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ABSTRACT 

 The photosynthetic performance of coastal marshes, an important blue carbon ecosystem, 

under tidal flooding has not been studied extensively. Our study aimed to understand coastal 

marsh plant photosynthesis at different stages of tidal inundation. Our study answered a few 

fundamental questions related to the differences in the photosynthesis rates between air-exposed 

and submerged parts of the canopy. We studied marsh Photosystem II (PSII) operating efficiency 

(φPSII) through a fundamental vegetation property called the chlorophyll fluorescence (ChlF) 

through, which can reflect the efficiency of marsh plants to utilize absorbed light energy to carry 

out photosynthesis. We designed and deployed a novel field measuring system that that measures 

high temporal resolution ChlF and φPSII at leaf scale. Our field observations demonstrated the 

within canopy variation of Spartina alterniflora ChlF and φPSII across a range of tidal cycles 

and differing tidal amplitudes. We also observed greatly reduced but active underwater 

photosynthesis activities in fully submerged leaves, suggesting that S. alterniflora potentially 

remains a carbon sink during tidal inundation. We further developed an integrated approach for 

parameterizing φPSII with a set of high-resolution environmental and biophysical measurements, 



 
 

including air temperature (Tair), soil temperature (Tsoil), photosynthetically active radiation 

(PAR), tide height relative to the soil surface (WT), cloudiness index (CI), and the near-infrared 

reflectance of vegetation (NIRv). We incorporated these key meteorological and biophysical 

parameters into a random forest regression model to predict φPSII, which produced accurate 

results with a root mean square error of 0.9 (the observed φPSII ranges between 0.22 to 0.75). 

We also found that predicted S. alterniflora φPSII was predominantly driven by PAR, NIRv, 

Tsoil and WT. Our findings suggest that characteristics of salt marsh photosynthetic efficiency 

can be modelled by physiological and environmental variables. Our modeling revealed the 

seasonal and spatial variability of predicted φPSII over the Georgia Coastal Ecosystems Long 

Term Ecological Research (GCE-LTER) flux tower footprint. These findings will be beneficial 

in estimating salt marsh gross primary production (GPP). This novel framework can also be used 

as an important validation of ecosystem productivity models that rely on satellite data to study 

top of the canopy productivity.  
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Chapter 1:   

INTRODUCTION 

1.1. Background 

Tidal marshes are among the most productive ecosystems and an important carbon (C) 

sink in the global C cycle (Bianchi, 2006).  The average C burial rate of coastal salt marshes is as 

much as 1713 g C m–2 yr-1 in sediment, approximately 35 times higher than in terrestrial forests 

(McLeod et al., 2011). The C captured and stored in vegetated coastal ecosystems has been 

termed “blue carbon”, it is also recognized as one of the most productive techniques to mitigate 

anthropogenic carbon dioxide (CO2) emissions and defer global warming (NAS, 2019), which 

provides the key scientific motivation to understand salt marsh productivity across space and 

time. Salt marshes are vulnerable ecosystems with high dynamics of photosynthetic rate and 

plant production in the face of biophysical constrains such as high solar radiation and periodic 

tidal flooding (Hawman et al., 2021; Kathilankal et al., 2011; O’Connell et al., 2021). Pezeshki 

et al. (1993) showed that a congener, Spartina patens, had a 46% reduction in rates of 

photosynthesis and an 18% reduction in carbon assimilation under hypoxic (flooded) conditions 

in microcosm experiments. However, only a handful of studies have collected photosynthesis 

measurements at leaf level to understand the dynamics of photosynthetic behavior, particularly in 

an inter-tidal environment within tidal marshes (Duarte et al., 2005). Most studies used the CO2 

exchange between salt marshes and the atmosphere measured by eddy covariance (EC) systems 

to passively investigate tidal influences on marsh production at broad scales (Bonneville et al., 

2008; Kathilankal et al., 2008; Moffett et al., 2010; Morris et al., 2013; Schäfer et al., 2014; 
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Artigas et al., 2015; Forbrich & Giblin, 2015; Nahrawi et al., 2020). For example, Kathilankal et 

al. (2008) demonstrated marsh–atmosphere C exchanges continued during mid-day flooding 

events in salt marshes dominated by the cosmopolitan marsh plant, Spartina alterniflora, Loisel 

(S. alterniflora) (Kartesz, 2015; USDA & NRCS, 2019) (= Sporobolus alterniflorus; Peterson et 

al., 2014a, 2014b), but leaf submergence suppressed S. alterniflora photosynthesis by 66% of 

that observed during high tides. The magnitude of the reduction of photosynthetic efficiency 

underwater may not be reflected directly in gas exchanges as Forbrich & Giblin (2015) found 

only small reductions (2-4%) in canopy level gas exchange from tidal inundation seasonal 

carbon budgets. The difference in the amount of tidal influence on C exchanges suggests that the 

EC carbon flux measurements are not able to accurately reflect leaf-scale dynamics in 

photosynthesis during tidal inundation because it essentially solves an inverse problem by 

measuring CO2 fluxes to infer photosynthesis under tidal inundation. The reduction in canopy-

scale CO2 exchanges could likely be due to other factors such as laterally exported dissolved 

CO2, low diffusion rates of CO2 between the water column and atmosphere, or reduction in soil 

respiration by incoming tides (Kathilankal et al., 2008; Gålfalk et al., 2013). Therefore, more 

studies are needed to quantify leaf photosynthetic dynamics during different levels of plant 

submergence, to better understand and answer fundamental questions about the underlying 

energy partitioning mechanism of photosynthesis in flooded conditions, such as (a) do marsh 

canopies photosynthesize underwater?  (b) if yes, what are their photosynthesis rates?  (c) how 

does the photosynthesis rate vary between air-exposed and submerged parts of the canopy under 

different tidal flooding depths and during a specific tidal flooding cycle?   

Active induced measurements of quantum yield of chlorophyll fluorescence (ChlF) with 

pulse amplitude modulated (PAM) fluorometry have a long history of research and been widely 
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exploited to study the acclimation of the photosynthetic apparatus at the leaf level for terrestrial 

biomes (Bilger et al., 1995; Porcar-Castell et al., 2008; Porcar-Castell, 2011; Maguire et al., 

2020). For example, PAM fluorometry was utilized to evaluate the influence of intra-plant, inter-

plants as well as environmental factors on photosynthetic activity in cocoa trees (Calzadillaet al., 

2022). ChlF has been used as a key parameter in studying plant photosynthesis because it carries 

detailed information about the redox state of photosystem II (PSII) within chloroplasts (Murchie 

& Lawson, 2013). The underlying mechanism of using ChlF to study photosynthetic 

performance is straightforward. Light energy captured by chlorophyll in PSII undergoes three 

energy dissipation processes, often in combination, such that i) it can be used to drive 

photochemistry; ii) it can be lost from PSII as heat, or iii) it can be re-emitted from PSII as ChlF. 

Because these processes compete for the same light energy and PAM fluorometry is able to 

instantaneously inhibit the photochemistry of PSII (quenching of the fluorescence signal by 

plastoquinone reduction) by a high-intensity light pulse, the analysis of the leaf-level ChlF yield 

measured by PAM fluorometry provides direct, continuous information about changes in 

photochemical reactions such as nonphotochemical quenching (NPQ) resulting from changes in 

environmental variations. Therefore, long-term and continuous measurements of ChlF from the 

marsh leaf level can be used to investigate the complex dynamics of marsh photosynthetic 

activities via the estimated PSII operating efficiency (φPSII), particularly during tidal flooding in 

an inter-tidal environment. These data can also be coupled with environmental measurements to 

better understand the relationship between leaf photosynthesis and environmental gradients 

across different timescales and phenological stages. 

 Additional steps are required to scale the understanding of leaf level photosynthetic 

dynamics to larger areas for more comprehensive coverage of carbon exchange dynamics in 
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coastal ecosystems. A potential advancement in monitoring gross primary productivity (GPP, 

output from photosynthesis) would be to develop a product that captures the relationship 

between complex plant photosynthetic variability and the other environmental variables in 

coastal environments that can be eventually scaled up to larger areas and other tidal ecosystems. 

To our knowledge, such bottom-up models in a coastal salt marsh are sparse in the literature. 

Existing approaches in plant productivity monitoring are primarily focused on satellite-derived 

products with ground-level EC based net ecosystem exchange of CO2 fluxes. For example, some 

studies exploited remote sensing of reflectance-based vegetation indices such as normalized 

difference vegetation index (NDVI) and enhanced vegetation index (EVI), and leveraged the 

temporal continuity of satellite-derived products to establish simple statistical relationships 

between remotely sensed vegetation indices and productivity (Churkina et al., 2005; D’Odorico 

et al., 2015; Fu et al., -2014; Rahman et al., 2005). These relationships have moderate 

explanatory power because they only capture overall changes in canopy structure and leaf 

pigments across time rather than canopy photosynthesis (Baker, 2008; Lee et al., 2013; Yang et 

al., 2018). Recent studies have started incorporating solar-induced fluorescence (SIF), a 

spectrum signal emitted by chlorophyll-a of assimilating plants after competing for absorbed 

light energy with photochemistry, to track the productivity variation at different spatial-temporal 

scales (Frankenberg et al., 2011; Guan et al., 2015; Joiner et al., 2013; Liu et al., 2017; Wen et 

al., 2020). Compared to reflectance-based vegetation indices, the passive SIF measurements are 

more directly linked with the physiological activities of the vegetation because they provide an 

indication of how much absorbed solar energy is used in photosynthesis in response to 

biophysical changes (Baker, 2008). Therefore, SIF, as an emerging technique, is playing an 

increasingly important role in evaluating plant responses to environmental changes as well as 
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improving carbon budget estimation (Qiu et al., 2018; Zhang et al., 2014). In the past several 

years, numerous studies have used SIF together with EC carbon fluxes measurements to study 

the seasonal variation of plant photosynthesis and the SIF-GPP relationship in different biomes 

and at different spatiotemporal scales, in which SIF signals were observed from towers (Yang et 

al., 2015), airborne (Damm et al., 2015) or satellite platforms (Bai et al., 2022).  For example, 

Sun et al. (2017) found SIF retrieved from NASA’s orbiting Carbon Observatory-2 (OCO-2) 

satellite was a reliable proxy for real time photosynthetic dynamics. They used the SIF-GPP 

relationship for three different biomes across space, including crops in Minnesota, grass at 

Stuart Plain in Australia, and deciduous temperate forests in Missouri. These measurements 

have already been successfully used in studies of crop productivity (Guanter et al., 2014; 

Guan et al., 2016) and drought monitoring (Yoshida et al., 2015; Sun et al., 2015) However, 

neither approach has been used to study photosynthesis in tidal marshes mainly due to the 

environmental constraints, in particular, tidal flooding and high solar radiation which tend to 

depress reflectance spectra and decouple SIF from photosynthesis function. These environmental 

heterogeneities caused by tidal dynamics increase the variability of the photosynthetic activity 

within coastal vegetation, introducing additional spatiotemporal complexities to the estimate of 

GPP.  Therefore, developing a framework to model the responses of ChlF parameters (via PAM 

fluorescence) to environmental gradients commonly found in salt marsh environments is 

extremely valuable for understanding salt marsh photosynthetic activity at different spatial-

temporal scales.  

1.2. Objectives and Framework 

 The proposed research aims to leverage high frequency leaf-level ChlF measurements 

from PAM fluorometry and ground-based meteorological data to understand and quantify salt 
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marsh photosynthetic variations in the coastal intertidal ecosystem. An emphasis is placed on 

examining the impact of tidal flooding on the photosynthetic activities in salt marshes under 

natural field conditions. Additionally, this work focuses on developing a better understanding of 

the interactions between ChlF and environmental gradients. Specific objectives for this study 

include: 

(1) To evaluate the practicality of using field-based PAM fluorometry for continuous 

measurements of ChlF in an intertidal salt marsh 

(2) To study the variations in ChlF parameters and photosynthesis in S. alterniflora marshes 

under natural solar radiation and variable tidal flooding. 

(3) To understand and quantify the influence of tidal inundation on S. alterniflora 

photosynthetic efficiency across canopy heights and tide ranges. 

(4) To develop an accurate φPSII prediction model by linking biophysical and 

meteorological variables. 

(5) To understand and quantify the environmental contributors of predicted φPSII by 

analyzing it with in-situ environmental parameters across different timescales and 

phenological stages. 
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Chapter 2:  

STUDY SITE 

2.1. Overall Description of Study Site 

Our study was conducted on the coast of Georgia on Sapelo Island within the Georgia 

Coastal Ecosystems Long Term Ecological Research (GCE LTER) site (Figure 2.1). Sapelo 

Island is a state-protected barrier island that contains over 40 ha of salt marsh dominated by a 

monoculture of S. alterniflora (Bortolus et al., 2019). We focused on S. alterniflora because it is 

the most common salt marsh plant along the southeastern coast of the United States (Ainouche et 

al., 2003), and is further found on all three coasts of the conterminous United States and nearly 

every continent globally as either a native or invasive species. Thus, a better understanding of S. 

alterniflora photosynthesis dynamics is important because of its broad spatial coverage. Further, 

other common marsh plants also grow in monoculture, such as Spartina patens and Juncus 

roemerianus, two other species that are widespread on the southeastern coast of the United States 

(Gleason & Zieman, 1981; Smart, 1982), and which respond to similar ecological drivers. Thus, 

our S. alterniflora study is the first step toward understanding more broadly salt marsh 

photosynthesis dynamics in field settings. Our study sites consisted of marsh complexes within 

Keenan Field and near the Sapelo Island Flux, both along the eastern side of Duplin River 

(Figure 2.2a). The linear distance between these two sites is approximately 660 m. Both marshes 

experienced similar meteorological conditions but differed in canopy morphology (plant height).  
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Figure 2.1 The overall location of Sapelo island on the east coast of Georgia, U.S.A. Background 

imagery is a Landsat satellite images by Earthstar, from 2023-01-12. 

2.2. Experimental Sites 

We deployed the PAM fluorometry at the Keenan Field marsh site at Latitude 31.444° 

and Longitude −81.283° (Figure 2.2b).  S. alterniflora in this area varies in height along an 

elevation gradient, with tall-form plants (> 100 cm) along the low elevation creekbank, medium 

(50 to 100 cm), and short-forms (< 50 cm) in intermediate and high marshes, respectively.  Tall 

form plants are the most typical plants in this area (O'Connell et al., 2019).  Our field data were 

collected from July 11, 2020 to July 27, 2020, in the marsh interior at a tall- to medium-form 
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ecotone, approximately 25 m east of the Duplin River, and ~8 m north of the nearest tidal creek.  

Mean stem heights of our study plants were 110 ± 2.3 cm.  The elevation of this study location 

averaged 72 cm NAVD88 based on centimeter-accurate in-situ RTK measurements, which is an 

intermediate marsh elevation in this area, where elevation ranged from 20 cm to 110 cm (Alber 

& O'Connell, 2019).   

 

Figure 2.2 Field data collections in our study came from two Spartina alterniflora salt marshes 

sites on Sapelo Island, Georgia, USA. (a) Locations of the observation instruments (red dots) 

used for the Chlorophyll fluorescence (ChlF) and meteorological measurements, and photos of 

the vegetation at (b) Keenan Field site in the marsh interior at a tall- to medium-form ecotone 
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taken on July 10, 2020, (c) Flux tower marshes site adjacent to an eddy covariance carbon flux 

tower taken on August 22, 2018. 

The Flux tower site was near the GCE-LTER EC carbon flux tower at Latitude 31.444° 

and Longitude −81.283°, approximately 245 m east of the Duplin River (Figure 2.2c). This site 

had similar elevations as the Keenan Field PAM deployment location, but Keenan Field site is 

situated on a tidal creek natural levy, while the flux tower site is on the interior and higher 

elevation marsh platform. Medium-form S. alterniflora dominated this region with 71.3 ± 13 cm 

mean canopy height during our sampling between August 22, 2018, and September 10, 2018. 

High tides occur twice daily with typical tidal heights from 0 to 60 cm over the marsh platform 

(Hawman et al., 2021), but not high enough to completely inundate the marsh platform. During 

the majority of tidal inundation, S. alterniflora at both sites were only partially submerged, and 

leaves at the top of the canopy were exposed to the atmosphere. Neither site experienced 

disturbance (e.g., hurricane, dieback, wrack deposition) during our sampling period.   

 

 

 

 

 

 

 

  



 

19 
 

Reference 

Ainouche, M. L., Baumel, A., Salmon, A., & Yannic, G. (2003). Hybridization, polyploidy and 

speciation in Spartina (Poaceae). New Phytologist, 161(1), 165-172. 

Doi:https://doi.org/10.1046/j.1469-8137.2003.00926.x 

Alber, M., & O’Connell, J. L. (2019). Elevation Drives Gradients in Surface Soil Temperature 

Within Salt Marshes. Geophysical Research Letters, 46(10), 5313-5322. 

Doi:https://doi.org/10.1029/2019GL082374 

Bortolus, A., Adam, P., Adams, J. B., Ainouche, M. L., Ayres, D., Bertness, M. D., ... & Weis, J. 

S. (2019). Supporting Spartina: Interdisciplinary perspective shows Spartina as a distinct 

solid genus. Ecology 100:e02863. Doi.org/10.1002/ecy.2863 

Gleason, M. L., & Zieman, J. C. (1981). Influence of tidal inundation on internal oxygen supply 

of Spartina alterniflora and Spartina patens. Estuarine, Coastal and Shelf Science, 13(1), 

47-57. Doi:https://doi.org/10.1016/S0302-3524(81)80104-1 

Hawman, P. A., Mishra, D. R., O’Connell, J. L., Cotten, D. L., Narron, C. R., & Mao, L. (2021). 

Salt Marsh Light Use Efficiency is Driven by Environmental Gradients and Species-

Specific Physiology and Morphology. Journal of Geophysical Research: Biogeosciences, 

126(5), e2020JG006213. doi:https://doi.org/10.1029/2020JG006213 

O’Connell, J. L., Alber, M., & Pennings, S. C. (2019). Microspatial Differences in Soil 

Temperature Cause Phenology Change on Par with Long-Term Climate Warming in Salt 

Marshes. Ecosystems, 23(3), 498-510. doi:10.1007/s10021-019-00418-1 

Smart, R. M. (1982). Distribution and environmental control of productivity and growth form of 

Spartina alterniflora (Loisel.). In D. N. Sen & K. S. Rajpurohit (Eds.), Contributions to 

the ecology of halophytes (pp. 127-142). Dordrecht: Springer Netherlands. 



 

20 
 

 

 

Chapter 3:  

METHODOLOGY 

3.1. Leaf-scale Chlorophyll Fluorescence Measurements 

We used the aquatic version of a Monitoring PAM chlorophyll fluorometry to measure 

leaf-level ChlF (Heinz Walz GmbH, Effeltrich, Germany). The aquatic Monitoring PAM 

fluorometry consists of one data acquisition logger (MONI – DA), one PC interface box (MONI 

– IB4/USB), and four emitter-detector units (MONI – HEAD).  They are connected using 

waterproof data communication cables (RS – 485). A built-in battery and 500 Megabytes 

microSD card are sealed within MONI – DA/S, which allows for consistent monitoring of ChlF 

under frequent flooding conditions (water resistance up to 75 m). MONI – HEAD is a compact 

(~250 g) 3-cm wide by 28-cm long water-tight aluminum cylinder with built-in 

photosynthetically active radiation (PAR) and temperature sensors. It also has a blue LED light 

(peak at 455 nm) that is used to deliver measuring light, actinic light, as well as a saturating 

pulse, which is situated within a sample clip for modulated fluorescence measurements. The leaf 

clip was mounted at a distance of 2.5 cm and 120º from the lens.   
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Figure 3.1 Multi-Channel PAM Chlorophyll Fluorometry system (a) MONI-DA Data 

Acquisition system with 4 MONI-HEAD measuring head on the side, (b) Standalone MONI-

HEAD measuring head with sample clip consisting of 2 plastic frames, (c) MONI- IB4/USB PC 

Interface box that is used as a battery charger for MONI-DA and for data communication, (d) 

Example system configuration for ChlF data collection in the field. 

We inserted two to three pairs of green and healthy S. alterniflora leaves into each 

sample clip because a single S. alterniflora leaf, particularly at the top of the canopy, was not 

wide enough to cover the entire clip. We also placed a black high-density foam behind the 

sample clip to eliminate background interference (Figure 3.2). In addition, we added 

Polyurethane foam at the top and bottom edges of the clip holder to ensure that leaves remained 

in place through tidal inundation (Figure 3.2). It also reduced the etiolation symptoms of leaves 

throughout the monitoring period. The intensity of measuring light at the sample clip level is 

adjustable, ranging from 0.1 μmol·m−2·s−1 at low frequency (5 Hz) to 15 μmol·m−2·s−1 at high 

frequency (500 Hz).  The same blue LED emits up to 1,500 μmol·m−2·s−1 actinic light and up to 

2s saturation pulse for a maximally 6,000 μmol·m−2·s−1 at the sample clip level.  A filter is used 

within the lens of MONI – HEAD to exclusively isolate the reflected ChlF signal at 

wavelengths > 645 nm. 
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Figure 3.2  a detailed view of the MONI – HEAD measuring head in the field with three S. 

alterniflora leaves selected in the sampler clip. 

In order to ensure robust ChlF measurements during tidal inundation, we built a 

rectangular PVC frame from 1-inch PVC pipes for MONI – HEAD deployment (Figure 3.3a).  

Each corner of the rectangular base was secured to the soil by a PVC leg (screwed to the frame 

and inserted into the soil 60 cm). The two long sides of the base were connected by a PVC pipe 

(80 cm in length).  From the middle of this connector, a central PVC pipe (110 cm in length) rose 

vertically from the center position of the rectangular base, creating a stable mount for the sensor 

(Figure 3.3b).  
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(b) 

Figure 3.3 Pictures of custom-made PVC frame that supports ChlF measurements from S. 

alterniflora plant (a) lab picture of our PVC frame, (b) field picture of our PVC frame. 

We used two MONI – HEAD to measure the tidal influences on ChlF of S. alterniflora at 

two different stem heights: one each at the top of the canopy (TOC) and bottom of the canopy 

(BOC), approximately 105 and 35 cm from the soil surface.  MONI-HEAD/S were installed on 

the custom-made PVC frames (Figure 3.4). The position of the top sensor was determined by the 

marsh plant height (average canopy height was 110 ± 2.3 cm during sampling). The bottom 

sensor position was determined by the height of the leaves lowest on the plant stem.  
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Figure 3.4 Field picture of leaf-level ChlF measurement system that installed on a custom-made 

PVC frame that supports ChlF measurements from S. alterniflora at the top and bottom of the 

plant canopy 

ChlF parameters, including maximum ChlF in dark (Fm) and in light (Fm′), minimal ChlF 

in dark (F0), and steady-state fluorescence (F′) were measured by each MONI- HEAD.  The 

intensity of the measuring light was set as 0.1 mol·m−2·s−1 under “low-frequency” mode in dark 

and 15 μmol·m−2·s−1 under “high-frequency” model in light, respectively.  The saturation light 

used maximum Photosynthetic Photon Flux Density (PPFD) with 0.8s integration time.  The 

measuring light switched off after each saturating measurement but automatically switched on 

before the next saturating pulse. S. alterniflora leaves were sampled at 5 minutes intervals, 
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resulting in 288 data points collected daily, which allowed us to continuously monitor the 

influence of tides on S. alterniflora photosynthetic activities. The final 2020 dataset included 

4,896 observations from each MONI-HEAD, with 9,792 observations in total. The final 2018 

dataset had 3792 observations, which  added up to a total of 10,000 data points at 5 min intervals 

over the sampling period across two years.  

3.2. Leaf-scale Chlorophyll Fluorescence Measurements 

All measured and derived ChlF parameters are listed in Table 3.1 and described below.  

Table 3.1 Description of chlorophyll fluorescence parameters used in this study. 

Parameter Definition Measurement 

F0  Minimal fluorescence measured from a 

leaf in the dark  

Measured after dark-adapted leaf 

exposed to weak measuring light 

Fm Maximum fluorescence measured from 

a leaf in the dark  

Measured after dark-adapted leaf 

exposed to saturating light pulse 

Fv Range in leaf fluorescence during dark 

conditions 

Difference in fluorescence between 

Fm and F0: Fv = Fm – F0 

Fv/Fm Maximum quantum efficiency of PSII; 

the range in fluorescence vs. maximal 

fluorescence during dark conditions 

Proportion of fluorescence: Fv/Fm  

F′ The steady-state level of fluorescence 

measured from leaf in the ambient 

actinic light.  Sometimes referred to as 

Ft in the literature 

Measured under ambient light 

conditions before any saturating light 

pulse 
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Fm′ Maximum leaf fluorescence measured 

in the ambient actinic light 

Measured under ambient light after 

the leaf is exposed to saturating light 

pulse 

Fq′ Range in leaf fluorescence from in 

actinic light 

Difference in fluorescence between 

Fm′ and F′: Fq′ = Fm′- F′ 

φPSII PSII operating efficiency: the 

proportion of light absorbed by PSII 

that is used for photosynthesis 

Proportion of fluorescence between 

Fq′ and Fm′: Fq′ / Fm′ 

Note: The parameter with a prime (') notation represents measurements from the leaf under 

continuous actinic light that drives photosynthesis. The parameter without a prime represents 

continuous measurements from the leaf in the dark, where modulated measuring light absorbed 

by PSII is used completely for photochemistry. 

Fluorescence measurement provides leaf-level information on the acclimation of PSII 

energy partitioning in a natural environment (Adams & Demming-Adams, 2004; Logan et al., 

2007; Baker, 2008).  The F0 and Fm were measured in the dark-adapted state (i.e., pre-dawn).  

The maximum quantum yield of PSII (Fv/Fm) was calculated following Maxwell & Johnson 

(2000) as:  

Fv/Fm = (Fm-F0) / Fm 

Where, Fv/Fm indicates the maximal photosynthetic potential of a dark-adapted leaf with no heat 

dissipation and all reaction centers open.    

PSII operating efficiency (φPSII) is the fluorescence parameter that indicates the efficiency at 

which light is absorbed by PSII.  φPSII is used for a light-adapted leaf and estimates 

photochemistry yield.  φPSII was determined following Genty et al. (1989) as: 
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φPSII = (Fm′-F′) / Fm′ 

Where, Fm′ is the fluorescence maximum in the light-adapted state, and F′ is the fluorescence 

yield at which the absorbed radiant energy is emitted from the S. alterniflora leaf in actinic light 

conditions.  Theoretically, F′ is higher than F0 as the primary quinone acceptor (QA) cannot 

become maximally oxidized (i.e., PSII reaction centers are not completely open) in light 

environments (Baker, 2008). In addition, Fm′ should be lower than Fm because of an increase in 

the efficiency of heat dissipation (i.e., non-photochemical quenching- NPQ) with increasing light 

intensity (Murchie & Lawson, 2013).   

3.3. Leaf-scale Photosynthetic Photon Flux Density (PPFD) Measurements   

In order to carefully examine the impact of tidal inundation on the photosynthetic 

dynamics of salt marshes, we continuously measured the incident PAR that plants received at 

different stem heights under natural field conditions. We used LI-192 (LI-COR Biosciences, 

Lincoln, NE), an underwater quantum sensor that is accurate in air and underwater. To minimize 

reflectance interference from the instrument frame, upwelling and downwelling quantum sensors 

were fixed on a black finished metal frame (LICOR 2009S lowering frame), and then mounted 

on black painted PVC pipes (1-inch diameter PVC pipes, henceforth expressed as ‘PAR tree’; 

Figure 3.5). During 2020 sampling, two PAR trees were deployed to simultaneously measure 

downwelling PAR at different stem heights of the plant (at 105 cm and 35 cm from the soil 

surface, respectively), which corresponds to the heights of the TOC and BOC PAM 

measurements described previously (Figure 3.5a, b). The PAR acquisition frequency was 

programmed to match PAM ChlF data. We then used a waterproof cable (LI-COR 2222UWB) to 

transmit PaR to a XLite 9210B data logger (Sutron Corporation, Sterling, VA) (Figure 3.5c). In 

2018 sampling, we measured the incident PAR on the flux tower using LI-190R (LI-COR 
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Biosciences, Lincoln, NE, USA) quantum sensor. Sensor readings were also automatically 

logged every 5 min by a Campbell Scientifics CR3000 data logger on the flux tower (Figure 3.7). 
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(a) 
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(b) 



 

35 
 

 

(c) 

Figure 3.5 Field deployment of LI-192 quantum sensor at different levels of canopy. (a) a set of 

LI-192 quantum sensors measured upwelling and downwelling PAR at the top of the marsh with 

the help of the customized frame. (b) a set of LI-192 quantum sensors measured upwelling and 

downwelling PAR at the bottom of the marsh with the help of the customized frame. (c) a solar 
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panel powered XLite 9210B data logger (Sutron Corporation, Sterling, VA) that connected to 

sets of LI-192 quantum sensors and automatically recorded solar radiation measurements. 

We calibrated the PPFD data obtained from underwater quantum sensors (LI-192) for 

both in-air and underwater conditions. The photon intensity at different plant heights was 

determined following the factory LI-192 calibration equation: Radiation = Measured Current × 

Calibration Multiplier.  Where, the measured current was the output of the sensor in microamps, 

and the calibration multiplier was a multiplier that distinguishes sensor operating conditions.  For 

example, an underwater multiplier is always greater than an in-air multiplier because of the 

immersion effect. We applied an immersion coefficient multiplier to the BOC quantum sensor 

when it was fully submerged.  In this context, we post-calibrated 2186 downwelling 

measurements from the quantum sensor at BOC with the corresponding tide height and 

immersion coefficient multiplier. We did not apply an underwater multiplier to the TOC 

measurements because it was never submerged during the sampling. 

3.4. Tide Height Measurements  

We used HOBO U20 Water Level Data Logger (Onset Computer Corporation, Bourne, 

MA) to record water table heights near the PAM fluorometers at Keenan Field in 2020 (Figure 

3.6a).  These water table measurements were taken ~4.8 m east of MONI – HEAD at an 

elevation of 0.76 m NAVD88. We placed the sensor in a well (2-inch diameter PVC pipe) that 

was 39 cm above the vegetated marsh soil surface. We drilled infiltration holes every 20 cm on 

four sides of the pvc well to stimulate groundwater flow. We also used a fabric cloth as a cover 

to prevent sedimentation (Figure 3.6c). The HOBO logger was programmed to collect well water 

level data in 5-minute intervals, concurrent with ChlF measurements. We calculated the water 

table height relative to the soil surface (WT) for MONI – HEAD and ‘PAR trees’ by subtracting 
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the soil surface elevation at the sensor location from the water height. Thus, positive values 

represent water levels above the soil surface. 2018 water table measurements were measured at a 

creek ~ 50 m southeast of the flux tower at 31.4437° and -81.2838° with an elevation of 0.7 m 

NAVD88 using Campbell CS456 titanium pressure transducer (Campbell Scientific Inc., Logan, 

UT, USA) (Figure 3.6b). This system has been maintained by GCE-LTER field technicians. 

Sensor readings are automatically logged by a Campbell Scientifics CR3000 data logger on the 

flux tower (Figure 3.7) and were converted to those relative to the soil surface as well. This 

allowed for direct comparison in tide level during flooding between the two sites despite 

differences in marsh soil surface elevation.  

 

(a)  

 

(b) 
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(c) 

Figure 3.6 Picture and field deployment of pressure transducer sensor. (a) HOBO U20 Water 

Level Data Logger, (b) Campbell CS 456 Titanium Pressure Transducer (c) A customized PVC 

well with fabric cover and infiltration holes built to secure Hobo U20 data logger for continuous 

water height measurements caused by tidal inundation. 

3.5. Plant submergence status definition 
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To determine the influence of tidal inundation on the photosynthetic performance of S. 

alterniflora, we designated three conditions of tidal inundation from the BOC perspective, 

including fully submerged, partially submerged, and air-exposed. In our study, air-exposed 

indicates leaves that are exposed to the atmosphere. Fully submerged indicates conditions when 

the BOC leaves are completely submerged. Partially submerged represents conditions when 

leaves at the height of BOC sensor are exposed to the atmosphere, but plants below the BOC 

sensor are fully submerged. This is a transient period for plants between getting submerged with 

the rising tide (tide moves in) and being exposed with the receding tide (tide moves out). TOC 

leaves were always exposed to the air during our sampling period. We also focused on mid-day 

flooding that peaked between 10:00 and 16:00 US EST following Kathilankal et al. (2008). 

3.6. Cloudiness Index    

We also calculate cloudiness Index (CI) to represent the variation of sky conditions. The 

index of cloudiness is created based on the relationship between observed and potential PAR at 

the top of the atmosphere. The CI calculation following Turner et al. (2003) and Turner et al. 

(2006): 

CI = 1 − PAR PAR𝑇𝑂𝐴⁄                                                 (1) 

where PAR is the incident PAR measured at the canopy PARTOA is the simulated PAR at the top 

of the atmosphere (following Hawman et al. 2021). The CI value is in the range of 0-1, with a 

lower value indicating a higher percentage of clouds in the sky (e.g., overcast), and a higher 

value representing clear conditions with fewer clouds in the sky (e.g., sunny) 

3.7. Air temperature data 
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To identify meteorology conditions for this study, we obtained 5-min air temperature 

(Tair) data from the flux tower for the sampling periods. The air temperature measurements were 

taken at two different elevations of the flux tower (Figure 3.7) by three different sensors, 

including the 107 thermocouple (Campbell Scientific Inc., Logan, UT, USA) at the top of the 

tower and two separate sensors HMP45C (Campbell Scientific Inc., Logan, UT, USA) and 

EE181 (Campbell Scientific Inc., Logan, UT, USA) at the middle level of the tower. We used 

averages of temperature measurements made at different locations in our study.  

3.8. Soil temperature data 

The GCE EC flux tower also has soil temperature (Tsoil) sensors that collect information 

at 5‐min intervals. Soil temperatures were taken at a depth integrated between 5 - 10 cm. We 

used Tsoil measurements from the EC flux tower for the Keenan filed in 2020 because the 

elevation gradients between these two sites were small (~0.3 m), which we hypothesize might 

not lead to significant differences in soil temperature across the study marsh. A separate 

temperature probe (HOBO UA‐002, Onset Computer Corporation, Bourne, MA) buried into the 

soil to measure soil temperature will be included in the future study. 

3.9. The near-infrared reflectance of vegetation (NIRV) index 

In addition to above mentioned environmental variables, we calculated near-infrared 

reflectance of vegetation (NIRV) from the Sentinel-2 remote sensing satellite. The NIRV is 

calculated as the product of NIR reflectance and the normalized difference vegetation index 

(NDVI) following Badgley et al., 2017. NDVI is a common measure of vegetation cover, but it is 

not a good proxy for intertidal salt marshes as the tidal inundation can significantly impact the 

reflectance of the canopy, resulting in a decrease in the NDVI sensitivity and accuracy. NIR 
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reflectance should be a more robust proxy of leaf photosynthetically active radiation (fPAR) 

absorbed by a canopy as well as canopy chlorophyll content (Dechant et al., 2022) because it is 

more attributable to vegetation phenology (Sellers et al., 1992). We calculated the NIRV to match 

our sampling period between August 22 and September 10, 2018, and from July 11 to July 27, 

2020, using 45 Sentinel-2 images/dates. We first selected dates without flooding by applying 

FLATS index to our Sentinel images (Narron et al., 2022). Then we used Smoothing Spline 

Regression in R to interpolate 28 days of dry Sentinel-2 images between June 13, 2018 and Jan 

28, 2021 to the entire sampling period.  
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Figure 3.7 GCE-LTER flux tower with sensor positions marked with numbers. The positions of 

interest to our study are #1: air temperature sensor at the top of the tower (107 thermocouple); 



 

43 
 

#2: air temperature sensor at mid-tower (HMP45C); #3: newer air temperature sensor at mid-

tower (EE181)  

3.10. Random Forest modeling 

We used the random forest model (Liaw, Wiener, et al., 2002), a commonly used 

algorithm in classification and regression, to model the relationship between φPSII and 

environmental variables. We used a fast implementation of random forests (Ranger) (Breiman 

2001), from the R package “randomForest”. Random forest model is among the types of models 

that could be used for regression analysis when the input data have high spatial and temporal 

variabilities. It also allows for nonlinear modeling between the dependent and independent 

variables without a prior assumption of underlying relationships. In the random forest algorithm, 

hundreds of decision trees are randomly generated, and all trees are independent of each other. A 

final regression model is the most accurate with respect to predicting ground-truth information 

and made by aggregating multiple layers of the decision trees. In this study, a random forest 

model was trained for φPSII data with the above-mentioned environmental covariates (Eq. 2).  

The final formula for this study was:  

𝜑𝑃𝑆𝐼𝐼 ~ 𝑓{𝑇𝑎𝑖𝑟, 𝑇𝑠𝑜𝑖𝑙, 𝑊𝑇, 𝑃𝐴𝑅, 𝐶𝐼, 𝑁𝐼𝑅𝑉}                           (2) 

We first divide our data into global training and global validation sets. The global 

training set included data collected in August 2018 from the flux tower site and July 2020 from 

the Keenan field site; the global validation set has comprised of data collected in September 

2018 (09/01/2018 – 09/10/2018). These two datasets were independent, and in particular, the 

global validation data were collected at a different timeframe and was expected to reduce the 

overfitting in model evaluation.  



 

44 
 

 

Figure 3.8 Full schema of random forest model training, testing and validation datasets set up. 

Second, we created the model resampling based on the global training data from the last 

step. We divided the global training dataset into a model training and testing set (70% and 30% 

of the global training data, respectively). We used this 70/30 relationship because empirical 

studies have shown that it could produce the best results and avoid overfitting (Gholamy et al., 

2018). To account for temporal autocorrelation within closely observed samples and prevent 

overfitting and overly optimistic model accuracy, we used a procedure known as temporal 

blocking (Meyer et al., 2018). This involved keeping observations from the same day together 

during the splitting process. In addition, we stratified the splitting by tidal flooding (tide 

blocking) to ensure that model training and testing sets contained observations from different 

tidal conditions and were thus more representative of the entire dataset.  

Third, random forest model results can be different based on the choices of model 

parameters. In order to find the best performing parameters for our model, we used 

“Hyperparameter tuning” and “Cross-Validation”. Hyperparameter tuning is a method where one 
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optimizes the parameter within the training set during random forest model building. The model 

resampling was used to tune the model hyperparameters on the model training dataset and 

validated on the model testing dataset via repeated 3-fold cross-validation with the number of 

repeating = 10. To select hyperparameters, we used an optimization via a regularized grid search 

across three parameters, including (1) trees - number of trees in the forest, (2) min_n - minimum 

number of samples allowed within the terminal node, and (3) mtry - the number of variables to 

consider for splitting a node. We selected the best-performing parameters in the tuning results 

based on the root mean squared error (RMSE), fit the finalized random forest model to the global 

training, and evaluated it on the global testing dataset. At last, we calculated the default variable 

importance output of the random forest model for each predictor using the R package “vip”. 
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Chapter 4:  

RESULTS 

This chapter will be grouped and presented by specific research objectives provided in 

the introduction. Sections 4.1 to 4.8 correspond to results for objectives 1 – 3, and the rest 

corresponds to results for objectives 4 – 6. Results from environmental data for 2018 and 2020 

are discussed separately based on their usage in different objectives.  

4.1. Environmental and Tide Level Data  

Daily time courses of tidal inundation over the soil surface are shown in Fig. 4a for July 

11-27, 2020.  A horizontal dashed line indicates tide heights that inundated the BOC MONI – 

HEAD at 35 cm above the soil surface.  Two tide peaks were recorded on most days, and tidal 

flooding rarely exceeded 25 cm above the soil surface during the beginning of sampling (July 

11-15).  However, in the latter half of July, the maximum tide height was > 45 cm above the soil 

surface, which covered the base of the stem and submerged the BOC MONI – HEAD.  We, 

therefore, designated three conditions of tidal inundation from the whole plant perspective, 

including fully submerged, partially submerged, and air-exposed. In our study, air-exposed 

indicates leaves that are exposed to the atmosphere.  Partially submerged represents conditions 

when leaves at the height of BOC sensor are exposed to the atmosphere, but leaves below the 

BOC sensor are fully submerged. This is a transient period for plants between getting submerged 

in the rising tide (tide moves in) and being exposed with the receding tide (tide moves out).  

Fully submerged indicate conditions when the BOC leaves are completely submerged by the tide 
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while the TOC leaves are still air-exposed. TOC leaves were never fully submerged during our 

sampling period.  We also selected mid-day flooding that peaked between 10:00 and 16:00 US 

EST to study the effect of tidal inundation on the photosynthetic performance of S. alterniflora, 

following Kathilankal et al. (2008). 

Diurnal dynamics of PAR on TOC and BOC leaves of S. alterniflora are shown in Fig. 

4b for July 11-27, 2020.  In general, the diurnal variation in PPFD shows a similar pattern on the 

TOC and BOC leaves, albeit leaves at BOC receive much fewer photons during midday.  For 

example, during tide inundation on July 12, air-exposed leaves at TOC received an average 1449 

± 52.2 (mean ± SD) PPFD compared to 736 ± 35.3 (mean ± SD) mol photons m−2 s−1 received 

by completely submerged leaves at BOC.  Results will be presented in the form of mean ± 

standard deviation (SD) in the rest of the paper unless otherwise noted. 
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Figure 4.1 Daily environmental variables collected between 11 and 27 July 2020 from S. 

alterniflora marsh at Sapelo Island, GA: (a) The blue line represents the daily tide cycle and 

highlights the tide level of each peak tide over the soil surface (= 0 cm).  The dashed horizontal 

line indicates the deployment position of emitter-detector sensor (MONI – HEAD) at the bottom 

of the canopy (BOC), which becomes completely submerged when the tide height is > 35 cm 

from the soil surface.  Note that the top of canopy MONI – HEAD at 105 cm, were never 

submerged during the study.  (b) The green and red lines illustrate the diurnal change pattern and 

peak of photosynthetic photon flux density (PPFD) incident on TOC and BOC leaves of S. 

alterniflora, respectively.  BOC Leaves received diminished PPFD compared to leaves at TOC. 
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4.2. Diurnal Leaf-Level Fluorescence Variations 

An example of the continuous TOC and BOC ChlF parameters measured by PAM 

fluorometers is shown in Figure 4.1 for July 27, 2020.  July 27 was the 4th day in a row when the 

maximum tide level reached > 45 cm over the soil surface.  The fluorescence yields observed 

from leaves in the dark showed differences in the fluorescence yield within the canopy.  For 

example, F0 measured from the TOC leaves were 2 times greater than BOC leaves (TOC F0 

range: 200.25 ± 4.14; BOC F0 range: 102.47 ± 3.75).  Fm measurements followed a similar ratio, 

with higher TOC Fm and lower BOC Fm (TOC Fm = 906 ± 2.74; BOC Fm = 469 ± 2.83).  

However, we found similar Fv/Fm (mean = 0.78) on both TOC and BOC leaves (Figure. 4.2).      

 

 

 

 



 

53 
 

(a)
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(b) 
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(c) 

Figure 4.2 Diurnal dynamics of chlorophyll fluorescence (ChlF) parameters observed at 5-min 

intervals during a high tide period that occurred in the middle of the day on 27 July 2020: (a) 

PSII operating efficiency (φPSII ) at the top of the canopy (TOC) (105cm, black line) and bottom 

of the canopy (BOC) (35cm, orange line); (b) & (c) maximum ChlF (orange line) and current 

ChlF emissions (become F0 at night) (black line) observed from the TOC and BOC, respectively.  

Blue points indicate the variation in ChlF parameters during tidal flooding when the maximum 

tide height was 45 cm above the soil surface, which should significantly submerge the BOC 

sensor head.  The shaded area indicates nighttime observations when Photosynthetic photon flux 
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density (PPFD) = 0, a prime (') notation used after ChlF parameters that represent daytime 

measurements when photosynthesis is occurring. 

4.3. Diurnal Leaf-Level Fluorescence Variations at the top of the Canopy 

Diurnal variations of F′ and Fm′ illustrate responses of PSII to within canopy differences 

in the natural environment (i.e., natural light and heat stress) (Table 4.1).  The TOC F′ and Fm′ 

variations can be grouped into three general stages (Figure 4.2 b).  First, after sunrise (TOC 

PAR > 0), Fm′ started decreasing immediately, and F′ rose sharply with a corresponding 

reduction in Fm′.  These phenomena denote that the TOC leaves are highly sensitive to PPFD and 

heat increases after sunrise, indicated by a decrease in Fm′.  However, a decrease in the ability to 

oxidize QA, indicated by a more dramatic increase in F′ (Table 4.1), is the main factor that 

determines the change of φPSII after sunrise (Baker, 2008; Maguire et al., 2020).  Second, both 

Fm′ and F′ changed in a similar fashion during the day despite tidal inundation at the BOC.  For 

example, F′ and Fm′ stayed relatively constant with an average midday range of 459 ± 11 and 614 

± 17, respectively.  The lowest Fm′ occurred in the early afternoon (Fm′ = 571 at 13:05), when the 

ambient air temperature was 31.59 ℃, and light radiation was intense at 1953 μmol·m−2·s−1.  

This daytime change pattern of fluorescence yields in S. alterniflora during flooding is similar to 

those that were reported in Pinus sylvestris, Fagus sylvatica, and Cucurbita pepo (Bilger et al., 

1995; Porcar-Castell et al., 2008; Porcar-Castell, 2011). Therefore, all of these observations 

illustrate that fluorescence yields at the top of the marsh canopy are only slightly affected by 

tidal flooding as long as the top of the canopy is air-exposed, even at times when the BOC is 

submerged.  Third, in the early evening, both F′ and Fm′ experienced recovery with a steady 

decline of F′ and a constant rise in Fm′.  This recovery was almost completed before darkness 
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when the measurements of F′ and Fm′ reached close to F0 and Fm, respectively. No obvious 

fluctuations in fluorescence yields were observed at night. 

Table 4.1 Summary of variation of averaged chlorophyll fluorescence (ChlF) measurements after 

dawn (0 < PAR < 266 µmol m−2 s−1) during the entire sampling period. 

  

Parameters 

Dawn 

(0 < PPFD < 10) 

Early morning (10 

< PPFD < 266) 

% Change of ChlF 

after dawn 

Top of the 

canopy 

(TOC) 

F′ 207 ± 31 442 ± 68 + 113% 

Fm′ 877 ± 54 678 ± 98 - 22% 

Bottom of the 

canopy 

(BOC) 

F′ 109 ± 32 182 ± 56 + 67% 

Fm′ 458 ± 22 334 ± 87 - 27% 

Note: F′ measured at the top of S. alterniflora canopy increased by 113% on average after 

sunrise, while simultaneously, Fm′ decreased on average by 22%.  Overall, F′ and Fm′ 

measurements from the BOC present similar patterns of variation with the TOC observations 

after dawn but with differences in the magnitude of fluctuation.  Note: The unit of PAR is 

μmol·m−2·s−1 

4.4. Diurnal Leaf-Level Fluorescence Variations at the Bottom of the Canopy 

Diurnal variation of fluorescence yields at the BOC also had three general stages, but it 

was more complex and variable due to the influence of tidal inundation, which sometimes 

submerged the BOC leaves (Figure 4.2c).  First, after sunrise, F′ increased immediately, but Fm′ 

stayed constant and started decreasing about 1 hour later.  Second, fluorescence yields at the 
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BOC present similar patterns of variation with the daytime TOC observations but with 

differences in the magnitude of fluctuation.  For example, F′ and Fm′ stayed steady within the 

range of 127 ± 4.5 and 207 ± 10, respectively, before tidal flooding (Figure 4.2c).  However, 

tidal inundation led to large fluctuations in fluorescence yields in the BOC leaves.  For example, 

on July 27, 2020, the tide started rising at 12:35, peaked at 14:35, at a height that submerged the 

BOC leaves, and then gradually decreased until it completely subsided at about 16:25. When 

tides were highest, a maximal Fm′ of 426, which is close to Fm, was observed.  F′ also rose 

sharply to a maximum that was above even the highest F′ from the morning observation period.  

Water from tidal flooding is a good absorber of both light and heat energy.  Thus, the cool, low 

light environment provided during BOC flooding likely corresponds to minimal levels of NPQ, 

with the concomitant closure of the majority of PSII reaction centers that would likewise prohibit 

photochemistry. Thus, most of the light energy absorbed by PSII was lost as ChlF during this 

time. Third, in the early evening, F′ and Fm′ started returning to levels close to those before 

sunrise.  Although in-situ ChlF measurements have been reported for salt marshes (Kathilankal 

et al., 2008), our time series of daily ChlF dynamics, for the first time, provides continuous leaf-

level information on the acclimation of PSII to realistic field tide inundation in S. alterniflora at 

different canopy heights. 

4.5. Diurnal Leaf-Level Variations of Quantum Efficiency of PSII 

Figure 4.2a depicts the variation of Fv/Fm and φPSII calculated from the TOC and BOC 

ChlF.  In general, during the high tide day, BOC φPSII was higher than TOC φPSII.  For 

example, the mean BOC φPSII, excluding midday tidal inundation, was 0.39 ± 0.05 compared to 

the TOC φPSII of 0.298 ± 0.03 (Table 4.2).  During tidal inundation, there were no detectable 

changes in TOC φPSII efficiency, but the BOC leaves showed a considerable reduction in φPSII, 
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as φPSII closely followed the height of tidal flooding with minimal values below 0.2 during the 

BOC submergence.  Our results suggest that the PSII reaction centers in fully submerged S. 

alterniflora leaves were still active and transferring electrons, but only at approximately 20% of 

the typical daily rate.  This is a new finding, and to our knowledge, these differences in leaf-level 

reductions in φPSII within S. alterniflora canopy at different stem heights under natural flooding 

conditions have not been reported before in the literature. 

Averaged Fv/Fm for the S. alterniflora leaves from TOC and BOC showed a similar value 

of Fv/Fm at 0.78 (TOC: 0.78 ± 0.002; BOC: 0.78 ± 0.004), which is slightly lower than the 

optimal value reported for many plant species (Björkman & Demmig, 1987; Bilger et al., 1995; 

Murchie & Lawson, 2013; Yang et al., 2017).  To our knowledge, this Fv/Fm has not been 

reported before for S. alterniflora in real-field conditions either.  Fv/Fm is thought to reflect the 

maximum quantum efficiency because leaf-level fluorescence parameters were continuously 

measured through the night when QA was supposed to be maximally oxidized, and the level of 

heat loss from PSII (NPQ) should have disappeared completely (Maxwell & Johnson, 2000).  

However, we found that NPQ stayed more or less active at night during our sampling period 

(averaged nighttime NPQ = 0.086 ± 0.013), which lowered Fm and resulted in a smaller Fv/Fm.  

This phenomenon has been reported before and described as a common occurrence during 

summer months with higher night temperatures (Porcar-Castell et al., 2008; Yang et al., 2017).  

Those conditions represent our site well, where summer nights in coastal Georgia, USA are 

typically warm and humid.  In addition, photoinhibition caused by frequent saturating pulses 

from PAM fluorometer may have led to a decrease in Fm, resulting in a smaller Fv/Fm at night 

(Porcar-Castell et al., 2008). 
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Figure 4.3 Daily means of NPQ in dark conditions. This suggests NPQ of S. alterniflora stayed 

active at night during our sampling period 

4.6. Response of PSII Working Efficiency(φPSII) to Tide Heights during Low Tide 

Flooding 

The effect of tidal flooding on φPSII was observed during the daytime. The measured 

φPSII were plotted against tide height when flooding occurred between 10:00 AM and 16:00 PM 

and tide heights did not reach the BOC sensor (Figure 4.4). During these low tide days (peak tide 

height at ~25 cm), our data did not show substantial fluctuations of TOC and BOC φPSII.  
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Figure 4.4 The responses of photosystem II operating efficiency (φPSII) at the (A) bottom (BOC, 

35 cm) and (B) top (TOC, 105 cm) of the S. alterniflora canopy to increasing water table height 

during low tide days with 25 cm peak tide level above the soil surface. 

4.7. Response of PSII Working Efficiency(φPSII) to Tide Heights during High Tide 

Flooding 

The measured φPSII were also plotted against tide height tide on higher tide days when 

the BOC sensor was completely submerged during tidal inundation (Figure 4.5). The BOC φPSII 

showed sizeable reductions as they were negatively associated with tide height (Figure 4.5a). For 

example, BOC leaves φPSII dropped from an average of 0.39 ± 0.05 in air-exposed conditions 

from the start of the tide (non-flooded) to 0.33 ± 0.06, in partially submerged conditions as the 

tide level gradually rose (tide height < 0.35 cm).  The relationship became more pronounced 

when the tide height > 35 cm completely covered BOC S. alterniflora leaves. This resulted in a 
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greatly reduced φPSII rate in fully submerged leaves. For example, the rate of BOC φPSII for 

fully submerged leaves declined on average by 41% compared to air-exposed leaves in non-

flooded conditions (Table 4.2). In contrast, the impact of high flooding on φPSII in air-exposed 

TOC leaves was low, with less than 10% decline on average, at times when the BOC leaves were 

completely submerged. 

 

Figure 4.5 The responses of photosystem II operating efficiency (φPSII) at the (A) bottom (BOC, 

35 cm) and (B) top (TOC, 105 cm) of the S. alterniflora canopy to increasing water table height 

during high tide days with > 45 cm peak tide level above the soil surface. 

4.8. Overall Response of PSII Working Efficiency(φPSII) to Tide Heights 

In summary, the results (Table 4.2) demonstrate the applicability of PAM fluorometry to 

continuously track photochemical and non-photochemical PSII quantum yields in salt marshes in 

the field under a range of tidal and light conditions. Our field observations on the relationship 
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between leaf-level S. alterniflora ChlF and tide levels showed that photochemical efficiency 

differed markedly based on leaf submergence. The rate of φPSII in fully submerged BOC leaves 

decreased significantly compared to air-exposed leaves due to the physiological stresses induced 

by tidal inundation.  For example, the lower diffusion rate of gases and increased rate of stomatal 

closure act as major restrictions for fully submerged leaves (Heinsch et al., 2004; Knox et al., 

2018), suggesting that underwater φPSII is PQ instead of NPQ-limited. Additionally, we 

observed greatly reduced underwater photosynthesis activities in fully submerged leaves, 

suggesting that S. alterniflora could potentially remain a CO2 sink during tidal inundation 

(Artigas et al., 2015, Huang et al., 2020).   

Table 4.2 Variation of PSII operating efficiency (φPSII) at the top (TOC) and bottom (BOC) of 

the S. alterniflora canopy during (a) high tide and (b) low tide flooding. 

a 

High Tide Flooding 

TOC BOC 

Tide height 0 – 35cm >= 35cm Dry* 0 – 35cm >= 35m Dry* 

Sensor 

submergence 

Air-

exposed 

Air-exposed 

Air-

expose

d, no 

canopy 

floodin

g 

present 

Air-

exposed 

Fully 

submerged 

Air-exposed, 

no canopy 

flooding 

present 

φPSII (Mean ± 

Sd) 

0.28 ± 

0.03 

0.28 ± 0.03 

0.3 ± 

0.03 

0.33 ± 

0.06 

0.23 ± 0.05 0.39 ± 0.05 
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Note: The table show Changes (%) in φPSII for S. alterniflora leaves between air-exposed, 

partially submerged, and fully dry (non-flooded) conditions during high tide when the maximum 

tide height fully submerged BOC MONI – HEAD and during low tide when both TOC and BOC 

MONI – HEAD are air-exposed during the maximum tide. Asterisks (*) denote percent changes 

in φPSII at different tide heights. There were pronounced reductions in φPSII in partially or fully 

submerged S. alterniflora leaves compared to non-flooded conditions. We observed less than 

10% changes in φPSII in air-exposed TOC during both tidal events. 

4.9. Environmental Data for the Random Forest Model 

Our random forest model used PAR and tide level data as well as the four other 

predictors to model the relationship between S. alterniflora φPSII and environmental gradients. 

% Changes - 7.0%*  

-

7.0%

* 

 -15.4%*  

-

30.3

% 

-

41%

* 

 

b 

Low Tide Flooding 

TOC BOC 

Tide height 0 – 25cm Dry* 0 – 25cm Dry* 

Sensor 

submergence 

Air-exposed 

Air-exposed, no 

canopy 

flooding 

present 

Air-exposed 

Air-exposed, no 

canopy flooding 

present 

φPSII (Mean ± 

Sd) 

0.33 ± 0.03 0.36± 0.04 0.34± 0.04 0.40 ± 0.05 

% Changes -8.3%*  -15%*  
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Figure 4.6 presents all environmental variables, including diurnal air temperature (Tair; C°), 

diurnal soil temperature (Tsoil; C°), diurnal water level relative to the marsh soil surface (WT; 

m), diurnal incident PAR (PAR; μmol photons/m2/s) and diurnal cloudiness index (CI) that 

continuously collected for two experimental sites during the two sampling years. Figure 4.6 does 

not include interpolated NIRv as the plant phenology didn’t change significantly during our 

relatively short sampling period (see section 3.9). In addition, we used the same method 

explained in Chapter 3 to post-process the entire dataset. 

These two sites experienced similar climates although differing in sampling period 

(Figure. 4.5). For example, during the sampling, Tair had similar ranges, but July 2020 tended to 

peak at a higher Tair at midday. This followed the seasonal pattern that we expected, with fall 

(later August and early September) Tair being cooler than summer (July), when Tair variability 

was also greater. PAR was also similar at both sites. Mean midday (11:00 - 13:00) PAR was 

1865 μmol/m2/s in 2020 compared to 1789 μmol/m2/s in 2018. However, 2018 experienced more 

cloudy days than 2020 during our sampling. This is shown by the higher midday CI in Figure 

4.6a as well. During our sampling at the Keenan Field marsh platform in 2020, there were taller 

plants with dense canopy compared to the flux tower site in 2018, creating opportunities to test 

for differences in microclimate in each marsh zones. For example, although Tair for both sites 

were similar throughout the study (Fig. 1a & f), the 2018 sampling period had cooler Tsoil than 

the 2020 sampling period, suggesting greater soil shading. Differences in marsh canopy structure 

also caused greater Tsoil variability and higher peak values (Fig. 4.6b). In addition, although the 

elevation of both sites were similar, our two sites still experienced differences in flooding 

frequency and WT because the Keenan Field marsh is closer to the nearest creek and thus 

experiences more and higher tidal flooding. For example, in 2018, tide reached the flux tower 
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site for the most days, but tidal flooding rarely exceeded 0.25 m above the soil surface (6 days 

out of 20 days sampling periods). In contrast, the tidal flooding level was typically > 0.3 m 

above the soil surface (15 out of 16 days) during the 2020 sampling period. Midday WT peaked 

at a similar level, around 0.6 m across two sites. These environmental conditions were not 

significantly different across time and space, but they are good enough to make our model more 

comprehensive and have better compatibility. 
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(a) 
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(b) 

Figure 4.6 Daily environmental variables measured during (a) 2018 and (b) 2020 sampling 

period. 2018 data were collected from August 23 to September 10 at the flux tower site at Sapelo 

Island, GA. 2020 data were collected from July 11 to July 27 at Keenan field site at Sapelo 
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Island, GA. (a,f) air temperature (Tair), (b,g) soil temperature (Tsoil), (c,h) tide level over the 

soil surface (WT), (d,i) photosynthetically active radiation (PAR), (e,j) cloudiness index (CI). 

4.10. Random Forest Model Tuning and Validation 

We trained and validated the random forest model using hyperparameter tuning and 

repeated 3-Fold cross-validation to link salt marsh φPSII biophysical and meteorological 

variables. These measurements are commonly found and relatively reliable in the coastal 

ecosystem. The tuning result for the regressor parameters is shown in Table 4.3. 

Table 4.3 Tuning result for the random forest regressor parameters 

Cross-

validation 

Number of 

estimators 

Min node 

size 

Mtry RMSE R2 

True 400 5 4 0.045 0.827 

 

The best-performing random forest models from the tuning results had 400 trees, 4 

variables to randomly sample as candidates at each split, and a minimal node size of 5. The 

observed versus predicted φPSII of the tuned model for the training and validating datasets are 

shown in Figure 4.7. The RMSE between field measurements and model predictions of S. 

alterniflora φPSII for the entire training dataset was 0.045, and the RMSE increased to 0.09 after 

applying the final model to the global validation dataset, which was independent to the global 

training dataset (Figure 4.7). Both predicted and observed datasets were in the range between 

approximately 0.22 to 0.75, with the highest PSII prediction at around 0.71. The error was 

smaller than two standard deviations (2 S.D.) without a particular pattern of over or 

underestimation. Overall, the predicted φPSII corresponded with the field data, but we identified 
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a few outliers with differences greater than 0.05 at areas with low φPSII values, which indicated 

that there might be a slight over-prediction in the lower range (Fig. 4.7b).   

(a) 



 

71 
 

 

(b) 

Figure 4.7 Visualization of random forest model error: Observed vs. predicted PSII and root 

mean squared error (RMSE) of fit between field observation and model prediction for the (a) 
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training datasets and (b) validation dataset with standard deviation line from the mean (dashed 

red: ±1 SD; dashed orange: ±2 SD) 

4.11.  Contribution of Variables in the Final Random Forest Model 

In our model, all predictors contributed to explaining the model variance but differed in 

the significance level. Figure 4.8 shows the importance of the selected variable in predicting 

φPSII. In this instance, PAR and NIRV have a significant impact on the model outcome because 

model accuracy decreases by more than 60% when PAR and NIRV are excluded. Tsoil and WT 

are also important to the model accuracy as removing them would cause at least 30% increases in 

the mean square error of the model. CI and Tair, while significant, were less important as the 

model accuracy only reduced by ~ 20% when they were excluded. 



 

73 
 

 

Figure 4.8 Estimated variable importance of each variable in the random forest model. Variable 

importance was calculated based on the percentage of accuracy decreases when the variable is 

excluded. Variable with high values indicating that it has more significant impacts on the model 

outcome. 

4.12. Diurnal Variations of PSII Working Efficiency Predictions  

First, we used our PSII model at the flux tower to predict PSII and analyze the diurnal 

model output. Predictors used in the PSII model, including Tair, Tsoil, PAR, WT, CI were 

available from the flux tower, NIRV was averaged by retrieving nine pixels (3x3 grid) from 

Sentinel-2 images near the flux tower (Figure 4.10b).  An example of predicted PSII diurnal 
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variation with 30-min temporal resolution of August 08, 2020, and July 31, 2020 is shown in 

Figure 4.9. We selected these two days in the growing season because they had similar 

environmental conditions, including averaged midday PAR and air/soil temperature at around 

1796 μmol·m−2·s−1 and 30.3/32.4 ℃, respectively but different tidal flooding conditions. August 

08 experienced tidal flooding from 09:15 to 15:00 LST with a peak height of 0.4 m above the 

soil surface while on July 31, tidal flooding did not occur until later in the day (16:00 LST) 

(Figure. 4.9. Therefore, a comparison of predicted PSII between two days with similar 

environmental conditions and different tidal flooding schedules showed our model can estimate 

not only the diurnal variation of marsh photosynthetic activities but also the fluctuation of marsh 

photosynthesis under the natural coastal conditions. 

From the predicted PSII graph, we can clearly see, from dawn to dusk, three general 

stages of marsh PSII daily variations on both days. First, predicted φPSII decreased with a 

corresponding increase in solar radiation after sunrise. Second, predicted φPSII stayed relatively 

constant during the day. For example, predicted φPSII started saturating at 10:30 LST when the 

solar radiation was around 1625 μmol·m−2·s−1, and stayed relatively unchanged throughout the 

noon with averaged midday PSII at around 0.31 ± 0.04. Although, at the same time, the solar 

radiation continued to increase and peaked at around 2000 μmol·m−2·s−1. Thirdly, predicted PSII 

started to gradually recover from early evening and continued to increase until sunset with 

continuously decreasing solar radiation. It eventually returned to almost the same level that it 

was before the sunrise. 
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Figure 4.9 An example of our random forest model predicted diurnal dynamics of PSII operating 

efficiency (φPSII) (red line) at 30-min intervals on two select days with similar meteorological 

conditions. The blue and black lines illustrate the diurnal change pattern and peak of tide level 

above the soil surface and photosynthetic photon flux density, respectively. (a): predicted φPSII 

of 08 August 2020 with tidal flooding in the middle of the day; (b): predicted φPSII of 31 July 

2020 with tidal flooding in the early evening.   

4.13. The Relationship between Marsh Photosynthetic Activity and Environmental Stress  

Our model effectively captured the impact of environmental stressors on marsh 

photosynthetic activity under natural field conditions. There were obvious fluctuations in 

predicted φPSII at noon on August 08, 2020 because of a midday tidal flooding where the 

maximum tide level reached > 35 cm over the soil surface. Specifically, the model predicted 

φPSII did not continue declining or showed signs of saturation with increasing solar radiation 
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between 10:30 - 11:30 LST. Instead, it increased along with the incoming tide and then began 

falling as the tide continued to rise, peaking at 12:30 LST (Figure. 4.9a). This suggests that our 

φPSII prediction is highly sensitive to environmental changes in the marsh ecosystem even when 

it is saturated under high solar radiation, which is critical for studying changes in salt marsh 

photosynthesis. However, tidal flooding in the early evening showed little effect on the marsh 

photosynthetic activities (Figure 4.9b). For example, there were some decreases in predicted 

φPSII starting at 16:00, but tidal flooding did not affect the overall recovery pattern of φPSII in 

the late evening with a corresponding reduction in PAR, as shown on July 31. This indicated the 

dominance of PAR in plant photosynthesis under unsaturated conditions and explained why it is 

the most important predictor in our random forest model. However, the important contributions 

of other predictors to model predictions cannot be ignored (Figure 4.8). For example, in the 

morning and late afternoon, our predicted φPSII is highly fluctuated which reflects the 

importance of NIRV because plant exposed to actinic light from nighttime and when the 

continuous actinic light gradually fades away would affect the redox state of primary quinone 

electron acceptor of PSII (QA) and leading to changes in fPAR. During the rest of the day, 

especially at midday when PSII is saturated with high levels of solar radiation, tidal flooding and 

the corresponding environmental changes (such as lower soil temperature) may alter our φPSII 

predictions. This highlights the importance of the bottom-up model for studying the 

photosynthesis of salt marshes in coastal wetlands because the generalizations of top-down 

models may omit the rapid responses of salt marshes to environmental changes (i.e., a rapid 

adjustment in the energy partition inside chloroplast), which can lead to over or underestimation 

of salt marsh productivities at the ecosystem level.  

4.14. Monthly Variations of Predicted PSII Working Efficiency 
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We applied our model to predicted time series for S. alterniflora φPSII for a broader 

spatial and temporal scale. Figure 4.10 presents an example of the estimated 3-m resolution PSII 

for the 2020 growing season between April and October across three different height forms of S. 

alterniflora within the GCE flux tower footprint. This provided rich spatiotemporal information 

on φPSII for S. alterniflora marshes around the Sapelo Island flux tower. For example, predicted 

φPSII was the highest adjacent to creeks and marsh exterior, which is dominated by tall S. 

alterniflora and was the lowest in the southwest of the assessment area in late spring (May). This 

spatial distribution pattern changed in the summer months (July and August) when predicted 

φPSII was highest in the marsh interior and lowest adjacent to creeks. This could be attributed to 

higher inundation effects (e.g., inundation frequency and water depth) on the photosynthesis of 

medium S. alterniflora in areas with dense creek networks (Figure 4.10b) 
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(a) 
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(b) 

Figure 4.10 (a) A seasonal comparison of random forest model predicted φPSII from April to 

October for the entire flux footprint, lighter blue indicates areas with higher PSII predictions. (b): 

A 1-m spatial resolution habitat map of the flux footprint showing the distribution of different S. 

alterniflora forms.  

This predicted PSII also showed differences in seasonal variation across the S. 

alterniflora forms. For example, areas of short to medium S. alterniflora in the marsh interior 

(Figure 4.10b, blue) showed double peaks, one early in the growing season (June) and the other 

in August. Correspondingly, the minimums appear in late fall (October) and early spring months 

(April). Tall S. alterniflora (Figure 4.10b, purple) dominated the areas with lower elevations and 
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were adjacent to the tidal creek. Areas of tall S. alterniflora in the southeast of the footprint 

showed less intra-annual variations over the study period. Despite spatiotemporal variations 

across the marsh forms, the predicted φPSII exhibited seasonal patterns, with an overall increase 

from April to June and a local maximum in August. Declines gradually occurred in September 

and October. 

4.15. The Influence of Tide on Predicted PSII Working Efficiency  

To investigate seasonal changes of φPSII across the day and tidal conditions, we 

calculated monthly means of φPSII at three different parts of the day (Morning, noon, and 

evening) under dry (WT = 0) and flooded (WT > 0) tide conditions for the entire flux tower 

footprint (Figure 4.11). A two-hour time window was selected for each time period. For 

example, morning refers to 2 hours after sunrise (PAR > 0), and evening refers to 2 hours before 

sunset (PAR > 0). Noon indicates daytime between 11:00 and 13:00. Midday monthly mean PSII 

prediction was always the lowest in each month, and the month-to-month variation was also 

relatively small within the range of 0.3-0.35. The minimums occur in summer (July and August), 

with a little above 0.3 in dry conditions and a little below 0.3 in flooded conditions. Springtime 

PSII predictions were generally higher than summer but very similar to autumn. This suggests 

that high solar radiation and heat in summer suppress the photosynthetic efficiency of salt 

marshes regardless of tidal conditions. In addition, predicted PSII is lower under tidal flooding 

than without flooding at noon during the summertime. These differences were notable in July, 

when the exceptionally high tide intensities led to additional stress and a decline of S. 

alterniflora photosynthesis when it was already saturated under solar radiation and heat stressors. 

Conversely, S. alterniflora generally had similar photosynthetic efficiency in late spring (April, 

May) and fall (October), regardless of tidal flooding conditions. This is likely due to the lower 
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magnitude of environmental stressors and inundation intensity (i.e., dry months) during spring 

and fall, especially in high-elevation marsh interior areas, which resulted in less noticeable 

photosynthesis fluctuations. 

 

Figure 4.11 Averaged monthly PSII predictions from our random forest model for non-flooded 

(WT = 0) and flooded (WT > 0) conditions at different parts of the day (Morning; Noon; and 

Evening) throughout the study period. 

Averaged PSII predictions for morning and evening were always higher than noon in the 

range between 0.45 and 0.55. The monthly variation showed different patterns across the day. 

For example, morning and evening PSII had an overall increase from late spring to summer and 

started reducing from late summer, with maximums in August and minimums during spring 

(Apr, May). Noon shows an opposite trend, with gradual reductions from spring to summer and 

recoveries from late summer to autumn. Tide flooding did not show significant influences on the 



 

82 
 

averaged PSII predictions between morning and evening throughout the study period. The 

month-to-month differences ranged from 1.1% to 5.3% between these two periods. This 

corresponds to our findings from diurnal PSII variations in section 4.11, i.e., tide flooding has 

only minimal influences on salt marsh photosynthesis under unstressed environmental 

conditions. 
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Chapter 5:  

DISCUSSION 

5.1. PSII Working Efficiency is Significantly Reduced in Submerged Canopies  

We observed up to 41% reduction in φPSII when BOC leaves were fully submerged 

(Table 4.2). Reductions in φPSII began when tide height approached 30 cm, 5 cm below the 

BOC sensor (Figure 4.4a). Additionally, NPQ dropped rapidly to near 0 accompanied by 

simultaneously increased fluorescence yields when leaves were fully submerged by tides > 35 

cm (BOC sensor height). This indicated that most of the APAR may have been lost as 

fluorescence in underwater leaves. We attribute this to the decrease in the fraction of ‘open’ PSII 

reaction centers and the stomatal conductance rate during submergence (Figure 5.1). Our novel 

findings quantitatively relate φPSII reduction in fully submerged leaves to the physiological 

characteristics of S. alterniflora canopies in field settings, although similar observations were 

reported in laboratory experiments by Pezeshki et al. (1993). The closures of PSII reaction 

centers and stomata are likely what eventually led to decreases in CO2 assimilation rates and 

light use efficiency (LUE) in S. alterniflora during tidal flooding, as observed by Nahrawi et al. 

(2020) and Hawman et al. (2021).   
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Figure 5.1 Analysis of chlorophyll fluorescence (ChlF) parameters at bottom (BOC) of the S. 

alterniflora canopy during midday (local time 10:00 – 16:00) and high tidal flooding.  (a) 

Relationship between steady-state fluorescence yield (F′) and non-photochemical quenching 

(NPQ). (b) relationship between the fraction of  “open” PSII reaction centers (qL) and quantum 

efficiency of PSII (φPSII) for BOC S. alterniflora leaves. Lighter blue points indicate a higher 

tide level above the soil surface.  In (a), a low NPQ and high fluorescence yield is observed 

during high tide level. In (b) underwater photochemistry was observed at a greatly reduced rate 

accompanied by partially opened PSII reaction centers during high tidal flooding.  The φPSII and 

qL are also positively associated.  Polynomial smoothing lines with 95% confidence intervals 

(grey areas) were fitted for trend visualization purposes.  Observations of F’ were normalized to 

the maximum in the light (F’, max) following Magney et al. (2017). 

5.2. Photosynthetic Activities were Observed in Fully Submerged Canopies  
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Despite the sharp decline in photosynthetic activities, our results suggest that fully 

submerged leaves at the bottom of the S. alterniflora canopy continued to photosynthesize during 

high flooding because a small proportion of PSII reaction centers remained partially open. Figure 

6b shows at least 10% of PSII reaction centers in BOC S. alterniflora leaf carried out 

photochemistry at 20% capacity under complete submergence compared to air-exposed 

conditions. Previous studies observed similar phenomena in Virginia tidal marshes, where S. 

alterniflora continued to photosynthesize under tidal inundation (Kathilankal et al., 2008). 

Kathilankal et al. (2008) measured an average 66% reduction in relative electron transport rate 

(rETR) for submerged leaves. We observed a similar but lower reduction (41%) in BOC φPSII, 

which is directly proportional to rETR, when the sensor and leaf were fully submerged (Table 

4.2b). This difference could be attributed to actual flooding depth, differential attenuation of 

PAR in the water column, or differences in flooding duration. Additionally, canopy morphology 

could also affect photosynthetic rates at different heights within the canopy. In our GA study, our 

plant height was almost twice the height of plants at their VA site (110 ± 2.3 cm compared to 

62.6 ± 1.9 cm). 

5.3. PSII Working Efficiency in Air-exposed Canopy is Largely Unaffected by Submerged 

Bottom Canopy 

Our results showed that TOC air-exposed leaves only had small reductions in φPSII (6.3-

8.3%) during tidal flooding and only a negligible difference (0.7%) when the tide height rose 

above 35 cm (Table 4.2). Additionally, there were no clear relationships between TOC φPSII and 

incoming tide (tide in) or outgoing tide (tide out) periods (Figure 4.3b and Figure 4.4b). 

Kathilankel et al. (2008) demonstrated reductions in the photosynthetic ability of submerged 

leaves, however, it is unclear if their comparison is to air-exposed leaves during partial 
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submergence or to dry conditions during non-flooding conditions. Our results clearly indicated 

air-exposed leaves experienced little reductions in φPSII when, concurrently, the lower leaves 

submerged by tidal waters had reduced φPSII. Therefore, we conclude that photosynthesis in 

TOC and BOC leaves are independent of each other, and reductions from tidal flooding only 

occur when leaves are actively submerged. Further, our study shows that as flood water depth 

increases, φPSII decreases (Figure 4.4a). When considering the φPSII of the entire canopy as a 

whole, a 25 cm tide height would lead to a 23.3% decrease in φPSII, while a 45 cm tide height 

would double the φPSII reduction (48%). These estimates are derived from plant-level φPSII 

decreases observed by the combined TOC and BOC sensors during flooded conditions compared 

to non-flooded conditions (Tables 4.2). This highlights extra complexities involved in 

understanding the photosynthetic processes across S. alterniflora canopies under different tide 

ranges. Our ChlF measurements at the bottom and top of the same plant canopy showed 

independent and different light and temperature (heat) responses of plant metabolism, which 

were closely linked to inundation status. It also provides new insights into estimating the 

efficiency of energy partitioning of S. alterniflora PSII at different canopy positions during tidal 

flooding as a consequence of changes in the proportion of submerged/emergent leaves. 

5.4. Impacts of PSII Working Efficiency Variations during Tidal Flooding on Canopy Scale 

Studies 

The impact of flooding on leaf-level photosynthesis is driven by submergence status, as 

discussed in section 5.1. Therefore, the proportion of tide:plant height is a significant variable in 

estimating photochemical efficiency at the canopy scale (e.g. ‘see section 5.3’). Although not the 

same type of measurements, our findings are aligned with data presented by many previous 

studies on the influence of tidal flooding on CO2 fluxes or net ecosystem exchange (NEE) or 
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GPP, which have shown decreases in marsh carbon exchange under tidal inundation at 

ecosystem-scale. For example, Moffett et al. (2010) found a substantial decrease in CO2 fluxes 

for S. alterniflora in a California marsh when the tide depth exceeded 17 cm above the ground.  

Forbrich & Giblin (2015) showed a tide depth above 5 cm could lead to a reduction in marsh 

productivity. We could not find any study linking in-situ ChlF to CO2 fluxes or Eddy tower scale 

NEE or GPP for wetlands. It may likely be due to various challenges involved in continuously 

capturing leaf-level φPSII variations at different plant heights under realistic field tidal 

inundation. But, we can assume that the variability in in-situ ChlF due to tidal inundation would 

have an impact on CO2 fluxes or GPP because many prior studies have shown ChlF as a strong 

indicator of seasonal variability and phenology of GPP in other terrestrial vegetative ecosystems 

(Flexas et al., 2002; Joiner et al., 2013). 

However, our findings bring new complexities to studies involving passive measurements 

of photosynthesis proxies (e.g., SIF) or carbon assimilation rates (e.g., NEE and GPP via Eddy 

flux tower). We lack evidence to suggest that ongoing and reduced photosynthesis in fully 

submerged S. alterniflora leaves is directly linked to active gas exchange underwater. This link is 

needed because we do not know whether marsh species such as S. alterniflora internally recycle 

CO2 and O2 (Gleason & Dunn, 1981) produced through photosynthesis, photorespiration, and 

respiration; or whether they significantly exchange gases with the water column while 

submerged (Silva et al., 2005; Winkel et al., 2011); A combination of the two phenomena is also 

possible. Once these uncertainties are better understood, we expect methodological revisions will 

be necessary for canopy scale NEE calculations and partitioning models (i.e., submerged vs. 

emergent canopies) to estimate GPP and ecosystem respiration for tidal wetlands. These new 
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methods would need to quantify canopy submergence and link it with augmented rates of 

photosynthesis and gas exchange during tidal flooding. 

5.5. Advantages of Active PSII Working Efficiency Measured at Leaf-Level  

There are several advantages associated with PAM fluorometry-based ChlF data to 

further understand the dynamics and drivers of underwater canopy photosynthesis.  First, PAM 

fluorometry can be designed for long-term, continuous deployment.  This allows for reliable 

measurements of maximal and minimal levels of ChlF when the photosynthetic apparatus is fully 

relaxed under field conditions at night.  Accurate field-based determination of F0 and Fm allows 

for the quantification of NPQ, Fv/Fm, and photochemical quenching (PQ), which are normally 

difficult to acquire.  Second, PAM fluorometers can be deployed and collect data under 

complicated field conditions, such as in tidal wetlands with soft ground and saturated soils.  

Third, PAM MONI – HEAD/S observe the same set of leaves and move together with them, 

which allows for consistent measurements and interpretations throughout the entire monitoring 

period.  Fourth, the monitoring PAM fluorometer can connect up to 7 measuring heads capable 

of measuring ChlF independently. Our deployment system design can not only provide average 

measurements across multiple stems that allow the analysis of ChlF variations within complex 

canopy structures, but also provide more measuring points on a larger scale which could be 

comparable to a flux tower footprint or MODIS 500-m pixel to develop empirical relationships.  

This will be particularly useful in scaling up leaf-level photosynthesis variations within flux 

tower footprints and connecting to satellite measurements at larger spatial scales. 

5.6. Application of Active PSII Working Efficiency Measurements  
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Our controlled in situ measurements of leaf-scale ChlF provide fundamental information 

that can explain vertical changes in the PSII working mechanism. These results suggested that in 

order to better understand the photosynthesis and carbon assimilation rates (e.g., GPP) of salt 

marshes that are frequently inundated, it is essential to understand how changes in in-situ 

photochemical activities are affected by tide-induced submergence of leaf area.  If such empirical 

relationships between ChlF parameters representing photochemistry and GPP can be established 

in future studies, it can further our understanding of fluctuations of photosynthesis, SIF spectral 

shapes, and GPP in salt marshes observed during tidal flooding at multiple scales. In this context, 

our method can be coupled with gas exchange measurements from Eddy covariance flux towers 

or radiant retrieval of ChlF from passive sensors (e.g., SIF). That would allow for further 

assessment of the influence of tidal inundation on marsh photosynthesis and how it affects 

carbon flux budgets at larger scales. Hawman et al. (2021) showed environmental factors, 

including air temperature, vapor pressure deficits, solar radiation, and tides affect LUE and GPP 

of S. alterniflora. All of those environmental variables could also be used in future studies to 

model and predict φPSII for marsh canopies so that φPSII predictions can be scaled to sites 

where in-situ ChlF measurements are unavailable. Future studies should also examine these 

phenomena in marshes dominated by other common species, such as J. roemerianus and S. 

patens, which respond to similar environmental gradients. 

5.7. Limitation of PSII Working Efficiency Measured at Leaf-Level during Tidal 

Inundation 

Our observations of the tidal flooding impacts on φPSII, whether during low tide or high 

tide, is limited by sensor reliability, sensor deployment height, and the maximum tide height 

during the study period, which did not exceed 45 cm above the soil surface.  Tides that submerge 
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TOC leaves are not frequent in our study marsh (Hawman et al., 2021; O’Connell et al., 2017).  

We anticipate that the whole plant φPSII reductions will increase once a threshold flooding level 

is exceeded because TOC φPSII will have a greater reduction, particularly when it becomes 

partially or fully submerged. Therefore, more data measuring the vertical distribution of 

photosynthetic efficiency through φPSII measurements at varying canopy heights would help in 

developing a method to estimate canopy-scale marsh photosynthetic efficiency. However, the 

conditions during the study were representative of the most typical flood patterns at our site. Our 

observations suggest that photosynthetic efficiency does not change significantly as long as the 

majority of the canopy is air-exposed during low-level tidal flooding.  

5.8. Difference in the influence of Tide on predicted PSII working efficiency across time 

The effects of tidal flooding on the variation of predicted PSII were examined over the 

course of a day and throughout the season. We found that PSII prediction is affected by tidal 

flooding. The tidal effects on the PSII predictions throughout plant physiology was quantified by 

comparing the difference in the PSII during the tidal flooded and non-flooded periods. The tide 

significantly reduced the diurnal PSII by 20.5% and averaged monthly PSII by up to 8.7% in 

summertime. This is consistent with the previous findings for this species that the tidal flooding 

led to the diminished opening of PSII reaction centers and reduced stomatal conductance rate 

(Kathilankal et al., 2008; Mao et al., in press, 2023). These physiological changes induced by 

tidal inundation ultimately result in lower photosynthetic activity in S. alterniflora because the 

electron transport rate (light reaction) and carbon assimilation (dark reaction) are coordinated in 

C4 plants (Genty et al., 1989). Therefore, changes in environmental conditions, including tidal 

flooding, can regulate and track the efficiency with which a photon is used to drive 

photosynthesis. At the seasonal time scale, the influence of WT on PSII was the highest in 
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August, and it was twice as strong as in spring months (Figure 4.11), implying that 

photosynthetic activities fluctuated more with high tide depth and long-duration tides (Figure 

4.6). This indicates that longer and higher tidal flooding results in larger reductions in 

productivity (Huang et al., 2020), which is also consistent with the suppression of daytime NEE 

induced by tides reported in previous studies (Forbrich and Giblin, 2015; Kathilankal et al., 2008 

Moffett et al., 2010; Nahrawi et al., 2020). 

5.9. The Contributions of Tide Inundation to the Predictions of PSII Working Efficiency 

Tide shows significant impact on the φPSII across time scales, and it was an important 

variable in our random forest model. Although not the same type of models, our variable 

importance is aligned with the model presented by previous studies on the influence of tidal 

flooding on salt marsh light use efficiency (LUE) or net ecosystem exchange (NEE), which have 

shown decreases in Spartina LUE and carbon exchange under tidal inundation. For example, 

Hawman et al. (2020) found tide was the most important parameter that contributed 58.2% 

changes in explained deviance for the generalized additive model (GAM) based LUE prediction 

for Spartina marsh. However, WT only accounts for ~ 20% changes in our model accuracy. We 

attribute the lower importance of WT in our model to environmental, morphological, and 

physiological factors. First, our study site tended to be inundated by short duration tides with low 

tidal depths. In particular, during the midday, tidal flooding exceeding 0.3m above the marsh 

surface occurred only 8 times during the entire 36 days sampling period (5 days in 2020 plus 3 

days in 2018) in our study site (Figure 4.6). Low tidal flooding reduced the duration of the tidal 

water flooding during the daytime, which diminished the importance of tide in our model. 

Correspondingly, Hawman et al. (2020) observed high tide intensities (>0.5 m flooding above 
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the soil surface in up to 19 days per month) during their study period. The differences in flooding 

frequency and magnitude could have led to the lower importance of WT on the model outcome. 

Second, our predicted φPSII is modeled for leaves at the top of the canopy, which was never 

submerged during our experiment. The exposed part of the plant continued photosynthesizing at 

slightly reduced rate (7 - 8.3% reduction) when the bottom of the canopy is inundated by tide 

flooding (Mao et al., in press, 2023). Therefore, the responses of PSII physiological processes 

(NIRV, see section 4.12) is more impactful than the WT in φPSII prediction (Figure 4.9). 

Third, further analysis by time shows that WT and related variables (e.g., Tsoil) become drivers 

of the predicted φPSII when it is saturated at midday. We theorize that the changes in WT and 

corresponding changes in Tsoil and Tair would have increased impacts on the φPSII prediction if 

a higher percentage of salt marshes is inundated with longer inundation duration. In this context, 

our random forest model should have shown the realistic response of TOC φPSII to tidal 

inundation.   

5.10. Advantages of Ground-Based PSII Working Efficiency Model  

To the best of our knowledge, this is the first bottom-up model that uses continuous field 

measurements to understand the relationship between φPSII and environmental variables in S. 

alterniflora, and especially that also accounts for the influence of regular flooding by tide. There 

are several advantages associated with our ChlF model compared to the traditional spectrum-

based solar induced fluorescence (SIF) models for photosynthetic research in tidal wetlands. 

First, our PSII predictions were able to track instantaneous changes in photosynthesis at a finer 

spatial scale over the short time scale because ChlF is much more responsive to PAR than SIF 

(Gu et al., 2019). This is due to the fact that ChlF contains direct and valuable physiological 

information revealing the probability of absorbed light energy will be used for photochemistry. 
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This high sensitivity to light levels of ChlF is crucial for studying diurnal variations in plant 

photosynthesis because it is unlikely that GPP saturation is constant across time, species, and 

location. SIF, on the other hand, is highly correlated with APAR, which diminishes its ability to 

show changes from the saturating light response of photosynthesis over shorter times. Therefore, 

it only acts as a “proxy” for photosynthesis over longer time scales or from coarse spatial 

resolution (Frankenberg et al., 2011; Guan et al., 2016; Guanter et al., 2014; Joiner et al., 2011; 

Sun et al., 2017). 

Second, our predicted PSII reflects the variation of photosynthesis during environmental 

stress (e.g., tide, high temperature, and radiation) under natural conditions due to changes in 

plant biophysical processes. This matches with previous studies about photosynthesis variations 

on the diurnal to seasonal scale in response to environmental gradients. For example, NPQ 

increases with increased PAR (Baker, 2008), the fraction of ‘open’ PSII reaction centers “qL” 

decreases with increased tidal flooding (Mao et al., in press, 2023), reductions in stomatal 

conductance are also observed during drought (Helm et al., 2020). However, passive ChlF 

measurements are weak at tracking variations of photosynthesis at the physiological level for 

most ecosystems because it only mirrors change as a function of APAR (Magney et al., 2020) 

Third, our predicted PSII is more consistent because it is less affected by meteorological 

conditions and morphological differences in canopies. In contrast, spatial and temporal variations 

in vegetation structure influence remote sensed ChlF observations (i.e., SIF) on the diurnal to the 

seasonal scales because the amount of SIF photons reaching the sensor is altered by the angle of 

light incidence (Chang et al., 2020), light intensity and cloudiness (Grossmann et al., 2018), leaf 

density and thickness (Wittenberghe et al., 2015) as well as sensor viewing geometry (Joiner et 

al., 2020). Therefore, the bottom-up ChlF model can simplify the uncertainties associated with 
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SIF-based estimations by relating plant photosynthesis with common environmental variables 

that are widely available and easily retrieved from multiple platforms at various spatial and 

temporal scales. This also reduces the complexity and cost of measuring and predicting canopy 

structural parameters for the interpretation of SIF via remote sensing. 

5.11. Limitation of PSII Working Efficiency Prediction 

There are a few limitations to be recognized in our model. First, our φPSII predictions 

were limited to the top of the S. alterniflora canopy, which never became fully submerged during 

our sampling period due to the low tidal flooding (section 5.8). This affects our predictions of 

photosynthetic efficiency during tidal flooding. Second, the entire ChlF dataset was limited to 

the summertime after data cleaning and filtering. This reduces the temporal compatibility of our 

model because input parameters may be out of the range with respect to the training dataset used 

in our model. For example, predicted monthly PSII in early spring (e.g., April) are homogeneous 

with less spatial variations compared to summer predictions. 

5.12. Possible Improvements for Future PSII Working Efficiency Modeling 

Future studies can deploy separate sensors at different canopy levels to quantify the 

vertical variations of photosynthesis within the canopy. For example, there were studies 

deploying multiple quantum sensors to investigate the relationship between crop photosynthesis 

and light profile within the canopy (Li & Yang, 2015). This vertical profile of the solar radiation 

and ChlF emissions within the canopy can also reveal the underlying mechanism that controls 

the plant's physiological process when it is under various flooding depths, including the rate of 

PQ (e.g., stomata openness & stomatal conductance), NPQ (heat dissipation), and availability of 

CO2 and solar radiation varies under different inundation status (e.g., fully submerged vs. 
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partially submerged) (Mao et al., in press, 2023; Gu et al., 2019). This would eventually lead to a 

better understanding of the spatiotemporal relationships between photosynthesis and GPP as the 

magnitude of tidal suppression on GPP is controversial in salt marshes reported by previous 

studies (Forbrich and Giblin, 2015; Kathilankal et al., 2008; Knox et al., 2018; Li et al., 2014; 

Moffett et al., 2010). In addition, future studies can include more variables, such as wind 

direction and salinity, which have also been demonstrated to influence the photosynthetic 

activities on salt marshes (Huang et al., 2022). However, the ideas listed above require more 

complex data collection design, for example, separate quantum sensors and fluorometers across 

canopy heights. The aspects of more comprehensive data collection research are important but 

beyond the scope of this dissertation. 

In addition, future studies can extend the data sampling period to improve the range of 

ChlF parameters. However, continuous, accurate, and reliable measurements of ChlF emission in 

coastal environment as well as across canopy types remains difficult and challenging despite 

efforts in frame design, sensor preprograming, and maintenance (Logan et al., 2007; Magney et 

al., 2017; Mao et al., in press, 2023). This is mainly due to the limitations of hardware 

equipment, as the current sensors are generally more reliable in terrestrial ecosystems. For 

example, PAM fluorometry is well utilized over broadleaf (Lysenko et al., 2020), while using it 

in salt marshes, such as S. alterniflora in our study, remains challenging because multiple thin S. 

alterniflora leaves are needed to fill the PAM sampler. This often results in the leaves 

overlapping in the sampler and affects the reliability of ChlF observations (Mao et al., in press, 

2023). Frequent field visits are also recommended to clean the sensor and make sure the 

monitored leaves remain healthy although measurement without cleaning does reflect realistic 

field conditions. Addressing these challenges can facilitate the continuous and reliable 
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measurements of highly dynamic leaf ChlF measurements in future studies, which will, in 

particular, help scale our model to other regions with different environmental and tidal 

conditions. 

Third, the estimated ChlF using the method proposed in this study needs to be validated. 

Magney et al. (2017) demonstrated an instrument that could measure leaf-level gas exchange 

simultaneously with PAM ChlF, PAR, and spectrally resolved fluorescence. Such systems can be 

modified to quantify the effects of tidal flooding on plant productivity and investigate the 

relationship between ChlF and leaf-level gas exchange across a range of temporal scales, and 

vertical gradients within the canopy. Unmanned aircraft systems (UAS) can provide on-demand 

and non-destructive ChlF measurements at high spatial resolutions, but to the best of our 

knowledge, such systems have not emerged for fluorescence measurements in frequently flooded 

marsh ecosystems (Bendig et al., 2018; Mac Arthur et al., 2014).  We assume that the 

development of UAV-based ChlF system could significantly improve the understanding of the 

diurnal relationship between plant photosynthesis and environmental conditions under tidal 

flooding because it will able to capture the high variability in stressed vegetation, and it can also 

serve as an intermediate information layer between in-situ and satellite sensors, with the 

advantage of higher spatial resolution between leaf-level and canopy scale GPP estimated from 

EC tower-based CO2 flux exchange. Integrating this with the bottom-up ChlF model developed 

in this study can potentially lead to novel research studies investigating spatiotemporal variations 

of photosynthesis in salt marshes. 
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Chapter 6:  

CONCLUSION 

We designed and deployed a novel field measuring system that measures high temporal 

resolution leaf-scale chlorophyll fluorescence, PSII operating efficiency, and light regime in the 

marsh using pre-programmed pulse-amplitude modulation chlorophyll fluorometer, and 

underwater quantum sensors. To the best of our knowledge, we are the first to employ these 

measurements to investigate the photosynthetic response of the dominant salt marsh plant, S. 

alterniflora to tidal inundation in the field condition. We used this novel measuring system in 

collecting the continuous and high temporal resolution ChlF measurements at the top (~105 cm) 

and bottom (~35 cm) of the salt marsh S. alterniflora canopy. It provides the opportunity to 

directly monitor and investigate leaf ChlF and photosynthesis at different positions of the S. 

alterniflora canopy under natural field conditions. We observed three stages of diurnal variations 

of S. alterniflora ChlF parameters. Generally, Fm’ decreased with a corresponding F’ increase 

after sunrise; they changed in similar patterns during the day, and both started recovery in the 

early evening with a steady decrease of F’ and a constant rise in Fm’. These ChlF variations 

denoted that salt marsh PSII can rapidly adjust the distribution of the absorbed light energy in 

response to changes in the natural field condition. 

 Our leaf-level ChlF measurements, for the first time, also demonstrated the variation of 

leaf ChlF and photosynthetic activities in air-exposed, partially submerged, and fully submerged 

Spartina plants across a range of tidal cycles and differing tidal amplitudes. We found the 

influence of tidal inundation on S. alterniflora photosynthetic performance was independent and 



 

106 
 

different in the leaves across the canopy. The observed differences could be explained by 

differences in meteorological and physiological stresses between the two sampling locations 

induced by changes in leaf submergence conditions. For example, φPSII slightly varied at the top 

and bottom of the canopy comparing to non-flooding condition during low tidal flooding. On 

days with high tidal flooding, the φPSII of BOC leaves decreased with increasing tide height, the 

reduction became more pronounced (up to 41%) when the tide height > 35 cm completely 

submerged BOC leaves compared to non-flooding conditions. However, less than 10% 

reductions were observed in φPSII of air-exposed leaves at time when the BOC leaves were 

complete submerged. Additionally, we observed underwater photosynthesis at a greatly reduced 

rate accompanied by partially opened PSII reaction centers and low NPQ in fully submerged S. 

alterniflora leaves during tidal flooding. We quantified that φPSII of fully submerged S. 

alterniflora leaf was still at 20% capacity compared to air exposed conditions because at least 

10% of PSII reaction centers remained open and carried out photochemistry under complete 

submergence. This suggests that S. alterniflora could potentially remain a CO2 sink during tidal 

inundation. We concluded that the proportion of plant submergence should be considered a 

significant parameter in estimating GPP at the canopy scale.  

We developed an φPSII prediction model for S. alterniflora using biophysical and 

meteorological variables from GCE-flux tower and from satellite data in a random forest model. 

We evaluated the model performance and accuracy against our in-situ φPSII measurements. Our 

model produced reliable results with a root mean square error of 0.9 on the global validation 

dataset with the observed φPSII ranging from 0.22 and 0.75. Our model also provided evidence 

demonstrating a relationship between S. alterniflora photosynthesis and environmental gradients 

as the importance of all six variables were explored. In particular, PAR, NIRv, Tsoil, and WT 
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have significant impacts on the φPSII outcomes of our random forest model. We observed 

variability in S. alterniflora photosynthesis in the prediction map over the growing season across 

the GCE-Flux tower footprint. We attribute the observed differences to geomorphic and 

physiological differences. For example, tidal flooding magnitude and canopy height forms varied 

greatly due to elevation differences. Under the same tidal inundation at 9:00 LST, we observed 

distinctly different φPSII that could be explained by the proportion of submerged/emergent 

leaves and flooding tolerances. In addition, our results showed that environmental stressors (i.e., 

tidal flooding and high light intensity) could cause large fluctuations in diurnal φPSII that may 

not be captured in more generalized measurement and modeling. It suggests that φPSII should be 

parameterized bottom-up from local environmental variables with high temporal resolution. 

 We presented a novel modeling approach that outlines an accurate and low-cost path to 

predict tidally flooded S. alterniflora salt marshes photosynthetic efficiency without having high-

resolution ChlF data by utilizing environmental and biophysical variables. The wide availability 

of such variables, for example, well-established EC flux sites, makes this method replicable to 

areas with different spatio-temporal scales. Integrating the analytical framework developed in 

this dissertation with passively measured solar induced fluorescence (SIF) and Eddy covariance 

(EC) carbon flux measurements can potentially lead to a novel PSII-GPP modeling framework to 

study salt marsh productivity at a higher spatio-temporal scale.  

 


