randomly selected, there

was a potential loss of information as genomes of interest could be located anywhere in the dataset. To

avoid that, genomes were clustered hierarchically and at least one genome was selected from each of the

15K cluster nodes. In this way, the representation and diversity of all the genomes in the dataset were

preserved.

Clustering is an unsupervised machine learning technique that groups similar data points such that

the data points in one group are similar to each other than points in the other group, where each group

forms a cluster. Hierarchical clustering was first introduced by Stephen Johnson in 1967 (Johnson, 1967).

In agglomerative hierarchical clustering, in the beginning, each data point is considered to be an individual

cluster. At each iteration, similar clusters are merged with other clusters until one or a number of specified

clusters (k) are formed. With the help of hierarchical clustering, the cut-off (for the dendrogram) can be

defined later and the specified number of clusters will be formed. The 325K genomes were first hashed

using the dashing software (Baker & Langmead, 2019) and then the Mash distance (Ondov et al., 2016)

was used to generate the distance linkage matrix (325K vs 325K) which was used as the input for training
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the hierarchical clustering done with the use of python package SciPy (Virtanen et al., 2020). Different

clustering algorithms like single linkage, average linkage, and weighted linkage were evaluated to compute

the clusters using agglomerative clustering.

But, as the number of genomes is reduced, a few genes may be lost as there were genomes that did

not contain any AMR genes. The dendrogram tree was cut at a distance t, where around 15K clusters of

genomes were present.

§ 3.4 Structure Learning Using Bayesian Network

The Python package bnlearn was used to perform structure learning using a Bayesian network. The

hill-climbing algorithm was used along with the BIC as a score metric to train the model. Due to the

high number of AMR genes in the Salmonella dataset, a very complex static plot is formed from which

it is hard to interpret associations. The BN for the clustered Salmonella genome dataset with 279 nodes

(genes) is shown below.

Figure 3.1: DAG for clustered Salmonella data learned with structure Bayesian learning
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Also, the BN for E. faecium with 14617 genomes, 142 AMR genes, and E. faecalis with 6706 genomes, 129

AMR genes were trained directly using bnlearn Python package without any clustering as the training

time was within the computational power due to fewer AMR genes and genome samples. The static DAG

for both bacterial species is shown below.

Figure 3.2: DAG for clustered E. faecium data learned with structure Bayesian learning

Figure 3.3: DAG for clustered E. faecalis data learned with structure Bayesian learning
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Since we were not able to interpret the graph due to the high number of nodes, the graph was plotted

in interactive mode where the nodes can be moved around; however, that type of plot is not able to be

displayed here.

§ 3.5 Inference

With the help of trained BN and its encoded joint probability distribution for each AMR gene node, the

probability of the presence/absence of a particular AMR gene can be inferred given that one already knows

the presence/absence of other AMR genes. For example, the probability of the presence of the catA13

(type A-13 chloramphenicol O-acetyltransferase) gene given that aad9 (ANT-9 family aminoglycoside

nucleotidyltransferase) is absent/present can be inferred from the CPD table as shown below.

Table 3.2: Example Conditional Probability Table of catA13 AMR gene in Salmonella

aad9 / catA13 catA13 (True) catA13 (False)

aad9 (True) 0.2605 0.7395

aad9 (False) 0.0283 0.9717

In the next section, we will be working with the AST data to check for associations between resistance

to different antibiotics.
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CHAPTER 4

ASSOCIATIONS AMONG RESISTANCE TO DIFFERENT ANTIBIOTICS

§ 4.1 Dataset Overview

The antimicrobial susceptibility testing data for Salmonella and Enterococcus isolated from retail food

animals were obtained from the FDA database for the period 2014-2019. In total there were 4471 and

5992 sample isolates available for Salmonella and Enterococcus respectively. Each of the tested isolates

was classified as either resistant or susceptible based on the minimum inhibitory concentration (MIC)

breakpoints (CLSI, 2020).

§ 4.1.1 Salmonella data

Out of the 15 antimicrobials that the Salmonella isolates were tested against, the antimicrobials that were

used for the analysis were Ampicillin (AMP), Amoxicillin–clavulanic acid (AMC), Azithromycin (AZI),

Chloramphenicol (CHL), Ceftriaxone (AXO), Cefoxitin (FOX), Ciprofloxacin (CIP), Colistin (COT),

Gentamicin (GEN), Nalidixic acid (NAL), Streptomycin (STR) and Tetracycline (TET). Sulfisoxazole

was not used for this study as there was not a single isolate resistant to it in the dataset.

From the total of 4471 isolates that were tested, 2 (0.04%) were resistant to 10 of the 12 antimicrobials,

310 (6.93%) to at least 8, 622 (13.91%) to at least 5, 1078 (24.11%) to at least 3 and 2977 (66.58%) to at least 1

of the antimicrobials. For the association rule mining, the 2977 isolates resistant to at least one antibiotic

were used for generating rules and training the Bayesian network. The breakpoints used to determine

resistance and the number of resistant isolates is shown below in Table 4.1.
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Table 4.1: Resistance breakpoints and prevalence of antimicrobial resistance for the 4471 Salmonella
isolates obtained from retail meat between 2014-2019.

Antimicrobial Abbreviations
Resistance breakpoints

(ug/ml)

Number (%) of

resistant isolates

Ampicillin AMP ≥ 32 877 (19.61)

Amoxicillin–clavulanic acid AMC ≥ 32/16 494 (11.04)

Azithromycin AZI ≥ 32 2 (0.04)

Chloramphenicol CHL ≥ 32 387 (8.65)

Ceftriaxone AXO ≥ 4 481 (10.75)

Cefoxitin FOX ≥ 32 207 (4.62)

Ciprofloxacin CIP ≥ 1 654 (14.62)

Colistin COT ≥ 4 216 (4.83)

Gentamicin GEN ≥ 16 589 (13.17)

Nalidixic acid NAL ≥ 32 641 (14.33)

Streptomycin STR ≥ 32 2050 (45.85)

Tetracycline TET ≥ 16 2214 (49.51)

§ 4.1.2 Enterococcus data

Out of the 15 antimicrobials that the Enterococcus isolates were tested against, the antimicrobials that

were used for the analysis were Chloramphenicol (CHL), Ciprofloxacin (CIP), Daptomycin (DAP),

Kanamycin (KAN), Lincomycin (LIN), Linezolid (LZD), Penicillin (PEN), Streptomycin (STR), Nitro-

furantoin (NIT), Tetracycline (TET), Tigecycline (TGC) and Quinupristin/Dalfopristin (SYN). The

Enterococcus data was divided into two based on two predominant species: Enterococcus faecalis and En-

terococcus faecium. The breakpoints used to determine resistance and the number of resistant isolates is

shown below in Table 4.2.
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• E. faecium

From the total of 1129 isolates that were tested, 7 (0.62%) were resistant to 9 of the 12 antimicrobials,

217 (19.22%) to at least 6, 702 (62.17%) to at least 4, and 1127 (99.82%) to at least 1 of the antimicrobials.

For association rule mining, the 1127 isolates for generating rules were used.

• E. faecalis

From the total of 4863 isolates that were tested, 4 (0.08%) were resistant to 8 of the 12 antimicrobials,

251 (5.16%) to at least 6, 2051 (42.58%) to at least 4, and 4829 (99.30%) to at least 1 of the antimicrobials.

For the association rule mining, the 4829 isolates for generating rules were used.

Table 4.2: Resistance breakpoints and prevalence of antimicrobial resistance for the 1129 E. faecium and
4863 E. faecalis isolates obtained from retail meat between 2014-2019.

Antimicrobial Abbreviations

Resistance

breakpoints

(ug/ml)

Number (%) of

resistant isolates

E. faecium

Number (%) of

resistant isolates

E. faecalis

Chloramphenicol CHL ≥ 32 15 (1.32) 185 (3.80)

Ciprofloxacin CIP ≥ 4 364 (32.24) 2367 (48.67)

Daptomycin DAP ≥ 8 146 (12.93) 5 (0.10)

Kanamycin KAN ≥ 1024 100 (8.85) 839 (17.25)

Lincomycin LIN ≥ 8 237 (20.99) 78 (1.60)

Linezolid LZD ≥ 8 3 (0.26) 4 (0.08)

Penicillin PEN ≥ 16 164 (14.52) 4 (0.08)

Streptomycin STR >1000 147 (13.02) 608 (12.50)

Nitrofurantoin NIT ≥ 128 1067 (94.50) 49 (1.00)

Tetracycline TET ≥ 16 505 (44.72) 1641 (33.74)

Tigecycline TGC ≥ 0.5 4 (0.35) 25 (0.51)

Quinupristin/Dalfopristin SYN ≥ 4 308 (27.28) 111 (2.28)
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§ 4.2 Structure Learning Using Bayesian Network

As discussed in the literature review, Bayesian network learning can be divided into structure learning

and parameter learning. The package bnlearn which is available in Python has the ability to easily

implement both these methods (Taskesen, 2020).

1. Structure Learning

Given a set of random variables X, estimate a DAG that best fits the statistical dependencies among

the variables in a given dataset.

2. Parameter Learning

Given a set of random variables X and a DAG that captures the statistical dependencies among

them, calculate the conditional probability distributions for each variable in a given dataset.

bnlearn has multiple parameters, allowing the ability to choose the structure learning method, the score

type to compare DAGs, and search among models with a set maximum in-degree (incoming) for nodes,

etc. The package allows the use of multiple structure learning algorithms like Exhaustive Search, Hill-

climb Search, Chow-Liu Algorithm, Tree-augmented Naive Bayes, and score types such as BIC (Bayesian

Information Criterion), K2 and BDeu (Bayesian Dirichlet). For this thesis, the Hill Climb approach was

used along with BIC as the score type for learning the structure of the Bayesian network with different

in-degree nodes.
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(a) estimated DAG

(b) DAG with edge significance

Figure 4.1: Structure Bayesian Learning for Salmonella data with max-indegree = 1

Panel a above shows the estimated Bayesian network DAG when the number of parent nodes is limited

to one. In panel b, the edge significance depicts the chi-square statistic calculated for the test of

independence. Darker edges represent higher statistic values indicating a strong association between the

two nodes.
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(a) estimated DAG

(b) DAG with edge significance

Figure 4.2: Structure Bayesian Learning for Salmonella data with max-indegree = 2

Changing the max parents for a given node to two changes some relationships between the antibiotics

resistance. Now, there is a new edge between [NAL] –> [AXO] with high edge significance. [AZI] was

cut out of the graph because there weren’t enough resistant samples for the BN network to learn from.
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(a) estimated DAG

(b) DAG with edge significance

Figure 4.3: Structure Bayesian Learning for Salmonella data with max-indegree = None

Here, the parent node restriction is removed and the Bayesian network assigns the number of parents

based on the training data. STR has the maximum number of parents = 4.
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§ 4.3 Chi-square Test of Independence

The chi-square independence test is used to determine if there is a statistical dependency among two

categorical independent variables. Karl Pearson introduced the idea of the chi-square test and hypothesis

testing in 1900 (Pearson, 1900). Pearson’s chi-square test is given as follows:

χ2 =
n∑

k=1

(Ok − Ek)
2

Ek

(4.1)

where

• χ2 is the chi-square test statistic

• O is the observed frequency

• E is the expected frequency

Similar to all the hypothesis tests, the chi-square test of independence evaluates a null and alternative

hypothesis. If we want to know the relationship between variable 1 and variable 2, we can use the chi-

square independence test. bnlearn Python package provides us with the option for performing chi-square

tests for all the detected edges and also pruning the non-significant edges to reduce the False Discovery

Rate (FDR).

• Null hypothesis, (H0): The null hypothesis states that there is no relationship between variable 1

and variable 2.

• Alternative hypothesis, (H1): The alternative hypothesis is that there is a relationship between

variable 1 and variable 2

After we have calculated the chi-square statistic, we need to compare it with the critical chi-square

value found in the critical chi-square table which follows a chi-square distribution first published by

Elderton (Elderton, 1902). Based on the degrees of freedom (dof) which is the number of independent

pieces of information used to calculate a statistic and the significance level or alpha (α) which is a value set
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in advance as the threshold for statistical significance. If the p-value is greater than the significance level,

the null hypothesis is not rejected and the result is not statistically significant. If the p-value is smaller than

the significance level, the result is interpreted as refusing the null hypothesis and reported as statistically

significant.

In our case, the significance level (α) was 0.05, and from Table 4.3, the degree of freedom is 1. So

according to the chi-square table, the critical value is 3.841. Here, we can see that the edge [CHL <->

FOX] is excluded because it was not significant i.e p < 0.05, and its chi-square value is 1.43485 which is less

than our critical value of 3.841.

Figure 4.4: Pruned DAG for Salmonella learned with structure Bayesian learning

Final trained Bayesian network DAG for the Salmonella dataset after the pruning is done and removing

the non-significant edge [CHL <-> FOX]
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Table 4.3: Independence test for pruning the Bayesian network - Salmonella

Source Target stat_test p_value chi_square dof

AMC FOX True 4.72104e-206 938.263 1

AMC STR True 1.85515e-53 236.91 1

AMC TET True 2.58346e-39 172.092 1

AMP AMC True 1.75103e-309 1414.17 1

AMP AXO True 4.28622e-291 1329.55 1

AXO TET True 3.39571e-09 34.9426 1

CHL GEN True 1.91405e-213 972.27 1

CHL AMP True 2.6071e-63 282.108 1

CHL FOX False 0.230974 1.43485 1

CIP STR True 0.000265615 13.2985 1

COT NAL True 2.19916e-154 700.614 1

COT CHL True 3.11265e-148 672.329 1

COT GEN True 1.99166e-115 521.505 1

COT TET True 1.23817e-14 59.4756 1

FOX AXO True 5.49055e-205 933.361 1

FOX STR True 8.97837e-25 105.61 1

GEN STR True 9.15571e-34 146.694 1

GEN AMC True 6.49211e-07 24.7603 1

GEN AMP True 9.26667e-52 229.122 1

NAL CIP True 0 2872.65 1

NAL CHL True 1.14921e-233 1065.3 1

NAL AMC True 3.6733e-31 134.788 1

NAL AXO True 4.67793e-103 464.65 1

NAL GEN True 2.5296e-138 626.762 1

TET STR True 3.47679e-23 98.3666 1
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§ 4.3.1 E. faecalis

In this section, structure learning for E. faecalis was performed to generate a DAG that captures depen-

dencies among resistance to different antibiotics.

(a) estimated DAG

(b) DAG with edge significance

Figure 4.5: Structure Bayesian Learning for E. faecalis data with max-indegree = 1

Here, LZD and TGC are present without any associations as there are not enough positive isolates for

these two antibiotics for the BN to learn from. Also, it can be seen that [DAP, NIT, PEN] form a

separate tree graph.
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bnlearn gives the option to restrict the maximum number of in-degree edges coming to a node using the

max_indegree parameter.

(a) estimated DAG

(b) DAG with edge significance

Figure 4.6: Structure Bayesian Learning for E. faecalis data with max-indegree = 2

After increasing the maximum number of parents a node can have to two, [CHL] and [CIP] now have

two incoming nodes while the rest of the associations remain the same.
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(a) estimated DAG

(b) DAG with edge significance

Figure 4.7: Structure Bayesian Learning for E. faecalis data with max-indegree = None

This is the trained Bayesian network DAG without any pre-set value of maximum parents per node. But

the trained DAG still has a maximum number of parents two.
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Next, the chi-square test of independence was performed to check for any non-significant edges. The

significance level or alpha (α) is set at 0.05 again and the output is given below in Table 4.4.

Table 4.4: Independence test for pruning the Bayesian network - E. faecalis

source target stat_test p_value chi_square dof

KAN STR True 8.78134e-282 1286.7 1

KAN TET True 6.718e-98 440.952 1

KAN CHL True 8.95525e-46 201.685 1

LIN KAN True 9.06238e-05 15.3226 1

NIT DAP True 7.00526e-54 238.85 1

NIT PEN True 7.13803e-35 151.763 1

STR CHL True 1.23285e-52 233.138 1

TET STR True 2.03216e-73 328.507 1

TET CIP True 0.000287483 13.1502 1

SYN LIN True 0 3349.3 1

SYN CIP True 3.11568e-14 57.66 1
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Figure 4.8: Pruned DAG for E. faecalis learned with structure Bayesian learning

§ 4.3.2 E. faecium

Similar to E. faecalis, the DAG was built that best describe the associations between different antibiotics.
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(a) estimated DAG

(b) DAG with edge significance

Figure 4.9: Structure Bayesian Learning for E. faecium data with max-indegree = 1

TGC is not associated with other nodes of the DAG since there were only 4 isolates that had tested

positive for resistance and hence, it was pruned out. Panel b above suggests a strong association between

[LIN] –> [KAN].
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(a) estimated DAG

(b) DAG with edge significance

Figure 4.10: Structure Bayesian Learning for E. faecium data with max-indegree = 2

By changing the maximum number of parents per node, there is a change in associations. It can be seen

that [LIN] [KAN] are no longer associated while there is a highly significant association seen between

resistance to [KAN] and [PEN].
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(a) estimated DAG

(b) DAG with edge significance

Figure 4.11: Structure Bayesian Learning for E. faecium data with max-indegree = None

Here, the maximum number of parents limit was removed and the Bayesian network was trained. But, it

can be seen that there is no difference between this graph and when the maximum number of parents

was limited to two.
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Table 4.5: Independence test for pruning the Bayesian network - E. faecium

source target stat_test p_value chi_square dof

CIP SYN True 4.70848e-15 61.3788 1

CIP NIT True 1.83005e-09 36.1467 1

CIP DAP True 0.00020405 13.7934 1

KAN STR True 1.24918e-55 246.871 1

KAN PEN True 5.09121e-19 79.3928 1

LIN CHL False 0.0909094 2.8582 1

PEN TET True 1.83679e-28 122.453 1

PEN CIP True 4.53012e-06 21.0263 1

STR PEN True 1.13001e-20 86.92 1

STR SYN True 3.49938e-10 39.3739 1

STR TET True 6.48412e-21 88.0186 1

STR CIP True 6.15414e-06 20.4397 1

TET LIN True 8.00459e-18 73.9518 1

SYN LIN True 6.45169e-169 767.448 1

The table above shows that the edge [LIN <-> CHL] fails the chi-square independence test and is

termed a non-significant edge. The rest of all the edges pass the chi-square test so they will be retained in

the final pruned Bayesian network for E. faecium
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Figure 4.12: Pruned DAG for E. faecium learned with structure Bayesian learning

§ 4.4 Generating Association Rules Using Apriori

In this section, the association rules were generated using the mlxtend package available in python (Raschka,

2018). mlxtend provides multiple options for selecting the algorithm for frequent itemset generation like

apriori, fpgrowth, and fpmax along with a function to generate the association rules. Different Interest

Measures (IMs) such as Support, Confidence, Lift, Leverage, and Conviction can be measured which

have been discussed in the literature review.

One aspect to consider in association rule mining is that some of the discovered rules may occur by

chance rather than true associations. To keep the False Discovery rate (Type I error) to under 5%, the

itemsets can be pruned according to one of the interest measures, by setting an appropriate threshold. In

our case, a minimum support threshold was used to prune the insignificant or non-relevant itemsets (Tan

et al., 2004).
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Table 4.6: Association rules sorted by Lift for Salmonella AST dataset

antecedents consequents support confidence lift leverage conviction

[’NAL’] [’CIP’] 0.214646 0.99688 4.537785 0.167344 250.0912

[’CIP’] [’NAL’] 0.214646 0.977064 4.537785 0.167344 34.21216

[’AMC’] [’AMP’] 0.165939 1 3.394527 0.117055 inf

[’AXO’] [’AMP’] 0.159893 0.989605 3.359241 0.112295 67.86026

[’COT’] [’TET’] 0.070877 0.976852 1.288475 0.015868 10.4481

[’AMC’, ’AXO’] [’FOX’] 0.063823 0.954774 13.73122 0.059175 20.57366

[’FOX’, ’AMC’] [’AXO’] 0.063823 0.984456 6.092984 0.053348 53.93886

[’FOX’, ’AMP’] [’AXO’] 0.063823 0.984456 6.092984 0.053348 53.93886

[’FOX’, ’AMP’] [’AMC’] 0.06483 1 6.026316 0.054072 inf

[’FOX’, ’AXO’] [’AMC’] 0.063823 1 6.026316 0.053232 inf

[’AMP’, ’NAL’] [’AXO’] 0.093383 0.968641 5.995103 0.077806 26.73654

[’AMP’, ’CIP’] [’AXO’] 0.093383 0.961938 5.953615 0.077698 22.02779

[’CHL’, ’CIP’] [’NAL’] 0.11085 1 4.644306 0.086982 inf

[’CIP’, ’COT’] [’NAL’] 0.067518 1 4.644306 0.05298 inf

[’GEN’, ’CIP’] [’NAL’] 0.117904 0.997159 4.631112 0.092445 276.2083

[’CIP’, ’AXO’] [’NAL’] 0.09439 0.996454 4.627837 0.073994 221.2805

[’AMP’, ’CIP’] [’NAL’] 0.096406 0.99308 4.612165 0.075503 113.3866

[’CIP’, ’STR’] [’NAL’] 0.162244 0.98773 4.58732 0.126876 63.95163

[’TET’, ’CIP’] [’NAL’] 0.181727 0.983636 4.568308 0.141947 47.95282

[’AMP’, ’NAL’] [’CIP’] 0.096406 1 4.551988 0.075227 inf

[’CHL’, ’NAL’] [’CIP’] 0.11085 1 4.551988 0.086498 inf

[’NAL’, ’COT’] [’CIP’] 0.067518 1 4.551988 0.052685 inf

[’GEN’, ’NAL’] [’CIP’] 0.117904 1 4.551988 0.092002 inf

[’NAL’, ’STR’] [’CIP’] 0.162244 0.997934 4.542583 0.126528 377.6728

[’NAL’, ’AXO’] [’CIP’] 0.09439 0.996454 4.535846 0.07358 220.049
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Table 4.7: Association rules sorted by Lift for E. faecium AST dataset

antecedents consequents support confidence lift leverage conviction

[’SYN’] [’LIN’] 0.724535 0.996346 1.26107 0.149995 57.44818

[’STR’] [’LIN’] 0.128432 0.986395 1.248475 0.025561 15.42914

[’KAN’] [’LIN’] 0.086802 0.98 1.240381 0.016822 10.49601

[’STR’] [’NIT’] 0.127547 0.979592 1.036513 0.004493 2.690877

[’DAP’] [’NIT’] 0.126661 0.979452 1.036365 0.004444 2.672572

[’PEN’] [’NIT’] 0.141718 0.97561 1.032299 0.004434 2.25155

[’CIP’] [’NIT’] 0.659876 0.973856 1.030444 0.019496 2.100531

[’LIN’, ’DAP’] [’SYN’] 0.104517 0.95935 1.319252 0.025293 6.711072

[’LIN’, ’STR’] [’SYN’] 0.123118 0.958621 1.318249 0.029723 6.592855

[’NIT’, ’STR’] [’SYN’] 0.121346 0.951389 1.308305 0.028596 5.612046

[’SYN’, ’STR’] [’LIN’] 0.123118 1 1.265695 0.025845 inf

[’NIT’, ’SYN’] [’LIN’] 0.677591 0.996094 1.260751 0.140141 53.73959

[’CIP’, ’SYN’] [’LIN’] 0.441984 0.996008 1.260642 0.091382 52.58503

[’NIT’, ’STR’] [’LIN’] 0.126661 0.993056 1.256906 0.025889 30.22852

[’PEN’, ’SYN’] [’LIN’] 0.126661 0.993056 1.256906 0.025889 30.22852

[’TET’, ’SYN’] [’LIN’] 0.354296 0.992556 1.256273 0.072274 28.19929

[’SYN’, ’DAP’] [’LIN’] 0.104517 0.991597 1.255059 0.02124 24.98051

[’TET’, ’STR’] [’LIN’] 0.104517 0.991597 1.255059 0.02124 24.98051

[’KAN’, ’SYN’] [’LIN’] 0.081488 0.989247 1.252085 0.016406 19.52259

[’CIP’, ’STR’] [’LIN’] 0.10806 0.983871 1.245281 0.021284 13.01506

[’KAN’, ’NIT’] [’LIN’] 0.081488 0.978723 1.238765 0.015706 9.866253

[’KAN’, ’CIP’] [’LIN’] 0.070859 0.97561 1.234824 0.013475 8.606732

[’KAN’, ’TET’] [’LIN’] 0.065545 0.973684 1.232387 0.01236 7.976971

[’PEN’, ’TET’] [’LIN’] 0.117803 0.956835 1.211061 0.02053 4.863153
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Table 4.8: Association rules sorted by Lift for E. faecalis AST dataset

antecedents consequents support confidence lift leverage conviction

[’STR’] [’TET’] 0.123586 0.988487 1.491934 0.04075 29.3096

[’KAN’] [’TET’] 0.168209 0.97497 1.471533 0.0539 13.48177

[’STR’] [’SYN’] 0.124614 0.996711 1.019992 0.002442 6.938927

[’KAN’] [’SYN’] 0.17191 0.996424 1.019699 0.003321 6.383508

[’CHL’] [’SYN’] 0.037837 0.994595 1.017827 0.000663 4.222702

[’CIP’] [’SYN’] 0.483858 0.994085 1.017306 0.008231 3.859126

[’CHL’] [’LIN’] 0.038042 1 1.016301 0.00061 inf

[’KAN’] [’LIN’] 0.172527 1 1.016301 0.002767 inf

[’LIN’] [’SYN’] 0.977175 0.993103 1.016301 0.015673 3.309685

[’SYN’] [’LIN’] 0.977175 1 1.016301 0.015673 inf

[’STR’] [’LIN’] 0.12482 0.998355 1.014629 0.0018 9.752005

[’CIP’] [’LIN’] 0.485092 0.99662 1.012866 0.006162 4.745682

[’TET’] [’SYN’] 0.652067 0.984171 1.00716 0.004636 1.442029

[’TET’] [’LIN’] 0.655151 0.988827 1.004946 0.003224 1.435534

[’KAN’, ’STR’] [’TET’] 0.08575 0.997608 1.5057 0.0288 141.0524

[’LIN’, ’STR’] [’TET’] 0.123381 0.988468 1.491905 0.040681 29.26139

[’SYN’, ’STR’] [’TET’] 0.123175 0.988449 1.491877 0.040611 29.21318

[’CIP’, ’STR’] [’TET’] 0.060457 0.986577 1.489052 0.019856 25.13973

[’KAN’, ’CIP’] [’TET’] 0.080403 0.9775 1.475351 0.025905 14.9976

[’KAN’, ’SYN’] [’TET’] 0.167798 0.976077 1.473203 0.053898 14.10524

[’KAN’, ’LIN’] [’TET’] 0.168209 0.97497 1.471533 0.0539 13.48177

[’TET’, ’CHL’] [’SYN’] 0.034752 1 1.023359 0.000793 inf

[’KAN’, ’CIP’] [’SYN’] 0.082254 1 1.023359 0.001877 inf

[’TET’, ’CIP’] [’SYN’] 0.309685 0.998674 1.022001 0.006667 17.21036

[’LIN’, ’STR’] [’SYN’] 0.124614 0.998353 1.021673 0.002643 13.85503
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§ 4.5 Results

To validate the Bayesian network, the dataset was randomly split into 80/20% training and testing tests.

The Conditional Probability Distributions (CPDs) for the single-node interaction pairs predicted by the

Bayesian Network trained on the training set were compared to the CPDs calculated from the testing set.

Since CPDs were compared, we will be using the Root Mean Squared Error (RMSE) and Mean Absolute

Error (MAE) were used as evaluation metrics. The performance of the Bayesian networks on different

datasets was as follows:

Table 4.9: Performance of Bayesian network models on Test data

Bacteria species Train set samples Test set samples RMSE MAE

Salmonella 2344 633 0.0009 0.0237

E. faecium 891 236 0.0017 0.0320

E. faecalis 3875 954 0.0063 0.0312
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, the associations and co-occurrence of resistance patterns among antibiotics and AMR genes

respectively were identified using Bayesian networks and association rule mining. The trained Bayesian

models were able to achieve a low MAE of 0.0237, 0.0320, and 0.0312 on the Salmonella, E. faecium and E.

faecalis testing datasets respectively. Training the models with different numbers of maximum in-degree

nodes was evaluated to check for different pair-level implications. We have shown how we can generate

association rules for identifying resistance patterns to different antibiotics.

In the literature review, research projects which used anything other than Bayesian networks and

association rule mining for solving a similar problem to ours were non-existent. In the future, different

association rules can be mined and compared for different periods of time to check for any changes in the

resistance association patterns over the years. Also, cross-validation can be performed to train the Bayesian

network with different portions of the training data and check how well the model generalizes on the

testing data. A similar approach can be used for finding the associations among resistance to different

antibiotics can in other bacterial strains.

AMR resistance remains difficult to interpret, but machine learning and statistics can be used to push

the boundaries of understanding patterns that follow seemingly random paths.
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APPENDIX

APPENDIX A
§ .0.1 Streamlit Web Application for Predicting the Probability of co-occurrence of AMR genes

We deployed the trained Bayesian network models for all three Salmonella, Enterococcus faecalis and Ente-

rococcus faecium using Steamlit - a python package for deploying trained Machine Learning models on a

web application.

Figure 1: Streamlit Web application UI

We have 3 options to select from, viz, evidence-absent & present genes and the target variables or genes

for which we need to predict the probability. We could ask the web app certain questions such as given

that we already know the presence or absence of these sets of genes, what is the likelihood or probability

that we are going to see the presence of these AMR genes? A sample example is shown in Figure 2 below.
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Figure 2: Streamlit Web application Inference
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