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ABSTRACT 

Multidimensional item response theory (MIRT) model selection has only recently come about 

following the development of the Mr -family of statistics (Maydeu-Olivares & Joe, 2005; 2006). 

Global model fit indices are now available for a wide range of MIRT models and are 

theoretically equivalent to typical χ2-based fit indices (e.g. RMSEA, SRMSR, CFI, and TLI). 

These fit indices are evaluated relative to popular cut-offs, such as those derived by Hu and 

Bentler (1998, 1999). The purpose of the present study was to establish whether these popular 

cut-offs achieve acceptable levels of Type 1 error for model selection or have adequate Power 

for detecting misfit in MIRT models. Results from two simulation studies suggest the 

performance of these cut-offs varies depending on the MIRT model of interest and study design 

characteristics and the power to detect model misspecification is contingent on the type of 

misspecification present. 
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CHAPTER 1 

INTRODUCTION 

The measurement of latent variables underlies nearly all empirical research in the 

psychological and organizational sciences. There are numerous strategies and modelling 

techniques researchers can use when fitting latent variable models to survey data. One family of 

models in particular, confirmatory Item Response Theory (IRT) models, provide benefits that 

cannot be obtained by alternative models, such as structural equation models (SEM) and 

confirmatory factor analysis (CFA). First, IRT models are known to be a more faithful 

representation of item responses as categorical (Tay et al., 2015). Second, IRT latent trait 

estimates have more desirable properties than SEM factor scores. Lastly, IRT scoring results in 

more accurate conclusions in tests of interactions (Embertson, 1996; Morse et al., 2012) and 

curvilinearity (Carter et al., 2017). While IRT is also associated with several downsides, 

including the need for greater sample size and slow estimation, advances in optimization 

algorithms and numerical analysis techniques (e.g., the BFGS algorithm; Fletcher, 2013) have 

lessened these concerns.  

One problem historically associated with IRT that has led to its slow adoption by applied 

researchers is a lack of global model-data fit indices. Indeed, the seminal work by Embretson and 

Riese (2000) claims that “the science of statistical model comparison in IRT is deficit, especially 

when compared to structural equation models” (p. 124). For CFA and SEM models, researchers 

have been able to use indices based on the χ2 statistic to evaluate discrepancies between the 

sample and model-implied correlation matrix. These same χ2 tests can, in theory, be used to 
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evaluate model-data fit for IRT models by examining discrepancies between the observed and 

expected contingency tables of response patterns. However, the size of such contingency tables 

is dependent on the number of items and number of response options for a given measurement 

scale and will yield Kn cells in total (assuming an equal number of response options across all 

items) where K is the number of response options, n is the total number of items in a survey, and 

each cell represents a given response pattern a member of the sample could have generated. In 

practice, these tables suffer from the issue of sparseness, such that only a small portion of 

response patterns are observed relative to all possible patterns that exist for a given survey, 

thereby generating many empty table cells. This issue of sparseness is what makes the χ2 statistic 

unusable for evaluating IRT model-data fit as the Type 1 error rates increases as a function of the 

sparseness in such a table (Read & Cressie, 1988). 

Within the past decade, advances in statistical theory (Maydeu-Olivares & Joe, 2005; Cai 

& Hansen, 2013) have led to the creation of “limited information” statistics (e.g. �� and ��∗) 

that resolve the issues traditional χ2 tests have for assessing IRT model fit. Limited information 

statistics remedy this sparseness issue by using information contained in the margins or moments 

of these contingency tables, creating a family of test statistics that retain the same distributional 

properties as the χ2 statistic. Such developments now allow researchers to estimate global-model 

fit indices similar to those based on χ2 for SEM and CFA (e.g. CFI, TLI, and RMSEA). Although 

these indices and their respective cut-off values (Hu & Bentler, 1998; 1999) are well-known and 

widely used across all areas of psychology for evaluating SEMs and CFAs, it is not clear how 

these fit indices operate in the context of IRT model selection. The lack of guidance on model-

data fit indices for IRT has resulted in researchers making educated guesses regarding what 



 3

values of these fit indices lead to adequate model selection (Chalmers, 2017) or relying on 

traditional cut-offs for model evaluation and selection (Nye et al., 2020).  

Here, I conducted two simulation studies that evaluate these fit indices and their cut-off 

values on (a) the Type 1 error of selecting a multidimensional IRT model capturing the “true” 

data generating process of a survey scale and (b) their power to detect various forms of 

multidimensional IRT model misspecification. I begin by providing an overview of the χ2-based 

fit statistics frequently used by researchers for evaluating latent variable models. Next, I 

introduce the limited information, Mr, family of statistics and move on to introducing 

multidimensional extensions of several popular IRT models used in organizational research. 

After providing an overview of the simulation procedures used to examine these fit statistics and 

presenting my results, I discuss the implications of these findings for researchers evaluating 

multidimensional IRT models. 
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CHAPTER 2 

GLOBAL MODEL DATA FIT IN SEM VERSUS IRT 

In psychological research, evaluating competing theoretical models of interest is often 

accomplished by comparing the discrepancy between the sample covariance matrix, ��� , with 

the covariance matrix implied or expected by the model under consideration, Σ	(Θ). This 

discrepancy can be calculated as follows using a test statistic, χ2: 

χ2 = 
[���������Σ	(Θ)��� − ln�����	(�)��� − �] 
where n is the sample size and k is the number of items in a scale. This test statistic follows a χ2  

distribution with df = p - q where p is the number of unique parameters in the covariance matrix, 

computed as ( ( !�)� ), and q is the number of freely estimated parameters in Σ	(Θ). 

Evaluating χ2 by itself leads to poor model selection decisions, such that for trivial 

degrees of model misspecification, the power to detect misfit approaches 1.0 as the sample size 

increases. Because of this issue, numerous fit indices have been developed based on this χ2 

statistic to evaluate how much this discrepancy is indicative of a model sufficiently fitting the 

data. The most popular of these fit statistics are the Comparative Fit Index (CFI), the Tucker 

Lewis Index (TLI), and the Root Mean Squared Error of Approximation (RMSEA). In addition 

to these χ2-based statistics, another commonly reported assessment of model-data fit is the 

Standardized Root Mean Square Residuals (SRMSR) which, as the name implies, computes the 

standardized difference between the observed correlation matrix and the model-implied 

correlation matrix and is not based on the χ2 statistic. These fit statistics can be computed as 

follows: 
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CFI = 1 − χ2 − )*χ2+,-. − )*/,.. (1) 

TLI = χ2 − )*χ2+,-. − )*/,.. (2) 

RMSEA = 78 χ2)* − 19: − 1  

(3) 

SRMSR =  ;<(Σ	 (Θ) − (���))� 
(4) 

In their seminal papers, Hu and Bentler (1998, 1999) demonstrated via simulation what 

values CFI, TLI, RMSEA, and SRMSR should taken on to ensure researchers are selecting the 

“true” latent variable model of interest. For TFI and CLI, the obtained fit statistic should be 

greater than 0.95, while the RMSEA should be less than 0.05 and SRMSR should be less than 

0.08. 
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CHAPTER 3 

M2 STATISTICS 

Maydeu-Olivares and Joe (2005; 2006) derived the “limited information” family of 

statistics, referred to as Mr statistics, to provide researchers with the same capabilities as χ2 when 

examining model-data fit for categorical variables. These Mr statistics can be computed as 

follows: 

�= = :(>? − @?)ABC?(>?– @?) (5) 

where N is the sample size and r is the moment of the contingency table of response patterns. 

Maydeu-Olivares and Joe (2005) demonstrate that model selection is optimal when r goes up to 

2, meaning only the univariate and bivariate moments of the contingency table are used in model 

evaluation. At r = 1, these univariate moments are simply the marginal probability or proportion 

of responses for the category of given item (see p. 307, Maydeu-Olivares & Joe, 2014). Thus, p1 

represents the observed marginal probabilities for the category of a given item obtained from the 

sample, π� represents the marginal, expected probability for the category of a given item, and 

p� − π� represents the difference between these two values (i.e. the marginal residuals at the first 

moment). At r = 2, these bivariate moments represent the joint probability of item responses (e.g. 

the probability of selecting response option 1 for item 1 and selecting response option 1 on item 

2), such that p2 is the joint probability of item responses obtained from the sample, π� represents 

the expected probability of joint item responses, and p� − π� represents the residuals at the 

second moment. 
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The GH? portion of this equation, referred to as the weight matrix, can be further 

decomposed into the following matrices: 

IJ(K) LIJ(K)MNJIJ(K)O�� IJ(K)M
 

(6) 

where NJ is simply referred to as the asymptotic covariance matrix whose elements are the 

product of the marginal probabilities of item responses subtracted from the joint probabilities of 

item responses (e.g. PQRSTU/SR VTW-U/ � XU= YWRZ � & QRSTU/SR VTW-U/ � XU= YWRZ � −
PQRSTU/SR VTW-U/ � XU= YWRZ � \ PQRSTU/SR VTW-U/ � XU= YWRZ �). The computational challenge of 

computing the �� statistic comes from generating the elements of the IJ(K)
 matrix. Each element 

in this matrix is a partial derivative of the population-implied joint and marginal probabilities 

with respect to the item parameters being estimated. In simpler terms, the elements of  IJ(K)
 

represent the values of the item parameters that maximize the probability of obtaining the 

responses contained in the contingency table.  

While initially designed for dichotomous items, Cai and Hansen (2013) demonstrated that 

M2 can be viewed as a special case of a more general family of statistics, ��∗. ��∗ further reduces 

the size of these high dimensional contingency tables by summing the residuals across the 

response categories for a given item and can be applied to both dichotomous and polytomous 

survey scales with varying response options. 

M2-Based Global Model Fit Indices 

As noted previously, global model fit statistics for CFA and SEM models are based on 

the χ2 statistic. These same fit statistics can be adapted for �� and ��∗ statistics and are 

represented as follows: 
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CFI = 1 − ��∗ − )*��∗+,-. − )*/,.. (7) 

TLI = ��∗ − )*��∗+,-. − )*/,.. (8) 

RMSEA = 78 ��∗)* − 19: − 1  

(9) 

while SRMSR remains unchanged.  

To date, RMSEA and SRMSR have been the only fit indices to be empirically examined 

in the context of IRT model selection. Simulation results from Maydeu-Olivares and Joe (2014) 

looking at �=-based RMSEA and SRMSR suggest that a candidate IRT model under 

consideration would be considered an adequate fit to the data if the RMSEA is less than 0.089 

and SRMSR is less than 0.05, a close fit if RMSEA is less than 0.05 and SRMSR is less 0.027, 

and an excellent fit if RMSEA is less than 0.05 / (K – 1) and SRMSR is less than 0.027 / (K – 1) 

where K is the number of item response categories. These cut-offs derived by Maydeu-Olivares 

and Joe (2014) were subsequently used by Nye et al. (2020) for evaluating IRT model-data fit in 

the context of response process misspecification. In their study, Nye et al. fit a series of 

unidimensional (e.g. Generalized Graded Unfolding Model; GGUM and Graded Response 

Model; GRM) and multidimensional (e.g. Multidimensional GRM; MGRM and 

Multidimensional 2-Parameter Logistic Model; M2PL) IRT models to data generated from these 

same models, each representing a specific response style (i.e. the GGUM was fit to data from the 

2PL, 3PL, GGUM, and M2PL, see p. 472 for an example). The authors then examined if a 

variety of fit statistics were able to detect this type of model misspecification including: Yen’s 

QI, posterior predictive p-values, ]� Singles, ]� Doubles, ]� Triples, and SRMSR.  
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CHAPTER 4 

THE PRESENT STUDY 

 The development of the �= and ��∗ statistics now allows researchers to confirm model-

data fit for IRT models. However, with the exception Nye et al.’s examination of the M2PL and 

MGRM, prior work in this area has predominantly examined unidimensional IRT models leaving 

no guidance for researchers to turn to when making decisions regarding multidimensional IRT 

model selection. Such lack of guidance is problematic given the increasing adoption of IRT 

modelling in psychology (Lang & Tay, 2021) and most constructs studied in psychology being 

multidimensional, such as personality (Tellegan & Waller, 2008), vocational interests (Wetzel & 

Hell, 2014; Tay et al., 2009), and psychopathology (Lillienfeld, 2018). The present study aims to 

provide guidance in this domain this by assessing the performance of the aforementioned global 

model fit statistics and their respective cut-offs for MIRT model selection and detecting 

multidimensional IRT model misspecification. 
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CHAPTER 5 

METHOD 

 To assess the performance of the aforementioned fit index cutoff values for 

multidimensional IRT models, I conduct two simulations in which I first generate data from a 

known, “true” IRT model with preset item parameters. Next, these data are fit to both a correct 

specification of the data generating process as well as an incorrect specification in addition to 

varying sample size, test length, response options, and the number of dimensions assessed. Most 

relevant to the current investigation are the types of model misspecifications: the percentage of 

items in the “wrong” model that incorrectly have discrimination parameters (i.e., item factor 

loadings) equal to zero (i.e., number of αi=0) and the number of between-factor correlations set 

to zero in the “incorrect model” (i.e., number of ^_`_a b 0). I evaluate these factors in data with 

different types of multidimensional response models: the multidimensional Graded Response 

Model (Samejima, 1969), the multidimensional Generalized Partial Credit Model (Muraki, 1992) 

and the multidimensional Generalized Graded Unfolding Model (Roberts, Donoghue, & 

Laughlin, 2000). These three types of response process models were chosen given their 

prevalence in organizational and educational research settings. The final simulation contains 864 

conditions in total (see Table 1). 

Multidimensional IRT Models 

The unidimensional Graded Response Model (GRM) is an extension of the Two-

Parameter Logistic (2PL) Model for polytomous data (Samejima, 1969). For a single latent trait, 

the GRM can be expressed as: 



 11

 d�e-f =  ��gf , �- , h- ) = d�e-f ≥  ��gf , �-, h- � −  d�e-f ≥  � + 1�gf , �- , h-( !�)�     (10) 

 

where d�e-f ≥  ��gf , �-, h- � = ��!RklLmn(opMqrns)Ot and d�e-f ≥  � + 1�gf , �- , h- � =
��!RklLmn(opMqrnsq`)Ot. Here, d�e-f =  ��gf , �-, h- ) denotes the conditional probability of the 

observed rating u made an individual j selecting response option k on item i, gu denotes 

individual j’s stance on the latent trait, �- is the discrimination parameter for item i, and h-  is the 

threshold parameter for item i in response category k. These threshold parameters represent the 

level of θ at which a person is equally likely to choose the response option k rather than k-1, the 

response option below it. Thus, the number of threshold parameters is one less than the number 

of response options for a given item. Extending the GRM to multiple dimensions, the MGRM is 

typically written as:  
 d�e-f =  ��wf , x- , )- ) = ��!RklLxnwpMqyns)Ot − ��!RklLxnwpMqynsq`Ot                                              (11) 

where x- is a vector of item discrimination parameters for item i indexing each dimension 

measured, wf  is a vector of trait levels for person j over each dimension measured. Finally, )-  

represents the intercept parameter for item i on response category k. Wang et al. (2018) note that 

when a multidimensional test displays a simple structure, such that each item i corresponds to a 

unique latent factor, )-  can be recomputed as the product -�-h- . 

The unidimensional generalized partial credit model (Reckase, 2009) is written as: 

d�e-f =  ��gf , �- , h- ) =  zksmnopl{|}~s mnrn|t
��} ~� zk�mnopl{|}~s mnrn|t                                                               (12) 

Where d�e-f =  ��gf , �-, h- ) is the conditional probability of the observed rating u made 

an individual j selecting response option k on item i, gf is person j’s stance on the latent trait, �- 
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is the item discrimination parameter for item i, h- is the category threshold parameter for item i, 

C is the total number of rating categories minus 1 for item i. The multidimensional extension of 

the GPCM allows for a vector of item discrimination parameters, x-, that indexes each items 

discrimination over the number of latent traits being estimated as well as a vector of latent trait 

scores, wf , and can be written as: 

 d�e-f =  ��w�, x�, )- ) =  zksxnwpqyn|t
��} ~� zk�xnwpqyn|t                                                                  (13) 

Similar to the MGRM, the MGPCM can be re-parameterized in slope-intercept form with each 

item intercept computed as −�-Σ,b� h  when the test displays a simple structure (Matlock et al., 

2018). 

The generalized graded unfolding model (Roberts et al., 2000) is a class of ideal point 

models based on the GPCM expressed as: 

 d�e-f =  ��gf , �- , �-, �- ) =  z�n[sLopl�nOl{|}~s �n|]!z�n[�lsLopl�nOl{|}~s �n|]
��}~� z�nk�Lopl�nOl{|}~� �n|t!z�nk�l�Lopl�nOl{|}~� �n|t        (14) 

where d�e-f =  ��gf , �-, �- , �- ) is the conditional probability of the observed rating u made an 

individual j selecting response option k on item i, gf  is person j’s stance on the latent trait, �- is 

the item discrimination parameter for item i, �- is the item location parameter, �-  represents the 

location of the kth subjective response option, C represents the number of item categories minus 

1, and � = 2G + 1 denoting the total number of �-  parameters to be estimated. Wang and Wu 

(2016) extend the GGUM to multiple dimensions as follows: 

 d�e-f =  ��wf , �- , �-, �- ) =  z�n[sL�nMwpl�nOl{|}~s �n|]!z�n[�lsL�nMwpl�nOl{|}~s �n|]
��}~� z�nk�L�nMwpl�nOl{|}~� �n|t!z�nk�l�L�nMwpl�nOl{|}~� �n|t               (15) 

where wf  now denotes a vector of latent traits indexed over the number of dimensions being 

estimated and �-A is a design vector specifying which dimensions are measured by item i. In the 
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case of a single dimension, )- reduces to 1 for every item. As with the MGRM and MGPCM, 

computational implementations for estimating the MGGUM parameterize this model in slope-

intercept form such that d�e-f =  ��wf , �-, h-, �- ). When estimating a simple-form test with the 

slope-intercept parameterization of the MGGUM, �- = �-, �- = h-, and �-  = −�-  (Liu & 

Chalmers, 2018). 

Item Parameter Generation 

 Item parameters for the MGRM1 were generated following the procedures used in 

Roberts et al. (2000), Stark et al. (2006), and Kieftenbeld and Natesan (2012). For the 

dichotomous condition, the discrimination parameters will be sampled from a random uniform 

distribution [0.5, 2.0]. The location parameters will be sampled from a random uniform 

distribution [–2.0, 2.0]. Discrimination parameters for the four and six response category 

conditions will be generated following the same procedure as dichotomous conditions. In 

addition, the threshold parameters for the four response option condition, h�, h�, h�, and six 

response option condition, h�, h�, h�, h�, and h�, will be obtained from random uniform 

distributions h� ~ �[–2.0, -0.67], h� ~ �[–0.67, 0.67], and h� ~ �[0.67, 2.0], and h� ~ �[–2, –

1.2], h� ~ �[–1.2, -0.4], h� ~ �[-0.4, 0.4], h� ~ � [0.4, 1.2], h� ~ �[1.2, 2.0], respectively. 

 Item parameters were for the MGPCM2 were generated following the procedure 

described in Kang et al. (2006), Kang et al. (2009), and Sung and Kang (2008). The 

discrimination parameters (�-) will be randomly sampled from a lognormal (0, 0.52) distribution. 

For the six category conditions, five item category parameters, ��- = �- – ��-, where c = 1, 2, 3, 

                                                 
1 Given Chalmers (2012) uses a slope-intercept parameterization of the MGRM, slope parameters will remain 

unchanged (i.e. �- = �-) while data generation for intercept parameters will be recomputed as follows: )- = −�-h-  

where k represents the kth response option to the ith item. 
2 For the MGPCM, data generation for item parameters will be computed as follows: �- = �- and ) = −�- ∑ h-   

where k represents the kth response option to the ith item. 
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4, or 5, will be drawn from five normal distributions with a common standard deviation of .5 and 

means of –2, -1, 0.5, 1, and 2, respectively. The mean of these five step parameters will then be 

used as the item difficulty parameter (�-), and the difference between �- and ��- is taken as the 

item threshold parameter, ��-. For the four category condition, three item category parameters, 

��- = �- – ��-, where c = 1, 2, or 3, will be drawn from three normal distributions with a 

common standard deviation of .5 and means of –2, 0.5, and 2, respectively. The mean of these 

three step parameters will then be used as the item difficulty parameter (�-), and the difference 

between �- and ��- is taken as ��-. Finally, for the dichotomous condition, the single threshold 

parameter, ��, will be drawn from a :(0,1) distribution. As is common for GPCM models, �� 

will be set to 0 for model identification purposes. 

Item parameters for the MGGUM3 were generated following the procedure listed in 

Roberts et al. (2002). Item locations, �-f, will be simulated to range from -2 to 2 with equal 

spacing, reflecting Thurstone’s (1928) notion that items should be distributed across the latent 

attribute continuum. Discrimination parameters, �, will be sampled from a uniform distribution 

bounded between 0.5 and 2. The highest option threshold, �-f , for each item will be drawn from 

a uniform (-1.4, 0.4) distribution. Successive �-f  parameters will be generated with the 

following recursive equation: �-f ��  =  �-f −  .25 +  �-f �� , *�� � =  2, 3, …  G where G is the 

higher number of response options and �-f �� ~ :(0,0.04). For all MIRT models under 

examination, person ability parameters, gf , will be distributed multivariate normal with means of 

0 and standard deviations of 1. Correlations between dimensions, ^_`_a , ^_`_� , and ^_a_�will be 

set to 0.5. 

                                                 
3 For the MGGUM, item parameters will be converted as follows for data generation: �- = �- , h- = �-, �- = −�-  

where k represents the kth response option to the ith item. 



 15

 

 

CHAPTER 6 

STUDY 1 METHOD 

Analytic Design 

For study 1, I evaluated the ability of the cut-offs to determine a given candidate model is 

the model representing the true data generating process. In the context of this study, a Type 1 

error occurs when the true model was incorrectly determined to not fit the data. The simulation 

procedure for Study 1 is as follows: 

1) Generate item parameters following the previously mentioned approaches 

2) Simulate response data using the item parameters from Step 1 

3) Fit the “true” data generating model to the simulated data 

4) Compute the number of number of times the ��∗-based fit statistics indicate the true 

model did not fit the data 

This three-step procedure will be repeated 100 times per simulation condition, resulting 

in 14,400 total simulation runs.  
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CHAPTER 7 

STUDY 1 RESULTS 

To ensure all MIRT models were correctly estimated, I computed the mean bias, root 

mean squared error (RMSE), and correlation between the sample and population discrimination, 

location, and category threshold parameters for each simulation condition. Mean bias was 

computed as the average difference between the sample item parameter value and its 

corresponding population item parameter. RMSE was computed as the square root of the average 

squared difference between sample and population item parameter values. The correlation 

between sample and item parameters was computed as the typical standardized covariance 

between parameters. As shown in Figure 1 through Figure 9, the bias and RMSE between the 

population and sample item parameters approach 0 and the correlation between the population 

and sample item parameters approaches 1.0 as the sample size increases for all three MIRT 

models. These results indicate that the sample item parameters for all three models converged 

towards the population item parameters as sample size increased. These results replicate prior 

simulation studies examining sample size requirements for the MGPCM (Kose & Demirtasli, 

2012), MGGUM (Wang & Wu, 2016), and MGRM (Jiang et al., 2016). 

Type 1 Error 

Type 1 Error results are displayed in Figure 16 through Figure 18. Overall, the efficacy of 

global model fit index cut-offs for MGPCM, MGRM, and MGGUM model selection is mixed. 

While some conditions had Type 1 Error steadily decrease as sample size increased (e.g. the 

Multidimensional 2PL, see Figure 16), other statistics had a T1E of either 100% (e.g. the three-
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dimensional GPCM with dichotomous items) or 0% (e.g. the CFI, TLI, and RMSEA of the two-

dimensional GGUM with four response options) across all simulation conditions. These results 

can best be explained by Figures 10 through 15 that demonstrate how some simulation 

conditions have fit statistics from the correct model fit to the data that were either all higher or 

lower than the cut-off value for that condition. Results for each fit statistics are presented in the 

following and are organized by fit statistic, MIRT model type, and simulation factor and are 

collapsed across all other simulation factors.  

Across all dichotomous response option conditions for the 0.95 CFI cut-off applied to the 

MGRM, 37.5% (6/16) achieved nominal levels of. Across all four response option conditions for 

the 0.95 cut-off applied to the MGRM, 100% (16/16) were able to reach nominal levels of T1E. 

Across all six response option conditions of the 0.95 cut-off applied to the MGRM, 100% 

(16/16) were able to reach nominal levels of T1E. Similarly, across all two response option 

conditions for the 0.95 cut-off applied to the MGPCM, 25% (4/16) were able to reach nominal 

levels of T1E. Across all four response option conditions for the 0.95 cut-off applied to the 

MGPCM, 75% (12/16) were able to reach nominal levels of T1E. Across all six response option 

conditions of the 0.95 cut-off applied to the MGPCM, 100% (16/16) were able to reach nominal 

levels of T1E. Lastly, across all two response option conditions for the 0.95 cut-off applied to the 

MGGUM, 43.75% (7/16) were able to reach nominal levels of T1E. Across all four response 

option conditions for the 0.95 cut-off applied to the MGGUM, 100% (16/16) were able to reach 

nominal levels of T1E. Across all six response option conditions of the 0.95 cut-off applied to 

the MGGUM, 100% (16/16) were able to reach nominal levels of T1E. 

Across all 18 item conditions for the 0.95 CFI cut-off applied to the MGRM, 75% 

(18/24) were able to reach nominal levels of T1E, while 83.33% (20/24) of the 36 item condition 
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were able to reach nominal levels of T1E. Similarly, 50% (12/24) of all 18 item conditions for 

the 0.95 CFI cut-off applied to the MGPCM and 83.33% (20/24)  of the 36 item conditions were 

able to reach nominal levels of T1E. Lastly, Across all 18 item conditions for the 0.95 CFI cut-

off applied to the MGGUM, 79.17% (19/24) were able to reach nominal levels of T1E, while 

83.33% (20/24) of the 36 item condition were able to reach nominal levels of T1E. 

Across all two-dimension conditions for the 0.95 CFI cut-off applied to the MGRM, 

91.67% (22/24) were able to reach nominal levels of T1E, while 66.67% (16/24) of the three-

dimension conditions were able to reach nominal levels of T1E. Similarly, 83.33% (20/24) of all 

two-dimension conditions for the 0.95 CFI cut-off applied to the MGPCM and 50% (12/24) of 

the three-dimension condition were able to reach nominal levels of T1E. Lastly, Across all two-

dimension conditions for the 0.95 CFI cut-off applied to the MGGUM, 95.83% (23/24) were 

able to reach nominal levels of T1E, while 66.67% (16/24) of the three-dimension condition 

were able to reach nominal levels of T1E. 

Across all dichotomous response option conditions for the 0.95 TLI cut-off applied to the 

MGRM, 31.25% (5/16) were able to reach nominal levels of. Across all four response option 

conditions for the 0.95 cut-off, 93.75% (15/16) were able to reach nominal levels of T1E. Across 

all six response option conditions of the 0.95 cut-off 100% (16/16) were able to reach nominal 

levels of T1E. Similarly, across all two response option conditions for the 0.95 cut-off applied to 

the MGPCM, 25% (4/16) were able to reach nominal levels of T1E. Across all four response 

option conditions for the 0.95 cut-off, 68.75% (11/16) were able to reach nominal levels of T1E. 

Across all six response option conditions of the 0.95 cut-off, 100% (16/16) were able to reach 

nominal levels of T1E. Lastly, across all two response option conditions for the 0.95 cut-off 

applied to the MGGUM, 31.25% (5/16) were able to reach nominal levels of T1E. Across all 
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four response option conditions for the 0.95 cut-off, 81.25% (13/16) were able to reach nominal 

levels of T1E. Across all six response option conditions of the 0.95 cut-off, 93.75% (15/16) were 

able to reach nominal levels of T1E. 

Across all 18 item conditions for the 0.95 TLI cut-off applied to the MGRM, 75% 

(16/24) were able to reach nominal levels of T1E, while 83.33% (20/24) of the 36 item condition 

were able to reach nominal levels of T1E. Similarly, 45.83% (11/24) of all 18 item conditions for 

the 0.95 TLI cut-off applied to the MGPCM, while 83.33% (20/24)  of the 36 item condition 

were able to reach nominal levels of T1E. Lastly, Across all 18 item conditions for the 0.95 TLI 

cut-off applied to the MGGUM, 54.17% (13/24) were able to reach nominal levels of T1E, while 

83.33% (20/24) of the 36 item condition were able to reach nominal levels of T1E. 

Across all two-dimension conditions for the 0.95 TLI cut-off applied to the MGRM 

87.5% (21/24) were able to reach nominal levels of T1E, while 62.5% (15/24) of the three-

dimension conditions were able to reach nominal levels of T1E. Similarly, 79.17% (19/24) of all 

two-dimension conditions for the 0.95 TLI cut-off applied to the MGPCM and 50% (12/24) of 

the three-dimension condition were able to reach nominal levels of T1E. Lastly, Across all two-

dimension conditions for the 0.95 TLI cut-off applied to the MGGUM, 87.5% (21/24) were able 

to reach nominal levels of T1E, while 50% (12/24) of the three-dimension condition were able to 

reach nominal levels of T1E. 

Across all dichotomous response option conditions for the 0.05 RMSEA cut-off applied 

to the MGRM, 62.5% (10/16) were able to reach nominal levels of T1E. Across all four response 

option conditions for the 0.05 cut-off, 93.75% (15/16) were able to reach nominal levels of T1E. 

Across all six response option conditions of the 0.05 cut-off, 100% (16/16) were able to reach 

nominal levels of T1E. Similarly, across all two response option conditions for the 0.05 cut-off 
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applied to the MGPCM, 93.75% (15/16) were able to reach nominal levels of T1E. Across all 

four response option conditions for the 0.05 cut-off, 87.5% (14/16) were able to reach nominal 

levels of T1E. Across all six response option conditions of the 0.05 cut-off, 100% (16/16) were 

able to reach nominal levels of T1E. Lastly, across all two response option conditions for the 

0.05 cut-off applied to the MGGUM, 93.75% (15/16) were able to reach nominal levels of T1E. 

Across all four response option conditions for the 0.05 cut-off, 68.75% (11/16) were able to 

reach nominal levels of T1E. Across all six response option conditions of the 0.05 cut-off, 62.5% 

(10/16) were able to reach nominal levels of T1E. 

Aross all 18 item conditions for the 0.05 RMSEA cut-off applied to the MGRM, 75% 

(18/24) were able to reach nominal levels of T1E, while 95.83% (23/24) of the 36 item condition 

were able to reach nominal levels of T1E. Similarly, 87.5% (21/24) of all 18 item conditions for 

the 0.05 RMSEA cut-off applied to the MGPCM and 100% (24/24) of the 36 item condition 

were able to reach nominal levels of T1E. Lastly, Across all 18 item conditions for the 0.05 

RMSEA cut-off applied to the MGGUM, 62.5% (15/24) were able to reach nominal levels of 

T1E, while 87.5% (21/24) of the 36 item condition were able to reach nominal levels of T1E. 

Across all two dimension conditions for the 0.05 RMSEA cut-off applied to the MGRM, 

95.83% (23/24) were able to reach nominal levels of T1E, while 75% (18/24) of the three-

dimension conditions were able to reach nominal levels of T1E. Similarly, 100% (24/24) of all 

two-dimension conditions for the 0.05 RMSEA cut-off applied to the MGPCM and 87.5% 

(21/24) of the three-dimension condition were able to reach nominal levels of T1E. Lastly, 

Across all two-dimension conditions for the 0.05 RMSEA cut-off applied to the MGGUM, 100% 

(24/24) were able to reach nominal levels of T1E, while 50% (12/24) of the three-dimension 

condition were able to reach nominal levels of T1E. 
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Across all dichotomous response option conditions for the 0.08 SRMSR cut-off applied 

to the MGRM, 0% (0/16) were able to reach nominal levels of T1E. Across all four response 

option conditions for the 0.08 cut-off, 0% (0/16) were able to reach nominal levels of T1E. 

Across all six response option conditions of the 0.08 cut-off, 0% (0/16) were able to reach 

nominal levels of T1E. Similarly, across all two response option conditions for the 0.08 cut-off 

applied to the MGPCM, 25% (4/16) were able to reach nominal levels of T1E. Across all four 

response option conditions for the 0.08 cut-off, 0% (0/16) were able to reach nominal levels of 

T1E. Across all six response option conditions of the 0.08 cut-off, 0% (0/16) were able to reach 

nominal levels of T1E. Lastly, across all two response option conditions for the 0.08 cut-off 

applied to the MGGUM, 81.25% (13/16) were able to reach nominal levels of T1E. Across all 

four response option conditions for the 0.08 cut-off, 0% (0/16) were able to reach nominal levels 

of T1E. Across all six response option conditions of the 0.08 cut-off, 0% (0/16) were able to 

reach nominal levels of T1E. 

Across all 18 item conditions for the 0.08 SRMSR cut-off applied to the MGRM, 0% 

(0/24) were able to reach nominal levels of T1E, while 0% (0/24) of the 36-item condition were 

able to reach nominal levels of T1E. Similarly, 4.17% (1/24) of all 18 item conditions for the 

0.08 SRMSR cut-off applied to the MGPCM and 12.5% (3/24) of the 36 item conditions were 

able to reach nominal levels of T1E. Lastly, Across all 18 item conditions for the 0.08 SRMSR 

cut-off applied to the MGGUM, 25% (6/24) were able to reach nominal levels of T1E, while 

29.17% (7/24) of the 36 item condition were able to reach nominal levels of T1E. 

Across all two-dimension conditions for the 0.08 SRMSR cut-off applied to the MGRM, 

0% (0/24) were able to reach nominal levels of T1E, while 0% (0/24) of the 3-dimension 

conditions were able to reach nominal levels of T1E. Similarly, 25% (4/24) of all 2-dimension 
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conditions for the 0.08 SRMSR cut-off applied to the MGPCM and 0% (0/24) of the three-

dimension condition were able to reach nominal levels of T1E. Lastly, Across all two-dimension 

conditions for the 0.08 SRMSR cut-off applied to the MGGUM, 33.33% (8/24) were able to 

reach nominal levels of T1E, while 20.83% (5/24) of the three-dimension condition were able to 

reach nominal levels of T1E. 
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CHAPTER 8 

STUDY 2 METHOD 

Analytic Design 

For study 2, I evaluate how well these fit statistics are able to detect various forms of 

model misspecification. In the context of this study, a Type 2 error is the erroneous decision that 

the incorrect candidate model was deemed to be the true data generating process. Thus, Power 

for study 2 is the frequency of correctly determining that the incorrect model was not the true 

model that generated the data. Like study 1, data were generated from the three aforementioned 

MIRT models using the previously stated item parameter generation procedures. However, for 

study 2, I fit a number of models that deviate from the true data generating process in several 

ways. These incorrect models contain either (a) a varying percentage of misspecified item 

loadings (e.g. 10% or 20% of items with αi = 0), (b) a varying percentage of misspecified inter-

factor correlations (e.g. ρθ1θ2 = 0), or (c) a combination of misspecified item loadings and 

misspecified inter-factor correlations. The simulation procedure for study 2 is as follows: 

1) Generate item parameters following the previously mentioned approaches 

2) Simulate response data using the item parameters from Step 1 

3) Fit a misspecified model to the simulated data 

4) Compute the number of number of times the ��∗-based fit statistics from the incorrect 

model was greater than or less than the 5th/95th percentile4 fit statistic of the same 

simulation condition from Study 1. 

                                                 
4 This is done to ensure the Type 1 Error is held constant at 5% 
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CHAPTER 9 

STUDY 2 RESULTS 

Power results are displayed in Figures 19 through 34. Overall, results indicate that 

detecting model misspecification for confirmatory MIRT models is conditional on the degree of 

misspecification between the true data generating process and the candidate model fit to the data 

at hand. These findings suggest that it is easier to detect model misspecification when the 

deviation from the “true” model is large. For example, detecting model misspecification when 

20% of the items and 2 out of 3 of the inter-factor correlations are mis-specified occurred in 

100% of simulation conditions with samples as small as 250 individuals. In contrast to detecting 

large degrees of model misspecification, detecting small amounts of misspecification in a 

confirmatory MIRT model is substantially more difficult with realistic sample sizes. For 

example, detecting only a mis-specified inter-factor correlation failed to achieve nominal levels 

of power in all simulation conditions. Given the fully crossed nature of each simulation 

condition for the Power study and the large number of conditions, results are presented in 

ascending order of misspecification for each fit statistic and simulation condition pairing. For a 

given misspecification condition, results are collapsed across all other conditions. 

No simulation condition was able to achieve nominal levels of power when an inter-

factor correlation was misspecified. Similarly, no simulation condition was able to achieve 

nominal levels of power when two inter-factor correlations were misspecified. 

Across all dichotomous response option conditions for the 10% of Items with αi = 0 

misspecification condition, 72.92% (35/48) were able to reach nominal levels of power. Across 
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all four response option conditions, 97.92% (47/48) were able to reach nominal levels of power. 

Across all six response option conditions of the, 100% (48/48) were able to reach nominal levels 

of power. 

Across all 18 item conditions for the 10% of Items with αi = 0 misspecification condition, 

81.94% (59/72) were able to reach nominal levels of power while 98.61% (71/72) of the 36 item 

conditions reached nominal levels of power. 

Across all two-dimension conditions for the 10% of Items with αi = 0 misspecification 

condition, 94.44% (68/72) were able to reach nominal levels of power while 86.11% (62/72) of 

the three-dimension conditions reached nominal levels of power. 

Across all dichotomous response option conditions for the 10% of Items with αi = 0 

misspecification condition, 70.83% (34/48) were able to reach nominal levels of power. Across 

all four response option conditions, 97.92% (47/48) were able to reach nominal levels of power. 

Across all six response option conditions of the, 100% (48/48) were able to reach nominal levels 

of T1E. 

Across all 18 item conditions for the 10% of Items with αi = 0 misspecification condition, 

81.94% (59/72) were able to reach nominal levels of power while 98.61% (71/72) of the 36 item 

conditions reached nominal levels of power. 

Across all two-dimension conditions for the 10% of Items with αi = 0 misspecification 

condition, 95.83% (69/72) were able to reach nominal levels of power while 83.33% (60/72) of 

the three-dimension conditions reached nominal levels of power. 

Across all dichotomous response option conditions for the 10% of Items with αi = 0 

misspecification condition, 37.5% (18/48) were able to reach nominal levels of power. Across all 

four response option conditions, 41.67% (20/48) were able to reach nominal levels of power. 
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Across all six response option conditions of the, 100% (24/48) were able to reach nominal levels 

of power. 

Across all 18 item conditions for the 10% of Items with αi = 0 misspecification condition, 

34.72% (25/72) were able to reach nominal levels of power while 51.39% (37/72) of the 36 item 

conditions reached nominal levels of power. 

Across all two dimension conditions for the 10% of Items with αi = 0 misspecification 

condition, 51.39% (37/72) were able to reach nominal levels of power while 34.72% (25/72) of 

the three dimension conditions reached nominal levels of power. 

Across all dichotomous response option conditions for the 20% of Items with αi = 0 

misspecification condition, 97.92% (47/48) were able to reach nominal levels of power. Across 

all four response option conditions, 97.92% (47/48) were able to reach nominal levels of power. 

Across all six response option conditions of the, 100% (45/48) were able to reach nominal levels 

of power. 

Across all 18 item conditions for the 20% of Items with αi = 0 misspecification condition, 

97.22% (70/72) were able to reach nominal levels of power while 95.83% (69/72) of the 36 item 

conditions reached nominal levels of power. 

Across all two-dimension conditions for the 20% of Items with αi = 0 misspecification 

condition, 98.61% (71/72) were able to reach nominal levels of power while 94.44% (68/72) of 

the three-dimension conditions reached nominal levels of power. 

Across all dichotomous response option conditions for the 20% of Items with αi = 0 

misspecification condition, 100% (48/48) were able to reach nominal levels of power. Across all 

four response option conditions, 100% (48/48) were able to reach nominal levels of power. 
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Across all six response option conditions of the, 95.83% (46/48) were able to reach nominal 

levels of power. 

Across all 18 item conditions for the 20% of Items with αi = 0 misspecification condition, 

100% (72/72) were able to reach nominal levels of power while 100% (70/72) of the 36 item 

conditions reached nominal levels of power. 

Across all two-dimension conditions for the 20% of Items with αi = 0 misspecification 

condition, 100% (72/72) were able to reach nominal levels of power while 97.22% (70/72) of the 

three-dimension conditions reached nominal levels of power. 

Across all dichotomous response option conditions for the 20% of Items with αi = 0 

misspecification condition, 70.83% (34/48) were able to reach nominal levels of power. Across 

all four response option conditions, 87.5% (42/48) were able to reach nominal levels of power. 

Across all six response option conditions of the, 100% (43/48) were able to reach nominal levels 

of power. 

Across all 18 item conditions for the 20% of Items with αi = 0 misspecification condition, 

76.39% (55/72) were able to reach nominal levels of power while 88.89% (64/72) of the 36 item 

conditions reached nominal levels of power. 

Across all two dimension conditions for the 10% of Items with αi = 0 misspecification 

condition, 97.22% (70/72) were able to reach nominal levels of power while 68.06% (49/72) of 

the three dimension conditions reached nominal levels of power. 

Across all dichotomous response option conditions for the 1 factor correlation 

misspecified (ρ_`_a = 0) and 10% of Items with αi = 0 misspecification condition, 72.92% 

(35/48) were able to reach nominal levels of power. Across all four response option conditions, 
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97.92% (47/48) were able to reach nominal levels of power. Across all six response option 

conditions of the, 100% (48/48) were able to reach nominal levels of power. 

Across all 18 item conditions for the 1 factor correlation misspecified (ρ_`_a = 0) and 

10% of Items with αi = 0 misspecification condition, 81.94% (59/72) were able to reach nominal 

levels of power while 98.61% (71/72) of the 36 item conditions reached nominal levels of power. 

Across all two-dimension conditions for the 1 factor correlation misspecified (ρ_`_a = 0) 

and 10% of Items with αi = 0 misspecification condition, 93.06% (67/72) were able to reach 

nominal levels of power while 87.50% (63/72) of the three-dimension conditions reached 

nominal levels of power. 

Across all dichotomous response option conditions for the 1 factor correlation 

misspecified (ρ_`_a = 0) and 10% of Items with αi = 0 misspecification condition, 72.92% 

(35/48) were able to reach nominal levels of power. Across all four response option conditions, 

97.92% (47/48) were able to reach nominal levels of power. Across all six response option 

conditions of the, 100% (48/48) were able to reach nominal levels of power. 

Across all 18 item conditions for the 1 factor correlation misspecified (ρ_`_a = 0) and 

10% of Items with αi = 0 misspecification condition, 84.72% (61/72) were able to reach nominal 

levels of power while 97.22% (70/72) of the 36 item conditions reached nominal levels of power. 

Across all two-dimension conditions for the 1 factor correlation misspecified (ρ_`_a = 0) 

and 10% of Items with αi = 0 misspecification condition, 95.83% (69/72) were able to reach 

nominal levels of power while 86.11% (62/72) of the three-dimension conditions reached 

nominal levels of power. 

Across all dichotomous response option conditions for the 1 factor correlation 

misspecified (ρ_`_a = 0) and 10% of Items with αi = 0 misspecification condition, 35.42% 
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(17/48) were able to reach nominal levels of power. Across all four response option conditions, 

41.67% (20/48) were able to reach nominal levels of power. Across all six response option 

conditions of the, 100% (22/48) were able to reach nominal levels of power. 

Across all 18 item conditions for the 1 factor correlation misspecified (ρ_`_a = 0) and 

10% of Items with αi = 0 misspecification condition, 33.33% (24/72) were able to reach nominal 

levels of power while 48.61% (35/72) of the 36 item conditions reached nominal levels of power. 

Across all two dimension conditions for the 1 factor correlation misspecified (ρ_`_a = 0) 

and 10% of Items with αi = 0 misspecification condition, 48.61% (35/72) were able to reach 

nominal levels of power while 33.33% (24/72) of the three dimension conditions reached 

nominal levels of power. 

Across all dichotomous response option conditions for the 1 factor correlation 

misspecified (ρ_`_a = 0) and 20% of Items with αi = 0 misspecification condition, 100% (48/48) 

were able to reach nominal levels of power. Across all four response option conditions, 100% 

(48/48) were able to reach nominal levels of power. Across all six response option conditions of 

the, 100% (48/48) were able to reach nominal levels of power. 

Across all 18 item conditions for the 1 factor correlation misspecified (ρ_`_a = 0) and 

20% of Items with αi = 0 misspecification condition, 100% (72/72) were able to reach nominal 

levels of power while 100% (72/72) of the 36 item conditions reached nominal levels of power. 

Across all two-dimension conditions for the 1 factor correlation misspecified (ρ_`_a = 0) 

and 20% of Items with αi = 0 misspecification condition, 100% (72/72) were able to reach 

nominal levels of power while 100% (72/72) of the three-dimension conditions reached nominal 

levels of power. 
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Across all dichotomous response option conditions for the 1 factor correlation 

misspecified (ρ_`_a = 0) and 20% of Items with αi = 0 misspecification condition, 100% (48/48) 

were able to reach nominal levels of power. Across all four response option conditions, 100% 

(48/48) were able to reach nominal levels of power. Across all six response option conditions of 

the, 100% (48/48) were able to reach nominal levels of power. 

Across all 18 item conditions for the 1 factor correlation misspecified (ρ_`_a = 0) and 

20% of Items with αi = 0 misspecification condition, 100% (72/72) were able to reach nominal 

levels of power while 100% (72/72) of the 36 item conditions reached nominal levels of power. 

Across all two-dimension conditions for the 1 factor correlation misspecified (ρ_`_a = 0) 

and 20% of Items with αi = 0 misspecification condition, 100% (72/72) were able to reach 

nominal levels of power while 100% (72/72) of the three-dimension conditions reached nominal 

levels of power. 

Across all dichotomous response option conditions for the 1 factor correlation 

misspecified (ρ_`_a = 0) and 20% of Items with αi = 0 misspecification condition, 64.58% 

(31/48) were able to reach nominal levels of power. Across all four response option conditions, 

81.25% (39/48) were able to reach nominal levels of power. Across all six response option 

conditions of the, 83.33% (40/48) were able to reach nominal levels of power. 

Across all 18 item conditions for the 1 factor correlation misspecified (ρ_`_a = 0) and 

20% of Items with αi = 0 misspecification condition, 69.44% (50/72) were able to reach nominal 

levels of power while 83.33% (60/72) of the 36 item conditions reached nominal levels of power. 

Across all two dimension conditions for the 1 factor correlation misspecified (ρ_`_a = 0) 

and 20% of Items with αi = 0 misspecification condition, 98.61% (71/72) were able to reach 
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nominal levels of power while 54.17% (39/72) of the three dimension conditions reached 

nominal levels of power. 

Across all dichotomous response option conditions for the 2 factor correlation 

misspecified (ρ_`_a = 0) and 10% of Items with αi = 0 misspecification condition, 66.67% 

(16/24) were able to reach nominal levels of power. Across all four response option conditions, 

95.83% (23/24) were able to reach nominal levels of power. Across all six response option 

conditions of the, 100% (24/24) were able to reach nominal levels of power. 

Across all 18 item conditions for the 2 factor correlation misspecified (ρ_`_a = 0) and 

10% of Items with αi = 0 misspecification condition, 77.78% (28/36) were able to reach nominal 

levels of power while 97.22% (35/36) of the 36 item conditions reached nominal levels of power. 

Across all three-dimension conditions for the 2 factor correlation misspecified (ρ_`_a =
0) and 10% of Items with αi = 0 misspecification condition, 87.5% (63/72) were able to reach 

nominal levels of power. 

Across all dichotomous response option conditions for the 2 factor correlation 

misspecified (ρ_`_a = 0) and 10% of Items with αi = 0 misspecification condition, 58.33% 

(14/24) were able to reach nominal levels of power. Across all four response option conditions, 

95.83% (23/24) were able to reach nominal levels of power. Across all six response option 

conditions of the, 100% (24/24) were able to reach nominal levels of power. 

Across all 18 item conditions for the 2 factor correlation misspecified (ρ_`_a = 0) and 

10% of Items with αi = 0 misspecification condition, 75% (27/36) were able to reach nominal 

levels of power while 94.44% (34/36) of the 36 item conditions reached nominal levels of power. 
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Across all three-dimension conditions for the two-factor correlations misspecified 

(ρ_`_a = 0) and 10% of Items with αi = 0 misspecification condition, 84.72% (61/72) were able 

to reach nominal levels of power. 

Across all dichotomous response option conditions for the 2 factor correlations 

misspecified (ρ_`_a = 0) and 10% of Items with αi = 0 misspecification condition, 33.33% (8/24) 

were able to reach nominal levels of power. Across all four response option conditions, 33.33% 

(8/24) were able to reach nominal levels of power. Across all six response option conditions of 

the, 100% (8/24) were able to reach nominal levels of power. 

Across all 18 item conditions for the 2 factor correlation misspecified (ρ_`_a = 0) and 

10% of Items with αi = 0 misspecification condition, 33.33% (12/36) were able to reach nominal 

levels of power while 33.33% (12/36) of the 36 item conditions reached nominal levels of power. 

Across all three dimension conditions for the 2 factor correlation misspecified (ρ_`_a =
0) and 10% of Items with αi = 0 misspecification condition, 48.61% (24/72) were able to reach 

nominal levels of power while 48.61% (35/72) of the three dimension conditions reached 

nominal levels of power. 

Across all dichotomous response option conditions for the 2 factor correlation 

misspecified (ρ_`_a = 0) and 20% of Items with αi = 0 misspecification condition, 100% (24/24) 

were able to reach nominal levels of power. Across all four response option conditions, 100% 

(24/24) were able to reach nominal levels of power. Across all six response option conditions of 

the, 100% (24/24) were able to reach nominal levels of power. 

Across all 18 item conditions for the 2 factor correlation misspecified (ρ_`_a = 0) and 

20% of Items with αi = 0 misspecification condition, 100% (36/36) were able to reach nominal 

levels of power while 100% (36/36) of the 36 item conditions reached nominal levels of power. 
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Across all three dimension conditions for the 2 factor correlation misspecified (ρ_`_a =
0) and 20% of Items with αi = 0 misspecification condition, 100% (72/72) were able to reach 

nominal levels of power. 

Across all dichotomous response option conditions for the 2 factor correlation 

misspecified (ρ_`_a = 0) and 20% of Items with αi = 0 misspecification condition, 100% (24/24) 

were able to reach nominal levels of power. Across all four response option conditions, 100% 

(24/24) were able to reach nominal levels of power. Across all six response option conditions of 

the, 100% (24/24) were able to reach nominal levels of power. 

Across all 18 item conditions for the 2 factor correlation misspecified (ρ_`_a = 0) and 

20% of Items with αi = 0 misspecification condition, 100% (36/36) were able to reach nominal 

levels of power while 100% (36/36) of the 36 item conditions reached nominal levels of power. 

Across all three dimension conditions for the 2 factor correlation misspecified (ρ_`_a =
0) and 20% of Items with αi = 0 misspecification condition, 100% (72/72) were able to reach 

nominal levels of power. 

Across all dichotomous response option conditions for the 2 factor correlation 

misspecified (ρ_`_a = 0) and 20% of Items with αi = 0 misspecification condition, 33% (8/24) 

were able to reach nominal levels of power. Across all four response option conditions, 62.5% 

(15/24) were able to reach nominal levels of power. Across all six response option conditions of 

the, 100% (16/24) were able to reach nominal levels of power. 

Across all 18 item conditions for the 2 factor correlation misspecified (ρ_`_a = 0) and 

20% of Items with αi = 0 misspecification condition, 41.67% (15/36) were able to reach nominal 

levels of power while 66.67% (24/36) of the 36 item conditions reached nominal levels of power. 
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Across all three dimension conditions for the 2 factor correlation misspecified (ρ_`_a =
0) and 20% of Items with αi = 0 misspecification condition, 54.17% (39/72) were able to reach 

nominal levels of power. 
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CHAPTER 10  

DISCUSSION 

The use of multidimensional item response theory in psychology has increased 

dramatically over the past decade thanks, in part, to recent advances in statistical theory and 

statistical computing. With the development of the M2 family of statistics by Maydeu-Olivares 

and Joe (2005; 2006) and its computational implementation in the R package “mirt” (Chalmers, 

2012), researchers are now able to compute a variety of M2-based global model fit statistics (e.g. 

CFI, TLI, RMSEA, SRMSR) across a large gamut of MIRT models. Despite this, there is little 

clarity for how to best make adequate model selection decisions when using these fit statistics. In 

practice, researchers using MIRT models in conjunction with M2-based statistics have turned to 

the commonly used Hu and Bentler cut-offs for evaluating these M2 fit statistics despite there 

being little evidence of their performance for adequate model selection (see Kilgus et al., 2018, 

Hyatt et al., 2022, and Harris et al., 2020 for examples in school, clinical, and organizational 

psychology, respectively).  

The purpose of the present simulation study was to provide guidance for researchers 

using M2 statistics to make MIRT model selection decisions. I accomplished this by examining 

the behavior of commonly used global model fit statistic cut-offs for determining the correct 

DGP as well as detecting varying forms of model misspecification for MIRT model selection. 

Results indicate that existing global model fit statistic cut-offs have mixed success for 

determining whether a candidate model is the correct or “true” DGP. Of particular note was the 

poor performance of SRMSR for detecting model misspecification in comparison to CFI, TLI, 
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and RMSEA. In the event researchers have conflicting findings from fit statistic values they 

derive in their own data, these results would suggest discarding the SRMSR in favor of the other 

statistics if misfit is of concern. Overall, the results from this study indicate that researchers 

should be cautious when using the common Hu and Bentler model-data fit index cut-offs to 

evaluate multidimensional IRT models given the potential study design factors that could 

influence the ability to make correct model selection decisions and inferences. 

Despite the large number of conditions, response models, and misspecifications examined 

in this study, there remain several open questions for MIRT model selection should explore. 

Future research on CFA and SEM model selection has begun shifting from a “one-size-fits-all” 

approach to viewing cut-offs as being dependent on the research process and question. Such 

dynamic fit index cut-offs (Wolf & McNeish, 2021) could provide a means with which to reduce 

researcher degrees of freedom (Gelman & Loken, 2013) and increase transparency with respect 

to reporting what MIRT models a researcher wishes to examine. DFIs serve as a form of 

simulation-based inference, whereby researcher simulate potentially plausible alternative models 

in addition to the theoretical model of interest and simulate cut-offs beforehand to aid with 

inference and model selection. Results from the present work suggest this would be a worthwhile 

pursuit given the mixed performance of global cut-offs. Lastly, one area of work that has 

recently taken shape is the use of predictive fit index measures (Stenhaug & Domingue, 2022) 

for IRT models that evaluate a model’s ability to predict both person and item parameters, 

ignoring its ability to recover the structural characteristics of a latent variable. It would be 

beneficial to examine their performance for multidimensional models and compare their 

performance directly with M2 statistics. 
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Table 1. Summary of the Monte Carlo Simulation Design 

Factor Number of Levels Levels of Factor 

Sample Size 4 150, 250, 500, 750, 1000 

Number of Items 2 18, 36 

Number of Factors 2 2, 3 

Number of Response 

Options 

3 2, 4, 6 

IRT Model Studied 3 MGRM, MGGUM, MGPCM 

% of Items with αi = 0 2 10%, 20% 

Number of ^_`_a= 0 3 0, 1, 2 

RMSEA Cutoffs 4 

0.06 (Hu & Bentler, 1999); 

0.089, 0.05, 0.05 / (K-1) (Maydeu-

Olivares & Joe, 2014) 

SRMSR Cutoffs 4 

0.08 (Hu & Bentler, 1999); 

0.05, 0.027, 0.027 / (K-1) (Maydeu-

Olivares & Joe, 2014) 

CFI Cutoffs 1 0.95 (Hu & Bentler, 1999) 

TLI Cutoffs 1 0.95 (Hu & Bentler, 1999) 

Note. MGRM=Multidimensional Graded Response Model; GGUM= Multidimensional 

Generalized Graded Unfolding Model; MGPCM=Multidimensional Generalized Partial Credit 

Model; the GRM is the polytomous case of the two-parameter logistic model; αi is the 

discrimination parameter; ^_`_a  is the inter-factor correlation. 

 



 43

FIGURES 

Figure 1. RMSE Between Multidimensional Graded Response Model Sample and Population Item Parameters 
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Figure 2. Mean Bias Between Multidimensional Graded Response Model Sample and Population Item Parameters
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Figure 3. Correlation Between Multidimensional Graded Response Model Sample and Population Item Parameters 
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Figure 4. RMSE Between Multidimensional Generalized Partial Credit Model Sample and Population Item Parameters 
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Figure 5. Mean Bias Between Multidimensional Generalized Partial Credit Model Sample and Population Item Parameters 
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Figure 6. Correlation Between Multidimensional Generalized Partial Credit Model Sample and Population Item Parameters  
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Figure 7. RMSE Between Multidimensional Generalized Graded Unfolding Model Sample and Population Item Parameters 
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Figure 8. Mean Bias Between Multidimensional Generalized Graded Unfolding Model Sample and Population Item Parameters  
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Figure 9. Correlation Between Multidimensional Generalized Graded Unfolding Model Sample and Population Item Parameters 
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Figure 10. Boxplot of Model Fit Statistics for the Multidimensional Graded Response Model
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Figure 11. Absolute Fit Statistics and Their Respective Cut-Offs for the Multidimensional Graded Response Model
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Figure 12. Boxplot of Model Fit Statistics for the Multidimensional Generalized Partial Credit Model 
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Figure 13. Absolute Fit Statistics and Their Respective Cut-Offs for the Multidimensional Generalized Partial Credit Model
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Figure 14. Boxplot of Model Fit Statistics for the Multidimensional Generalized Graded Unfolding Model 
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Figure 15. Absolute Fit Statistics and Their Respective Cut-Offs for the Multidimensional Generalized Graded Unfolding Model 
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Figure 16. Type 1 Error Rates for the Multidimensional Graded Response Model 
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Figure 17. Type 1 Error Rates for the Multidimensional Generalized Partial Credit Model 
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Figure 18. Type 1 Error Rates for the Multidimensional Generalized Graded Unfolding Model 
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Figure 19. Power Results for 1 Correlation Misspecified Condition (18 items) 
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Figure 20. Power Results for 1 Correlation Misspecified Condition (36 items) 
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Figure 21. Power Results for 2 Correlations Misspecified (18 items) 
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Figure 22. Power Results for 2 Correlations Misspecified (36 items) 
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Figure 23. Power Results for 10% of Items Mis-Loaded (18 items) 
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Figure 24.  Power Results for 10% of items mis-loaded (36 items) 
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Figure 25. Power Results for 20% of Items Mis-Loaded (18 items) 
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Figure 26. Power Results for 20% of Items Mis-Loaded (36 items) 
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Figure 27. Power Results for 1 Correlation Misspecified and 10% of Items Mis-Loaded (18 items) 
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Figure 28. Power Results for 1 Correlation Misspecified and 10% of Items Mis-Loaded (36 items)
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Figure 29. Power Results for 1 Correlation Misspecified and 20% of Items Mis-Loaded (18 items) 
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Figure 30. Power Results for 1 Correlation Misspecified and 20% of Items Mis-Loaded (36 items) 
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Figure 31. Power Results for 2 Correlations Misspecified and 10% of Items Mis-Loaded (18 items) 
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Figure 32. Power Results for 2 Correlations Misspecified and 10% of Items Mis-Loaded (36 items) 
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Figure 33. Power Results for 2 Correlations Misspecified and 20% of Items Mis-Loaded (18 items) 
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Figure 34. Power Results for 2 Correlations Misspecified and 20% of Items Mis-Loaded (36 items)

 


