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ABSTRACT 

Vaccination is one of the most cost-effective preventive measures for many infectious 

diseases, including influenza. However, the constant-evolving nature of influenza A virus (IAV) 

leads to annual revision of seasonal influenza vaccine components and at times, antigenic 

mismatch can potentially occur with the vaccine target, hemagglutinin (HA). In the case of swine, 

vaccines in use may not protect against the viruses that spread in pigs as there is no formal vaccine 

strain recommendation system and variation in swine influenza strains may arise. Human and 

swine influenza studies have shown that when vaccine strain and circulating strains are poorly 

matched, highly conserved T cell epitopes may limit disease spread in the absence of cross-reactive 

antibodies. Despite these findings, most influenza vaccine studies focus on humoral immune 

mechanisms and means of measuring the correlates of protection for T cell epitopes are still 

lacking. This dissertation addresses knowledge gaps in the vaccine development from the cellular-

mediated immunity perspective. The goal of this dissertation is to evaluate T cell epitope 

conservation in influenza vaccines against circulating IAV viruses in swine and humans using T 

cell epitope prediction algorithms and phylogenetic analysis tools. Research aim 1 focuses on 

assessing a conserved T cell epitope-based prototype vaccine and determining the persistence of 



 

T cell epitope conservation over a 5-year period. Aim 2 concentrates on identifying cross-

conserved T cell epitope in HA sequences of human and swine influenza vaccines against emergent 

H1N1 G4 swine IAV (G4) to evaluate the potential for the G4 strain to impact swine and human 

populations. The work in aim 3 is about defining the human T cell immune landscape of H3N2 

IAV using HA sequence data to estimate potential T cell epitopes and to examine how antigenic 

drift affects the diversity of T cell epitopes presented by the viral population over time. 

Collectively, my research findings present rationale for the use of computational means to analyze 

high dimensional data in the study of host immunity related to infection or vaccination by influenza 

virus. The studies outcomes also provide useful insights that may enhance influenza vaccine 

strategies as well as influenza surveillance efforts. 
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CHAPTER 1 

INTRODUCTION 

 Influenza infection poses a significant threat to human health due to annual epidemics and 

occasional pandemics. In the U.S., the Centers for Disease Control and Prevention (CDC) 

estimates that during the 2019-2020 influenza season, influenza was associated with 38 million 

illnesses, 18 million medical visits, 405,000 hospitalizations, and 22,000 deaths [1]. Compared to 

the 2017-2018 season, the influenza burden was higher in young children (0-4 years), than in adults 

(18-49 years) in 2019-2020, providing evidence to support how severe seasonal influenza can be 

at any age. Influenza is also linked with significant economic losses in livestock. Influenza A virus 

(IAV) is among the most devastating pathogen for swine and poultry productions [2]. Several 

genetically and antigenically diverse IAV strains are endemic in swine worldwide and continue to 

cause significant losses to the swine industry. 

Vaccination remains the most effective public health intervention for combatting influenza 

infections. However, the virus undergoes rapid evolution in every epidemic season, which makes 

vaccine strain selection particularly challenging. In addition, host and environmental factors add 

to the complexity in predicting which strains will dominate in future seasons. Viral genetic 

evolution and host adaptive immune profiles play essential roles, and these factors are relevant to 

be considered in the process of vaccine development and public health control. 

The immune system has memory of highly specific protective antibodies formed in 

response to natural infection and vaccination. Human and swine studies have shown that conserved 

T cells resultant from previous exposure to influenza infection could cross-react to a novel IAV 
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strain [3], and that cellular immune responses are important for protection against IAV infection 

[4]. T cell-mediated immune responses are essential in reducing disease morbidity when flu 

vaccines and circulating IAV strains are poorly matched [6, 7]. While most influenza vaccine 

studies would focus on humoral immune mechanisms, my research will largely address the 

knowledge gap from a cellular-mediated immunity perspective. 

This research strategy will use available vaccine and circulating IAV sequences to predict 

T cell epitope binding likelihood in swine and humans and analyze predicted T cell epitope content 

to discern adaptive immune response changes shaped by influenza vaccination. The proposed 

approach also presents an opportunity to combine with phylogenetic analysis to better interpret 

viral evolution and immune selection pressure. Moreover, another advantage of the study allows 

analysis of large amounts of data spanning a wide range of years and/or analysis of IAV whole 

proteomes.  

In this dissertation, I aim to develop new analysis pipeline by combining a series of T cell 

epitope prediction tools (immunoinformatic) with phylogenetic approaches, to assess T cell 

epitope content in existing influenza vaccines and/or experimental vaccines against circulating 

and/or emergent IAV viruses in swine and humans. The goal of the proposed study outcome is to 

improve understanding of host adaptive immune profiles against IAV and may be relevant for 

developing a universal influenza vaccine in which cellular immunity contribution should also be 

addressed.  

 

To achieve my research goal, the following three specific studies will be carried out: 

Specific Aim 1: Assessment of a prototype epitope-based swine IAV vaccine. To evaluate the 

contribution of cell-mediated immunity to protect against severe disease even in the absence of 
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antibody response, I will quantify T cell epitope content based on highly conserved T cell epitopes 

between the prototype vaccine and circulating swine IAV strains spanning a five-year period. 

Another objective in this aim is to establish an immunology-based approach to estimate T cell 

epitopes conservation.  

 

Specific Aim 2: Epidemic-risk identification of IAV circulating strains using immunology-

based computational approaches. When influenza vaccines and emerging IAV strains are poorly 

matched, T cell-mediated immunity is crucial if there are no cross-reactive antibodies. This study 

will focus on an emerging swine IAV strain, G4, bearing Eurasian avian-like origin, which has 

been shown to have pandemic potential. I will compare the T cell epitope content of G4 strains 

and determine whether the T cell epitope content matches the existing and/or experimental vaccine 

strains as well as circulating strains in human and swine to further understand the potential threat 

of G4 virus in naive populations.  

  

Specific Aim 3: Sequence-based approach to characterize host cell-mediated immunity 

selection on viral diversity. Although serological data are often used for viral antigenic 

characterization and vaccine efficacy evaluation, I will consider sequenced-based surveillance 

approaches to study human seasonal IAV evolution and host T cell immunity dynamic. To evaluate 

the dynamic of T cell epitope drift and replacement, I will analyze human seasonal influenza H3N2 

vaccines and circulating strains to define human IAV evolutionary landscape in terms of immune 

selection pressure and viral diversification. 
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CHAPTER 2 

LITERATURE REVIEW 

Epidemiology 

Influenza is an infectious disease of birds and some mammals, including humans, and has 

been present for more than four centuries since its first documented description in 1580 [7]. The 

contagious viral disease has caused occasional pandemics and countless seasonal epidemics. To 

date, influenza continues to raise global health concerns from time to time. 

Influenza pandemics occur when an antigenically novel strain of the influenza virus results 

from the switching of virus gene segments, emerges in an immunity-naïve human population, and 

transmits efficiently among humans. There are four historic pandemics of influenza that occurred 

in the 20th century, the great H1N1 pandemic of 1918 (Spanish flu) with an estimated 21 million 

deaths worldwide, the H2N2 Asian flu of 1957, the H3N2 Hong Kong flu of 1968, and H1N1 

Russian flu of 1977 [8], [9]. The H1N1 swine-origin flu pandemic of 2009 is the only influenza 

pandemic that took place in the 21st century [9]. Most influenza pandemics originated from non-

human reservoirs, particularly among aquatic wildfowl, which serves as a natural reservoir [10].  

While influenza pandemics pose a significant threat, seasonal influenza is responsible for 

the annual disease burden of influenza. In the United States (US), the Centers for Disease Control 

and Prevention (CDC) estimates that during 2019-2020 influenza season, influenza was associated 

with 38 million illnesses, 18 million medical visits, 405,000 hospitalizations, and 22,000 deaths 

[11]. Annual influenza epidemics peak during the winter season in temperate regions. Given that 

there are differences in the timing of winter, the influenza season in the Northern Hemisphere (NH) 
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usually falls between November and April, and for the Southern Hemisphere (SH), influenza 

season takes place between May and October. In tropical and subtropical regions, the 

epidemiology of influenza is more divergent throughout the year and the influenza period remains 

ambiguous [12].  

In contrast to influenza pandemics, seasonal epidemics continue to recur yearly as 

influenza viruses evolve through point mutations (antigenic drift) and appear to be distinct from 

previously circulating influenza viruses [13]. This constant antigenic drift enables the virus to 

escape the host immunity that an individual gained from prior infections or vaccinations, as well 

as to be transmissible efficiently from human‐to‐human via respiratory droplets. 

 

Influenza structure and virological features 

The human respiratory pathogen that causes influenza is the influenza virus, which belongs 

to the Orthomyxoviridae family of ribonucleic acid (RNA) viruses [14]. The genome structure of 

influenza virus is composed of negative-sense, single-stranded segmented RNA. The negative-

sense of the genome means it must be transcribed into a positive-sense RNA by RNA-dependent 

RNA polymerase (RdRp) prior to translation. This positive-sense RNA strand acts as a messenger 

RNA (mRNA). There are four types of influenza virus, namely influenza virus A, B, C, and D 

[14]. Aquatic birds are the primary reservoir of influenza A virus (IAV), which is also widespread 

in various mammals, including humans and pigs. The other members of the family include 

influenza B virus (IBV), a genus that infects only humans and seals [15]; influenza C virus (ICV), 

a rare type that is known to have infected human and pigs [16]; and a more recently detected 

species, influenza D virus (IDV), known to infect pigs and cattle, however, no human infections 

have been observed.  



 

6 

 

Scientists have confirmed through sequencing that these four genera of influenza viruses 

share a common genetic ancestry, however, they are genetically diverse [17]. These viruses are 

capable of reassorting and exchanging their viral RNA segments within the same genus, or type, 

but not across types. IAV and IBV have eight genome segments while ICV and IDV have seven 

genome segments which encode 10 and nine major proteins, respectively [14], [17], [18]. These 

genome segments are numbered in the order of decreasing length. 

The first three segments are the largest genes in the virus genome. Segments one and two 

encode the polymerase basic two (PB2) and polymerase basic one (PB1) protein, respectively. PB2 

is involved in 5' cap recognition and PB1 acts as a transcriptase. Additionally, segment two 

encodes a small protein, PB1-F2 via a second open reading frame that acts as a pro-apoptotic 

factor. Segment three encodes for two polymerase acidic proteins, namely PA (known as P3 for 

ICV and IDV), which acts as an endonuclease, and PA-X. Both PB1-F2 and PA-X are expressed 

through alternative open reading frames. These accessory proteins are important in host defense 

suppression, virulence, and pathogenicity. Three of the polymerase proteins (PB2, PB1 and PA), 

together with the nucleocapsid protein, NP, which are encoded by the fifth segment, form the viral 

ribonucleoprotein (vRNP) complex. vRNP complex is required for replication and transcription of 

the viral RNA (vRNA) [14], [17], [19]. 

  For IAV and IBV, segments four and six encode the viral surface glycoproteins, 

hemagglutinin (HA) and neuraminidase (NA). HA mediates virus binding and internalization, 

whereas NA aids in release of the virus from the cell surface. ICV and IDV, encode a 

hemagglutinin-esterase fusion (HEF) protein on one segment that merges the functions of HA and 

NA. Segment seven (unspliced mRNA) and eight (spliced mRNA) encode the two viral matrix 

proteins (M1 and M2) and non-structural proteins (NS1 and NS2), respectively [20]–[23]. The 
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proteins M1, NS1 and NS2 mediate nuclear export of the newly synthesized vRNP complexes 

(composed of PB2, PB1, PA and NP). The vRNPs, together with M1 (the major viral structural 

protein), are assembled into virions that detach from the cellular membrane. M2 is also involved 

in the assembly process which acts as an ion channel protein that mediates function early or late 

in the infection. Furthermore, the protein NS1 functions as an interferon (IFN) antagonist [14], 

[17], [24]. A summary of the various functions of the proteins is provided in Table 2.1. 

Among the four, IAV, which will be the focus of this review, has the most rapid mutation 

rate, driven by the error-prone nature of the RNA replication and as a result, IAV exhibits 

significant genetic diversity [14], [17]. IAVs are further characterized by the subtype of their 

surface glycoproteins, the HA and the NA. Influenza viruses have a standard nomenclature that 

includes as follows: the virus type; the species from which it was isolated (if non-human host); the 

location at which it was isolated; an isolation identifier; the isolate year; and, for IAVs only, 

numbering for the HA and NA subtype. Thus, A/Hong Kong/1/1968 (H3N2) was a human IAV 

isolated from Hong Kong in 1968 with isolation number of 1, and it has an HA subtype 3 and an 

NA subtype 2. Another example, A/Swine/Netherlands/3/1980 (H1N1) was a swine IAV isolated 

from Netherlands in 1980 with isolation number of 3, and it has an HA subtype 1 and an NA 

subtype 1. To date, there are 18 different known HA subtypes (H1 to H18) and 11 different known 

NA subtypes (N1 to N11) [25]. While many genetically distinct subtypes have been discovered in 

aquatic waterfowl and shorebirds, only three HA (H1, H2, and H3) and two NA (N1 and N2) 

subtypes have caused human epidemics, attributed to sustained, widespread, person-to-person 

transmission. 
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Viral life cycle from cell entry to virion release 

The target organ of infection in humans is the respiratory tract [26]. When influenza virus 

is introduced into the respiratory tract, either by aerosol or by contact with saliva or other 

respiratory secretions from an infected individual, it attaches to and replicates in epithelial cells. 

The virus replicates in cells of both the upper and lower respiratory tract. Generally, there are four 

main stages in an influenza virus replication cycle [17]. It begins with (1) virus attachment and 

entry, followed by (2) viral RNA replication, (3) viral protein synthesis, and finally, (4) virion 

assembly and release (Figure 2.1). Each protein plays a vital role as the virus functional driving 

force [17].  

 

Viral entry and endocytosis 

The viral life cycle begins when the virus invades the primary physical barrier by binding 

to the respiratory mucus layer. Mucus in the respiratory tract contains sialylated glycoproteins, and 

the nine-carbon acidic monosaccharides, sialic acids (SA), are the target of recognition for 

influenza virus [14], [25]. The NA is a mushroom-shaped tetramer, anchored to the viral envelope 

by a transmembrane domain [27]. It possesses receptor-destroying activity, cleaving terminal sialic 

acid residues from cell-surface glycoproteins and gangliosides to release progeny virus from the 

host cell. Prior to binding to respiratory endothelial cells, the NA proteins on the viral envelope 

promote access to the target cells by degrading mucous, which helps to remove extracellular decoy 

receptors that would impede access to target cells. NA cleaves sialic acids and disables the 

inhibitory functions of the mucus, thus allowing penetration into the mucus layer [25], [27]. 

Binding to the target cell is then mediated by the HA proteins that are located on the surface of the 

viral envelope which enable fusion of the virions to host cell surface membranes that contain SA 
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receptors. This viral entry process is also known as receptor-mediated endocytosis. 

Following endocytosis, the virus is internalized into the cell and the endosome is acidified 

by cellular lysosomes. The low pH activates the M2 ion channel and triggers a large 

conformational change in HA that exposes the fusion peptide and releases the matrix protein-

coated vRNPs into the host cytosol [25]. The M1 protein shell surrounding the RNPs is also 

degraded, fully uncoating RNPs into the cytosol. Shortly after the uncoating process, released 

vRNPs are then translocated into the host nucleus via nuclear pore complexes, where they 

transcribe and replicate vRNA [25]. 

 

Viral RNA replication  

The released eight segments of the influenza genome that are covered with NP and attached 

to RdRp complex next enter the host nucleus via nuclear pores. Given that the influenza RNA 

segments are negative strands, and hence they are all noncoding strands, each of the eight segments 

needs to be copied into two complementary (+) strands by the viral RNA polymerase. Once that 

occurs, the strand can be used for: (1) translating into viral proteins and (2) synthesizing 

complementary RNA (cRNA) intermediates from which the RNA polymerase subsequently 

transcribes more copies of negative-sense genomic vRNA. Therefore, the vRNPs (RdRp complex 

and NP) are responsible for both transcription and replication of the viral RNA genome [17], [25]. 

To make a mRNA for transcription by host ribosomes, the influenza RdRp complex which 

consists of PB1, PB2, and PA utilize a mechanism called “cap-snatching” for transcription. “Cap-

snatching” is known as a process where the RdRp complex cuts off the 5’ cap from one of the host 

cell’s mRNA molecules and uses the cap to start transcription of vRNA. PB2 recognizes the 5′ cap 

of host pre-mRNA, and PA cleaves host mRNA to generate 5′-capped RNA fragments that are 
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then used as primers to initiate viral mRNA transcription. PB1 is responsible for carrying out viral 

mRNA synthesis. At the same time, RdRp also synthesizes cRNA which are then used as templates 

by viral polymerases to synthesize copies of the negative-sense genome [17], [25], [27].  

 

Viral protein synthesis 

Once viral mRNA is transcribed, it is exported out of the nucleus and translated by host 

ribosomes in a cap-dependent manner to synthesize viral proteins [28]. Newly synthesized viral 

RdRp subunits and NP proteins are imported to the nucleus to further increase the rate of viral 

replication and form RNPs. The viral surface proteins, HA and NA, and M2 are synthesized from 

mRNA of viral origin into the endoplasmic reticulum, where they are folded and transported to the 

Golgi apparatus for post-translational modification and are signaled to the cell membrane for virion 

assembly. M1 is responsible for bringing the RNP–NS2 complex [29] into contact with the 

envelope-bound HA, NA, and M2 proteins for packaging at the host cell membrane [17], [30]. 

Viral non-structural proteins including NS1 and accessory proteins, PB1-F2, and PA-X regulate 

host cellular processes to disable antiviral responses [14], [29]. PB1-F2 also interacts with PB1 to 

keep polymerases in the nucleus longer. M1 and NS2 proteins localize to the nucleus during the 

later stages of infection, bind to viral RNPs and mediate their export to the cytoplasm where they 

migrate to the cell membrane with the aid of recycled endosomes and are bundled into the segments 

of the viral genome [14]. 

 

Virion assembly and release 

Influenza virus is not fully infectious unless its virions contain a full genome of eight 

segments. Progeny viruses leave the cell by budding from the cell membrane, initiated by an 
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accumulation of M1 matrix protein at the cytoplasmic side of the lipid bilayer [17]. When budding 

is complete, HA spikes continue to bind the virions to the sialic acid on the cell surface until virus 

particles are actively released by the sialidase activity of the NA protein. The NA also removes 

sialic acid residues from the virus envelope itself, which helps prevent newly assembled viruses 

from aggregating near the cell surface and improving infectivity [17], [31]. In viruses with inactive 

or absent NA, or in the presence of neuraminidase inhibitors, virus particles clump at the cell 

surface and infectivity is consequently reduced [17]. 

 

Antigenic drift and shift 

Influenza virus and other RNA viruses have a remarkably rapid mutation rate. The 

segmented nature of the influenza virus genome allows for constant genetic change, mainly 

through two evolutionary mechanisms, such as antigenic drift (point mutations in the virus gene) 

and/or antigenic shift (reassortment or exchange of gene segment with another subtype of influenza 

virus). The RdRp complex encoded by the virus lacks a fidelity checking mechanism, thus the 

viral replication is error-prone, with a point mutation rate of ∼1/104 bases per replication cycle. 

The point mutations are a major contributor to virus genetic variation via antigenic drift [32]. Due 

to these mutation events, IAVs can survive and infect a wide range of host species and 

occasionally, they are capable of transmitting and spreading among the same population, thereby, 

causing an outbreak. 

Antigenic drift involves the accumulation of point mutations in viral genome, especially at 

the essential sites such as host recognition and antibody binding sites which are located at virus 

surface proteins. Antigenic drift is especially common for the HA protein. This can occur in 

response to evolutionary pressure exerted by the host immune response, resulting in the production 
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of novel strains that can evade pre-existing antibody-mediated and T cell-mediated immunity [33], 

[34]. Antigenic drift causes continual evolution of seasonal influenza virus [35], therefore 

contributing to the need for an annual update of influenza vaccine components.  

Additionally, the extent of antigenic drift can alter the host receptor binding site (RBS) and 

specificity of HA protein, a major determinant of host tropism, for preference from avian to human 

sialic acid linkages [36]. For example, substitution of amino acid glutamine (Q) to leucine (L) at 

position 226 (Q226L9; H3 numbering) and from glycine (G) to serine (S) at position 228 (G228S) 

in HA have been described to be key mutations enabling change of binding preference to human 

SA receptor. The internal proteins NP, PA and PB2 have also been reported to harbor mutation 

sites, mostly located in the functional domains related to RNP-RNP interactions, which are crucial 

for viral replication [37]. In PB2, glutamic acid residue (E) mutations are commonly seen in avian 

viruses, restricting viral growth in humans and monkeys. A change from E to lysine (K) can restore 

and enhance virus replication in mammalian cells [38]. E627K was also able to convert a nonlethal 

H5N1 IAV isolated from a human to a lethal virus in mice [39]. Studies have also revealed that 

with just five mutations influenza A (H5N1) avian virus can become transmissible by air between 

ferrets (a good model to study human transmission). 

The second evolutionary mechanism, antigenic shift, takes place when 

reassortment/recombination happens. For example, in a cell co-infected by viruses of two different 

subtypes, the HA segment (or others) of one strain is acquired by the other. Given that influenza 

viruses have segmented genomes, they are capable of reassortment. Genome segment reassortment 

and replacement can happen when cells are infected by viruses from a mixture of host species, 

such as human and animal viruses, which can result in hybrid progeny that is a novel and highly 

pathogenic strain, with no preexisting immunity in the human population. This is a sudden and 
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drastic change taking place in an influenza virus's antigen, usually HA. Antigenic shift, however, 

only occurs among influenza viruses of the same genus [20] and most commonly occurs among 

IAVs. This evolutionary process of IAVs creates a large diversity of influenza viruses in birds, 

though it is uncommon in human, equine, and canine lineages [40]. Pigs, bats, and quails have SA 

receptors for both mammalian and avian IAVs, so they are potential "mixing vessels" for 

reassortment [41], [42]. Pandemic influenza generally occurs when antigenic shift produces a virus 

strain to which the human population is immunologically, susceptible, and the virus is capable of 

sustaining human-to-human transmission [17]. 

 

Swine influenza 

Besides morbidity and mortality in humans, influenza is also linked with significant 

economic losses in livestock, and influenza affecting one mammalian species (human, for 

example) can easily transmit to swine and vice versa [43]–[45]. Swine influenza causes respiratory 

disease in pigs, and it is one of the most concerning diseases in the pig industry. The common 

swine influenza viruses circulating in pig populations are H1N1, H1N2 and H3N2 subtypes [46]. 

The most prevalent circulating swine strains in the US are classical H1N1 swine virus, triple 

reassortant H3N2, avian-origin swine H1N1 and pandemic 2009 H1N1 virus (H1N1/pdm09) [47]. 

In contrast, the predominant swine viruses in Europe are H1avN1 (Europe-avian-like lineage), 

H1huN2 (human-like lineage), human-like reassortant swine H3N2, and H1N1/pdm09 [48], [49]. 

And since China is the leading pork producer worldwide, multiple lineages of swine viruses from 

both the US and Europe have been identified in Chinese pig herds. These swine virus strains 

include classical swine H1N1, Eurasian avian-like (EA) H1N1, H1N1/pdm09, triple-reassortant, 

and H3N2 lineages [50], [51]. Additionally, a recent emerging swine H1N1 G4 genotype has 
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drawn the attention of swine influenza experts as it is dominating other swine virus strains in 

Chinese swine populations, as reported by Sun et al [52]. 

The coexistence of diverse swine viruses within individual pigs promotes gene 

reassortment and emergence of new strains. The HA of most avian influenza viruses bind 

specifically to avian α-2,3-galactose sialic acid receptor, which is abundant in epithelial cells of 

avian trachea. Human influenza viruses, on the other hand, prefer α-2,6-galactose sialic acid 

linkage [53]. The different binding preferences of HA to the host sialic acid receptor in lung 

epithelial cells is the primary determinant of species barrier that differentiates avian and mammal 

viruses. Avian influenza virus are usually not able to infect a human host directly and vice versa 

[54]. Remarkably, the lung epithelial cells of pig contains both α-2,3- and α-2,6-galactose sialic 

acid linkages and therefore, pigs can be susceptible to both avian and human influenza viruses. 

Scientists have hypothesized that pigs act as a “mixing vessel” for swine, avian and human 

influenza viruses generating novel reassortant influenza viruses [55].  

Reassortant swine influenza viruses can circulate amid regional pig farms and potentially 

be transmissible to humans. Pig farmers who are continuously exposed to reassortant swine viruses 

are at increased risk of zoonotic infection, and thus establish a vulnerable population of human 

hosts in which zoonosis and reassortment can develop at the same time [56]. The best-described 

example is the swine-origin H1N1/pdm09 influenza virus which resulted from viral genes 

reassortment that previously had not been identified. The H1N1/pdm09 influenza virus bears a 

combination of gene segments from three different influenza strains circulating in pigs (classical 

H1N1 swine virus), birds (EA H1N1) and humans (triple reassortant) [57]. 
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Immune responses to infection 

During IAV infections, both innate and adaptive immune responses are essential in 

protecting the host against infections to achieve viral clearance. At the site of infection, infected 

cells produce cytokines such as type I interferons (IFNs), interleukin (IL)-6, IL-8, tumor necrosis 

factor  (TNF-), and chemokines, for example, CCL2 (MCP-1), RANTES, and MIP-1 that 

recruit immune cells including natural killer (NK) cells, neutrophils, macrophages, and dendritic 

cells (DCs) to initiate the innate immune response [58]–[60]. These innate and adaptive immune 

cells contribute to the immunopathology of infection, while also augmenting protection following 

influenza virus infection. 

 

Innate immune response 

Host innate immunity is the crucial first line of defense barrier that prevents viruses from 

replicating and propagating further in new hosts. As IAV causes infection of the upper and lower 

respiratory tract, alveolar and bronchial epithelial cells are the primary targets for influenza virus 

infection and replication [61]. IAV replicates most effectively in respiratory epithelium cells where 

the HA molecule is cleaved [62]. The virus can infect other cell types as well, including immune 

cells like tissue-resident macrophages and dendritic cells, however, these innate immune cells 

seem to be able to limit internal viral production [60], [61].  

Cell infection and necrosis/apoptosis of infected cells activates a series of immune 

responses with production of proinflammatory cytokines such as TNF-, IL-1, and other 

chemokines [63], [64]. Meanwhile, two type I IFN families, namely IFN-α and IFN-β and type III 

interferon, IFN-λ, can inhibit viral replication in epithelial cells [60]. Once the infected lung 

epithelium begins to release these inflammatory mediators, it leads to the recruitment of additional 
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innate cells, such as natural killer cells, neutrophils and proinflammatory monocytes to the lungs 

to kill infected cells and control viral infection [14], [58]. These host responses to infection are 

critical for viral clearance and initiation of adaptive immune responses. However, in some cases, 

when virus-infected epithelial cells, leukocytes and tissue-resident macrophages continue to 

induce high levels production of inflammatory cytokines and chemokines, the inflammatory 

response at the site of infection can be intensified [65], [66]. This severe immune phenomenon is 

regarded as cytokine storm and it can lead to immunopathology, lung damage and severe disease. 

 

Adaptive immune response 

Adaptive immune response, also known as acquired immune response, provides highly 

specific protection and usually takes time to develop before becoming fully functional. Even 

though innate immunity provides immediate viral control in the early stage, adaptive immune 

responses are necessary for eliminating infected cells, disease recovery, and protection from 

reinfection via memory cells that have developed over the course of infection. The two main 

components of adaptive immunity are cell-mediated immunity and antibody-mediated immunity 

(also known as humoral immunity). Essentially, the cell-mediated arm consists of T lymphocytes, 

namely helper T cells (CD4+) and cytotoxic T lymphocytes (CTL/ CD8+), whereas the antibody-

mediated arm consists of B lymphocytes (plasma cells) and antibodies (immunoglobulins). 

Both cell-mediated and antibody-mediated responses can be described by three important 

features: (1) they exhibit remarkable diversity as they are capable of responding to millions of 

different antigens; (2) they are able to last long even after an infection has been cleared and react 

quickly upon an immune recall because memory T cells and memory B cells are produced; (3) 

they show great specificity as their actions are specially directed against the antigen that initiated 
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the response. Typically, these highly specific processes are triggered by the initial recognition of 

the viral fragments or foreign substances that stimulate B or T cell activation to produce a specific 

response, for instance, antibody generation or T cell expansion. These responses will then precisely 

target and destroy the infected cells.  

 

Humoral-mediated immunity/ B cell immunity 

B cell immunity is essential to defend against viral invaders and can be acquired through 

either IAV infection or through influenza vaccination. Activation of B cells leads to antibody (Ab) 

production. Abs bind to pathogens or to foreign substances and neutralize them. Antibody 

responses against IAV infection are usually robust and long lasting in naive individuals. The B 

cell immune response begins approximately three days post infection and by day 7, 

immunoglobulin G (IgG) is secreted [67]. Using murine models, scientists found that most 

antibody-producing B cells secrete IgG and IgM in the mouse lung, while antibody-producing B 

cells secrete IgA, primarily in the mouse upper respiratory tract [68].  

B cell immunity mainly targets virus external proteins HA, by inhibiting or ‘neutralizing’ 

viral cell entry and blocking virus attachment to the cell surface, and NA, by inhibiting virus exit 

and preventing virus adhesion to the receptors on the epithelial cells [69]–[71]. Neutralizing Abs 

often correlate with protection and contribute directly to eliminating infection [72], [73]. Typically, 

neutralizing Abs against IAV are directed to the conformational epitopes on the globular domain 

of HA. There is also a minor Ab population identified as non-neutralizing Abs, which are specific 

to other viral epitopes. Non-neutralizing Abs can also be protective by other mechanisms, such as 

activating complement or promoting antibody-dependent cellular cytotoxicity [74].  

As neutralizing Abs against IAV generally recognize the globular head region of HA, this 
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head domain has been extensively characterized using monoclonal Abs (mAbs) technology, and 

is regarded as the immunodominant region [69], [70], [75]. There are five well-known discrete 

(non-overlapping) antibody binding sites: Sb and Sa are located at the top of the globular domain 

of HA, while Ca1, Ca2 and Cb are located at the bottom of the head. These sites were described 

as the major regions recognized by neutralizing Abs and showed inhibitory activity in the 

hemagglutination inhibition (HI) assay [76]. Essentially, an HI titer of 40 or greater often 

corresponds with protection. Despite persisting issues with its accuracy, the HI assay remains the 

gold standard of laboratory assays for classifying and subtyping IAVs. 

In contrast with the globular head domain of HA, the stem/stalk domain of HA is relatively 

more conserved. The stem domain has been reported to induce broadly neutralizing Abs (bnAbs) 

that are capable of neutralizing IAV of different subtypes. An early study found that bnAbs that 

target the HA stem region in mice had no HI activity, but they were capable of neutralizing H1 

and H2 viruses [77]. Another group of researchers, Guthmiller et al, identified a novel class of 

bnAbs that target stem-specific epitope of pre- and post-pandemic H1N1 viruses as well as a 

swine-origin H1-expressing virus. This recent finding demonstrates the potential for cross-

reactivity of pandemic-subtype neutralizing antibodies that target stalk-binding epitopes [78]. Still, 

studies have also revealed that the viral mutants are capable of escaping bnAbs. New vaccine 

approaches should aim to boost the generation of Abs against the stem domain in order to get 

maximal protection against seasonal and pandemic IAVs [33], [78]. 

Apart from HA-specific Abs, NA-specific Abs can limit viral load by interfering with the 

exit of virions and anti-NA Abs have shown to have protective potential against influenza infection 

[71], [79]. There is evidence that anti-NA mAbs and NA vaccination protect against IAV challenge 

in animal models [79]–[81]. Unfortunately, anti-NA Abs have not been prioritized and NA is not 
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usually included in influenza vaccines, due to the central role that HA has played in influenza 

research. The current vaccine designs are mostly HA-focused [82].  

IAV infection also induces Abs against internal proteins, such as NP and matrix proteins 

[83], [84]. M2 protein is the third most abundant protein on the IAV viral surface following HA 

and NA. The binding of M2-specific mAb to its extracellular N-terminal domain was shown to be 

able to obstruct IAV strains replication [85]. Although few studies in mice have shown that anti-

NP Abs can help to clear influenza infection [86], [87], the protective role of Abs elicited by 

internal proteins is yet to be determined. Usually, the antibody responses induced by conserved 

epitopes of the internal proteins are weak and therefore, their potential contributions to protection 

in the general population is neglected [88]. 

Besides focusing on host pathogenesis associated with IAV infection, prevention of IAV 

transmission between hosts reduces the propagation of the virus in the population. Since the 

mucosal surfaces of the respiratory tract are the primary entrance for IAVs, secreted Abs elicited 

through mucosal immune responses have been found to be important in restricting IAV 

transmission. Seibert et al proved that only mucosal immunity (including IgA) but not systemic 

immune responses (IgG) can efficiently block IAV transmission in the guinea pig model [89]. 

 

Cell-mediated immunity/ T cell immunity 

T cell immunity along with B cell immunity, contributes to efficient and ultimate viral 

clearance which involves a series of naïve immune cells activation, rapid proliferation, 

recruitment, and expression of effector activities. During an influenza infection, naïve CD4+ T 

cells recognize the viral antigens presented via the class II major histocompatibility complex 

(MHC) of antigen presenting cells (APCs). Upon antigen recognition, naïve CD4+ T cells 
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differentiate into two main subsets of helper T cells, namely Th1 and Th2, in response to distinct 

cytokines [90], [91]. Activated CD4+ T cells subsequently support class-switching of antibodies 

and promote optimal CD8+ T cells responses [92], [93]. In mice, CD4+ T cell responses in the 

lung reach a maximum 10 days post influenza infection [94]. Influenza virus-specific effector 

CD4+ T cells isolated from mouse draining lymph nodes and lung can confer protection, in the 

absence of antibody, to naïve recipient mice following IAV challenge [94].  

The cytokine milieu generated during influenza virus infection can lead to polarization of 

helper T cells to further support the production of either Th1 or Th2 cells [90]. Cytokine IL-12 

triggers Th1 immune response, which is also a proinflammatory response, that is targeted at the 

destruction of cells infected with intracellular parasites (including bacteria and viruses) and boosts 

autoimmune responses [91]. On the other hand, cytokines IL-4 and IL-2 trigger Th2 immunity that 

produces anti-inflammatory responses to aid in the development of antibody responses and other 

immune mechanisms to kill large, extracellular parasites [95].  

Th1 cells secrete mainly IFN-γ, IL-2 and TNF-. These cytokines activate macrophages, 

as well as CD8+ T cells, promote IgG B cells and mediate cellular immune responses [90], [91]. 

Th2 cells secrete IL-4, IL-5, IL-6, IL-10 and IL-13 and prompt B cells isotype switching to produce 

antibodies such as IgE [90], [91]. Th1 immune response is associated to facilitate virus clearance 

and mediate heterosubtypic immunity by the generation of CTLs compared with Th2 cells. 

Interestingly, Th2 responses can be converted to Th1 responses in a Th1-driven cellular 

environment and achieve heterosubtypic immunity [96]. 

Apart from CD4+ T cells, another pivotal component of cell-mediated immunity is CD8+ 

T cells. Effector CD8+ T cells/ CTLs are necessary for optimal influenza virus clearance and host 

protection [97], [98]. Naïve CD8+ T cells are activated through the recognition of peptide-MHC 
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class I molecules which presents viral peptides of 8-12 amino acids in length. CD8+ T cell 

responses peak at day 8 post influenza infection in draining lung lymph node and at day 10 post 

infection in bronchoalveolar lavage fluid [99].  

The role of CTL effector T cells is to eliminate infected cells by a process known as 

cytolysis. Activated CD8+ T cells release effector cytokines and cytolytic molecules once they 

interact with antigen bearing target cells, including CD45+ APCs and IAV infected epithelial cells 

via T cell receptor (TCR) signaling [100], [101]. Generally, effector CD8+ T cells utilize the death 

receptor ligand, Fas ligand (FasL), and perforin-dependent pathways to clear influenza virus 

infection [98], [102]. CTL effectors expressing FasL binds to Fas on target cells and the Fas-FasL 

interaction directly kills virus infected cells. Additionally, CTL produce perforin to permeabilize 

the membranes of infected host cells and secrete cytolytic granules such as granzyme and perforin 

into cells to induce apoptosis [102].  

Studies have suggested that CTL effectors may use other mechanisms to resolve influenza 

infection in the lung. CTL effectors stimulate antiviral responses by expressing antiviral effector 

cytokines which include IFN-, TNF- and IL-17, and eliciting multiple chemokines such as CCL3, 

CCL4 and CCL5 to recruit other immune cells to the infected sites, contributing to viral defense 

mechanisms [98], [102]. Notably, CTL effectors also produce the regulatory cytokine, IL-10, to 

control excessive pulmonary inflammation resulted from the immune response to influenza virus 

infections [98], [102]. 

Animal and human challenge studies suggest that T cell immunity confers protection 

against disease, and scientists have hypothesized that cellular immunity may limit symptomatic 

illness in the absence of antibodies [3], [5], [103], [104]. The rationale behind this hypothesis is 

that T cell responses targeting highly conserved internal influenza antigens could provide cross-
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protective immunity against different IAV subtypes. Notably, T cell responses have been shown 

to be involved in limiting disease severity in the absence of cross-reactive neutralizing Abs, an 

activity that is strongly associated with highly conserved CD8+ T cell epitopes derived from IAV 

internal antigens including NP, M1 and PB1 [103]. In fact, internally-derived-epitopes are more 

conserved across a broad range of influenza virus strains and subtypes as they are less subject to 

antibody-selected antigenic drift [14]. Furthermore, there is obvious evidence to support the idea 

that established CTL memory directed towards conserved viral peptides presented by diverse 

HLA-prevalent human populations can induce protective heterosubtypic cellular immunity against 

novel IAV strains [3], [5], [103]–[105]. 

Vaccination against influenza generally targets HA protein of the circulating viral strain. 

As a result, antibodies that confer homosubtypic immunity against predominant circulating strains 

are less potent when there is possible mismatch between vaccine strain and circulating strains 

[106], and studies have also shown that antibody titers can wane during an intense season [107], 

[108]. Although repeated annual immunization can prevent infection by matched homologous 

strains, it may also prevent the induction and maintenance of heterosubtypic cellular immunity, 

thereby leaving individuals susceptible to more severe disease with new reassortant viral strains 

that evade vaccine-induced humoral immunity [109].  

Given that the present vaccination approach is unable to provide optimal protection against 

both homologous and heterologous viral strains, there is a broad interest in potential strategies for 

cross-protective vaccination by incorporating T cell-induced immunity in vaccines. Immunization 

using live attenuated viral strains have the potential to induce CD8+ T cell responses, but research 

data suggests that they do not promote strong CTL memory [110]. There is still a major knowledge 

gap concerning how to achieve optimal cellular immunity before universal influenza vaccines can 
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be developed. Further studies of T cell immunity in influenza virus infections will advance the 

overall understanding of cross-protective viral immunity. 

 

Computational approaches to studying host immunity to influenza virus infection 

Our adaptive immune system can establish a state of immunological memory following 

natural infection or through vaccination which is crucial in response rapidly and effectively to the 

pathogen that has been encountered before. In cell-mediated immunity, T cells exhibit the ability 

to detect peptides derived from “self” and “non-self”, serving as a starting point for prior activation 

and clonal expansion. T cells execute a precise recognition process that depends on the interaction 

between the peptide-MHC complex presented on the surface of an APC and the TCR expressed 

on the T cell surface. The T cell epitope that displayed on the host MHC receptor is critical for the 

initiation of TCR signaling. The MHC-binding epitope is derived from a fragment of viral antigen, 

comprised of at least nine amino acid residues, and presented in a linear form. Predicting this 

important string of amino acid residues from sequence data is achievable using algorithms that 

search for patterns in viral sequence data. The information can be used to define putative T cell 

epitopes that are later validated in vitro or in vivo.  

With the advancement of recombinant DNA technology over time and sequencing data 

becoming easily accessible on public websites, sequence-based analysis for the purpose of 

understanding pathogens and disease has gained in popularity not only in the field of the Omics 

(genomics, transcriptomics, proteomics, or metabolomics) and molecular biology but also in the 

immunology research [111]. The development of sequencing techniques and the improvement of 

knowledge on the host immune response and virology along with the expanding usage of 

bioinformatics tools motivated a new generation of vaccine design that can be achieved without 
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the need to invest in expensive laboratory reagents and human effort [112], [113]. A wide range 

of computational tools for epitope prediction have been developed for exploring the adaptive 

immune responses of humans and other vertebrates such as swine and canines, among others. The 

term, “immunoinformatics”, represents the application of computational tools to define and 

analyze immunological data [114]. To achieve these goals, a thorough understanding of the disease 

agent or precisely, the critical antigens/epitopes to induce the appropriate immunological reaction 

and correlates of immunity, is required. These tools are used in a sub-discipline of 

immunoinformatics called “computational vaccinology”. In this context, immunoinformatics tools 

can be integrated into the “ten steps framework” for vaccine development that has been described 

by De Groot et al (Table 2.2).  

 

T cell epitope prediction tool 

Immunoinformatics tools, in particular T cell epitope prediction algorithms, drive the 

selection of potent T effector epitopes that are likely to be recognized within an individual or in a 

broader population, while also removing epitopes that may drive immunopathogenic or immune 

tolerogenic responses by the notion of cross-reactivity with host sequences [113], [114]. T cell 

epitope prediction and screening can also guide downstream experimental vaccine analysis studies.  

The standard first step in the prediction workflow is to evaluate immunogenicity of a given 

protein sequence. Experiment data has shown that the T cell epitopes interact and attach to the 

MHC class I and class II binding groove through binding of the R group side chains into pockets 

in the MHC [115], [116]. Given the fact that T cell epitopes are bound in a linear fashion in the 

binding groove of MHC molecules, the binding likelihood between sequence-derived amino acid 

residues and the “binding pockets” of the MHC receptor can be calculated, based on the unique 
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properties of amino acid R groups, and the interface between ligands and TCR can be modeled 

with accuracy [114], [117]. Based on these findings, numerous T cell epitope mapping algorithms 

have been established and integrated into web servers to rapidly identify putative T cell epitopes 

[118]–[120].  

Different MHC class I and class II binding tools have been developed, using matrices based 

on sequence motifs, position specific scoring matrices (PSSM), quantitative matrices (QM), 

artificial neural networks (ANN), support vector machines (SVM), quantitative structure activity 

relationship (QSAR) and molecular docking simulations [113]. For instance, EpiMatrix and 

PigMatrix, both developed by EpiVax, use PSSM search for human and swine epitopes, 

respectively. The input sequence is parsed into overlapping frames of nine amino acids, which are 

equivalent to the minimal length of an MHC-binding peptide. Scoring starts at the beginning of 

the input sequence and the PSSM is iterated over the sequence, shifting the analysis frame by one 

residue at a time, until the end of the sequence is reached.  

Predicted binding scores can be computed by EpiMatrix for the likelihood of each 9-mer in 

an antigen to bind to a panel of class I alleles (A*01:01, A*02:01, A*03:02, A*24:02, B*07:02, 

and B*44:03) and class II (DRB1*01:01, DRB1*03:01, DRB1*04:01, DRB1*07:01, 

DRB1*08:01, DRB1*09:01, DRB1*11:01, DRB1*13:01, and DRB1*15:01) human leukocyte 

antigen (HLA) alleles. These are HLA allele supertypes (alleles sharing common binding 

preferences) that cover the genetic diversity of more than 95% of human populations globally 

[114], [121], [122]. Similarly, EpiMatrix can be used with swine leukocyte antigen (SLA)-specific 

PSSM to assign predicted binding scores for each 9-mer from swine IAV sequences. SLA alleles 

are used in the prediction model include class I (SLA-1*01:01, 1*04:01, 1*08:01, 1*12:01, 

1*13:01, 2*01:01, 2*04:01, 2*05:01, 2*12:01, 3*04:01, 3*05:01, 3*06:01, 3*07:01) and class II 
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(SLA-DRB1*01:01, 02:01, 04:01, 04:02, 06:01, 06:02, 07:01, and 10:01) SLA molecules. The 

SLA alleles selection for swine is designed to reflect dominant SLA types, each of which has 

binding pocket preferences that are shared with several other common SLA alleles, based on a 

study by Gutierrez et al [123], [124]. 

For each 9-mer, each individual allele of a set of MHC alleles, PigMatrix or EpiMatrix raw 

binding scores, are normalized to Z scores using the average and the standard deviation of scores 

calculated for 100,000 random 9-mers [114], [125]. To screen the potential 9-mer binders, a 

binding threshold is defined as 9-mers with Z scores greater or equal to 1.64, which comprise the 

top 5% in the normalized set of scores for each SLA or HLA allele of sequences. Sequences with 

scores above 1.64 are predicted to have significant SLA or HLA binding potential. Higher Z-scores 

associate with higher MHC binding probability [124], [126]. 

 

Cross-conservation of T cell epitope 

Cross-reactivity of TCR has been extensively explored in recent decades [127], [128]. The 

fact that TCR can potentially interact with a range of T cell epitopes presents an opportunity to 

further investigate the connection and significance between conservation with self and non-self, T 

cell epitope phenotypes (effector or tolerant), and immunodominance. To facilitate research in this 

growing area of investigation, new tools have been developed. For example, the JanusMatrix tool 

was designed to expand on EpiMatrix output and search for the potential cross-reactivity between 

TCR and T cell epitopes derived from the human genome, the human microbiome, and human 

pathogens [114], [129].  

Although T cells recognize linear peptides that are displayed in the form of peptide-MHC 

complex by human (HLA) or other species’ MHC molecules, there are two dimensions to consider, 
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i.e., the amino acid side chains of T cell epitopes that project out of the MHC binding cleft that 

binds to the TCR of T cells, and the amino acid side chains of T cell epitope embedded into the 

groove of the MHC binding cleft. The whole linear peptide or the T cell epitope side chains that 

attach to TCR is commonly known as the “epitope”, while the T cell epitope side chains that stick 

into MHC-binding “pocket” is referred to as the “agretope”.  

An effective T cell immunity is achieved when T cells can generate an immune response to 

antigenic epitopes that have not been encountered before. However, it is estimated that there are 

exceedingly high number of potential epitopes (more than 1012) whereas the immune system must 

cope with an estimated number of less than 108 available TCRs in humans [129]. It stands to reason 

that TCRs may recognize more than one epitope and that theory has been validated by Wooldridge 

et al, demonstrating that each TCR has the potential to recognize as many as one million peptides 

[129], [130]. This potential for cross-reactivity may seem high, however, given that the number of 

potential T cell epitopes represented by modifying each of the TCR-facing positions using the 20 

amino acids, suggests that the minimum cross-specificity may be 1:100,000 peptides [130]. 

However, by altering MHC binding residues, the affinity of the peptide can be modified and the 

shape of the TCR face can be different. Since the TCR has shown the ability to adapt to minor 

changes, a single TCR can bind to more than one epitope containing the same TCR-facing but 

different MHC-facing residues [131], [132]. 

Extending from this observation, immunoinformatics tools were developed to evaluate 

cross-conservation between host and pathogen T cell epitopes. Initially, the idea was to explain 

cross-reactivity between pathogen epitopes, however, it was soon discovered that many pathogen 

epitopes were also conserved with human epitopes. Building on prior research related to T cell 

epitopes that were highly conserved within the human genome and found to be associated with 
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regulatory T cell responses, the team of Moise et al began to explore the hypothesis that tolerogenic 

T cell epitopes (Ttol) might bear TCR-facing residues that are cross-conserved in human (self) 

proteins, whereas the effector T cell epitopes (Teff) might bear TCR-facing residues that are less 

cross-conserved with human genome proteins [129]. Using this concept as a basis for identifying 

potentially tolerogenic epitopes, tolerogenic epitopes were discovered in pathogens infecting 

humans, ranging from Brugia malayi (the cause of lymphatic filariasis), to Mycobacterium 

tuberculosis (the causative agent of tuberculosis), to human immuno-deficiency virus (HIV), and 

Hepatitis C [133]. These discoveries led to the concept of “immune-engineering” pathogens, the 

rationale being that putatively tolerogenic and cross-conserved epitopes might be important to 

remove from vaccines as they might induce regulatory T cell responses, reducing the immune 

response to other T cell epitopes and B cell responses. The JanusMatrix tool has been developed 

to detect the TCR-facing amino acids that are conserved between pathogen epitopes and human 9-

mer peptides by searching through various large databases built into the tool. For instance, 

JanusMatrix can search for homologies within the human genome and human microbiome 

databases [134].  

In addition, human studies have shown that cross-conserved cellular immune responses are 

important [94]. For example, conserved influenza-specific T cells resulting from previous 

influenza infections can also cross-react to similar epitopes found in novel IAV strains [5], [6], 

[104]. When cross-reactive antibodies are absent due to antigenic mismatch, cross-conserved 

influenza-specific CD4+ immune responses can reduce morbidity [5]. Therefore, methods for 

studying potential cross-conservation of T cell epitopes at the residues that interface with TCRs 

are important. Essentially, this pathogen-to-pathogen comparison is an extended application of 

TCR cross-reactivity using JanusMatrix since the TCR does not interrogate side chain that are 
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buried in the MHC binding groove. A T cell epitope can be cross-reactive despite not being 

identical in sequence to another epitope. In other words, two or more peptide-major 

histocompatibility complex ligands from different influenza viruses can be recognized by the same 

T cell’s TCR if the TCR-facing amino acids in the two sequences are identical [135]. 

Taken together, sequence-based approaches are gaining popularity in studying virus 

evolution and antigenicity. This dissertation documented the application of immunoinformatics to 

predict and quantify T cell epitope conservation of vaccine strains against circulating strains for 

cross-protection by conserved T cell epitopes, along with phylogenetic analysis to track conserved 

T cell epitope changes over time in two different hosts.  
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Table 2.1. Example genomic information of influenza A/California/07/2009 (H1N1) virus and its encoded proteins. 

Segment Encoded protein(s) 

Coding sequence 

(CDS) length in 

nucleotides 

Protein length in 

amino acids (aa) 
Protein function 

1 Polymerase basic 2 (PB2) 2280 759 
Polymerase subunit; mRNA cap 

recognition 

2 Polymerase basic 1 (PB1) 2274 757 
Polymerase subunit; RNA elongation, 

endonuclease activity 

3 

Polymerase acidic (PA) 2151 716 Polymerase subunit; protease activity 

Polymerase acidic accessory 

protein (PA-X) 
700 232 

Aids in inhibiting host antiviral and 

immune response and contribute to viral 

growth 

4 Hemagglutinin (HA) 1701 566 
Surface glycoprotein; major antigen, 

receptor binding and fusion activities 

5 Nucleoprotein (NP) 1497 498 
RNA binding protein; nuclear import 

regulation 

6 Neuraminidase (NA) 1410 469 
Surface glycoprotein: sialidase activity, 

facilitate virus release process 

7 

Matrix protein 1 (M1) 759 252 
Matrix protein; vRNP interaction, RNA 

nuclear export regulation, viral budding 

Matrix protein 2 (M2) 294 97 
Tetrameric membrane ion channel; virus 

uncoating and assembly 

8 

Non-structural protein 1 (NS1) 660 219 

Inhibits host antiviral immune responses 

by suppressing the expression of host 

mRNAs that enable IFN-induced antiviral 

phenotypes 

Nuclear export protein 

(NEP/NS2) 
286 121 

Transports newly synthesized RNPs out 

of the nucleus after amplification. Also 

important for efficient influenza virion 

formation and budding. 
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Table 2.2. The ten steps framework to vaccine design. 

Step Description Details 

1 Define disease Understanding of disease epidemiology associated with a specific pathogen 

2 Define pathogen Identification of pathogen and classification or comparison to existing pathogens 

3 Is there immunity? “Natural” evidence of post-infection immunity to follow-on infections 

4 Correlates of immunity Defining the relevant immune responses to measure during vaccine studies 

5 Critical antigens Identification of key targets of protective response 

6 Animal model Selection of appropriate animal model for pre-clinical testing 

7 Prototype vaccine Selection of a vaccine prototype and experimental proof of concept 

8 Safety, toxicity, and stability studies Preclinical steps prior human subject testing 

9 Clinical trials Phase I, II and III of human subject testing 

10 Distribution, acceptance, and access Access to the vaccine, distribution to, and acceptance by at risk populations 
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Figure 2.1. The viral life cycle of influenza A virus (IAV). The virus (1) attaches to host cell 

surface membrane that contains sialic acids (SA) receptor and enters the host respiratory mucus 

layer via receptor-mediated endocytosis. Acidification of the endosome activates the M2 ion 

channel and induces conformational change of the hemagglutinin (HA) protein causing the virus 

to fuse with the endosomal membrane and release viral ribonucleoproteins (vRNPs) into the 

cytoplasm. The genetic material is imported to the nucleus for transcription of mRNA and 

replication (2) through a mechanism called “cap-snatching” where the RNA-dependent RNA 

polymerase (RdRp) complex cuts off the 5’ cap from one of the host cell’s mRNA molecules and 

uses the cap to start transcription of viral RNA. At the same time, RdRp also synthesizes 

complementary ribonucleoprotein (cRNP) which are then used as templates by viral polymerases 

to synthesize copies of the negative-sense genome. Viral mRNA is exported out of the nucleus and 

translated into viral proteins by host ribosomes in the cytoplasm (3). Newly synthesized viral RdRp 

subunits and NP proteins are imported to the nucleus to further increase the rate of viral replication 
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and form RNPs. HA, NA, and M2 are synthesized from mRNA of viral origin into the endoplasmic 

reticulum, where they are folded and transported to the Golgi apparatus for post-translational 

modification and are signaled to the cell membrane for virion assembly. The newly synthesized 

vRNPs undergo post-translational modification and are signaled to the cell membrane for virion 

assembly (4). Progeny viruses leave the cell by budding from the cell membrane, initiated by an 

accumulation of M1 matrix protein at the cytoplasmic side of the lipid bilayer. Figure adapted 

from Krammer et al [14].  
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CHAPTER 3 

QUANTIFYING THE PERSISTENCE OF VACCINE-RELATED T CELL EPITOPES 

IN CIRCULATING SWINE INFLUENZA A STRAINS FROM 2013–2017 1 
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Abstract 

When swine flu vaccines and circulating influenza A virus (IAV) strains are poorly 

matched, vaccine-induced antibodies may not protect from infection. Highly conserved T cell 

epitopes may, however, have a disease-mitigating effect. The degree of T cell epitope conservation 

among circulating strains and vaccine strains can vary, which may also explain differences in 

vaccine efficacy. Here, we evaluate a previously developed conserved T cell epitope-based vaccine 

and determine the persistence of T cell epitope conservation over time. We used a pair-wise 

homology score to define the conservation between the vaccine’s swine leukocyte antigen (SLA) 

class I and II-restricted epitopes and T cell epitopes found in 1272 swine IAV strains sequenced 

between 2013 and 2017. Twenty-four of the 48 total T cell epitopes included in the epitope-based 

vaccine were highly conserved and found in >1000 circulating swine IAV strains over the 5-year 

period. In contrast, commercial swine IAV vaccines developed in 2013 exhibited a declining 

conservation with the circulating IAV strains over the same 5-year period. Conserved T cell 

epitope vaccines may be a useful adjunct for commercial swine flu vaccines and to improve 

protection against influenza when antibodies are not cross-reactive. 
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Introduction 

When a new strain of pathogen emerges, the first question asked is often whether existing 

vaccines might be effective against it. In the past, experts have relied on examining the humoral 

immune response by using antibody assays to determine the potential of existing vaccines to cross-

protect [136]. It is now well established that cell-mediated immunity (CMI) contributes to the 

protection against severe disease even in the absence of antibody response [5], [6], [137], [138]. 

CMI involves cytotoxic T lymphocytes (CTL) and T helper (Th) lymphocytes, which are triggered 

to respond when their T cell receptors (TCR) recognize T cell epitopes presented by class I or class 

II major histocompatibility complex (MHC) molecules on the surface of antigen presenting cells 

or infected cells [139]. 

In humans, immune responses to conserved T cell epitopes may result in reduced 

morbidity, despite the lack of cross-reactive antibody to the new strain [140]–[142]. This is 

supported by a case-controlled study that investigated the association of the pandemic IAV H1N1 

2009 infections with 2008–2009 seasonal trivalent inactivated flu vaccination [143]. Previous 

seasonal vaccination protected against pandemic H1N1, despite the lack of antibody protection. 

Using the immunoinformatic tools available to us at the time, we defined T cell epitopes that were 

present in the newly emergent strain (pH1N1 A/California/04/2009; GenBank accession numbers 

ACP41105 for hemagglutinin or HA and ACP41107 for the neuraminidase or NA), and highly 

conserved in the existing seasonal influenza vaccine (containing H1N1 A/Brisbane/59/2007; 

GenBank accession numbers ACA28844 for HA and ACA28847 for NA) [144]. The in silico 

analysis demonstrated that despite the lack of antibody cross-reactivity, more than 50% of T cell 

epitopes in the novel pH1N1 virus were also present in the seasonal vaccine, supporting the 
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concept that pre-existing T cell response due to vaccination or exposure may have protected in the 

absence of protective antibody response. 

Swine experimental studies have also shown that pigs were protected from heterologous 

infection and challenge between ‘avian-like’ H1N1 and 2009 pandemic H1N1 lineages in the 

absence of cross-reactive antibodies, establishing the role of cross-reacting T cells [145], [146]. In 

concurrence, researchers were able to identify cross-reacting CD8 T cell epitopes in pigs and 

nucleoprotein (NP)-specific CD8 T cells were induced following immunization by aerosol [147], 

[148]. Prospective animal studies also confirmed that seasonal H1N1 vaccines that did not induce 

cross-reactive antibody responses, but induced cross-reactive T cell responses, did not protect 

against the pandemic pH1N1 infection, but greatly reduced morbidity, mortality, virus replication, 

and viral shedding [149]. Thus, T cell epitopes can be conserved between both human and swine 

vaccines and emerging influenza strains and have been shown to contribute to protection. 

Antigenic shift and drift are significant challenges not only to human seasonal vaccination 

but also to effective swine flu vaccination over time. The segmented IAV genome allows for the 

antigenic shift by reassortment of RNA segments from different viral strains, generating novel 

viruses [46]. The antigenic drift that is due to the gradual accumulation of mutations in the HA 

and NA surface antigens over time also contributes to the remarkable diversity of IAVs co-

circulating among swine populations. This sequence-level diversity can impact the T cell response 

since even single amino acid modifications to T cell epitopes can reduce human leukocyte antigen 

(HLA) binding or T cell recognition, leading to viral escape and viral camouflage [150], [151] that 

contribute to a lower vaccine efficacy. An additional problem facing swine influenza vaccine 

developers is the high diversity of circulating IAV genotypes impacting individual pork farms each 

year [17], making it difficult to know whether a given commercial vaccine will be protective. 
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To address these challenges in pigs, we applied a previously developed computational 

method for estimating the degree of epitope conservation between vaccines and outbreak strains. 

Rather than focus on sequence identity, this algorithm identifies individual epitopes, and searches 

for epitope pairs that share MHC-binding properties and have identical TCR-facing residues, while 

allowing for amino acid variability at the T cell agretope (the HLA-binding-pocket facing amino 

acid residues). For swine IAV, the first step is to use SLA prediction matrices (PigMatrix) [152], 

and once an SLA-binding T cell epitope is predicted, JanusMatrix is applied to isolate the TCR-

facing residues for comparison with similar SLA-binding epitopes in other circulating influenza 

strains [114], [129]. The third step is to use the Epitope Content Comparison (EpiCC) tool, which 

compiles the similarities and differences between the T cell epitopes in the vaccine and the 

circulating strain, assigning a score that reflects the degree of conservation [124]. 

Here, we compare a computationally designed swine flu vaccine based on conserved T cell 

epitopes called multi-epitope vaccine (MEpiV) with commercially available inactivated full strain 

vaccines using the computational algorithms described above. The MEpiV is composed of 

immunoinformatic-identified conserved SLA class I and class II epitopes assembled head-to-tail 

as class I and class II poly-epitope genes and formulated for delivery in a DNA vaccine vector 

[123]. The MEpiV was previously shown to be protective in a heterologous prime-boost 

vaccination and challenge study when combined with the whole-inactivated vaccine [153]. In this 

study, we determine if the conserved T cell epitope-based vaccine would maintain conservation 

with circulating strain T cell epitopes over time. 

To evaluate the T cell epitope conservation for the MEpiV vaccine and to compare the 

conservation of the epitopes selected in 2013 to circulating strains for subsequent years, we used 

the HA sequence of seasonal inactivated swine flu vaccines as a benchmark for comparison. Then, 
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we applied EpiCC and demonstrated that the MEpiV vaccine designed using computational tools 

in 2013 maintains >50% conservation with circulating strains over a 5-year period. As can be 

expected, EpiCC also indicated that T cell epitopes in commercial seasonal vaccines are less well 

conserved over the same time period. This evaluation of vaccines using EpiCC shows the approach 

to understanding T cell epitope conservation and the utility of the tool for comparing vaccines 

against emerging influenza strains. The analysis also reinforces the utility of designing influenza 

vaccines based on highly conserved epitopes from circulating viral strains, as these epitopes may 

be conserved over time. 

 

Materials and Methods 

Datasets 

 The sequences of all available H1N1, H1N2, and H3N2 swine IAV genomes circulating in 

the United States during the 5-year period 2013–2017 were obtained from the NIAID Influenza 

Research Database (https://www.fludb.org/, accessed on 29 April 2021) [154]. All of the genome 

sequences were downloaded and pre-processed to remove partial and duplicated sequences. The 

final set of 1272 whole genome sequences were translated into protein sequences and were 

compared to the epitope-based DNA vaccine, MEpiV (Table 3.1) using an immunoinformatic 

approach as described below. In order to further evaluate the conservation of MEpiV, the sequence 

from two standard inactivated swine IAV vaccine antigens (FluSureXP 2016) were included for 

comparison. HA sequences of inactivated swine IAV vaccine comprised of one H1N1, one H1N2, 

and two H3N2 strains were provided by Zoetis to facilitate the comparison of T cell epitope 

conservation in the epitope-based and inactivated virus vaccine, applying the same 

immunoinformatic analysis pipeline. The level of conservation for each of the vaccines (HA from 

https://www.fludb.org/
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H1N1 to H3N2, the MEpiV as compared to a representative set of IAV strains for each year was 

measured relative to 2013 to obtain relative changes in the number of T cell epitopes that were 

conserved. 

 

Immunoinformatic Tools 

Three separate algorithms were used to evaluate the conservation of vaccine epitopes 

contained in the target vaccine against the complete set of swine IAV sequences: (1) PigMatrix, 

which defines T cell epitopes for swine class I and class II epitopes, (2) JanusMatrix (JMX), a tool 

for identifying epitopes that can be compared between strains by looking for epitopes that bind to 

the same allele and have conserved TCR facing residues which can be used to compare strains, 

and (3) EpiCC, the T cell epitope content comparison algorithm utilizes results generated from 

PigMatrix and JMX and produces an overall score for class I and/or class II epitopes on a whole 

antigen level to enable pairwise comparisons between circulating IAV and vaccine strains (See 

Figure 3.1). A total of 1272 pairwise comparisons were performed, comparing each 9-mer 

sequence for a possible conservation of SLA binding and TCR face, between MEpiV vaccine and 

circulating strains. EpiCC examines all of the epitopes in a vaccine against all of the epitopes in a 

given strain and produces an overall score for all class I or class II epitopes for each strain 

sequence. In addition to EpiCC, we used JanusMatrix to perform the same comparison on an 

epitope-by-epitope basis for the 28 class I and 20 class II epitopes in the vaccine. 

 

T Cell Epitope Prediction Using PigMatrix 

Using the pocket profile method and well-defined EpiMatrix binding preferences for 

human MHC pockets, we developed PigMatrix prediction matrices as previously described [114], 
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[152]. Matrices were designed based on the binding preferences of the best-matched human 

leukocyte antigen (HLA) pocket for each SLA pocket. The contact residues involved in the binding 

pockets were defined from crystal structures of SLA or HLA supertype alleles for class I and II, 

respectively. The allele selection was based on prior data indicating their prevalence in outbred 

swine populations [155], [156], and frequencies determined using low-resolution haplotyping in a 

small number of pigs [123]. For low-resolution SLA-typing results where haplotype associations 

were not possible, XX01 alleles were selected. Matrices were constructed for SLA alleles with 

HLA binding pocket similarities above 85% to predict T cell epitope binding to class I (SLA-

1*01:01, 1*04:01, 1*08:01, 1*12:01, 1*13:01, 2*01:01, 2*04:01, 2*05:01, 2*12:01, 3*04:01, 

3*05:01, 3*06:01, 3*07:01) and class II (SLA-DRB1*01:01, 02:01, 04:01, 04:02, 06:01, 06:02, 

07:01, and 10:01) SLA alleles. PigMatrix raw scores were standardized to Z-scores to compare 

potential epitopes across multiple SLA alleles. Peptides with Z-scores 1.64 (the top 5% of any 

given sample of 9-mers) were identified as likely to be SLA ligands. 

 

Identification of Conserved Vaccine Epitopes in Different Circulating Swine IAV Subtypes 

JanusMatrix (JMX) is another immunoinformatic algorithm, which was incorporated to 

prospectively identify conserved vaccine epitopes among prevalent swine IAV [129]. JMX is used 

to facilitate the epitope to an epitope-based comparison between swine IAV protein sequences and 

the vaccine strain. Conserved peptides at the TCR-face were searched against all the circulating 

strains and hence the presence of these peptides can be identified when there are matches in each 

individual strain. 
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T Cell Epitope Content Comparison (EpiCC) Analysis 

In order to determine the conservation of the T cell epitopes in the MEpiV among the three-

circulating swine IAV subtypes, we applied EpiCC to facilitate the pairwise comparison of protein 

sequences [124]. This method of comparison is based on an immunological property expressed in 

terms of T cell epitope content which incorporated JMX computation, rather than sequence 

identity. Shared (conserved) T cell epitopes between the vaccine target and the circulating swine 

IAV strains were evaluated. The assumption was based on the fact that given epitopes i and j from 

different strains (the circulating strain, s and the vaccine strain, v), cross-reactive memory T cells 

can be activated by epitopes with identical TCR-facing residues (TCRf) that bind to the same 

alleles. The potential cross-reactive of class I epitope is calculated by considering identical 

residues at positions 4, 5, 6, 7, and 8 and for class II, the calculation is taken into account by 

identical residues at positions 2, 3, 5, 7, and 8. Therefore, the probability to induce the cross T-cell 

immunity is computed based on the following equation and p stands for the probability for epitope 

binding to the SLA allele: 

𝑆(𝑖, 𝑗)𝑎 = 𝑝(𝑖)𝑎 ∙ 𝑝(𝑗)𝑎 

By applying the above equation, we further computed the shared T cell epitope content 

(conserved) between two strains s and v. The sum of shared epitope scores of each i, j was 

normalized by the total number of compared pairs, p, and by the number of SLA alleles in A. This 

is to account for different epitope densities and for comparison of values of E determined using 

different numbers of SLA alleles. Therefore, the normalized shared EpiCC score, (termed as 

EpiCC score), can be computed by applying the following equation: 

𝐸(𝑠ℎ𝑎𝑟𝑒𝑑)𝐴 =
1

|𝑝| ∙ |𝐴|
∑ ∑ 𝑆(𝑖, 𝑗)𝑎

𝑎∈𝐴𝑖∈𝑠,𝑗∈𝑣
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Area under the Curve (AUC) Computation 

Given the fact that the complexity of multiple comparisons was done according to years 

and subtypes, the AUC calculation is applied to represent the T cell epitope conservation of a 

subtype in a year. EpiCC scores that were calculated for MEpiV and swine IAV sequences were 

plotted in a radar form (a line plot that is on circular orientation). The area under the radar curve 

(a numerical integral) was computed by combining spline interpolation and integration with the 

formula shown below: 

𝐴𝑈𝐶 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

The higher the AUC value, the more T cell epitopes against MEpiV were conserved. 

Normalization of AUC values with respect to the baseline score of MEpiV vaccine was performed 

as the number of sequences varied across the years. This enabled a direct comparison of the epitope 

content conservation across the years. 

 

Phylogenetic Analysis 

The T cell epitope conservation was mapped onto a phylogenetic tree to correlate the T cell 

epitope conservation with a genetic evolution of swine IAV. Phylogenetic trees inferred from the 

maximum likelihood (ML) were constructed based on the HA protein (H1 and H3 subtypes) of 

circulating swine IAV strains with RAxML.v8 using the GTR-GAMMA nucleotide substitution 

model. Both phylogeny trees were rooted with midpoint. MEpiV vaccine epitopes were evaluated 

against H1 and H3 tree tips using the ggtree package version 2.2.4 in R [157]. 
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Results 

Swine IAV Dataset from 2013 to 2017 

The goal of this study was to determine whether a vaccine designed in 2013 may continue 

to provide CMI boosting as was illustrated in 2019 [144]. The MEpiV vaccine contains 28 class I 

and 20 class II T cell epitopes and was produced as a plasmid DNA vaccine and tested in 2015 

[141]. Circulating swine IAV whole genome sequences of three major subtypes (H1N1, H1N2, 

and H3N2) from 2013 to 2017 were computationally screened in the same stepwise process to 

evaluate their T cell epitope content in an epitope-to-epitope comparison to circulating strains 

(Figure 3.2). A total of 1272 whole genome swine influenza A sequences were analyzed, 

comprising 409 (32.2%) H1N1, 388 (30.5%) H1N2, and 475 (37.3%) H3N2 sequences. The 

highest number of sequences available was for 2016 (407 sequences; 32.0% of the total), while 

the lowest number was for 2014 (133 sequences; 10.5% of the total). 

 

T Cell Epitope Content Comparison (EpiCC) of Swine MEpiV Vaccine against H1N1, H1N2, 

and H3N2 Circulating Swine IAV 

In order to determine the conservation of MEpiV vaccine epitopes among the three 

circulating swine IAV subtypes, we applied EpiCC to facilitate a pairwise comparison of protein 

sequences. This sequence comparison method is based on an immunological property, potential T 

cell immunogenicity, rather than sequence identity. Shared (conserved) T cell epitopes between 

the vaccine target and the circulating swine IAV strains were assessed. 

Higher EpiCC scores are thought to be associated with greater protection by vaccines 

against challenge strains [124]. For MEpiV vaccine class I epitopes, the highest EpiCC score is 

found for H1N1 swine IAVs (EpiCC score of 0.0256 with 98.5% conservation when normalized 
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to the MEpiV baseline), and the lowest for H3N2 (EpiCC score of 0.0100 with 38.5% conservation 

when normalized to the MEpiV baseline). Interestingly, on average, EpiCC scores of MEpiV 

vaccine class II epitopes for all subtypes is 14.3% higher than scores of class I epitopes. The 

average range difference (in percentage) of class II EpiCC scores for all three subtypes is 25.6%, 

while for class I EpiCC scores it is 28.6%. The range difference of class II EpiCC scores is 11.7% 

smaller than the range difference of class I, indicating that the conservation of MEpiV class II 

epitopes was consistent in all of the circulating swine IAV subtypes that were analyzed. Detailed 

information for each of the circulating strains and their respective EpiCC scores are tabulated in 

Supplemental Table A-1.  

While detailed lists of EpiCC scores are informative, we also used radar plots to visualize 

the EpiCC scores. Radar plots were constructed to describe the degree of conservation of MEpiV 

vaccine class I and II T cell epitopes in the three prevalent swine flu subtypes (Figure 3.3) and the 

area under the curve for the EpiCC scores (AUC, outlined in color in Figure 3.3) was used to 

quantify and compare the T cell epitope conservation between the vaccine and circulating swine 

IAV each year. As shown in Figure 3.3 and Supplemental Figure A-1, the AUC described by the 

EpiCC scores is greater for the MEpiV vaccine against H1N1, than the AUC for H3N2 and H1N2 

circulating strains. Thus, the vaccine is predicted to be effective against all circulating H1N1 

strains in 2013 to 2017. The MEpiV vaccine is predicted to drive a broad CD4 immune response 

based on data published by Gutierrez et al [123] and Hewitt et al [153]. 

Computing the AUC facilitates the qualitative comparison of the vaccine against 

circulating strains over time. As expected, when considering the MEpiV computer-designed 

vaccine epitopes, the overall EpiCC scores, compared to circulating viral strains, did not change 

very much over time. The overall conservation was maintained for all three viral subtypes, 
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although the total EpiCC scores were lower for H1N2 and H3N2 strains. Class II T cell epitopes 

were 80.8% more conserved on average, as compared to class I in all subtypes (Supplemental 

Figure A-1). We visualized these data on the individual antigen level in biaxial plots with the x-

axis representing time and the y-axis representing the AUC for vaccine against circulating strains 

for that year (Figure 3.4). For the HA antigen, there was 79.5% conservation of MEpiV vaccine 

(both class I and II HA epitopes) in H1N1 over multiple years, whereas the HA epitope 

conservation in H1N2 and H3N2 were 51.7% and 8.6%, respectively. 

The overall conservation of NA class I and II epitopes in H1N1 was 45.0%, while the 

conservation of vaccine epitopes in H1N2 and H3N2 strains was lower at 10.3% and 9.0%, 

respectively. The conservation in H1N2 and H3N2 for surface antigens was relatively low 

compared to H1N1, due to the complete lack of conservation (AUC of zero) for H3 and N2 

epitopes in the MEpiV vaccine. Internal antigen epitopes were also well conserved across all 

subtypes (Supplemental Figure A-2), suggesting that internal proteins might contribute to vaccine 

efficacy. While the original MEpiV epitopes were selected from seven representative swine 

influenza strains, this finding suggests that vaccine epitopes that are highly conserved in one set 

of sequences for a given year may still be relevant and provide cross-protective immunity in the 

years that follow. 

 

T Cell Epitope Conservation Analysis of Individual Epitopes Using JanusMatrix (JMX) 

The EpiCC tool gives an overall score for the combined epitope content, rather than 

assessing and reporting on each epitope in a vaccine. Since the MEpiV is composed of distinct T 

cell epitopes, we wished to determine the conservation of each epitope over time, and therefore 

we performed an additional epitope-by-epitope analysis using JMX comparing the vaccine 
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epitopes with their homolog in circulating strains. In this case, JMX searches the circulating swine 

IAV strains for 9-mers with the same TCR-facing amino acids as those of the input class I and II 

MEpiV vaccine epitopes [129]. The JMX homology score was calculated for every input MEpiV 

vaccine epitope that appears “homologous” to a given TCR, even though there may be minor 

variations in the MHC binding residues, as long as the peptide would still be predicted to bind to 

the same MHC. 

While performing the JMX analysis to compare vaccine epitopes to circulating strain 

epitopes was matched for binding to the same MHC and identical at the TCR-face, we were able 

to identify the specific TCR-homologous 9-mers in circulating swine IAV strains. We applied 

JMX homology scores to further examine the level of conservation of individual T cell epitopes in 

every swine IAV subtype and quantify the overall conservation (Table 3.2). 

Doing so, we were able to identify the most highly conserved T cell epitopes. Among 28 

class I peptides, 16 of the peptides were more than 80% conserved in the three-circulating swine 

IAV subtypes throughout the 5-year period (Table 3.2A). Only two surface epitopes from NA were 

conserved and were N1-specific. Most of the highly conserved peptides were from internal 

antigens: PB2 (GTEKLTITY), PB1 (VSDGGPNLY, DTVNRTHQY), PA (QVSRPMFLY), NP 

(AFDERRNKY, CTELKLSDY, ASQGTKRSY, KSCINRCFY, DTVHDRTPY), and M1 

(SLLTEVETY, LTEVETYVL, DLLENLQAY, LASCMGLIY, LASCMGLIY, NTDLEALME). The two 

most conserved peptides were SLLTEVETY and LTEVETYVL from the M1 protein. These 

peptides were found in all of the 1272 IAV strains. Interestingly, the least conserved peptides 

(GAKEVALSY and NMDKAVKLY) are also from M1, with conservation less than 3% in all of the 

subtypes and only being observed in 2013. 
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In addition, 10 out of 20 class II peptides were highly conserved (>80%) in circulating 

swine IAV strains (Table 3.2B). None of these highly conserved peptides were found in HA and 

NA, rather they were found in internal antigens such as PB1 (MMGMFNMLSTVLGVSI, 

YRYGFVANFSMELPSFGVSG), PA (EVHIYYLEKANKIKSEKTHIHIF, 

RSKFLLMDALKLSIEDP), NP (IEDLIFLARSALILRGSVAHKSCLP), M1 

(TRQMVHAMRTIGTHPSSSA, TYVLSIIPSGPLKAEIAQRLESV, 

SCMGLIYNRMGTVTTEAAFGLVC), and NS2 (FEQITFMQALQLLLEVE, 

FQDILMRMSKMQLGSSSE). This suggests that epitopes from the internal antigens are well-

conserved across strains and over time may contribute to vaccine efficacy. 

Then, we used this epitope matching information generated from the JMX analysis jointly 

with HA phylogeny trees to visualize the distribution of MEpiV vaccine class I and II epitopes 

(Figure 3.5). Epitopes from both classes were well conserved in most internal proteins, as indicated 

by the presence of small bars adjacent to the tips of the respective HA phylogeny tree. Epitopes in 

the external proteins such as HA and NA are subtype-specific, demonstrating that the MEpiV 

vaccine consists of H1, N1, and N2-specific epitopes. A big blank under HA for the H3 phylogeny 

tree shows almost an absence of H3 epitopes in the MEpiV vaccine. Interestingly, although there 

are subtype-specific epitopes, we would expect that H1N1 and H1N2 IAV strains have a shared 

conservation in HA epitopes, however, H1-specific epitopes are only found conserved in 47 H1N2 

swine IAV strains that are of the same clade as H1N1 IAV strains. Six out of eight class I and half 

of four class II HA epitopes were absent in the H1N2 swine IAV subtype. 
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Strains Identification for Conserved Peptides 

The epitope to epitope-based comparison can also be used to identify strains that have the 

most or the least conserved T cell epitopes (Supplemental Table A-2), which may be important 

when selecting strains for a recombinant or inactivated whole antigen vaccine. Forty-four IAV 

sequences were shown to be highly conserved against the MEpiV prototype vaccine, with 

conservation at 75%. The majority of the sequences (42/44) belong to the H1N1 subtype, while 

two belong to the H1N2 subtype. In contrast, four swine IAV sequences had very few epitopes 

conserved with the prototype vaccine (46.4%); all of these strains were H3N2 subtypes. This is 

expected as most of the T cell epitopes included in MEpiV were HA H1-specific, and conservation 

across subtypes is not optimal, indicating that truly universal vaccines must include epitopes from 

more than one subtype. 

This study demonstrates how EpiCC and JMX can be applied in complement for 

surveillance and analysis of epitope evolution and/or escape. One of the direct applications of the 

EpiCC program is to enable the selection of challenge IAV strains for vaccine studies. 

Furthermore, this work also serves a retrospective analysis that provides a baseline strain coverage 

estimate for MEpiV but can easily be applied to other (new or old) vaccines against large numbers 

of new viruses. 

 

Comparison of MEpiV and Commercial Swine Flu Vaccine 

Immunity induced by inactivated virus vaccines usually wanes over time when it is no 

longer a close match to the circulating strains. To further investigate whether the T cell epitope 

conservation in a vaccine that was computationally designed to contain such epitopes was 

advantageous as compared to commercial swine flu vaccines, we compared the AUC computed 
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from the EpiCC analysis for HA antigens of the MEpiV vaccine and the HA found in a commercial 

vaccine which comprises four HA vaccine strains of the major swine IAV seasonal subtypes, one 

H1N1, one H1N2, and two H3N2. The H1 components of these commercial vaccines were 

included since 2011, while the H3 components were introduced in 2016.  

A year-to-year comparison was made relative to 2013 for HA antigens of all the vaccine 

strains except for the H3 components of the commercial vaccine strains that were introduced in 

2016. Changes in the conservation of the vaccines against the baseline year were calculated as a 

ratio, meaning that a score of 1.00 would indicate no change in the T cell epitope conservation (in 

AUC values), greater than 1.00 indicates an increasing T cell epitope conservation relative to 2013, 

and a ratio less than 1.00 implies a loss of T cell epitope conservation. The ratio of T cell epitope 

content (class I and II) for MEpiV over time, remains consistent or increases (except for H1N2) 

(Figure 3.6). Specifically, the H3 HA class I epitopes in the MEpiV vaccine showed a gradual 

increase of conservation in circulating swine IAV strains. In contrast, the ratio of conservation for 

the H3 conventional vaccine strains (FSXP.NC and FSXP.MN) decline over time. The same trend 

for FSXP.NC and FSXP.MN were observed in class II, however, there was no change in the class 

II epitope conservation for the MEpiV vaccine, as there were no H3-specific class II epitopes 

selected for the MEpiV vaccine. This result is consistent with the EpiCC and JMX analyses shown 

above. 

 

Discussion 

 In general, vaccine efficacy assessment methods are lacking for swine IAV. More 

specifically, in lieu of challenge studies, there is no method available for evaluating new vaccines 

against circulating strains for cross-protection by T cell epitopes. Here, we used the EpiCC tool to 
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approximate the potential T cell epitope cross-protection between MEpiV and circulating strains. 

In previously published studies, we established a threshold of cross-conservative epitope 

protection, using EpiCC to compare one vaccine against IAV strains circulating in 1 year [124]. 

We have also demonstrated the utility of EpiCC tool applied for another pathogen, Porcine 

circovirus 2 (PCV2) in a study evaluating multiple vaccines against circulating PCV2 strains [158]. 

In this study, we demonstrate how EpiCC can be used for the longitudinal analysis against evolving 

strains circulating in swine populations. 

The current analysis applies the EpiCC tool to a computationally designed T cell epitope 

vaccine and compares the vaccine with circulating strains over a 5-year period. Having established 

the longitudinal conservation of the H1N1 T cell epitopes in the subunit vaccine, we then compared 

the 5-year trajectory of the epitope vaccine with that of a typical commercial swine IAV vaccine. 

The MEpiV retained conservation of T cell epitope content over time. This was especially true for 

seven T cell epitopes that were previously confirmed as immunogenic in a previous study [123]. 

In contrast with MEpiV, the antigenic ‘drift’ was evident for the commercial vaccine, resulting in 

lower EpiCC scores for the epitopes contained in the HA antigen over time, as expected. 

Consistency of the area under the curve (AUC) over years (for the MEpiV) suggests that the T cell 

epitopes in the prototype vaccine could reliably drive robust immune responses in swine regardless 

of the drift, and that a conserved epitope-driven vaccine may be a valuable adjunct to vaccination 

with whole, inactivated seasonal vaccine, as was shown by Hewitt et al [153]. 

Comparing the T cell epitope conservation can contribute to assessing the projected 

efficacy of a vaccine. This study illustrates how EpiCC might be applied to evaluate several 

different vaccines, and to select the best vaccine strain (based on the T cell epitope conservation) 
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for any given year. This is as relevant for IAV as it may be relevant for other emerging viruses 

such as COVID-19. 

The analysis also demonstrates the use of JMX, a novel tool that searches for conserved T 

cell epitopes using TCR facing residues. JMX may make more accurate comparisons between T 

cell epitopes contained in vaccines as compared to circulating strains over time. By quantifying 

the conservation using JMX, we are also able to examine which T cell epitopes are conserved in 

which strains of IAV. This type of analysis may be useful for the selection of challenge strains in 

vaccine studies. Not surprisingly, epitopes from M1 and PB1 proteins were better conserved with 

circulating strain epitopes over the 5-year period studied in this example, and as expected, epitopes 

from HA and NA protein were much less conserved. 

Compared to the commercial whole antigen killed vaccine, MEpiV T cell epitopes were 

highly conserved over time. This finding is particularly relevant for influenza, since cross-reactive 

antibodies may not be present when influenza strains shift, rather than drift [159]. Experts in the 

field have advocated for the development of ‘universal influenza vaccines’ that can boost immune 

responses in the absence of antibody cross-reactivity for this reason. The fact that lower levels of 

conservation were observed for H1N2 and H3N2 over time suggests that conserved epitope-based 

vaccines should be designed for each IAV subtype. We have explored the use of MEpiV-type 

vaccines given by the heterologous prime-boost with a commercial swine influenza vaccine (which 

contains a whole HA antigen) and found increased immunogenicity by priming with the MEpiV 

vaccine over the homologous commercial vaccine prime-boost, an equivalent body temperature 

control 1 day after the pH1N1 challenge, and reduced lung lesions and influenza antigen, as 

illustrated by Hewitt et al [153]. Reducing the overall viral burden and increasing the average daily 

gain, distributed across large populations of swine, may prove cost-effective for pork producers. 
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One application of ‘universal’ T cell epitope-based vaccines being explored in humans is to 

combine them with seasonal vaccines, a topic which might also be of interest to the animal health 

community [160]–[162]. 

Moreover, we note that the SLA alleles selected for this study were reported as prevalent 

in outbred swine populations [155], [156] and on low-resolution haplotyping results in a small 

number of pigs [123]. We considered this set of alleles a first proxy for commonly expressed 

alleles. However, these alleles might not represent the complete SLA diversity or the most 

prevalent alleles in the US swine outbreed population. While EpiCC scores might be different, T 

cell epitope predictions for highly prevalent haplotypes that represent a large percentage of the US 

swine population will likely produce more relevant results. Systematic studies to investigate the 

distribution of SLA haplotypes in outbred populations of pigs in the US will have a significant 

impact on our ability to develop prediction models for a more comprehensive set of SLA alleles. 
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Table 3.1. MEpiV vaccine class I and II peptides. 

Antigen Class I peptide Class II peptide 

PB2 GTEKLTITY - 

PB1 
VSDGGPNLY MMGMFNMLSTVLGVSI 

DTVNRTHQY YRYGFVANFSMELPSFGVSG 

PA 
QVSRPMFLY EVHIYYLEKANKIKSEKTHIHIF 

 RSKFLLMDALKLSIEDP 

HA 

 

GMVDGWYGY YEELREQLSSVSSFER 

GMIDGWYGY STRIYQILAIYSTVASSLVLV 

SVKNGTYDY GDKITFEATGNLVVPRY 

RIYQILAIY VPRYAFAMERNAGSGIIIS 

NADTLCIGY  

TSADQQSLY  

LSTASSWSY  

ITIGKCPKY  

NP 

AFDERRNKY IEDLIFLARSALILRGSVAHKSCLP 

CTELKLSDY TRGVQIASNENVETMDSNTLELR 

ASQGTKRSY IDPFKLLQNSQVVSLMRP 

NA 

KSCINRCFY CRTFFLTQGALLNDKH 

DTVHDRTPY SVVSVKLAGNSSLCPV 

GTIKDRSPY NQTYVNISNTNFAAGQSVVSVKL 

EMNAPNYHY MANLILQIGNIISIWISHS 

ELDAPNYHY  

EICPKLAEY  

M1 

SLLTEVETY TRQMVHAMRTIGTHPSSSA 

LTEVETYVL SCMGLIYNRMGTVTTEAAFGLVC 

DLLENLQAY TYVLSIIPSGPLKAEIAQRLESV 

LASCMGLIY  

NTDLEALME  

NMDKAVKLY  

GAKEVALSY  

NS2 - 
FEQITFMQALQLLLEVE 

FQDILMRMSKMQLGSSSE 
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Table 3.2. Total class I (A) and class II (B) peptides found in circulating IAV strains over a 5-year period, sorted from the 

greatest to the lowest conservation. Antigens are sorted according to viral surface antigens (HA and NA), followed by internal antigens. 

Shaded rows represent MEpiV epitopes that show the conservation equal to or greater than 80% in swine circulating IAV strains. 

(A) 

No. Antigen Class I Epitopes 

JMX Homology Score 

(% of Conservation) 
Average 

Conservation 

(%) H1N1 H1N2 H3N2 

1 HA GMVDGWYGY 401.7 (98.2) 384.8 (99.2) 240.7 (50.7) 79.0 

2 HA GMIDGWYGY 401.7 (98.2) 384.8 (99.2) 240.7 (50.7) 79.0 

3 HA SVKNGTYDY 402.8 (98.5) 308.0 (79.4) 0.5 (0.1) 9.2 

4 HA RIYQILAIY 392.8 (96.0) 57.0 (14.7) 0 37.6 

5 HA NADTLCIGY 375.0 (91.7) 22.0 (5.7) 0 22.9 

6 HA TSADQQSLY 352.0 (86.1) 17.0 (4.4) 0 19.5 

7 HA LSTASSWSY 306.5 (74.9) 16.5 (4.3) 0 17.9 

8 HA ITIGKCPKY 58.8 (14.4) 3.5 (0.9) 0 3.6 

9 NA KSCINRCFY 0 384.0 (99.0) 474.0 (99.8) 99.4 

10 NA DTVHDRTPY 0 371.3 (95.7) 468.0 (98.2) 96.9 

11 NA GTIKDRSPY 322.25 (78.8) 0 0 78.8 

12 NA EMNAPNYHY 337.29 (82.5) 0 0 82.5 

13 NA ELDAPNYHY 381.86 (93.4) 0 0 93.4 

14 NA EICPKLAEY 0 98.4 (25.4) 120.6 (25.4) 25.4 

15 PB2 GTEKLTITY 405.7 (99.2) 379.7 (97.9) 454.7 (95.7) 97.6 

16 PB1 VSDGGPNLY 408.4 (99.9) 386.2 (99.5) 472.0 (99.4) 99.6 

17 PB1 DTVNRTHQY 409.0 (100.0) 386.7 (99.7) 468.0 (98.5) 99.4 

18 PA QVSRPMFLY 400.6 (97.9) 379.6 (97.8) 433.0 (91.2) 95.7 

19 NP AFDERRNKY 407.8 (99.7) 386.5 (99.6) 471.8 (99.3) 99.5 

20 NP CTELKLSDY 406.0 (99.3) 383.5 (98.8) 472.0 (99.4) 99.2 

21 NP ASQGTKRSY 400.0 (97.8) 369.0 (95.1) 464.0 (97.7) 96.9 

22 M1 SLLTEVETY 409 (100.0) 388 (100.0) 475.0 (100.0) 100.0 
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23 M1 LTEVETYVL 409 (100.0) 388 (100.0) 475.0 (100.0) 100.0 

24 M1 DLLENLQAY 407 (99.5) 387 (99.7) 468.0 (98.5) 99.2 

25 M1 LASCMGLIY 399 (97.6) 388 (100.0) 473.0 (99.6) 99.1 

26 M1 NTDLEALME 399 (97.6) 366 (94.3) 463.0 (97.5) 96.5 

27 M1 NMDKAVKLY 11 (2.7) 10 (2.6) 16.0 (3.4) 2.9 

28 M1 GAKEVALSY 12 (2.9) 9 (2.3) 13.0 (2.7) 2.6 

(B) 

No. Antigen Class II Epitopes 

JMX Homology Score 

(% of Conservation) 

Average 

Conservation 

(%) H1N1 H1N2 H3N2 

1 HA YEELREQLSSVSSFER 392.6 (96.0) 365.3 (94.1) 0 63.4 

2 HA STRIYQILAIYSTVASSLVLV 393.1 (96.1) 253.4 (65.3) 0 53.8 

3 HA GDKITFEATGNLVVPRY 348.2 (85.1) 56.4 (14.5) 0 33.2 

4 HA VPRYAFAMERNAGSGIIIS 13.0 (3.2) 1.1 (0.3) 0 1.2 

5 NA CRTFFLTQGALLNDKH 408.4 (99.9) 0 0 33.3 

6 NA SVVSVKLAGNSSLCPV 102.9 (25.2) 0 0 8.4 

7 NA NQTYVNISNTNFAAGQSVVSVKL 66.0 (16.1) 0 0 5.4 

8 NA MANLILQIGNIISIWISHS 62.1 (15.2) 0 0 5.1 

9 PB1 MMGMFNMLSTVLGVSI 409.0 (100.0) 387.4 (99.8) 474.9 (100.0) 99.9 

10 PB1 YRYGFVANFSMELPSFGVSG 409.0 (100.0) 388.0 (100.0) 474.5 (100.0) 100.0 

11 PA EVHIYYLEKANKIKSEKTHIHIF 406.3 (99.3) 386.1 (99.5) 472.9 (99.6) 99.5 

12 PA RSKFLLMDALKLSIEDP 405.9 (99.2) 381.0 (98.2) 474.7 (99.9) 99.1 

13 NP IEDLIFLARSALILRGSVAHKSCLP 400.3 (97.9) 311.3 (80.2) 454.3 (95.6) 91.2 

14 NP TRGVQIASNENVETMDSNTLELR 346.5 (84.7) 243.8 (62.8) 268.5 (56.5) 68.0 

15 NP IDPFKLLQNSQVVSLMRP 343.4 (84.0) 270.6 (69.7) 296.9 (62.5) 72.1 

16 M1 TRQMVHAMRTIGTHPSSSA 398.6 (97.5) 380.8 (98.1) 462.1 (97.3) 97.6 

17 M1 SCMGLIYNRMGTVTTEAAFGLVC 399.3 (97.6) 382.0 (98.5) 462.7 (97.4) 97.8 

18 M1 TYVLSIIPSGPLKAEIAQRLESV 395.3 (96.7) 367.2 (94.7) 465.5 (98.0) 96.5 

19 NS2 FEQITFMQALQLLLEVE 407.6 (99.7) 384.9 (99.2) 466.6 (98.2) 99.0 

20 NS2 FQDILMRMSKMQLGSSSE 364.9 (89.2) 327.2 (84.3) 358.9 (75.6) 83.0 
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Figure 3.1. Workflow for the typical EpiCC analysis. The vaccine sequence of interest (here, 

MEpiV) and circulating pathogen strains (swine IAV, in this example) are retrieved and pre-

processed prior to performing the EpiCC analysis. T cell epitopes are identified in the vaccine and 

circulating strains (colored beads) using EpiMatrix (for HLA restricted human T cell epitopes) or 

Pig-Matrix (for SLA-restricted T cell epitopes). Once all the epitopes are identified, a comparison 

and quantification of the T cell epitopes is performed using EpiCC. An overall EpiCC score (area 

under the curve) is calculated for the combined class I and II epitopes for each vaccine/strain 

compari-son. Greater AUC scores indicate higher numbers of conserved T cell epitopes. EpiCC 

scores can be compared and contrasted for the selected vaccines (here, MEpiV versus seasonal 

whole inactivated swine IAV vaccines). 
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Figure 3.2. Swine IAV genome sequences from the H1N1, H1N2, and H3N2 subtypes from 

2013–2017 included in this analysis. The color-coded stacked bar chart represents the three 

subtypes, each stacked component shows the number of strains per subtype for that year.

Subtype H1N1 H1N2 H3N2
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Figure 3.3. Radar plots enable the quantitative analysis of the degree of T cell epitope 

conservation between the conserved epitopes from all of the IAV proteins contained in a 

vaccine (here, MEpiV) and the epitopes from all of the IAV proteins contained in whole 

genome circulating strains for each year. The EpiCC score describing the T cell epitope 

conservation between the vaccine (MEpiV) against each swine IAV circulating strain is plotted on 

the radiating axes of radar plot for each year, for a period of 5 years, left to right. Circulating IAV 

strains were sorted from the lowest to the highest EpiCC scores. Radar plots for class II EpiCC 

scores are shown here and radar plots for class I are provided in supplemental data (Supplemental 

Figure A-1).
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(A) Class I T cell epitopes of surface antigens HA and NA. 

 

(B) Class II T cell epitopes HA and NA. 

Figure 3.4. Line plots showing the normalized AUC for the comparison of MEpiV vaccine 

epitopes to epitopes found in circulating IAV strains for surface antigens HA and NA, by 

subtypes and by year for class I SLA (A) and class II SLA (B) epitopes. The AUC is shown on 

a normalized scale to enable the direct comparison by antigens, subtypes, years, and T cell epitopes 

classes. The lines that represent H1N2 (NA) and H3N2 (HA and NA) were removed in (B) as they 

showed no conservation. Similar line plots (different y-axis scaling) for the internal antigens are 

shown in Supplemental Figure A-2.
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Figure 3.5. Phylogenetic tree of circulating swine H1 and H3 subtype IAV strains with 

predicted epitopes mapped to the tree tips. Class I and class II of MEpiV vaccine epitopes are 

shown in the heatmaps aligned with each associated strain. HA subtypes were color-coded. MEpiV 

Presence

Yes

No

HA

# of overlapping 9-mers

Class I

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728

Class II
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epitopes were listed in the central panel sorted by an external (grey box) and internal proteins 

arrangement (numberings refer to Table 3.1). The black and white bars mapped adjacent to the 

phylogeny tree show the presence or absence of respective MEpiV vaccine epitopes in these 

circulating swine IAV strains.
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Figure 3.6. MEpiV compared to the commercial seasonal vaccine. The EpiCC analysis for the 

HA epitopes in MEpiV and HA from commercial (inactivated, whole) vaccines were calculated 

and then normalized to the EpiCC AUC deter-mined for circulating strains for the vaccine in 2013, 

to show changes in AUC over time. The solid lines represent the HA antigen of MEpiV from an 

epitope-based vaccine and the dotted lines illustrate the HA components from a commercial swine 

vaccine.
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FSXP.OK (delta 1)-H1N2
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CHAPTER 4 

H1N1 G4 SWINE INFLUENZA T CELL EPITOPE ANALYSIS IN SWINE AND HUMAN 

VACCINES AND CIRCULATING STRAINS UNCOVERS POTENTIAL RISK TO SWINE 

AND HUMANS 2 
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Abstract 

Pandemic influenza viruses may emerge from animal reservoirs and spread among humans 

in the absence of cross-reactive antibodies in the human population. Immune response to highly 

conserved T cell epitopes in vaccines may still reduce morbidity and limit the spread of the new 

virus even when cross-protective antibody responses are lacking. We used an established epitope 

content prediction and comparison tool, Epitope Content Comparison (EpiCC), to assess the 

potential for emergent H1N1 G4 swine influenza A virus (G4) to impact swine and human 

populations. We identified and computed the total cross-conserved T cell epitope content in HA 

sequences of human seasonal and experimental influenza vaccines, swine influenza vaccines from 

Europe and the United States (US) against G4. The overall T cell epitope content of US 

commercial swine vaccines was poorly conserved with G4, with an average T cell epitope 

coverage of 35.7%. EpiCC scores for the comparison between current human influenza vaccines 

and circulating human influenza strains were also very low. In contrast, the T cell epitope coverage 

of a recent European swine influenza vaccine (HL03) was 65.8% against G4. Poor T cell epitope 

cross-conservation between emergent G4 and swine and human influenza vaccines in the US may 

enable G4 to spread in swine and spillover to human populations in the absence of protective 

antibody response. One European influenza vaccine, HL03, may protect against emergent G4. This 

study illustrates the use of the EpiCC tool for prospective assessment of existing vaccine strains 

against emergent viruses in swine and human populations.
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Introduction 

The annual occurrence of influenza outbreaks causes considerable morbidity and mortality 

and poses a global public health challenge. The causative agent of these outbreaks is influenza A 

virus (IAV), although influenza B also contributes to some outbreaks. IAV infects a wide range of 

hosts including mammals and avian species. Pigs are one of the most important hosts given their 

susceptibility to a broader range of avian and human influenza viruses, and they are often the 

source of novel reassortant viruses from avian- and human-origin strains. IAV infection of swine 

causes significant economic losses for commercial pork producers. In addition, swine IAV poses 

a threat to human health due to the potential for swine influenza A virus (swIAV) to spill over into 

the human population, as occurred in 2009 (for H1N1/pdm09) [163], [164]. 

After the outbreak of H1N1/pdm09 in human in 2009, the virus was reintroduced into pig 

herds around the world and reassorted with other swine influenza viruses, forming new swIAVs 

which spread within pig herds in the United States (US), Brazil, Europe (EU), Japan, China, and 

other countries [50], [165]. Some of these reassortants harboring H1N1/pdm09 internal genes have 

gradually evolved and replaced previous strains of swine influenza, demonstrating antigenic drift 

due to genetic selection pressure exerted on H1N1/pdm09 and other strains worldwide [51]. For 

example, multiple lineages of swIAV have been identified in pig herds in China, including 

classical swine H1N1, Eurasian avian-like (EA) H1N1, H1N1/pdm09, triple-reassortant (TR), and 

H3N2 lineages.  

Influenza experts have been concerned about a new strain of swIAV, namely the G4 

genotype (G4), that is now dominating other strains of IAVs in Chinese swine populations, as 

reported by Sun et al [52]. Emergent G4 is a reassortment product of EA H1N1 virus, bearing 

H1N1/pdm09 and TR-derived internal genes. In the reassorted G4, the HA and NA genes are from 
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the EA H1N1 lineage and in particular, the HA gene falls within the 1C.2.3 lineage. The viral 

ribonucleoprotein (vRNP) genes and M gene are from the H1N1/pdm09 lineage, and the non-

structural (NS) gene is derived from the TR lineage [52]. Given that as many as 20% of pork 

industry workers in China have been found to be seropositive for G4 antibodies, it appears that G4 

has the potential to cross species barriers [52]. 

Vaccine efficacy evaluation usually involves assessment of cross-reactive influenza-

specific antibodies generated by exposure or vaccination. Seasonal vaccination in humans does 

not generate antibodies that protect against G4 (hemagglutination inhibition, see Figure 1C in Sun 

et al [52]). In a separate study, monoclonal antibodies isolated from mice immunized with 

pandemic (A/California/07/09) hemagglutinin (HA) and a novel flu vaccine, computationally 

optimized broadly reactive antigen (COBRA) P1 HA, generated hemagglutination of G4 virus-

like particles in vitro [166]. The relevance of this murine study to swine and human populations 

remains to be determined. 

When cross-reactive antibodies are not present, cross-conserved T cell epitopes in IAV 

vaccines and strains have been shown to play an important role in reducing morbidity and limiting 

the spread of IAV, even when vaccines and emergent strains are poorly matched [167]–[169]. 

There is strong evidence that (1) T cell responses generated by previous influenza exposure cross-

reacts with novel IAV strains [3] and (2) T cell responses are critically important for protection 

against IAV infection in both humans and swine [147], [169], [170]. Thus, even in the absence of 

cross-reactive antibody to G4, T cell cross-reactivity might be protective. 

Here, we apply an immunoinformatics tool to evaluate whether existing vaccines may have 

the capacity to prevent the spread of G4 in humans and swine. We developed a computational 

workflow that employs the Epitope Content Comparison (EpiCC) algorithm to measure the degree 
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of epitope conservation between target vaccines and outbreak strains. In previous studies, we 

identified an EpiCC score that was correlated with protection in the absence of cross-reactive 

antibody. We used the same approach to establish thresholds for protective efficacy for vaccines 

against circulating strains in this study. EpiCC’s estimation of T cell epitope conservation between 

emerging viruses and vaccine strains may be useful as a potential surrogate measure of vaccine 

efficacy, in conjunction with other methods of pandemic risk assessment. 

 

Methods 

Sequences and data processing 

Vaccine Strains 

The H1 HA sequences of two EU swine influenza vaccine strains and five human seasonal 

influenza vaccine strains (from seasons 2008-2021) were obtained from the publicly available 

database, Global Initiative on Sharing Avian Influenza Data (GISAID EpiFlu; 

http://platform.gisaid.org/epi3/; accessed in August 2020) [171]. Strain information regarding 

commercial use EU swine influenza vaccine was based on literature review (Table 1A) [172], 

[173]. Sequences of the US swine influenza vaccines, namely FluSure(FS)XP/IA00, FSXP/OK08 

and FSPandemic(FSPDM)/CA09, were provided by Zoetis. Experimental COBRA influenza 

vaccine sequences including swine (SW1 and SW2), human (X3 and X6) and a hybrid 

swine/human vaccine, P1, were provided by the Center for Vaccine and Immunology (CVI), 

University of Georgia (UGA). The COBRA SW1 and SW2 HA antigens were designed to be more 

cross-protective antigens using HA sequences from swine H1N1 and H1N2 sequences. Human 

COBRA X3 and X6 were designed using HA sequences from human isolates while COBRA P1 

was derived from both swine and human H1 HA sequences [174]. 

http://platform.gisaid.org/epi3/
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G4 and Circulating Strains  

Twenty-nine HA sequences from previously published swine H1N1 G4 genotype strains 

were used in this study [52]. Given that the 29 HA G4 strains were derived from a shorter time 

range (2016 – 2018) and that there is great similarity (percentage identity in the range of 95.8 – 

100.0%) between these sequences, eight sequences were randomly selected for analysis in this 

study (Figure 1, Table 1B). All available H1 HA sequences comprising swIAV strains circulating 

in the US (1939-2020) and EU (1939-2018) and human IAV strains circulating in the US (from 

2008-2010 and 2019-2020) were retrieved from GISAID. 

 

Data Curation 

Duplicate and partial sequences containing less than 1400 nucleotides were removed using 

a publicly available python script [175]. Phylogenetic analysis was performed following sequence 

alignment using MUSCLE 3.8.31 [176]. Maximum-likelihood phylogenetic trees were constructed 

with RAxML.v8 using the GTR-GAMMA nucleotide substitution model [177]. To ensure 

computational tractability and to preserve representative clades, Phylogenetic Diversity Analyzer 

(PDA) was used to subsample 150 sequences each from large dataset that consisted of swIAV 

strains circulating in the US and EU, respectively, as well as 300 sequences from human IAV 

strains circulating in the US [178]. The final reduced dataset (Supplementary Table 1A-C) was 

translated into amino acid sequences and combined with selected G4 strains and respective vaccine 

strains for three sets of analyses (Figure 1): (1) European circulating swine flu virus and G4 strains; 

(2) US circulating swine flu and G4 strains and (3) US circulating human influenza virus and G4 

strains. To better classify strains according to their respective phylo-clusters, metadata such as H1 

strain clade information was acquired using Swine H1 Clade Classification Tool [49]. 



 

70 

T cell epitope binding prediction 

We initiated our analysis by focusing on HA, given its importance as the critical antigen 

that is most relevant to protective immunity to influenza. Additional antigens were also evaluated 

(see section Analysis on other IAV antigens). After compiling IAV sequences as described in 

Methods and illustrated in Figure 1, the translated HA protein sequences were screened using host-

specific T cell epitope identification algorithms developed by EpiVax. Particularly, PigMatrix 

epitope prediction tools were used for the swine sequences, and EpiMatrix was used for 

identification of human epitopes. These prediction tools parse sequences into overlapping 9-mer 

frames to define the relative likelihood of binding to a set of prevalent swine leukocyte antigen 

(SLA) or supertype human leukocyte antigen (HLA) class I and II alleles [114], [125]. 

More specifically, using a position-specific scoring matrix, predicted binding scores were 

computed by PigMatrix for the likelihood of each 9-mer in the HA antigens of IAV to bind to a 

panel of prevalent class I (SLA-1*01:01, 1*04:01, 1*08:01, 1*12:01, 1*13:01, 2*01:01, 2*04:01, 

2*05:01, 2*12:01, 3*04:01, 3*05:01, 3*06:01, 3*07:01) and class II (SLA-DRB1*01:01, 02:01, 

04:01, 04:02, 06:01, 06:02, 07:01, and 10:01) SLA alleles. The SLA alleles selection for swine 

reflect dominant SLA types, each of which has binding pocket preferences that are shared with 

several other SLA alleles, and was based on a previous study reported by Gutierrez et al [123], 

[124]. Similarly, predicted binding scores for each 9-mer from human IAV sequences was assigned 

by EpiMatrix and the HLA alleles that were used in the prediction model include class I (A*01:01, 

A*02:01, A*03:02, A*24:02, B*07:02, and B*44:03) and class II (DRB1*01:01, DRB1*03:01, 

DRB1*04:01, DRB1*07:01, DRB1*08:01, DRB1*09:01, DRB1*11:01, DRB1*13:01, and 

DRB1*15:01) HLA molecules. These are HLA allele supertypes (alleles sharing common binding 

preferences) that cover the genetic diversity of more than 95% of human populations globally 
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[114], [121], [122].  

For each 9-mer, i in each individual allele a of a set of MHC alleles A, PigMatrix or 

EpiMatrix raw scores, r, are normalized to Z-scores using the average μ and the standard deviation 

σ of scores calculated for 100,000 random 9-mers using the formula below [114], [125]. Nine-

mers with Z scores greater or equal to 1.64, which comprise the top 5% in the normalized set of 

scores for each SLA or HLA allele of sequences, are predicted to have significant SLA or HLA 

binding potential. Higher Z-scores associate with higher MHC binding probability [124], [126]. 

𝑍(𝑖)𝑎 =
(𝑟 − 𝜇)

𝜎
 

 

Analysis of T cell epitope content comparison (EpiCC) 

We applied EpiCC to facilitate the pairwise T cell epitope content comparison of protein 

sequences (Figure 1). EpiCC enables large scale sequence analysis for conservation of T cell 

epitopes between swine and human flu vaccines and circulating IAV and G4 strains, focusing only 

on shared T cell epitopes between the vaccines and the target IAV strains [124], [179]. Once T cell 

epitope content is defined for each vaccine or strain, the set of conserved T cell epitopes that are 

shared between two strains can be enumerated. 

In mathematical terms, EpiCC assesses the relatedness of T cell epitope, i, contained in a 

protein sequence of vaccine strain v and T cell epitope, j, contained in a protein sequence of a 

strain s based on respective PigMatrix SLA binding or EpiMatrix HLA binding score. Since cross-

reactive memory T cells can be stimulated by epitopes (i, j) with identical TCR-facing residues 

(TCRf) that may have different HLA binding pocket residues, as long as they bind to the same 

alleles, we searched for potentially cross-reactive epitopes that shared TCRf as follows: Cross-

conserved class I epitopes were defined by identical residues at positions 4, 5, 6, 7, and 8 and class 
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II epitopes were defined by identical residues at positions 2, 3, 5, 7, and 8. The score of cross-

conserved T cell epitope shared between two strains s and v, was calculated using predicted 

binding probabilities as follows: 

𝑆(𝑖, 𝑗)𝑎 = 𝑝(𝑖)𝑎 ∙ 𝑝(𝑗)𝑎 

To normalize shared EpiCC score, the sum of shared epitope scores of each i, j was 

normalized by the total number of compared pairs, p, and by the number of MHC alleles in A. This 

is to account for different epitope densities and for comparison of values of E determined using 

different numbers of MHC alleles. Therefore, the normalized shared EpiCC score, (termed as 

EpiCC score), can be computed by applying the following equation: 

𝐸(𝑠ℎ𝑎𝑟𝑒𝑑)𝐴 =
1

|𝑝| ∙ |𝐴|
∑ ∑ 𝑆(𝑖, 𝑗)𝑎

𝑎∈𝐴𝑖∈𝑠,𝑗∈𝑣

 

Maximum EpiCC scores were calculated. These scores were derived from shared EpiCC 

scores computed from the comparison of any sequence to itself. The greater the maximum EpiCC 

score, the greater the total epitope content of the sequence. Since no sequence can be better 

matched to another sequence than itself, the maximum value for any comparison between any 

target sequence and a comparison sequence is always less than or equivalent to their maximum 

EpiCC scores. Both class I and class II EpiCC analyses were combined by summing class I and 

class II EpiCC scores (termed as total EpiCC score) for each vaccine-to-strain comparison. 

When the shared T cell epitope content of a strain of influenza is highly related or 

“covered” by a given influenza vaccine sequence, the vaccine-to-strain’s EpiCC score approaches 

the circulating strain’s maximum EpiCC score (it approaches the maximum if nearly all the 

epitopes are identical, as defined above). To determine vaccine-to-strain EpiCC scores coverage, 

each vaccine-to-strain comparison was divided by that strain’s maximum EpiCC score and 

expressed as a percentage. The greater the T cell epitope coverage (percentage), the better the 
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vaccine matches or covers the T cell epitope content of the circulating strain sequences (Figure 

4.1). 

 

EpiCC scores and EU vaccine efficacy estimation 

To identify a threshold of protective efficacy of existing swine vaccines against circulating 

field strains, we extrapolated from available data, using an approach similar to one that we have 

already published [124]. For HA sequences, we calculated the EpiCC scores for three H1N1 EU 

commercial vaccines and three experimental monovalent vaccines against EU circulating swine 

IAV strains from the same period. Once we had obtained the scores, we identified the minimum 

EpiCC scores that correlated with protective endpoint results in four published studies that used 

the commercial and/or experimental vaccine strains. Vaccines were protective if they significantly 

reduced lung virus titers. The EpiCC score protective threshold was defined as the lowest EpiCC 

for at which the vaccine strain was shown to be protective. This is the main criterion for evaluating 

protection in the EU [173]. Scoring was performed independently of and prior to obtaining 

information about the outcomes of the vaccination and challenge studies. 

 

Statistical analysis 

A non-parametric Wilcoxon signed-rank test was used to compare T cell epitope coverage 

of different groups of vaccines (swine and human) analyzed against G4. P-values (p) less than 0.05 

were deemed significant. The analysis was performed using the rstatix package in R version 4.0.3 

[180]. 
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Analysis on other IAV antigens 

 To determine whether other viral antigens might contribute to the protective efficacy of 

vaccines and circulating strains, we extended and applied similar workflow as described above to 

additional nine antigens other than HA. The nine antigens included neuraminidase (NA), 

polymerase basics (PB1 and PB2), polymerase acidic (PA), nucleoprotein (NP), matrix proteins 

(M1 and M2) and non-structural proteins (NS1 and NS2). The purpose of this analysis was to 

compare and assess the degree of T cell epitope relatedness between whole-killed vaccines strains, 

IAV circulating strains and G4 of non-HA antigens. Available whole proteome sequences of EU 

swine flu vaccines, human seasonal influenza vaccine strains (Table 4.1A) and the eight G4 

sequences (Table 4.1B) were obtained from GISAID (accessed in December 2021). Sixteen clade-

specific swine H1 IAV strains circulating in EU and five human H1 IAV strains circulating in the 

US were randomly selected from the previously defined dataset for analysis (Supplemental Table 

B-1 and B-3). 

 

Results 

We set out to evaluate the potential for cross-conserved T cell immune responses to protect 

against G4 in swine and human populations using immunoinformatics methods. The results of this 

analysis are divided into two parts due to species-specific MHC binding preferences (swine and 

human) and the species-specific circulation patterns of influenza strains. The first part of the 

analysis focused on protection by swine vaccines against G4 in swine, and the second part focused 

on predicting protection against G4 influenza in case of spillover into human hosts.  

For the swine IAV analysis, we evaluated two commercial H1N1 swine influenza strains 

used in the EU and three US commercial H1N1 vaccine strains against strains from their respective 
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regions of the world. We also evaluated the experimental (swine) COBRA vaccines that were 

previously studied for cross-reactive antibodies, for T cell epitope conservation against G4 using 

swine epitope prediction tools (PigMatrix and EpiCC). In the second section, we evaluated human 

T cell epitope content relatedness of five seasonal (human) H1N1 IAV vaccine strains and three 

experimental (human COBRA) IAV vaccine strains in the US human population to determine their 

potential to control G4 in the event of G4 spillover into the US human population, using EpiMatrix 

and EpiCC. 

As described above, T cell epitope content relatedness was defined as the density of shared 

T cell epitope content between the vaccine of interest and targeted strain (EpiCC score). A percent 

coverage was used to normalize score and permit comparison to established protective thresholds. 

Figure 4.1 illustrates how radar plots are constructed; the results of the swine and human vaccine-

to-strain analyses are shown in separate radar plots (Figure 4.2 – 4.4), combining MHC class I and 

II comparisons (SLA for swine; HLA for human). 

In the sections below, we described the results of the EpiCC analysis for HA, as it is the 

principal target of protective immune responses in influenza infection and is the most variable 

sequence in the pathogen [181]. Changes to vaccine composition and changes in vaccine efficacy 

are primarily due to drift and shift in the sequence of HA antigen. In section T cell epitope 

conservation among antigens other than HA, we provided results for additional influenza 

proteins, to allow for a more comprehensive understanding of their potential to contribute to 

changes in T cell epitope content. 
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Swine vaccine-to-strain EpiCC analysis results 

EpiCC analysis of US vaccines and strains 

EpiCC scores comparing the T cell epitope content of the HA of three commercial swine 

H1N1 vaccines used in the US (FSXP/IA00, FSXP/OK08 and FSPDM/CA09) to 150 swIAV 

strains circulating in the US from 1939 to 2020 and eight G4 sequences were calculated (Figure 

4.1A). Overall, for these swine vaccine-to-strain comparisons tended to be clade-specific. Higher 

total EpiCC scores (greater cross-conservation) were observed for FSXP/IA00 when it was 

compared to US swIAV circulating strains. The average of vaccine T cell epitope coverage was 

69.4% for this comparison. In contrast, the average T cell epitope coverage by FSXP/OK08 and 

FSPDM/CA09 of US swIAV strains was lower, at 43.2% and 59.9%, respectively. FSXP/IA00 

had high T cell epitope relatedness to swIAV circulating strains from eight clades (Alpha, Beta, 

Gamma-PDM-09-like, Gamma2, Gamma2-beta-like and PDM-09) although Delta-like and Delta2 

EpiCC scores were lower. FSXP/OK08 (HA from H1N2), only exhibited T cell epitope content 

shared with swIAV Delta-like and Delta2 strains. The third vaccine strain, FSPDM/CA09, which 

has been in use since 2009, demonstrated high T cell epitope relatedness to swIAV strains from 

PDM-09, Gamma-PDM-09-like and Gamma2 lineages. 

EpiCC scores that were previously defined using experimental data available for 

FSXP/IA00 as fully protective or partially protective thresholds in Gutiérrez et al. 2017 (in the 

absence of cross‐reactive antibodies) [124] were extrapolated and applied to the swine vaccine-to-

strain EpiCC analysis. A total EpiCC score of at least 0.076 was used to define complete 

protection; a score between 0.065 and 0.076, was used to define partial protection (light and dark 

grey circles, respectively, in Figure 4.2). Based on these protective thresholds, FSXP/IA00 was 

predicted to confer protection and partial protection against all swine influenza strains except 
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Delta2 and G4. A summary of US swine influenza vaccines EpiCC scores and vaccine coverage 

can be found in Table 4.2. Statistical analysis was also performed to evaluate the potential of 

protection against G4, and FSXP/IA00 was predicted to have lower T cell epitope coverage and 

was therefore considered not likely to provide protection (p < 0.05; Supplemental Figure B-1). 

Other US commercial swine influenza vaccines had low T cell epitope coverage as well and were 

predicted to confer no protection. 

COBRA vaccines are computationally optimized antigens designed to provide broad 

antibody epitope coverage against a wide range of variable sequences, but their T cell epitope 

content is not currently optimized. We considered the T cell epitope coverage of three experimental 

COBRA vaccines (COBRA/P1, COBRA/SW1 and COBRA/SW2) [174] for the set of US swIAV 

strains used in this study. COBRA/SW2 showed the highest T cell epitope relatedness to US field 

strains, with vaccine T cell epitope coverage of 66.7% (Table 4.2). COBRA/SW1 and COBRA/P1 

had lower vaccine T cell epitope coverage of 53.3% and 49.7%, respectively. Again, the vaccines 

were clade-specific: COBRA/SW2 had greater total shared T cell epitope relatedness to field 

strains from Alpha, Beta, Gamma2, Gamma2-beta-like and PDM-09 clades (Figure 4.2B). It also 

had less T cell epitope relatedness to Delta-like and Delta2 field strains. In contrast, COBRA/SW1 

was predicted to confer protection only against Delta-like swIAV field strains while COBRA/P1 

was predicted to confer only partial protection against Delta-like field strains. These results suggest 

that similar patterns of T cell epitope relatedness are observed among circulating strains from the 

same lineage (classical swine influenza versus human seasonal influenza). 
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EpiCC analysis of EU vaccines and strains 

For EU strains, we established thresholds for full and partial protection using retrospective 

data. The commercial and experimental inactivated virus vaccine strains used in challenge studies 

were considered protective in our analysis if lung virus titers were significantly lower than the 

challenge control group and pigs showed no and/or mild clinical signs (low mean temperature or 

low scores of respiratory diseases) compared to unvaccinated pigs. Partial protection was defined 

as a significant reduction of lung lesions coupled with a non-significant reduction of lung virus 

titer when compared to unvaccinated controls. 

To define the protective thresholds, we evaluated four published vaccine efficacy studies 

[182]–[185] which used four different H1N1 challenge strains. Table 4.3 lists all the vaccine 

strains that conferred protection or partial protection against specific challenge strains and the 

relevant lung titer data. In six of the eight evaluations, protection was demonstrated by the absence 

of virus, or by significantly lower lung virus titers than the control group. A shared T cell epitope 

content EpiCC score was calculated for each vaccine-to-strain comparison (Table 4.3).  

Based on these studies, the lowest total EpiCC score that was associated with protective 

efficacy was 0.0604, defined by comparing T cell epitopes from the swine/Belgium/1/83 challenge 

strain with the first generation of H1N1 European vaccine strain (NJ76). This threshold is 

represented by the white area in Figure 4.3. Based on this study and previous studies, swIAV 

strains that have total EpiCC scores above the threshold are likely to be protective. Similarly, a 

total EpiCC score of 0.0474 was associated with partial protective efficacy, as defined for the T 

cell epitope comparison between NJ76 and challenge strain GT/112/07. For this analysis, 

therefore, we defined total EpiCC score between 0.0474 and 0.0604 as partially protective. 
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Protective efficacy of EU swine influenza vaccines against circulating and G4 

Having established estimated vaccine efficacy thresholds for EU swine influenza vaccines, 

we could evaluate whether the T cell epitope content of additional swIAV vaccine strains that are 

commonly used in the EU commercial settings (BK00 and HL03) might protect against 150 

swIAV strains circulating in the EU and eight emergent G4 sequences (Figure 4.3).  

HL03 had the highest T cell epitope coverage (vaccine-to-strain EpiCC scores) for 

circulating swIAV strains in the EU and was predicted to provide protection against 76% of the 

swIAV strains (total EpiCC scores greater than 0.0604). The BK00 strain had lower T cell epitope 

relatedness against EU swIAV circulating strains (only 8.7% of EU swIAV circulating strains had 

total EpiCC score of at least 0.0604). EpiCC comparisons showed that T cell epitope cross-

conservation was lineage specific: HL03’s EpiCC score suggested that it may only confer 

protection against 1C lineages strains. In contrast, vaccine strain BK00’s EpiCC score suggests 

that it may confer protection to field strains related to 1B and other avian or human lineages but 

not 1C lineages. 

Notably, the HL03 vaccine strain had total EpiCC scores that exceeded the defined 

protective threshold for emergent G4. The average HL03 vaccine strain T cell epitope coverage 

(slate blue line in Figure 4.3) for the G4 HA sequences was 65.7%, which is above the protective 

threshold (Table 4.4). This observation suggests that existing European swine vaccines may have 

a protective effect against emergent virus G4. 

 

Human vaccine-to-strain EpiCC analysis results 

To assess whether existing human vaccines would provide protection against potential 

spillover of G4 into US human population, we evaluated the T cell epitope relatedness of five 
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commercial human H1N1 seasonal influenza vaccine strains to G4 using EpiCC (Figure 4.4, Table 

4.5).  

One seasonal vaccine strain, BR07, had a distinctive pattern with high T cell epitope 

content relatedness when compared to Delta-like human IAV circulating strains such as strains 

that were circulating prior to the 2009 pandemic (Figure 4.4A). As expected, CA09, which was 

introduced in the 2009 pandemic, demonstrates high T cell epitope relatedness when compared to 

circulating strains of PDM-09 (Figure 4.4A). Newer H1N1 vaccine strains that were introduced 

after the CA09 pandemic also had high EpiCC scores when compared to PDM-09 circulating 

strains (approximately 70.0% T cell epitope coverage on average). T cell epitope coverage for 

human vaccine-to-G4-strains comparison was much lower, at 32.4% on average (Table 4.5). 

Unlike the vaccine efficacy studies performed in swine where challenge studies data such 

as lung virus titers and lung lesion reduction are accessible, human vaccine efficacy is determined 

via clinical trials [186]. Human vaccine efficacy estimates vary among published efficacy studies 

[186] and hence, defining an EpiCC protective threshold is not straightforward. Since the 

protective thresholds were not defined for human vaccines, we used an average vaccine-to-strain 

EpiCC scores coverage of 38.5% (represented by the dotted line in Supplemental Figure B-1) to 

evaluate the T cell epitope coverage for human vaccines (Supplemental Figure B-1). The human 

seasonal influenza vaccines (CA09, MI15, BR18 and GDMN19) showed T cell epitope coverage 

below the mean and had no significant T cell epitope relatedness to G4 (p < 0.05) when compared 

to G4. 

Three novel subunit influenza vaccines (COBRA HA vaccines) that were designed to 

generate cross-protective B cell epitopes [174], were also compared to both G4, and circulating 

human IAV strains, to estimate whether they might also generate protective T memory response 
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against emerging IAV strains. The experimental COBRA vaccine strains only showed T cell 

epitope content relatedness to pre-PDM strains of human IAV (Figure 4.4B). COBRA vaccine T 

cell epitopes were poorly conserved with G4, with an average of only 37.3% T cell epitope 

coverage, as was observed for H1N1 seasonal influenza vaccines (Table 4.5). 

 

T cell epitope conservation among antigens other than HA 

Although HA has been the focus of antigenic studies for most influenza vaccines, there is 

evidence that internal genes such as PB2 and NP may be associated with milder clinical signs and 

decreased virus shedding [104]. Therefore, we examined the degree of T cell epitope conservation 

in other viral antigens. Even though conventional inactivated virus vaccines are manufactured as 

high-producing reassortants containing the HA and NA of target strains and internal genes from 

the master strain (A/Puerto Rico/8/1934) [187], comparing the T cell epitope content of non-HA 

proteins of G4, and circulating H1N1 viruses may shed light on the potential for seasonal influenza 

virus infection to protect against G4. 

 All publicly available non-HA protein sequence data was retrieved for seasonal vaccine 

strains, G4 and circulating IAV strains. Given that there is no complete proteome sequence for the 

US swine influenza vaccine strains, this full proteome analysis was only performed for EU swine 

and US human IAV strains. There were variations in terms of the degree of T cell epitope 

conservation among viral antigens (Supplemental Figure B-2A - B, Supplemental Table B-4 - B5). 

For the EU swIAV internal protein analysis, T cell epitopes were found to be conserved between 

G4 and EU field strains for the PB2, PB1, PA and NP proteins. T cell epitope conservation was 

particularly high between HL03 and G4 for the M1 protein. Lower T cell epitope conservation was 

observed between EU vaccine strains and G4 for the NA protein and other internal antigens such 
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as M2, NS1 and NS2 (average vaccine coverage less than 65%, Supplemental Figure B-2A; 

Supplemental Table B-4). 

As compared to EU swine vaccine strains, the internal antigens of the human vaccine 

strains for the US, particularly CA09 and MI15, had higher T cell epitope conservation with human 

circulating strains and G4 (Supplemental Figure B-2B, Supplemental Table B-5). Internal antigens 

PB2, PB1, PA, NP, M1 and M2 had total EpiCC scores of at least 0.097, i.e., at least 85% T cell 

epitope coverage (Supplemental Figure B-2B, Supplemental Table B-5). In contrast, internal 

proteins from the vaccine strain BR07 had lower T cell epitope conservation with G4, with T cell 

epitope coverage ranging between 12.1%-75.7%. This suggests that the T cell epitopes from the 

internal antigens of CA09 and MI15 (H1N1/pdm09 lineage) are more highly conserved with T cell 

epitopes from the internal antigens of G4. 

 

Discussion 

Vaccination remains the most effective public health intervention for combatting influenza 

infections in both swine and humans. However, the influenza virus is constantly undergoing drift 

and shift events, making it difficult for some vaccine strains to provide adequate protection. This 

is particularly worrisome when influenza viruses with reported pandemic potential, such as G4, 

begin to emerge in the established host population or are shown to possess critical adaptations that 

allow infection and possible transmission to a new host. While antibodies are usually considered 

to be the major correlate of protection following influenza vaccination, influenza vaccines 

containing highly cross-conserved T cell epitopes have also been shown to reduce morbidity and 

limit spread in the absence of antibodies, even when there is a mismatch between vaccines and 

emergent strains [3], [169], [170].  
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To assess the potential epidemic risk posed by the emergent G4 in swine and human 

populations that are naïve to this virus, we compared the HA antigen T cell epitopes contained in 

three US commercial swIAV vaccine strains, two commercial-use EU swIAV vaccine strains, five 

seasonal H1N1 human IAV vaccine strains, and five experimental COBRA vaccines (two strains 

designed for each swine and human host and one hybrid strains) to the T cell epitopes contained 

in emergent G4 HA and to circulating IAV strains from each respective region and host. 

Approaches for influenza vaccination differ between swine and humans. While human 

vaccines rely on the World Health Organization (WHO) to make annual vaccine strain 

recommendations, and no standardized guidelines have been established for swine vaccine strains 

and dosages [173]. Moreover, the strains of influenza used in vaccines for swine differ in Europe 

and the US due to differences in the requirements for vaccine approval by regulatory agencies. 

Further variation in vaccine strains may occur, as some US-based pork producers have been 

applying for an exemption to the United States Department of Agriculture (USDA) rules to use 

“autologous” influenza strains [173].  

Current commercial swine influenza vaccines used in the US are polyvalent and contain 

vaccines targeting distinct circulating H1 and/or H3 strains. For this comparison, we examined the 

H1 components of the vaccines, consisting of γ-cluster and δ-like cluster H1N1 vaccine strains, 

and δ1-cluster H1N2 vaccine strain. We determined that neither US commercial nor experimental 

swine influenza COBRA vaccines were predicted to have high T cell epitope relatedness against 

G4. The average T cell epitope coverage for G4 was lower than the threshold established for 

protective T cell activity in previously published studies. This analysis suggests that the US swine 

population may be susceptible to the emergent G4, even if vaccinated with current commercial 

vaccines.  
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The commercial swIAV vaccine strains used in Europe are slightly older, containing 

H1avN1 (Europe-avian-like lineage), H1huN2 (human-like lineage), and H3N2 subtypes, which 

are more related to G4. Using published vaccine efficacy data from Europe, we defined putative 

cross-protective thresholds for the EU influenza vaccines using a similar approach established by 

Gutierrez et al [124]. Lung virus titers are used as the primary measure for defining protective 

thresholds for Europe swine influenza vaccines rather than reduction in lung lesions. The criteria 

used in this analysis differed slightly from Gutierrez et al, as lung virus titers data were not 

available for all challenge strains in their study [124]. EpiCC analysis demonstrated that vaccine 

strain HL03 had the highest EpiCC scores against G4, and the potential protection predicted for 

HL03 was significantly different when compared to other vaccines. G4 contains EA surface 

proteins (HA and NA) [52]. The EpiCC analysis suggests that only one vaccine strain, HL03, from 

EA lineage (1C clade) may protect the European swine population against the emergent virus. 

While we confirmed that there was high T cell epitope relatedness between seasonal human 

influenza vaccines with circulating human IAV strains (as expected), there was very low T cell 

epitope relatedness between human influenza vaccine HA and G4 HA. This suggests vaccination 

with seasonal influenza vaccine HA antigen would not induce cross-protective T cell memory 

against G4. We also evaluated novel influenza vaccines, known as COBRAs, and found low 

conservation of the HA antigen T cell epitopes with G4 HA T cell epitopes. 

In addition to analyzing the HA protein of swine and human influenza for T cell epitope 

conservation with the HA of G4, we conducted a more comprehensive protein analysis to compare 

G4 conservation with other different viral antigens. Phylogenetic analysis and genotype 

characterization have determined that G4 carries HA and NA from the EA IAV lineage and a mix 

of internal genes from H1N1/pdm09 and TR lineages [52]. We hypothesized that vaccine strains 
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that carried H1N1/pdm09 internal genes might have high T cell epitope relatedness to internal 

antigens of G4. Indeed, we found that internal antigens of human vaccine strains CA09 and MI15 

that are from H1N1/pdm09 lineage (all internal antigens except NS antigen) have greater T cell 

epitope conservation to G4. Even though the HA of G4 is divergent, cross-conservation of internal 

protein epitopes between current circulating influenza strains and emergent G4 virus may provide 

some cross-protective T cell response to swine and humans.  

In conclusion, we estimated the risk of pandemic emergence of the G4 lineage by 

comparing the T cell epitope content of G4 strains and determining whether the T cell epitope 

profile matches circulating strains in both human and swine using immunoinformatics approaches. 

Poor T cell epitope cross-conservation between G4 and human influenza vaccines may indicate 

that there is a greater spillover risk to the human population than existed when pH1N1 emerged in 

2009. Steps should be taken to prepare for the potential spread of G4 strains. In the absence of G4 

vaccines, it may be useful to test available European swine influenza vaccines (HL03) for efficacy 

against G4. This study also suggests that the emergent G4 may be a greater threat to the US pork 

industry than to the EU industry, due to the lack of commercial vaccines that could provide cross-

protective immunity to G4. Improving vaccination systems by updating vaccine strains used in 

pork farms and transitioning to include G4 or EA lineage should be prioritized.  

There are limitations in this study that could be addressed in future research. First, while 

the data subsampling strategy is applied to deal with a large sequence dataset and to avoid 

overrepresentation of data for certain years or geographical areas, having more data subsampling 

replicates would better ensure results consistency. Second, the putative cross-protective thresholds 

determined for the EU influenza vaccines were based on commercial NJ76 vaccine strains and 

applied for BK00 and HL03 analyses. While protection thresholds for different vaccine strains 
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may vary, having more experimental data available for BK00 or HL03 would help refine the 

current thresholds used.  

As previously mentioned, T cell epitope conservation between circulating virus strains and 

seasonal vaccines may contribute to the efficacy of existing (human and swine) influenza vaccines. 

While this study does not absolutely confirm the relevance of the EpiCC tool for the prediction of 

human and swine influenza vaccine efficacy, a relationship between EpiCC scores and vaccine 

efficacy is observed and could be used to establish a threshold for vaccine efficacy in the context 

of European vaccine strains.   In a separate study, EpiCC correctly predicted the efficacy of a novel 

porcine circovirus type 2 (PCV2) viral vaccine against circulating strains of PCV2 in swine [158], 

[188]. That prospective study and this retrospective analysis of G4 influenza serve to illustrate the 

utility of EpiCC analysis for additional prospective studies of existing vaccine strains against 

emergent strains. 
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Table 4.1A. Source of H1 HA sequences used in the analyses. 

Region Host Strain Name Category Label Accession No. 

EU Swine 
A/swine/Bakum/1832/2000 

Commercial 
BK00 EU053148 

A/swine/Haseluenne/IDT2617/2003 HL03 GQ161119 

US 

Swine 

A/swine/Iowa/110600/2000 

Commercial 

FSXP/IA00 
Not available 

A/swine/Oklahoma/0726H/2008 FSXP/OK08 

A/California/04/2009 FSPDM/CA09 EPI_ISL_393964 

COBRA/SW1 

Experimental 

COBRA/SW1 
Not available 

COBRA/SW2 COBRA/SW2 

Human and 

swine hybrid 
COBRA/P1 COBRA/P1 

Not available 

Human 

COBRA/X3 COBRA/X3 

COBRA/X6 COBRA/X6 

Global 

A/Brisbane/59/2007 

Seasonal 

BR07 KF009550 

A/California/07/2009 CA09 CY121680 

A/Michigan/45/2015 MI15 KU933493 

A/Brisbane/02/2018 BR18 EPI1692062 

A/Guangdong-Maonan/SWL1536/2019 GDMN19 EPI1719956 
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Table 4.1B. H1N1 G4 swIAV strains included in analyses. 

No. Strain Name Accession No. 

1 A/swine/Heilongjiang/1214/2016 MN416609 

2 A/swine/Jilin/21/2016 MN416627 

3 A/swine/Shandong/1207/2016 MN416643 

4 A/swine/Hebei/0113/2017 MN416596 

5 A/swine/Anhui/0202/2018 MN416586 

6 A/swine/Beijing/0301/2018 MN416589 

7 A/swine/Henan/SN11/2018 MN416620 

8 A/swine/Jiangsu/J006/2018 MN416626 
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Table 4.2. Average EpiCC score, and vaccine T cell epitope coverage of US swine influenza vaccine strains compare to US 

circulating swIAV and G4 strains. 

Vaccine 

F
S
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D
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/C
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9
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A
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W
1
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R

A
/S

W
2
 

C
O

B
R

A
/P

1
†

 

Type Commercial Experimental 

US 

Circulating 

IAV Strains 

(n = 150) 

Average 

EpiCC 

Score 

(x10-2) 

Class I 3.49 1.98 2.98 2.48 3.27 2.35 

Class II 4.35 2.90 3.78 3.54 4.26 3.26 

Total 7.84 4.88 6.76 6.02 7.53 5.61 

Average Maximum 

EpiCC Score (sd)‡ 
11.29 (0.25) 

Vaccine Coverage 

(%)§ 
69.4 43.2 59.9 53.3 66.7 49.7 

Predicted Vaccine 

Efficacy¶ 
Protective 

Not 

protective 

Partial 

protective 

Not  

protective 
Protective 

Not 

protective 

G4 

(n = 8) 

Average 

EpiCC 

Score 

(x10-2) 

Class I 1.69 1.69 1.69 1.77 1.97 2.06 

Class II 2.20 2.50 2.12 2.81 2.59 2.93 

Total 3.89 4.19 3.81 4.58 4.56 4.99 
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Average Maximum 

EpiCC Score (sd) ‡ 
11.66 (0.15) 

Vaccine Coverage 

(%)§ 
33.4 35.9 32.7 39.3 39.1 42.8 

Predicted Vaccine 

Efficacy¶ 

Not 

protective 

Not 

protective 

Not  

protective 

Not  

protective 

Not  

protective 

Not 

protective 

†COBRA/P1 is an experimental vaccine that derived from both swine and human HA sequences (termed as ‘hybrid’  

in this study). 

‡Average maximum EpiCC score (and standard deviation) of full-length swIAV strains, expressed in x10-2. 

§Vaccine T cell epitope coverage range: >65%: protective, 56.6%–65%: partial protective, and <56.6%: non‐protective.  

¶Vaccine efficacy threshold defined in Gutiérrez et al 2017 using experimental data that served as a proxy for this  

analysis. 
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Table 4.3. Commercial and experimental vaccination and H1N1 challenge studies in EU.  

No. 

Vaccine 

H1N1 

challenge 

virus† 

Mean HI antibody titers 

prior to challenge 

Virus titer 

in lungs 

Clinical 

outcome 

EpiCC score (x10-2) 

Ref. 
Product 

name 

H1N1 

strain 

Against 

homologous 

vaccine 

strain 

Against 

challenge 

virus 

Class 

I 

Class 

II 
Total 

1 Gripovac NJ76 BE/1/83 80-320‡ 40-160‡ Negative Protection 3.50 2.54 6.04§ [182] 

2 

Gripovac NJ76 

GT/112/07 

86 5 Significantly 

lower (only 

in the left 

lung half) 

Partial 

protection 
2.73 2.01 4.74¶ 

[183] 

Suvaxyn 

Flu 
NL80 

80 10 Significantly 

lower 
Protection 4.02 2.87 6.89 

3 Experimental 

NJ76 

BE/1/98 

305 16 No 

significant 

difference 

Protection 2.73 2.08 4.81 

[184] 
BE83 

235 91 Significantly 

lower 
Protection 4.26 3.33 7.60 

BE98 
197 197 Significantly 

lower 
Protection 6.44 5.29 11.73 
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Gripovac NJ76 
610 197 Significantly 

lower 
Protection 2.73 2.08 4.81 

4 
Respiporc 

Flu3 
HL03 PD/15/1981 

> 256 Not 

detected 
Significantly 

lower 

Protection 

but less 

effective 

3.80 2.84 6.64 [185] 

Note: This analysis focused on the H1N1 component of previously available swine influenza vaccines in EU or experimental swIAV strains. The primary criterion for assessing vaccine protection in EU 

vaccine challenge studies was measurement of lung virus titers [14], [15]. Abbreviation: EpiCC, Epitope Content Comparison. 

†All H1N1 challenge viruses were all swine strains, with abbreviations BE: Belgium; GT: Gent; PD: Potsdam. 

‡Original data reported HI antibody titers prior to challenge against homologous vaccine strain/challenge virus as range instead of mean. 

§Minimum EpiCC score that predicted to confer protection. 

¶Minimum EpiCC score that predicted to confer partial protection.
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Table 4.4. Average EpiCC score, and vaccine T cell epitope coverage of EU swine 

influenza vaccine strains compare to EU circulating and G4 strains. 

Vaccine BK00 HL03 

Type Commercial 

EU 

Circulating 

IAV Strains 

(n = 150) 

Average EpiCC 

Score (x10-2) 

Class I 2.07 2.93 

Class II 2.86 3.73 

Total 4.93 6.66 

Average Maximum EpiCC Score 

(sd)† 
11.55 (0.28) 

Vaccine Coverage (%)‡ 42.7 57.7 

Predicted Vaccine Efficacy§ 
Partially 

protective 

Likely 

protective 

G4 

(n = 8) 

Average EpiCC 

Score (x10-2) 

Class I 1.80 3.46 

Class II 2.52 4.20 

Total 4.32 7.66 

Average Maximum EpiCC Score 

(sd)† 
11.66 (0.15) 

Vaccine Coverage (%)‡ 37.0 65.7 

Predicted Vaccine Efficacy§ 
Not  

protective 

Likely  

protective 

†Average maximum EpiCC score (and standard deviation) of full-length swIAV strains, 

expressed in x10-2. 

‡ Vaccine T cell epitope coverage range for EU swine influenza vaccines: >51.8%: protective, 

40.6%–51.8%: partial protective, <40.6%: non‐protective. 

§Vaccine efficacy threshold as defined in Table 4.3 that served as a proxy for this analysis.
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Table 4.5. Average EpiCC score, and vaccine T cell epitope coverage of US human influenza vaccine strains compare to US 

human circulating IAV and G4 strains. 

Vaccine BR07 CA09 MI15 BR18 GDMN19 COBRA/X3 COBRA/X6 COBRA/P1† 

Type Seasonal H1N1 Experimental 

US Human 

Circulating 

IAV 

Strains 

(n = 300) 

Average 

EpiCC Score 

(x10-2) 

Class I 3.57 4.27 4.56 4.69 4.74 3.20 3.57 3.03 

Class II 3.95 4.56 4.72 4.64 4.77 3.63 3.88 3.34 

Total 7.52 8.83 9.28 9.33 9.51 6.83 7.45 6.37 

Average Maximum EpiCC 

Score (sd)‡ 
12.76 

Vaccine Coverage (%) 58.9 69.2 72.7 73.1 74.5 53.5 58.4 49.9 

G4 

(n = 8) 

Average 

EpiCC Score 

(x10-2) 

Class I 2.02 2.08 2.00 2.06 2.00 2.06 2.12 2.41 

Class II 2.66 1.96 1.92 2.12 1.96 2.50 2.55 2.71 

Total 4.68 4.04 3.92 4.18 3.96 4.56 4.67 5.12 

Average Maximum EpiCC 

Score (sd)‡ 
12.84 

Vaccine Coverage (%) 36.4 31.5 30.5 32.6 30.8 35.5 36.4 39.9 

†COBRA/P1 is an experimental vaccine that derived from both swine and human HA sequences (termed as ‘hybrid’ in this study). 

‡Average maximum EpiCC score (and standard deviation) of full-length human IAV strains, expressed in x10-2. 
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Figure 4.1. Analysis workflow to quantify the degree of epitope conservation between target 

vaccines, G4 and circulating IAV strains. The key steps include Data Processing, 

Immunoinformatics Workflow and Data Interpretation.
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Figure 4.2. This radar plot of the EpiCC analysis enables the comparison of T cell epitope 

relatedness of the US swine influenza vaccines (A: Commercial; B: COBRA) to circulating 

US swIAV and G4 strains. EpiCC scores are plotted in a radial fashion in order of chronological 

time while also grouping flu variants into strain families, and color-coded lines represent each of 

the vaccine strains (V) compared to each of the circulating strains. Each of the vaccine strain labels 

is shown in legend. The ring surrounding the radar plot identifies the swIAV sequences metadata 

using the US clade naming system, which includes alpha, beta, delta, gamma and pandemic 2009 

lineage (PDM-09). The two shaded grey circles near the center of the radius define vaccine efficacy 

thresholds as reported in Gutiérrez et al 2017 [124]. Refer to Figure 4.1 – Data Interpretation for 

more details. As indicated in both A and B, the G4 strain has few cross-conserved T cell epitopes 

with vaccine strains (all vaccines EpiCC scores fall below the protective thresholds).
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Figure 4.3. Comparison of total (class I and class II) shared T cell epitope relatedness of 

European swine influenza vaccines against EU circulating swIAV and G4 strains as 

measured using the EpiCC algorithm. Representative individual strain sequences are numbered, 

and their clade designation is labeled in the outer ring surrounding the radar plot. The letter ‘V’ 

designates the EpiCC scores for the European vaccine strains. The experimentally defined 

protection thresholds for vaccine efficacy are shown by the shaded grey circles. Note that the 

observed EpiCC scores indicate that the European vaccine strain, HL03, may provide protective 

immunity against G4.
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Figure 4.4. EpiCC analysis of human influenza vaccines against US circulating human IAV 

and G4 strains (A: human H1N1 seasonal influenza vaccines; B: human COBRA influenza 

vaccines). The outer ring surrounding the radar plot shows sequence metadata. The symbol ‘V’ 

represents vaccine strains, and each vaccine strain is color-coded as indicated in the legend. A 

protective vaccine efficacy T cell epitope conservation (EpiCC) threshold for human influenza 

vaccine efficacy has not been defined, as most influenza vaccines generate cross-reactive antibody. 

Note that EpiCC scores for G4 are extremely low compared to scores for other strains.
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CHAPTER 5 

SEQUENCE-BASED EVALUATION OF CD4+ T CELL IMMUNE LANDSCAPE OF H3N2 

SEASONAL INFLUENZA A VIRUS 3 
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Sequence-based evaluation of CD4+ T cell immune landscape of H3N2 seasonal influenza A virus. 

To be submitted to Frontiers in Immunology, 4/2023.
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Abstract 

The most effective public health intervention to fight against seasonal influenza infection 

is through immunization. However, the effectiveness of each seasonal influenza vaccine varies, 

and in some cases, vaccines are antigenically mismatched with the circulating virus hemagglutinin 

(HA) surface protein. To improve vaccine antigen selection, it may be necessary to anticipate viral 

evolution and identify key antigenic changes that may decreasing vaccine efficacy. Here, we aim 

to define the human T cell immune landscape of H3N2 influenza A virus and to measure drifts in 

the sequences of T cell epitopes with viral evolution. We use HA sequence data to predict potential 

T cell epitopes to examine how antigenic drift correlates with the diversity of T cell epitopes 

presented by the viral population over time. Our findings show that conserved CD4+ effector T 

cell epitopes (Teff) decline in subsequent viral populations, after a new vaccine virus is introduced, 

which may be linked to immune escape from the imprinted T cell repertoire. Multidimensional 

scaling and k-means clustering analyses demonstrate that Teff can be categorized into clusters 

based on six T cell attributes. At least four distinct clusters are detected prior to 1990, however, 

clusters overlap thereafter, indicating that there is an increase in the diversity of T cell epitopes 

over time. Our results also show that H3 HA T cell epitope evolution is linear with HA genetic 

drift. T cell epitope landscape changes over time appears to be driven by immune pressure, 

resulting in the loss of conserved T cell epitopes as well as new T cell epitope introductions. The 

observed decrease in T cell epitope conservation with each vaccine virus after it is introduced 

suggests that changes are due to immune pressure. New influenza vaccination strategies may be 

warranted.
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Introduction 

Seasonal influenza has resulted in substantial morbidity and mortality as well as direct 

socioeconomic impact on global populations. The World Health Organization (WHO) estimates 

that seasonal influenza contributes to one billion illnesses annually, of which 3 - 5 million are 

severe. There are 290,000 – 650,000 influenza-related respiratory deaths each year [189], [190]. 

The viruses that are primarily responsible for this episodic disease are influenza A viruses (IAVs), 

including the H1N1 and H3N2 subtypes, and influenza B viruses (IBVs), of the Victoria and 

Yamagata lineages. The H3N2 subtype viruses tend to be associated with more severe influenza 

seasons [191]. 

Six of the last ten influenza seasons in the northern hemisphere were associated with the 

influenza A H3N2 subtype (A/H3N2). While all influenza viruses undergo antigenic drift, A/H3N2 

viruses have exhibited more frequent genetic changes since their emergence in the human 

population in 1968 as compared to the influenza A H1N1 subtype (A/H1N1) and IBVs [191]–

[193]. The rapid pace of A/H3N2 evolution has frustrated vaccination efforts, due to genetic and/or 

antigenic disparity between the H3 components of the influenza vaccine and circulating influenza 

viruses. Mismatches between the vaccine virus and the circulating virus hemagglutinin (HA) 

protein contribute to lower H3 vaccine effectiveness [194]. Other factors such as egg-adapted 

mutations that are more likely present in A/H3N2 viruses during influenza vaccine production 

process can also reduce their potential effectiveness against circulating influenza viruses. The 

Centers for Disease Control and Prevention (CDC) reports confirm that vaccine effectiveness is 

more often achieved against IBVs and A/H1N1 than for A/H3N2 viruses [193], [195].  

Even though the selection of the seasonal influenza vaccine virus appears to be difficult, 

especially for A/H3N2 vaccines, annual vaccination remains the most preferred preventive 
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measure for combatting seasonal influenza infection. It is likely that A/H3N2 viruses are more 

genetically and antigenically diverse due to accelerated evolution to escape host immune pressures. 

Thus, understanding A/H3N2 viral evolution and the impact on host immune selection pressures 

may be useful for optimizing vaccine design strategies.  

The immune system develops highly specific protective antibodies and memory T cells in 

response to natural infection and vaccination. Thus, two types of immune pressure may contribute 

to immune escape and viral evolution. If antibody-mediated immunity is the only pressure that 

causes viral evolution, T cell epitopes should remain unchanged in the evolving viral sequence or 

exhibit no greater change than would be observed by random chance. However, changes in T cell 

epitope content over time would seem to indicate that T cell mediated immunity also contributes 

to viral evolution. 

 Previous studies of influenza vaccines have primarily focused on the contributions of 

humoral immunity to antigenic drift. This study will address an existing knowledge gap related to 

the impact of cellular-mediated immunity, specifically the impact of CD4+ T cell immunity on 

viral evolution. Since CD4+ T cells provide essential help to B cells and CD8+ T cells, they play 

a critical role in defense against influenza virus infections. Their role in protection from infection 

through antibody production and viral clearance has been confirmed [92], [93], [170], [196]. 

Human studies have shown that cellular immune responses are important to protection [94] and 

that conserved influenza-specific T cells resulting from previous influenza infections can cross-

react with similar epitopes found in novel IAV strains [5], [6], [104]. In addition, when cross-

reactive antibodies are absent due to antigenic mismatch, influenza-specific CD4+ immune 

responses reduce disease morbidity [5].  
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The hemagglutinin inhibition (HI) assay that has been used to determine the antigenicity 

of the HA has become less reliable over the last decade due to changes in glycosylation [197], 

[198]. Sequence-based approach is a newer strategy that may help characterize antigenicity and 

inform research on viral diversity [199], [200]. In this study, we used T cell epitope mapping tools 

along with a new method for studying potential cross-conservation of T cell epitopes at the residues 

that interface with T cell receptors (TCRs).  Essentially, a T cell epitope can be cross-reactive 

despite not being identical in sequence to another epitope, if the TCR-facing (TCRf) amino acids 

in the two sequences are identical [129], [201]. In other words, two or more peptide-major 

histocompatibility complex (p-MHC) ligands from different influenza viruses can be recognized 

by the same T cell’s TCR [135]. Here, we apply the T cell epitope sequence-based approach to 

identify potential CD4+ T cell immune pressure on A/H3N2 virus sequences in viral evolution. 

Instead of focusing on sequence identity as a means of understanding viral evolution, we analyze 

changes in the T cell epitopes by predicting class II T cell epitopes with potential binding affinity 

to human leukocyte antigen (HLA) alleles and analyzing how TCRf residues contribute to epitope 

cross-conservation and variation between vaccine strains and circulating viruses [124]. We also 

categorize T cell epitopes as being T effector or potentially tolerated (non-T effector) by examining 

the TCRf residues that are conserved with the human genome. 

 

Materials and Methods 

Data collection 

To study the human T cell immune landscape of A/H3N2 virus, we analyzed two sets of 

sequences that spanned across different time frames: dataset A, 1968 - 2004 and dataset B, 2010 - 

2020 (Figure 5.1). Dataset A contained 269 HA nucleotide sequences used by Smith et al [202]. 
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This well-characterized dataset consisted of 253 circulating and 16 vaccine viruses (Supplemental 

Table C-1A) with corresponding HI data; (2) We used the same analysis approach for dataset B 

which contained 1020 sequences isolated between 2010 and 2020. We retrieved these more recent 

sequences from a publicly available database, Global Initiative on Sharing Avian Influenza Data 

(GISAID EpiFlu; http://platform.gisaid.org/epi3/; accessed in July 2022).  

 

Data curation and subsampling of modern (2010 to 2020) sequences 

For dataset B, we first compiled a large set of HA sequences that have associated HI data 

provided by the Centers for Disease Control and Prevention (CDC). Prior to finalizing the set of 

sequences, we removed sequences that have a missing isolation date. We also removed sequences 

that had discrepancies in labeling. The processed dataset resulted in a total of 9654 A/H3N2 HA 

sequences, and we then used IQ-TREE with substitution model [203] to construct a phylogenetic 

tree prior to data subsampling. To efficiently examine A/H3N2 phylogenetic diversity observed 

over the last ten influenza seasons, the Phylogenetic Diversity Analyzer (PDA) [178] was used to 

subsample 1020 HA nucleotide sequences worldwide ranging from 2010 to 2020. Of the 1020 sub-

sampled A/H3N2 strains, 1007 sequences had associated HI data, including seven vaccine viruses 

(Supplemental Table C-1B). The remaining 13 sequences did not have available HI data of which 

11 were egg-based vaccine viruses and two were cell-based vaccine viruses. The egg-based and 

cell-based vaccine viruses were identified by referring to the World Health Organization (WHO) 

recommendations for influenza vaccine composition [204]. 

To evaluate the consistency of our results for the modern sequences, we added two random 

subsampling replicates from the total of 9654 A/H3N2 sequences and analyzed these subsamples 
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in addition to the phylogenetic-based subsampling dataset B. The two random subsampling 

replicates consisted of 1036 and 1034 A/H3N2 HA sequences, respectively.  

 

Control group for dataset B 

To confirm the results, we established a control group using canine IAV sequences was 

obtained from GISAID. This set of control group sequences consisted of 252 canine A/H3N2 HA 

sequences isolated between 2009 and 2019. Changes in the T cell epitope content of these 

sequences was considered less likely to have been due to human immune pressure. 

 

T cell epitope prediction 

The first step in the immunoinformatics analysis for this study was to identify potential T 

cell epitopes that are highly likely to form a peptide-major histocompatibility complex (p-MHC) 

for T cell receptor (TCR) recognition and signaling in a broad human population. To evaluate the 

immunogenicity of each protein sequence, the HA protein sequences were translated using 

Sequence Manipulation Suite [205] and were screened for potential binding to human HLA using 

HLA-restricted T cell epitope prediction tool called EpiMatrix (EMX), a T cell epitope prediction 

algorithm developed by EpiVax (Figure 5.1). This tool is available for through academic 

collaborations.  

 Given the relevance of class II T cell epitope for stimulating CD4+ T cell immunity [114] 

and the relevance of CD4+ T cell help to the generation of effective antibody responses [92], [93], 

[170], [196], this study focused on class II HLA-restricted T cell epitopes. Amino acid sequences 

were first parsed into overlapping 9-mers to capture all possible peptides of all input sequences. 

Next, using a position-specific scoring matrix, each 9-mer peptide was assessed for class II binding 
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likelihood across nine HLA supertype alleles, i.e., DRB1*01:01, DRB1*03:01, DRB1*04:01, 

DRB1*07:01, DRB1*08:01, DRB1*09:01, DRB1*11:01, DRB1*13:01, and DRB1*15:01. These 

class II HLA allele supertypes used in the algorithm cover the genetic diversity of more than 95% 

of the global human populations [114], [121], [122]. 

 For each 9-mer peptide (i) in each individual allele (a) of a set of HLA alleles (A), EMX 

raw scores, r, are normalized to Z-scores using the average μ and the standard deviation σ of scores 

calculated for 100,000 random 9-mers [114]. Peptides with Z-scores  1.64, which correspond to 

the top 5% of any given 9-mers sample, are assessed as having higher HLA binding potential as 

compared to those with lower scores [114], [125]. Higher Z-scores are associated with higher HLA 

binding probability and considered to be a potential epitope or “hit” [124], [126]. In addition, any 

9-mer peptide that is identified as having high scores or “hits” for at least four out of nine HLA 

supertype alleles is highly likely to be recognized by a broad range of individuals in any given 

population. This type of pattern defines a 9-mer peptide as being a potential ‘promiscuous’ T cell 

epitope and of greater immunological importance for immune responses at the population level. 

Peptides that have more than four hits in one 9-mer frame are said to have high epitope density 

and are prioritized for vaccine design. In general, higher scoring peptides that have higher T cell 

epitope content are more likely to be validated or to have been validated for T cell response. In the 

context of this analysis, epitope predictions were compared to experimentally verified and 

published influenza epitopes reported in the Immune Epitope Database (IEDB) as a means of 

external validation. 

 

 

 



 

108 

Cross-conservation analysis 

JanusMatrix (JMX) identifies T cell epitopes that are restricted by the same HLA that may 

be different in terms of HLA binding amino acid residues (agretope) but have the same TCR-

facing (TCRf) residues (epitope). JMX expands on EMX output, using EMX-identified epitopes 

to search for the potential cross-reactivity between the MHC-binding epitope TCRf and T cell 

epitopes derived from the human genome or human pathogens [114], [129].  

Cross-conservation of T cell epitopes at the TCR face is highly relevant for two reasons. 

First, cross-conservation at the TCR face with epitopes that have been encountered in the context 

of prior infections may drive pre-existing immune response [206]–[208]. In addition, TCR can 

interact with a range of T cell epitopes that presented in the form of p-MHC by HLA. If these T 

cell epitopes are derived from self-antigens, it is highly likely that the T cell with the cognate TCR 

has been trained to be non-reactive or eliminate in the thymus (tolerant) or, it may be actively 

tolerogenic [129]. We have determined that peptides that contain TCRf residues that are highly 

cross-conserved with self-epitopes restricted by the same HLA can be tolerogenic in vitro and in 

vivo [201]. Thus, in addition to using JMX to find potential cross-reactive T cell epitopes in 

different viruses, we use the JMX tool to categorize T cell epitope phenotypes (effector or non-

effector) based on the similarity at the TCR face with self and non-self-epitopes (Figure 5.1). 

In this study, T cell cross-reactivity of the A/H3N2 strains from both datasets were 

evaluated by defining the binding likelihood of every epitope from input sequences that has 

identical TCRf residues to epitopes found in other sequences of A/H3N2 HA, given that the 

epitopes bind to the same HLA allele. Two epitope peptides are assumed to be potentially cross‐

reactive if they have identical TCRf at positions 2, 3, 5, 7, 8 (from 9-mer class II epitopes binding 

core) regardless of differences on their HLA‐facing amino acids. In addition, JMX is used to 
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compare HA epitopes with human genome epitopes to separate epitopes by putative phenotype 

into effector (immunogenic) T cell epitopes (Teff) and non-effector T cell epitopes (non-Teff). 

This division is based on a threshold of cross-conservation with self-epitopes that has been 

validated in retrospective and prospective studies [209]–[211]. JMX identifies potential human-

like T cell epitopes in each IAV by assessing the amino acid residues between IAV epitopes and 

human epitopes at TCRf. An R script (available at https://github.com/swantan) was developed to 

compute a ratio of self-reactive hits to pathogen reactive hits, termed JMX Human Homology 

score, for each A/H3N2 HA peptide by applying the following equation, where a hit was defined 

as the putative epitope with EMX Z-scores greater than or equal to 1.64: 

 

JMX Human Homology score

=  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑟𝑜𝑠𝑠 − 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 ℎ𝑖𝑡𝑠 𝑜𝑓 ℎ𝑢𝑚𝑎𝑛 𝑒𝑝𝑖𝑡𝑜𝑝𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑎𝑙𝑙𝑒𝑙𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝐴𝑉 𝐻𝐴 𝑝𝑢𝑡𝑎𝑡𝑖𝑣𝑒 𝑒𝑝𝑖𝑡𝑜𝑝𝑒 𝑎𝑙𝑙𝑒𝑙𝑒 ℎ𝑖𝑡𝑠
 

 

With the computation of JMX Human Homology score, we can categorize putative T cell 

epitopes identified by EMX in A/H3N2 HA sequences as being of the Teff or non-Teff based on 

their degree of homology with epitopes in the human genome. As Teff is the focus of our study, if 

a predicted T cell epitope of HA has a JMX Human Homology score less than or equal to 5, it is 

considered to be more likely to induce effector T cell response. If it has a JMX Human Homology 

score greater than 5, it is considered to be non-Teff. 

We then consider T cell cross-reactivity between IAV sequences as mentioned earlier and 

perform pairwise comparison to detect cross-conservation of T cell epitopes between IAV strains 

using custom R scripts (available at https://github.com/swantan). A pair of epitopes from two 

different A/H3N2 viruses that have identical TCRf are regarded as shared T cell epitopes and are 

https://github.com/swantan


 

110 

assumed to have a high likelihood to induce cross-reactive T cell response. In contrast, if a pair of 

epitopes have non-identical TCRf, they are considered to be unique epitopes (non-cross-

conserved) to the compared A/H3N2 virus sequence. The number of shared and unique epitopes 

for Teff are calculated and two n x n matrices are generated (shared Teff and unique Teff) 

respectively. 

 

Antigenic cartography and clade designation 

To compare T cell epitope changes to antigenic evolution of A/H3N2, we followed the 

method of Smith et al [202] using the published antigenic cartography method to construct 

antigenic map of all available HI assay data. H3 antigenic maps of the two datasets were 

constructed using the racmacs package in R [212].  

We used the antigenic group information of the well-characterized dataset identified from 

the Smith et al study. For the contemporary sequence data collected between 2010-2020, we used 

the Nextclade program to assign clade as a discrete trait for each taxon [213]. 

 

Multidimensional scaling (MDS) and k-means clustering analysis 

To better represent the large amount of T cell epitope data generated from T cell epitope 

prediction and cross-conservation analysis, we used a combination of multidimensional scaling 

(MDS) approach and the k-means clustering algorithm to visualize partitions and to interpret T 

cell epitope data [214], [215]. Classic multidimensional scaling calculation is applied to transform 

each high dimensional dataset (containing the matrices of T cell epitope attributes such as binding 

affinity scores for nine class II supertype alleles, T cell epitope distance, epitope allele hit count, 

T cell cross-conservation scores/JMX Human Homology scores, and human epitope cross-reactive 
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hit count) and to reduce it to a low dimensional set of data while retaining most of the information. 

The retained information is represented by two-dimensional coordinates which illustrate the 

distance between two viruses based on defined measurable attributes.  

Subsequently, clustering of the A/H3N2 viruses was performed based on the computed 

coordinates of the previously mentioned attributes using the k-means algorithm. Given that k-

means is an unsupervised machine learning algorithm, Bayesian Information Criterion (BIC) was 

used to estimate the optimum number of k-means clusters [216]. MDS and k-means clustering 

were carried out using the cmdscale and kmeans package in R [214], [215]. A T cell antigenic map 

was created for each of the previously mentioned attributes to obtain a better visualization. 

Additionally, we conducted a principal component analysis (PCA) for each of the T cell 

epitope attributes mentioned above. PCA is another statistical method for reducing high-

dimensional data by linear transformation. Principal components were summarized in their 

contribution to total variation in the data and relative loadings from binding affinity scores of nine 

class II supertype alleles, T cell epitope distance and T cell cross-conservation scores (JMX Human 

Homology scores). This served as a sensitivity check for MDS, as well as a means of determining 

the source of variation. PCA was performed using the prcomp package in R [217]. We used 

screeplot to plot the variances against the number of principal component (PC) and chose 

appropriate PCs that best represent the datasets [217]. Subsequently, we sorted out variable 

loadings/rotation to identify characteristics that significantly vary between isolates. 

 

Genetic hamming distance 

Genetic hamming distance is defined as the number of bases by which two nucleotide sequences 

differ. The distance was calculated by summing the number of different bases between each 
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nucleotide sequence in the datasets. A python script developed by Chen et al was applied to 

perform the calculation [218]. 

 

Phylogenetic inference 

The two datasets of 269 and 1020 nucleotide sequences of the HA gene were used to 

reconstruct the phylogeny of A/H3N2 separately, using the Bayesian phylogenetic method. The 

Bayesian phylogenetic analysis was performed using a lognormal relaxed molecular clock in a 

Bayesian statistical framework implemented in BEAST v.1.10.4 [219]. Molecular clock rates are 

uncorrelated with an initial mean of 0.0033 with a uniform prior ranging from 0.0 to 1.0. A GTR-

GAMMA nucleotide substitution model [220] and a GMRF Bayesian Skyride coalescent prior 

[221] were used. Six independent Markov chain Monte Carlo (MCMC) simulations of 100 million 

generations were combined using Logcombiner [222] after removing 10% burn‐in, with effective 

sample size (ESS) value greater than 300 in Tracer [223]. TreeAnnotator version 1.10.4 

(http://beast.bio.ed.ac.uk/) [222] was used to generate the maximum clade credibility (MCC) 

phylogenetic tree. Clustering information of all T cell epitope attributes against H3 HA phylogeny 

tree tips were visualized using ggtree package version 2.2.4 in R [224]. 

 

Bayesian Stochastic Search Variable Selection (BSSVS) analysis 

An empirical tree set of 500 posterior trees was created using the previously described 

Bayesian phylogenetic reconstruction. This tree set was used to implement a discrete trait diffusion 

model in BEAST v.1.10.4. The antigenic group (previously described) for isolates was used as the 

discrete trait for the inference of discrete trait diffusion patterns and to infer co-variate influence 

on the diffusion process. An asymmetric substation model was utilized using non-reversible 

http://beast.bio.ed.ac.uk/
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continuous time Markov chain. To reduce the number of rates to the most parsimonious supported 

network, the Bayesian Stochastic Search Variable Selection (BSSVS) was employed [225]. Three 

independent runs of 10 million generations were performed for the BSSVS models, log files 

resulting from the analyses were diagnosed using Tracer v1.7.2 and combined using LogCombiner 

v1.10.4. The Bayes factor support for the significant non-zero transition rates were calculated 

using SpreaD3 v0.9.7 [226]. The mean transition rates were calculated from non-zero actual rates 

of the BSSVS log file using an in-house python script. The level of Bayes factor support indicating 

the level of support for a given model/rate versus a second model/rate can be described using the 

criteria established by Kass and Raftery [227]. 

 

Results 

T cell epitope diversity of the characteristic dataset 

Given the relevance of class II T cell epitope to CD4+ T cell immunity, which was the 

focus of this study, the EMX class II epitope prediction algorithm was employed to predict 9-mer 

sequence binding affinity to a panel of nine prevalent class II HLA alleles for each of the 9-mer 

peptides contained in the sequence of the HA antigens of selected A/H3N2 viruses. The 269 full-

length HA sequences spanning 35 years were computationally screened for T cell epitopes for each 

overlapping 9-mer frame (14). On average, each analyzed HA sequence was 566 amino acids in 

length and as each frame overlaps the previous one by 8 residues, there were roughly 558 9-mer 

assessments for each strain.  

To determine the binding affinity of each 9-mer frame, the EMX Z-score was calculated 

for each of the nine supertype HLA DR alleles. Any Z-score that is greater than or equal to 1.64, 

which corresponds to the top 5% of scores for any of the HLA DR alleles, is defined as having 
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significant binding potential to the respective allele and is considered to be an “allele hit”. A 9-

mer peptide that has allele hits for at least four out of nine HLA DR supertypes is considered to be 

a promiscuous epitope with a broader allele coverage of general human populations.  

A total of 4,421 potential T cell epitopes were identified. Among these, 282 (6.4%) were 

predicted to have at least four out of nine HLA allele hits (Table 5.1). 3,548 of the potential 9-mer 

sequences (80.3%) were predicted to have limited potential to any of the HLA alleles (non-binders) 

and 591 of the 9-mers (13.4%) had between one to three allele hits. 

 

Cross-conservation analysis of class II HA epitopes and human peptides 

Cross-conservation of T cell epitopes can be delineated when the TCR of a given T cell 

interacts with a range of T cell epitopes that have identical TCRf residues even though they may 

have different on their HLA‐facing amino acids, as long as they bind to the same HLA allele. 

Epitopes that are highly ‘human-like’ or cross-conserved with multiple human T cell epitopes, as 

defined by JMX, may limit immune response due to tolerance mechanisms (tolerance to self as 

opposed to non-self-epitopes). In other words, the introduction of human-like T cell epitopes may 

suggest that the virus is adapting to the host. We applied JMX to detect cross-conservation between 

the T cell epitopes predicted from HA and peptides derived from human proteins. Similar to the 

EMX allele hit definition, a cross-conserved hit is defined as a human peptide with the same TCRf 

residues as the HA T cell epitope and has significant binding potential to the same HLA allele (Z-

score greater than or equal to 1.64). 

The JMX Human Homology score (T cell epitope cross-conservation score) is derived 

from the number of cross-reactive hits to human peptides and HA allele hits. In general, the lower 

the number of cross-reactive human epitope hits to any given HA T cell epitope (JMX Human 
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Homology score less than or equal to 5), indicates that there is a higher likelihood for the viral 

epitope to stimulate effector T cell response (due to the absence of tolerance to the peptide). We 

used the JMX Human Homology score for each HA 9-mer peptide to classify T cell epitope 

phenotypes into Teff or non-Teff. T effector immune responses by CD4+ T cells would support B 

cell responses and other immune functions. 

Since the binding potential of HA epitopes (HA allele hit) is also a determinant of effective 

T cell response, we implemented a set of rules that combined the allele hit and JMX Human 

Homology score to sort HA epitopes into three possible categories: putative T effector epitopes 

(Teff), potentially tolerated epitopes (non-Teff) and non-binders (Table 5.1). Considering the 

results for the EMX and JMX analyses for each 9-mer, among the 4,421 putative T cell epitopes 

that have at least one allele hit, 501 (11.3%) could be categorized as Teff while 90 (2.0%) were 

categorized as non-Teff. Of the 282 (6.4%) putative T cell epitopes with at least four allele hits, 

268 (6.1%) were predicted to be Teff and were promiscuous T effector epitopes and 14 were 

identified as being potentially tolerated. 

 

Characterization of HA diversity 

As cross-reactive memory T cells can be stimulated by epitopes with identical TCRf 

residues despite having different HLA binding residues, as long as the sequences bind to the same 

alleles, this aspect may be pertinent to characterization of T cell immune dynamics that change 

over time. To assess the relatedness of T cell epitope between two A/H3N2 viruses (vaccine or 

circulating virus), we expanded cross-conservation analysis to quantify epitopes and the predicted 

phenotypes of epitopes that were cross-conserved between two A/H3N2 viruses or unique to 

individual A/H3N2 virus (non-cross-conserved).  
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To perform this analysis, a pairwise comparison of T cell epitope between the 269 IAV 

viruses was carried out for Teff epitope. Each Teff epitope for a given HLA-DR allele was 

evaluated at the TCRf and was denoted as conserved between IAV viruses when the TCRf amino 

acid residues were identical between the two IAV viruses, if not, it was identified as unique (non-

cross-conserved). Briefly, we generated two matrices for this data: conserved Teff and unique Teff. 

 

Distribution of Teff epitopes over time 

In addition to seasonal influenza virus evolution, the HA component of seasonal influenza 

vaccines change almost annually. We compared seasonal influenza viruses to vaccines, measuring 

the presence of conserved Teff epitopes over time, first in reference to the original A/Hong 

Kong/1/1968 (HK68) strain and then for each of the 15 known A/H3N2 vaccine viruses from 1968 

to 2004 (Figure 5.2; Supplemental Figure C-1A). We observed that there was an immediate decline 

of conserved Teff epitopes after each vaccine introduction and the decrease of conserved epitopes 

was significant in 12 out of 16 seasons (Figure 5.2A). When all subsequent circulating A/H3N2 

viruses were compared to the original HK68 virus ‘origin’, the number of conserved Teff epitopes 

dropped continuously, indicating that conserved Teff epitopes continually decrease with time.  

In 2000-2004 season, the vaccine virus, A/Moscow/10/1999 (MO99) and A/H3N2 viruses 

circulating in the same season differed by as many as 20 conserved Teff epitopes (R = -0.83; p-

value = 5.1 x 10-4). There were as few as nine (minimum) to as many as 30 (maximum) conserved 

Teff epitopes changes between the vaccine viruses and the A/H3N2 viruses circulating at a given 

time (Supplemental Table C-2A). A/Sichuan/02/1987 (SI87) had the smallest total number of 

changes (Figure 5.2B): nine conserved Teff epitopes were lost in the A/H3N2 viruses circulating 

in that season. Although there was no consistent pattern in terms of the median changes of 
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conserved Teff epitopes (Figure 5.2B), we observed that there was no change in median for the 

two consecutive seasons: TX77 and BK79. The largest increase median of eight conserved Teff 

epitopes between PH92 and LE86 whereas the largest drop of median of seven conserved Teff 

epitopes happened between BJ89 and BJ92. Overall, there were more decreasing of conserved Teff 

epitopes compared to increasing conserved Teff epitopes (Figure 5.2B). 

In contrast, the number of unique Teff epitopes exhibited an inverted trend as compared to 

conserved Teff epitopes. The number of unique Teff epitopes steadily increased over time with 

respect to the original virus HK68. Decreases in number of conserved Teff epitopes was generally 

associated with greater total unique Teff epitopes gain, expanding the distance between the vaccine 

and circulating viruses. A gradual increase of unique Teff epitopes was observed from BJ89 to 

MO99. 

 

Appearance and disappearance of T cell epitopes 

In general, conserved Teff epitopes between seasonal viruses and seasonal vaccines appear 

to decrease following the introduction of a new vaccine. Beyond changes in total T cell epitope 

counts, sequence mutations may modify the T cell epitope phenotypes leading to changes in the 

categorization of the T cell epitope. Since vaccines that contain T cell epitopes that are highly 

conserved with newly emerging viruses may reduce morbidity and mitigate the spread of the virus, 

it may be important to track both the number of T cell epitopes as well as dynamic changes in the 

T cell epitope phenotype, to improve vaccine virus selection. 

For this analysis, we confined our study to 47 promiscuous T cell epitopes that were 

confirmed in the IEDB database (Figure 5.3). We noted that the HA1 domain appears to be more 

diverse than the HA2 domain; the T cell epitope phenotype appears to switch more frequently in 
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HA1 as viruses evolve over time. Some positions appear to be partially or fully conserved while 

others show T cell phenotype transitions. More specifically, the putative Teff epitopes located at 

three positions (163, 310 and 330) in HA1 appear to have 100% conservation starting from 1968 

to 2003. The epitope at position 324 was partially conserved with intermittent change in the 

putative T cell phenotype due to single mutation at the HLA face or the TCRf. The epitope at 

position 261 was conserved at the HLA-binding face and TCRf prior to 1982, and the predicted 

phenotype remained (Teff) even with a single mutation at the HLA face. More than five T cell 

epitopes located at positions in HA1 demonstrated inconsistent switching of the T cell phenotypes, 

while several epitopes in HA1 demonstrated more consistent phenotypic change. Interestingly, 

limited T cell phenotype switching was observed in antigenic group BJ89 where there is only one 

vaccine virus update. T cell epitope phenotypes were more diverse in other antigenic groups prior 

BJ89 as well as between BJ92 and FU02. 

The HA2 domain epitopes were relatively more conserved in terms of their phenotype, when 

comparing T cell epitopes in the original HK68 virus to viruses circulating in 2003 (Figure 5.3). 

Generally, positions that were predicted to be promiscuous Teff epitopes remained the same 

throughout the 35 years of virus evolution even though a few mutations did occur at the HLA face 

or TCRf. Epitopes in six out of 24 positions in HA2 (347, 408, 439, 444, 512 and 518) were 100% 

conserved at both the HLA face and TCRf in the 269 A/H3N2 viruses. While single mutation on 

either HLA face or TCRf might change a Teff epitope to a non-Teff epitope or to 9-mer that was 

predicted to have no binding affinity, mutations also occur that do not influence the phenotype of 

the epitope. Epitopes at position 397 and 400 had an interesting pattern in which the 9-mer 

sequences in the older viruses were predicted to be non-binders but switched to binders (Teff 

epitopes) with no changes at TCRf, however, from1994 onwards, we observe modulation between 
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Teff epitope and non-Teff epitope phenotypes due to mutations on the TCRf. There were also five 

epitope positions in the HA2 (464, 533, 536, 540, 541) that were predicted as non-Teff epitopes. 

 

MDS and clustering analysis 

In view of the extensive and complexity of T cell epitope data, we used the MDS approach, 

and the k-means clustering algorithm to visualize and further investigate the T cell epitope 

landscape. We focused on analyzing all putative T cell epitopes predicted from the coding region. 

We ran six separate MDS analyses and k-means optimization on different T cell epitope properties 

such as the binding affinity score of the nine HLA alleles, HLA allele hit, human peptide cross-

reactive hit, number of human peptide match, JMX Human Homology score and unique Teff 

results. We found that A/H3N2 viruses clustered into seven groups based on human T cell epitope 

conservation (JMX Human Homology), and into eight groups when considering T cell epitope 

cross-conservation between IAV sequences (JMX IAV homology score). There were nine groups 

based on the analysis of allele hits, cross-reactive hits and unique Teff epitope landscape. The 

lowest number of clusters that was detected (six clusters) was defined using T cell epitope binding 

affinity. 

To compare and correlate the evolution of A/H3N2 T cell immunity profiles against 

antigenic and genetic evolution, we constructed two-dimensional map representations following 

MDS and k-means clustering analysis using information on HI titer data, genetic hamming distance 

and two T cell attributes such as the T cell epitope binding affinity and T cell epitope distance 

(Figure 5.4). Genetic hamming distance is defined as the number of different bases between two 

nucleotide sequences of A/H3N2 viruses, whereas T cell epitope distance is defined as the 

difference of Teff epitope content between pair of A/H3N2 viruses.  
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We noticed that using the T cell epitope binding affinity and T cell epitope distance 

variables, the A/H3N2 T cell epitope landscape progresses in a similar pattern as the antigenic 

transformation and genetic distance in the two-dimensional space, indicating that both T cell 

epitope binding affinity and T cell epitope content may play an influential role in shaping T cell 

responses over time. We further decomposed this analysis and plotted each dimension against virus 

isolation year. Interestingly, T cell binding affinity showed an episodic evolution pattern where 

distinct clusters were detected prior to 1990 and clusters overlap thereafter, whereas T cell distance 

undergoes continuous evolution. Both results also demonstrated that A/H3N2 T cell epitope 

evolution of HA protein is linear with HA genetic drift which was measured by genetic hamming 

distance (Figure 5.4; Supplemental Figure C-4). 

To examine the relationship between T cell epitope diversity and evolution, we mapped the 

cluster data to the respective HA phylogeny tips (Figure 5.5). We observed that all clusters in 

antigenic groups prior 1989 have gradual progression whereas A/H3N2 viruses in the antigenic 

group BJ89 is consistent across HI titer, genetic distance and T cell epitope attributes. Antigenic 

groups that contained more than two vaccine updates had irregular changes of clusters, especially 

from 1992 onwards. The binding affinity score of the nine HLA alleles, HLA allele hit, and the 

number of human peptide match demonstrated similar changes that correlated with T cell epitope 

cluster transitions. However, other measurements, for instance, human peptide cross-reactive hit 

and JMX Human Homology score display more distinct patterns that change according to the HI 

titer data.  
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T cell epitope immune landscape of A/H3N2 HA from 2010-2020 

We applied the same analysis pipeline to sequences isolated from ten influenza seasons to 

investigate the divergence of A/H3N2 in more recent years. A total of 7,735 unique 9-mer 

sequences contained in contemporary HA sequences were assessed (Table 5.1). 1,756 (22.7%) of 

the 9-mer sequences were identified as having a hit for at least one out of nine HLA alleles (top 

5%), and after screening these for human homology with JMX, 1,535 9-mers (19.8%) were 

predicted to have T effector potential (Teff) (Table 5.1). Among these, 476 (6.2%) were identified 

as promiscuous Teff epitopes because they contained allele hits for at least four out of nine HLA 

alleles. 5,979 9-mers (77.3%) were predicted to have no binding potential to any of the HLA 

alleles. 

 

Distribution of putative Teff epitopes 

We then examined the pattern of Teff epitopes distributed over the course of ten influenza 

seasons from 2010 to 2020 (Figure 5.6, Supplemental Figure C-1B). We noticed a similar trend as 

compared to the older dataset in which the number of conserved Teff epitopes contained in 

seasonal viruses for each time period was negatively correlated with the vaccine virus, following 

each vaccine introduction.  

There was a significant decrease of conserved Teff epitopes as compared to vaccine virus 

A/Perth/16/2009 (PE09) was in used (correlation coefficient, R = -0.25; p-value = 2.1 x 10-3), 

however, the decrease in the number of conserved Teff epitopes between 2012-2014 and 2015-

2016 seasons was not significant. The number of conserved Teff epitopes continued to decline and 

exhibited an overall significant negative correlation between vaccine and circulating viruses in 

four consecutive influenza seasons after 2016. On average, the decline in the number of conserved 
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Teff epitopes between vaccine and circulating viruses was greater than was observed for the older 

dataset, suggesting that the diversity of T cell epitopes may have increased in contemporary 

influenza seasons. 

To ensure results consistency, we randomly subsampled two datasets of human 

contemporary viruses. Subsample 1 consisted of 1036 sequences while subsample 2 had 1034 

sequences (Supplemental Figure C-2). The findings appeared to be consistent with the results 

found for dataset B. To determine whether the decrease in Teff epitopes following vaccine 

introduction was due to the T cell epitope evolution or random and unrelated to immune pressure, 

we performed an additional analysis using canine IAV sequences. The method was the same when 

evaluating changes in HLA-binding T cell epitope content (Supplemental Figure C-3). Over 10 

consecutive influenza seasons, the number of conserved Teff epitopes remained constant. This 

finding suggested that the decrease in human T cell epitope content following vaccine changes is 

not a random event and more likely due to T cell epitope drifts that responding to immune pressure. 

   

Clade-specific T cell epitope 

We also tracked T cell epitopes phenotype change and conservation at TCRf to understand 

the potential influence of immune selection pressure on A/H3N2 strains in 2010-2020 as we 

observed for the dataset A. The HA1 domain had greater diversity with frequent amino acid 

substitutions at TCRf than the HA2 domain (Figure 5.7). Phylogenetic reconstruction shows that 

A/H3N2 phylogeny evolved into two major clades in this period, i.e., 3C.2a and 3C.3a lineages. 

Conserved T cell epitopes were observed at positions 163, 330, 347 and 408 across ten influenza 

seasons, while other positions appeared to demonstrate lineage-specific changes of T cell epitope 

phenotypes. For instance, epitopes at seven positions (103, 156, 169, 415, 540, 542) in clade 
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3C.3a1 showed amino acid substitutions at TCRf positions but remained Teff epitopes, T cell 

epitopes at position 486 transitioned from Teff epitope to non-binders, following a mutation at the 

HLA facing residue. TCRf mutations in epitopes at positions 273 and 276 were clade 3C.2a2-

specific.  

While amino acid substitutions at either the TCRf and/or HLA face were associated with T 

cell epitope phenotypic change, such as transitioning from Teff epitope to a T cell epitope that had 

no binding affinity or to a non-Teff epitope, some of the mutations at either the TCRf and/or HLA 

face did not affect T cell epitope phenotypic change. Interestingly, there were four T cell epitope 

phenotype switches observed at epitope position 325. At epitope position 540, the 3C, 3C.3 and 

3C.3a lineages have non-Teff epitopes that are conserved at the TCRf residues whereas 3C.3a1 

and 3C.2a1b lineages have non-Teff epitopes with mutations at the TCRf. 

 

MDS and clustering analysis for contemporary dataset 

We analyzed high dimensional T cell epitope data to further characterize T cell immune 

landscape for the contemporary dataset. As we did with the dataset A, we performed MDS and k-

means clustering on HI titer, genetic distance and six T cell epitope properties (Figure 5.8 - 5.9). 

Interestingly, there were only three clusters detected for HI titer and separation between clusters 

were not as obvious as the older dataset (Figure 5.8). The genetic distance map showed a unique 

pattern and the dimension 1 of genetic distance extended into two major clades which appeared to 

reflect the topology of its phylogeny. There were nine distinct clusters detected using predicted T 

cell epitope binding affinity and T cell distance. When plotting individual dimension against time, 

both dimension 1 of the T cell epitope binding affinity and T cell epitope distance variables showed 

a linear progression over time, as vaccine viruses were updated. However, unlike the older dataset, 
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which showed a gradual change of antigenicity, in the contemporary dataset, there are mixed 

clusters observed within any given time frame and clusters are sustained for at least two years, 

suggesting more than one clade may be circulating at the same time (Figure 5.8). 

A summary of clustering analysis results for each contemporary A/H3N2 viruses was 

shown as a heatmap and mapped to the tips of the respective phylogeny (Figure 5.9). For other T 

cell epitope properties, there were nine clusters detected for T cell epitope allele hit. There were 

fewer clusters (7-8 clusters) detected for T cell epitope properties that related to human cross-

reactivity and these clusters are not well spread out.  

 

Sensitivity check using PCA 

We carry out PCA on multiple T cell epitope variables to identify the sources of variation 

(Supplemental Table C-3). These parameters include the sequence binding affinity score, epitope 

binding affinity score of each HLA alleles, TCRf unique count, JMX Human Homology score for 

each sequence, and JMX Human Homology score for each epitope. 26 components were analyzed 

and by plotting the proportion of variances against 26 PCs, we found that the first four PCs had 

better representation of the data. For the older dataset, we find that PC1 comprises of the binding 

affinity score of the nine HLA alleles, the overall binding affinity for each virus sequence and T 

cell epitope distance from MDS dimension 1 (Supplemental Table C-3A). The binding affinity 

score of the alleles DRB11501, DRB10801, DRB11101, DRB10401, DRB10101, the overall 

binding affinity for each virus sequence and T cell epitope distance from MDS dimension 2 

contribute to PC2. For the contemporary dataset, six HLA alleles (DRB11101, DRB10301, 

DRB10101, DRB10801, DRB10701, DRB11501) and T cell epitope distance from MDS 

dimension 1 contribute to PC1 (Supplemental Table C-3B). PC2 consists of two HLA alleles 
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(DRB10401 and DRB11301) from MDS dimension 1, five alleles (DRB10401, DRB10901, 

DRB10101, DRB10301, and DRB11101) from MDS, total binding affinity score and T cell 

epitope distance from MDS dimension 2. 

For dataset A, the results of the BSSVS asymmetric discrete trait substitution model 

showed a temporal pattern of older antigenic groups transitioning to newer antigenic groups 

(Figure 5.10). The highlighting of only rates with greater than 50% posterior support shows that 

the transition is only significant for two groups that are occur in direct succession (i.e., an antigenic 

group 1968 would only have significant transition to antigenic group found in 1972). This result 

is consistent with the pattern of antigenic drift observed in the phylogeny and accurately represents 

the temporal structuring of the discrete traits across the tree. 

 

Discussion 

While  humoral immunity is certainly important for neutralizing viruses and correlates with 

protection from infection by influenza viruses, T cell-mediated immune response is thought to 

confer protection, even in the in the absence of influenza-specific neutralizing antibodies [170], 

[228]. Specific to our study, as vaccine efficacy of A/H3N2 is unpredictable and vaccine viruses 

that are antigenically different (in terms of B cell immunity) from emerging viruses can fail to 

protect, T cell epitope cross-conservation may be critical for cross-strain vaccine efficacy [124], 

[229]. Since the contribution of cell-mediated immunity to viral clearance and limiting severe 

disease has been recognized in recent years, we considered the possibility that T cell epitopes 

might also evolve in the course of viral evolution, and also considered the interaction between T 

cell epitopes and immune pressure due to vaccine introduction to be worth exploration. In this 

study, we employed a novel sequence-based approach to define the evolution of the CD4+ T cell 
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epitope landscape in two populations of viruses over time. Specifically, we evaluated the 

relationship between CD4+ T cell epitopes identified in A/H3N2 virus sequences using 

immunoinformatics tools and genetic drift to explore the impact of vaccine changes on T cell 

epitopes in circulating viruses and the relationship between T cell epitopes and HI titers over time. 

Loss of T cell epitopes might contribute to a decrease in cross-protective effect between 

vaccine and circulating viruses. We identified T cell epitopes and assessed epitope similarities by 

focusing on TCRf residues of T cell epitopes. We defined cross-conserved Teff epitopes as T cell 

epitopes that were predicted to have effector function and that had identical TCRf residues when 

compared to another virus or a vaccine virus. Interestingly, there was a consistent decrease in the 

number of conserved virus-to-vaccine Teff epitopes after vaccine introduction in both an older 

dataset of IAV sequences and in contemporary sequences. This is consistent with the hypothesis 

that there may be immune escape from the virus selected for the seasonal vaccine. An increase in 

the number of unique Teff epitopes was also observed, which may reflect changes to T cell 

imprinting repertoire. The magnitude of conserved Teff epitopes changes between vaccine and 

circulating viruses was greater in recent seasons compared to seasons prior 2004. It is interesting 

to note that the average number of conserved epitopes that were lost between circulating and 

vaccine viruses, prior to introduction of a new vaccine, was eight conserved T effector epitopes. 

Therefore, in addition to evidence of declining HI efficacy, and phylogenetic distance, a drop of 

between eight to 11 conserved Teff epitopes may dictate an A/H3N2 vaccine update. 

In terms of overall T cell epitope content, 9-mers that were predicted to have no binding 

affinity (non-binders) represented the largest group of epitopes followed by Teff epitopes that have 

less than four allele hits (non-promiscuous epitopes). Amino acid substitutions in a 9-mer sequence 

has been noted to contribute to a change in the phenotype of the T cell response. When mutations 
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increase conservation with human genome T cell epitopes, tolerance to the pathogen epitope may 

develop. This type of modification has also been observed in neoantigen mutations in cancer [209], 

[230]. In the context of this analysis of IAV epitopes, we note that phenotypic change of the 

epitopes was more frequent in HA1 domain of HA which is consistent with the fact that HA1 is 

the segment that encodes the viral surface of the HA protein and evolves at a higher rate than the 

HA2 domain [231]. Determining the T cell epitope phenotype in conserved and modified T cell 

epitopes may aid in identifying lineage-specific epitopes and ideally to better interpreting immune 

selection. 

In addition, we noted that there were important differences in the MDS and clustering 

analysis results according to different T cell epitope properties. The introduction of T cell epitope 

analysis may improve the practice of antigenic cartography, which currently only uses HI assays 

data to represent the distance between antigenically varying virus strains. Our study demonstrated 

that binding affinity, allele hit, and unique T cell epitope content were important factors that 

distinguished virus isolates in the two-dimensional space. Viruses that were identified prior also 

1990 form distinct clusters compared to strains post 1990 and in contemporary sequences, where 

mixed clusters were detected, suggesting that greater T cell epitope diversity of A/H3N2 

circulating viruses in recent years. When plotting one of the dimensions against time, the 

progression of T cell epitope binding affinity and unique T cell epitope content is punctuated even 

though it shows linear relationship with genetic drift.  Most importantly, T cell epitope properties 

such as binding affinity, allele hit, and unique T cell epitope content appeared to contribute to 

shaping the antigenic landscape. 

We also identified some limitations to this study that could be addressed in future research. 

For instance, this is a retrospective study of published sequences as well as a collection of 
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sequences deposited in the public domain. The analysis was performed after influenza infections 

and viral evolution had already taken place. It will be important to perform the same type of study 

in a prospective manner as this may shed some insight and supplement into influenza virus 

prediction pipeline. An additional limitation for this study was the focus on HA alone. We limited 

ourselves to the analysis of HA because we have observed that internal antigens have only minimal 

variation in T cell epitope content over time. We do note that the surface protein neuraminidase 

(NA) may be relevant in stimulating CD4+ immune response, and therefore, it should probably be 

included in further study, for a more comprehensive perspective. 

In conclusion, we applied a novel approach to antigenic cartography and influenza 

phylogeny, while also attempting to determine whether T cell responses contributed to the 

antigenic changes observed in A/H3N2 viruses. This study may inform future evaluations of new 

viruses where cross-reactive memory T cells also play a role, reducing the severity of infection 

and promoting B cell responses. Leveraging this information may lead to the development of 

vaccines that activate cross-strain protective cellular immunity from T cells as an effective means 

of protecting against the threat of constantly evolving influenza viruses [229]. All in all, the goal 

of investigating host CD4+ T cell immunity dynamics is to promote the consideration of cell-

mediated immunity as one of the assessment criteria to improve the influenza vaccine selection 

process. 
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Table 5.1. A detailed breakdown of putative T cell epitopes predicted for the two datasets 

used in the study. There are three categories of predicted epitope phenotype. A putative T cell 

epitope that has a Z score at top 5% of a normal distribution is thought of having significant binding 

potential and is regarded as an “allele hit”. Allele hit count is defined as the binding potential to 

an HLA allele and the value greater or equal to four is known to be promiscuous T cell epitope. 

Putative T cell 

epitope 

phenotype 

Janus 

homology 

score 

Allele hit  

Top 5% 

Characteristic 

dataset 

Contemporary 

dataset 

Total 4421 7735 

Non-binder 0 0 3548 5979 

Teff  5 
< 4 

 4 

501 Total = 

769 

1059 
Total = 1535 

268 476 

Non-Teff  5 
< 4 

 4 

90 Total = 

104 

185 
Total = 221 

14 3 
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Figure 5.1. Summary of the complete analysis workflow. All mentioned tools and algorithms, 

as well as data analysis method are applied on data sources A and B independently. For the two 

random subsamples and the control group analysis, only T cell epitope prediction pipeline is 

executed. 
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Figure 5.2. Overview of conserved Teff epitopes over time with reference to H3N2 vaccine 

virus updates from 1968 to 2004. (A) Top panel highlights the changes of conserved Teff 

epitopes within the mentioned influenza seasons. The notation R and p are the correlation 

coefficient and significant value, respectively. The negative R values indicate negative association 

between T cell epitope content and strain isolation year. (B) The box plot summarizes the 

distribution of epitope change with reference to each H3N2 vaccine strain update. The solid line 

represents the median of conserved Teff epitope count.
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Figure 5.3. Tracking of T cell epitope phenotypes over the course of 30 years. A heatmap is 

used to demonstrate the transition of T cell epitope phenotypes and each row of observation at 

selected positions is mapped to the tips of A/H3N2 HA phylogeny. 
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Figure 5.4. Comparison between HI measurement, genetic distance and T cell epitope 

prediction (the last two rows). The distribution of antigenic map is different from genetic distance 

and T cell epitope cluster map. The HI-defined antigenic clusters are presented as 11 clusters, as 

defined in Smith et. al [202]. Genetic distance resulted in nine groups, while the T cell epitope 
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properties (binding affinity and T cell distance and T cell cross-conservation) are grouped into six 

and nine clusters, respectively. Plotting each of the two dimensions against time, T cell epitope 

evolution exhibits linear rate, which corresponds with HA antigenic and genetic drift.
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Figure 5.5. Phylogenetic tree reconstruction of the 269 HA nucleotide sequences of seasonal 

A/H3N2 using BEAST skyride coalescent model. The HI antigenic clusters are labelled together 

with the predicted clusters of genetic distance and T cell epitope properties are mapped to the tree 

tips. The corresponding color-coded antigenic group, genetic distance and T cell epitope clusters 

are shown in the heatmaps aligned with each associated strain.
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Figure 5.6. Overview of conserved Teff epitopes over time with reference to H3N2 vaccine 

virus updates from 2010 to 2020. Similar to the analysis performed using dataset A, the top panel 

(A) highlights the changes of conserved Teff epitopes within the mentioned influenza seasons. The 
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notation R and p are the correlation coefficient and significant value, respectively. The negative R 

values indicate negative association between T cell epitope content and strain isolation year. The 

box plot (B) summarizes the distribution of epitope change with reference to each H3N2 vaccine 

strain update. The solid line represents the median of conserved Teff epitope count. 

Figure 5.7. T cell epitope phenotypes dynamic of the contemporary dataset. A heatmap that 

showed T cell epitope phenotype change is used to demonstrate the transition of T cell epitope 

phenotypes. Each row of observation at selected positions is mapped to the tips of contemporary 

A/H3N2 HA phylogeny. 
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Figure 5.8. Comparison between HI measurement, genetic distance and T cell epitope 

prediction properties of the contemporary dataset B. The antigenic map of dataset B shows 

minimal distinction between clusters. The clustering pattern of genetic distance map is unique but 

T cell epitope cluster maps display similar bifurcation. Decomposing the two dimensions by 

plotting each of the dimension against time, T cell epitope evolution exhibits a linear distribution. 
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Figure 5.9. k-means clustering summary of the contemporary dataset. The contemporary 

A/H3N2 HA phylogeny is color-coded according to clade assignment. There are two major clades, 

i.e., 3C2a and 3C3a. The predicted clusters of HI titer, genetic distance and T cell epitope 

properties are shown in a heatmap and mapped to HA phylogeny tree tips. 
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Figure 5.10. BSSVS substitution matrix for characteristic dataset. H3N2 mean transition rates 

estimated using the BSSVS for isolates collected between 1968 and 2004. Rates with posterior 

probability greater than 50% are visualized. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

The segmented RNA genome structure of influenza virus and its error-prone RNA-

dependent RNA polymerases enable the virus to undergo antigenic drift, leading to adaptive 

immune responses escape in host species, including swine and humans [17]. Despite the effort in 

preventing and treating influenza for more than a century since the devastating 1918 influenza 

pandemic [14], influenza vaccination in either animal or humans is a longstanding concern due to 

the constant-evolving nature and adapting ability of influenza virus in multiple hosts.  

Influenza vaccine generally stimulates the production of neutralizing antibody that targets 

the conformational epitopes on the globular domain of hemagglutinin (HA) which correlates to 

disease protection. Although neutralizing antibodies secreted by the B cells contribute directly to 

eliminating infection [72], [73], the role of T cells is equally critical in orchestrating host adaptive 

immune responses and providing help for optimal influenza virus clearance and host protection 

[97], [98]. Considering the current influenza vaccination approach, vaccine effectiveness can be 

suboptimal when a mismatch between vaccine strains and circulating strains occur. Thus, there 

has been a broad interest in potential strategies for improving cross-protective vaccination by 

incorporating T cell-induced immunity.  

Animal and human challenge studies have shown that cell-mediated immune response 

contributes to limiting disease spread and reducing disease burden [3], [5], [103], [104]. When 

influenza vaccines and circulating strains are poorly matched, T cell responses targeting highly 

conserved influenza antigens could provide cross-protective immunity against different IAV 
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subtypes in the absence of cross-reactive neutralizing antibodies. Therefore, understanding cell-

mediated immunity is equally important to combatting this annual burden. The main objective of 

this dissertation was to develop novel analysis framework to improve understanding of host 

adaptive immune profiles against influenza virus and further contribute to better vaccination 

strategies. In short, I applied a series of T cell epitope prediction tools (immunoinformatic) with 

phylogenetic approaches to evaluate T cell epitope content between influenza vaccines and 

circulating influenza strains in swine and human hosts.  

 

Key findings 

Highly conserved T cell epitopes are important in the absence of vaccine-induced 

antibodies when swine influenza vaccines and circulating influenza A virus (IAV) strains are 

poorly matched. The degree of T cell epitope conservation among circulating strains and vaccine 

strains can vary, which may explain differences in vaccine efficacy. However, vaccine efficacy 

assessment methods are lacking for swine IAV and besides conducting challenge studies, there is 

no method available for evaluating new vaccines against circulating strains for cross-protection by 

T cell epitopes. Therefore, the immunology-based approach established in aim 1 (Chapter 3) was 

to estimate T cell epitopes conservation of a prototype epitope-based swine IAV vaccine and 

determine the persistence of T cell epitope conservation over time. Using T cell epitope prediction 

algorithm (EpiMatrix) and T cell epitope comparison tool (EpiCC), I quantified highly conserved 

T cell epitopes based on pairwise homology score between the previously developed epitope-based 

vaccine and 1272 circulating swine IAV strains isolated from 2013 to 2017. Half of the total T cell 

epitopes included in the epitope-based vaccine were highly conserved and found in >1000 

circulating swine IAV strains spanning the five-year period. In contrast, commercial swine IAV 
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vaccines developed in 2013 exhibited a declining conservation with the circulating IAV strains 

over the same 5-year period. Compared to the commercial whole antigen killed vaccine, the T cell 

epitopes in the prototype vaccine were highly conserved over time. This study was also supported 

by the experimental results where priming the prototype epitope-based vaccine with a commercial 

swine influenza vaccine aided in increasing immunogenicity, had equivalent body temperature 

control post-challenge, and reduced lung lesions and influenza antigen [153]. Taken together, 

conserved T cell epitope vaccines may be a useful adjunct for commercial swine influenza vaccines 

and to improve protection against influenza when antibodies are not cross-reactive. This finding is 

particularly relevant for the idea of ‘universal influenza vaccines’ that can boost immune responses 

in the absence of antibody cross-reactivity.  

Extending from the notion of T cell-mediated immunity is crucial if there are no cross-

reactive antibodies when influenza vaccines and circulating IAV strains are poorly matched, aim 

2 (Chapter 4) documented on identifying epidemic-risk of the emergent H1N1 G4 swine influenza 

A virus (G4) that may impact swine and human populations through assessing T cell epitope 

conservation between emergent G4 and swine and human influenza vaccines strains as well as 

circulating strains. The total cross-conserved T cell epitope content in hemagglutinin (HA) 

sequences of human seasonal and experimental influenza vaccines, swine influenza vaccines from 

Europe and the United States (US) against G4 was identified and computed using EpiCC tool. 

From the results, the overall T cell epitope content of US commercial swine vaccines was poorly 

conserved with G4, with an average T cell epitope coverage of 35.7%. EpiCC scores for the 

comparison between current human influenza vaccines and circulating human influenza strains 

were also very low. In contrast, the T cell epitope coverage of a recent European swine influenza 

vaccine (HL03) was 65.8% against G4. Briefly, the European influenza vaccine, HL03, may 
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protect against emergent G4, yet poor T cell epitope cross-conservation between emergent G4 and 

swine and human influenza vaccines in the US may enable G4 to spread in swine and spillover to 

human populations in the absence of protective antibody response. As shown here, quantifying 

protein sequences based on immunological property, i.e., T cell epitope content, rather than 

sequence identity enables a comparison between vaccines and field strains/emergent strains, is 

useful for identifying whether existing vaccines might have efficacy (at the T cell epitope level) 

against an emerging infection. In short, this study demonstrated comparative assessment of T cell 

epitope conservation between existing vaccine strains against emergent viruses can inform 

epidemic risk in swine and human populations.  

As antigenic mismatch with vaccine target would occur, vaccine effectiveness of each 

seasonal influenza vaccine remains uncertain. Considering the novel findings in the preceding 

chapters that supported the significance of T cell epitopes found in vaccine strains and conserved 

in circulating IAV strains, research aim 3 (Chapter 5) sought to characterize human conserved T 

cell epitopes of H3N2 seasonal IAV so as to determine their impact on influenza virus evolution 

and the host immune landscape. This chapter features a novel sequence-based approach to 

predicting potential T cell epitopes in large datasets of HA sequences, to examine how antigenic 

drift correlates with the diversity of T cell epitopes presented by the viral population over time. In 

this chapter, I found that conserved T effector T cell epitopes (TCD4+eff) decline after new vaccine 

strain introduction, suggesting that there is potential immune escape from the imprinted T cell 

repertoire. I used multidimensional scaling and k-means clustering analyses to demonstrate that 

TCD4+eff can be categorized into clusters based on six T cell attributes. The results showed that at 

least four distinct clusters are detected prior to 1990, however, clusters overlap thereafter, 

indicating greater diversity of T cell epitopes. Interestingly, H3 HA T cell epitope evolution is 
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linear, which corresponds with HA genetic drift. All in all, T cell epitope landscape changes over 

time may be driven by immune pressure, resulting in conserved T cell epitopes loss and new 

epitopes’ introduction. The decrease in epitope conservation with each vaccine strain after it is 

introduced suggests that new approaches to influenza vaccination strategies may be warranted. 

 

Challenges 

Alleles diversity and selection 

 The studies apply a T cell epitope prediction tool as the standard first step to identify 

important putative T cell epitopes that have significant binding affinity to selected sets of major 

histocompatibility complex (MHC) alleles. Therefore, information about swine leukocyte antigen 

(SLA) and human leukocyte antigen (HLA) allele diversity in swine and human populations are 

critically important both to evaluate whether the analysis is comprehensive and to be sure that the 

analysis focuses on the most prevalent SLA or HLA alleles in a broader population. While it has 

been determined that a human T cell epitope can leverage the concept of HLA supertypes for 

selection of few representative HLA alleles from different clusters to cover a high percentage of 

the HLA diversity in human population [121], [122], SLA allele selection for swine studies 

(Chapter 3 and 4) is more difficult. Thus, the selected alleles might not represent the complete 

SLA diversity in the United States (US) swine outbreed population. The SLA alleles included were 

reported as prevalence in outbred swine populations based on previous data [155], [156] and allele 

selection frequencies were determined using low-resolution haplotyping in a small number of pigs 

[123]. Although the selected set of alleles may serve as a first proxy for commonly expressed 

alleles, systematic studies of swine populations and higher-throughput methods for determination 

of higher resolution SLA-typing would further improve the ability of researchers to integrate SLA 
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diversity into epidemiological studies. Additionally, it may be possible to cluster SLA molecules 

into supertypes if the prevalence and diversity of the US swine SLA are better understood. 

 

Data subsampling 

With genomic sequencing techniques becoming more cost-effective and scalable, there are 

tremendous number of virus sequences deposited in public databases such as Global Initiative on 

Sharing Avian Influenza Data (GISAID) and Influenza Research Database (IRD), creating 

significant challenges for downstream analyses and data visualization. To process the large set of 

data prior sequence analysis, data subsampling is one of the most common ways to deal with the 

large amount of sequence data and to avoid overrepresentation of data for certain years or 

geographical areas. A phylogenetic-based subsampling method namely phylogenetic diversity 

analyzer (PDA) [178] was applied in Chapter 4 and 5 to generate subsample datasets while 

retaining the genetic diversity of the initial large dataset.  

 

Retrospective study 

The core data source of the three studies in this dissertation was based on sequence data 

made available in public domain, thus, the studies were performed retrospectively using 

information on events that have taken place in the past, i.e., influenza infection. While 

retrospective studies can provide meaningful insight and have important impact on evaluation of 

the disease, there are potential source of bias in retrospective studies. To avoid this confounding 

error, having more data subsampling replicates can ensure consistency and prospective studies 

should be performed as well.   
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Future directions 

This work demonstrates the application of immunoinformatics to predict and quantify T 

cell epitope conservation of vaccine strains against circulating strains for cross-protection by 

conserved T cell epitopes, along with phylogenetic analysis to track conserved T cell epitope 

changes over time. As the increasing number of sequence data become available, it is laborious to 

execute enormous data with the present analysis workflow. Therefore, it would be interesting to 

automate the existing pipeline for more efficient productivity. A popular workflow management 

system used in genomic analysis, Snakemake, can be employed to create reproducible and scalable 

T cell epitope data analyses [232]. Snakemake workflows can set up a description of required 

software which can be automatically deployed to any execution environment such as server, 

cluster, grid, and cloud environments.  

Another scope of improvement would be having experimental evidence to support 

prediction and correlate of protection for T cell epitopes. Even though the relationship between the 

level of conserved T cell epitope and vaccine efficacy was established based on presumptive-

defined threshold, it is reasonable to question the accuracy of these tools for the prediction of 

human and swine influenza vaccine efficacy. As the protection thresholds for different vaccine 

strains may vary, having more experimental data available would help refine the putative 

thresholds used.  

  

Concluding remarks 

The continuous evasion of host adaptive immune responses is one of the factors that 

hinders the efforts of making potent and long-lasting influenza vaccines against the disease [17]. 

Ongoing influenza research focusing on vaccine platforms, antigen design and vaccine adjuvants 
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and among others are required to identify the best approaches to improve immunogenicity as well 

as to meet safety guidelines. Clinical studies demonstrate influenza vaccine efficacy are costly and 

challenging, thus, it is necessary that to utilize computational approaches to improve our 

understanding of the correlates of host immune protection and evaluation of the existing influenza 

virus vaccines [14].  

In addition to studying antibody response, researchers are starting to pay attention to the 

contribution of cell-mediated immunity against influenza and leveraging immunoinformatics 

towards the next generation of influenza vaccine. All in all, this dissertation encompasses 1) the 

development of novel computational workflows using T cell epitope prediction tools for swine and 

human to evaluate existing and/or experimental vaccines and 2) the study of cross-conserved T 

cell epitopes shaped over time in swine and human hosts. The three research aims demonstrate the 

great potential of immunoinformatics and phylogenetics approaches, to aid in analyzing high 

dimensional T cell epitope data and to study host immunity related to infection or vaccination. The 

effort presented herein may guide the way for future advancements and applications in examining 

host T cell immunity in response to other pathogens.
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APPENDIX A 

SUPPLEMENTAL MATERIAL FOR CHAPTER 3 

QUANTIFYING THE PERSISTENCE OF VACCINE-RELATED T CELL EPITOPES 

IN CIRCULATING SWINE INFLUENZA A STRAINS FROM 2013–2017 1 

 

Supplemental Table A-1. EpiCC scores of all circulating swine IAV strains. Detailed 

information can be found online at https://www.mdpi.com/article/10.3390/vaccines9050468/s1 

(Table S2). 

 

Supplemental Table A-2. List of circulating swine IAV strains that have the most and the 

least conserved class I (A) and II (B) epitopes. 
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Quantifying the Persistence of Vaccine-Related T Cell Epitopes in Circulating Swine Influenza A 

Strains from 2013–2017. Vaccines 2021, 9, 468. https://doi.org/10.3390/vaccines9050468.  

Reprinted here with permission of the publisher.
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(A) Class I most conserved strains against the vaccine.  

Conservation at 75% (21/28) 

No. Strain Name Subtype 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

A/Swine/Arkansas/D0386/2013 

A/Swine/Minnesota/A01392911/2013 

A/Swine/Minnesota/A01394863/2013 

A/Swine/Minnesota/MT1301S79/2013 

A/Swine/Ohio/A01349978/2013 

A/Swine/Ohio/A01432602/2013 

A/Swine/Illinois/A01490609/2014 

A/Swine/Illinois/A01492501/2014 

A/Swine/Illinois/A01493472/2014 

A/Swine/Iowa/A01410472/2014 

A/Swine/Kansas/A01410327/2014 

A/Swine/Minnesota/A01491447/2014 

A/Swine/Minnesota/A01491704/2014 

A/Swine/Missouri/A01492887/2014 

A/Swine/Nebraska/A01366774/2014 

A/Swine/Nebraska/A01491300/2014 

A/Swine/Nebraska/A01492657/2014 

A/Swine/Nebraska/A01566172/2014 

A/Swine/North Carolina/A01410573/2014 

A/Swine/Oklahoma/A01410195/2014 

A/Swine/Oklahoma/A01476227/2014 

A/Swine/Indiana/A01260972/2015 

A/Swine/Illinois/A01729364/2016 

A/Swine/Illinois/A01749912/2016 

A/Swine/Illinois/A01749913/2016 

A/Swine/Illinois/A01749914/2016 

A/Swine/Illinois/A01775937/2016 

A/Swine/Illinois/A01776206/2016 

A/Swine/Illinois/A01777039/2016 

A/Swine/Illinois/A01778882/2016 

A/Swine/Indiana/16TOSU4933/2016 

A/Swine/Indiana/A01671620/2016 

A/Swine/Indiana/A01812242/2016 

A/Swine/Iowa/A01781047/2016 

A/Swine/Iowa/A01782230/2016 

H1N1 
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(B) Class II most conserved strains against the vaccine.  

Conservation at 32.3% (74/229) 

No. Strain Name Subtype 

1 

2 

3 

4 

A/Swine/Arkansas/D0386/2013 

A/Swine/Minnesota/A01381276/2013 

A/Swine/Ohio/A01349978/2013 

A/Swine/Ohio/A01432602/2013 

H1N1 

Class II least conserved strains against the vaccine.  

Conservation at 15.3% (35/229) 

1 

2 

A/Swine/Nebraska/A01493915/2014 

A/Swine/Florida/UF1/2017 
H3N2 

 

 

36 

37 

38 

39 

40 

41 

42 

A/Swine/Missouri/A01775100/2016 

A/Swine/Missouri/A01775109/2016 

A/Swine/Nebraska/A01783006/2016 

A/Swine/Ohio/A01104092/2016 

A/Swine/Tennessee/A01894329/2016 

A/Swine/Iowa/A02214835/2017 

A/Swine/Kansas/A01378027/2017 

1 

2 

A/Swine/Indiana/16TOSU0646/2016 

A/Swine/Michigan/A01259077/2017 
H1N2 

Class I least conserved strains against the vaccine.  

Conservation at 46.4% (13/28) 

1 

2 

3 

4 

A/Swine/Kansas/A01377649/2015 

A/Swine/Missouri/A01840324/2015 

A/Swine/Florida/UF1/2017 

A/Swine/Missouri/A02136832/2017 

H3N2 
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Supplemental Figure A-1. Radar plots showing degree of class I T cell epitope conservation 

between the conserved epitopes in the MEpiV for the HA antigen and epitopes contained in 

HA from circulating strains for each year. The radar plots show T cell epitope conservation 

between the T cell-directed multi-epitope DNA vaccine against each swine IAV circulating strain 

(axes of radar plot) over five years. The strains were sorted from lowest to highest EpiCC scores. 

The multi-epitope DNA vaccine is predicted to drive better CD4 immune response based on data 

published in Gutierrez 2017 and Hewitt 2019. 
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Supplemental Figure A-2. Line plots showing the degree of conservation by antigens, 

subtypes, and years. The degree of conservation (AUC) is normalized to ease direct comparison 

by internal antigens, subtypes, years, and T cell epitopes classes. 

Class I Class II
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APPENDIX B 

SUPPLEMENTAL MATERIAL FOR CHAPTER 4 

H1N1 G4 SWINE INFLUENZA T CELL EPITOPE ANALYSIS IN SWINE AND HUMAN 

VACCINES AND CIRCULATING STRAINS UNCOVERS POTENTIAL RISK TO SWINE 

AND HUMANS 2 

 

Supplemental Table B-1. H1 HA sequences of EU swIAV vaccine strains, swIAV strains 

circulating in the EU (from 1939-2018) and swIAV G4 virus strains that are included in the 

analysis. Detailed information can be found online at 

https://onlinelibrary.wiley.com/doi/full/10.1111/irv.13058 (Supporting Information: Table S1). 

 

Supplemental Table B-2. H1 HA sequences of US swIAV vaccine strains, swIAV strains 

circulating in the US (from 1939-2020) and swIAV G4 virus strains that are included in the 

analysis. Detailed information can be found online at 

https://onlinelibrary.wiley.com/doi/full/10.1111/irv.13058 (Supporting Information: Table S1). 

 

 

 

———————— 
2Tan, S; Moise, L; Pearce, DS; Kyriakis CS; Gutiérrez, AH; Ross, TM; Bahl, J; De Groot, AS. 

H1N1 G4 swine influenza T cell epitope analysis in swine and human vaccines and circulating 

strains uncovers potential risk to swine and humans. Influenza Other Respi Viruses. 2022; 1- 15. 

https://doi.org/10.1111/irv.13058. Reprinted here with permission of the publisher. 

https://onlinelibrary.wiley.com/doi/full/10.1111/irv.13058
https://onlinelibrary.wiley.com/doi/full/10.1111/irv.13058
https://doi.org/10.1111/irv.13058
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Supplemental Table B-3. H1 HA sequences of human IAV vaccine strains, human IAV 

strains circulating in the US (from 2008-2010 and 2019-2020) and swIAV G4 virus strains 

that are included in the analysis. Detailed information can be found online at 

https://onlinelibrary.wiley.com/doi/full/10.1111/irv.13058 (Supporting Information: Table S1). 

 

Supplemental Table B-4. Average EpiCC score, and vaccine T cell epitope coverage of EU 

swine influenza vaccine strains compare to EU circulating and G4 strains for the whole 

proteome analysis. Detailed information can be found online at 

https://onlinelibrary.wiley.com/doi/full/10.1111/irv.13058 (Supporting Information: Table S2). 

 

 

Supplemental Table B-5. Average EpiCC score, and vaccine T cell epitope coverage of US 

human influenza vaccine strains compare to US human circulating IAV and G4 strains for 

the whole proteome analysis. Detailed information can be found online at 

https://onlinelibrary.wiley.com/doi/full/10.1111/irv.13058 (Supporting Information: Table S2).

https://onlinelibrary.wiley.com/doi/full/10.1111/irv.13058
https://onlinelibrary.wiley.com/doi/full/10.1111/irv.13058
https://onlinelibrary.wiley.com/doi/full/10.1111/irv.13058
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Supplemental Figure B-1. A vaccine-to-vaccine comparison of T cell epitope coverage for 

each of the vaccine strains against G4. Vaccine strains are color-coded and arranged in order 

following host and respective region, year, and vaccine type. The Y-axis shows vaccine T cell 

epitope coverage, shown as a percentage of the maximum score. The horizontal dotted line 

represents mean of T cell epitope coverage for the strains evaluated in this report. Shaded grey 

areas the threshold for predicted vaccine efficacy for the US (refer to Table 2 - footnote) and EU 

(Table 4 - footnote). Only HL03 is predicted to be protective against G4 in this analysis. 

Statistically significant p-values are labelled for each comparison. 
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Supplemental Figure B-2. Whole proteome EpiCC analysis of EU swine influenza vaccines 

(A) and human influenza vaccines (B) against circulating IAV strains in respective regions 

and G4 strains. Circulating IAV strains were arranged according to clade and year. Red boxes 

showed H1N1 G4 strains.
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APPENDIX C 

SUPPLEMENTAL MATERIAL FOR CHAPTER 5 

SEQUENCE-BASED EVALUATION OF CD4+ T CELL IMMUNE LANDSCAPE OF H3N2 

SEASONAL INFLUENZA A VIRUS 3 
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3Tan, S; Damodaran, L; Dailey, CA; Chen J; Kondor, R; Moise, L; De Groot, AS; Bahl, J. 

Sequence-based evaluation of CD4+ T cell immune landscape of H3N2 seasonal influenza A virus. 

To be submitted to Frontiers in Immunology, 4/2023.
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Supplemental Table C-1. A list of WHO recommended vaccine component for A/H3N2. (A) listed vaccine viruses that are 

recommended from 1974 to 2004. (B) detailed the recommendation of A/H3N2 vaccine component from 2010 to 2019. The 

recommendation included egg-based and cell-based vaccine viruses. 

(A) 

Seasonal year WHO recommended H3 composition Seasonal year WHO recommended H3 composition 

1974-1975 
A/Port Chalmers/1/1973 

1991-1992 A/Beijing/353/1989 

1975-1976 1992-1993  

1976-1977 
A/Victoria/3/1975 

1993-1994 A/Beijing/32/1992 

1977-1978 1994-1995 A/Shandong/9/1993 

1978-1979 
A/Texas/1/1977 

1995-1996 A/Johannesburg/33/1994 

1979-1980 1996-1997 A/Wuhan/359/1995 

1980-1981 

A/Bangkok/01/1979 

1997-1998  

1981-1982 1998-1999 A/Sydney/5/1997 

1982-1983 1999-2000  

1983-1984 

A/Philippines/2/1982 

2000-2001 A/Moscow/10/1999 

1984-1985 2001-2002  

1985-1986 2002-2003  

1986-1987 A/Christchurch/4/1985 2003-2004  

1987-1988 A/Leningrad/360/1986 2004-2005 A/Fujian/411/2002 

1988-1989 A/Sichuan/02/1987   

1989-1990 A/Shanghai/11/1987   

1990-1991 A/Guizhou/54/1989   
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(B) 

Seasonal year WHO recommended H3 composition Egg-based Cell-based 

2010-2011 
A/Perth/16/2009 

  

2011-2012   

2012-2013 
A/Victoria/361/2011 

  

2013-2014   

2014-2015 A/Texas/50/2012   

2015-2016 A/Switzerland/9715293/2013   

2016-2017 

A/Hong Kong/4801/2014 

  

2017-2018 

A/Victoria/673/2014 A/Singapore/GP2050/2015 

A/New Caledonia/71/2014 A/Hawaii/47/2014 

A/Hong Kong/7127/2014  

A/Hong Kong/4801/2014 

(X-263A/B) 
 

A/Norway/2178/2014  

A/Saitama/103/2014 

(CEXP002) 
 

2018-2019 A/Singapore/INFIMH-16-0019/2016 
 A/North Carolina/04/2016 

 A/Canberra/7/2016 

2019-2020 A/Kansas/14/2017 
A/Kansas/14/2017 (X-327) A/Kansas/14/2017 (X-327) 

A/Indiana/08/2018 A/Indiana/08/2018 
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Supplemental Table C-2. A summary of the number of conserved Teff epitope changes according to influenza season and respective 

point of reference viruses.  

(A) Characteristic dataset (Dataset A) 

Influenza 

season 
Point of reference 

Conserved Teff epitope (count) 

Maximum Minimum Range Median Mean 

Average 

change 

within 

season* 

Average 

change 

between 

season** 

1968-1974 Origin/HK68 87 73 14 78.0 79.96 -7.04 - 

1974-1976 PC73 94 83 11 89.5 88.33 -5.67 8.38 

1976-1978 VI75 94 64 30 86.5 83.64 -10.36 -4.69 

1978-1980 TX77 90 80 10 85.0 85.00 -5.00 1.36 

1980-1983 BK79 92 76 16 85.0 85.30 -6.70 0.30 

1983-1986 PH82 93 76 17 79.0 80.33 -12.67 -4.97 

1987-1988 LE86 98 86 12 87.0 89.50 -8.50 9.17 

1988-1989 SI87 98 89 9 91.0 91.86 -6.14 2.36 

1989-1990 SH87 98 81 17 89.0 88.89 -9.11 -2.96 

1991-1993 BJ89 91 74 17 90.0 87.82 -3.18 -1.07 

1993-1994 BJ92 90 77 13 83.0 83.03 -6.97 -4.79 

1994-1995 SD93 89 76 13 81.0 81.34 -7.64 -1.67 
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1995-1996 JO94 93 74 19 80.0 79.94 -13.06 -1.42 

1996-1998 WU95 92 78 14 84.5 84.33 -7.67 4.39 

1998-2000 SY97 92 78 14 81.0 82.00 -10.00 -2.33 

2000-2004 MO99 94 74 20 79.0 79.46 -14.54 -2.54 

 

(B) Contemporary sequences (Dataset B) 

Influenza 

season 
Point of reference 

Conserved Teff epitope (count) 

Maximum Minimum Range Median Mean 
Average change 

within season 

Average change 

between seasons 

2010-2012 VAC/PE09 100 81 19 88.5 88.48 -11.52 - 

2012-2014 VAC/VI11 98 77 21 86.0 85.68 -12.32 -2.80 

2014-2015 VAC/TX12 98 80 18 86.0 86.27 -11.73 0.59 

2015-2016 VAC/SW13 101 79 22 87.0 88.58 -12.43 2.31 

2016-2018 VAC/HK14 96 78 18 87.0 87.34 -8.66 -1.23 

2018-2019 VAC/SG16 98 74 24 80.0 81.36 -16.64 -5.98 

2019-2020 VAC/KS17 98 71 27 97.0 93.25 -4.75 11.89 

*The average change within season is calculated by subtracting the mean from the maximum number of conserved Teff epitope. 

Negative values indicate decrease in conserved Teff epitope. 

**The average change between seasons is calculated by taking the difference of mean between two consecutive seasons. Negative 

values indicate decrease in conserved Teff epitope.
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Supplemental Table C-3. The selected principal components (PC1 - 4) that best represent the 

variances of the analyzed datasets. The variable loadings/rotation are shown for each PCs. The 

numbers in bold indicate the respective property/characteristic is significantly vary between 

isolates. 

(A) Dataset A 

Source of variation PC1 PC2 PC3 PC4 

Total Binding Affinity Dim.1 -0.3006 -0.01241 0.05398 -0.008993 

DRB10101 Dim.1 -0.2975 -0.02809 -0.02573 0.01131 

DRB10401 Dim.1 0.2925 -0.01833 0.05705 -0.04460 

DRB11101 Dim.1 -0.2874 -0.06834 0.03655 -0.09573 

T Cell Epitope Distance Dim.1 -0.2856 -0.07052 -0.06897 0.06838 

DRB10901 Dim.1 -0.2845 -0.05783 -0.03906 0.1120 

DRB10301 Dim.1 -0.2795 -0.05191 0.1618 -0.07442 

DRB10801 Dim.1 -0.2733 0.1023 -0.03222 0.1316 

DRB10701 Dim.1 -0.2717 0.05788 0.1662 -0.05902 

DRB11301 Dim.1 0.2551 -0.05564 -0.2347 -0.1103 

DRB11501 Dim.1 -0.2513 0.1957 -0.01092 0.08756 

Sequence Immunogenicity Score -0.1889 0.1677 -0.1335 0.04288 

DRB11501 Dim.2 0.1507 0.3066 -0.1156 0.2089 

T Cell Cross-conservation Dim.2 0.1320 0.07239 0.1621 0.2627 

Sequence JMX Homology Score -0.1297 -0.1017 0.1651 0.2637 

DRB11301 Dim.2 -0.1237 -0.1056 -0.4448 0.07527 

T Cell Cross-conservation Dim.1 -0.07345 0.1830 -0.01266 -0.4124 

T Cell Epitope Distance Dim.2 -0.06902 0.3424 0.07952 -0.1384 

DRB10701 Dim.2 -0.06832 -0.004963 -0.4948 -0.03249 

DRB10801 Dim.2 0.06166 0.3246 -0.03034 -0.1650 

DRB10301 Dim.2 0.05271 0.1756 0.4540 0.06794 

DRB11101 Dim.2 -0.04963 0.3276 -0.1346 0.03926 
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DRB10901 Dim.2 -0.04317 0.009210 -0.03411 -0.6750 

DRB10401 Dim.2 0.04108 0.2553 -0.3073 0.2360 

DRB10101 Dim.2 -0.01584 0.3973 -0.05968 -0.0001559 

Total Binding Affinity Dim.2 -0.002226 0.4019 0.1313 0.02224 

 

(B) Dataset B 

Source of variation PC1 PC2 PC3 PC4 

Total Binding Affinity Dim.1 0.2659 0.006660 0.04239 0.02734 

DRB11101 Dim.1 0.2655 0.02769 0.03093 0.009567 

DRB10301 Dim.1 0.2653 -0.03160 0.02785 0.01105 

DRB10101 Dim.1 0.2648 0.03398 0.03558 0.02011 

DRB10801 Dim.1 0.2634 0.04270 0.03943 0.01892 

DRB10701 Dim.1 -0.2575 -0.02221 -0.06606 -0.04009 

DRB11501Dim.1 -0.2496 -0.02805 -0.08099 -0.1791 

T Cell Epitope Distance Dim.1 0.2113 -0.1226 -0.1327 0.1066 

DRB10401 Dim.1 0.1918 -0.2451 0.03695 -0.002229 

DRB10401 Dim.2 0.1670 0.2457 0.05843 0.1067 

DRB10901 Dim.2 0.1316 -0.2223 -0.2110 0.1770 

DRB11301 Dim.1 -0.1236 0.3004 -0.01195 -0.03226 

Sequence Immunogenicity Score -0.1092 -0.09121 0.2734 -0.09195 

DRB10901 Dim.1 0.09571 -0.1262 0.3930 -0.09218 

DRB11501 Dim.2 0.06539 0.02152 -0.2933 -0.4132 

Sequence JMX Homology Score 0.02532 0.02340 0.1044 0.1843 

T Cell Cross-conservation Dim.1 0.02512 -0.009797 0.1107 0.2634 

DRB10801 Dim.2 0.02491 -0.006903 -0.3377 -0.1593 

DRB10701 Dim.2 -0.02441 0.004862 -0.1006 0.3105 

T Cell Cross-conservation Dim.2 0.02393 0.03514 -0.2057 -0.1832 

DRB10101 Dim.2 0.02379 -0.2475 -0.2846 0.1364 

DRB10301 Dim.2 0.02282 0.3524 -0.02384 0.04005 
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DRB11101 Dim.2 -0.02216 0.3481 -0.0005820 0.01179 

T Cell Epitope Distance Dim.2 -0.02097 -0.2734 0.2208 -0.04261 

DRB11301 Dim.2 -0.01255 -0.01659 -0.3861 0.3352 

Total Binding Affinity Dim.2 0.006436 -0.3597 0.005273 0.0008344 
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(A)

 

(B)
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Supplemental Figure C-1. An extended overview of conserved Teff epitopes over time with 

reference to H3N2 vaccine virus updates from (A) 1968 to 2004 and (B) 2010 to 2020. Refer 

to Figure 5.2 and 5.6 for more details. 
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Supplemental Figure C-2.  The analysis of the conserved Teff epitopes over time with reference to H3N2 vaccine virus updates 

from 2010 to 2020 for two replicate random subsamples. The results show outcomes that are consistent with findings in dataset B 

(Figure 5.6 and Supplemental Figure C-1B).
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Supplemental Figure C-3. The control group analysis of the conserved Teff epitopes over 

time with reference to H3N2 vaccine virus updates from 2009 to 2019 using canine A/H3N2 
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viruses. The result confirms that the outcome in Figure 5.2, 5.6, Supplemental Figure C-1 and C-

2 are not of random event. 

 

 

Supplemental Figure C-4. The comparison of genetic hamming distance to T cell epitope 

immune distance for the two datasets with respect to HK68 and PE09, respectively. The 

progression of both genetic drift and T cell epitope immune pressure appear to be linear over time. 
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