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Abstract

We study a generic model of semiflexible polymer with self-interactions, which exhibits a mul-

titude of structural phases. Previous studies employing canonical statistical analysis methods for the

identification and characterization of these phases have been inconclusive as these approaches lead

to inconsistent results for systems of finite size. In contrast, the recently introduced microcanonical

inflection-point analysis method not only enables the systematic identification and classification

of transitions but is also able to distinguish close transitions that standard canonical analysis

cannot resolve. Extensive one- and two-dimensional replica-exchange Monte Carlo simulations

were employed to obtain accurate estimates of the Boltzmann entropies for the microcanonical

inflection-point analysis. Our study reveals a mixed structural phase dominated by hairpin and loop

conformations that originates from a bifurcation of the collapse transition line known from flexible

polymers. Canonical quantities such as specific heat or fluctuations of square radius of gyration

do not signal any transition into this intermediate phase embraced by the well-known random-coil

and toroidal phases. In addition, the formation of distinct versatile ground-state conformations

including compact globules, rod-like bundles and toroids are observed from replica-exchange sim-

ulations, and validated by global optimization methods. By utilizing contact and distance maps,

we systematically investigate the effect of the bending stiffness on ground-state conformations.
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Chapter 1

Introduction

Statistical analysis methods have long been used for the identification, characterization, and classifi-

cation of phase transitions in complex systems. Advanced computer simulation techniques, mostly

based on Markov chain Monte Carlo algorithms, helped advance the field beyond the deadlocks

mathematical approaches had run into. Nonetheless, the general idea remained the same. Phase

transitions were generally only considered in the thermodynamic limit, which was historically

introduced to make studies of macroscopic systems mathematically tractable. Therefore, phase

transitions have been identified and classified by means of discontinuities or divergences in thermo-

dynamic state variables or response functions [1]. In computational statistical physics, finite-size

scaling analysis [2–8] provided the tool for extrapolating the results obtained in simulations of sys-

tems of finite size toward this hypothetical limit. These methods proved to be extremely successful,

and for decades the scientific community did not see any reason to change paradigms and consider

a more general perspective despite the fact that all systems in nature are finite and systems on

nanoscales moved into the focus of substantial interest in microbiology and technology. Ignoring

surface effects was also convenient.

However, systems of finite size do not exhibit such obvious signals, as these only occur in the

thermodynamic limit. Consequently, conventional canonical statistical analysis of phase transi-

tions rests on the search for catastrophic behavior of thermodynamic state variables and response
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functions in thermodynamic parameter spaces. Hence, significant effort has been dedicated to the

evaluation of critical exponents in continuous phase transitions and the grouping of systems in

universality classes.

In recent years, however, the growing interest in systems on microscopic and mesoscopic

scales, which do not satisfy the criteria for the thermodynamic limit, has shifted the perspective.

Alternative approaches that enable studies of phase transitions in systems of any size have turned

out to be promising. Modern interdisciplinary research of systems on nanometer scales cannot

ignore the fact that the surface of the system is at least as important for the structural behavior of

the system as the bulk effects. For example, the functionality of biomacromolecules like proteins

depends on the folding process into stable geometric conformations. These processes, which occur

in a thermal environment, resemble transitions between disordered and ordered phases known from

macroscopic systems. In fact, for very long polymers, these structure formation processes are phase

transitions, even in the strict conventional sense. However, many types of heterogeneous polymers

like proteins cannot be scaled up, but still show clear transition features. This makes the extension

of the established theory of phase transitions a necessity.

Moreover, canonical statistical methods create ambiguities, which render the unique charac-

terization of phase transitions problematic. A prominent example is the peak in the specific heat

curve of the one-dimensional Ising model [9]. As it is also finite in the thermodynamic limit, one

does not associate a phase transition with it. But how to interpret a peak in response quantities,

if the thermodynamic limit for this system does not exist? In recent years, it has nonetheless be-

come common to consider peaks or “shoulders” transition signals in curves of response quantities

for finite systems, along with huge effort to find appropriate order parameters, which are mostly

system-specific and hardly generalizable. In addition, temperatures suggested by transition signals

in different response quantities are usually not identical for the same transition, making it hard to

uniquely locate the transition points. This appears to be an inconsistent approach and renders, in

fact, the choice of the temperature as the basic thermodynamic state variable questionable.
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Combining results of previous studies of the microcanonical Boltzmann entropy [10] and the

principle of minimal sensitivity [11, 12], a systematic approach to phase transitions in systems

of any size has been introduced recently by identifying the least-sensitive inflection points in the

entropy and its derivatives [13]. This analysis method even allows for the classification of phase

transitions in analogy to Ehrenfest’s classification scheme in thermodynamics, which is based on

derivatives of thermodynamic potentials [1].

Many variants of RNA, DNA, even proteins can be considered semiflexible polymers, where

bending stiffness, as a type of energetic penalty, competes with attractive van der Waals forces

in structure formation processes. Therefore, semiflexible polymer models play an important role

as they allow for studies of these various classes of biopolymers. One particularly intriguing

problem is the characterization of phases for entire classes of semiflexible polymers. This has

been a long-standing problem. Simple early approaches such as the well-known wormlike-chain

or Kratky-Porod model [14] has frequently been used to describe aspects of basic structural and

dynamic properties of semiflexible polymers. However, the lack of self-interactions in this model

prevents structural transitions. Significant advances in the development of Monte Carlo algorithms

and vastly improved technologies enabled the computer simulation of more complex coarse-grained

models in recent years [15–21], Focusing on few main features, while other less relevant degrees of

freedom are considered averaged out, provides a more general view of generic structure properties.

Yet, most of these studies still employed conventional canonical statistical analysis techniques that

are often not sufficiently sensitive enough to allow for the systematic construction of phase diagram

for finite systems. Besides, these relative biomolecules form distinct structures that allow them to

perform specific functions in the physiological environment and understanding the effects of the

bending stiffness on ground-state conformations is also crucial in many fields.

In this study, we perform Monte Carlo computer simulation studies of a generic coarse-grained

model for semiflexible polymers to analyze the structural transitions by means of the generalized

microcanonical least-sensitive inflection point method. This model possesses multiple transition
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barriers. Therefore, we employ advanced generalized ensemble Monte Carlo algorithms, most

notably an extended version of the replica-exchange (parallel tempering) method in the combined

space of simulation temperature and bending stiffness. Advanced sets of conformational updates

were employed to sample the phase space. The multihistogram reweighting procedure was used

to obtain high-accuracy estimates of the microcanonical entropy and its derivatives required for

this study. This allows us to thoroughly investigate the changes in phase behavior at the most

interesting part of the hyperphase diagram of this generic model for semiflexible polymers in the

space of bending stiffness and temperature, where the structurally most relevant toroidal, loop,

and hairpin phases separate from the wormlike chain regime of random coils. As we will show,

microcanonical inflection-point analysis reveals two transitions that standard canonical analysis

cannot resolve. Moreover, the formation of distinct versatile ground-state conformations including

compact globules, rod-like bundles and toroids strongly depends on the strength of the bending

restraint. Therefore we also performed a detailed analysis of contact and distance maps on the

lowest-energy states obtained from the two-dimensional replica-exchange simulations. In addition,

global optimization methods such as Wang-Landau, simulated annealing and Energy Landscape

Paving were also used to verify and consolidate our putative ground states obtained from the replica

exchange simulations.

The dissertation is organized as follows. In Chapter 2, we introduce the theory of phase

transitions in thermodynamics and statistical ensembles, the conventional study of phase transitions

in finite systems, and the novel generalized microcanonical inflection-point analysis method. The

coast-grained model as well as the Monte Carlo methods are described in Chapter 3. The advanced

Monte Carlo techniques and canonical and microcanonical analysis methods are demonstrated in

Chapter 4 by a well-studied generic coarse-grained flexible polymer model. This is followed by

a full analysis of semiflexible polymers in Chapter 5. Finally, the dissertation is concluded by a

summary in Chapter 6.
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Chapter 2

Statistical Analysis of Phase Transitions

2.1 Phase Transitions in Thermodynamics

A phase of matter in thermodynamics is represented by a set of macrostates that share the same or

similar macroscopic physical properties within a range of external conditions. However, a phase

transition into another happens at a transition point, where an abrupt change in the macroscopic

properties occurs upon a small variation of external parameters.

Conventionally, phase transitions are grouped into either discontinuous (first-order) or contin-

uous (second-order) transitions. More specifically, Ehrenfest’s classification scheme [1] is widely

used to identify and classify the phase transitions. This method is mainly based on the idea that

discontinuities or divergences occur in thermodynamic potentials or response quantities. More-

over, the order of the transition is defined as the lowest derivative of the thermodynamic potential

showing a discontinuity upon a change of one of the thermodynamic state variables at the transition

point. For studies of phase transitions, the most commonly used thermodynamic potential is the

Helmholtz free energy

F (T, V,N) = U(S, V,N)− TS, dF = −SdT − PdV + µdN, (2.1)
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which is obtained by making use of Legendre transformation from the internal energy U(S, V,N),

dU(S, V,N) = TdS − pdV + µdN. (2.2)

For the free energy F (T, V,N), temperature T , volume V , and number of particles N are natural

variables that can be relatively easily controlled experimentally, in contrast to the internal energy

U(S, V,N), which includes the entropy S as a natural variable. According to Ehrenfest’s classifi-

cation scheme, explicitly for the free energy F (T, V,N) at the transition point, a phase transition

between phases a and b is of order n if

(
∂mFa
∂Tm

)

V,N

=

(
∂mFb
∂Tm

)

V,N

, (2.3a)

(
∂mFa
∂V m

)

T,N

=

(
∂mFb
∂V m

)

T,N

, (2.3b)

(
∂mFa
∂Nm

)

T,V

=

(
∂mFb
∂Nm

)

T,V

, (2.3c)

form = 1, 2, 3, . . . , n− 1 and

(
∂nFa
∂T n

)

V,N

6=
(
∂nFb
∂T n

)

V,N

, (2.4a)

or (
∂nFa
∂V n

)

T,N

6=
(
∂nFb
∂V n

)

T,N

, (2.4b)

or (
∂nFa
∂Nn

)

T,V

6=
(
∂nFb
∂Nn

)

T,V

. (2.4c)
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Typically, a first-order transition is characterized by a discontinuity in the first-order derivative of

the free energy F (T, V,N) with respect to temperature T , i.e., the entropy

S(T, V,N) = −
(
∂F

∂T

)

V,N

. (2.5)

Thus, for a first-order transition between phase a and b at the transition temperature Ttr with fixed

V and N ,

Fa(Ttr, V,N) = Fb(Ttr, V,N), Sa(Ttr, V,N) 6= Sb(Ttr, V,N). (2.6)

The discontinuity of S as a function of temperature T is shown schematically in Fig 2.1 (a). As a

result, there is a coexistence of two phases, represented by Sa and Sb, as well as energy exchange

between the system and the environment at this constant transition temperature Ttr,

Qlat = Ttr|Sa − Sb| = Ttr|∆S|, (2.7)

which is called latent heat. One of the most prominent examples of a first-order transition is the

freezing of water. Under normal conditions, liquid water coexists with solid water, i.e., ice, at

273.15K and 101.325kPa.

Similarly, a second-order phase transition is usually represented by continuous entropyS(T, V,N)

and a discontinuity in one of the second-order derivatives of F (T, V,N). A prominent example is

the discontinuity of the heat capacity

CV = T

(
∂S

∂T

)

N,V

= −T
(
∂2F

∂T 2

)

N,V

(2.8)

at the transition temperature Tc (also known as critical temperature),

Sa(Tc, V,N) = Sb(Tc, V,N), Ca(Tc, V,N) 6= Cb(Tc, V,N), (2.9)
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Figure 2.1: A schematic representation of entropy S and heat capacityCV functions of temperature
T for first-order (a, b) and second-order phase transitions (c, d).

as shown in Fig. 2.1(c) and Fig. 2.1(d). Compared to a first-order transition, ∆S is zero at the

transition point, which means the latent heat Qlat = 0 for second-order phase transitions. For this

reason, there is no coexistence of two phases. Alternatively, second-order transitions can also be

characterized by a simple order parameterO, which ideally exhibits step function behavior near the

critical temperature Tc,

O(T )





= 0, T ≥ 0,

6= 0, T < 0.

(2.10)
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A prominent example is the magnetizationM in the 2D Ising model [22]. Another interesting part

that has been extensively studied for second-order transitions is the power-law behavior of response

quantities such as the heat capacity near the critical temperature Tc. The heat capacity obeys the

power-law behavior CV ≈ |t|−α, where t = (Tc − T )/T is the reduced temperature. The critical

exponents are used to identify universality classes that different systems with the same critical

exponents belong to.

2.1.1 Statistical Ensembles

Classical equilibrium statistical mechanics was developed to connect the microscopic theory of

system degrees of freedom with macroscopic thermodynamic properties. If a system consists of a

few particles only, one can obtain the system behavior by solving the coupled equations of motion

mathematically or numerically. However, the number of constituent particles in a macroscopic

system is of the order of the Avogadro constant NA ≈ 6 × 1023mol−1. Therefore, it is virtually

impossible to solve equations of motion analytically or numerically for such a system. Instead,

statistical mechanics approaches this problem by focusing on themicrostate probability distribution.

In the phase space of three-dimensional classical systems, a microstate of a system withN particles

is given by

q = (q1, q2, . . . , q3N), p = (p1, p2, . . . , p3N), (2.11)

where (q,p) describes the generalized position vector of the system in the phase space of coordinates

q and momenta p. In a statistical ensemble, each microstate state (q,p) is associated with its time-

independent normalized phase space density ρ(q,p) that satisfies

∫ ∫
d3Nqd3Np ρ(q,p) = 1, ρ(q,p) ≥ 0, (2.12)
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which is a continuous probability distribution function (PDF). The ensemble average of an observ-

able physical quantity O(q,p) is then defined as

〈O〉 ≡
∫
d3Nq

∫
d3Np O(q, p)ρ(q,p). (2.13)

According to Liouville’s theorem on the trajectories of degrees of freedom in phase space, the

following relationship between phase density ρ(q,p) and system Hamiltonian H(q,p) holds:

{ρ,H} =
3N∑

i=1

(
∂ρ

∂qi

∂H

∂pi
+
∂ρ

∂p

∂H

∂qi

)
=

3N∑

i=1

(
∂ρ

∂qi
q̇i +

∂ρ

∂p
ṗi

)
= 0. (2.14)

A general way of satisfying the condition (2.14) is to assume that ρ(q,p) explicitly depends on the

Hamiltonian H(q,p),

ρ(q,p) = ρ (H(q,p)) . (2.15)

2.1.2 Microcanonical Ensemble

In a microcanonical ensemble, a macrostate of a system is typically defined by the number of

particles N and energy E in a volume V . To avoid restricting degrees of freedom of the system in

a state with energy E, we consider a thin hypershell of microstates that satisfies

(
E − 1

2
∆

)
≤ H(q,p) ≤

(
E +

1

2
∆

)
, 0 <

∆

|E| � 1. (2.16)

As a result, the phase space density ρ(q,p) in this hypershell is constant:

ρ(q,p) = ρ (H(q,p)) = const. (2.17)
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The enclosed phase space volume Γ(E, V,N) is then given by

Γ(E, V,N) =

∫ ∫

(E− 1
2

∆)≤H(q,p)≤(E+ 1
2

∆)
d3Nqd3Np. (2.18)

Consequently, according to the normalization condition (2.12), this leads to the uniform distribution

of the phase space density ρ(q,p) in the microcanonical ensemble

ρ(q,p) =





1

Γ(N,E, V )
,

(
E − 1

2
∆
)
≤ H(q,p) ≤

(
E + 1

2
∆
)
,

0, otherwise.
(2.19)

The phase space density ρ(q,p) can then also be written as

ρ(q,p) =

Θ

(
E +

1

2
∆−H(q,p)

)
Θ

(
H(q,p)−

(
E − 1

2
∆

))

∫
d3Nq

∫
d3Np Θ

(
E +

1

2
∆−H(q,p)

)
Θ

(
H(q,p)−

(
E − 1

2
∆

)) , (2.20)

where the step function Θ is defined as Θ(x) = 1,∀x ≥ 0 and Θ(x) = 0,∀x < 0. If the system

volume V and the number of particlesN are fixed, the phase space volume (2.18) is only a function

of energy E and can be written as

Γ(E) =

∫
d3Nq

∫
d3Np Θ

(
E +

1

2
∆−H(q,p)

)
Θ

(
H(q,p)−

(
E − 1

2
∆

))

≡
∫ E+ 1

2
∆

E− 1
2

∆

dE ′g(E ′)

≈ g(E)

∫ E+ 1
2

∆

E− 1
2

∆

dE ′ = g(E)∆, (2.21)

where g(E) is the density of states (number of microstates per energy available to the system).

Boltzmann remarkably connected thermodynamics with statistical mechanics by defining the

entropy S as the logarithm of the phase space volume (or the number of available states in discrete
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systems), S = kB ln Γ. For E ≈ const, this can be written as

S(E) = kB ln Γ(E) = kB ln(g(E)∆) = kB ln g(E) + kB ln ∆. (2.22)

In computer simulations, the continuous energy space is usually discretized by energy bins with

width ∆, and the number of states g(E) is accumulated in this bin. Hence, the latter constant part

of the entropy (2.22) is commonly ignored, especially when we study the change of the entropy

S with respect to energy E. Therefore, the microcanonical Boltzmann entropy (2.22) is usually

simplified to

S(E) = kB ln g(E). (2.23)

When two closed systems with entropies S1(E1, V1, N1) and S2(E2, V2, N2) are in thermal contact,

the total entropy S reaches its maximum in equilibrium

dS = 0 =
∂(S1(E1, V1, N1) + S2(E2, V2, N2))

∂E1

dE1 +
∂(S1(E1, V1, N1) + S2(E2, V2, N2))

∂E2

dE2

=
∂S1

∂E1

dE1 +
∂S2

∂E2

dE2. (2.24)

Here we used the extensive nature of the entropy S. Since the combined system’s total energy

E = E1 + E2 is constant, dE1 = −dE2. The equilibrium condition ∂S1/∂E1 = ∂S2/∂E2 can be

used to define the microcanonical temperature

Tmicro(E) ≡
(
∂S

∂E

)−1

. (2.25)

Therefore, it is noteworthy that the microcanonical temperature Tmicro(E) is a system property,

which describes the change of the (logarithmic) density of states (or number of states for discrete

systems) with respect to system energyE. The relationship between S andE as given by Eq. (2.25)

suggests that the inverse temperature β = 1/Tmicro(E) is actually the more appropriate macrostate

variable.
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2.1.3 Canonical Ensemble

Unlike the microcanonical ensemble, where the energy of the system is fixed, the standard variables

in the canonical ensemble are (N1, V1, T1). This means that there is energy exchange between the

system A1 with energy E1 and the heat bath A2 with energy E2, while the number of particles N

and the volume V are kept constant for both. Moreover, the total energy of the combined system is

constant, and the heat bath energy E2 is assumed to be much larger than the system energy E1,

E1 + E2 = E = const, E2 � E1. (2.26)

Under the assumption of asymptotically small interactions, the Hamiltonian of the combined system

can then be written as

H(q1,p1; q2,p2) ≈ H1(q1,p1) +H2(q2,p2). (2.27)

Since the combined system is an isolated system with constant energy E, the overall phase space

density ρ(q,p) of the combined system is given in the microcanonical ensemble by Eq. (2.20):

ρ(q,p) =

Θ

(
E +

1

2
∆− (H1 +H2)

)
Θ

(
H1 +H2 −

(
E − 1

2
∆

))

∫
d3Nq

∫
d3Np Θ

(
E +

1

2
∆− (H1 +H2)

)
Θ

(
H1 +H2 −

(
E − 1

2
∆

)) , (2.28)

where N = N1 + N2 is the total number of particles and (q,p) is the formal phase space vector

of the combined system. Hence, we can obtain the system phase space density ρ1(q1,p1) by

13



integrating out the heat bath degrees of freedom

ρ1(q1,p1) =

∫
d3N2q2d

3N2p2 ρ(q,p)

=

∫
d3N2q2d

3N2p2 Θ

(
E −H1 +

1

2
∆−H2

)
Θ

(
H2 −

(
E −H1 −

1

2
∆

))

∫
d3Nq

∫
d3Np Θ

(
E +

1

2
∆− (H1 +H2)

)
Θ

(
H1 +H2 −

(
E − 1

2
∆

))

∝ Γ2(E −H1)

Γ(E)
, (2.29)

where Γ2(E −H1) is the phase space volume of the heat bath A2. Since the phase space volume

Γ(E) of the combined system is constant, we obtain

ρ1(q1,p1) ∝ Γ2(E −H1). (2.30)

Under the condition that the energy of the heat bath is much larger than the system energy,

(E1/E)� 1, we can carry out a Taylor expansion of ln Γ2(E −H1) around E2 = E −H1 ≈ E,

ln Γ2(E −H1) = ln Γ2(E2) = ln Γ2(E) +

(
∂ ln Γ2(E2)

∂E2

)

E2=E

(E2 − E) + . . .

≈ const +

(
∂(S2(E2)/kB)

∂E2

)

E2=E

(−H1) = const− 1

kBT2

H1 = const− β2H1, (2.31)

where β2 = 1/kBT2. In equilibrium, the system and the heat bath shares the same temperature, so

we replace β2 by β. Moreover, according to the proportional relationship with phase space density

and the phase space volume (2.31) and the result for the phase space volume (2.30), the system’s

phase space density ρ1(q1,p1) is

ρ1(q,p) ∝ Γ2(E −H1) ∝ exp[−βH1(q,p)]. (2.32)
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However, more of the interest is focused on the system’s canonical energy distribution ρ1(E1),

which can be obtained by using the form of the phase space volume (2.21),

ρ1(E1) =

∫
d3N1q1d

3N1p1 ρ1(q1,p1)δ (E1 −H1(q1,p1))

∝ exp(−βE1)

∫
d3N1q1d

3N1p1δ (E1 −H1(q1,p1))

∝ g1(E1) exp(−βE1), (2.33)

where we have introduced the density of system states g1(E1). Proper normalization yields

ρ1(E1) =
g1(E1) exp(−βE1)∫
g1(E1) exp(−βE1)dE1

=
g1(E1) exp(−βE1)

Zcan

, (2.34)

where Zcan ≡
∫
g1(E1) exp(−βE1)dE1 is the canonical partition function of the system. For

simplicity, we use E for the system energy, ρ for the system phase space density, and g(E) for

the system density of states in the following. Therefore, the ensemble average (2.13) of a physical

quantity O(E) in the canonical ensemble can be measured in the energy space by

〈O(E)〉 =

∫
O(E)ρ(E)dE =

∫
O(E)g(E) exp(−βE)dE

Zcan

,

from which we can get the generalized formula for the thermal fluctuations of the quantity

d〈O〉
dT

=
d

dT

∫
Oρ(E)dE

=
dβ

dT

d

dβ

∫
Oρ(E)dE

=
1

kBT 2

[∫
OEρ(E)dE −

(∫
Oρ(E)dE

)(∫
Eρ(E)dE

)]

=
1

kBT 2
(〈OE〉 − 〈O〉〈E〉) . (2.35)
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The discrete form of this fluctuation formula is commonly used to estimate fluctuations in computer

simulations.

In addition, it is noteworthy to mention the difference between the heat bath temperature T and

the microcanonical temperature (2.25). In the canonical ensemble, the heat bath temperature T is

expressed as

T =

(
∂S

∂U

)−1

N,V

, (2.36)

where the internal energy U = 〈E〉 is constant and the system energy E fluctuates. Only in

the thermodynamic limit (N → ∞), these two temperatures are equal to each other, where the

fluctuation scales as 1/
√
N and then U ≈ E.

2.2 Conventional Study of Phase Transitions in Finite Systems

There are only a few infinitely large systems, for which phase transitions can be studied analyt-

ically, such as the 2D square lattice Ising model for studying interacting magnetic spins without

external magnetic field [23] and the Van der Waals equation of state for describing gas-liquid phase

transitions [24]. For more complex systems, it is virtually impossible to find analytical solutions.

Examples include the 3D Ising model or the 2D Ising model with an external magnetic fieldH 6= 0.

Thus, numerical studies of complex systems by computer simulations have become one of the

most powerful tools to study phase transitions. However, only finite systems can be simulated, and

thermodynamic potentials or response quantities don’t experience discontinuities or divergences.

Therefore, peaks or shoulders of response quantities are extensively studied for phase transitions in

finite systems.

In finite-size systems, a first-order transition is usually indicated by bimodal distribution function

P (E). The normalized canonical energy distribution functions and the normalized heat capacities

(specific heat) are shown in Fig. 2.2 for a 40× 40, q = 7 Potts model and a flexible polymer model

with 55 monomers. Both systems undergo a first-order transition. The characteristic double-peak
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Figure 2.2: (a) Normalized canonical energy distribution function at the first-order transition
temperature, and (b) specific heat as a function of temperature for a 40×40, q = 7 Potts model. (c)
Normalized canonical energy distribution function at the first-order freezing transition temperature,
and (d) specific heat as a function of temperature for a flexible polymer model with 55 monomers.
Results are obtained from Monte Carlo simulations.

behavior of the canonical energy distribution is caused by the coexistence of two phases. Moreover,

corresponding heat capacities only show finite peaks. It is expected that, if there is a thermodynamic

limit for the system, the bimodal distribution will be more sharply distributed, and the heat capacity

will show similar features as sketched in Fig. 2.1.

For the second-order transitions in finite systems, it is usually necessary to look at more than

one quantity. In the example of the 2D square lattice Ising model, the system is known to possess

a second-order transition between the ferromagnetic phase and the paramagnetic phase at a finite

temperature [25]. Monte Carlo simulation results of various sizes of the 2D Ising model are shown

in Fig. 2.3. For all simulated system sizes, the heat capacity curves exhibit finite peaks indicating

the transition instead of discontinuities as described in Section 2.1 due to finite-size effects. The

peak location of the magnetic susceptibility χ for the same transition is not identical to the specific
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Figure 2.3: (a) Specific heat CV /N (normalized heat capacity) along with typical spin configu-
rations at different temperatures, (b) normalized magnetic susceptibility χ/N , and (c) normalized
magnetization M/N for various sizes of 2D Ising models without external field, obtained from
Monte Carlo simulations. The dotted line indicates the peak location of the heat capacity and the
dashed line indicates the peak location of the susceptibility for the system size of 60× 60.
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an order parameter for a 55-mer flexible polymer model, obtained from Monte Carlo Simulations.
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Figure 2.5: (a) Specific heat CV /N = (1/N)d〈E〉/dT as a function of temperature T , and
normalized energy variance s2(E) = (−1/N)d〈E〉/dβ as a function of inverse temperature β for
1D-Ising model with periodic boundary conditions in the thermodynamic limit.

heat. This peak location difference is also known as the transition band for finite-size systems,

making it difficult to uniquely identify the transition points. Moreover, as shown in Fig. 2.3(c), the

magnetizationM is a proper order parameter for this system. Furthermore, we can easily observe

from Fig. 2.3 that the larger the system size, the closer the results are to the expected behavior in

the thermodynamic limit. Therefore, finite-size scaling can be performed to extrapolate finite-size

results to the thermodynamic limit. Then the transition temperature of the infinitely large system

is identified from the convergence of transition temperatures by the scaling. Similar second-order

behavior can also be observed in polymer models for the collapse transition (also known as Θ

transition). The results of a flexible polymer model are shown in Fig. 2.4 for a chain with 55

monomers. However, the heat capacity CV only shows a shoulder for this transition. Thermal

fluctuations of the square radius of gyration 〈R2
gyr〉 show a peak for the transition at a different

temperature. Again, as illustrated, the transition bandwidth problem persists.

Nonetheless, peaks or shoulders in response quantities have been widely used as indicators

of phase transitions in finite systems and large efforts have been dedicated to finding appropriate

system-specific order parameters. However, peaks of them are not safe indicators and typically

suffer from ambiguity. Although a finite-temperature peak in the specific heat curve for the 1D Ising

model with periodic boundary condition survives in the thermodynamic limit, it is not associated
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Figure 2.6: Typical monotonic behavior of microcanonical entropy (a) S(E) and first- to fourth-
order derivatives (b) β = dS/dE; (c) γ = d2S/dE2; (d) δ = d3S/dE3; (e) ε = d4S/dE4, if no
transition occurs.

with any transition. Interestingly, if we define a normalized fluctuation term s2(E) as the derivative

of the average energy with respect to the inverse temperature β, which corresponds to the variance

of the energy,

s2(E) = −
(

1

N

)
d〈E〉
dβ

=

(
1

N

)(
〈E2〉 − 〈E〉2

)
, (2.37)

the peak actually disappears, as shown in Fig. 2.5. The 1/T 2 term in the specific heat function

may cause artificial peaks. This disappearance suggests again that inverse temperature might be a

better natural variable than temperature. It is important to note that biological systems are finite in

nature and finite-size scaling is not usually applicable to these systems. Since canonical statistical

analysis is inconsistent and ambiguous for finite systems, it is necessary to explore the other types

of statistical analysis. One candidate is the generalized microcanonical inflection-point analysis

that extends the theory of phase transition. It provides a systematic and consistent approach to

phase transitions in systems of any size. It will be introduced in detail in the next section.

2.3 Generalized Microcanonical Inflection-Point Analysis

The generalized inflection-point analysis method [13] for the systematic identification and classi-

fication of transitions in systems of any size has been introduced recently. This method, which

combines microcanonical thermodynamics [10] and the principle of minimal sensitivity [11, 12],

has already led to novel insights into the nature of phase transitions. Even the Ising model, which

has been excessively studied for almost a century, possesses a more complex phase structure than
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Figure 2.7: Typical sketch plot of (a) energy E versus temperature T around transition point for
finite systems, and (b) temperature T versus energy E. Transition points are indicated by dotted
lines.

previously known, as recent studies showed [26–28]. Besides, this method has been helpful for

studies in characterization of aggregation with a generalized model [29], self-assembly kinetics

in macromolecular systems [30], as well as in studies of the general geometric and topological

foundation of transitions in phase space [31–34]. In addition, this method motivated further in-

vestigation of higher order derivatives of Boltzmann microcanonical entropy with an additional

conserved quantity [35]. Interestingly, this method has also been used as justification for pattern

recognition criteria in computer science [36].

Boltzmann’s formula of the microcanonical entropy can be written as S(E) = kB ln g(E),

where g(E) is the density of states with energy E. As shown in Fig. 2.6, when not experiencing

phase transitions, the curves of entropy S(E) and its derivatives exhibit well-defined concave

or convex monotony. However, phase space changes caused by phase transitions in the system

will be reflected in the entropy. From the canonical statistical analysis of first- and second-order

transitions, it is known that entropy and/or internal energy rapidly change (or are most sensitive),

if the temperature is varied near the transition point, as sketched in Fig. 2.7 (a). It can also be

interpreted as shown in Fig. 2.7(b), where the temperature change is the least sensitive to the

change of the energy near the transition point. This behavior corresponds to the least-sensitive

dependencies of microcanonical quantities in the space of system energies. Thus, a phase transition
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causes a least-sensitive inflection point in the entropy or its higher derivatives and impacts their

monotonic behavior. As a result, the derivatives of inflection points will be either minimum or

maximum at their locations in the energy space. By systematically analyzing these alterations,

different types of transitions can be identified and classified.

In this scheme, a first-order transition in S(E) is signaled by a least-sensitive inflection point

with energy Etr. Therefore, the originally monotonically decreasing first derivative, which is the

inverse microcanonical temperature β(E) ≡ dS/dE, forms a backbending region as shown in

Fig. 2.8 (a) that leads to a positive valued minimum in β(E) at Etr,

β(Etr) =
dS(E)

dE

∣∣∣∣
E=Etr

> 0. (2.38)

Similarly, if there is a least-sensitive inflection point in β(E), the phase transition is classified as

a second-order transition. As shown in Fig. 2.8 (b), the derivative of β(E) has a negative-valued

peak at the transition energy Etr,

γ(Etr) =
d2S(E)

dE2

∣∣∣∣
E=Etr

< 0. (2.39)

More specifically, we call this an independent second-order transition. This implies that there is

another transition type: dependent transitions. As the name suggests, dependent transitions are

associated with an independent transition of lower-order rank. It is important to note that not

all independent transitions have a dependent companion. However, if it exists - and it can only

exist at a higher transition energy than its independent partner — it serves as a precursor of the

independent transition in the disordered phase. The inflection points of dependent transitions are

located within the backbending region of the entropy derivatives. For example, if this inflection

point is located within the backbending region of the inverse temperature β(E), which is associated

with the first-order transition, the transition is a dependent second-order transition, as sketched in

Fig. 2.9 (a). Consequently, there is a positive-valued minimum in the derivative of β(E) at the
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Figure 2.8: Sketch of independent transitions up to fourth order as defined in the microcanonical
inflection point analysis method. (a) A first-order independent transition is defined by the inflection
point in S(E) and identified from the backbending of β = dS/dE that possesses a positive
minimum. (b) A second-order independent transition is defined by the inflection point in β =
dS/dE and identified from the backbending of γ = d2S/dE2 with a negative maximum. (c) A
third-order independent transition is defined by the inflection point in γ = d2S/dE2 and identified
from the backbending of δ = d3S/dE3 that possesses a positive minimum. (d) A fourth-order
independent transition is defined by the inflection point in δ = d3S/dE3 and identified from the
backbending of ε = d4S/dE4 with a negative maximum.
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transition energy Edep
tr ,

γ(Edep
tr ) =

d2S(E)

dE2

∣∣∣∣
E=Edep

tr

> 0. (2.40)

The identification can then be generalized by systematically analyzing these signals. For an

independent transition of odd order (2k − 1) (k is a positive integer), the (2k − 1)th derivative of

S(E) possesses a positive-valued minimum,

d(2k−1)S(E)

dE(2k−1)

∣∣∣∣
E=Etr

> 0, (2.41)

and an independent transition of even order 2k is characterized by a negative-valued peak in the

2kth derivative,
d2kS(E)

dE2k

∣∣∣∣
E=Etr

< 0. (2.42)

A dependent transition of even order 2k is identified by a positive-valued minimum in the 2kth

derivative,
d2kS(E)

dE2k

∣∣∣∣
E=Edep

tr

> 0, (2.43)

while for odd order 2k + 1:
d(2k+1)S(E)

dE(2k+1)

∣∣∣∣
E=Edep

tr

< 0. (2.44)

Although dependent transitions are less common than independent transitions, they still provide

valuable insights into the nature of transitions. In the microcanonical inflection point study of the

2D Ising model, a third-order dependent transition is identified [28], which involves a collective

preordering of spins in the higher temperature region than the critical temperature. However, in

this polymer study, dependent transitions were not found.
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Figure 2.9: Sketch of dependent transitions up to fourth order as defined in the microcanonical
inflection point analysis method. The inflection points are located in the entropy derivatives’
backbending region that are resulted by lower order independent transitions. (a) A dependent
second-order transition is defined by the inflection point within backbending region of β = dS/dE
and identified from a positive minimum in γ = d2S/dE2. (b) A dependent third-order transition
is defined by the inflection point within backbending region of γ = d2S/dE2 and identified from
a negative maximum in δ = d3S/dE3. (c) A dependent fourth-order transition is defined by the
inflection point within backbending region of δ = d3S/dE3 and identified from a positive minimum
in ε = d4S/dE4.
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Chapter 3

Model and Methods

3.1 Model

Coarse-grained Models of Biopolymers

In recent years, substantial research interest has been dedicated to applications in microbiology

and nanotechnology on microscopic and mesoscopic scales, where surface effects can not be

ignored. Different aspects of biomolecules have been studied extensively. As biomolecules fold

into specific structures to perform biological functions in living cells, the computational modeling

of these biopolymers, with the advantage of more precise control compared to experiments, has

been a crucial way to study structural transitions, which furthermore leads to applications in many

areas, e.g., drug discovery and design [37–40]. Biopolymers are so complex that different scales of

simulations have been developed with different resolutions. All-atom simulations provide relatively

high resolution about local structure dynamics, but with very high computational cost and only

on a limited timescale [41, 42]. In addition, all-atom simulations require “force field” parameters

which are usually of the order of O(103) [43] and not easily generalizable. On the other hand,

coarse-grained models offer the advantage of lower computational cost that enables the study on a

longer timescale and/or larger size by integrating out less relevant degrees of freedom. As shown
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Figure 3.1: A coarse-graining procedure of a protein. Each monomer i represents an amino
acid with side groups Ri that are connected by peptide bonds, which are shown as orange dotted
rectangles. Some key atoms in the polypeptide chain are also labeled.

in Figure 3.1, a protein can be coarse-grained by using monomers to represent amino acids. The

underlying quantum/atomic interactions are replaced by effective interactions between monomers.

This approach, as a result, dramatically reduces computational costs. The amino acid sequence

is also known as the primary structure of proteins. It is worth mentioning that, depending on the

coarse-graining level, a monomer can also represent a smaller or larger group of repeating structures

or subunits.

Moreover, coarse-grained modeling allows for the systematic study of specific aspects and

thus provides a generic insight into the macroscopic properties that are not limited to specific

biomolecules. For example, more than 200, 000 protein structures are available in the protein
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Figure 3.2: (a) Sketch (transparent gray) of two common secondary structures, α-helix and β-sheet,
abstracted from the local spatial conformation of the polypeptide backbones. Carbon atoms are
colored gray, nitrogen atoms are colored blue, and oxygen atoms are colored red. Side chains
are not shown for clarity. (b) Structure of bovine mitochondrial F1-ATPase, PDB ID: 1BFM
(http://doi.org/10.2210/pdb1BMF/pdb), using secondary structure representation. α-helix
parts are colored in red and β-sheet parts are colored in blue.
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data bank [44]. Although different in detailed structures, these proteins share similar secondary

structures, in which α-helices and β-sheets are most common. The secondary structures are

illustrated in Figure 3.2 (a). Additionally, as an example of representing a protein structure by

secondary structures, bovine mitochondrial F1-ATPase [45] is visualized in Figure 3.2 (a), which is

an enzyme protein for ATP synthesis. Paul D. Boyer and John E. Walker won 1997 the Nobel Prize

in Chemistry for the determination of its structure and the explanation of the underlying enzymatic

mechanism [46].

Coarse-grained Semiflexible Polymer Model

DNA, RNA, and even some proteins are classified as semiflexible polymers, which are charac-

terized by their bending stiffness and finite persistence length. Moreover, bending stiffness has a

different impact on biological functions and processes. It helps DNA pack in an organized way for

efficient translations and transcription [47], which is important because DNA’s length is extremely

long compared to the size of the cell nucleus it resides in. RNA stiffness affects the self-assembly

of virus particles [48]. Therefore, modeling semiflexible polymers has been of great interest. One

of the simplest semiflexible polymer models is the well-known Krathy-Porod or worm-like-chain

(WLC) model [14], which has been successfully used in studies of several structural and dynamic

properties of semiflexible polymers. However, the lack of self-interactions in this model does

not allow for the study of structural phase transitions in semiflexible polymers. Therefore, more

complex coarse-grained models have been used widely to study different aspects of semiflexible

polymers. Lattice models provide computational efficiency [49–51]. The more general contin-

uum bead-steak and bead-spring models have been used to study structural phases of a single

polymer [15–21], aggregation in bulk [52–55], and adsorption [56–59]. Conventional canonical

analysis is mostly used in these studies. Especially, Seaton et al., (2013) [15] constructed the phase

diagram for semiflexible polymers with N = 30 monomers canonically. In contrast, we have used

the microcanonical inflection point analysis method to systematically investigate structural phase
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Figure 3.3: Schematic representation of interactions for a chain ofN = 55 monomers. The bonded
potential (green) VB is highlighted for a pair of bonded monomers, the non-bonded potential (blue)
VNB for a pair of non-bonded monomers, and bending penalty Vbend (red) for two consecutive bonds
that are characterized by bending angle θ.

transitions for semiflexible polymers with a generic coarse-grained semiflexible polymer model,

and attempt to construct the first microcanonical phase diagram for semiflexible polymers.

Interaction Potentials and Energy Formation

For our study, we use a generalized semiflexible homopolymer model. In such a model, the total

energy of a polymer chain with N monomers is composed of contributions from non-bonded and

bonded interactions between monomers, along with an energetic bending penalty.

For the interactions between non-bonded monomers, we employ the standard 12-6 Lennard-

Jones (LJ) potential [60]:

VLJ(r) = 4εLJ

[(σ
r

)12

−
(σ
r

)6
]
. (3.1)

This potential originated from describing effective dipole-dipole interactions and effective repulsion

of overlapping electronic clouds. Here, r is the monomer-monomer distance, σ = 2−1/6r0 is the

van derWaals distance associated with the potential minimum at r0, and εLJ is the energy scale. For
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Figure 3.4: (a) Plot of the Lennard-Jones potential VLJ(r)/εLJ versus monomer distance r/r0. Van
der Waals distance σ and cutoff rc are also labeled. (b) FENE potential VFENE(r)/εLJ (solid) and
harmonic potential (dashed) with the same elasticity as the FENE potential plotted as functions of
bond length r/r0.

computational efficiency, we introduce a cutoff at rc = 2.5σ. Shifting the potential by the constant

Vshift ≡ VLJ(rc) avoids a discontinuity at rc, as shown in Figure 3.4 (a).

Thus, the potential energy of non-bonded monomers is given by

VNB(r) =





VLJ(r)− Vshift, r < rc,

0, otherwise.
(3.2)

The elastic bond between two neighboring monomers is modeled by a potential which combines

a Lennard-Jones potential and the finitely extensible nonlinear elastic (FENE) potential:

VB(r) = VFENE + VLJ(r)− Vshift, (3.3)

where the same parameter values ofVLJ(r) are chosen as in the previously introducedLennard-Jones

potential (3.1) and the FENE potential is given as [61–63]:

VFENE = −1

2
KR2ln

[
1−

(
r − r0

R

)2
]
. (3.4)
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Figure 3.5: Plot of normalized bending potential Vbend(θ−θ0)/κ versus deviated bond angle θ−θ0.
The schematic representation of bond angles formed by two consecutive bonds is shown in the right
figure. θ is actual bond angle and θ0 is the actual reference angle.

Here FENE parameters are fixed to standard values R = (3/7)r0 andK = (98/5)εLJ/r
2
0 [64]. The

bond length r is restricted to fluctuations within the range [r0 − R, r0 + R]. This more realistic

potential leads to a much higher energetic penalty than a harmonic potential with the sameK when

close to the confinement boundary. Tayler expansion of VFENE(r) near equilibrium bond length r0

results in this harmonic potential as the leading term. The difference is shown in Figure 3.4 (b).

With these parameters, the minimum of VB is located at r0.

For the description of the level of resistance to bending, an additional standard potential is

introduced. Any deviation of bond angle θ from the reference angle θ0 between neighboring bonds

is subject to an energy penalty of the form:

Vbend(θ) = κ [1− cos(θ − θ0)] . (3.5)

This energetic potential and the definition of bond angles are shown in Figure 3.5. The parameter

κ ≥ 0 controls the stiffness of the polymer chain. For κ = 0, the model describes flexible polymers.

Regarding the choice of reference angle θ0, it depends on the specific model and the context. For

example, there is a specific non-zero value used for the study of helical polymers [65–68]. However,
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in this study, we chose θ0 = 0 for simplicity, which means any deviation from the straight chain

results in an energetic penalty for κ > 0.

Finally, a conformation of a polymer chain with N monomers can be represented by X =

(r1, ..., rN), where ri is the position vector of the ith monomer. Then, the total energy of the

polymer is given by

E(X) =
∑

i>j+1

VNB(ri,j) +
∑

i

VB(ri,i+1) +
∑

l

Vbend(θl), (3.6)

where ri,j = |ri − rj| is the distance between monomers i and j, and θl is the bond angle between

two adjacent bonds.

In simulations and statistical analysis of the results, we set the basic scales to the following

values: kB = 1 (Boltzmann constant), the energy scale εLJ = 1, and length scale r0 = 1. The

flexible chain with N = 55 monomers has already been studied extensively in the past [64, 69–75]

and serves as the reference for the comparison with the semiflexible model. This chain length is

sufficiently short to recognize finite-size effects but long enough for the polymer to form stable

phases The results we obtained from this study are have also been verified for chains with up to 100

monomers.

3.2 Monte Carlo Simulations

Markov Chains and Master Equations

Given the Hamiltonian of the system (3.6) as described in the previous section, it is tempting to

directly generate all possible states of the system. In such an ideal scenario, the density of states

g(E) can be obtained, and thus all the macroscopic properties of the system can be calculated, e.g.,

the average of a quantity in canonical ensemble according to (2.35). However, even with modern

computational power, exact enumeration is still limited to small lattice systems. The self-avoiding-
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walk (SAW) model on square lattices is often used as the base for exact polymer studies [76–79].

Despite SAW’s simplicity, the total number of conformations already reaches Cn ' 4.2× 1030 for

n = 71 steps [80]. On the other hand, Monte Carlo simulations enable applications in the study of

system properties in a more efficient way, and have been successfully employed in many statistical

physics [8].

The main idea of Monte Carlo simulation is based on the identity of time and ensemble averages

of a quantity

O = lim
M→∞

1

M
=

M∑

m=1

O ≡ 〈O〉 =

∫
d3Nq

∫
d3Np O(q, p)ρ(q,p). (3.7)

Consequently, Markov Chain Monte Carlo (MCMC) simulation relies on generating finite series

of states to estimate the average. In Markov theory, the transition probability from system state

X t−∆τ0 to X t in a time step ∆τ0 at time t is independent of the previous history of states [8, 43,

81],

t(X t−∆τ0 →X t; ∆τ0) = P (X t|X t−∆τ0 ,X t−2∆τ0 . . . ,X t=0) = P (X t|X t−∆τ0), (3.8)

where P (X t|X t−∆τ0) is the conditional probability, and
∑

Xt−∆τ0
t(X t−∆τ0 → X t; ∆τ0) = 1.

Moreover, the master equation describes the dynamics of the microstate probability P (X) in

Markov process,

∆P (X)

∆τ0

=
∑

X′

[P (X ′)t(X ′ →X; ∆τ0)− P (X)t(X →X ′; ∆τ0)] , (3.9)

which can be solved for the microstate transition probability under specific conditions. In equilib-

rium, the probability distribution P (X) is stationary, which yields

∆P (X)

∆τ0

= 0 =
∑

X′

[P (X ′)t(X ′ →X; ∆τ0)− P (X)t(X →X ′; ∆τ0)] = 0. (3.10)
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In order to avoid cyclic solutions, we require the stricter detailed balance condition,

P (X ′)t(X ′ →X; ∆τ0)− P (X)t(X →X ′; ∆τ0) = 0. (3.11)

The ratio of transition probabilities is then given by

t(X →X ′; ∆τ0)

t(X ′ →X; ∆τ0)
=
P (X ′)

P (X)
→ t(X →X ′)

t(X ′ →X)
=
P (X ′)

P (X)
, (3.12)

The timescale ∆τ0 is omitted since the right-hand side of the equations do not depend on time. For

a more practical application, the transition probability can be factorized into two parts [43],

t(X →X ′) = s(X →X ′)a(X →X ′), (3.13)

where s(X → X ′) is the selection probability for a specific update, and a(X → X ′) is the

acceptance probability of that update. Therefore, according to (3.12),

a(X →X ′)

a(X ′ →X)
=
s(X ′ →X)P (X ′)

s(X ′ →X)P (X)
. (3.14)

Finally, by maximizing the larger acceptance probability to 1, the typical form of the acceptance

probability is given as

a(X →X ′) = min

[
1,
s(X ′ →X)P (X ′)

s(X ′ →X)P (X)

]
= min{1, σ(X,X ′)ω(X,X ′)}. (3.15)

Here, σ(X,X ′) is defined as ratio of forward and backward selection probability

σ(X,X ′) =
s(X ′ →X)

s(X →X ′)
, (3.16)
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Figure 3.6: Illustration of the displacement update used in the polymer simulations. A randomly
chosenmonomer (blue) is moved to the new location (red) by a random vector∆r = (∆x,∆y,∆z).
The available space for the monomer to update its position is shown as the cube that is centered
around the originally chosen monomer (blue) with edge length d.

and ω(X,X ′) is defined as the ratio of microstate probabilities

ω(X,X ′) =
P (X ′)

P (X)
. (3.17)

These two ratios are crucial forMonte Carlo simulations. The efficiency ofMonte Carlo simulations

depend on the proper choice of updates and the distribution of microstates.

3.2.1 Updates and Selection Probabilities

In actual simulations of semiflexible polymers, a series of states are generated as a Markov chain

by attempting to update the structure in each step. For statistical analysis of results, the goal is to

generate as many independent states as possible. To achieve this, other than running simulations
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for a longer time, implementing more advanced local and global update moves not only helps

reduce correlations of states but also helps overcome trapping in metastable states. However, more

complicated updates are also associated with higher computational costs, and thus, reasonable

combinations of low-cost and high-cost updates are needed. Moreover, optimized calculations for

specific updates also improve the simulation efficiency.

One of the most basic local update moves for continuum polymer models is the displacement

update. In such an update, a monomer is randomly chosen and randomly moved by a vector

∆r = (∆x,∆y,∆z), where ∆x,∆y and ∆z are independently chosen from random numbers

that are uniformly distributed in the interval [−d/2, d/2]. Therefore, the possible updates of a

monomer confined in a cube with an edge length d. The displacement update is illustrated in

Fig. 3.6. The edge length d should be adjusted before taking any measurements in simulations to

reach reasonable efficiency. For high temperature simulations with more extended conformations,

if d is too small, most of the updates will be accepted and it will take much longer to scan the

conformational space. Therefore, in this case, d should be increased but the length limit from FENE

potential also needs to be considered. On the other side, most of the displacement updates will be

rejected at low temperatures for large d, where a dramatic change in monomer position most likely

results in short-range repulsion due to the dense conformations dominating is the solid phase. All

considered, a practical adjustment [66] from current box edge length d(T ) at temperature T to a

new edge length d′(T ) can be introduced as

d′(T ) = d(T ) + α(P̃d − Pd), (3.18)

where α is the adjustment rate, P̃d is the expected acceptance rate and Pd is the acceptance rate of

displacement update with a certain amount of Monte sweeps (a Monte Carlo sweep is N update

attempts, where N is the number of monomers in the chain). For this study, α = 0.004, 100

sweeps are used to measure Pd, and P̃d = 0.5, combinations of which would result in almost 50%
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Figure 3.7: Illustration of the crankshaft update used in simulations. A randomly chosen monomer
(red) is rotated by a random angle. The rotation axis formed by the two monomers bonded to the
chosen monomer is shown as a red line.

acceptance rate. Forward and backward selection probabilities are the same for this type of update:

σd(X,X ′) =
sd(X ′ →X)

sd(X →X ′)
= 1. (3.19)

Besides, energy calculations can also be optimized for displacement updates. Only adjacent bonds

are affected for bonded potentials and only non-bonded interactions between the chosen monomer

and othermonomers are affected, and also only neighboring bending angles are changed. Therefore,

evaluating these energy changes is sufficient for the new state.

Another local update similar to the displacement update is the crankshaft rotation [82]. Sim-

ilarly, a monomer is randomly chosen, and rotated a by a random angle φ within [0, 2π] about a

rotation axis, which is the line that connects the neighboring monomers of the chosen monomer.

An illustration of the crankshaft update is shown in Fig. 3.7. Obviously, the selection probability
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Figure 3.8: Illustration of the pivot update used in simulations. Randomly chosen monomer (red),
and a random rotation axis generated. Then the rest of the chain (blue) is rotated by a random
angle.

ratio for the update is also unity,

σc(X,X ′) =
sc(X

′ →X)

sc(X →X ′)
= 1. (3.20)

Energy calculations can also be optimized similarly to the displacement update but in a simpler

way. In such an update, the bond length is not changed, and therefore the bonded potential is

unaffected.

Other than the local updates introduced so far, global updates are also necessary for efficient

simulations. The first global update we used is the pivot rotation [43], which usually attempts
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i − 1 i i + 1 j − 1 j j + 1

i − 1 i i + 1 j − 1 j j + 1

Figure 3.9: Illustration of the bond-exchange update based on indices. The monomer indexes are
labeled and satisfy j > i + 1. (Upper part) Incorrect way of creating new two bonds, (i + 1→ j)
and (i → j + 1), which breaks the chain into two parts. The broken bonds are marked by dashed
lines. (Bottom part) The correct way of creating new two bonds, (i→ j) and (i+ 1→ j + 1).

to move more than one monomer in a step. First, similar to previous local updates, a non-end

monomer is chosen. Second, a random rotation axis is generated at this monomer location. Finally,

the rest of the chain starting from this chosen monomer is rotated by a random angle φ drawn from

the interval [0, 2π]. Moreover, the probability of rotating the monomers from the new location back

to the original position is the same, thus the ratio of selection probabilities still reads

σp(X,X ′) =
sp(X ′ →X)

sp(X →X ′)
= 1. (3.21)

Additionally, the energy calculations can also be optimized for this pivot rotational update, where

bonded interactions are not altered, and only one bending angle is changed around the chosen

monomer.

So far, all the introduced updates have a unitary selection probability ratio. Now we introduce

two updates [83] that have different selection probabilities for forward and backward updates.
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Considering dense conformations at low temperatures, pivot rotational updates are likely to be

rejected in most cases with a high chance of collision in one of the monomers during the rotation

process. Moreover, displacement updates and crank-shaft updates are inefficient when the polymer

chain is trapped in some entangled compact structures. Therefore, rearranging bonds without

moving monomers becomes an optimal solution. The first version of this type of update we used is

the bond-exchange update. First, four close monomers i, i+ 1, j, j + 1 with j > i+ 1 are chosen,

which form two neighboring bonds, (i→ i+1) and (j → j+1). Then, these two bonds are broken,

and new bonds are formed, (i → j) and (i + 1 → j + 1). The new bonds should also have bond

length constraints from the FENE potential. One thing to be aware of in implementation is that

creating a new bond (i + 1 → j) would result in a closed loop, which is demonstrated in Fig. 3.9.

An example of the actual implementation is shown in Fig. 3.10.

Here we briefly talk about the selection probabilities. The selection probability for one direction

can be factorized. First, the probability of a bond to be chosen for swapping is 1/Nbond(X), where

Nbond(X) is the number of total bonds. Then, the number of possible bonds that can be exchanged

near the chosen bond is n(X →X ′), thus the probability of one of the nearest bonds to be chosen

is 1/n(X →X ′). Finally, the selection probability of the bond-exchange update from the stateX

to a new state X ′ is given by

sb(X →X ′) =
1

Nbond(X)n(X →X ′)
. (3.22)

As a result, the ratio of forward and backward selection probabilities ratio becomes

σb(X,X ′) =
sb(X ′ →X)

sb(X →X ′)

=
(Nbond(X)n(X →X ′))−1

(Nbond(X ′)n(X ′ →X))−1

=
n(X ′ →X)

n(X →X ′)
. (3.23)
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Figure 3.10: An example of the bond-exchange update used in simulations. From upper conforma-
tion to lower conformation, two nearby bonds (red) are chosen, and they are broken. Then two new
bonds (blue) are formed without creating a discontinued loop, which is illustrated in Fig.3.9.
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i i + 1 j j + 1

i i + 1 j j + 1

Figure 3.11: Sketch of the end-bond-exchange update based on monomer indices. The monomer
indexes are labeled and satisfy j > i + 1. If the other end’s monomer is chosen, reversing the
full indices will recover this order due to symmetry. (Upper part) The correct way of creating a
new bond between the end monomer (red) and a chosen nearby monomer (blue), where the bond
between the blue monomer j and j − 1 are broken (red cross). (Bottom part) Breaking the bond
(j → j + 1) creates a closed loop and thus breaks the continuity of the chain.

The number of available bonds for the exchange is usually not the same for forward and backward

selections, which leads to σb(X,X ′) 6= 1. The number of available bonds for each direction must

be evaluated separately for every bond-exchange update.

Due to requirements of bond-exchange updates, the end monomers are always excluded. There-

fore, the second version of the bond-exchange update is the end-bond exchange update. Compared

to the bond-exchange update, the end-bond exchange update only involves one bond. More specifi-

cally, an end monomer is chosen to create a new bond between nearby nonbonded monomers. As a

consequence, one of the nearby monomer’s bonds is broken. Similarly, the selection probability of

end-bond-exchange update from stateX to new stateX ′ can be factorized. The probability of one

end monomer be chosen is 1/2, and the number of possible bonds that can be connected nearby is
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Figure 3.12: An example of the bond-exchange update used in simulations. From upper confor-
mation to lower conformation, an end monomer is randomly chosen (blue), and then a nearby
monomer (red) is selected. A bond between these two monomers is created, and the bond between
the selected monomer (red) and the neighboring monomer (green) is broken. Consequently, the
neighboring monomer (green) becomes the new end monomer. It can also be seen from these con-
formations that the end monomer (blue) of the upper conformation has only one possible monomer
(red) to connect. However, for the lower conformation, the end monomer (green) has more than
one available monomer to connect.
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n(X →X ′). Similarly, the selection probability of end-bond-exchange is

se(X →X ′) =
1

2n(X →X ′)
, (3.24)

and thus the selection probability ratio for the end-bond-exchange update is given by

σe(X,X ′) =
se(X

′ →X)

se(X →X ′)

=
(2n(X →X ′))−1

(2n(X ′ →X))−1

=
n(X ′ →X)

n(X →X ′)
. (3.25)

Similar to the bond-exchange update, the available bonds to form in forward and backward updates

are usually different. The number of available bonds need to be calculated before and after

performing the update. There are two bonds connected to the monomer that is going to be

connected to the end monomer. It should be the bond between the monomer and the end monomer.

Otherwise, a closed loop will be formed. This problem is illustrated in Fig. 3.11. What’s more,

an example is shown in Fig. 3.12, where an uneven number of possible bonds for forward and

backward selection is chosen.

It is also worth mentioning again that the FENE bond length limit should always be considered

for bond exchange updates, and monomer reindexing should be also performed after each bond-

exchange update. Besides, energy calculations can also be optimized. The LJ interactions are not

affected in both types of updates, and only relative bonds and bending angles are affected.

To summarize, we used various Monte Carlo update moves that are particularly useful for our

model simulations and discussed selection probabilities Particular features of actual implementa-

tions were noted. These updates have been sufficient for our simulations. Other types of updates

such as spherical updates [84], bridging updates [85], dimer flip [86, 87] have also been used in the
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past, but were not employed in our studies. More discussions about different updates can be found

in [88].

3.2.2 Microstate Probabilities

In the previous section, we focused on selection probabilities that are contained in the acceptance

probability (3.15) for Monte Carlo simulations. In this section, we will focus on the other part in

Eq. (3.15), the transition possibility given by the microstate probabilities ratio (3.17).

Metropolis Algorithm

Because of its simplicity, the simulation algorithm used most in Monte Carlo simulations is

the famous Metropolis algorithm [89]. In this method, the system is simulated in a heat bath

temperature. The transition probability is

ω(X,X ′) =
P (X ′)

P (X)

=
e−βcanE(X′)/Zcan

e−βcanE(X)/Zcan

= e−βcan(E(X′)−E(X))

= e−βcan∆E (3.26)

where Zcan is the canonical partition function for temperature Tcan, βcan = 1/kBTcan and ∆E =

E(X ′) − E(X) is the total energy difference between proposed state X ′ and current state X .

Combing the selection probabilities of different updates, the acceptance probability for this algo-

rithm is then given as

a(X →X ′) = min
[
1, σ(X,X ′)e−βcan(E(X′)−E(X))

]
. (3.27)
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If the forward and backward selection probability ratio is σ(X,X ′) = 1, theMetropolis acceptance

criteria (3.27) reduces to the most commonly used form

a(X →X ′) = min
(
1, e−βcan∆E

)
. (3.28)

In the actual implementation, a random number r is chosen from a uniform distribution interval

[0, 1), and the update is accepted if r ≤ a. Due to high cost and low efficiency of hardware random

number generators (HRNG), algorithmic/software pseudo-random number generators (RNGs) are

mostly used in simulations [8]. However, algorithmic/software RNGs possess finite periods and

properties should be tested carefully before actual implementation [90–93]. In all simulations for

our study, we used a 64-bit variant of RANMAR [94, 95] with very long period (≈ 1061).

Replica-exchange Monte Carlo

TheMetropolis algorithm is not particularly efficient inmost cases. At low temperatures, the system

can be trapped in low energy states due to small acceptance probability (if ∆E > 0, and β →

+∞ : e−β∆E → 0). Besides, it suffers from critical slowing down for second-order transitions

and an entropically suppressed energetic region at first-order transitions. Therefore, we mainly

employed the type of generalized ensemble Monte Carlo method called replica-exchange Monte

Carlo (parallel tempering) [96–101] for this study, which takes advantage of modern highly paral-

lelized computational environments. Besides, in contrast to simulating the system at a fixed low

temperature as is done in Metropolis sampling, parallel tempering has also been shown to reach

equilibrium at low temperatures faster in simulations [102–106].

For clarity, all temperatures refer to canonical heat bath temperatures in this section. In the

parallel tempering, replicas of the system are simulated at different inverse temperatures βk ∈

[βmin, βmax], with k = 1, 2, . . . , K, where K is the total number of temperature threads. One

obvious advantage of this algorithm is that it can simulate the system at different temperatures

simultaneously. At each temperature, Metropolis sampling is performed. Then, after a certain
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amount of Monte Carlo sweeps, the replicas are swapped based on exchange probabilities. The

selection probabilities are assumed to be the same for forward and backward exchanges, so only the

transition probabilities are considered for replica exchange.

Suppose we have a replica with stateX at inverse temperature βi, and an exchange is proposed

woth a replica in state X ′ at neighboring inverse temperature βj . The microstate probability ratio

is then calculated using conditional probabilities:

ω(X ↔X ′; βi, βj) =
P (X; βj)P (X ′; βi)

P (X; βi)P (X ′; βj)

=
(e−βjE(X)/Zcan(βj))(e

−βiE(X′)/Zcan(βi))

(e−βiE(X)/Zcan(βi))(e
−βjE(X′)/Zcan(βj))

=
(e−βjE(X)e−βiE(X′))/(ZPT(βi, βj))

(e−βiE(X)e−βjE(X′))/(ZPT(βi, βj))

=
e−βjE(X)e−βiE(X′)

e−βiE(X)e−βjE(X′)

= e−βjE(X)−βiE(X′)+βiE(X)+βjE(X′)

= e(βi−βj)(E(X)−E(X′))

= e∆β∆E, (3.29)

where ZPT(βi, βj) = Zcan(βi)Zcan(βj) is the partition function of the generalized ensemble of

these two temperatures. Consequently, the overall partition function of the generalized ensemble

of all temperatures is given by

ZPT (β1, . . . , βK) =
K∏

i=1

Zcan(βi). (3.30)

Finally, the exchange probability is given by

a(X ↔X ′; βi, βj) = min
(
1, e∆β∆E

)
. (3.31)
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Figure 3.13: Schematic representation of parallel tempering swaps between adjacent replicas for
an example with 6 different inverse temperatures β. In between the swaps, Metropolis Monte Carlo
sweeps are performed. The swaps are proposed between either higher temperature threads or lower
temperature threads periodically

In actual simulations, the exchange is proposed between the neighboring higher or lower temperature

threads periodically as illustrated in Fig. 3.13.

Although the implementation of parallel tempering seems relatively simple, the selection of

proper temperature sets is still the major obstacle. On the one hand, if the temperatures are too

far apart, the energy difference ∆E between replicas will also typically be larger, which results

from an overall lower exchange rate according to exchange probability (3.31), (∆β∆E → −∞).

On the other hand, for the same number of simulation threads, if the temperatures are too close,

only a smaller energy range can be covered. As a result, it takes more time for temperature threads

to synchronize (in practice, all threads wait for the slowest thread to finish the exchange attempt

and then start the next round of in-thread Metropolis sampling), and the overall efficiency of the

simulation reduces. Therefore, finding the proper temperature set has been an important topic in

recent studies [107–113]. Among these methods, the feedback optimized method [110] provides a
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quite good dynamic optimization of temperature threads. However, in the actual implementation of

this method it takes considerable simulation time to generate enough exchanges for optimization.

Therefore, with practicality considered, we found the combination of the geometric and the energy

methods [109] provides reasonable temperature sets for our study, and it is easier to implement.

In the geometric method, the maximum inverse temperature βmax and the minimum inverse

temperature βmin are fixed first. Then, the number of total threadsM is decided. Finally, the inverse

temperature βi in thread i is decided by the geometric progression

βi = βminR
i−1, (3.32)

where R = (βmax/βmin)1/(M−1). This method is most commonly used in parallel tempering due to

its simplicity. However, as illustrated in Fig. 3.14, thismethodwould not result in a good distribution

of histograms, and it gets worse when a first-order transition is involved. If R is small, we get

a reasonable overlap of high-temperature energy histograms but too dense low-energy histogram

overlaps. If R is too large, we get a reasonable overlap of low-temperature energy histograms but

too sparse high-energy histogram overlaps. Meanwhile, in both cases, the first-order transition

region is not well covered, especially for large R. Therefore, further adjustments of temperatures

are necessary for more efficient simulations.

In simulations, there is a quick run with a geometric temperature set with fixed temperature

limits βmin, βmax and number of threadsM . As a result, we can get a roughly estimated function of

average energy 〈Ê〉(β) as a monotonic function of inverse temperature β. Then a new temperature

set is obtained by modifying temperatures such that when the estimated average energy is used in

the exchange probability (3.31), the exchange probabilities are equal among all points,

P
(
〈Ê〉(βi−1)↔ 〈Ê〉(βi)

)
= P

(
〈Ê〉(βi)↔ 〈Ê〉(βi+1)

)
. (3.33)
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Figure 3.14: Energy histograms of the same system with different temperature sets. The first-order
transition region is colored as gray. (a) Geometric setup of temperatures with R = 1.1. (b)
Geometric setup of temperatures with R = 1.3. There is almost no overlap of histograms in the
transition region. (c) Energy histogram if temperature sets are further adjusted.
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Algorithm 1 A practical algorithm to adjust temperatures in PT simulations
1: Initialize an inverse temperature set βi = βminR

i−1, R = (βmax/βmin)1/(M−1), 1 ≤ i ≤M .
2: Perform PT simulation and record estimated average energy 〈Ê〉.
3: Construct a monotonic function 〈Ê〉(β).
4: Set a threshold for temperature difference ε.
while

∑ |β′i − βi| > ε do
6: βi ← β′i.
7: Find new inverse temperatures β′i for even replicas using (3.33), while keeping odd
replicas’ inverse temperatures fixed.
8: Find new inverse temperatures β′i for odd replicas using (3.33), while keeping even
replicas’ inverse temperatures fixed.

end while
9: βi ← β′i.

The temperature adjustment can be done iteratively, and the whole process is summarized in

Algorithm 1. After getting the adjusted inverse temperature set, new inverse temperatures can be

added to the estimated transition region. In this simulation, using R = 1.1 for the initial average

energy estimation worked relatively well, and 48 ≤ M ≤ 60 temperature threads have been used

for actual simulations.

Replica Exchange in 2D Parameter Space

Parallel tempering basically is simulating the system in the one-dimensional parameter space of

inverse temperature β. In our semiflexible polymer model, there is another control parameter, the

bending stiffness κ. The system total energy can be decoupled and the replica-exchange algorithm

can be extended to the combined parameter space of inverse temperature and bending stiffness [16].

The system Hamiltonian (3.6) can be decoupled as following

E(X) =
∑

i>j+1

VNB(ri,j) +
∑

i

VB(ri,i+1)

︸ ︷︷ ︸
E0

+κ
∑

θl

[1− cos(θl)]

︸ ︷︷ ︸
E1

= E0 + κE1 (3.34)
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Consequently, the microstate probability ratio of replicaX with bending stiffness κi at inverse

temperature βi and replicaX ′ with bending stiffness κj at inverse temperature βj can be derived as

ω(X ↔X ′; (βi, κi), (βj, κj)) =
P (X; (βj, κj))P (X ′; (βi, κi))

P (X; (βi, κi))P (X ′; (βj, κj))

=
(e−βj(E0+κjE1)/Zcan(βj, κj))(e

−βi(E′0+κiE
′
1)/Zcan(βi, κi))

(e−βi(E0+κjE1)/Zcan(βi, κi))(e
−βj(E′0+κiE

′
1)/Zcan(βj, κj))

=
(e−βi(E

′
0+κiE

′
1)e−βj(E0+κjE1))/ZRE((βi, κi), (βj, κj))

(e−βi(E0+κiE1)e−βj(E
′
0+κjE

′
1))/ZRE((βi, κi), (βj, κj))

= e−βiE
′
0eβjE

′
0e−βiκiE

′
1eβjκjE

′
1e−βjE0eβiE0e−βjκjE1eβiκiE1

= eE
′
0(βj−βi)eE

′
1(β2κj−βiκi)eE0(βi−βj)eE1(βiκi−βjκj)

= e(βj−βi)(E′0−E0)e(βjκj−βiκi)(E′1−E1).

= e∆β∆E0e∆(βκ)∆E1 , (3.35)

whereZRE((βi, κi), (βj, κj)) = Zcan(βi, κi)Zcan(βj, κj) is the partition function of the generalized

ensemble of these two parameters. Consequently, the overall partition function of the generalized

ensemble of all threads is given by

ZRE =
∏

i=1

∏

j=1

Zcan(βi, κj) (3.36)

Finally, the exchange probability is given by

a(X ↔X ′; βi, βj) = min
(
1, e∆β∆E0e∆(βκ)∆E1

)
. (3.37)

As expected, if κ values are identical, this extended exchange acceptance probability (3.37) reduces

to the parallel tempering exchange probability (3.31). Moreover, this method can be extended to

higher dimensional parameter space if the total energies can be decoupled with respect to more

parameters.
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Figure 3.15: Illustration of an extended replica exchange Monte Carlo simulation in a combined
parameter space of inverse temperature β and bending stiffness κ with the size of 6× 6. Each node
(i, j) represents a simulation thread with a parameter combination of (βi, κj). In total, 4 different
types of exchange directions are colored differently. The exchange directions are determined
randomly with equal probabilities. The overlapping of exchange directions for corner nodes is
conservation of flows.
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As illustrated in Fig. 3.15, there are 4 directions of exchanges in the two-dimensional parameter

space. The nodes at corners have overlapping exchange directions follow conservation of flows.

In actual simulations, the exchange direction is determined randomly with equal probability after

1500-300 Monte Carlo sweeps.

3.2.3 Other Monte Carlo Simulation Methods

Other than the previously introduced replica exchange Monte Carlo methods, multiple Monte Carlo

Methods are used to identify lowest-energy conformations. The results are compared and the best

estimates of putative ground-state conformations are obtained. In the following, we briefly review

the methods that have been used in this study.

Non-flat Distribution Wang-Landau Simulation

The Wang-Landau method [114] has been used in many studies due to its simplicity and the

advantage of the efficient sampling of systems with first-order transition barriers. It samples the

system according to an estimated inverse density of states ĝ(E). As the simulation covers the entire

energy range, the method is also commonly used as a ground-state search engine, as the system is

pushed towards low entropy regions. In this method, updates of microstates are accepted with the

probability:

PWL (X →X ′) = min

(
ĝ(E(X))

ĝ(E(X ′))
, 1

)
. (3.38)

In eachMonte Carlo update, ĝ(E) is updated with a modification factor f(> 1): ĝ(E)→ f× ĝ(E).

An iteration is finished if the energy histogram H(E) is ’flat’. Then f is reduced: f → √f . If

f → 1within some limit (e.g., ln f ≤ 10−8), the simulation is stopped. In the end, ĝ(E) is expected

to converge to the actual density of states g(E).

To improve the efficiency, we used the modified nonflat-distribution Wang-Landau algo-

rithm [115] with energy profile p(E) along with multiple advanced updates. This leads to the
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following acceptance probability for each update:

P ′WL (X →X ′) = min

(
ĝ(E(X))p(E(X ′))

ĝ(E(X ′))p(E(X))
σ(X,X ′), 1

)
, (3.39)

where σ(X,X ′) = s (X ′ → X) /s (X → X ′) is the ratio of forward and backward selection

probabilities for specific updates. Combinations of displacement update with energy-dependent box

size, crank-shaft move, pivot rotational update, bond-exchange update, and end-monomer exchange

moves are used.

In our simulations, due to the vast range of volumes of the density of states usually covering

many orders ofmagnitude, logarithmic representations are used in the acceptance probability (3.39),

which is given by

P ′WL (X →X ′) = min
(
e(ln ĝ(E(X))−ln ĝ(E(X′))+ln p(E(X′))−ln p(E(X))+lnσ(X,X′)), 1

)
. (3.40)

Simulated Annealing

Simulated annealing (SA) is a common algorithm [116] for locating a minimum of a complex

function. The system is heated up to a high temperature and cooled down slowly, and Metropolis

Monte Carlo sampling is performed at the current temperature. By repeating this cycle multiple

times, the system may have come close to the global minimum at some point. At each temperature

Tk, Metropolis updates are accepted according to the criterion

PSA (X →X ′;Tk) = min

{
exp

[
−E(X ′)− E(X)

kBTk

]
σ(X,X ′), 1

}
. (3.41)

We used an exponential cooling scheme for the temperature, Tk = T0e
−αk, where T0 is the initial

temperature, α is cooling rate and k is the index of the current iteration. In order to improve

efficiency, we implemented a parallelized version of this algorithm by distributing the cooling

procedures to multiple simulation threads.
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Energy Landscape Paving

The energy landscape paving method [117] has also been widely used as a Monte Carlo ground-

state search algorithm. Generally, low-temperature Monte Carlo simulations are performed, but

compared to the conventional Metropolis algorithm, the energy weight function ω(E, t) is time-

dependent and modified dynamically. In our implementation, we used the cumulative energy

histogram H(E, t) as the time-dependent weight function

ω(E, t) = e−β[E+H(E,t)]. (3.42)

The acceptance probability is given by

PELP (X →X ′; t) = min

(
ω(E(X), t)

ω(E(X ′), t)
σ(X,X ′), 1

)
. (3.43)

The method periodically inclined to lower- or higher-energy regions. When the low-energy region

is visited, the histogram counts increase, and thus the weight decreases. Therefore, the system

prefers the high energy region as Metropolis sampling prefers larger weight region. Similarly, if the

high energy region is visited more, the overall weight will be smaller than the low energy region. In

consequence, themetropolis samplingwill favor the low energy region again. As a result, the system

travels back and forth between high-energy and low-energy regions. Similar to simulated annealing,

the system is expected to get close to the lowest energy state during simulations. Moreover, this

algorithm is self-adjusting, where the algorithm explores high and low-energy regions periodically,

enabling it to overcome free-energy barriers.

3.3 Multiple-histogram Reweighting and Smoothing

In order to perform amicrocanonical inflection-point analysis of the transition behavior, we not only

need to perform sophisticated simulations as introduced in the previous sections, but also have to
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estimate the density of states from the simulation data. By utilizing the canonical energy distribution

functionPcan(E; β) ∝ g(E)e−βE , the density of states can be obtained as g(E) ∝ Pcan(E; β)eβE by

reweighting. The equilibrium energy histogram h(E; β) obtained from Metropolis sampling at the

inverse temperature β is indeed an estimate of the canonical energy distribution functionPcan(E; β).

Therefore, the density of states can be estimated using the energy histogram, g(E) = h(E; β)eβE .

However, due to low statistics in the tails of the histogram, using a single histogram only covers

a narrow range of energies efficiently. Combining the histograms obtained at different inverse

temperatures by employing the multi-histogram reweighting method [97, 118], which is also known

as “weighted histogram analysis method” (WHAM), yields an improved estimator for the density

of states that covers the entire energy range:

ĝ(E) =

K∑

k=1

h (E; βk)

K∑

k=1

Mke
−βkE

Zk

. (3.44)

Here Mk is the total number of Monte Carlo sweeps in thread k and Zk is an estimator of the

canonical partition function at the inverse temperature βk:

Zk =
∑

E

ĝ(E)e−βkE∆E, (3.45)

where ∆E is the partitioned energy bin width in the simulation. By initializing all estimators of

the canonical partition function, equations (3.44) and (3.45) are solved iteratively until reasonable

convergence can be achieved. For this study, we stopped at the ith iteration if the following

convergence condition is satisfied:

K∑

k=1

∣∣∣∣∣
lnZ

(i)
k − lnZ

(i−1)
k

lnZ
(i)
k

∣∣∣∣∣ < 10−10. (3.46)
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Figure 3.16: A fourth-orderBézier curveB(t) constructedwith five control pointsP0,P1, . . . ,P4 at
t = 0.25. Intermediate points are defined asQi(t) = Pi+t(Pi+1−Pi),Ri(t) = Qi+t(Qi+1−Qi),
and Si(t) = Ri + t(Ri+1−Ri). Finally, the curve is constructed fromBi(t) = Si + t(Si+1− Si).

The density of states and the Boltzmann factor can be very large for the systems studied in this

study. To avoid data overflow problems in the iterations, we used logarithmic summations [43] for

the evaluation of equations (3.44) and (3.45) in each iteration.

3.3.1 Bézier Smoothing

For further analysis of the estimated density of states g(E), we need to construct the entropy

S(E) as a smooth function and calculate the derivatives for the microcanonical inflection-point

analysis. The entropy S(E) is system-dependent and cannot be fitted analytically by polynomials

or other functions. Another option is to employ data smoothing techniques, but most of the relative

methods only smooth the original curve and provide only up to the first-order derivative. For the

microcanonical inflection-point analysis method, we also need precise higher-order derivatives.

Therefore, we used a technique called Bézier curve construction [119, 120]. Originally, the Bézier

curve was developed to construct smooth curves for car design, but later has used for constructing

smooth nth order functions with n + 1 data points. This means derivatives up to nth order can

be determined analytically. This is more than enough for our study, where we usually have
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n > 1000 data points. Moreover, Bézier smoothing has also shown to be one of the best methods

for reconstructing the original function with fewer fluctuations [121].

An nth degree Bézier curve of n+ 1 control points P0,P1, . . . ,Pn,Pn+1 is constructed by

B(t) =
n∑

i=0

bi,n(t)Pi, 0 ≤ t ≤ 1, (3.47)

where the coefficients are known as Bernstein basis polynomials,

bi,n(t) =

(
n

i

)
(1− t)n−it1 =

n!

i!(n− i)!(1− t)
n−iti. (3.48)

An example of constructing a fourth-order Bézier curve is shown in Fig. 3.16. The general formula

for kth derivative of the Bézier curve with respect to t can be obtained by using the De Casteljau

algorithm [122],

B(k)(t) = n(n− 1)(n− 2) · · · (n− k + 1)
n−k∑

i=0

bn−k,i(t)D
k
i , (3.49)

where the first level difference is defined as D1
i = Pi+1 − Pi, and the kth level difference is

calculated recursively,

Dk
i = Dk−1

i+1 −Dk−1
i , 0 ≤ i ≤ n− k. (3.50)

For two-dimensional data points Pi = (xi, yi), the kth parametric Bézier derivative (3.49) can be

explicitly written as,

B(k)(t) = (x(k)(t), y(k)(t)) (3.51)

However, the kth parametric Bézier derivative (3.49) is calculated for the parameter t, and thus

extra transformations are needed for calculating the derivatives of y with respect to x. Therefore,
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the first-order derivative is given by

dy

dx
=

dy

dt
dx

dt

=
y(1)(t)

x(1)(t)
. (3.52)

The second-order derivative then can be calculated further,

d2y

dx2
=

d

(
dy

dx

)

dx
=

d

(
dy

dx

)

dt

dt

dx
=

d

(
y(1)(t)

x(1)(t)

)

dt

(
dx

dt

)−1

=
y(2)(t)x(1)(t)− x(2)(t)y(1)(t)

x(1)(t)2

1

x(1)(t)

=
x(1)(t)y(2)(t)− x(2)(t)y(1)(t)

x(1)(t)3
. (3.53)

Similarly, we can obtain the third-order derivative as follows,

d3y

dx3
=

d

(
d2y

dx2

)

dx
=

d

(
d2y

dx2

)

dt

dt

dx
=

d

(
x(1)(t)y(2)(t)− x(2)(t)y(1)(t)

(x(1)(t))
3

)

dt

(
dx

dt

)−1

=

[
x(2)(t)y(2)(t) + x(1)(t)y(3)(t)− x(3)(t)y(1)(t)− x(2)(t)y(2)(t)

]
x(1)(t)3

x(1)(t)7

− 3x(1)(t)2x(2)(t)
[
x(1)(t)y(2)(t)− x(2)(t)y(1)(t)

]

x(1)(t)7

=
x(1)(t)2y(3)(t)− x(1)(t)x(3)(t)y(1)(t) + 3x(2)(t)2y(1)(t)− 3x(1)(t)x(2)(t)y(2)(t)

x(1)(t)5
. (3.54)
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The higher-order derivatives can be calculated accordingly or can be obtained from the general

explicit formulas of the nth derivative from Todorov [123], one of which is given by

dny

dxn
=

1
(
x(1)(t)

)n(n+1)/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d
dt
x(t)
1!

d
dt
x(t)2

2!
· · · d

dt
x(t)n−1

(n− 1)!
dy(t)
dt

d2

dt2
x(t)
1!

d2

dt2
x(t)2

2!
· · · d2

dt2
x(t)n−1

(n− 1)!
d2y(t)
dt2

... ... . . . ... ...

dn

dtn
x(t)
1!

dn

dtn
x(t)2

2!
· · · dn

dtn
x(t)n−1

(n− 1)!
dny(t)
dtn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.55)

A comparison of the Bézier curve and the results obtained by the commonly used Savitzky-

Golay [125] smoothing method is shown in Fig. 3.17. The Bézier method smooths data better

and provides a better first-order derivative. The latter method’s performance can be improved with

parameter tuning, whereas the Bézier approach is parameter-free.
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Figure 3.17: Comparison of two different smoothing methods on a noisy data set of a function. (a)
The original function (solid redline) and noisy data points are generated by adding random noise
to the original function. The blue dashed line is the smoothed line of the data points by our Bézier
method. The green dotted line is the results of the Savitzky-Golay method [124], where the window
size is set to 51 data points and the order of the polynomial is set to 3. (b) The first-order derivatives
of the original function and the estimated first-order derivatives from the two smoothing methods.
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Chapter 4

Simulation and Analysis of a Polymer

System

The model studied in this dissertation project, as described in Section 3.1, κ = 0 represents fully

flexible elastic polymers, which have been studied extensively. Therefore, it serves as the reference

for the comparison with the semiflexible model (κ > 0), and also as the testing ground for the

newly developed Monte Carlo technique before using it for the semiflexible polymer model. In

this chapter, we use this flexible polymer model to demonstrate the whole simulation and analysis

process.

4.1 Parallel Tempering Temperature Set

In order to test the previously proposed algorithm for the temperature adjustment, we performed

a parallel tempering simulation with 48 temperature threads using a geometric setup. The inverse

heat bath temperature in the ith thread is initialized as

βcan
i = 0.2× 1.0868i−1, (4.1)
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which generates a temperature set in the range βcan
min = 0.2 and βcan

max = 10.0. Then we estimated the

average energy 〈E〉(β) as a function of the inverse temperature β, which is plotted in Fig. 4.1 (a).

To examine the performance of this temperature setup, we measured the exchange rate of

replicas from the simulation, and the results are shown in Fig. 4.1 (b). In the low-temperature

region (large βcan), the exchange rate is frequent. However, it is obvious that at the first-order

freezing transition point (βcan ≈ 3), the exchange rate significantly decreases. Moreover, in the

high-temperature region (small βcan), due to the large overlap of energy histograms, the exchange

rate is much larger. Interestingly, if we plot the known transition points of this model and identify

the corresponding typical structures in each phase, we observe that the phase transitions are also

reflected by the change in the exchange rate. Near the random-coil to liquid-globular transition

point (βcan ≈ 0.66), the transition rate stops decreasing drastically and decreases at a slower rate

in the liquid-globular phase compared to the random-coil phase. The transition rate is suppressed

the most near the liquid-globular to solid-globular transition point (βcan ≈ 3). This distribution

of imbalanced exchange rates with relatively low values at some temperatures usually affects the

simulation efficiency. Ideally, we expect a uniform distribution of the exchange rates, so we use the

energy method described in the following to update the temperature set to better a better distribution

of temperatures.

As mentioned in the previous chapter, after having estimated the average energy, we can use it

to update the temperature set by a series of iterations. The expected exchange rate R̂ then can be

estimated by using the average energy in the parallel tempering exchange probability

R̂(〈Ei−1〉, βcan
i−1 ↔ 〈Ei〉, βcan

i ) = exp
((
βcan
i − βcan

i−1

) (
〈Ê〉i − 〈Ê〉i−1

))
. (4.2)

In the actual update, the temperatures are split into odd and even orders, which are marked by two

different colors in Fif. 4.1 (a). Then, while the odd-order temperature points are fixed, each even-

order inverse temperature βcan
i is modified between two neighboring odd-number temperatures

until the following expected uniform exchange rate condition is satisfied,
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Figure 4.1: (a) Average energy 〈E〉 obtained from a parallel tempering Monte Carlo simulation
with a geometric temperature setup for a flexible polymer with N = 55 monomers. Data points
from even and odd temperature threads are colored differently. (b) Actual exchange acceptance
rate R between neighboring temperature threads from the same simulation. Both quantities are
plotted as functions of the inverse heat bath temperature βcan. Structural phase transition points are
indicated by dashed lines and corresponding dominant structures in each phase are shown.
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Figure 4.2: (a) Iteration process of adjusting temperatures for parallel tempering using the expected
exchange rate given in Eq. (4.2) and (b) corresponding estimated exchange rates for each iteration
for a flexible polymer with N = 55 monomers. The total number of simulation threads is 48, and
the threads colored from deep green to yellow-green color in increasing order.
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Table 4.1: A parallel tempering temperature set obtained from the energy method iterations
illustrated in Fig. 4.2 for a 55-mer flexible polymer model i is the index of the simulation thread.

i βcan
i i βcan

i i βcan
i i βcan

i i βcan
i i βcan

i

1 0.20000 9 0.71112 17 1.30142 25 2.19498 33 3.30581 41 5.65759
2 0.26206 10 0.77403 18 1.39407 26 2.33193 34 3.47586 42 6.12293
3 0.32738 11 0.83880 19 1.49173 27 2.47244 35 3.67790 43 6.63282
4 0.39380 12 0.90626 20 1.59465 28 2.61407 36 3.91552 44 7.19119
5 0.45966 13 0.97704 21 1.70303 29 2.75391 37 4.18980 45 7.80226
6 0.52411 14 1.05165 22 1.81713 30 2.89001 38 4.50084 46 8.47085
7 0.58709 15 1.13042 23 1.93714 31 3.02323 39 4.84855 47 9.20207
8 0.64914 16 1.21361 24 2.06316 32 3.15873 40 5.23364 48 10.00100

R̂(〈Ei−1〉, βcan
i−1 ↔ 〈Ei〉, βcan

i ) = R̂(〈Ei〉, βcan
i ↔ 〈Ei+1〉, βcan

i+1). (4.3)

The same procedure is repeated in the following iteration for the even-order temperatures by keeping

the odd-order temperatures fixed. Repeating these two steps sufficiently frequently, the exchange

rate will converge. In addition, for estimating the average energy a linear extrapolation between the

data points was used. The actual iteration process is illustrated in Fig. 4.2. It is worth mentioning

that the two end temperatures are not altered during the whole iteration process and the number of

temperature threads is kept the same. After convergence is reached, the new temperature set was

used in the subsequent parallel tempering simulations, The actual temperature values obtained in

the iteration process are listed in Tab. 4.1 with their thread indices. Then the actual exchange rate is

measured during the simulation. The comparison of the exchange rates obtained with the updated

temperature set and the previous simulation is shown in Fig. 4.3.

As we expected from the uniform exchange rate estimate, the overall distribution of the actual

exchange rates is flattened compared to the previous geometric temperature setup. The high

exchange rates in the random-coil phase are reduced to reasonable values, and the exchange near

the freezing transition point is enhanced noticeably. In addition, the exchange rates are increased in

the intermediate temperature region as well. We also tracked the replicas. Usually, the end replicas

are expected to travel back and forth multiple times between the end temperatures. The tracks of

two end replicas are shown in Fig. 4.4. The replicas can travel back and forth as desired. The
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Figure 4.3: Comparison of the actual exchange rate for parallel tempering with the same number
of simulation threads for a flexible polymer with N = 55 monomers. The known transition points
are indicated by the dotted lines, and typical structures of the corresponding phases are shown.

obvious barrier near temperature thread 30 is caused by the freezing transition. To conclude, this

type of iteration process results in reasonable and improved exchange rate distributions. Thus this

method has also been used in the simulations of semiflexible polymers (κ > 0).

4.2 Combination of Advanced Updates

Besides improving temperature sets, another aspect of making the simulations more efficient is

to employ more advanced update moves. Therefore, we implemented five different updates that

have been introduced in the previous chapter: displacement updates, pivot rotational updates,

bond-exchange updates, end-monomer-exchange updates, and crankshaft updates. In the actual
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Figure 4.4: Tracking of two replicas in a parallel tempering simulation with 48 temperature threads
within 108 Monte Carlo sweeps for a flexible polymer with N = 55 monomers.

simulation, we also modified the displacement box sizes according to the procedure (3.18), so that

the overall displacement update acceptance rates of all simulation threads will be about 50%. As

shown in Fig. 4.5, the adjustment is able to reach the equilibrium quickly within a short period

of Monte Carlo sweeps. Besides, the displacement box size ratio of the largest (≈ 0.3r0) and the

smallest≈ 0.05r0 can be up to 6, suggesting the necessity of adjusting the box sizes. The next step

is to use the adjusted box sizes with other updates. In all the simulation threads, the portions of

these updates are distributed as follows, 84% of displacement updates and 4% of each other updates.

Actual measured acceptance rates of these updates are shown in Fig. 4.6. It is interesting to see

that the acceptance rate distributions of different updates are affected by the dominant structures

in each phase. As expected, displacement update acceptance rates in all the simulation threads are

about 50% due to the preadjustment as described earlier. It is shown as the brown dots in Fig. 4.6
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Figure 4.5: Actual adjustment of the displacement box edge length di in the temperature thread i
for a flexible polymer with N = 55 monomers. The initial values are all set to di = 0.5r0. The
length is adjusted every 100Monte Carlo sweeps (MCS). Larger index i indicates larger βcan

i (lower
temperatures).

that the acceptance rate is close to zero at low temperatures if the uniform box size (di = 0.3r0)

is used for all simulation threads. However, the pivot rotational update acceptance rate quickly

drops closer to zero from the random-coil phase to the liquid-globular phase after the collapse

transition. Rotating the part of the polymer chain mostly causes the overlap of monomers, thus

they are mostly rejected, and the same as well for the dense solid-globular conformations. The

crankshaft update acceptance rates also show similar behavior as the pivot rotational update, and

it is also affected by the available space for monomers to rotate. However, it does not drop to zero

even at low temperatures. The reason is that the crankshaft update is a local update in contrast to

the pivot rotational update, which is a global update. Therefore, the crankshaft update is still able

to explore the locally available spaces even though the conformation is globally compact. However,
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Figure 4.6: Actual acceptance rate of different updates in the simulation thread for a flexible
polymer with N = 55 monomers. The brown is the acceptance rate of the displacement updates
from a different simulation with the same temperature setups, where the box edge length is set to
di = 0.3r0 in all simulation threads i. The known transition points are indicated by the dotted lines,
and typical structures of the corresponding phases are shown.

bond-exchange and end-monomer-exchange updates show reversed trends compared to previous

updates. They have relatively low acceptance rates in the random-coil phase and benefit from

compact liquid- and solid-globular conformations. Besides, the kinks also reflect the transition

points, as they are inherently related to the compactness of the structures. Moreover, the high

acceptance rate of the end-monomer exchange indicates that the end monomers are always closer to

the rest of the chain, no matter which phase. On the other hand, the bond-exchange updates require

more compact and more internally ordered conformations to find available bonds for exchange.
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What’s more, these two updates have almost constant acceptance rates in the solid-globular phase,

which also indicates the stability of the frozen compact conformations in this phase.

In conclusion, adjusting the box sizes for displacement updates results in a near-uniform accep-

tance rate distribution among different temperature threads. Pivot rotational updates and crankshaft

updates are helpful for sampling in the high-temperature region, where the conformations aremostly

extended but are mostly rejected in the low-temperature region. The reverse trend applies to the

bond exchange and end-more exchange updates. Therefore, these combinations of updates ensure

efficient sampling in all temperature threads by high-acceptance-rate updates compensating for

low-acceptance-rate updates.

4.3 Canonical Analysis

The canonical approach has been the conventional way to study the thermodynamic behavior of a

system. It usually involves finding the extremal point of the thermal fluctuations, which is defined

by Eq. (2.35) and typically indicates a dramatic change in macrostates. Since the system energy E

is calculated in each update during the Monte Carlo simulations, its thermal fluctuation, the heat

capacity

CV =
d〈E〉
dTcan

=
〈E2〉 − 〈E〉2
kBT

2
can

, (4.4)

is most commonly used as an indicator for phase transitions. Its peak usually indicates the enhanced

thermal activity that is reflected by the fluctuations in system energy. As described in the previous

chapter, the 1/T 2
can term in heat capacity may cause a false transition signal in fluctuating quantities.

Therefore, also looking at the pure energy variance,

Var(E) = 〈E2〉 − 〈E〉2 = −d〈E〉
dβcan

, (4.5)

helps identify extremal fluctuations of the energy. If there are no transitions, the variance is a

monotonic function of the temperature. The fluctuations are much smaller at low temperatures
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compared to the high-temperature region. The peaks of the variance, which represent larger

fluctuations of the energy compared to neighboring temperatures, can also be used to identify the

transitions as well.

For polymer systems, it is necessary to look at more observables. When the transition is

entropy-driven, the peaks in the thermal fluctuations of the structural properties are much more

pronounced compared to the energy fluctuationsCV . Therefore, we also analyzed the square radius

of gyration,

R2
gyr =

1

N

N∑

j=1

(rj − rc.m.) , (4.6)

where rj is the jth monomer’s coordinate vector and rc.m. =
∑N

j=1 rj/N is the center of mass.

The radius of gyration describes the overall effective size of a polymer conformation, and thus its

thermal fluctuation,

Γg =
d〈R2

gyr〉
dTcan

=
〈R2

gyrE〉 − 〈E〉〈R2
gyr〉

kBT
2
can

, (4.7)

is particularly helpful to capture the major structural changes.

Figure 4.7 shows the plots of the heat capacity CV , the variance of the system energy, and the

square radius of gyration fluctuation d〈R2
gyr〉/dTcan of the flexible polymer nodel with 55monomers

as a function of the inverse heat-bath temperature βcan = 1/Tcan. First, there is a shoulder in the

heat capacity at βcan ≈ 0.6 indicating a possible transition. The clearly visible peaks in the

energy variance and the fluctuations of the square radius of gyration confirm the transition. This is

the well-known Θ transition, where extended random-coil structures collapse into more compact

liquid-globular structures upon lowering the temperature. It is worth mentioning that the shoulder

in the specific heat does not allow for precisely locating the transition point but the energy variance

−d〈E〉/dβcan shows a clear peak, again suggesting that the inverse temperature is a more suitably

defined thermodynamic variable than the temperature.

As shown in Fig 4.7, the freezing transition from the liquid-globular phase to the more ordered

solid-globular phase is clearly reflected in all three fluctuation quantities by peaks at around
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Figure 4.7: (a) Measured thermal fluctuations of the system energy, CV = d〈E〉dTcan, (b) system
energy variance var(E), and (c) the thermal fluctuations of the square radius of gyration Γg =
d〈R2

gyr〉/dTcan as a function of the inverse heat bath temperature βcan = 1/Tcan for a flexible
polymer with N = 55 monomers. The known transition points are indicated by the dotted lines,
and typical structures of the corresponding phases are shown. Error bars are about the size of data
points.
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βcan ≈ 3.0. Besides, the peak value of Γg is smaller compared to the collapse transition, indicating

a less drastic change in the compactness of the conformations.

However, even if the transitions are identified this way, there are some noteworthy problems.

Due to the finite number of temperature measurements, we can not make sure the largest measured

data point is the actual peak location. Besides, different quantities may indicate slightly different

transition points. The difference between the shoulder of the heat capacity and the peak location

of the fluctuations of the square radius of gyration for this model is shown in Fig. 2.4. To avoid

ambiguities we perform a microcanonical inflection-point analysis to uniquely identify and classify

the transitions.

4.4 Microcanonical Inflection-Point Analysis

In order to perform the microcanonical inflection-point analysis up to the third order, we first need

to use the multiple-histogram reweighting method to estimate the density of states as described in

section . From the parallel tempering simulations, we obtain the energy histograms at different

temperature threads The actual iteration process for this flexible polymer model is shown in Fig. 4.8.

After about 1500 iterations, the convergence is achieved for all temperatures. It is interesting to see

that the lower ranks (smaller βcan) converge slower than the higher ranks (larger βcan). The reason

might be the uniform initialization of the partition function Z(βcan
i ) overestimates the Boltzmann

factor e−βcanE in the partition function for lower ranks (smaller βcan) in early iterations compared

to higher ranks (larger βcan).

After obtaining the estimated density of states ĝ(E), we recalculated the energetic quantities

such as average energy, heat capacity, and energy variance to comparewith themeasured values from

the parallel tempering simulation to cross-check the reweighting method. Moreover, in principle,

we can obtain these energetic quantities for any temperature within the relevant temperature range.

The comparison is shown in Fig 4.9. The reweighted results match the measured values, which

provides additional confidence for our reweighting procedure. As suspected earlier, the freezing
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Figure 4.8: Interaction of logarithmic partition functions lnZ(βcan
i ) in the multi-histogram

reweighting process for a flexible polymer model with 55 monomers. Larger index i indicates
larger βcan
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transition peak location of the heat capacity and the energy variance is different from the measured

peak location of fluctuation quantities. In the next step, we used the Bézier method to smooth the

estimated density of states to obtain the entropy curve and to calculate the derivatives up to 4th

order. For the error calculations, we have used the Jackknife method in time series with correlated

data and gaussian error calculation for independent runs. Eventually, the errors in the relative

region are sufficiently small (typically much smaller than the line widths or point sizes) and thus

can be for clarity in the remaining part of this dissertation. There are multiple contributions to

these small errors. Firstly, we performed extensive Monte Carlo runs O(108) − O(109) sweeps.

This generates much less correlated and accurate data. As shown in Fig. 4.7, even the response

quantities have relatively small error bars near the peak locations. Secondly, the multi-histogram

reweighting method inherently optimizes error weights based on histogram statistics. Histograms
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with more statistics in a certain energy region are given more weight for estimating the density of

states. Finally, we use Bézier smoothing to reduce noise further.

As in the canonical analysis, we first discuss the low-β (or high-temperature) regime in the

relevant energy region. The entropy S(E), plotted in Fig. 4.10, does not possess any least-sensitive

inflection points and thus there is no first-order transition, as expected. However, a least-sensitive

inflection point in the first derivative β(E) signals a second-order transition, which reflects the

previously discussed entropy-driven Θ collapse transition from random-coil to liquid-globular

structures. As a result, the corresponding next-order derivative γ(E) shows a clear negative peak

that helps unique determination of the transition point in energy and thus in β, in contrast to the

ambiguity in the canonical analysis of response functions. Since there is no least-sensitive inflection

point in γ(E), the flexible polymer does not undergo a third-order transition in this region.

Figure 4.10 shows the same microcanonical quantities as plotted in Fig. 4.11, but for a lower

energy range that covers the inverse temperatures in the interval β ∈ [2.5, 4.0]. The entropy curve

does exhibit a least-sensitive inflection point, as expected for flexible polymers. This corresponds

to the positive minimum in the backbending region found β(E), which is a characteristic behavior

for a first-order transition in microcanonical inflection-point analysis. The inverse temperature

associated with it is approximately β ≈ 2.9, which confirms earlier results about the freezing

transition from liquid-globular to solid-globular structures for flexible polymers. Interestingly,

identified by a positive minimum in the third-derivative δ(E), there is another inflection point in

the second derivative γ(E) at slightly lower energy than the major freezing transition energy, which

corresponds to the inverse temperature β ≈ 3.14. By performing a structure analysis [69], it can

be shown that the major freezing transition point at the higher energy point corresponds to the

formation of the icosahedral core from the less ordered liquid-globular phase, but the outer layer

is still liquid-like. Upon lowering the energy further to the third-order transition point, the surface

layer is adjusted and the overall structure is icosahedral (solid-like). The typical structures in this

energy range are shown in Fig. 4.11. It is rather striking that this third-order signal is washed out
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during the averaging in the canonical analysis. Besides, we did not identify other transitions in the

whole energy range.

To conclude, even though canonical analysis has long been the primary analysis method for

studies of finite systems such as polymers in simulations, it turned out that this approach is not

sensitive enough if transition signals are too close. These separate signals can be easily washed out

during the averaging processes. In contrast, the recently introduced microcanonical inflection-point

analysis method not only enables the systematic identification and classification of transitions, but

it is also able to distinguish close transitions that standard canonical analysis cannot resolve. With

this whole simulation and analysis process validated by the flexible polymer model, we will apply

these methods to study the phase behavior of semiflexible polymers,
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Chapter 5

Analysis of Semiflexible Polymers

In contrast to the flexible polymer model discussed in the previous chapter, the phase behavior of

semiflexible polymers is affected by the bending stiffness Therefore, in this chapter, we perform a

detailed analysis of the transitions in semiflexible polymers. The focus is on the collapse transition,

as well as the ground states[126–128].

5.1 Collapse Transition in Semiflexible Polymers

5.1.1 Replica-exchange Simulations of Semiflexible Polymers

Because of the chain rigidity that is introduced by the nonzero bending stiffness, the collapse

transition temperatures are expected to shift toward lower temperatures, and so do the freezing

transition temperatures. Therefore, the number of temperature threads in the simulation is increased

to 60 for most κ values to enable the polymer to approach the ground states.

We first started from the same geometric temperature setup as we did for the flexible polymer

to estimate the average energies as functions of the inverse temperature. Due to slower simula-

tion dynamics compared to the flexible polymer, it takes longer for the semiflexible polymer to

reach equilibrium. Less statistics available for the estimation of the average energy impacts the
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temperature adjustment. After roughly estimating the average energies as functions of the inverse

temperatures, we used the same energy method to adjust the temperatures for simulations of the

semiflexible polymer. Exemplary iteration processes are shown for κ = 5 and κ = 14 in Fig. 5.1.

The effect of less statistics can already be seen. The changes in the expected exchange rates are not

as smooth as the iteration process for the flexible polymer. Nonetheless, the expected exchange rates

approach R̂ ≈ 0.6, which is already a relatively high expected exchange rate for replica-exchange

simulations.

Even though the previously discussed advanced updates were used for the parallel tempering

simulations of the semiflexible polymers, these systems still follow relatively slow dynamics at low

temperatures to reach equilibrium. Therefore, we expanded the replica-exchange simulations to

the combined parameter space of simulation temperature and bending stiffness for efficiency. A

comparison of simulating the semiflexible polymer at Tcan = 0.11 using the conventional parallel

tempering simulation and the extended replica-exchange technique is shown in Fig. 5.2 for the

bending stiffness κ = 10. It depicts the running average of the system energy E with the same

temperature setup in both types of simulations. Toward equilibrium, the running average of the

system energy converges to a constant values when the measurement window is much larger

than the autocorrelation time of the energy in Monte Carlo simulations. It can be seen that the

simulation reaches equilibrium after about 6 × 107 Monte Carlo Sweeps (MCS), whereas the

extended replica-exchange simulation only needs about 2.5×107 Monte Carlo Sweeps. It is almost

a 60% reduction. Therefore, we mainly employed the extended replica-exchange simulations in

the relatively interesting regions of the combined parameter space. The main advantage is that the

additional degree of freedom in the 2D simulation allows the replicas to bypass free energy barriers.

In this study, we found ∆κ = 1 is a sufficient spacing for varying κ values in the study of the

phase behavior for semiflexible polymers, butwe have also simulated several additional intermediate

κ values where a finer resolution was needed. For κ = 1 and κ = 2, since their behavior is still

similar to the flexible polymer (κ = 0), we still mainly employed the parallel tempering method.
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Figure 5.1: Iteration process of adjusting temperatures in parallel tempering using expected ex-
change rates for a semiflexible polymer with N = 55 monomers with bending stiffness (a) κ = 5,
and (b) κ = 14. The total number of simulation threads is 60, and the index of the ith thread’s
heat-bath temperature is indicated by the color bar.

86



−125

−120

−115

−110

−105

0 2 × 107 4 × 107 6 × 107 8 × 107 1 × 108

Ē
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Starting from κ = 3, we switched to the extended replica-exchange simulationswith the temperature

sets obtained from the adjustments that were previously introduced in Sec. 3.2.2. For the number of

κ values for each extended simulation, we found it is sufficient to have 4 different bending stiffness

values with 60 temperatures for each for a total of 240 simulation threads. In such a case, the total

number of threads is sufficiently large.

5.1.2 Results for κ ≤ 6

Canonical Analysis

The measured exchange rates of the extended replica-exchange simulation are shown in Fig. 5.3 for

κ = 3, κ = 4, κ = 5 and κ = 6 at relatively high temperatures. The stable high exchange rates

87



in the temperature direction also show that the adjusted temperature sets from parallel tempering

simulations work well in the extended simulations. The exchange rates are relatively large (darker

orange color) at high temperatures. However, since there is more bending involved in the compact

phase after the collapse transitions, the same conformation has a relatively large energy difference

for different bending stiffness κ. Therefore, it causes a reduction of the exchange rates in the κ

direction. Besides, it is interesting to see that the shifting of the collapse transition toward lower

temperatures (larger βcan) is already noticeable for increased bending stiffness by the qualitatively

changing of the exchange rates in the κ direction. Even though the exchange rate is smaller at lower

temperatures, the high exchange rates at high temperatures still provide sufficient efficiency for the

overall simulations.

As shown in Fig. 5.4, we have also measured the actual acceptance rates of different update

moves. First, it shows that the displacement box-size adjustment produced an acceptance rate of

about 50% for all the bending stiffness and temperature values. Second, the pivot rotational update

acceptance rate decreases for lowere temperatures (large βcan) for all bending stiffness values

because of the compact structures. For increased bending stiffness, the pivot rotational update

acceptance rates approach zero at lower temperatures which typically indicates the locations of

collapse transitions. Interestingly, at these temperatures, the displacement acceptance rates have

noticeable kinks with the largest deviations from smooth uniform distributions. This means that the

pre-adjustment of the displacement box sizes is affected by the large fluctuations of the structures

that are caused by the collapse transitions. It deviates more from the expected acceptance rate of

50%. Finally, the end-monomer- and bond-exchange update experience relatively low acceptance

rates compared to other updates, especially at low temperatures. These low acceptance rates suggest

that the conformations of semiflexible polymers are systematically affected by the bending stiffness,

as expected. Because of the bond rigidity, the relative distances of monomers are larger compared

to the flexible polymer conformations, and thus it dramatically reduces the number of possible new

bonds to form after breaking the old bonds. However, these types of updates are still necessary and
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crucial at low temperatures to get out of trapped metastable states. In the plotted region, they still

have nonzero (≥ 1% ) acceptance rates during about 5× 108 attempted updates.

The plots of fluctuating quantities, such as the heat capacityCV = d〈E〉/dTcan, energy variance

Var(E) = −d〈E〉/dβcan and the fluctuations of the square radius of gyration, Γg = d〈R2
gyr〉/dTcan,

allow for a more detailed analysis. All quantities are shown as functions of βcan in Figs. 5.5(a)-(c),

respectively. Whereaswe certainly see peaks forming from shoulders for increased bending stiffness

in the curvature of the CV , the plots of Var(E) and the structural fluctuations show extrema for all

the systems. These indicate the well-known Θ collapse transition between extended, random-coil

structures and compact globular conformations. The transition signal is more pronounced for stiffer

chains. Since this transition is more entropy- than energy-driven, it is not surprising that it shows up

more prominently in the structural rather than the energetic fluctuations. It can also be seen that the

peak values for all quantities increase for the stiffer chains, indicating greater fluctuations in both

energetic and structural quantities in the system during the collapse transition. Interestingly, for

κ = 6, the fluctuations of the square radius of gyration Γg is negative above the collapse transition

temperature. This suggests that the semiflexible chain actually stretches out before collapsing into

more compact structures, in contrast to the flexible polymer case, which continuously reduces its

size upon lowering the temperature. The reason is that in this extended coil phase, the effect of the

bending restraint is more prominent. If the temperature is reduced, so is the thermal energy kBTcan

that causes fluctuations in the system. Finally, the peak locations of the response quantities confirm

our previous observations in the exchange rates and the acceptance rates of different updates: The

collapse transition occurs at lower temperatures for increased bending stiffness.

As described in the previous chapters, it is not surprising to see the ambiguity and inconsistency

of canonical analysis persist for these systems. For κ ≤ 4, the heat capacity only shows shoulders

for the collapse transition, making it difficult to locate the transition points. Even though the

energy variance and the fluctuations of the square radius of gyration show peaks, they clearly

indicate different transition temperatures. Especially for κ = 5, there are two inverse temperature
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candidates, βcan ≈ 0.9 and βcan ≈ 1.1, to locate the peak location in the energy variance. To avoid

these ambiguities, we perform a detailed microcanonical inflection-point analysis of these systems

that aims at the unique identification and classification of the collapse transition in these systems

in the following.

Microcanonical Inflection-Point Analysis

We performed multiple-histogram reweighting and employed the Bézier method to smooth the

density of states and to calculate the derivatives of the microcanonical entropy. Figure 5.6 shows

the microcanonical entropy and its derivatives up to the second order as functions of the reduced

energy ∆E(κ) = E − E
(κ)
min, i.e., we subtracted from the energy the respective putative global

energy minima E(κ)
min. These were obtained for each system in the replica-exchange simulations and

verified by the global optimization described in 3.2.3. This shift allows for an easier comparison

of the results.

As in the canonical analysis, we discuss the low-β (or high-temperature) regime in the relevant

energy space. The entropies plotted in Fig. 5.6(a) for all cases do not possess least-sensitive

inflection points and thus there is no first-order transition. However, least-sensitive inflection

points in the first derivative (β) signal second-order phase transitions in all these systems, which

reflect the mostly entropic Θ collapse from random-coil to globular polymer structures. The

corresponding peak locations in the second entropy derivative (γ), shown in Fig. 5.6(c), allow for

a unique determination of the transition points in energy space and thus also in β. Two possible

inflection points in γ for κ = 3 and κ = 4 are still under investigation. The quantitative results

of the microcanonical inflection-point analysis obtained for the polymer systems studied here are

listed in Table 5.1. As expected from the canonical analysis, the inverse temperature of the collapse

transition increases for larger bending stiffness.
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Table 5.1: Second-order transitions found from microcanonical analysis for the flexible (κ = 0)
and semiflexible (κ ∈ [1, 6]) polymers. Transition energy Etr, distance from putative ground-state
energy ∆E(κ), inverse microcanonical transition temperature βtr are listed.

Bending stiffness Etr ∆E(κ) βtr

κ = 0 -69.7 192.02 0.672
κ = 1 -24.6 206.3 0.678
κ = 2 5.0 227.8 0.701
κ = 3 12.6 217.4 0.703
κ = 4 21.3 208.7 0.829
κ = 5 16.1 191.8 0.919
κ = 6 9.19 175.7 1.015

5.1.3 Results for 7 ≤ κ ≤ 16

Canonical Analysis

In this region of bending stiffness, we first simulated two sets of four κ values each, (7, 8, 9, 10)

and (11, 12, 13, 14), by means of extended-replica exchange Monte Carlo simulations. We also

employed the parallel tempering method for systems with bending stiffness κ = 7.5 and κ = 8.5 to

investigate the behavior of the systems at a higher resolution between κ = 7 and κ = 9, as well as

for κ = 15 and κ = 16 to expand the studied κ region.

We first measured the exchange rates to learn more about the performance of the simulations.

The results are shown in Fig 5.7. For the two groups of extended replica-exchange Monte Carlo

simulations, the overall exchange rates are relatively high (≥ 50%) for both inverse temperature

and bending stiffness directions. Especially, as shown in Fig 5.7(b) for κ = 11, .., 14, the exchange

rates in both directions are almost uniform, indicating similar system behavior for these bending

stiffness values. However, as it can be seen from Fig 5.7(a), the obviously reduced exchange rate

between κ = 7 and κ = 8 around the inverse temperature βcan = 1.2 suggests that the system

behavior might be qualitatively distinct for κ = 7 and κ = 8. This will be investigated further in

the microcanonical inflection-point analysis.
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Figure 5.7: Measured exchange rates of separate extended replica-exchange simulations in the
combined space of the inverse temperature and bending stiffness at relatively high temperatures
for (a) for κ = 7, 8, 9, 10 and (b) for κ = 11, 12, 13, 14. Square symbols mark the location
of simulation threads in the parameter space. The line colors represent exchange rates between
neighboring threads. (c) Measured exchange acceptance rates at relatively high temperatures for
κ = 7.5, 8.5, 15, 16.
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Due to the extensive effort of parameter tuning, the expected shift of collapse transition temper-

ature is not visible in the exchange rates from the extended replica-exchange simulations. However,

we do find the qualitative indication of the transition shift as shown in Fig. 5.7(c). Typically, large

deviations in the exchange rates from a uniform distribution can be associatedwith phase transitions.

As expected, the estimated collapse transition inverse temperature increases from βcan ≈ 1.15 for

κ = 7.5 to βcan ≈ 1.6 for κ = 16. This continues the trend already observed in the previous section

for κ ≤ 6.

Canonical response quantities, such as heat capacity CV = d〈E〉/dTcan, energy variance

Var(E) = −d〈E〉/dβcan and fluctuations of the square radius of gyration, Γg = d〈R2
gyr〉/dTcan are

shown as functions of βcan in Fig. 5.8 for this range of bending parameter values. For 7 ≤ κ ≤ 10,

we observe sharper peaks in the curvature of the CV upon increasing the bending stiffness. The

same trend can be observed from the plots of Var(E) and the fluctuations of the square radius of

gyration Γg as well. These indicate the same behavior as we observed for the chains with κ ≤ 6,

where the Θ collapse transition signal is more pronounced for the stiffer chains and occurs at lower

temperatures. Surprisingly, the reverse trend is observed for 11 ≤ κ ≤ 16. The peak values

decrease and the peaks become wider again for larger κ values. However, these canonical response

quantities do not provide extra information and insight into this interesting behavior. As described

for κ = 6, the fluctuations of the square radius of gyration Γg = d〈R2
gyr〉/dTcan is negative above the

collapse transition temperature for all κ values. It confirms again that for relatively large bending

stiffness, the chains stretch out even more upon lowering the temperature in the extended coil phase.

Finally, only one major peak in all these quantities still suggests a single collapse transition with

enhanced thermal activity between entropically favored worm-like chains at higher temperatures

and energetically more ordered structures at lower temperatures.

It is also worth mentioning again that the ambiguity of canonical analysis for finite systems also

exists here. As it can be seen for κ = 7 and κ = 15 in Fig. 5.8, the energetic fluctuation quantities

and structural fluctuation quantities locate the transition at different temperatures. Therefore, in the
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Figure 5.8: Thermal fluctuations of (a), (d) energy (heat capacityCV = d〈E〉/dTcan), (b), (e) energy
variance Var(E) = −d〈E〉/dβcan and (c), (d) square radius of gyration (Γg = d〈R2

gyr〉/dTcan),
plotted as functions of βcan at selected values of the bending stiffness, 7 ≤ κ ≤ 16.
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next section, we perform a detailed microcanonical inflection-point analysis to get insights into the

interesting reduction in exchange rates between κ = 7 and κ = 8, and the reduction in peak values

and widening of peaks in response quantities.

Microcanonical Inflection-Point Analysis

We again performed multiple-histogram reweighting methods and employed the Bézier method to

obtain smooth estimates for the microcanonical entropy and its derivatives up to second order as

shown in Figure 5.9 as functions of the reduced energy ∆E(κ) = E−E(κ)
min in the collapse transition

region.

The entropy S does not possess any least-sensitive inflection point in this region for κ = 7.

However, we identified a least-sensitive inflection point in the β curve at ∆E(κ) ≈ 162, which is an

independent second-order transition according to the microcanonical inflection-point classification

scheme. It corresponds to a negative maximum in γ. Similar to the chains with bending stiffness

κ ≤ 6, only one second-order transition was identified for the collapse transition in this region for

the bending stiffness κ = 7.

For slightly increased bending stiffness κ = 7.5, surprisingly, least-sensitive inflection points

are identified in both β and γ, in contrast to the expectation of a single transition point from the

canonical analysis. One inflection point in β is located at ∆E(κ) ≈ 158 and additional one emerges

at the lower energy ∆E(κ) ≈ 144 in γ, suggesting an independent third-order transition besides the

main second-order transition.

The inflection point at ∆E(κ) ≈ 148 in the entropy S for the greater bending stiffness κ = 8.0,

corresponds to an independent first-order transition according to our scheme, and associated with

a positive minimum in β. This indicates that the second-order collapse transition develops into a

first-order transition, whereas the other inflection point in γ at ∆E(κ) ≈ 138 remains a third-order

order transition for κ = 8.0.
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Figure 5.9: (a) Microcanonical entropy S and its derivatives (b) β = dS/dE, (c) γ = dβ/dE
for the different models with κ = 7.0, . . . , 10.0 plotted as functions of the ∆E(κ). Least-sensitive
inflection points are marked by dots and transition energies are indicated by dotted lines.
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For κ = 8.5 and κ = 9.0, the first least-sensitive inflection points at higher energies are in the

entropy curves at ∆E(κ) ≈ 142 and ∆E(κ) ≈ 138, respectively. Therefore, these transitions are

classified as first-order transitions. Interestingly, identified by the least-sensitive inflection points

in β, the transitions at lower energies ∆E(κ) ≈ 143 for κ = 8.5 and ∆E(κ) ≈ 127 for κ = 9.0 are

now second-order transitions, instead of third-order transitions.

It is striking that both least-sensitive inflection points are found in S for κ = 10.0, which are

signaled by two separate positive minima in β. Thus, it confirms that the new transition branch

finally turns into another first-order transition line and these two first-order transitions are found at

∆E(κ) ≈ 130 and at ∆E(κ) ≈ 110.

On an important note for generality, the transitions up to third order can also be studied only

by analysis γ curves. This can be illustrated by the development of the bifurcation regarding the

collapse transition up to third order for this range of κ values, as shown Fig. 5.9(c). First, the

third-order transitions are identified by the least-sensitive inflection points in γ. Second, as we can

see for κ = 7, the second-order transition causes a negative peak in γ, which is the case before the

bifurcation happens. Finally, the first-order transitions cause positive minima in β, and thus the next

derivative γ = dβ/dE at such a minimum point is zero and there will be a positive peak at slightly

larger energies because of the backbending of β. Therefore, first-order transitions can be identified

by the intersection of the ascending flows of the γ curve with the γ = 0 line. Consequently, the

development of the second-order transitions into first-order transitions seems more natural, where

the negative peaks of the second-order transitions cross the zero line in γ and become positive

peaks. In this case, we can see from Fig. 5.9(c) that the major collapse transition starts from a

negative peak (second order) for κ = 7 and eventually grows into a positive peak (first order) for

κ ≥ 8.0. Regarding the appearance of the new transition, it starts as an inflection point (third order)

for κ = 8.0, forms a negative peak (second order) for κ = 9.0, and finally results in another positive

peak (first order) for κ = 10.
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We extended our microcanonical inflection-point analysis further for bending stiffness values

κ =, . . . , 16. The results are shown in Fig. 5.10. For all this range of bending stiffness values, there

are two least-sensitive inflection points only in the entropy curves in this region. Therefore, these

are independent first-order transitions that are clearly signaled by positive minima in β curves.

Moreover, as can be seen from Fig. 5.10(a), the transition energy difference between the two first-

order transitions increases for stiffer chains. This is also reflected in the β curves. For larger bending

stiffness values, the difference of the corresponding microcanonical inverse transition temperatures

is larger as well. Moreover, the back-bending features are more prominent for chains with greater

bending stiffness.

In order to have more insight into the bifurcation of the collapse transition, we investigated the

conformations in the relative energy range that is guided by the previous microcanonical inflection-

point analysis. Finally, we constructed the hyperphase diagram, parametrized by bending stiffness

κ and inverse temperature β, in the vicinity of the bifurcation point. It is shown in Fig. 5.11 for

the range of κ values discussed in this section. The transition points identified by microcanonical

inflection point analysis of simulation data are marked by symbols.

In the plotted region, the coil-globule transition line is still intact as a single second-order

transition from the flexible case (κ = 0). However, it starts to split into two branches at about

κ = 7 and β = 1.08, and thus the plotted region is dominated by three phases. It is important to

note that, for increased bending stiffness, the upper line of the bifurcation starts off with third-order

transitions, then turns into second order, and eventually becomes first order. We discussed this

behavior in the context of γ curves as well. This is a typical characteristic feature of transition

lines branching off a main line. Transitions of higher-than-second order are common in finite

systems [13, 69]. Without their consideration, the phase diagram would contain a gap.

In the higher temperature regime (low β), the disordered phase C is governed by wormlike

random-coil structures. As described in the canonical analysis of the negative thermal fluctuations

in the square radius of gyration, the structures are more extended if close the collapse transition.
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In this regime, entropic effects enable sufficiently large fluctuations that suppress the formation of

stable energetic contacts between monomers. For the bending stiffness right below κ ≤ 7, the coil

structures directly transition into the toroidal phase T upon lowering the temperature (increasing β).

However, more interestingly, the formation of a new stable phase between the random-coil phase

C and the toroidal phase T is observed if κ > 7. Such a phase is characterized by the coexistence

of hairpins (H) and loop (L) structures. Therefore, we call it a mixed phase. The wormlike chains

fold into hairpins or loops through this transition if the temperature is lowered. Eventually, further

cooling leads to another transition into the toroidal phase T.

By analyzing the structures in these phases, we found that they process unique features of

monomer-monomer contacts. Therefore, we used distance maps of monomers to characterize the

phases. As shown in Fig. 5.11, the representative conformations as well as their distance maps for

each phase are included. The two nonbonded monomers n and m are considered to be in close

contact if their distance rnm < 1.2, but the results are not very sensitive to this choice, as long as

counting the nonnearest neighbor contacts is avoided. This distance is close to the minimum of the

Lennard-Jones potential and represented by the red region in the triangular distance maps shown

underneath the conformations. For the extended coil structures, stable contacts of monomers are

prevented by thermal fluctuations, and thus they do not possess any particular features. In the

intermediate phase, the tails of hairpin structures are in contact with antiparallel orientation. This

results in the contact line that is perpendicular to the diagonal in the contact map, which made it

easy to identify these structures. In loops, on the other hand, the tails have parallel orientation.

Consequently, the short contact line is parallel to the diagonal in the contact map. In contrast to

loops, toroids try to reduce system energy by forming additional contacts. As a result, an additional

streak parallel to the diagonal in the contact map accounts for additional winding.

In order to quantify the population of different structures in each phase and to gain more insights

into the transition behavior in this energy range, we have estimated the probabilities for each

structure type. Detailed results are shown for κ in Fig. 5.12. The β curve is shown in Fig. 5.12(a)
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as a black solid line, and the frequencies of different structures are shown in Fig. 5.12(b). The

microcanonical Maxwell constructions on the backbending parts define the coexistence regions of

first-order transitions. The two first-order transition regions are shaded gray. They have a clear

energetic gap between them, confirming the hairpin-loop crossover phase is a stable intermediate

phase. Not surprisingly, as shown in Fig. 5.12(c), the canonical energy probability distributions

Pcan(E) for various canonical temperatures support our findings. The two noticeable suppressed

regions are observed in the envelopes of these curves, which are typically caused by first-order

transitions. They are located at the corresponding first-order transition regions that are indicated by

the microcanonical inflection-point analysis. Interestingly, the curve of βcan = 1.435 spanned the

whole energy range, and the effects of two first-order transitions are reflected by the two shoulders.

This also helps explain the single peaks in canonical response quantities — the two transitions are

too close to be distinguished by canonical analysis.

Moreover, not surprisingly, the comparison to the canonical average energy and the canonical

heat-bath inverse temperature shows that the averaging process washes out the signals. As shown

in Fig. 5.13, the fluctuations of the system energy in this region are relatively large to envelop the

two first-order signals. Therefore, the canonical energetic quantities are not sensitive enough two

differentiate the two signals.

At high energies, coil structures dominate the phase. Upon lowering the energy to the first

transition point, there are mainly two options for the extended coils to fold and create tail contacts,

parallel and antiparallel. In this transition, the presence of hairpins with antiparallel tail contacts

rapidly increases. These conformations still provide sufficient entropic freedom for the dangling

tail, which is already stabilized by van der Waals contacts, however. The loop part of the hairpin

helps reduce the stiffness restraint. It is noteworthy that the pure loop structures with parallel

tails also significantly contribute to the population, although at a lesser scale in this region. The

actual crossover from hairpins to loops happens within the intermediate. For lower energies

in this mixed phase, the population of hairpins decreases, whereas loops take over dominance.
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Moreover, the energy difference between these two types of structures is zero or small enough

so that the thermal fluctuations are still able to easily convert one to another by folding the tails

back to or away from the loop part of the structures. This also explains why there is no phase

transition between them. Importantly, even though hairpin and loop structures may be irrelevant

at very low temperatures, they represent biologically significant secondary structure types at finite

temperatures. The tail can be easily spliced, contact pair by contact pair, with little energetic

effort, which supports essential micromolecular processes on the DNA and RNA level such as

transcription and translation. Therefore, it is important to discern the phase dominated by these

structures.

Upon further reducing the energy (and therefore also entropy), forming energetically favorable

van der Waals contacts becomes the dominant structure formation strategy and loops coil in to
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eventually form toroids. In contrast to loops, the structures are more ordered and they are stabilized

further by additional energetically favorable attractions between monomers.

To test the robustness of the obtained results, we have also performed selected simulations of

semiflexible chains of this generic model with 70 and 100 monomers. They essentially led to the

same qualitative results, where the bifurcation of the collapse transition line is observed for these

chain lengths. Quantitatively, we find a shift of the bifurcation point toward a higher bending

stiffness. For N = 70, we found the bifurcation point to be close to κ = 20, whereas it is near

κ = 40 forN = 100. This is expected, of course, as the number of possible energetic contacts scales

with the number of monomers, which requires a larger energy penalty to break these contacts. It

also helps understand whymicrobiological structures are not only finite but exist on a comparatively

small, mesoscopic length scale. At the physiological scale, structure formation processes of large

systems would be much more difficult to control and stabilize. This also means that studying such

systems in the thermodynamic limit may not help in understanding physics at mesoscopic scales.

Therefore, employing alternative statistical analysis methods as in this study is more beneficial

than the application of conventional procedures, however successful they have been in studies of

other problems. We also performed structure population analysis for the two first-order transitions

in these two systems. The results for (N = 70, κ = 30) and (N = 100, κ = 45) are shown in

Fig. 5.14. They both show the same crossover behavior of hairpins and loops in the intermediate

phases as for N = 55. The two suppressed regions of canonical energy distribution probabilities

are clearly visible as well. Hence, these results support the generality of our conclusions.

5.2 Analysis of Putative Ground-State Conformations

Biomolecules form distinct structures that allow them to perform specific functions in the physi-

ological environment. Understanding the effects of the bending stiffness of these conformations

is also crucial in many fields. In this section, we systematically study the competition between
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attractive interactions, which usually are caused by hydrophobic van der Waals effects in solvent,

and the impact of the bending stiffness on ground-state conformations with κ up to 19.

For the most part, the results are obtained from the parallel tempering and the extended two-

dimensional replica-exchange methods that are described in previous chapters. In addition, global

optimization methods such as Wang-Landau [114, 115], simulated annealing [116] and Energy

Landscape Paving [117] were also used to verify and consolidate our results obtained from the

replica exchange simulations. The exemplified simulations of these global optimization methods

are illustrated in Fig. 5.15.

Energy Contributions

Putative ground-state conformations and their energies obtained from simulations for different

choices of the bending stiffness κ are listed in Tab. 5.2. By increasing the bending stiffness κ, the

semiflexible polymer folds into different classes of structures: compact globules (κ < 5), rod-like

bundles (5 ≤ κ ≤ 9), as well as toroids (κ > 9). Here we first investigate the separate contributions

from Lennard-Jones (LJ) and bending potentials to the total ground-state energies. Since bond

lengths are at almost optimal distances (≈ r0), the bonded potential VFENE can be ignored in the

following analysis. The main competition is between

ELJ =
∑

i>j

(VLJ(ri,j)− Vshift) , (5.1)

including contributions from bonded monomers, and the bending energy

Ebend =
∑

l

Vbend(θl). (5.2)

We also introduce the renormalized contribution from the bending potential

εbend = Ebend/κ (5.3)

111



H
(E

)

E

0

50000

100000

150000

200000

250000

300000

350000

-265 -260 -255 -250 -245 -240 -235
0

5

10

15

20

25

30

it
er

a
ti
o
n

Wang-Landau sampling histograms for κ = 0

E

MCS (×106)

-150

-100

-50

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

9

10

it
er

a
ti
o
n

Simulated annealing for κ = 8

E

MCS (×102)

-300

-200

-100

0

100

200

300

400

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

12

14

κ

Energy landscape paving for κ ∈ [0, 14]

Figure 5.15: Examplified global optimization simulations of selected κ values for a generic semi-
flexible polymer model.

112



Table 5.2: Lowest-energy conformations and corresponding energy values obtained from sim-
ulations for the selected values of the bending stiffness ranging from κ = 0 (fully flexible) to
κ = 19.

κ Structure E/ǫLJ κ Structure E/ǫLJ κ Structure E/ǫLJ κ Structure E/ǫLJ

0 -261.72 5 -175.70 10 -132.42 15 -110.60

1 -230.93 6 -166.53 11 -128.23 16 -107.60

2 -222.80 7 -157.49 12 -124.24 17 -104.67

3 -204.82 8 -146.98 13 -120.51 18 -100.98

4 -187.33 9 -140.14 14 -116.71 19 -97.92

for studying the relative impact of bending on the ground-state conformations.

The energiesE,ELJ, bending energyEbend, and renormalized bending quantity εbend are plotted

for all ground-state conformations in Fig. 5.16. Not surprisingly, the total energyE increases as the

bending stiffness κ increases. Similarly, ELJ also increases with increased bending stiffness κ, but

rather step-wise. Combining these trends with the corresponding structures, it can be concluded

that each major global change in ground-state conformations with increased bending stiffness leads

to the reduced attraction between monomers (increase in ELJ). Whereas the bending energy Ebend

does not exhibit specific trend, the renormalized bending energy εbend decreases step-wise as well

for increased bending stiffness κ, as shown in Fig. 5.16(b). It is more interesting, though, to

see there are clear alterations of ELJ and εbend within the same structure type (compact globules,

rod-like bundles, or toroids). Moreover, most of the locations of rapid changes are the same for

both ELJ and εbend, indicating that the structural changes affect both attraction and bending. For

κ = 0, 1 and 2, the overall attraction ELJ does not change much, in contrast to εbend, suggesting

that the polymer chain is able to accommodate the bending penalty without affecting energetically

favorable monomer-monomer contacts.
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Figure 5.16: (a) Total energyE and Lennard-Jones contributionELJ of ground-state conformations.
(b) Total bending energy Ebend and renormalized bending contributions εbend = Ebend/κ for the
entire array of κ parameter values simulated.
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Even though the energetic analysis provides more information about the competition between

different energetic terms, conclusions about the structural behavior are still qualitative. Therefore,

a more detailed structural analysis is performed in the following.

Gyration Tensor Analysis

In order to provide a quantitative description of the structural features, we calculated the gyration

tensor S for the ground-state conformations with components

Sα,β =
1

N

N∑

i=1

(
r(i)
α − rCM

α

) (
r

(i)
β − rCM

β

)
, (5.4)

where α, β ∈ {x, y, z} and rCM = 1
N

∑N
j=1 rj is the center of mass of the polymer. After

diagonalization, S can be written as

SD =




λ2
x 0 0

0 λ2
y 0

0 0 λ2
z



, (5.5)

where the eigenvalues are principal moments and ordered as λ2
x ≤ λ2

y ≤ λ2
z. These moments

describe the effective extension of the polymer chain in the principal axial directions. Thus,

different invariant shape parameters can be derived from combinations of these moments. Most

commonly used for polymers, the square radius of gyration R2
gyr is obtained from the summation

of the eigenvalues:

R2
gyr = λ2

x + λ2
y + λ2

z. (5.6)

The radius of gyration describes the overall effective size of a polymer conformation. In addition,

another invariant shape parameter we employed is the relative shape anisotropyA, which is defined
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z from the diagonalized gyration tensor S, (b)

square radius of gyration R2
gyr, (c) and relative shape anisotropy A for ground-state conformations
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as

A =
3

2

λ4
x + λ4

y + λ4
z(

λ2
x + λ2

y + λ2
z

)2 −
1

2
. (5.7)

It is a normalized parameter, the value of which is limited to between 0 and 1, where A = 0 is

associated with spherically symmetric polymer chains (λx = λy = λz), and A = 1 is the limit for

the perfectly linear straight chain (λx = λy = 0, λz > 0). Other than these two limits, A = 1/4

refers to perfectly planar conformations (λx = 0, 0 < λy = λz). The calculated values of square

principal components λ2
x, λ

2
y, λ

2
z, square radius of gyration R2

gyr, and the relative shape anisotropy

A of ground-state conformations are plotted in Fig. 5.17 as functions of κ.

Starting with κ = 0, 1, 2 and 3, the three principal moments of the corresponding lowest-

energy conformations are small and nearly equal. These are the most compact conformations

we found. For these structures, A < 10−3. This is obvious from the dense globular structures

shown in Tab. 5.2. Furthermore, it means that for relatively small κ values, semiflexible polymer

conformations maintain compact spherical symmetry at low temperatures, similar to purely flexible

polymers. The ground-state structures have icosahedral-like symmetry. For this we take a look at

the pair distribution functions. Using the distance ri,j of monomers i and j, we introduce the pair

distribution function as

P (r) =
∑

i<j

∆(r − ri,j), (5.8)

where

∆(r − ri,j) =





1, |r − ri,j| < rt,

0, otherwise.
(5.9)

As a robust threshold for the necessary binning of the r space, we chose rt = 0.01. The

histograms for the lowest-energy conformations for κ = 0, 1, 2, 3 are plotted in Fig. 5.18. The

perfect icosahedral structure is only found for κ = 0, whereas its decay is already visible for

the weaker semiflexible polymer (κ = 1). The maximum number of nearest-neighbor contacts

(ri,j ≈ 1) found for κ = 0 is not reached in the semiflexible cases. The broadening of the peaks
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Figure 5.18: Pair distribution functions of the lowest-energy states for κ = 0, 1, 2, 3.

are clear indicators that the ground-state structures for the semiflexible polymer with κ = 1, 2, 3

are not perfect icosahedral. Bending restraints prevent the formation of perfect symmetries. It

rather resembles tertiary folds of protein conformations, where effective bending restraints and

the local stable secondary segments purposefully prevent symmetric arrangements of monomers.

This enables different heteropolymers of similar size to form distinct and functional individual

conformations.

Going back to the gyration tensor analysis, the increased bending stiffness for κ = 4 breaks the

symmetry of the compact structures and ground-state conformations stretch out. This is reflected

by the imbalance of the principal moments. Consequently, A is nonzero. Besides, the overall size

of the conformations becomes larger as R2
gyr suggests.
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If the bending stiffness is increased to κ = 5, 6 and 7, rod-like structures are formed with 7

bundles to minimize the total energy. One principal moment increases dramatically while the other

two moments decrease. As a result, R2
gyr reaches a higher level, but remains almost constant. The

relative shape anisotropy climbs to A ≈ 0.69, indicating that the shape straightens out further.

The number of bundles reduces to 6 for κ = 8 and 9, resulting in longer rod-like structures.

Both R2
gyr and A increase further, the change of which is not visually obvious in Tab. 5.2, though.

With the bending energy being even more dominant for 10 ≤ κ ≤ 14, the appearance of

conformations changes significantly. The condensed toroidal structures with up to 4 windings are

energetically more favored than rod-like bundles. Instead of having a few sharp turns like rod-like

bundles to accommodate the bending penalty, the semiflexible polymer chain forms a dense toroidal

structure. Successive bending angles are comparatively small. In this case, the two largest principal

moments converge to an intermediate value. As a consequence of themore compact structures,R2
gyr

decreases with increased bending stiffness. The asphericity A also drops below the characteristic

limit 1/4, reflecting the planar symmetry of the toroidal structures.

It becomes more difficult for the polymer in the ground state to maintain the same small bending

angles for increased bending stiffness values κ = 15, 16 and 17. As a result, the smaller bending

angles form similar toroidal structures as in the previously discussed case, but with a larger radius

and fewer windings. Therefore, two main principal moments increase, as well asR2
gyr. Meanwhile,

the relative shape anisotropyA approaches 1/4. Fewer windings reduce the overall thickness in the

normal direction of the toroidal conformations. As can be seen from the conformations in Tab. 5.2,

these structures are stabilized by the attraction of close end monomers.

However, for κ > 17, the attraction of two endmonomers is not sufficient to sustain the structure.

Thus, expanding the toroid becomes an advantageous option to offset strong bending penalties. The

toroidal structure is stretched out, which is clearly seen in Tab. 5.2 for κ = 18 and 19. The radius of

the toroid keeps getting larger, so doesR2
gyr. It is expected that for much stronger bending stiffness,
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Figure 5.19: Representations of ground-state conformations (left panel) and their contact maps
(right) for κ ≤ 5. The upper triangle contains the monomer distance map, where the distance ri,j
of monomers i and j is colored. The contact map is shown in the lower triangle. Monomers i and
j are in contact if ri,j < 1.2.

the polymer chain would form a large circular loop with fewer windings. We find that A keeps

converging to the planar symmetry limit of 1/4.

Contact Map Analysis

Even though the previous gyration tensor analysis yields a reasonable quantitative description of

the overall structural properties of the ground-state conformations, it does not provide insight into

internal ordering of structures, neither the pair distributions. Therefore, we now perform a more

detailed analysis by means of monomer distance maps and contact maps.

To find the relative monomer positions, we measured the monomer distance ri,j between

monomers i and j for all monomer pairs. Furthermore, we consider nonbonded monomer pairs
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with distances ri,j < 1.2 to be in contact. The limit is close to the minimum distance r0 of

the Lennard-Jones potential, allows distinguishing unique contact features of conformations while

avoiding counting nonnearest-neighbor contacts. In the figures, we colored the monomers from

one end to the other to make the polymer chain orientation more easily visible.

The combined results for κ ≤ 5 are shown in Fig. 5.19. For κ = 0 (flexible polymer), the

structure is icosahedral, and the maps do not exhibit particularly remarkable structural features.

Without the energetic penalty from bending, maximizing the number of nearest neighbors is the

optimal way to gain energetic benefit. For κ = 1, the introduced small bond angle restraint

already starts affecting the monomer positions. In the contact map, short anti-diagonal streaks

start appearing, which indicate the existence of short hairpins, i.e., a U-turn like structure with two

strands in contact. Interestingly, we find similar conformations for κ = 2 and κ = 3, as confirmed

by similar distance and contact maps. There are fewer, but longer anti-diagonal strands, located

in the interior of the compact structure. The formation of new streaks parallel to the diagonal is

associated with the helical wrapping of monomers, which is visible in the colored representations.

As for κ = 4, the ground-state conformation is the compromise of two tendencies. The bending

stiffness neither is weak, as for κ = 3 the semiflexible polymer is still able to maintain a spherical

compact structure with more turns, nor is it particularly strong as for κ = 5, where the polymer

forms a rod-like bundle structure. Therefore, the lowest-energy conformations shown in Fig. 5.19

contain only helical turns trying to minimize the size, as indicated by several diagonal streaks in

the contact map. For κ = 5, the polymer mediates the bending penalty by allowing only a few

sharp turns between the rods. For the 7-bundle structure, the randomness completely disappears

in both distance and contact maps. The blue square areas in the distance map mark the separation

of monomer groups belonging to the two ends of the bundle structure. Furthermore, the diagonal

streaks indicate the contact of two parallel bundles while the turns of the chain form anti-diagonal

streaks. It is also worth mentioning that in this case the two end-monomers are located on opposite

sides.
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Figure 5.20: Same as Fig. 5.19, but for 6 ≤ κ ≤ 11.
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The results for 6 ≤ κ ≤ 11 are shown in Fig. 5.20. Similar to κ = 5, the polymer still forms a

7-bundle rod-like structure for κ = 6 and κ = 7. The anti-diagonal symmetry in maps for κ = 6

and κ = 7 is only a consequence of opposite indexing of monomers. For κ = 8 and κ = 9, the

increased bending stiffness leads to a decrease in the number of sharp turns from 7 to 6, where

the two end monomers are now located on the same side. The relative positions of monomers are

almost identical for κ = 8 and κ = 9 as seen in their distance maps. However, the difference in

contact maps is caused by the way the straight rods are aligned after the sharp turns. For κ = 8,

four monomers (the orange turn in the colored presentation in Fig. 5.20 for κ = 8) form the sharp

turn. This allows the rods to align closer compared to the κ = 9 case, where only 3 monomers are

located in the turn that holds two parallel rods (blue color). For κ = 10, 11, the optimal way to

pack monomers is by toroidal wrapping. Thus, the contact maps exhibit only 3 diagonal streaks.

Results for κ ≥ 11 are shown in Fig. 5.21. Contact maps for κ = 12, 13 and 14 still feature

three diagonal streaks. However, for κ = 15, 16, and 17, the increased bending stiffness causes a

larger radius of the toroidal structure and the two end monomers are stabilized by Lennard-Jones

attraction. Thus, the number of parallel diagonals reduces to two and the attraction of two end

monomers is marked in the corners of the maps. Finally, for polymers with even larger bending

stiffness, i.e., κ = 18 and κ = 19, the attraction of the twomonomers breaks and the whole structure

stretches out even more. As a result, the distance map for κ = 19 contains extended sections of

increased monomer distances. At the same time, the contact map still shows two streaks slightly

shifted to the right, indicating a reduction in the number of contacts.
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Figure 5.21: Same as Fig. 5.19, but for κ ≥ 11.
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Chapter 6

summary

The statistical analysis of structural transitions by the recently developed generalizedmicrocanonical

inflection-point method had already yielded promising results in studies of flexible polymers. For

this study, we extended the coarse-grained model by incorporating bending restraints of different

strengths to investigate the impact of bending stiffness on the microcanonical entropy and its

derivatives, which are used as indicator functions for the systematic identification and classification

of phase transitions in systems of any size. In this coarse-grained model for semiflexible polymers,

the bending restraint is controlled by the bending stiffness parameter κ.

Despite its simplicity, the model required careful numerical treatment. For this purpose, we

successfully employed parallelized replica-exchange Monte Carlo methods and especially extended

the simulation parameter space from heat-bath temperature to the combined space of temperature

and bending stiffness. Besides, the combination of geometric and energy methods worked well

to obtain optimal temperature sets, which has been an obstacle to general parallel tempering

simulations. In addition, we have also successfully implemented advanced Monte Carlo moves

in these simulations to improve the simulation efficiency. Microcanonical entropies and their

derivatives were obtained by applying the Bézeier method on the density of states, which are the

main output of the multiple-histogram reweighting method applied to the raw simulation data.
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Based on the microcanonical results obtained in the simulations, we compared the phase

behavior of themodel under different bending stiffness values. Our simulations reproduced previous

results for the flexible (κ = 0) reference system very well, creating sufficient confidence for the

subsequent studies of the semiflexible polymers. Because of the additional restraints, it was

significantly more challenging to achieve in simulations of semiflexible polymers the data quality

necessary to enable an accurate microcanonical analysis.

For the flexible polymer, we identified the known structural transitions, i.e., the characteristic

second-order transition associated with the θ collapse from extended random coils to liquid globules

and the first-order liquid-solid transition, which is accompanied by an independent third-order

transition. For nonzero bending stiffness values (κ > 0), we mainly focused on the collapse

transition in these systems. The behavior does not change qualitatively for the Θ collapse transition

for bending stiffness up to κ ≈ 7, where both canonical and microcanonical canonical quantities

confirmed a single second-order transition. However, we have found the bifurcation of the second-

order collapse transition line, which surprisingly developed into two first-order transition lines. The

bifurcation is not visible in canonical analysis, though. Neither canonical energetic nor structural

fluctuation quantities hint at the existence of two clearly separated transitions for semiflexible

polymers, which we could identify by microcanonical inflection-point analysis. Conventional

canonical analysis is too rugged – the intermediate phase is simply washed out in the averaging

process. This should be considered a problem, particularly when standard canonical analysis

methods are employed in studies of finite systems. In the generic model for semiflexible polymers

used in our study, the intermediate phase accommodates loop and hairpin structures, which are

found in biomacromolecular systems including types of DNA and RNA.

In this study, we have also examined the effect of bending stiffness on the ground-state confor-

mations of our model. The bending stiffness significantly influences the formation of low-energy

structures for semiflexible polymers. Varying the bending stiffness parameter in our model results

in shapes like compact globules, rod-like bundles, and toroids with abundant internal arrangements.

126



The estimates of the ground-state energies are from the extended replica exchange Monte Carlo

simulations and the results are verified utilizing global optimization algorithms, e.g., Wang-Landau

sampling. We find that the semiflexible polymer folds into compact globules for relatively small

bending stiffness, rod-like bundles for intermediate bending strengths, as well as toroids for suf-

ficiently large bending restraints. Eventually, we performed energetic and structural analyses to

study the impact of the bending stiffness on the formation of ground-state structures. We de-

composed the energy contributions to gain more insight into the competition between attractive

van der Waals forces and the bending restraint. The total energy of ground-state conformations

increases smoothly with increased bending stiffness, but not the attraction and bending potentials.

Interestingly, renormalizing the bending energy reveals that local bending effects of ground-state

conformations actually reduce for increased bending stiffness. The structural analysis by means

of gyration tensor and invariant shape parameters provided a general picture regarding the size

and shape changes of conformations under different bending restraints. In a further step, studying

distance maps and contact maps exposed details of internal structure ordering and helped distin-

guish conformations, especially for small values of the bending stiffness, where the gyration tensor

analysis has been inconclusive. Contact map analysis also caught slight differences, where different

structure types are almost degenerate.

To conclude, bending stiffness is not only a necessary property of polymers in the formation

of distinct and biologically relevant structures at finite temperatures; it also stabilizes the phase

dominated by these structure types in a thermal environment, where entropy and energy effectively

compete with each other. Regarding the low energy states, semiflexible polymer structures remain

stable within a certain range of bending strengths, which makes them obvious candidates for

functional macromolecules. Monomer-monomer attraction provides stability and bending stiffness

adaptability to allow semiflexible polymers to form distinct structures. Neither flexible polymers

nor crystalline structures would be equally adaptable and stable like semiflexible polymers are

under diverse physiological conditions. This is fully compliant with Nature’s governing principle,
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in which sufficient order is provided to enable the formation of stablemesostructures, but at the same

time, enough disorder allows these structures to explore variability. This makes them functional in

a stochastic, thermal environment, with sufficient efficiency enabling lifeforms to exist and survive

under these conditions.
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