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ABSTRACT 

Slash pine (Pinus elliottii Engelm) is the second most important commercial species in the 

southeastern United States, it is usually established in poorly drained flatwoods where it 

outperforms other common commercial pine species. Modeling slash pine growth and how it 

responds to silvicultural treatments is of interest to forest managers wanting to maximize growth 

and profits within the industry. In this dissertation, a system of differential equations is proposed 

to model slash pine growth including the effect of silvicultural treatments (i.e., bedding, and 

vegetation control). Data for this model came from a long-term study (30 years) established by the 

Plantation Management Research Cooperative (PMRC) across Georgia, Florida, and South 

Carolina. 

To construct this growth and yield system, a dominant height model was first proposed in which 

the effect of bedding and vegetation control was closely evaluated. This model guided the 

construction of the mortality model, in which a modeling approach including height increments 

instead of time increments when using differential equations was evaluated. Building upon the 

mortality model, the whole system of differential equations was proposed after adding the basal 



area component.  The model system describes the trajectory of three state variables: dominant 

height, survival/mortality, and basal area. Treatments effects were incorporated into the dominant 

height and basal area models by using parameter modifiers and dummy variables associated with 

each of the treatments. Survival was not affected by the studied treatments, but the presence of 

fusiform rust was found to be essential to determine the stand density trajectories for the evaluated 

stands. The parameters for the growth and yield system were simultaneously estimated using 

maximum likelihood and the variance-covariance was modeled within the system. The use of 

stochastic differential equations applied to these types of models in forestry was evaluated and 

summarized in the last part of this dissertation.  

 

INDEX WORDS: basal area, bedding, differential equations, dominant height, growth and 

yield system, maximum likelihood, mortality, slash pine, stochastic, 

vegetation control.  

 

  



 

 

A GROWTH AND YIELD SYSTEM FOR SLASH PINE INCLUDING RESPONSES TO 

SILVICULTURAL TREATMENTS 

 

by 

 

LAURA RAMIREZ QUINTERO 

B.S., National University of Colombia, Colombia, 2016 

M.S., National University of Colombia, Colombia, 2019 

M.S., The University of Georgia, 2022 

 

 

 

 

 

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial 

Fulfillment of the Requirements for the Degree 

 

DOCTOR OF PHILOSOPHY 

 

ATHENS, GEORGIA 

2023  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2023 

Laura Ramirez Quintero 

All Rights Reserved 

  



 

 

A GROWTH AND YIELD SYSTEM FOR SLASH PINE INCLUDING RESPONSES TO 

SILVICULTURAL TREATMENTS 

 

by 

 

LAURA RAMIREZ QUINTERO 

 

 

 

 

      Major Professor: Cristian R. Montes 

      Committee:  Bronson P. Bullock 

         Patrick C. Green 

         Ricardo M. Holdo 

          

 

 

 

 

 

 

 

 

 

 

Electronic Version Approved: 

 

Ron Walcott 

Vice Provost for Graduate Education and Dean of the Graduate School 

The University of Georgia 

May 2023 

 



 

iv 

 

 

DEDICATION 

To my lovely husband, Leo, who accompanied me and supported me during all the ups and 

downs of this journey. 

  



 

v 

 

 

ACKNOWLEDGEMENTS 

Many individuals and organizations contributed to the realization and finalization of this 

dissertation and doctoral program. I want to thank first my major professor, Cristian Montes, for 

first at all, convincing me to start this program at UGA when I thought there was no room from 

me in academia. I greatly appreciate his kindness and patience when explaining things to me, as 

well as his encouragement to always go further and use all my skills and strengths even when I did 

not know they were there. I also want to thank Dr. Bronson Bullock for always providing me with 

great perspective and helping me feel very welcomed as a Plantation Management Research 

Cooperative (PMRC) graduate student. I am also thankful for the insights and support provided by 

Dr. Corey Green and Dr. Ricardo Holdo who together with Dr. Montes and Dr. Bullock completed 

my doctoral committee.  

I am immensely grateful to the PMRC. It was a great experience to be part of the PMRC as a 

graduate student and I really cannot think on how this could have been better. The opportunities 

and financial support provided by the PMRC really elevated my experience as a graduate student. 

I wish all other graduate students could land within such an incredible organization that cares about 

all the people involved and promotes the kind of personal and professional growth that I 

experienced here. Many thanks to all the organizations and individuals that support the PMRC and 

have helped all over these years to collect data and promote research in the region.  

 I also want to thank the Warnell School of Forestry and Natural Resources for providing me 

with financial support and also for promoting all sort of activities that made me engage with other 

students that today I consider great friends. Although my experience was a little different thanks 



 

vi 

to the global pandemic, I am also grateful to all my fellow graduate students with whom I crossed 

paths with. I will always remember the times when we shared our common problems and got 

together to share a meal or drink. Conference trips would not have been the same without them. 

Finally, I want to thank all my family here and abroad, who provided support and 

encouragement and always were patient whenever I had to put school first. I want to specially 

thank my sister Karen with whom I have shared this experience from the very beginning and can 

relate to me on every single aspect of it. When things were overwhelming, at least we had each 

other to share a meal! And one more time, I want to thank my husband Leo for always listening to 

me. I know he knows more biometrics now than what he should know thanks to our discussions 

on why my analyses where not going as planned. Really, Thank you!   



 

vii 

 

 

TABLE OF CONTENTS 

Page 

Acknowledgements .................................................................................................................... v 

List of Tables............................................................................................................................. ix 

List of Figures ........................................................................................................................... xi 

1. Introduction and literature review ......................................................................................... 1 

1.1. Introduction ............................................................................................................... 1 

1.2. Literature review ....................................................................................................... 3 

1.3. Objectives ................................................................................................................. 7 

1.4. References ................................................................................................................. 9 

2. Long-Term Term Effect Of Bedding And Vegetation Control On Dominant Height Of 

Slash Pine Plantations In The Southeastern United States .................................................. 14 

2.1. Introduction ............................................................................................................. 15 

2.2. Methods................................................................................................................... 19 

2.3. Results ..................................................................................................................... 24 

2.4. Discussion ............................................................................................................... 29 

2.5. Conclusions ............................................................................................................. 32 

2.6. Acknowledgements ................................................................................................. 32 

2.7. Tables and figures ................................................................................................... 33 

2.8. References ............................................................................................................... 49 

3. Modeling Slash Pine Mortality Rates Incorporating Responses to Silvicultural 

Treatments and Fusiform Rust Infection Rates ................................................................... 55 

3.1. Introduction ............................................................................................................. 56 

3.2. Methods................................................................................................................... 59 

3.3. Results ..................................................................................................................... 65 

3.4. Discussion ............................................................................................................... 67 

3.5. Conclusions ............................................................................................................. 69 

3.6. Acknowledgements ................................................................................................. 70 



 

viii 

3.7. Tables and Figures .................................................................................................. 71 

3.8. References ............................................................................................................... 91 

4. A Growth and Yield System of Differential Equations for Slash Pine Plantations 

Including Response to Silvicultural Treatments ................................................................. 96 

4.1. Introduction ............................................................................................................. 97 

4.2. Methods................................................................................................................. 100 

4.3. Results ................................................................................................................... 105 

4.4. Discussion ............................................................................................................. 109 

4.5. Conclusions ........................................................................................................... 112 

4.6. Acknowledgments................................................................................................. 112 

4.7. Tables and figures ................................................................................................. 114 

4.8. References ............................................................................................................. 127 

5. Using Stochastic Differential Equations for Modeling Forest Growth  ............................ 131 

5.1. Introduction ........................................................................................................... 132 

5.2. Methods................................................................................................................. 134 

5.3. Results ................................................................................................................... 140 

5.4. Discussion ............................................................................................................. 141 

5.5. Conclusions ........................................................................................................... 145 

5.6. Tables and Figures ................................................................................................ 147 

5.7. References ............................................................................................................. 156 

6. Overall conclusions ........................................................................................................... 159 

Appendix A: Chapter 4 R code to use G&Y system for a single prediction ......................... 162 

Appendix B: Chapter 4 Julia code to use G&Y system for a single or multiple predictions 

and with different plots ..................................................................................................... 163 

Appendix C: Chapter 5 Julia code to estimate parameters of a DE ....................................... 166 

 

  



 

ix 

 

 

LIST OF TABLES 

Page 

Table 2-1. Dominant height statistics per treatment and age, in meters. ...................................... 33 

Table 2-2. Additional stand characteristics, averaged over all the installations (DBH: Diameter 

at breast height, BA: Basal area, TPH: trees per hectare). ........................................... 34 

Table 2-3. Base models and ADA formulations for the Chapman-Richards (CR) and Pienaar 

and Rheney (PR) models. Parameters and variables as defined in section 2.2. ........... 35 

Table 2-4. Models tested for base SI vs Gain in SI. ..................................................................... 36 

Table 2-5. Estimated parameters for the two models evaluated, Chapman-Richards (CR), and 

Pienaar and Rheney (PR). ............................................................................................ 37 

Table 2-6. Statistics of the models evaluated, Chapman-Richards (CR), and Pienaar and 

Rheney (PR). 𝑅𝑎𝑑𝑗2: adjusted coefficient of determination, RMSE: Root mean 

square error, AIC: Akaike information criteria. ........................................................... 38 

Table 2-7. Estimated parameters for the dynamic site index model. ............................................ 39 

Table 3-1. Dominant height (𝐻𝐷) and trees per hectare (TPH), average and standard deviation 

values per plot. ............................................................................................................. 71 

Table 3-2. Average fusiform rust infection rates at age 5 differentiated by treatment. ................ 72 

Table 3-3. Base mortality model forms tested. ............................................................................. 73 

Table 3-4. Mortality model modifications to include treatment effects. ...................................... 74 

Table 3-5. Fit statistics for dominant height model without treatments (Eq. 3-3) and with 

treatments (Eq. 3-4). ..................................................................................................... 75 

Table 3-6. Parameter estimates for the dominant height model (Eq. 3-4). ................................... 76 

Table 3-7. Fit statistics1 for base survival models (control only, no-treatment effects). .............. 77 



 

x 

Table 3-8. Fit statistics1 for survival models including treatment effects. .................................... 78 

Table 3-9. Parameter estimates for the final survival model including fusiform rust and 

treatment effects. .......................................................................................................... 79 

Table 4-1. Dominant height (HD), trees per hectare (TPH), basal area (BA), and fusiform rust 

(FR) infection percentage, average values for the main dataset. ............................... 114 

Table 4-2. Growth and yield systems tested. System 1(without treatment effects), system 2 

(with treatment effects in dominant height and basal area. ........................................ 115 

Table 4-3. Dominant height (HD), trees per hectare (TPH), basal area (BA), and fusiform rust 

(FR) infection percentage, average values for the validation dataset. ....................... 116 

Table 4-4. Fit statistics for dominant height and basal area with the two systems proposed. .... 117 

Table 4-5. Parameter estimates for the best growth and yield system for slash pine. ................ 118 

Table 4-6. Fit statistics for the three variables of the best growth and yield system for slash 

pine. ............................................................................................................................ 119 

Table 4-7. Fit statistics for the validation dataset (just control) compared to the statistics with 

the data used to fit the model. .................................................................................... 120 

Table 5-1. Comparison of Garcia’s approach and proposed approach to estimate parameters 

using differential equations. ....................................................................................... 147 

Table 5-2. Fit statistics for the Loblolly 301 data (fixing 𝑐 = 0.5024), using Garcia’s approach 

and models proposed (M1 and M2)............................................................................. 148 

Table 5-3. Fit statistics for the whole Loblolly data (14 plots, fixing 𝑐 = 0.49182), using 

Garcia’s approach and models M1 and M2. ................................................................ 149 

Table 5-4. Fit statistics for the slash pine dataset (dominant height) using Garcia’s approach 

(𝑐 fixed at 𝑐 = 0.5) and the proposed approach with models M1 and M2. ................. 150 

 

  



 

xi 

 

 

LIST OF FIGURES 

Page 

Figure 2-1. Location of the long-term slash pine study (each dot corresponds to one of the 16 

installations used in this research)................................................................................ 40 

Figure 2-2. Average dominant height (DH) by treatment (left) and gain with respect to the 

control treatment (right). .............................................................................................. 41 

Figure 2-3. Average predicted dominant height (DH) and gain with the Chapman-Richards 

(CR) and Pienaar and Rheney (PR) models. ................................................................ 42 

Figure 2-4. Residuals for the Chamman-Richards (CR) model calculated as 1. The observed 

value per plot minus the predicted value from the CR model (grey lines), and 2. The 

average dominant height (of all plots) at every age minus the predicted value from 

the CR model (red line). ............................................................................................... 43 

Figure 2-5. Residuals for the Pienaar and Rheney (PR) model calculated as 1. The observed 

value per plot minus the predicted value from the PR model (grey lines), and 2. The 

average dominant height (of all plots) at every age minus the predicted value from 

the PR model (red line). ............................................................................................... 44 

Figure 2-6. Residuals for the Chapman-Richards (CR) model. DH: dominant height. ................ 45 

Figure 2-7. Diagnostic plots for the Chapman-Richards (CR) model. DH: Dominant height. .... 46 

Figure 2-8. Relationship between base site index (SI) and gain in SI. ......................................... 47 

Figure 2-9. Site Index curves including treatment response. DH: dominant height. .................... 48 

Figure 3-1. Location of the 16 installations of the study. ............................................................. 80 

Figure 3-2. Dominant height trajectories for slash pine by treatment. ......................................... 81 

Figure 3-3. Trees per hectare (TPH) over time by treatment. ....................................................... 82 



 

xii 

Figure 3-4. Trees per hectare (TPH) versus dominant height (𝐻𝐷) by treatment. ....................... 83 

Figure 3-5. Trees per hectare (TPH) over time for different groups of fusiform rust infection 

rate (less than 15% or greater than or equal to 15%) at age 5. ..................................... 84 

Figure 3-6. Fusiform rust average infection rate per plot, trajectory for the duration of the 

study. The dashed line represents the 15% infection rate threshold. ........................... 85 

Figure 3-7. Estimated dominant height trajectories. ..................................................................... 86 

Figure 3-8. Dominant height residuals vs predicted dominant height values. .............................. 87 

Figure 3-9. Trajectories of TPH estimated with Eq. 3-21 for plots with less than 15% (left), 

and higher than 15% (right) fusiform rust infection rates. ........................................... 88 

Figure 3-10. Residuals for the recommended mortality model (Eq. 3-21). .................................. 89 

Figure 3-11. Residuals histrogram and Q-Q plot for the recommended mortality model 

including treatments effect (Eq. 3-21). ........................................................................ 90 

Figure 4-1. Dominant height (HD), survival (TPH), and basal area (BA) trajectories for the 

30-yr study. ................................................................................................................ 121 

Figure 4-2. Dominant height, survival (mortality), and basal area predicted curves using the 

best growth and yield system for slash pine. ............................................................. 122 

Figure 4-3. Dominant height, survival (mortality) and basal area residuals using the best 

growth and yield system for slash pine. ..................................................................... 123 

Figure 4-4. RMS and bias when projecting starting from a different age. The red dot refers to 

predictions using the immediate previous point to project forward. .......................... 124 

Figure 4-5. Observed vs predicted for the main and validation dataset when predicting values 

using the immediately previous observation as starting point. .................................. 125 

Figure 4-6. Residuals plot for the main and validation dataset when predicting values using 

the immediately previous observation as starting point. ............................................ 126 

Figure 5-1. Brownian motion example, taken from (Dobrow, 2016a), Figure 8.1. 

Superimposed are normal density curves with mean 0 and variance 𝑡. ..................... 151 



 

xiii 

Figure 5-2. Comparison between assuming variance as a constant and as an increasing 

function of time. ......................................................................................................... 152 

Figure 5-3. Loglikelihood values calculated using a constant value (M1) or an increasing 

variance function (M2). The labels indicate the age of the observation being 

evaluated. ................................................................................................................... 153 

Figure 5-4. Variance from an SDE of the form from Eq. 5-5, using Eq. 5-7 with 𝑟 = 0.1 and 

𝜎 = 0.05. .................................................................................................................... 154 

Figure 5-5.Variance form for the model from Eq. 5-13, with 𝜎 = 0.1 , 𝜇0 = 0.4, and 𝐾 =

0.12. ........................................................................................................................... 155 

 

 



 

1 

 

 

CHAPTER 1 

1. INTRODUCTION AND LITERATURE REVIEW 

1.1. INTRODUCTION  

The forestry industry is one of the most important industries in the southeastern United States, 

it generates almost $25 billion dollars in revenue and employs more than 55,000 people for the 

state of Georgia alone, ranking second in employment after the food processing industry (GFC, 

2021). This industry relies on forests (natural or planted) that are intensively managed to increase 

growth and improve product quality. Intensive forest management includes activities such as site 

preparation techniques to improve soil physical and chemical conditions, herbicides application to 

remove competing vegetation, fertilization to correct nutrient deficiencies, and midrotation 

treatments like thinings to control product size and quality (Fox et al., 2007; Jokela et al., 2010). 

These activities have been studied and tailored into silvicultural practices that are applied 

differentially depending on the tree species and site with the main goal of maximizing growth 

gains, which can justify the additional costs associated to these practices. It becomes then 

necessary to have growth and yield (G&Y) models/systems that can accurately predict gains from 

these silvicultural treatments and can therefore support managers when making decisions about 

forest management in the region.  

In this dissertation, silvicultural treatments were studied and incorporated into growth and yield 

models for the second most important commercial species in the Southeastern United States, slash 

pine (Pinus elliottii Engelm.) (Barnett and Sheffield, 2004). The focus was on two silvicultural 

treatments, bedding and complete vegetation control of competing vegetation. These two 
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treatments are usually applied during site preparation with bedding aiming to improve rooting, soil 

moisture and nitrogen availability (Morris and Lowery, 1988) and vegetation control aiming to 

release competition for the crop tree and maximize the resources available on the site. To evaluate 

the effect of these treatments on slash pine growth, a long-term study established in 1979 by the 

Plantation Management Research Cooperative (PMRC) of the University of Georgia was used. 

This study was comprised of 72 different plots installed in the Lower Coastal Plain of Georgia, 

Florida and South Carolina, in which slash pine seedlings were planted and different silvicultural 

treatments were applied during site preparation. Measurements of diameter, height and other 

variables of interest were taken every three years starting at age five, with most plots having 

observations until year 26 and a few plots having a last measurement at year 31.  

Growth was modeled for the three main variables composing a stand growth and yield system, 

dominant height, mortality/survival, and basal area. The long-term effects of the mentioned 

treatments were first evaluated for dominant height and are presented in Chapter 2. In Chapter 3 a 

new dominant height model is presented using differential equations with the aim of coupling this 

model with a mortality model in which height increments instead of time increments were tested. 

In addition in this chapter, mortality was modeled including the effect of fusiform rust (Cronartium 

quercuum Berk.) infection on the mortality rate. Fusiform rust is a common pathogen affecting 

slash pine plantations and it has been associated with higher mortality rates before (Devine and 

Clutter, 1985; Nance et al., 1981). The final G&Y system is presented in Chapter 4 with the three 

mentioned variables of interest. This chapter was built upon Chapter 3, using the same dominant 

height and mortality models explained in Chapter 3, and incorporating the additional component 

of basal area. The final G&Y system proposed was an intercorrelated system of differential 

equations in which dominant height and mortality are independent, but the basal area model uses 
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these two variables as predictors. Both dominant height and basal area models were modified to 

include the effect of bedding and vegetation control. The mortality model did not include these 

modifications after finding non-significant effect of these treatments on the survival of the trees 

evaluated.  

When using differential equations to model forest growth as in Chapter 3 and Chapter 4, a 

natural approach to incorporate uncertainty into the models has been to use stochastic differential 

equations (SDEs) (Garcia, 1979). In the last part of this dissertation (Chapter 5), a critical review 

of the use of SDEs in forestry is presented with the intention of explaining its advantages and 

limitations when incorporating process and observation error into forestry G&Y systems. 

Examples are presented to clarify some concepts and a different approach, also using differential 

equations but without the stochastic framework, is proposed to incorporate uncertainty into G&Y 

systems. 

1.2. LITERATURE REVIEW 

Slash pine (Pinus elliottii Engelm.) is the second most important commercial species in the 

southeastern United States (Barnett and Sheffield, 2004), it outperforms other commercial species 

when established on its natural habitat where poorly drained flatwoods are predominant (Barnett 

and Sheffield, 2004). As it is common in this region of the United States, slash pine plantations 

are accompanied by prescribed silvicultural treatments like bedding, vegetation control, and 

fertilization, which together aim to increase productivity over time (Fox et al., 2007; Jokela et al., 

2010). Responses to silvicultural treatments have been studied for this species, reporting growth 

gains even at mature ages (Zhao et al., 2009). These gains can be incorporated into growth models 

in different ways. These strategies can usually be grouped in one of the following streams: 1. Look-

up tables (e.g., Montes, 2001; Logan and Shiver, 2006). 2. The age-shift method (e.g., South et al., 



 

4 

2006; Carlson et al., 2008). 3. Separate equations for untreated and treated plots (e.g., Pienaar and 

Rheney, 1995). 4. A single equation that incorporates a multiplier function describing the treatment 

effect (e.g., Hynynen, 1995). 5. Modifications of the model parameters to account for treatment 

effect (e.g., Mason and Milne, 1999). 

The most common approach to incorporate gains from silvicultural treatments into growth 

models has been to add a response function to a base model, as proposed by Pienaar and Rheney 

(1995). Nevertheless, when following this approach, the variability observed on the different plots 

is passed to the response function, ignoring the site-specific factors that interact with the treatments 

applied (Fang and Bailey, 2001). To avoid this issue, both the control and the treatment functions 

must be fitted simultaneously as Hynynen et al. (1998) proposed, or a relative response can be 

used, as proposed by Scolforo et al. (2020). Another approach, which avoids these issues and 

where few assumptions are required regarding the expected response form, is to modify the 

parameters of the base model according to the treatment applied (e.g., Mason and Milne, 1999; 

Salas, Stage and Robinson, 2008; Gyawali and Burkhart, 2015). This approach was tested and used 

in this dissertation to incorporate the effects of bedding and vegetation control on dominant hegith 

and basal area growth for slash pine.  

Although some authors have found for slash pine that bedding is associated with a lower 

mortality rate when stands are located in poorly drained soils (Gent et al., 1986; Pritchett, 1979) 

and higher survival rates have been reported after vegetation control applications in some specific 

sites (Creighton et al., 1987), these silvicultural treatments are rarely mentioned when evaluating 

mortality in slash pine plantations. The effect of these treatments on mortality rates was evaluated 

as part of this dissertation. Nevertheless, the most important factor when assessing 

survival/mortality in slash pine plantations is the presence of fusiform rust (Cronartium quercuum 
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Berk.) infection. This pathogen has been associated with higher mortality rates in slash pine 

plantations and its absence/presence and magnitude of the infection are useful predictors when 

modeling mortality in slash pine (Bailey and Burgan, 1989; Devine and Clutter, 1985; Nance et 

al., 1981). Although infection by C. quercumm does not directly cause tree death, it produces 

cankers located in the stem or branches of the tree, which debilitate the tree and increase the 

probability of the tree dying compared to healthy trees (Jones, 1972; Sluder, 1977). The inclusion 

of average fusiform rust infection rates as a predictor of mortality was then tested for the slash pine 

stands evaluated in this research.  

Growth and yield (G&Y) systems for forest stands usually include three state variables, 

dominant height, survival/mortality, and basal area. Differential equations are commonly used to 

define these systems, usually as an interdependent system of equations where some variables 

appear in both the left and the right-hand side of the equations. These systems require estimation 

techniques in which parameters are estimated simultaneously to get unbiased estimates of the 

parameters of the system (Borders and Bailey, 1986; Goelz and Burk, 1996). For slash pine, some 

authors have developed G&Y systems including silvicultural treatments effects, although using 

independent models for each component (Bailey and Burgan, 1989; McTague, 2009; Pienaar and 

Rheney, 1995), and when using simultaneous estimation, the focus has been on the baseline 

treatments, which do not consider treatment response (Borders and Bailey, 1986; Gallagher et al., 

2019; Murphy and Sternitzke, 1979; Pienaar and Harrison, 1989; Sullivan and Clutter, 1972). 

Fewer authors have included both response to silvicultural treatments and simultaneous estimation 

(Fang et al., 2001; Martin et al., 1999). In this dissertation, a G&Y system for slash pine plantations 

using a system of differential equations where silvicultural treatments were included, and 

simultaneous estimation was used is presented.  
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Ideally, G&Y systems should be able to incorporate fluctuations generated by either random 

environmental factors or by errors during the measurements and sampling procedure (Sandland 

and McGilchrist, 1979). Different approaches have been proposed in the forestry literature to 

incorporate this variation. The most common approach, adapted to forestry systems from the 

econometry literature, is to model the variance by defining different variance/covariance matrices 

according to the expected error and correlations in the data. These matrices are then used in 

techniques known as two or three least squares (2SLS-3SLS) (Borders and Bailey, 1986; Pienaar 

and Harrison, 1989), or mixed effect models (Fang et al., 2001; Gallagher et al., 2019). LeMay 

(1990), for example, proposed an approach to fit simultaneous, contemporaneously correlated 

systems of equations with both serial correlated and heteroscedastic error terms called multistage 

least squares (MSLS). 

Another approach to incorporate uncertainty into G&Y systems is the one proposed by Garcia 

(1979). Garcia proposed the use of stochastic differential equations (SDEs) to model growth in 

forestry. In this approach random variations are added as Wiener or Brownian motion process. 

Garcia proposed this application in which the process error (generated by stochasticity in the 

growth process itself) is separated from the observation error, attributed to measurements and 

sampling errors only. Although Garcia has modified and extensively worked on simplifying his 

proposed approach, and other authors have followed this approach (Donnet et al., 2010; Orrego et 

al., 2021; Rupšys, 2019; Zhang and Borders, 2001), SDEs are not commonly used in forestry as 

they are perceived as complex and hard to implement (Burkhart and Gregoire, 1994). The last 

portion of this dissertation was designed to provide a general context on the SDEs and explain the 

advantages and limitations of this approach also when compared with a different and simpler 

approach proposed here. 
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1.3. OBJECTIVES 

1.3.1. MAIN OBJECTIVE  

The main objective of this dissertation is to provide a growth and yield system for 

slash pine plantations in which silvicultural treatments are incorporated. The specific 

objectives of each one of the chapters are presented below. 

1.3.2. SPECIFIC OBJECTIVES 

Chapter 2:  

a) Characterize the long-term effects of bedding and vegetation control on the 

dominant height of slash pine plantations. 

b) Construct a dominant height and site index model that could account for treatment 

effects and their interaction. 

Chapter 3: 

a) Develop a survival/mortality model for slash pine plantations including the effect 

of silvicultural treatments and the effects of fusiform rust infection on the mortality 

rate. 

b) Determine if mortality models developed from differential equations in which 

height increments instead of time increments are used, are more accurate to describe 

mortality in slash pine. 

Chapter 4: 

a) Incorporate the effects of bedding and vegetation control into a growth and yield 

system for slash pine composed of dominant height, mortality, and basal area. 
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Chapter 5: 

a) Explain SDEs when incorporating uncertainty into a growth and yield system in 

forestry. 

b) Compare the use of SDEs to the alternative option of modeling variance directly 

when using maximum likelihood. 
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ABSTRACT 

The long-term effect of bedding and vegetation control on dominant height in slash pine (Pinus 

elliottii Engelm) was evaluated using data from a site preparation study established in 1979 by the 

Plantation Management Research Cooperative (PMRC) at the University of Georgia in the 

southeastern United States. The experimental design corresponded to a 2 x 2 factorial with 

replications over 16 different locations, distributed over the natural range of slash pine.  Our results 

show sustained gains in dominant height, reaching a peak increment around age 11, with values of 

1.0, 2.2, and 2.9 m of average gain for the bedding, vegetation control, and combined (Bed + Veg.) 

treatments, respectively. At age 31, an approximate rotation age, these gains were no longer present 

for the bedding treatment, whose dominant height trajectory converged to the values of the 

untreated control and decreased to 1.9 m for both treatments involving competing vegetation 

control.  These results are similar to previously reported results in the literature for these two 

treatments in slash pine. We proposed a modified Chapman-Richards type model to describe these 

trends. In this modeling approach, the base equation was modified using a set of dummy variables 

in the form of power functions to reflect the treatment effect. Both treated and untreated plots were 

simultaneously fitted in this model, and contrarily to the most common approach of adding an 

independent factor to a base model to account for the treatment response, our model does not 

assume the control plot to be error free. The flexibility of the proposed model allows practitioners 

to include observed gains in dominant height from these treatments. A slash pine site index model 

using the algebraic difference approach (ADA) was also derived. 

2.1. INTRODUCTION 

Slash pine (Pinus elliottii Engelm.) is the second most important commercial species in the 

southern United States (Barnett and Sheffield, 2004). On its natural habitat, characterized by 
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poorly drained flatwoods and seasonally flooded areas, it outperforms other common commercial 

pine species, producing high quality timber that encompasses a large portion of the regional timber 

market (Barnett and Sheffield, 2004). Traditionally in this region of the United States, intensive 

silvicultural management has been prescribed for commercial forest plantations with the aim of 

increasing resources available to the crop trees and reducing competition as well as to increase end 

product value (Fang and Bailey, 2001; Martin et al., 1999). Common silvicultural treatments 

include bedding, herbaceous and/or woody vegetation control at establishment, fertilization with 

nitrogen and phosphorus, and thinning (Fox et al., 2007; Jokela et al., 2010). These treatments are 

long justified by different studies showing significant responses in height, basal area, and volume 

when they are applied at a juvenile stage (Colbert et al., 1990; Jokela et al., 2000; Zhao et al., 

2008), with gains visible at mature ages (Fang and Bailey, 2001; Jokela et al., 2010; Zhao et al., 

2009). With the increasing interest to maximize carbon capture, investigating whether these gains 

are maintained or reduced, close to or beyond traditional harvest ages for the species (25 – 30 

years), becomes a question of interest, and one that only few studies can answer. 

Snowdon and Waring (1984, 1981) studied the nature of silvicultural responses at early stages 

in other pine species (radiata pine).  Their work provided the foundations to characterize growth 

rates of forest plantations after silvicultural treatments were applied, classifying them into two 

broad categories that link response to short- or long-term resource availability. Type I responses 

are the product of those treatments which temporarily increase the growth rate of the stand but do 

not have a sustained effect on site properties (e.g., nitrogen fertilization, weed control), while type 

II responses are the result of treatments such as phosphorus fertilization, or continuous nitrogen 

fertilization, which can generate a sustained change in site productivity (Snowdon, 2002). Other 

classifications in the forestry literature refer to the type I response as type B, and to the response 
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type II as type A, and a third classification called type C is usually used to described treatments 

such as bedding, which generate an early gain that dissipates with time (Hughes et al., 1979; 

Morris, 1988).  

Analysis of variance (ANOVA) and modeling, are two common approaches employed when 

analyzing and defining the observed response type, with modeling being a more comprehensive 

method that has become an essential tool to also determine the economic feasibility of silvicultural 

treatments (Snowdon, 2002). To include the effect of silvicultural treatments as part of growth and 

yield systems, practitioners have tried different strategies.  These strategies can usually be grouped 

in one of the following streams: 1. Look-up tables (e.g., Montes, 2001; Logan and Shiver, 2006). 

2. The age-shift method (e.g., South et al., 2006; Carlson et al., 2008). 3. Separate equations for 

untreated and treated plots (e.g., Pienaar and Rheney, 1995). 4. A single equation that incorporates 

a multiplier function describing the treatment effect (e.g., Hynynen, 1995). 5. Modifications of the 

model parameters to account for treatment effect (e.g., Mason and Milne, 1999).  

Among these strategies, the one proposed by Pienaar and Rheney (1995) has been frequently 

used due to its ease of implementation (e.g., Mason and Milne, 1999; Quicke, Glover and Glover, 

1999; Amateis et al., 2000). With this method, a response to a given treatment is first characterized 

as the cumulative difference between a control and a treated subject and later added to a baseline 

model that calculates gains at a stand or plot level. Nevertheless, this approach ignores the inherent 

variability in state variables (basal area, dominant height and stand density) between different plots 

of a given stand, assigning the same response based on the treatment applied, without any 

consideration of how this response would vary depending on specific site attributes (Fang and 

Bailey, 2001). Including treatments response in this way, implies that the variability in the control 

plots used to build the response function is passed to the response factor. The same issue can be 
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present if a treatment modifier is added as a multiplicative factor to a base model and  treated and 

untreated plots are fitted independently as in Gyawali and Burkhart (2015). Nevertheless, if both 

the base and treated plots are modeled simultaneously, as in Hynynen et al. (1998), or a relative 

response is used as in Scolforo et al. (2020), this problem can be overcome.  

Although the other mentioned approaches have proven to be effective to model treatment 

response, they usually rely on assumptions about the response type and the interaction between 

treatments. This is the case of the age-shift approach, where it is assumed that the shape of the 

growth curve does not change with the inclusion of silvicultural treatments (South et al., 2006), 

being useful only when Type B responses are assumed. Look up tables as in Logan & Shiver 

(2006) have been used as a way to modify the response according to the base site index (i.e., 

dominant height at base age for the control treatment), although a linear relationship between site 

index (SI) and the expected gain was assumed by these authors. On the other hand, few 

assumptions regarding the treatment effect are necessary when treatment responses are modeled 

by including variation factors directly on the parameters of the original model (e.g., Mason and 

Milne, 1999; Salas, Stage and Robinson, 2008; Gyawali and Burkhart, 2015). When following this 

approach, both treated and untreated plots are modeled simultaneously, avoiding the assumption 

of an error free control plot. Therefore, a response type does not need to be assumed given that the 

estimated changes in the parameters account for the response trend.  

One important aspect that must be considered when deriving site index equations from 

dominant height models that include responses to site preparation silvicultural treatments, is that 

the expected response (or gain) is influenced by the base SI. This relationship has been confirmed 

across several commercial species and silvicultural treatments (Fang and Bailey, 2001; Logan and 

Shiver, 2006; Zhao et al., 2016). Therefore, to accurately generate SI curves, the gain in dominant 
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height as a function of base SI should be included so that accurate predictions are made for a given 

site. 

Logan & Shiver (2006) acknowledged this relationship and proposed a response function to 

adjusts dominant height curves by using values of expected gain for different site indexes and 

silvicultural treatments. Nevertheless, these authors assumed an arbitrary linear relationship 

between base SI and gain for all the treatments. For the SI equations developed in the present 

research, the relationship between base SI and gain in dominant height was hypothesized to be 

inverse (decrease in gain with increasing SI), but non-linear.  

We hypothesize that by modifying the parameters of a dominant height model according to the 

treatment applied, a flexible model will be generated such that the long-term response to treatments 

is accurately captured. Thus, the objectives of this research were to (i) characterize the long-term 

effects of bedding and vegetation control on the dominant height of slash pine plantations, and (ii) 

construct a dominant height and site index model that could account for treatment effects and their 

interaction.  

2.2. METHODS 

2.2.1. DATA 

For this research we used a long-term slash pine study established in 1979 by the Plantation 

Management Research Cooperative (PMRC) at the University of Georgia in the southeastern 

United States.  The study’s main objective was to evaluate differences in growth response to site 

preparation silvicultural treatments. Treatments for this study included burning, chopping, 

bedding, competing vegetation control, and fertilization. Mid-rotation treatments, including 

thinnings, were not carried out on the study plots. The study layout comprised 20 installations 

across Georgia, Florida, and South Carolina, stratified equally over Spodosols and non-Spodosols. 
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From those installations, only 14 of them with measurements up to year 31 remain active. In 

addition to these installations, 2 more installations that are no longer active but were measured up 

to year 26, were included for this research. Figure 2-1 shows the distribution of the 16 installations 

used in this research.  

From the mentioned study, a subset of the original treatments was taken to form a 2 x 2 factorial 

design with bedding and complete vegetation control as main treatments for a complete 

randomized factorial design. The vegetation control treatment refers to herbicide application 

targeting all competing vegetation until crown closure (Zhao et al., 2007). Chopping and burning 

were considered to be the operational site preparation treatments at the time of the trial installation, 

and plots receiving them were taken as the control plots for this research. Plot size corresponded 

to 0.2 ha, with a measurement plot of 0.08 ha. At the time of planting, seedlings were double 

planted to ensure an approximately homogeneous initial planting density.  Double planted slots 

had the smaller seedling removed after one year.  Measurements of diameter at breast height 

(DBH) for all the trees, and total height for a portion of the trees, were taken every 3 years from 

age 5 to age 31, with the latest measurement taken in 2010. No major mortality events, rather than 

natural mortality, were observed during the measurement periods. For more details on the study 

design, see Zhao et al., (2009) and Zhao et al., (2007). 

Only a fraction of the tree heights was measured on every plot, therefore a DBH-height model 

was fitted for each plot at every measured age to estimate the remaining heights and then determine 

the average dominant height. The height model was: 

𝐻𝑡𝑜𝑡𝑖𝑗𝑘
− 1.4 = 𝛽0𝑖𝑗

𝑒𝑥𝑝 (
𝛽1𝑖𝑗

𝐷𝐵𝐻𝑖𝑗𝑘
) 
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Where 𝐻𝑡𝑜𝑡𝑖𝑗𝑘
 is the total height for the 𝑘𝑡ℎ tree in the 𝑖𝑡ℎ plot at age 𝑗. 𝛽0𝑖𝑗

 and 𝛽1𝑖𝑗
 are 

parameters to be estimated for each plot at every age, and 𝐷𝐵𝐻𝑖𝑗𝑘 is the diameter at 1.4 m for the 

𝑘𝑡ℎ tree in the plot 𝑖 at age 𝑗. Once the total height was estimated for all the trees, dominant height 

was calculated as the per plot average height of the dominant and co-dominant trees (i.e., trees 

with DBH greater than the quadratic mean diameter). A summary of the dominant height values 

per treatment is presented in Table 2-1. Additional stand characteristics are presented in Table 2-2 

for a subset of the measurement periods. 

2.2.2. DOMINANT HEIGHT MODEL  

To model the response to silvicultural treatments, a reparametrized Chapman-Richards (CR) 

type model was selected, including dummy variables that allow changes over the asymptote and 

the slope parameters depending on the treatment being applied. This model was compared with a 

model fitted following the Pienaar and Rheney (1995) modelling approach (PR). These authors 

developed a height growth and a basal area model including responses to silvicultural treatments 

by adding an independent treatment factor to base models for each variable. The two models 

compared are summarized below. 

𝐷𝐻𝑡 = 𝑎0𝑏1
𝑧1𝑏2

𝑧2 × (1 − 𝑒𝑥𝑝(−𝑎1𝑏3
𝑧1𝑏4

𝑧2  𝑡))
𝑎2

 (CR) This paper 

𝐷𝐻𝑡 = 𝑎0(1 − 𝑒𝑥𝑝(−𝑎1𝑡))𝑎2 + (𝑏0𝑍1 + 𝑏1𝑍2)𝑡𝑒−𝑏2𝑌𝑆𝑇 (PR) 
(Pienaar and 

Rheney, 1995) 

 

Where 𝐷𝐻𝑡 is dominant height (in meters), at age 𝑡 (in years), 𝑌𝑆𝑇 is years since the treatments 

were applied, which is equivalent to 𝑡 since all the treatments were applied at the establishment 

phase, 𝑎0, . . , 𝑎2 and 𝑏0, . . 𝑏4, are parameters to be estimated, 𝑍1 is a dummy variable equal to 1 if 

bedding was applied and zero otherwise, and 𝑍2 is also a dummy variable that equals 1 if vegetation 

control was applied, or zero otherwise.  
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The models were fitted using non-linear least squares using the software R (R Core Team, 

2018). The models’ performance was evaluated using the adjusted coefficient of determination for 

non-linear models (R2
adj), Root Mean Square Error (RMSE), and Akaike’s information criterion 

(AIC), calculated as follows: 

𝑅𝑎𝑑𝑗
2 = 1 −

(𝑛 − 1) ∑ (𝑌𝑖 − 𝑌𝑖̂)
2𝑛

𝑖=1

(𝑛 − 𝑝) ∑ (𝑌𝑖 − 𝑌̅)2𝑛
𝑖=1

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑌𝑖 − 𝑌𝑖̂)

2𝑛
𝑖=1

𝑛 − 𝑝
 

𝐴𝐼𝐶 = 𝑛 ln 𝜎̂2 + 2(𝑝 + 1) 

Where 𝑛 is the total number of observations, 𝑝 is the number of parameters in each model,  𝑌𝑖 

is the observed dominant height, 𝑌𝑖̂ is the estimated dominant height, and 𝜎̂2 is the estimated mean 

square error of the model, calculated as follows:  

𝜎̂2 =
∑ (𝑌𝑖 − 𝑌𝑖̂)

2𝑛
𝑖=1

𝑛
 

A 𝑘-fold cross-validation with 5 folds was carried out to evaluate the predictive performance 

of the models. This procedure consisted of removing one fifth of the data points (chosen randomly) 

and fitting the proposed models with the remaining data. Afterwards, an estimation of the points 

previously excluded was made with the fitted model and the RMSE was calculated. The procedure 

was repeated five times using random plots selected without replacement and the RMSEs found 

for the five iterations were averaged.  

2.2.3. SITE INDEX MODEL 

Site index (SI) equations can be derived from dominant height models following the procedure 

highlighted by Bailey and Clutter (1974), commonly known as the algebraic difference equation 

approach (ADA). This method replaces one of the parameters in a yield equation by a local 
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parameter, under the assumption that it will be related to the stand SI. Depending on which 

parameter is selected as local, either anamorphic or polymorphic SI curves can be generated. When 

more than one parameter is related to SI, a generalized difference equation approach (GADA) 

proposed by Cieszewski and Bailey (2000) is often followed. These methods have been widely 

used to derive SI equations for commercial plantations (Diéguez-Aranda et al., 2006, 2005).   

SI models seldom include responses to silvicultural treatments. Some authors (e.g., Antón-

Fernández et al., 2011; Sharma et al., 2002; Tymińska-Czabańska et al., 2022), have developed SI 

models that are sensitive to stand density, nevertheless, silvicultural treatments such as bedding or 

vegetation control are not frequently included in SI models.  Both of the models presented could 

be used to derive a SI model which includes responses to silvicultural treatments by relating 

parameters 𝑎0 or 𝑎1to SI and deriving a dynamic equation. These formulations are presented in 

Table 2-3. 

The dominant height model that presented the best fit (from section 2.2.2) was selected to derive 

the SI model by estimating locally the parameters 𝑎0or 𝑎1 using the dummy variable approach. 

The initial values required for the non-linear least squares’ optimization were selected from the 

global values estimated for the dominant height model in section 2.2.2. The best SI model was 

selected using the 𝑅𝑎𝑑𝑗
2  and 𝑅𝑀𝑆𝐸 metrics. 

The SI model required to be modified to properly express gains in SI. We hypothesized that 

gains in SI are inversely related to the base SI. The modification consisted of adding a gain function 

that models this relationship. The gain function was constructed by fitting the dominant height 

model individually for each one of the 16 installations, calculating the SI for the control treatment 

(𝑆𝐼25), and then calculating the gain in SI due to the treatments (𝐺𝐻𝐷𝑂𝑀𝑖
). Different models were 

fitted to these values including a linear, a logarithm and an exponential function (Table 2-4). The 
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model with higher coefficient of determination (R2) was selected to be combined with the SI 

model. 

The gain function was added to the SI model by replacing the value of 𝐷𝐻𝑡0
 in the dynamic 

equations in Table 2-3 by (𝐷𝐻𝑡0
+ 𝐺𝐻𝐷𝑂𝑀𝑖

). Adding this factor guarantees that dominant height 

predicted at the base age reflects treatments gains. This gain function is required regardless of the 

used approach (ADA anamorphic or polymorphic, or even GADA). Without this additional 

function, all the dominant height curves would yield the same dominant height at the point where 

𝑡 = 25 (base age used for slash pine).  This would be incorrect since some treatments do show 

gains in dominant height at age 25 and the fact that the models predict the same dominant height 

at the base age is an artifice of the model generated by the way the dynamic equations are derived. 

This was evident in the work of Socha et al., (2021) who developed a dominant height model for 

Scot pine in Poland using the GADA approach. In their work, parameters were modified to account 

for regional differences, and the described issue is evident when plotting the dominant height 

trajectories for the different regions.  

2.3. RESULTS 

Bedding and vegetation control had a positive effect on dominant height through age 11. The 

average dominant height for all the treatments, as well as the average gain is shown in Figure 2-2. 

Vegetation control had a stronger effect compared to bedding alone, whereas the combined 

treatment generated the highest response of all the treatments. At age 31, the effect of bedding was 

no longer visible, converging to the control treatment. On the other hand, the vegetation control 

still had a positive effect on dominant height at this age. At age 31, stands where vegetation control 
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was applied (with or without bedding) had a dominant height 1.9 m higher than those on the control 

treatment for the average condition.  

From the analyzed data, the effect of bedding on dominant height can be categorized as a Type 

C response (initial increase, then decreasing over time), with an initial increase in dominant height 

compared to the control treatment, but a decrease to zero at age 31. The vegetation control 

treatment generated a type B response (initial increase, then sustained gain over time), attaining a 

maximum at age ~11 and remaining relatively stable until age 31. When combined with bedding, 

a type C response was observed, with values decreasing after reaching the maximum response. 

The combination of bedding and vegetation control showed no strong interaction. This was 

expected since the two treatments were targeting different resources on the site. While bedding 

improves soil physical conditions and increases runoff in poorly drained sites, providing an 

elevated environment out of saturated conditions for the seedlings (Morris, 1988), the vegetation 

control treatment reduces the loss of resources to competing vegetation and produces a major 

allocation of these resources to the crop-trees (Allen et al., 1990). In general, an additive response 

was observed. Major differences between the vegetation control and the combined treatment were 

observed at younger ages (<15 years), where the bedding effect was greater. At age 31, these two 

treatments generated a very similar response due to the almost null effect of bedding at this late 

age in the rotation.  

2.3.1. DOMINANT HEIGHT MODELS 

The estimated parameters for the CR and the PR model are presented in Table 2-5. The CR 

model was modified to include a variance stabilization parameter (𝛽) to correct for 

heteroscedasticity. Weighted regression was used for estimating the parameters with weights 

equivalent to the inverse of the variance (1/𝜎𝛽). The statistics used to evaluate the models’ 
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performance are presented in Table 2-6. A very similar performance was found between the two 

models, with the same R2
adj, and very similar values of RMSE. Both models also performed 

similarly when evaluating their performance using cross-validation. The AIC was the only criteria 

where there was a bigger difference between the models, favoring the PR model, most likely for 

having two less parameters compared to the CR model. 

Even though both models had similar precision (Table 2-6) , when evaluating them by 

comparing the predicted and observed gain, the differences between the models become more 

apparent (Figure 2-3). The CR model more accurately predicts the average gain observed when 

bedding is applied, whereas the PR model underestimates the gain at early ages (<20 years) and 

overestimates the gain at later ages (>20 years). Nevertheless, when underpredicting, the difference 

between the average gain and the predicted gain for this model were not greater than 0.3 m, and 

when overpredicting, the maximum difference observed (at age 31) was less than 0.5 m.  

The ability of a model to accurately predict gains from a given treatment depends on how 

accurately it predicts dominant height for both the control and the respective treatment. This can 

be better seen in Figure 2-4 for the CR model and Figure 2-5 for the PR model. In fact, both models 

predict with a low error (less than 0.2 m) the average dominant height (red line) for the control 

treatment up to age 26 but overestimate this value when approaching to age 31. Both models also 

accurately predict dominant height for the vegetation control treatment. The biggest differences 

observed in Figure 2-3 are the result of combining the errors for the control and the treatment 

predictions. These differences are magnified when the control is underestimated but the gain is 

overestimated. For example, if the dominant height is underestimated for the control, by 0.2 m, 

and the dominant height for the treatment is overestimated by the same 0.2 m, the gain would be 
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overestimated by 0.4 m, which is what happened with the CR model when evaluating gains for the 

vegetation control treatment.  

When comparing both models with the observed average dominant height (red lines in Figure 

2-4 and Figure 2-5), the differences between them become less apparent, and both show good 

predictions especially over the range of 5-25 years. The variation in the observed dominant height 

for the different plots of the study (grey lines in Figure 2-4 and Figure 2-5) is hypothesized to be 

a consequence of the different local conditions. The inclusion of site index into the dominant height 

model was then tested in an attempt to include this variability into the dominant height model. The 

CR model form was chosen to test this hypothesis and further construct a dynamic dominant height 

model that allowed derivation of the site index model. The residual error distribution of this model 

is presented in Figure 2-6 and additional diagnostics plots for the CR model are presented in Figure 

2-7. The predicted vs. observed plot shows how the original data is distributed equally along the 1 

to 1 line. Although there is higher dispersion for the higher values of dominant height, there are 

not obvious patterns of underestimation or overestimation. The normal Q-Q plot shows slight 

deviation from the normal distribution, especially, in the tails. Nevertheless, since the main 

purpose of this model was not to do inference, these deviations were not considered a significant 

pitfall of the model. 

2.3.2. SITE INDEX MODEL 

To generate the SI model, the two dynamic equations presented in Table 2-3 for the CR model 

were fitted using local parameters (either 𝑎0 or 𝑎1) per installation. When 𝑎0 was related to site 

index and fitted locally for each installation, the RMSE was 0.955 m, while when the growth rate 

(𝑎1) was related to site index, the RMSE was 1.123 m. Thus, the anamorphic dynamic equation 
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using 𝑎0 as the parameter related to site was used to generate the SI model by assuming 𝑡0 = 25 

and 𝐷𝐻𝑡0
= 𝑆𝐼25 , as follows: 

𝐷𝐻𝑡 = 𝑆𝐼25 [
1 − 𝑒𝑥𝑝(−𝑎1𝑏3

𝑧1𝑏4
𝑧2 𝑡)

1 − 𝑒𝑥𝑝(−𝑎1𝑏3
𝑧1𝑏4

𝑧2  (25))
]

𝑎2

  

 

The estimated parameters for this model are presented in Table 2-7. (Only the global parameters 

are presented). 

After exploring different models (Table 2-4), it was found that for the treatments involving 

chemical vegetation control, a linear model can be justified to explain the relationship between the 

base SI and the gain in expressed SI. The logarithm model (model 2 in Table 2-4) performed 

similarly to the linear model, but the latter was preferred for being more parsimonious. For the 

bedding treatment, parameters of the tested models were not significantly different from zero, 

meaning that there is not a significant change in expressed SI due to this treatment, therefore, no 

modification was needed for the SI equations including bedding. Consequently, for the treatments 

with vegetation control, the same model can be used regardless of being combined with bedding 

or not. The SI model can be then modified as follows: 

𝐻𝐷𝑡 = [𝑆𝐼25 + (𝛽0 + 𝛽1 𝑆𝐼25)] [
1 − 𝑒𝑥𝑝(−𝑎1𝑏3

𝑧1𝑏4
𝑧2  𝑡)

1 − 𝑒𝑥𝑝(−𝑎1𝑏3
𝑧1𝑏4

𝑧2  (25))
]

𝑎2

 

With 𝛽̂0  = 9.38 and 𝛽̂1 =  −0.39.  

The gain function added to the SI model ensures that dominant height estimated at the base age 

of 25 years reflects the gain in dominant height due to the treatment applied. Without this 

modification, all the dominant height curves would converge to the base SI at age 25, without 

reflecting the actual gain generated by the treatments (even when parameter 𝑏3 and 𝑏4 modify the 

function). The gain model was constructed combining the information of the vegetation control 
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and the combined treatment plots; the R2 for this model was 0.50 with a standard error of 4.5 m. 

Figure 2-8 shows the data and fitted line for the gain model. 

Using the derived site index model, SI curves were generated (Figure 2-9). It is evident how 

greater responses compared to the control treatment are observed for lower quality sites (SI 15 m 

and 18 m), versus the responses for higher quality sites (SI 21 m and 24 m).  

2.4. DISCUSSION 

Long-term studies bring opportunities to analyze how silvicultural treatments affect pine 

plantation growth, how different treatments interact, and what type of response is observed. In this 

study, a type C response was observed for the bedding treatment, consistent with previously 

reported studies (Zhao et al., 2009). Bedding has been acknowledged as a tillage treatment that 

improves rooting, soil moisture and nitrogen availability (Morris, 1988), increasing diameter and 

heights in pines, especially when these are established in wet, poorly drained sites (Gent et al., 

1986; Pritchett, 1979). In this research, installations were distributed over somewhat poorly 

drained soils (Shiver et al., 1990), which explains the gains observed. These gains were not 

maintained through age 31, as bedding is expected to improve establishment conditions without 

adding any extra resources to the site, therefore, a type C response was expected.  

The effects of vegetation control on slash pine height growth have been widely documented in 

the southern US (Zhao et al., 2009, 2007). Gains between 0.7 m and 1.5 m have been reported at 

young ages (2-7 years) when treatments removed competing vegetation (Creighton et al., 1987; 

Lauer and Glover, 1998), showing a peak gain at age ~11 and a subsequent slow decrease in growth 

over the control (Zhao et al., 2009). Similar results are reported in this study, with a maximum 

average gain in dominant height of 2.2 m achieved at age ~11 for the vegetation control treatment, 

and a 2.9 m gain for the combined treatment at the same age. The type B response observed for 
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this treatment has been previously observed for slash pine. Jokela et al. (2000) observed a decline 

in average height gains between ages 5 and 8 for slash pine due to early growth benefits requiring 

additional inputs to sustain acceptable growth rates (fertilizer additions or more intensive 

understory competition control). In this study, dominant height gains were maintained due to the 

continuous control of competing vegetation until crown closure. Nevertheless, a decline was still 

observed at later ages, probably due to the lack of available resources on the site and intra-specific 

competition that limited growth even when no competing vegetation was present.  

The CR dominant height model performed similarly to the PR model when comparing R2
adj and 

RMSE. Mason and Milne (1999), when modeling basal area growth in Pinus radiata in New 

Zealand, also compared the PR model with a model that included treatment responses using 

parameter modifiers. In their study, modifying the parameters to represent the effects of site-

preparation treatments resulted in reductions (although very small) of the model residual sum of 

squares. These authors found that adding an adjustment factor (as in the PR model) provided a 

better fit. In the research presented here, parameter modifiers showed a better fit when modeling 

the effect of bedding, but not the effect of vegetation control.  

With either of the models fitted, a dynamic equation that leads to a SI model can be derived. 

For both models, an additional factor (or gain function) that accounts for gains in expressed SI due 

to the treatments, must be included. When this is not done, all the treatments converge to the same 

SI value at the base age of 25 years. Since treatment gains were shown to be related to site quality, 

including a gain function that depends on the base SI was found to be necessary when modeling 

dominant height for the vegetation control treatment. The results showed expressed SI was not 

changed significantly when only bedding was applied (0.5 m increase), but those treatments 
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including vegetation control had an average increase in expressed SI varying from approximately 

-1.0 to 5.0 m, with the magnitude decreasing with increasing base SI.  

Negative values of changes in SI due to the treatments are generated when higher values of 

dominant height for the control are observed compared to the treated plots. This might have been 

the result of differences between the site qualities of a control plot and its counterpart receiving 

the treatment. Zhao et al., (2016) reported that if the plot receiving the treatment has a somewhat 

higher or lower site quality than its counterpart plot not receiving the treatment, the calculated 

response may be greater or less than the true response. The study design of this long-term study 

controlled for this factor by allowing no more than 1.5 m difference in SI between the control and 

the treated plots. Nevertheless, this difference can still have a significant influence in the resulting 

gain in SI values, especially for the low-quality sites, as showed in this research.  

Higher gains in low quality sites have been previously reported for slash pine. Oppenheimer et 

al. (1989) found for this species that responses to complete vegetation control could be affected by 

site quality, expecting lower gains for high quality sites which can support both understory and 

overstory vegetation. Logan & Shiver (2006) also confirmed this relationship for slash pine, 

reporting the variation in maximum gain differentiated by base SI, after applying treatments 

including bedding, vegetation control during site preparation, fertilization and mid-rotation 

release. These authors proposed a linear relationship between base SI and maximum expected 

response. In this research, a linear relationship was confirmed for base SI and expected gain at age 

25. This inverse relationship has been confirmed for other pines in the southern United States 

(Zhao et al., 2016). According to Zhao et al., (2016) the lack of response on high quality sites 

might be a consequence of the treatment not providing limiting resources, or the trees being limited 

by other resources different that the ones provided by the treatment, which limit the effect of the 



 

32 

treatment applied. These authors also mention plot to plot site variability, pest activity, weather 

events, and potential uneven treatment applications, as possible factors driving this relationship.  

2.5. CONCLUSIONS 

The control of competing vegetation by means of herbicide applications during site preparation 

activities for slash pine plantations had a long-lasting effect on dominant height still observed at 

age 31. The observed site index at age 25 was increased up to 5 m, with higher responses (relative 

to the control treatment) observed in low quality sites (i.e., base site index of 14 m). Higher quality 

sites (i.e., SI > 22 m) showed no significant increase in observed site index due to the treatment 

application. These findings imply that a more efficient application of herbicides can be done by 

targeting low quality sites which will show higher responses. On the other hand, bedding did not 

have a long-term effect on dominant height. Nevertheless, this treatment improved growth in 

dominant height at earlier stages (<20 years). The proposed SI model can be used to determine 

likely gains in dominant height due to treatment applications up to a rotation age of approximately 

30 years and to evaluate whether this expected gain justifies the application costs. 
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2.7. TABLES AND FIGURES 

Table 2-1. Dominant height statistics per treatment and age, in meters. 

Age 

(years) 
Treatment 

No. of  

plots 

Mean 

(m) 

SD 

(m) 

Min 

(m) 

Max 

(m) 

5 

Control 

20 3.2 0.7 2.1 4.7 

8 18 6.2 1.1 3.6 8.7 

11 18 9.1 1.6 5.6 12.2 

14 18 12.2 2.0 7.9 15.7 

17 18 14.5 2.4 9.4 18.6 

20 18 16.4 2.5 10.6 20.1 

23 17 18.3 2.9 12.6 22.5 

26 16 19.8 3.4 13.8 24.8 

31 12 20.9 4.1 14.8 26.7 

5 

Bedding 

21 3.9 0.7 3.1 5.2 

8 19 7.1 1.0 6.0 9.2 

11 19 10.1 1.3 8.3 13.1 

14 19 13.2 1.5 10.9 16.4 

17 19 15.5 2.0 12.6 19.5 

20 19 17.1 2.4 13.5 21.5 

23 18 18.9 2.9 14.5 24.2 

26 17 20.2 3.3 15.0 25.4 

31 11 20.9 4.2 15.2 27.0 

5 

Vegetation 

control 

18 4.7 0.8 2.9 6.0 

8 17 8.3 0.9 6.5 9.5 

11 17 11.3 1.1 9.6 13.2 

14 17 14.3 1.5 12.1 16.7 

17 17 16.5 1.8 14.2 19.9 

20 16 18.3 2.3 15.2 22.7 

23 15 20.1 2.4 16.7 24.5 

26 14 21.5 2.8 17.8 26.3 

31 10 22.8 3.2 19.3 28.5 

5 

Bedding + 

Vegetation 

control 

20 5.3 0.6 3.9 6.3 

8 18 8.9 0.7 7.8 10.1 

11 18 11.9 0.8 11.1 13.4 

14 18 14.9 1.1 13.2 16.8 

17 18 17.1 1.4 14.8 20.0 

20 17 18.6 1.8 16.4 22.1 

23 15 20.4 2.2 17.2 24.4 

26 15 21.9 2.4 18.6 26.2 

31 11 22.8 3.0 19.7 28.2 
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Table 2-2. Additional stand characteristics, averaged over all the installations (DBH: Diameter at 

breast height, BA: Basal area, TPH: trees per hectare). 

Treatment 
Age 

(years) 
DBH (cm) 

BA 

(m2/ha) 
TPH 

Control 

5 3.5 1.4 1,184 

11 11.0 11.2 1,109 

17 15.1 19.3 1,046 

23 17.3 24.4 1,017 

31 19.4 27.1 973 

Bedding 

5 4.9 2.8 1,258 

11 11.9 13.8 1,192 

17 15.6 22.6 1,141 

23 17.5 27.4 1,095 

31 19.5 28.6 1,042 

Vegetation control 

5 7.2 5.3 1,157 

11 14.3 18.6 1,131 

17 17.9 26.9 1,076 

23 20.3 31.5 992 

31 22.7 34.7 969 

Bedding + 

Vegetation control 

5 8.2 6.8 1,189 

11 14.8 20.3 1,146 

17 18.1 28.4 1,083 

23 20.0 32.0 1,005 

31 22.1 37.0 1,039 

5 7.2 5.3 1,157 
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Table 2-3. Base models and ADA formulations for the Chapman-Richards (CR) and Pienaar and Rheney (PR) models. Parameters and 

variables as defined in section 2.2. 

Model 

Parameter 

related to 

site 

Solution for 𝑿 with initial values 

(𝒕𝟎, 𝑫𝑯𝒕𝟎
) 

Dynamic Equation 

CR 𝑎0 = 𝑋 𝑋0 =
𝐷𝐻𝑡0

𝑏1
𝑧1𝑏2

𝑧2 × (1 − 𝑒𝑥𝑝(−𝑎1𝑏3
𝑧1𝑏4

𝑧2 𝑡0))
𝑎2

 𝐷𝐻𝑡 = 𝐷𝐻𝑡0
[

1 − 𝑒𝑥𝑝(−𝑎1𝑏3
𝑧1𝑏4

𝑧2  𝑡)

1 − 𝑒𝑥𝑝(−𝑎1𝑏3
𝑧1𝑏4

𝑧2 𝑡0)
]

𝑎2

 

 

CR 𝑎1 = 𝑋 𝑋0 = − 𝑙𝑛 [1 − (
𝐷𝐻𝑡0

𝑎0𝑏1
𝑧1𝑏2

𝑧2
)

1 𝑎2⁄

] 𝑏3
𝑧1𝑏4

𝑧2⁄ 𝑡0 𝐷𝐻𝑡 =  𝑎0𝑏1
𝑧1𝑏2

𝑧2 [1 − [1 − (
𝐷𝐻𝑡0

𝑎0𝑏1
𝑧1𝑏2

𝑧2
)

1 𝑎2⁄

]

𝑡 𝑡0⁄

]

𝑎2

 

PR 𝑎0 = 𝑋 𝑋0 =
𝐷𝐻𝑡0

− (𝑏0𝑍1 + 𝑏1𝑍2)𝑡0𝑒−𝑏2𝑡0

(1 − 𝑒𝑥𝑝(−𝑎1𝑡0))𝑎2
 

𝐷𝐻𝑡 = 𝑋0(1 − 𝑒𝑥𝑝(−𝑎1𝑡))𝑎2 +  

             (𝑏0𝑍1 + 𝑏1𝑍2)𝑡𝑒−𝑏2𝑌𝑆𝑇  

              

PR 𝑎1 = 𝑋 𝑋0 = − 𝑙𝑛 [1 − (
𝐷𝐻𝑡0−(𝑏0𝑍1+𝑏1𝑍2)𝑡0𝑒−𝑏2𝑡0

𝑎0
)

1 𝑎2⁄

] 𝑡0⁄   
𝐷𝐻𝑡 = 𝑎0(1 − 𝑒𝑥𝑝(−𝑋0𝑡))𝑎2 + 

(𝑏0𝑍1 + 𝑏1𝑍2)𝑡𝑒−𝑏2𝑌𝑆𝑇  
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Table 2-4. Models tested for base SI vs Gain in SI. 

ID Formula 

1 𝐺𝐻𝐷𝑂𝑀𝑖
= 𝛽0𝑖 + 𝛽1𝑖𝑆𝐼25 

2 𝐺𝐻𝐷𝑂𝑀𝑖
= 𝛽0𝑖 + 𝛽1𝑖 log( 𝑆𝐼25) 

3 𝐺𝐻𝐷𝑂𝑀𝑖
= 𝛽0𝑖 𝑒𝑥𝑝 (𝛽1𝑖 𝑆𝐼25) 

Where 𝐺𝐻𝐷𝑂𝑀 is the gain in expressed SI (m), 𝑎0𝑖 and 𝑎1𝑖 are the specific parameters for treatment 𝑖, 
and 𝑆𝐼25 is the base site index, or dominant height at age 25 for the control treatment. The indicator 𝑖 goes 

from 1 to 4 and indicating the treatments applied in the following order: control, bedding, vegetation 

control, and Bed + Veg. treatment.  
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Table 2-5. Estimated parameters for the two models evaluated, Chapman-Richards (CR), and 

Pienaar and Rheney (PR). 

Model Parameter Estimated value Standard error 

CR 

𝑎0 26.94 1.27 

𝑎1 0.07 0.01 

𝑎2 1.68 0.07 

𝑏1 0.94 0.03 

𝑏2 0.94 0.03 

𝑏3 1.16 0.04 

𝑏4 1.31 0.05 

𝛽 0.88  

 𝑎0 24.62 0.85 

PR 

𝑎1 0.08 0.01 

𝑎2 1.86 0.15 

𝑏1 0.15 0.05 

𝑏2 0.42 0.09 

𝑏3 0.07 0.01 
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Table 2-6. Statistics of the models evaluated, Chapman-Richards (CR), and Pienaar and Rheney 

(PR). 𝑅𝑎𝑑𝑗
2 : adjusted coefficient of determination, RMSE: Root mean square error, AIC: Akaike 

information criteria. 

Model 𝑹𝒂𝒅𝒋
𝟐  

RMSE 

(m) 

RMSE 

crossvalidation 

(m) 

AIC 

CR 0.8893 2.039 2.085 875.3 

PR 0.8905 2.028 2.086 867.9 
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Table 2-7. Estimated parameters for the dynamic site index model. 

Parameter Estimated value Standard error 

𝑎1 0.070 0.003 

𝑎2 1.649 0.049 

𝑏1 0.959 0.016 

𝑏2 1.001 0.017 

𝑏3 1.120 0.026 

𝑏4 1.221 0.029 

𝛽 0.207  
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Figure 2-1. Location of the long-term slash pine study (each dot corresponds to one of the 16 

installations used in this research). 
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Figure 2-2. Average dominant height (DH) by treatment (left) and gain with respect to the 

control treatment (right). 
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Figure 2-3. Average predicted dominant height (DH) and gain with the Chapman-Richards (CR) 

and Pienaar and Rheney (PR) models.  
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Figure 2-4. Residuals for the Chamman-Richards (CR) model calculated as 1. The observed 

value per plot minus the predicted value from the CR model (grey lines), and 2. The average 

dominant height (of all plots) at every age minus the predicted value from the CR model (red 

line). 
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Figure 2-5. Residuals for the Pienaar and Rheney (PR) model calculated as 1. The observed 

value per plot minus the predicted value from the PR model (grey lines), and 2. The average 

dominant height (of all plots) at every age minus the predicted value from the PR model (red 

line). 
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Figure 2-6. Residuals for the Chapman-Richards (CR) model. DH: dominant height. 
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Figure 2-7. Diagnostic plots for the Chapman-Richards (CR) model. DH: Dominant height. 
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Figure 2-8. Relationship between base site index (SI) and gain in SI. 
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Figure 2-9. Site Index curves including treatment response. DH: dominant height. 
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SILVICULTURAL TREATMENTS AND FUSIFORM RUST INFECTION RATES
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ABSTRACT 

The evaluation of stand survival at any age is an essential task that allows foresters to estimate 

stand dynamics and ultimately, the value of a forest stand. Therefore, any growth and yield system 

developed with the aim of predicting or projecting standing value requires precise estimates of the 

number of trees surviving at any point in time. When describing survival through modeling the 

mortality rate, differential equations using height increments rather than time increments have been 

shown to improve the overall fit of survival models. Using a long-term data set of slash pine 

plantations (Pinus elliottii Engelm.) in which silvicultural treatments (i.e., bedding and complete 

vegetation control) were applied during the establishment phase, and fusiform rust (Cronartium 

quercuum Berk.) infection rates were recorded, a survival/mortality model of this nature was 

constructed. Height increments were taken from a proposed dominant height model that included 

explicit treatment effects. In addition, the proportion of trees infected with fusiform rust at an age 

of 5 years was added as a predictor describing the mortality rate. Our results show that stand 

survival is better described by a model in which time increments are used rather than height 

increments, and although silvicultural treatments were essential for modeling dominant height, 

mortality was not greatly affected by these treatments and therefore, no additional parameter 

modifiers associated to these treatments were needed. On the other hand, the inclusion of average 

fusiform rust infections was essential to describe mortality rates in these stands, with higher 

infection rates associated to higher mortality rates. 

3.1. INTRODUCTION 

Forest stand dynamics and the associated financial value of a forest are largely determined by 

the stand survival at any point in time. It is therefore crucial that growth and yield systems 

developed to predict or project stand-level metrics (e.g., cubic volume, tons, or value), include a 
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precise estimate of the number of trees surviving at any age.  In forest plantations, density-

dependent mortality is the most common process modeled. There are numerous challenges 

associated with modeling other stochastic factors such as diseases, pest infestations, and extreme 

weather events (Lee, 1971). In the southeastern United States, the stand-level relative rate of 

density dependent mortality has been modeled using differential equations since the 1980s (Bailey 

et al., 1985; Clutter and Jones, 1980; Pienaar and Shiver, 1981).  This rate has been described as 

either a constant over time or as a function of current stand density, age and/or site quality. An 

extensive review of mortality functions was presented by Zhao et al., (2007a) concluding that no 

single equation was the best for all areas and management scenarios.  

A different approach to model survival in which mortality rates are modeled with respect to 

dominant height instead of time, also using differential equations, was proposed by Garcia (2009). 

Garcia argued that using dominant height instead of age was more appropriate to describe mortality 

rates since dominant height is directly describing size, while age, although related to size, is not a 

direct measurement of size. One advantage of following this modeling approach is the ability to 

obtain a model that is independent of site quality (a quantity expected to reflect the site conditions 

over time), but that at the same time is able to accommodate changes in dominant height 

trajectories, providing a good fit even when the data is scarce (Garcia, 2010; Garcia et al., 2011; 

Tewari and Singh, 2018).  

In the southeastern United States, pine plantations are intensively managed through silvicultural 

prescriptions aiming to reach the maximum production potential on a given site (Fox et al., 2007). 

Along with this intensive silviculture and management, growth and yield models have been 

constructed to accurately capture the effects of silvicultural treatment applications (Bailey and 

Burgan, 1989; Clutter and Jones, 1980; Gyawali and Burkhart, 2015; Martin et al., 1999; Pienaar 
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and Rheney, 1995). Silvicultural treatment effects are usually incorporated directly into growth 

and yield models by adding a response value to a control (or base) model (Pienaar and Rheney, 

1995) or modifying the parameters of the model (Mason and Milne, 1999).  

Particularly for slash pine (Pinus elliottii Engelm.), the second most important planted species 

in the Southern United States (Barnett and Sheffield, 2004), several authors have proposed 

dominant height and survival models that include the effect of silvicultural treatments mainly by 

adding additional treatment factors or modifying the parameters of the model according to the 

treatment applied (Bailey et al., 1985; Bailey and Burgan, 1989; Pienaar and Rheney, 1995; 

Ramirez et al., 2022). In light of the methodology proposed by Garcia  (2009), in which mortality 

is modeled with respect to dominant height instead of time, it is of interest to determine whether a 

mortality model for a forest stand in which silvicultural treatments were applied, requires 

additional modifications if the dominant height model already includes the treatment effects.  

Survival models for slash pine plantations usually include fusiform rust (Cronartium quercuum 

Berk.) presence and/or infection rates as an important component determining the mortality rate 

(Bailey and Burgan, 1989; Devine and Clutter, 1985; Nance et al., 1981). Fusiform rust is one of 

the most relevant pathogens affecting slash pine plantations in the southeastern United States, and 

despite loss estimates of around 84 million dollars (2020 US dollars) per year (Susaeta, 2020), 

infection rates have not declined significantly for this important species (Randolph, 2016). 

Although mortality is not always directly caused by the cankers produced in an infected tree, 

several studies have shown evidence of higher mortality rates in infected trees compared to 

uninfected trees (Jones, 1972; Sluder, 1977), and infection rate at young ages (< 5 years) has been 

identified as a good predictor of future mortality and volume loss in slash pine plantations (Wells 

and Dinus, 1978).  
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The main objective of this paper was to develop a survival/mortality model for slash pine 

plantations including the effect of silvicultural treatments and the effects of fusiform rust infection 

on the mortality rate. The methodology proposed by Garcia (2009) involving dominant height 

increments was tested and model performance was compared with other mortality models that 

included the treatment effect explicitly and described the mortality rate using time increments. Our 

hypothesis regarding the different modeling techniques tested was that similar performance could 

be achieved when modeling mortality rates with respect to height without including additional 

explicit treatments effects and when modeling mortality rates with respect to time but including 

explicit treatment effects. 

3.2. METHODS 

3.2.1. DATA 

A long-term slash pine study established in 1979 by the Plantation Management Research 

Cooperative (PMRC) at the University of Georgia in the southeastern United States was used to 

test the proposed hypothesis. The study was established on 16 different installations throughout 

the Lower Coastal Plain in northern Florida and southern Georgia (Figure 3-1). The main 

silvicultural treatments considered were bedding, consisting of a double pass with a bedding 

harrow during site preparation, complete competing vegetation control (using herbicides), and the 

combination of these two treatments. The vegetation control treatment included an herbicide 

application before site preparation (3% solution of Roundup) and repeated localized applications 

of Roundup or Garlon to remove most of the competing vegetation until crown closure (Zhao et 

al., 2009). These silvicultural treatments were replicated at least once on each one of the 

installations and dominant height, stand density measurements, and average fusiform rust infection 

rates per plot were available every 3 years starting from age 5 and up to age 31 for the longest 
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series. In Table 3-1 a summary of the dominant height and number of trees per hectare for each of 

the treatments is presented. More details about this study are provided by Zhao et al., (2009), Zhao 

et al., (2007b) and Ramirez et al., (2022). Dominant height (𝐻𝐷) trajectories are plotted in Figure 

3-2 and trees per hectare (TPH) with respect to time and dominant height are plotted in Figure 3-3 

and Figure 3-4, respectively.  

3.2.2. MODELS 

Dominant height model  

A dominant height model was proposed to subsequently estimate dominant height increments 

and test the hypothesis related to using height increments versus time increments in the mortality 

model. The Gompertz model which has been used previously to model forest stand height 

trajectories (Medeiros et al., 2017; Zang et al., 2016), was chosen to describe the dominant height 

trajectories. The basic assumption of this model is that growth is proportional to size with a 

constant of proportionality 𝜇, and that the effectiveness of the growth mechanism decays over 

time, generating an exponential decay (France and Thornley, 1984). In mathematical terms this 

can be described with the following system of equations: 

𝑑𝐻𝐷

𝑑𝑡
= 𝜇 𝐻𝐷 

 Eq. 3-1 

𝑑𝜇

𝑑𝑡
= −𝐾𝜇 

Eq. 3-2 

Where 𝑑𝐻𝐷 𝑑𝑡⁄  is the change in dominant height (𝐻𝐷) over a period of time (𝑑𝑡), 𝑡 is time in 

years, and 𝜇 and 𝐾 are parameters determining the dominant height trajectory. When Eq. 3-2 is 

solved as a separable differential equation and the value of 𝜇 is replaced back in Eq. 3-1, the 

following differential equation is obtained.  
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𝑑𝐻

𝑑𝑡
= 𝜇0𝐻𝑒−𝐾𝑡 Eq. 3-3 

Dominant height has been found to be positively affected by bedding and vegetation control 

(Ramirez et al., 2022). To incorporate silvicultural treatment responses into the Gompertz model 

(Eq. 3-3), parameter modifiers were proposed to be added to this model. Bedding is a silvicultural 

treatment that improves growth in the early stages of a stand by enhancing rooting along with 

improved soil moisture conditions and nitrogen availability (Morris and Lowery, 1988). To 

incorporate these effects into the model, a modifier was added to the parameter 𝜇0 which is the 

parameter directly associated with growth. For the vegetation control treatment, a modifier was 

added into the parameter 𝐾 since this treatment does not directly improve growth, but reduces the 

limiting factors on site for the crop trees. Therefore, it was expected that this treatment would 

affect the decay rate (𝐾) at which the growth rate 𝜇0 decreases. The dominant height model with 

the modifiers can be expressed as: 

𝑑𝐻𝐷

𝑑𝑡
= 𝜇0𝑏1

𝑍1𝐻𝐷𝑒−𝐾𝑏2
𝑍2𝑡 Eq. 3-4 

Where 𝑏1 and 𝑏2 are the parameter modifiers to be estimated, and 𝑍1 and 𝑍2 are dummy 

variables equal to 1 if bedding or vegetation control was applied, respectively, and zero otherwise.  

Model from Eq. 3-4 was compared to the (null) model without treatment effects (Eq. 3-3) to 

evaluate the effectiveness of the proposed model to incorporate treatments effect into dominant 

height.  

Survival model 

Marked differences in survival trajectories were observed in the studied plots, with some of 

them experiencing high mortality while others experienced little to no mortality (Figure 3-3 and 

Figure 3-4). These differences were found to be strongly associated with the average percentage 

of fusiform rust infected trees at year 5. Overall, when this percentage was less than 15%, less 
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mortality was recorded, while higher mortality rates were observed for plots in which the fusiform 

rust infection rate was higher than 15% (Figure 3-5). This was in line with the differential mortality 

rates reported by other authors assessing mortality in slash pine plantations in the southeastern 

United States (Jones, 1972; Sluder, 1977; Wells and Dinus, 1978). Therefore, all mortality models 

proposed in this research included average fusiform rust infection rate (varying from 0 to 1) as a 

predictor variable. In Table 3-2 the average fusiform rust infection proportion differentiated by 

treatment and by the cutoff value of 15% is presented. It is important to note that this classification 

of mortality trajectories for plots with less or more than 15% fusiform rust infection was done to 

visually inspect more clearly the different survival trajectories. Nevertheless, since the actual 

proportion of infected trees was used in the models tested, taking this infection rate as a continuous 

value, this cutoff value is not relevant for modeling purposes. The recorded fusiform infection 

rates for each plot during the whole period of study are presented in Figure 3-6 differentiated by 

silvicultural treatments. 

Five different models found in the literature for slash pine were fitted first for the control plots, 

and the model with the best fit was then selected to be modified to include treatment effects and 

test the mentioned hypothesis related to the modeling approach. The models considered in this 

research are referenced in Table 3-3, where Eq. 3-10, Eq. 3-12, and Eq. 3-14 have been used 

previously in slash pine (Clutter and Jones, 1980; Devine and Clutter, 1985; Pienaar and Shiver, 

1981) and Eq. 3-11 and Eq. 3-13 have been used for modeling mortality in other pine species (Zhao 

et al., 2007a). All these models were modified to include the effect of fusiform rust infestation by 

modeling the mortality rate (𝛼) as a linear function of the average fusiform rust infection rate at 

year 5. 
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The model that had the best fit from Table 3-3 was selected to be modified following Garcia’s 

(2009) approach. The different model variations are presented in a general form in Table 3-4, with 

all the variables as described before, 𝜃 representing the parameters from the base model in Table 

3-3, and 𝑐1, 𝑐2 corresponding to the explicit treatment effects of bedding and vegetation control on 

the mortality rate, respectively. The inclusion of fusiform rust infection rates was maintained for 

these models.  

Models where mortality was modeled with respect to dominant height instead of time (𝑑𝑁 𝑑𝐻𝐷⁄  

instead of 𝑑𝑁 𝑑𝑡⁄ ) were obtained by combining the model in Eq. 3-15 with the best dominant 

height model from section 3.2.2 as follows: 

𝑑𝑁

𝑑𝑡
= 𝑓(𝑁, 𝑡, 𝜃) 

𝑑𝐻𝐷

𝑑𝑡
 

Eq. 3-5 

𝑑𝑁

𝑑𝐻𝐷
= 𝑓(𝑁, 𝑡, 𝜃) 

Eq. 3-6 

Where 𝑑𝐻𝐷 𝑑𝑡⁄  in Eq. 3-5 is taken from the proposed dominant height model (Eq. 3-4). The 

models in Eq. 3-17 and Eq. 3-20 are similarly derived, although the time variable is completely 

replaced by the dominant height variable (𝐻𝐷) for these models. 

3.2.3. PARAMETERS ESTIMATION 

Parameters were estimated using the maximum likelihood framework in the Julia programming 

language (Bezanson et al., 2017). The procedure consisted of solving the differential equation 

numerically as an initial value problem and then finding the combination of parameters that 

maximized the likelihood of observing the data collected (given the assumed model), that is, as an 

inverse problem with unknown starting values. Therefore, in addition to the parameters for each 

one of the models in Table 3-3 and Table 3-4, the starting values for each equation (either dominant 
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height at age 5 or stand density at age 5, for each plot), were defined as additional parameters to 

be estimated as part of the optimization procedure. Given the 72 plots used in this research, there 

were 72 dominant height values and 72 starting densities estimated using a dummy variable 

approach, similar to what was proposed by Cieszewski and Bailey (2000) for dominant height. An 

approximation of the standard error for all the parameters was obtained by calculating the Hessian 

matrix during the optimization process. For all models, the variable 𝑁 (TPH) was scaled by 

dividing the values by a factor of 1,000 to facilitate the optimization process.  

The following statistics were calculated to evaluate model fit: 

- Root Mean Square Error (RMSE): 

𝑅𝑀𝑆𝐸 = √
∑ (𝑌𝑖 − 𝑌𝑖̂)

2𝑛
𝑖=1

𝑛 − 𝑝
 

 

- Mean Difference (MD): 

𝑀𝐷 =  
∑ (𝑌𝑖 − 𝑌̂𝑖)

𝑛
𝑖=1

𝑛
 

 

- Mean Absolute Difference (MAD): 

𝑀𝐴𝐷 =  
∑  |𝑌𝑖 − 𝑌̂𝑖|

𝑛
𝑖=1

𝑛
 

And for model comparison: 

- Akaike Information Criteria (AIC): 

𝐴𝐼𝐶 =  −2 𝑙𝑜𝑔𝑙𝑖𝑘 + 2𝑝 

Where 𝑛 is the total number of observations, 𝑝 is the number of parameters in each model,  𝑌𝑖 

is the observed value, 𝑌𝑖̂ is the predicted value. 



 

65 

3.3. RESULTS 

3.3.1. DOMINANT HEIGHT MODEL 

Fit statistics for the two dominant height models evaluated are presented in Table 3-5. The 

proposed model with the addition of parameter modifiers representing treatments effects was 

effective at reducing the average error and bias. Therefore, model from Eq. 3-4 was chosen to test 

the hypothesis of using height increments for the mortality model in section 3.3.2 . Global 

parameter estimates for this model are presented in Table 3-6. The local parameters corresponding 

to the initial state of the variable, which is the dominant height (𝐻𝐷) at age five (𝑡 = 5), are not 

presented.  

Eq. 3-4 expressed as a difference equation (projection form), is presented in Eq. 3-7. The 

predicted dominant height trajectories and residuals are presented in Figure 3-7 and Figure 3-8, 

respectively. 

𝐻𝐷2
= 𝐻𝐷1

 𝑒𝑥𝑝 [
𝜇0𝑏1

𝑍1

𝐾𝑏2
𝑍2

(𝑒−𝐾𝑏2
𝑍2𝑡1 − 𝑒−𝐾𝑏2

𝑍2𝑡2)] 
Eq. 3-7 

Given the importance of fusiform rust infection on the survival of the slash pine stands 

evaluated, it is natural to raise the question of the effect fusiform rust infection on dominant height. 

Nevertheless, this effect was not evaluated in this research due to previous research showing little 

or a non-significant reduction in height growth due to fusiform rust infection in slash pine (Jones, 

1972; Nance et al., 1981; Sluder, 1977). The main documented effect of fusiform rust in slash pine 

has been the rust-associated mortality (RAM), which generates volume losses due to low stocking 

at the end of the rotation (Wells and Dinus, 1978). Economic losses are also usually associated 

with the low quality timber affected by stem cankers (Sluder, 1977) rather than with a reduction 

in growth. Burton et al., (1985) argued that although they did find significant differences in height 
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growth at an early age (less than 5 years), over the long-term, losses associated with this lower 

growth rate are shadowed by RAM since young infected trees are the most likely to die before 

rotation age. 

3.3.2. SURVIVAL MODELS 

Fit statistics for the evaluated base survival models from Table 3-3 are presented in Table 3-7. 

The model with better performance was the model form from Eq. 3-12, which is the model 

proposed by Pienaar and Shiver (1981), and represents a reduced version of the model proposed 

by Clutter and Jones (1980) (Eq. 3-14 in Table 3-7) if parameter 𝛾 is equal to one (𝛾 = 1). The full 

version of this model with 𝛾 ≠ 1 generated a slightly better fit, with lower values of RMSE, MD 

and MAD. Nevertheless, this model had an additional parameter, and when using AIC as the model 

selection criteria, the model with the lowest (better) value was the model from Eq. 3-12.  

Following what presented in Table 3-4, modifications were made to the model form from Eq. 

3-12 to include treatments effects (i.e., bedding and vegetation control). The fit statistics for these 

models are presented in Table 3-8. The model with improved performance was model in Eq. 3-21, 

where the mortality rate was modeled with respect to time, and no additional treatment factors 

were used. When explicit treatment effects were added (Eq. 3-24), the RMSE and MAD were 

reduced slightly compared to model in Eq. 3-21, nevertheless, this was at the expense of two 

additional parameters, which it is not justified from a statistical point of view. 

Parameter estimates for the final model (Eq. 3-21) are presented in Table 3-9. Only global 

parameters are presented. The trees per hectare (𝑁) trajectories for this model are presented in 

Figure 3-9 along with the residuals in Figure 3-10. The residuals presented in Figure 3-10 are well 

distributed around zero across the predicted TPH values. In Figure 3-11 the histogram of these 
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residuals and a Q-Q plot are presented and show no major deviations from a normal distribution, 

nevertheless some heavy tails are observed (Figure 3-11).  

The final recommended model in its difference (projection) form is as follows: 

𝑁2 = 𝑁1 exp [
𝛼0 + 𝛼1 𝐹𝑅

𝛿 + 1
 (𝑡2

𝛿+1 − 𝑡1
𝛿+1)] Eq. 3-8 

In the particular case of 𝑡1 = 0 and 𝑁1 = 𝑁0 = initial planting density, the prediction equation 

is as follows: 

𝑁𝑡 = 𝑁0 exp [
𝛼0 + 𝛼1 𝐹𝑅

𝛿 + 1
 𝑡𝛿+1] Eq. 3-9 

3.4. DISCUSSION 

Stand survival in slash pine plantations including silvicultural treatment applications was best 

described when the mortality rate was modeled with respect to time increments rather than with 

respect to dominant height increments as proposed by Garcia (2009). Stankova and Diéguez-

Aranda (2014) had attributed improvements in model fit when using Garcia’s approach to the 

implicit inclusion of site quality factors when including dominant height into the model. 

Nevertheless, in all the models tested, the estimated local values per plot likely accounted for some 

of the site-specific variation. Garcia (2009) also mentioned his approach was particularly useful 

when dealing with scarce or low quality data that does not cover a wide enough range of growing 

conditions, which was not the case for this study where the installation locations were located 

throughout the slash pine range in southern Georgia and northern Florida.  

The explicit treatment modifiers added to include the effect of bedding and or vegetation control 

as part of the survival function, were not successful in improving model fit significantly. Although 

some authors have found bedding to have a positive effect on pine plantations growth and survival 
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when stands are located in poorly drained soils (Gent et al., 1986; Pritchett, 1979), we found that 

bedding did not have a significant effect on the mortality rate in this study, or more precisely, no 

effect was observed for the measurement period considered in this research, which started at year 

five. It is likely that the effect of bedding on mortality rates was more pronounced during the first 

years after planting and that no significant effect was observed in later years, when the overstory 

measurements commenced.  

Regarding the vegetation control treatment, although growth gains have been reported for slash 

pine due to this treatment (Creighton et al., 1987; Lauer and Glover, 1998; Ramirez et al., 2022; 

Zhao et al., 2009), a less marked effect has been found for survival. Jokela et al., (2000) did not 

find a significant effect on slash pine survival rates at early ages (5 and 8 years) due to herbaceous 

weed control applications during site preparation, and Creighton et al. (1987) did report an 

improvement in survival rates due to vegetation control applications, although this was only when 

plantations were established on sites with a water deficit and high levels of competition. In 

contrast, the sites where these research plots were established were more likely to have excess 

water, explaining the non-significant effect of the vegetation control treatment on mortality 

observed in this research. 

Fusiform infection rates have been found to be differential when combined with early 

silvicultural treatments. Burton et al., (1985) found for young stands (less than 5 years) that 

fusiform infection rates were higher when complete vegetation control and bedding were applied 

compared to a control. Although this was not an objective of our study, the fact that explicit 

treatment effects did not significantly improve model fit, suggest that in the long-term, the 

interaction between the silvicultural treatments and the fusiform rust infection rates might be less 

relevant. 
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Results from this study indicate that the most important variable to describe mortality in slash 

pine plantations was the fusiform rust infection rate. Wells and Dinus (1978) also found that the 

number of trees infected with fusiform rust at year five was a reliable predictor of rust-associated 

mortality at year 10. In our proposed model, the proportion of infected trees at year five was useful 

to model survival trajectories over time. The rate of infection at age five was maintained through 

the observed measurement period (Figure 3-6), with low infection rates continuing for sites in 

which low infection rates were observed at year five and vice versa. Therefore, it is believed that 

fusiform rust infection has an impact on survival for a sustained period of time beyond year five, 

but the first measurement taken at year five was a good proxy of the fusiform rust infection impact 

through the whole period evaluated. Performing an assessment of fusiform rust at year 5 is then 

recommended to use the proposed mortality model. Nevertheless, in the absence of this 

assessment, localized historical infection rates could be used to approximate the infection rate at 

year 5, which is preferable to ignore fusiform rust infection completely. 

The use of differential equations in the construction of the proposed dominant height and 

survival models facilitated the inclusion of silvicultural treatments and fusiform rust infection 

effects. Although both models can be integrated analytically and can be fitted in this form using 

non-linear least squares or maximum likelihood, modifying the model in its differential form 

allowed us to better evaluate which terms should be modified according to what each parameter 

represented in the model.  

3.5. CONCLUSIONS 

We tested for the effect of silvicultural treatments (bedding and vegetation control) as they 

affect the rate of stand mortality in slash pine plantations. Treatment effects were incorporated 

either implicitly, through the use of dominant height increments which already captured treatment 
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effects, or explicitly through treatment terms in the mortality model form. The use of dominant 

height increments and explicit parameter modifiers in the mortality model were not effective in 

improving model fit, implying bedding and vegetation control did not affect mortality rates at or 

beyond age 5 in the slash pine plantations evaluated in this study.  On the other hand, knowledge 

of fusiform rust infection rates was essential to accurately describe mortality trajectories, with 

higher fusiform rust infection rates implying higher mortality. Mortality was modeled using 

differential equations in which the change in the number of trees per hectare at a given time was 

described by the current number of trees, a power function of age, and the observed average 

fusiform rust infection rate at age 5. Although fusiform rust has been previously identified by 

several authors as one of the main drivers of mortality in slash pine plantations, risk of infection 

remains high in the southeastern United States (Randolph, 2016; Weng et al., 2018). Genetic 

improvement has proven to be efficient at reducing infestation rates in other pines in the region 

(Randolph, 2016), suggesting the need to prioritize genetic improvement for rust resistance for the 

species to reduce the impact in overall value (Susaeta, 2020).  
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3.7. TABLES AND FIGURES 

Table 3-1. Dominant height (𝐻𝐷) and trees per hectare (TPH), average and standard deviation 

values per plot. 

Age 

(years) 
Treatment 

No. 

plots 

Mean 

𝑯𝑫(m) 

SD 

𝑯𝑫 (m) 

Mean 

TPH 

SD 

TPH 

5 

Control 

18 3.3 0.7 1181.9 157.2 

8 18 6.2 1.1 1137.2 194.4 

11 18 9.1 1.6 1108.9 194.4 

14 18 12.2 2.0 1062.9 221.3 

17 18 14.5 2.4 1046.3 218.5 

20 18 16.4 2.5 1048.0 231.2 

23 17 18.3 2.9 1017.2 241.2 

26 16 19.8 3.4 990.8 250.5 

31 12 20.9 4.1 972.8 244.4 

5 

Bedding 

19 3.9 0.7 1252.2 127.8 

8 19 7.1 1.0 1228.6 142.4 

11 19 10.1 1.3 1191.7 132.5 

14 19 13.2 1.5 1150.6 149.6 

17 19 15.5 2.0 1141.0 151.2 

20 19 17.1 2.4 1124.1 167.6 

23 18 18.9 2.9 1095.0 190.0 

26 17 20.2 3.3 1032.3 225.6 

31 11 20.9 4.2 1042.3 272.2 

5 

Vegetation 

control 

(Chem) 

17 4.8 0.7 1181.2 130.7 

8 17 8.3 0.9 1144.2 171.1 

11 17 11.3 1.1 1130.5 186.0 

14 17 14.3 1.5 1083.0 242.0 

17 17 16.5 1.8 1076.3 249.8 

20 16 18.3 2.3 1032.3 251.0 

23 15 20.1 2.4 992.1 259.8 

26 14 21.5 2.8 964.4 256.1 

31 10 22.8 3.2 968.7 276.5 

5 

Bedding + 

Vegetation 

control 

(Chem) 

18 5.3 0.5 1200.9 139.4 

8 18 8.9 0.7 1163.8 147.7 

11 18 11.9 0.8 1146.5 163.7 

14 18 14.9 1.1 1110.0 172.0 

17 18 17.1 1.4 1083.0 191.0 

20 17 18.6 1.8 1063.3 195.5 

23 15 20.4 2.2 1005.3 246.5 

26 15 21.9 2.4 963.3 243.2 

31 11 22.8 3.0 1038.5 226.9 
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Table 3-2. Average fusiform rust infection rates at age 5 differentiated by treatment. 

Treat 
No. 

plots 

No. plots 

FR < 15% 

No. plots 

FR ≥ 15% 

Avg FR 

infection % 

(FR< 15%) 

Avg FR 

infection %  

(FR ≥15%) 

Avg FR 

infection % 

(all plots) 

Control 18 14 4 2.01 28.45 7.89 

Bedding 19 14 5 2.01 22.34 7.36 

Veg. control  17 14 3 3.56 38.30 9.69 

Bed + 

Veg. control 
18 14 4 2.75 36.68 10.29 
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Table 3-3. Base mortality model forms tested. 

Equation Model form Model with Fusiform rust Reference 

Eq. 3-10 
𝑑𝑁

𝑑𝑡
= 𝛼 𝑁 

𝑑𝑁

𝑑𝑡
= (𝛼0 + 𝛼1 ∗ 𝐹𝑅) 𝑁 (Devine and Clutter, 

1985) 

Eq. 3-11 
𝑑𝑁

𝑑𝑡
= 𝛼 𝑁𝑡 

𝑑𝑁

𝑑𝑡
= (𝛼0 + 𝛼1 ∗ 𝐹𝑅) 𝑁𝑡 

(Zhao et al., 2007a) 

Eq. 3-12 
𝑑𝑁

𝑑𝑡
= 𝛼 𝑁𝑡𝛿  

𝑑𝑁

𝑑𝑡
= (𝛼0 + 𝛼1 ∗ 𝐹𝑅) 𝑁𝑡𝛿  (Pienaar and Shiver, 

1981) 

Eq. 3-13 
𝑑𝑁

𝑑𝑡
= 𝛼 𝑁𝛾𝑡 

𝑑𝑁

𝑑𝑡
= (𝛼0 + 𝛼1 ∗ 𝐹𝑅) 𝑁𝛾𝑡 

(Zhao et al., 2007a) 

Eq. 3-14 
𝑑𝑁

𝑑𝑡
= 𝛼 𝑁𝛾𝑡𝛿  

𝑑𝑁

𝑑𝑡
= (𝛼0 + 𝛼1 ∗ 𝐹𝑅) 𝑁𝛾𝑡𝛿  (Clutter and Jones, 

1980) 

𝑁: trees per hectare at time 𝑡, 𝑡: time in years, 𝐹𝑅: Fusiform rust infection rate per plot at year 5 

(varying from 0 to 1),  𝛼, 𝛼0, 𝛼1 , 𝛾, 𝛿: parameters to be estimated. 
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Table 3-4. Mortality model modifications to include treatment effects. 

Model form Description Equation 

𝑑𝑁

𝑑𝑡
= 𝑓(𝑁, 𝑡, 𝜃) 

Base model from Table 3-3  
Eq. 3-15 

𝑑𝑁

𝑑𝐻𝐷
= 𝑓(𝑁, 𝑡, 𝜃) Modified model following Garcia (2009) using 

𝑑𝐻𝐷 

Eq. 3-16 

𝑑𝑁

𝑑𝐻𝐷
= 𝑓(𝑁, 𝐻𝐷 , 𝜃) Modified model following Garcia (2009) using 

𝑑𝐻𝐷 and 𝐻𝐷 (no 𝑡 involved) 

Eq. 3-17 

𝑑𝑁

𝑑𝑡
= 𝑓(𝑁, 𝑡, 𝜃) ∙ 𝑐1

𝑍1𝑐2
𝑍2 

Base model with explicit treatments effect 
Eq. 3-18 

𝑑𝑁

𝑑𝐻𝐷
= 𝑓(𝑁, 𝑡, 𝜃) ∙ 𝑐1

𝑍1𝑐2
𝑍2  Modified model following Garcia (2009) with 

explicit treatments effect 

Eq. 3-19 

𝑑𝑁

𝑑𝐻𝐷
= 𝑓(𝑁, 𝐻𝐷 , 𝜃) ∙ 𝑐1

𝑍1𝑐2
𝑍2 Modified model following Garcia (2009) with 

explicit treatments effect (no 𝑡 involved) 

Eq. 3-20 

𝑁: trees per hectare at time 𝑡, 𝑡: time in years, 𝐻𝐷: dominant height (meters), 𝑍1: dummy variable 

equal to 1 if bedding was applied and 0 otherwise, 𝑍2: dummy variable equal to 1 if vegetation control 

was applied and 0 otherwise, 𝑐1, 𝑐2, 𝜃: parameters to be estimated. 
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Table 3-5. Fit statistics for dominant height model without treatments (Eq. 3-3) and with 

treatments (Eq. 3-4). 

Model RMSE (m) MD (m) MAD (m) AIC 

Eq. 3-3-Without treatments 0.7057 -0.0046 0.5469 1436.52 

Eq. 3-4-With treatments  0.5724 0.0012 0.4463 1189.01 
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Table 3-6. Parameter estimates for the dominant height model (Eq. 3-4). 

Parameter Estimated value Standard error 

𝜇0 0.3786 0.0093 

𝐾 0.1140 0.0015 

𝑏1 0.9174 0.0102 

𝑏2 1.1039 0.0068 

ln (𝜎) -0.5579 0.0288 
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Table 3-7. Fit statistics1 for base survival models (control only, no-treatment effects). 

Eq. Model form 
RMSE 

(TPH) 

MD 

 (TPH) 

MAD 

(TPH) 
AIC Log-like 

Eq. 

3-10 

𝑑𝑁

𝑑𝑡
= (𝛼0 + 𝛼1 ∗ 𝐹𝑅) 𝑁 41.55 0.22 30.08 -533.18 -269.59 

Eq. 

3-11 

𝑑𝑁

𝑑𝑡
= (𝛼0 + 𝛼1 ∗ 𝐹𝑅) 𝑁𝑡 52.79 0.31 35.60 -459.88 -232.94 

Eq. 

3-12 

𝑑𝑁

𝑑𝑡
= (𝛼0 + 𝛼1 ∗ 𝐹𝑅) 𝑁𝑡𝛿  35.54 0.02 26.37 -579.00 -293.50 

Eq. 

3-13 

𝑑𝑁

𝑑𝑡
= (𝛼0 + 𝛼1 ∗ 𝐹𝑅) 𝑁𝛾𝑡 57.58 -0.001 38.37 -431.31 -219.66 

Eq. 

3-14 

𝑑𝑁

𝑑𝑡
= (𝛼0 + 𝛼1 ∗ 𝐹𝑅) 𝑁𝛾𝑡𝛿 35.46 0.003 26.23 -577.68 -293.84 

1 Fit statistics were scaled to the original value by multiplying by 1,000. 

𝑁: trees per hectare at time 𝑡, 𝑡: time in years, 𝐹𝑅: Fusiform rust infection rate per plot at year 5 

(varying from 0 to 1),  𝛼0, 𝛼1 , 𝛾, 𝛿: parameters to be estimated. 
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Table 3-8. Fit statistics1 for survival models including treatment effects. 

Eq. Model form 
RMSE 

(TPH) 

MD 

(TPH) 

MAD 

(TPH) 
AIC Log-like 

Eq. 

3-21 

𝑑𝑁

𝑑𝑡
= (𝛼0 + 𝛼1 ∗ 𝐹𝑅)𝑁𝑡𝛿 

45.63 -0.01 32.59 -1997.18 -1002.59 

Eq. 

3-22 

𝑑𝑁

𝑑𝐻𝐷

= (𝛼0 + 𝛼1 ∗ 𝐹𝑅)𝑁𝑡𝛿 
48.89 0.00 34.73 -1914.32 -961.16 

Eq. 

3-23 

𝑑𝑁

𝑑𝐻𝐷

= (𝛼0 + 𝛼1 ∗ 𝐹𝑅)𝑁𝐻𝐷
𝛿 

48.56 -0.10 34.58 -1922.35 -965.18 

Eq. 

3-24 

𝑑𝑁

𝑑𝑡
= (𝛼0 + 𝛼1 ∗ 𝐹𝑅)𝑐1

𝑍1𝑐2
𝑍2𝑁𝑡𝛿 

45.53 0.01 32.57 -1995.77 -1003.88 

Eq. 

3-25 

𝑑𝑁

𝑑𝐻𝐷

= (𝛼0 + 𝛼1 ∗ 𝐹𝑅)𝑐1
𝑍1𝑐2

𝑍2𝑁𝑡𝛿  
48.75 0.02 34.76 -1913.65 -962.82 

Eq. 

3-26 

𝑑𝑁

𝑑𝐻𝐷

= (𝛼0 + 𝛼1 ∗ 𝐹𝑅)𝑐1
𝑍1𝑐2

𝑍2𝑁𝐻𝐷
𝛿 

48.49 -0.09 34.54 -1920.10 -966.05 

1 Fit statistics were scaled to the original value by multiplying by 1,000. 

𝑁: trees per hectare at time 𝑡, 𝑡: time in years, 𝐹𝑅: Fusiform rust infection rate per plot at year 5 

(varying from 0 to 1), 𝐻𝐷: dominant height (meters), 𝑍1: dummy variable equal to 1 if bedding was 

applied and 0 otherwise, 𝑍2: dummy variable equal to 1 if vegetation control was applied and 0 otherwise, 

𝛼0, 𝛼1, 𝑐1, 𝑐2, 𝛿: parameters to be estimated 
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Table 3-9. Parameter estimates for the final survival model including fusiform rust and treatment 

effects. 

Parameter Estimated value Standard error estimate 

𝛼0 -0.0091 0.0020 

𝛼1 -0.2272 0.0472 

𝛿 -0.4306 0.0798 

ln(𝜎) -3.0871 0.0288 
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Figure 3-1. Location of the 16 installations of the study. 
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Figure 3-2. Dominant height trajectories for slash pine by treatment. 
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Figure 3-3. Trees per hectare (TPH) over time by treatment. 
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Figure 3-4. Trees per hectare (TPH) versus dominant height (𝐻𝐷) by treatment. 
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Figure 3-5. Trees per hectare (TPH) over time for different groups of fusiform rust infection rate 

(less than 15% or greater than or equal to 15%) at age 5. 
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Figure 3-6. Fusiform rust average infection rate per plot, trajectory for the duration of the study. 

The dashed line represents the 15% infection rate threshold. 
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Figure 3-7. Estimated dominant height trajectories. 
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Figure 3-8. Dominant height residuals vs predicted dominant height values. 
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Figure 3-9. Trajectories of TPH estimated with Eq. 3-21 for plots with less than 15% (left), and 

higher than 15% (right) fusiform rust infection rates.  
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Figure 3-10. Residuals for the recommended mortality model (Eq. 3-21). 
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Figure 3-11. Residuals histrogram and Q-Q plot for the recommended mortality model including 

treatments effect (Eq. 3-21). 
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ABSTRACT 

Slash pine is the second most important commercial species in the southeastern United States, 

it is usually established in poorly drained flatwoods where it outperforms other common 

commercial pine species. Modeling slash pine growth and how it responds to silvicultural 

treatments is of interest to forest managers wanting to maximize their investments in the region. 

In this research, a growth and yield (G&Y) system of differential equations is proposed to model 

slash pine growth including the effect of silvicultural treatments (i.e., bedding, and vegetation 

control). Data for this model came from a long-term study (30 years) established by the Plantation 

Management Research Cooperative (PMRC) across Georgia, Florida, and South Carolina. The 

model system describes the trajectory of three state variables: dominant height, survival/mortality, 

and basal area. Treatments effects were incorporated into the dominant height and basal area 

models by using parameter modifiers and dummy variables associated with each one of the 

treatments. Survival was not affected by the studied treatments, but the presence of fusiform rust 

was found to be essential to determine the stand density trajectories for the evaluated stands. The 

three models were estimated simultaneously using maximum likelihood and the 

variance/covariance was modeled within the system. The G&Y system was validated with a slash 

pine independent dataset. 

4.1. INTRODUCTION 

Growth models in forestry, when not entirely empirical, have been constructed by trying to 

understand the underlying biological processes that generate net growth (Pienaar and Turnbull, 

1972; Zeide, 1993). When constructing these models, differential equations have been useful to 

describe net growth as the interaction between two contrasting forces, one generating growth and 

one limiting it (Zeide, 1993). Some of the most commonly used models in forestry as the 
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Schumacher and the Chapman-Richards model (Pienaar and Turnbull, 1972), when expressed in 

the differential form, rely on growth theories based on assumptions about how organisms grow 

(e.g., growth proportional to surface area) and how this growth is limited (e.g., maximum carrying 

capacity). Therefore, parameters in these models have a biological interpretation which helps 

researchers to understand the underlying processes in a simplified way. This fact also facilitates 

the modification or construction of these models when the growth dynamic is changed by factors 

like silvicultural treatments or external pathogens.   

Although many of the models used in forestry were originally developed from differential 

equations, the integrated form is usually used when fitting these models to data. Common 

statistical software used in forestry have facilitated model fit with routines and packages that can 

accommodate these integrated models (e.g., nls in R). Nevertheless, these software also have the 

ability to solve differential equations numerically, which combined with parameter estimation 

techniques like maximum likelihood, allows users to fit models directly using the differential form. 

When the equation can be integrated analytically, there is no difference between either approach 

used to fit the model. Nevertheless, when it is not possible to get a closed form of the model, using 

the differential equation is the only possibility. This in turn opens the door to new opportunities 

like adding stochastic components (e.g., random variation) making use of stochastic differential 

equations (Garcia, 1979). 

Different strategies have been used to include silvicultural treatment response in forest growth 

models. These usually consist of adding additional factors to the (integrated) model that account 

for the treatment response (Pienaar and Rheney, 1995), modifying the parameters of the model 

according to the treatment (Mason and Milne, 1999), adding additional covariables related to the 

treatment (Hynynen, 1995), or using an age-shift approach in which the basic structure of the 



 

99 

model is not modified (Snowdon, 2002). Using parameters modifiers is a flexible methodology 

that allows for the inclusion of multiple treatments and their interaction (Ramirez et al., 2022). 

Using models in the differential equation form facilitates the way treatments responses are 

incorporated into the growth model since the parameters that should be modified become more 

intuitive. Thus, treatments that aim to increase growth rate (e.g., fertilization), can be modeled by 

modifying parameters that describe growth in the model, while parameters that describe the decline 

or limiting factors within the model can be modified if a treatment targets the reduction of limiting 

factors (e.g., vegetation control). This strategy was used on this study to model the response to 

bedding and vegetation control for slash pine plantations in the southeastern United States. Growth 

responses were evaluated on three state variables, dominant height, survival, and basal area. 

The growth and yield (G&Y) system constructed in this research incorporates the effect of 

bedding and vegetation control on dominant height and basal area growth. Parameters modifiers 

were tested to include this response. Survival was not affected by the treatments evaluated, but the 

presence of fusiform rust was evaluated as a potential predictor to help describe mortality for the 

evaluated stands. Fusiform rust is an endemic disease that started to significantly affect plantations 

in the southeastern United States in the 1960s (Randolph, 2016). Slash pines have been particularly 

affected by this pathogen given that the fungi generating the disease (Cronartium quercuum Berk.) 

completes part of its reproductive cycle in these pines (Phelps, 1978). Fusiform rust is currently 

the most common pathogen affecting slash pine in the southeastern United States, being associated 

with higher mortality rates and loses in product quality (Bailey and Burgan, 1989; Devine and 

Clutter, 1985; Nance et al., 1981; Susaeta, 2020). 

  The three models composing the system were first fitted independently before fitting them 

simultaneously using maximum likelihood.  All models were fitted using the differential equation 
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form where the initial value for solving the differential equation was taken as an additional 

parameter to be estimated on each one of the models (i.e., local parameters per plot). These models 

were fitted using the Julia programming language (Bezanson et al., 2017). The G&Y system was 

tested against independent data coming from a different slash pine study stablished in the 

southeastern United States.  

4.2. METHODS 

4.2.1. DATA  

Data from the three variables of interest were available from a slash pine site preparation trial 

established in 1979 by the Plantation Management Research Cooperative (PMRC) in the 

southeastern United States. Several treatments including bedding, vegetation control, and 

fertilization, were part of the mentioned study. Nevertheless, for this research, the focus was on 

bedding, competing vegetation control and the combination of these two treatments. The bedding 

treatment consisted of a double pass with a bedding harrow during site preparation and the 

vegetation control treatment included an herbicide application before site preparation (3% solution 

of Roundup) and repeated localized applications of Roundup or Garlon to remove most of the 

competing vegetation until crown closure (Zhao et al., 2009). 

 Measurements of diameter at breast height, dominant height, stand density, and average 

fusiform rust infection rates per plot were available every 3 years from age 5 to age 31 for the 

longest series (some plots were lost at earlier ages due to external factors). In Table 4-1 a summary 

of the dominant height, number of trees per hectare, basal area, and average fusiform rust infection 

rate for each one of the treatments and different ages is presented. More details about the study are 

provided by Zhao et al., (2009), Zhao et al., (2007) and Ramirez et al., (2022). Dominant height, 

survival, and basal area trajectories observed are plotted in Figure 4-1. 
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4.2.2. DOMINANT HEIGHT MODEL  

A model form that had previously been used to model dominant height with the inclusion of 

bedding and vegetation control treatment effects was used (Ramirez et al., 2023). This model is 

based on the Gompertz equation (Eq. 4-1), and with the inclusion of the two silvicultural treatments 

of interest has the form of Eq. 4-2. For the construction of the growth and yield system, parameters 

of the model (Eq. 4-2) were not taken directly from the Ramirez et al. (2023) publication, but were 

estimated following the methodology explained in section 4.2.5. 

𝑑𝐻

𝑑𝑡
= 𝜇0𝐻𝑒−𝐾𝑡 Eq. 4-1 

𝑑𝐻

𝑑𝑡
= 𝜇0𝑏1

𝑍1𝐻𝑒−𝐾𝑏2
𝑍2𝑡 Eq. 4-2 

 

In these models, 𝐻 is dominant height (m), 𝑡 is time in years, 𝜇0, 𝐾, 𝑏1, and 𝑏2 are parameters 

to be estimated, and 𝑍1 and 𝑍2 are dummy variables equal to 1 if bedding or vegetation control 

was applied, respectively, and zero otherwise.  

4.2.3. MORTALITY MODEL  

Mortality rates in slash pine plantations in the southeastern United States have been 

demonstrated to be influenced by the presence of fusiform rust infection (Jones, 1972; Sluder, 

1977; Wells and Dinus, 1978). Recently, Ramirez et al. (2023) developed a mortality/survival 

model in which the rate of mortality depended on the proportion of fusiform rust infection at year 

5. This model form (Eq. 4-3) was used in this research as part of the growth and yield system.  

𝑑𝑁

𝑑𝑡
= (𝛼0 + 𝛼1 ∗ 𝐹𝑅) 𝑁𝑡𝛿 Eq. 4-3 

In this model 𝑁 is trees per hectare, 𝑡 is time in years, 𝛼0 , 𝛼1 , and 𝛿 are parameters to be 

estimated, and 𝐹𝑅 is the proportion of trees affected by fusiform rust on a given plot. Similar to 
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the dominant height component, parameters for this model were estimated as part of the system 

and were not taken directly from Ramirez et al. (2023). The effect of bedding and vegetation 

control on survival of slash pine plantations was found to be non-significant by Ramirez et al. 

(2023), and therefore, this model was not further modified to include treatments effects.  

4.2.4. BASAL AREA MODEL  

Model from Eq. 4-4 was proposed to describe basal area trajectories. This model is based on 

the Korf growth model (Korf, 1939; Zarnovican, 1979) although it was modified to include 

dominant height and mortality as covariables, similar to the basal area model proposed by Pienaar 

and Shiver (1986) for slash pine plantations. 

𝑑𝐵

𝑑𝑡
= [𝛽1 + 𝛽2𝐻 + 𝛽3𝑁]

𝐵

𝑡𝛽4
  Eq. 4-4 

In this model, 𝐵 is basal area (m2/ha), 𝐻, 𝑁, and 𝑡 are as defined before, and 𝛽1..𝛽4 are 

parameters to be estimated. An analysis of variance (ANOVA) showed that there were significant 

differences in basal area for the treatments evaluated at every age. Therefore, the model from Eq. 

4-4 was modified similarly to the dominant height model to include treatment effects as follows: 

𝑑𝐵

𝑑𝑡
= [𝛽1 + 𝛽2𝐻 + 𝛽3𝑁]

𝐵

𝑡𝛽4
  𝑑1

𝑍1𝑑2
𝑍2 Eq. 4-5 

Where 𝑍1 and 𝑍2 are the same dummy variables related to the treatments and defined for the 

dominant height model, and 𝑑1 and 𝑑2 are additional parameters to be estimated.  

In order to determine if the proposed modifications to the dominant height and basal area 

models were effective to include treatment effects, two G&Y systems were proposed and 

compared in this chapter, one with no treatment effects (System 1) and another (System 2) with 

the treatment effects in both components (dominant height and basal area). These systems are 
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described in Table 4-2. The system with better fit statistics was chosen to model the three variables 

of interest. 

4.2.5. PARAMETER ESTIMATION 

Parameters for the two systems proposed were estimated using maximum likelihood in the Julia 

programing language (Bezanson et al., 2017). Thus, when fitting the system, the differential 

equations are solved analytically and the predicted values are compared to the observed data. The 

estimated (best) parameters are the ones that maximize the likelihood value assuming errors are 

normally distributed with zero mean. The parameter describing the variance of the normal 

distribution assumed for the errors is also estimated together with the parameters of the models. In 

addition to this parameter and to the parameters for each one of the models from Table 4-2 (i.e., 

global parameters), the initial values that define the trajectories (in any of the three variables) for 

each one of the plots (i.e., local parameters), were defined as additional parameters to be estimated 

as part of the optimization procedure. 

Each one of the models from Table 4-2 was first fitted individually assuming a normal 

distribution of the errors (i.e., 𝐻: 𝜖𝑖~𝑁(0, 𝜎𝐻), 𝑁: 𝜖𝑖~𝑁(0, 𝜎𝑁), 𝐵: 𝜖𝑖~𝑁(0, 𝜎𝐵)). Then, the G&Y 

system was simultaneously estimated by fixing the local parameters previously estimated per plot. 

That is, when simultaneous estimation was done, only the global parameters were estimated, this 

was necessary to simplify the estimation procedure. For the simultaneous estimation, a 

multinormal distribution (𝑀𝑁) was used in which the errors are described by the following 

variance/covariance matrix:  

𝜖~ 𝑀𝑁(0⃑⃑, Σ),    Σ = [

𝜎𝐻
2 𝜎𝐻𝑥𝑁 𝜎𝐻𝑥𝐵

. . 𝜎𝑁
2 𝜎𝑁𝑥𝐵

. . . . 𝜎𝐵
2

] 
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Where, 𝜖 is the vector of errors (observed-predicted), Σ is the variance/covariance matrix 

(symmetrical), 𝜎𝑋
2 is the variance of the 𝑋 variable (𝐻, 𝑁 or 𝐵), and 𝜎𝑋𝑥𝑌 is the covariance between 

variables 𝑋 and 𝑌. During the estimation procedure, matrix Σ  was rewritten in terms of the 

correlation between the variables as follows:  

Σ = [

𝜎𝐻
2 𝜎𝐻𝑥𝑁 𝜎𝐻𝑥𝐵

. . 𝜎𝑁
2 𝜎𝑁𝑥𝐵

. . . . 𝜎𝐵
2

] = [

𝜎𝐻
2 𝜎𝐻𝜎𝑁𝜌𝐻𝑥𝑁 𝜎𝐻𝜎𝐵𝐴𝜌𝐻𝑥𝐵

. . 𝜎𝑁
2 𝜎𝑁𝜎𝐵𝐴𝜌𝑁𝑥𝐵

. . . . 𝜎𝐵
2

] 

Thus, the additional parameters estimated for this matrix were the correlation (and not directly 

the covariance) between the errors of the three variables of the system. The off-diagonal values of 

the Σ matrix were first assumed to be zero (i.e., zero correlation between the errors of the three 

state variables), to calibrate the initial values of the optimization and then, these values were 

estimated together with all the global parameters. An approximation of the standard error for the 

parameters was calculated using the Hessian matrix. For all models, the variable 𝑁 was scaled by 

dividing the values by a factor of 1,000 to facilitate the optimization process. The following 

statistics were calculated to evaluate models fit.  

- Root Mean Square Error (RMSE): 

𝑅𝑀𝑆𝐸 = √
∑ (𝑌𝑖 − 𝑌𝑖̂)

2𝑛
𝑖=1

𝑛 − 𝑝
 

- Mean Difference (MD) or bias: 

𝑀𝐷 =  
∑ (𝑌𝑖 − 𝑌̂𝑖)

𝑛
𝑖=1

𝑛
 

 

- Mean Absolute Difference (MAD): 

𝑀𝐴𝐷 =  
∑  |𝑌𝑖 − 𝑌̂𝑖|

𝑛
𝑖=1

𝑛
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- AIC: for model comparison 

𝐴𝐼𝐶 =  −2 𝑙𝑜𝑔𝑙𝑖𝑘 + 2𝑝 

Where 𝑛 is the total number of observations, 𝑝 is the number of parameters in each model,  𝑌𝑖 

is the observed value, 𝑌𝑖̂ is the estimated value. 

4.2.6. VALIDATION DATASET 

The proposed model was validated with an independent dataset available from another PMRC 

study. This study was established in 1976 on existing slash pine plantations located in south 

Georgia and north Florida (Oppenheimer et al., 1989). These plantations ranged in age from 9 to 

15 years when the study was established and the first measurement was taken. Vegetation control 

was part of this study, but since this treatment was applied at later ages and not during the 

establishment phase (as done for the main slash pine dataset), only the control plots were selected 

for validation. More details about this study are described by Oppenheimer et al., (1989). In Table 

4-3 a summary of the variables of interest for this dataset is presented. When compared to the main 

dataset, dominant height and basal area values are within the range of the original data. The main 

differences between the two datasets are the range of stand density (TPH) and fusiform rust 

infection values, which are higher for the validation dataset.  

4.3. RESULTS 

Results comparing the two growth and yield systems tested are presented in Table 4-4. The AIC 

value for System 1 (no treatments) was 1,536.86, while for System 2 it was 778.36, indicating that 

the system with treatment factors performed better than the system without treatment effects (lower 

AIC values indicate better fit). From Table 4-4 it can be seen how there is significant gain in 

precision (reduction of error and bias) when using treatment modifiers. The average error (RMSE) 
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for the dominant height model was reduced from 0.71 to 0.57 m (20% reduction), while the error 

for the basal area model was reduced from 1.88 m2/ha to 1.25 m2/ha (34% reduction). The same 

percentual reduction was obtained in bias (MD) for these two variables. The values for mortality 

are not shown due to this model did not change between the systems. Ramirez et al., (2023) showed 

that mortality was not affected by bedding and vegetation control, but that the inclusion of fusiform 

rust was crucial to describe the survival trajectories. An additional comparison was then made for 

the mortality component by fitting the same model but excluding the fusiform rust information 

(i.e., 𝑑𝑁/𝑑𝑡 = 𝛼𝑁𝑡𝛿). When fusiform rust was not included into the model, the average error 

(RMSE) increased to 77.53 TPH and the bias increased to -0.43 TPH. This means that when 

including fusiform rust, the RMSE was reduced in a 41% and the bias in a 98%. Given these 

results, System 2 was selected as the best G&Y system and therefore, the results presented in this 

section refer to this system. 

Parameter estimates and fit statistics for each one of the components of System 2 are presented 

in Table 4-5 and Table 4-6, respectively. The estimated values in Table 4-5 correspond to the 

values obtained with the simultaneous estimation of the global parameters using the multivariate 

normal in which the correlation between the variables was estimated and the local values per plot 

were taken from the independent estimation. When the correlation was assumed to be zero, 

parameter estimates were not different for the dominant height model but differed for the mortality 

and basal area models. When comparing the estimated values of the standard error of the 

parameters, no differences were found for the dominant height model and opposite trends were 

found for the other two variables, with an increase in the standard error for the mortality 

parameters, but a decrease in the standard error for the basal area parameters when including 
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correlation. Despite these differences, the fit statistics were not significantly different when 

comparing the systems with and without correlation (Table 4-6). 

 Although no improvement was obtained in terms of model fit when accounting for correlation, 

accounting for this value during the estimation procedure is statistically sound and therefore, the 

estimated parameter values from  Table 4-5 were used to plot the predicted trajectories for the 

three variables of interest in Figure 4-2. The residuals for these models are presented in Figure 4-3. 

Overall, a good fit was obtained and the residuals did not show any trend.  

The robustness of the G&Y system proposed was evaluated from two different perspectives. 

First, by using the same dataset but modifying how predictions were done, and then by using the 

independent dataset described in section 4.2.6. The first assessment consisted in using only the 

estimated global parameters and utilizing the observed values as starting points of the differential 

equations to predict the whole trajectories forward. Different starting points were tested. For 

example, the first observation (at age 5) was used first as the starting point to predict the whole 

series until year 31, then, the second observation (at age 8) was used to predict the values from 

this age forward (until age 31), and this was repeated until the second to last observation was used 

to predict the last observation. 

 It is well known in forestry that accuracy and precision decreases when the projection interval 

increases (Wang et al., 2020). This fact was particularly important for the G&Y system proposed 

here given that the differential equations proposed are highly influenced by the starting point of 

the state variables. This was checked through the first assessment and it is shown in Figure 4-4. In 

this figure, the average length of the projection interval was plotted against the RMSE and the 

average bias (MD). Higher errors were obtained when the first observation (at year 5) was used to 

predict all the points forward (until year 31). This error was reduced when the projection interval 
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was reduced. In Figure 4-4, the red dot indicates the error obtained when the projection was made 

using the closest previous observation to predict the current observation (e.g., observation at age 

5 used to predict observation at age 8, observation at age 8 used to predict observation at age 11, 

etc.). This meant a projection length of 3 years for most of the observations (except for the last 

pair of observations which was from age 26 to age 31). Although not all possible combinations of 

projection lengths were used for evaluating the model, it is clear that this G&Y system has better 

performance with short predictions. The RMSE was consistently reduced when the projection 

length was reduced. No clear trend was observed for bias. Overall, when evaluating the magnitude 

of the errors, basal area was the most sensitive variable, while mortality was the least affected 

variable.  

The second part of the robustness assessment consisted in using the validation dataset to 

evaluate the fit of the G&Y system proposed. For this data, the shortest prediction interval was 

used, which means predictions were made for an interval of two years. The fit statistics when using 

the validation dataset and how these compare to the fit statistics from the main dataset (or training 

dataset), are presented in Table 4-7. To fairly compare these values, when using the main dataset, 

the most recent observations were used for prediction. Although the average error (RMSE) and 

bias (MD and MAD) are higher for the validation dataset (as expected), these values are still small 

and acceptable for these types of systems. Relative to the fit statistics of the main dataset, errors 

increased in a 21% for the dominant height and basal area variables, and in a 38% for the mortality 

component. The observed versus predicted values for each one of the variables of the system for 

each one of the datasets are presented in Figure 4-5, while the residual plots are presented in Figure 

4-6. In general, more negative bias (overestimation) is present for the validation dataset, whereas 

the model looks unbiased for the main dataset.  
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From the G&Y system presented, the dominant height and survival/mortality model can be 

integrated analytically. These two models are presented in Eq. 4-6 and Eq. 4-7. The basal area 

model cannot be integrated analytically and therefore, the differential equation form needs to be 

used when using the model. Therefore, a routine in R (R Core Team, 2018) was included to use 

this model with the estimated parameters for a simple example in Appendix A, and a more 

complete code was added in Appendix B using Julia to run three different examples. 

𝐻2 = 𝐻1 𝑒𝑥𝑝 [
𝜇0𝑏1

𝑍1

𝐾𝑏2
𝑍2

(𝑒−𝐾𝑏2
𝑍2𝑡1 − 𝑒−𝐾𝑏2

𝑍2𝑡2)] Eq. 4-6 

𝑁2 = 𝑁1 𝑒𝑥𝑝 [
𝛼0 + 𝛼1 𝐹𝑅

𝛿 + 1
 (𝑡2

𝛿+1 − 𝑡1
𝛿+1)] Eq. 4-7 

 

4.4. DISCUSSION 

Bedding and vegetation control affect dominant height and basal area growth in slash pine 

plantations (Pienaar and Rheney, 1995). In this research, this effect was successfully incorporated 

into a growth and yield system by using parameter modifiers. This technique has been commonly 

used in forestry models (e.g., Hynynen et al., 1998) and has the advantage of incorporating 

treatments interaction and using both control and treatment plots during the fitting procedure, 

avoiding assigning all the variability of the data to the treatment effect which is the case when 

treatment effects are incorporated as an additive function to a base model (Gyawali and Burkhart, 

2015; Logan and Shiver, 2006; Mason and Milne, 1999; Pienaar and Rheney, 1995). Both average 

error and bias were reduced when treatment modifiers were added to the base G&Y system, 

accounting for the treatment effects. These treatments, nevertheless, did not affect 

survival/mortality as shown in other research by Ramirez et al., (2023), and therefore, the G&Y 

system proposed did not include parameter modifiers for this component of the system, although 
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it did include fusiform rust infection rates which showed to improve model fit, reducing both error 

and bias significantly.  

When constructing G&Y systems for forest stands, is common to find variables that appear in 

both the left and right side of the equations, generating an interdependent system of equations that 

requires simultaneous estimation to get unbiased estimates of the parameters of the system 

(Borders and Bailey, 1986; Goelz and Burk, 1996). In addition, the correlation between the errors 

of the variables should be addressed. Although unbiased estimates of the parameters can be 

obtained when correlation is present, the standard error of the parameters is not correct when 

correlation exists and it is not taken into account. The parameters of the G&Y system proposed 

were estimated simultaneously using maximum likelihood and the variance/covariance matrix was 

estimated for the system, addressing these issues.  

Several authors have modelled before the response to silvicultural treatments in G&Y systems, 

although without making use of simultaneous estimation (Bailey and Burgan, 1989; McTague, 

2009; Pienaar and Rheney, 1995). When including simultaneous estimation, most of the authors 

have focused on the baseline system, in which silvicultural treatments are not considered (Borders 

and Bailey, 1986; Gallagher et al., 2019; Murphy and Sternitzke, 1979; Pienaar and Harrison, 

1989; Sullivan and Clutter, 1972). Fewer authors have included both response to silvicultural 

treatments and simultaneous estimation (Fang et al., 2001; Martin et al., 1999). To the knowledge 

of the authors this is the first G&Y system for slash pine plantations where silvicultural treatments 

were included using a system of differential equations and simultaneous estimation was used. 

Nevertheless, accounting for the correlation between the errors of the different components of the 

system did not improve model fit and although the estimated value for the standard error changed 

for the mortality and basal area models, this change was not unidirectional. 
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The basal area component of the G&Y system proposed is a differential equation that cannot 

be solved analytically. Although the model looks fairly simple, the inclusion of dominant height 

and basal area as predictors makes this task difficult. Therefore, solving the differential equation 

numerically while estimating the parameters is the only approach for these types of models. In 

addition, the use of differential equations generally helps to construct the models when they need 

to be modified to incorporate treatment effects or the influence of pathogens like fusiform rust 

infection. This is because it is intuitive to determine what parameters should be modified according 

to the treatment being considered.  

An additional factor that must be considered when using differential equations is how the 

trajectories of the different solutions change when changing the initial value for which the equation 

is being solved. For the models proposed, a big influence of these values was found. This is because 

the trajectory of the variable being modeled will highly differ with small variations on the initial 

value. For these models, the initial starting point defines the asymptote for each one of the curves. 

For this reason, when using the observed values instead of the predicted values as initial points to 

solve the differential equation, the errors increased considerably. Nevertheless, when points closer 

to the asymptote (later ages) and shorter projection intervals were used, the errors decreased. This 

is not the case for all the differential equations. For example, in the models propose by Garcia 

(1983) a change in the starting value (which is usually assumed as zero), does not influence the 

asymptote. For these models, other parameters generate the same phenomenon. Therefore, an 

understanding of the model being used and the influence of the different parameters of the model 

on the growth trajectory is necessary to properly use these models. 

Although accessing an independent dataset with both a control and the two treatments evaluated 

in this study was not possible, the validation dataset allowed to evaluate model performance when 
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used for the control scenario. Although error and bias increased, the magnitude of these values is 

acceptable for a G&Y system like the one presented here. The system proposed was not validated 

with an independent dataset for the treatments evaluated in this research, but the effectiveness of 

the G&Y system to incorporate treatment effects was assessed when comparing the model fit to 

the base G&Y system which did not have any parameter modifiers accounting for the treatments.  

4.5. CONCLUSIONS 

A growth and yield system for slash pine including dominant height, mortality, and basal area 

was fitted for slash pine plantations. The effect of bedding and vegetation control was successfully 

incorporated into dominant height and basal area components by using dummy variables. The 

average error and bias were reduced when these modifiers were added, compared to base models 

without these factors. Fusiform rust infection rates were crucial to describe mortality rates. These 

rates were modeled as a function of the initial infection rate per plot. Dominant height and 

mortality were used as predictor variables for the basal area model proposed, adding correlation 

within the system which was addressed by estimating the variance/covariance matrix of the 

system. The G&Y system proposed was shown to have lower errors for short projection intervals, 

and therefore its use is recommended for these intervals. When using an independent validation 

dataset to validate the model for the control plots, the error obtained increased but was maintained 

within acceptable ranges.  
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4.7. TABLES AND FIGURES 

Table 4-1. Dominant height (HD), trees per hectare (TPH), basal area (BA), and fusiform rust 

(FR) infection percentage, average values for the main dataset. 

Age 

(years) 
Treatment No. plots Mean HD (m) 

Mean  

TPH 

Mean BA 

(m2/ha) 

Mean FR  

Infection (%) 

5 

Control 

18 3.26 1181.90 1.49 7.89 

8 18 6.24 1137.16 6.02 14.02 

11 18 9.08 1108.89 11.17 16.10 

14 18 12.24 1062.92 15.66 13.70 

17 18 14.54 1046.32 19.28 12.73 

20 18 16.39 1047.97 22.25 11.87 

23 17 18.29 1017.20 24.36 12.57 

26 16 19.76 990.78 25.80 12.31 

31 12 20.90 972.77 27.10 10.22 

5 

Bedding 

19 3.87 1252.16 2.70 7.36 

8 19 7.14 1228.63 8.30 12.63 

11 19 10.09 1191.71 13.83 15.21 

14 19 13.16 1150.63 18.94 12.03 

17 19 15.49 1141.01 22.65 12.98 

20 19 17.11 1124.11 25.02 12.25 

23 18 18.91 1095.03 27.43 12.71 

26 17 20.21 1032.31 27.86 11.26 

31 11 20.87 1042.34 28.64 10.61 

5 

Chem 

17 4.79 1181.24 5.50 9.69 

8 17 8.32 1144.19 12.54 19.33 

11 17 11.29 1130.53 18.56 22.18 

14 17 14.35 1083.02 22.89 19.08 

17 17 16.54 1076.34 26.92 19.68 

20 16 18.32 1032.31 29.02 19.54 

23 15 20.09 992.12 31.45 21.10 

26 14 21.51 964.36 33.40 21.54 

31 10 22.76 968.73 34.71 17.55 

5 

Bed+Chem 

18 5.31 1200.97 6.84 10.29 

8 18 8.92 1163.78 14.30 18.64 

11 18 11.94 1146.49 20.25 19.77 

14 18 14.91 1109.99 25.06 15.16 

17 18 17.07 1082.96 28.39 17.29 

20 17 18.61 1063.26 30.78 16.92 

23 15 20.35 1005.29 32.00 18.61 

26 15 21.91 963.30 33.36 17.73 

31 11 22.79 1038.52 36.97 13.23 
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Table 4-2. Growth and yield systems tested. System 1(without treatment effects), system 2 (with 

treatment effects in dominant height and basal area). 

Variable System 1 System 2 

Dominant 

height 

𝑑𝐻

𝑑𝑡
= 𝜇0𝐻𝑒−𝐾𝑡 Eq. 4-1 

𝑑𝐻

𝑑𝑡
= 𝜇0𝑏1

𝑍1𝐻𝑒−𝐾𝑏2
𝑍2𝑡 Eq. 4-2 

Survival 
𝑑𝑁

𝑑𝑡
= (𝛼0 + 𝛼1 ∗ 𝐹𝑅) 𝑁𝑡𝛿  Eq. 4-3 

𝑑𝑁

𝑑𝑡
= (𝛼0 + 𝛼1 ∗ 𝐹𝑅) 𝑁𝑡𝛿  Eq. 4-3 

Basal 

area 

𝑑𝐵

𝑑𝑡
= [𝛽1 + 𝛽2𝐻 + 𝛽3𝑁]

𝐵

𝑡𝛽4
 Eq. 4-4 

𝑑𝐵

𝑑𝑡
= [𝛽1 + 𝛽2𝐻 + 𝛽3𝑁]

𝐵

𝑡𝛽4
𝑑1

𝑍1𝑑2
𝑍2  Eq. 4-5 

 

  



 

116 

Table 4-3. Dominant height (HD), trees per hectare (TPH), basal area (BA), and fusiform rust 

(FR) infection percentage, average values for the validation dataset. 

Age 

(years) 
Treatment 

No. 

plots 

Mean 

DH  

(m) 

Mean 

TPH 

Mean 

BA 

(m2/ha) 

Mean 

FR 

infection  

(%) 

10 

Control 

19 8.59 1415.00 12.54 24.77 

12 21 9.91 1357.42 14.52 27.78 

14 21 11.72 1301.10 16.74 24.77 

16 21 13.28 1251.22 19.20 22.53 

18 21 14.81 1217.18 21.35 88.82 

20 19 15.90 1192.74 23.70 26.89 

22 20 16.67 1116.92 24.54 22.04 

24 17 17.82 1035.72 25.68 21.31 

26 2 19.09 1090.20 26.35 0.00 
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Table 4-4. Fit statistics for dominant height and basal area with the two systems proposed. 

Variable G&Y System RMSE MD MAD 

Dominant height (m) 
1. No treatments 0.71 0.03 0.55 

2. With treatments 0.57 0.01 0.45 

Basal area (m2ha-1) 
1. No treatments 1.88 0.18 1.48 

2. With treatments 1.25 0.04 0.94 
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Table 4-5. Parameter estimates for the best growth and yield system for slash pine.  

Variable Model form Parameter 
Estimated 

value 

Standard 

error 

Dominant 

height 

(m) 

𝑑𝐻

𝑑𝑡
= 𝜇0𝑏1

𝑍1𝐻𝑒−𝐾𝑏2
𝑍2𝑡 

𝜇0 0.3737 0.0042 

𝐾 0.1128 0.0010 

𝑏1 0.9178 0.0020 

𝑏2 1.1057 0.0019 

Mortality 

(TPH) 

𝑑𝑁

𝑑𝑡
= (𝛼0 + 𝛼1 ∗ 𝐹𝑅) 𝑁𝑡𝛿  

𝛼0 -0.0151 0.0026 

𝛼1 -0.3596 0.0571 

𝛿 -0.6292 0.0674 

Basal area 

(m2ha-1) 

𝑑𝐵

𝑑𝑡
= [𝛽1 + 𝛽2𝐻 + 𝛽3𝑁]

𝐵

𝑡𝛽4
𝑑1

𝑍1𝑑2
𝑍2  

𝛽1 10.4090 0.3921 

𝛽2 -0.2776 0.0097 

𝛽3 -1.4977 0.0649 

𝛽4 1.5512 0.0183 

𝑑1 0.8747 0.0024 

𝑑2 0.7449 0.0021 

Variance/ 

Covariance 

Matrix (Σ) 

𝜖~ 𝑀𝑁(0⃑⃑, Σ) 

 

Σ = [

𝜎𝐻
2 𝜎𝐻𝜎𝑁𝜌𝐻𝑥𝑁 𝜎𝐻𝜎𝐵𝐴𝜌𝐻𝑥𝐵

. . 𝜎𝑁
2 𝜎𝑁𝜎𝐵𝐴𝜌𝑁𝑥𝐵

. . . . 𝜎𝐵
2

] 

ln (𝜎𝐻) -0.5556 0.0290 

ln (𝜎𝑁) -3.0782 0.0293 

ln (𝜎𝐵) 0.2253 0.0294 

𝜌𝐻𝑥𝑁 -0.0054 0.0418 

𝜌𝐻𝑥𝐵 0.4408 0.0340 

𝜌𝑁𝑥𝐵 0.4172 0.0354 
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Table 4-6. Fit statistics for the three variables of the best growth and yield system for slash pine. 

Variable Fit statistic 
Value with 

correlation 

Value without 

correlation 

Dominant height (m) 

RMSE 0.57 0.57 

MD 0.01 0.00 

MAD 0.45 0.45 

Mortality (TPH) 

RMSE 46.04 45.67 

MD 0.83 -0.14 

MAD 32.85 32.64 

Basal area (m2ha-1) 

RMSE 1.25 1.24 

MD 0.04 -0.01 

MAD 0.94 0.94 
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Table 4-7. Fit statistics for the validation dataset (just control) compared to the statistics with the 

data used to fit the model. 

 

Variable Data RMSE MD MAD 

Dominant height (m) 
Training 0.60 0.07 0.49 

Validation 0.73 -0.25 0.57 

Mortality (TPH) 
Training 44.91 -0.34 29.48 

Validation 62.06 -2.58 40.81 

Basal area (m2/ha) 
Training 1.09 0.08 0.86 

Validation 1.32 -0.59 0.99 
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Figure 4-1. Dominant height (HD), survival (TPH), and basal area (BA) trajectories for the 30-yr 

study.  
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Figure 4-2. Dominant height, survival (mortality), and basal area predicted curves using the best 

growth and yield system for slash pine. 
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Figure 4-3. Dominant height, survival (mortality) and basal area residuals using the best growth 

and yield system for slash pine.  
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Figure 4-4. RMS and bias when projecting starting from a different age. The red dot refers to 

predictions using the immediate previous point to project forward. 
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Figure 4-5. Observed vs predicted for the main and validation dataset when predicting values 

using the immediately previous observation as starting point.   
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Figure 4-6. Residuals plot for the main and validation dataset when predicting values using the 

immediately previous observation as starting point. 
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CHAPTER 5 

5. USING STOCHASTIC DIFFERENTIAL EQUATIONS FOR MODELING FOREST 

GROWTH 
1 

 

  

 
1 Ramirez, L., Montes, C. R. To be submitted to Forestry. 
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ABSTRACT 

Forest growth is a process influenced by stochastic factors such as environmental variations 

that should be considered when creating growth and yield models. Naturally, data collected from 

inventories also include observations and sampling errors that add noise to forestry data. One way 

in which this stochasticity can be incorporated when modeling forest growth, is making use of 

stochastic differential equations (SDEs). This approach has been incorporated into forestry since 

the 1980s, nevertheless, it has never been a widespread approach due to the complex concepts 

associated with it. The advantages and limitations of using SDEs for estimating parameters in 

growth models in forestry are described in this chapter. This framework is compared to the simpler 

alternative of using regular differential equations, together with modeling variance using 

predetermined functions when using maximum likelihood. The two approaches were compared 

using two different datasets, a loblolly pine dataset, publicly available, and a 30-year-old slash 

pine dataset available from a trial study established in the southeastern United States in the 1970s. 

When comparing the two approaches, it was found that modeling variance with a simpler function 

produced comparable results to the SDEs approach, without the complexity of the SDEs.  

5.1. INTRODUCTION 

When modeling growth and yield in forestry systems it is often desired that the models are able 

to capture the random environment in which the systems are embedded (Sandland and 

McGilchrist, 1979). Two main sources of uncertainty are usually distinguished in the forestry 

literature, the uncertainty linked to the growth process itself, often considered a stochastic process 

influenced by environmental factors, and the observation error, derived from measurement and 

sampling errors (Garcia, 1983). Including a measure of uncertainty when modeling forest growth 

provides managers with additional information about the expected yield and the potential 
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variations of the predictions, providing confidence intervals around the predictions that can be 

useful when considering management regimes (Fox et al., 2001). 

One common approach to include uncertainty into forest growth and yield systems (without 

differentiating between process and observation error) is to add a variance model during the 

estimation process. This refers to specifying for each one of the state variables, the variance of its 

errors, and how these errors are correlated to the errors of the other state variables. One clear 

example of this approach was followed by Gregoire (1987), who proposed four different 

variance/covariance matrices according to the expected error and correlations in the data. 

Following this approach, these matrices can be incorporated into regression techniques, which 

traditionally in forestry have included least squares, two or three stage least squares (2SLS-3SLS) 

(Borders and Bailey, 1986; Pienaar and Harrison, 1989), and mixed effect models (Fang et al., 

2001; Gallagher et al., 2019). Along the same line, LeMay (1990) proposed a different approach, 

named multistage least squares (MSLS) to fit simultaneous, contemporaneously correlated 

systems of equations with both serial correlated and heteroscedastic error terms. This author 

proposed different variance/covariance matrices varying according to the combination of 

presence/absence of autocorrelation and heteroscedasticity.  

Another approach to incorporate uncertainty into growth and yield models in forestry consists 

in using stochastic differential equations (SDEs). Garcia (1979) was the first author proposing this 

application in forestry. In Garcia’s approach an additional factor representing random variation is 

added as a Wiener or Brownian motion process, representing the process error, and an additional 

constant term is added representing the observation error. Garcia has extensively worked on 

estimation procedures using this framework, either using maximum likelihood (Garcia, 1983), or 

reducing the problem to a least square problem (Garcia, 2019). Although some authors have 
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followed this approach (Donnet et al., 2010; Orrego et al., 2021; Rupšys, 2019; Zhang and Borders, 

2001), the use of SDEs in forestry is generally perceived as complex and hard to implement 

(Burkhart and Gregoire, 1994). 

The main objective of this chapter is to explain SDEs when incorporating uncertainty into a 

growth and yield system in forestry and to compare it with the alternative option of modeling 

variance directly when using maximum likelihood. The theory of SDEs applied to growth models 

in forestry is first explained. Then, a case study using a literature example is presented in which 

parameters are estimated using the approach defined by Garcia (2019) and the alternative defined 

here. These two methodologies are later compared using the available dominant height data for 

slash pine presented in chapters 3 and 4 and some final remarks are made regarding the 

appropriateness of using SDEs in forestry and the separation of the errors into observation and 

process errors. 

5.2. METHODS 

5.2.1. THEORY OF STOCHASTIC DIFFERENTIAL EQUATIONS (SDES)2 

In general, an SDE is defined by its deterministic component (e.g., Eq. 5-1), also called the 

drift, and its stochastic component, called the diffusion factor. The latter is usually defined as a 

multiple of White noise (𝑊𝑡) and in the simplest case, an SDE has the form of Eq. 5-2.  

𝑑𝑌𝑡

𝑑𝑡
= 𝛼𝑌𝑡 Eq. 5-1 

𝑑𝑌𝑡

𝑑𝑡
= 𝛼𝑌𝑡 + 𝛽𝑊𝑡 Eq. 5-2 

The term 𝛽𝑊𝑡 refers to the random error term. In this formulation 𝛽 is a constant. White 

noise (𝑊𝑡) is often expressed as 𝑊𝑡 = 𝑑𝐵𝑡/𝑑𝑡. That is, the “derivative” of a Brownian 

 
2 The concepts explained in this section are based on the explanations presented by Dobrow (2016b, 2016a). 
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motion (𝐵𝑡). Brownian motion is a stochastic process that can describe the motion of a particle 

that diffuses randomly along a line. At each point t, the particle’s position is normally distributed 

with variance 𝑡 (Figure 5-1). Therefore, as 𝑡 increases, the particle’s position is more diffuse 

(Dobrow, 2016a). 

Although White noise is often expressed as 𝑊𝑡 = 𝑑𝐵𝑡/𝑑𝑡, Brownian motion derivatives do not 

exist and therefore, this expression is better written as 𝑊𝑡𝑑𝑡 = 𝑑𝐵𝑡, and in a more rigorous 

language it is more appropriate to say that Brownian motion is integrated White noise. Thus, Eq. 

5-2 can be rewritten as in Eq. 5-3, or equivalently, as in Eq. 5-4. 

𝑑𝑌𝑡 = 𝛼𝑌𝑡𝑑𝑡 + 𝛽𝑊𝑡𝑑𝑡 = 𝛼𝑌𝑡𝑑𝑡 + 𝛽 𝑑𝐵𝑡 Eq. 5-3 

∫ 𝑑𝑌
𝑡

0

= α ∫ 𝑌𝑡  𝑑𝑡
𝑡

0

+ 𝛽 ∫ 𝑑𝐵𝑡

𝑡

0

 Eq. 5-4 

For solving the SDE defined by Eq. 5-4, stochastic calculus rules need to be used. Note that the 

second integral in the right hand side of Eq. 5-4 is not defined as an integral with respect to 

time (𝑑𝑡), as it is usually done in regular calculus, but it is defined as an integral with respect to 

Brownian motion (𝑑𝐵𝑡), a new concept particular to stochastic calculus. The solution to an SDE 

is a stochastic process for which the expected value is driven by the deterministic component of 

the SDE, and the variance can be calculated by solving the stochastic integral.  

As it happens with regular differential equations, several techniques exist to solve SDEs. One 

common approach is to use Ito’s Lemma, which can be interpreted as the stochastic calculus 

counterpart of the chain rule. Although not evident, this means that the stochastic component of 

the solution to an SDE is affected by the form of the deterministic component. For example, for 

the so called Langevin equations (in physics) described in Eq. 5-5, although 𝜎 is a constant, it can 

be shown that the expected value and variance of the solution to this SDE, have the form of Eq. 
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5-6 and Eq. 5-7, respectively. That is, the resulting variance is not constant, and increases with 

time with an asymptote at 𝜎2/2𝑟. 

𝑑𝑌𝑡 = 𝑟(𝜇 − 𝑌𝑡) + 𝜎 𝑑𝐵𝑡 Eq. 5-5 

𝐸(𝑌𝑡) = 𝜇 + (𝑌0 − 𝜇)𝑒−𝑟𝑡 Eq. 5-6 

𝑉𝑎𝑟(𝑌𝑡) =
𝜎2

2𝑟
(1 − 𝑒−2𝑟𝑡) 

Eq. 5-7 

Not all SDEs have an analytical solution for which the expected value and variance functions 

can be derived. In fact, only very few (and simple) SDEs can be solved analytically. Numerical 

methods need to be applied to get one solution of the SDE for most cases (Nygaard et al., 2000). 

The example presented in  Eq. 5-5 is relevant since this is the type of equations that Garcia utilizes 

for deriving its applications of SDEs to forestry data (Garcia, 2019, 1983). The model this author 

proposes has one variation to incorporate a wider range of models using the same approach. Garcia 

first introduced his approach for a dominant height model using the transformed variable 𝐻𝑐 

instead of 𝐻 (Garcia, 1983). Thus, parameter 𝑐 becomes a value between 0.3 and 1 for height-age 

curves that must be estimated together with the other parameters of the model (Garcia, 1983). 

When using this transformation, Eq. 5-5 can be rewritten as in  Eq. 5-8, and the same solution from 

Eq. 5-6 and Eq. 5-7 can be applied to the transformed variable 𝐻𝑐.  

𝑑𝐻𝑐 = 𝑏(𝑎𝑐 − 𝐻𝑐)𝑑𝑡 + 𝜎 𝑑𝐵𝑡 Eq. 5-8 

Using Eq. 5-8 and the theory of SDEs, Garcia developed a framework based on maximum 

likelihood where the parameters are estimated assuming errors are normally distributed with 

variance as in Eq. 5-7. Among the modifications proposed by Garcia are the addition of 

observation errors and the inclusion of correlation between errors at different points in time. Thus, 

Garcia’s model had the form from Eq. 5-9. 
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ℎ𝑖
𝑐 = 𝑎𝑐 − (𝑎𝑐 − 𝐻0

𝑐) exp{−𝑏(𝑡𝑖 − 𝑡0)} + 𝛿𝑖 + 𝜖𝑖 Eq. 5-9 

 

Where 𝛿𝑖 represents the process error, normally distributed with variance as in  Eq. 5-7 (with 

the proper change of variables and parameters), and 𝜖𝑖 represents the observation error, assumed 

to be normally distributed, 𝜖𝑖~𝑁(0, 𝜂2). Note that this approach assumes the process and 

observation errors are additive. In addition, Garcia’s approach is based on using pairs of 

observations for finding the parameters, that is, solving the differential equation from 𝑡0 to 𝑡𝑖. The 

alternative would be to solve the equation for a given 𝑡. 

Garcia later developed a simplification of its approach by converting the problem to a least 

square problem (Garcia, 2019), which facilitates its implementation and the parameter estimation. 

The proposal was based on the same type of equations described before and R code was provided 

to follow the approach. An example of how to use this approach is explained in Garcia’s paper 

using the ‘Loblolly’ dataset which is a preloaded dataset with observations of height for loblolly 

pine trees included in the software R (R Core Team, 2018). The same dataset was used in this 

chapter to reproduce Garcia’s approach (using the R code provided by Garcia) and compare it with 

the proposed simpler approach. 

5.2.2. PROPOSED APPROACH 

Although Garcia provided R code for implementing his proposed methodology, it is clear that 

users wanting to follow his approach need a deep understanding of SDEs to be able to properly 

use this tool. Therefore, it was of interest to compare the approach proposed by Garcia with a 

simpler approach in which differential equations and maximum likelihood are still used but errors 

are normally distributed with a given variance function determined by the user (either constant, or 

any function of time). The two approaches are compared in Table 5-1 and the proposed approach 
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is described in the following pseudo code with an example to solve it presented in Appendix C 

using the programming language Julia3 (Bezanson et al., 2017). 

Pseudocode: 

1.  Define the function describing the differential equation (the deterministic component) 

2. Define the initial values for the parameters (𝜃). 

3. Solve the differential equation (numerically) using the initial value of the parameters and 

the defined function. Save the values of the solution for those times in which you have 

observations. 

4. Calculate the errors (𝜖𝑖) in the prediction by comparing the observed values with the 

predicted values from step 3. 

5. These errors are assumed to be normally distributed with mean zero and a given variance 

function for which parameters need to be estimated: 

𝜖𝑖~𝑁(0, 𝑣𝑎𝑟(𝜖𝑖)) 

Where 𝑣𝑎𝑟(𝜖𝑖) could be a constant (𝑣𝑎𝑟(𝜖𝑖) = 𝜎2), or a function of 𝑡 (e.g., 𝑣𝑎𝑟(𝜖𝑖) = 𝜎0 +

 𝜎𝑡𝑡) 

6. Calculate the loglikelihood value using the errors from step 4 and the Normal distribution 

from step 5. Sum up these values. 

7. Using an optimization algorithm, find the parameters (𝜃) that minimize the negative 

loglikelihood (negative value from step 6). 

 
3 Although the example provided was written in Julia, this does not mean that the proposed approach can only be 

applied in this programming language. An equivalent routine can be written in any programming language that can 

solve differential equations numerically and has optimization algorithms to find the parameters.  
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In the next section both methodologies are compared using first the ‘Loblolly’ dataset used by 

Garcia in 2019, and then using the slash pine dominant height data from chapters 2-4. Comparisons 

were based on the value of the estimated parameters and the fit statistics below.  

 

- Root Mean Square Error (RMSE): 

𝑅𝑀𝑆𝐸 = √
∑ (𝑌𝑖 − 𝑌𝑖̂)

2𝑛
𝑖=1

𝑛 − 𝑝
 

- Mean Difference (MD): 

𝑀𝐷 =  
∑ (𝑌𝑖 − 𝑌̂𝑖)

𝑛
𝑖=1

𝑛
 

 

- Mean Absolute Difference (MAD): 

𝑀𝐴𝐷 =  
∑  |𝑌𝑖 − 𝑌̂𝑖|

𝑛
𝑖=1

𝑛
 

Where 𝑛 is the total number of observations, 𝑝 is the number of parameters in each model,  𝑌𝑖 

is the observed value, 𝑌𝑖̂ is the predicted value. 

When using the proposed approach, two different models were tested. These models differed 

in the assumption made about the variance function, one being constant (representing observation 

error) and the other having the form of Eq. 5-7 (representing process error). These models are 

described below: 

- Model 1 (M1): constant variance 

𝑑𝐻𝑐       =   𝑏(𝑎𝑐 − 𝐻𝑐)𝑑𝑡 

𝜖𝑖            =  𝐻𝑜𝑏𝑠
𝑐 − 𝐻̂𝑝𝑟𝑒𝑑

𝑐  

𝑣𝑎𝑟(𝜖𝑖) =  𝜎2 
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- Model 2 (M2): variance function in the form of Eq. 5-7, simulating process error defined 

by Garcia. 

𝑑𝐻𝑐      =  𝑏(𝑎𝑐 − 𝐻𝑐)𝑑𝑡 

𝜖𝑖           =  𝐻𝑜𝑏𝑠
𝑐 − 𝐻̂𝑝𝑟𝑒𝑑

𝑐  

𝑣𝑎𝑟(𝜖𝑖) =  
𝜎2

2𝑏
(1 − 𝑒−2𝑏𝑡𝑖) 

 

5.3. RESULTS 

5.3.1. LOBLOLLY DATASET 

Garcia initially presented one example of his approach using only one series of observations 

from the Loblolly dataset (Seed = 301, Example 2 in Garcia, 2019). The first comparison made in 

this chapter was made using the same subset and fixing the value for the transforming variable 𝑐 

by using the value reported by Garcia (𝑐̂ = 0.5024). This guaranteed that the exact same data was 

being used. The parameters reported by Garcia were used to calculate the fit statistics described in 

section 5.2 and these values were compared with fit statistics from the two alternative models in 

which the proposed approach was used. The results for this comparison are presented in Table 5-2.  

When using Model 1 (M1), the estimated parameters for the dominant height model matched 

those reported by Garcia, and also did the parameter describing the variance. In Garcia’s example, 

the variance associated to the process error was estimated as zero. Therefore, using the simpler 

approach presented here generated the same results as Garcia’s approach for this example, being 

the proposed approach, a less complex one. When comparing Garcia’s approach to Model 2 (M2), 

where a more complex variance function was assumed, similar values for the parameters were 

obtained, and a slightly lower RMSE and MAD were obtained, although a higher MD was 

obtained.  
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To keep exploring the differences between Garcia’s and the proposed approach, the data from 

all the observations of the Loblolly dataset (Example 3 in Garcia’s paper) were then used to 

compare the different approaches. Again, the value of the transformation variable 𝑐 was fixed to 

𝑐̂ = 0.49182 as reported by Garcia. The results are presented in Table 5-3. Similar to what 

happened with the single plot, the two models proposed generated parameter estimates that do not 

differ significantly from Garcia’s estimates.  

5.3.2. SLASH PINE DATASET 

One last comparison was made by fitting the same dominant height model to the slash pine 

dataset described in chapters 2-4. Since no value of the transformation variable 𝑐 was available for 

this dataset, this value had to be estimated to compare the two approaches. Nevertheless, when 

using the proposed approach, there were numerical difficulties when estimating this parameter, 

reaching non-convergence from the optimization algorithm. Therefore, to be able to compare both 

methodologies, a value of 𝑐 = 0.5 was fixed. Note that although with the proposed methodology 

finding this parameter was not possible (for this specific dataset), the main advantage of using the 

proposed methodology is that it does not require transforming the data and that this transformation 

was made in this example to directly compare the results with Garcia’s approach. Results from 

this dataset are presented in Table 5-4. The results are aligned with what obtained with the Loblolly 

dataset. With Garcia’s approach the observation process was estimated as zero, and with the 

simplest model with constant variance (M1), the RMSE was the same as with Garcia’s, but the bias 

(MD) and absolute bias (MAD) are significantly smaller.  

5.4. DISCUSSION 

When using the Loblolly dataset with one single plot, the two models proposed (M1 and M2) 

yielded very similar results compared to Garcia’s results, raising the question of the necessity of 
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using complex variance models when a constant variance could be used instead. To closely 

evaluate the differences between assuming a constant variance and a more complex variance 

function (M1 vs. M2), the estimated variances for these two models were plotted in Figure 5-2, and 

the different likelihood values in the log scale, obtained after using each one of these variances 

during the estimation procedure, were plotted against each other and presented in Figure 5-3. 

Given the differences in the variance assumed by each model (Figure 5-2), it is natural that the 

biggest differences in likelihood are given for the observations at smaller ages (i.e., 3, 5), the major 

differences were observed at age 3 (Figure 5-3). Nonetheless, overall, the likelihood values are 

very similar (close to the 1:1 line), regardless of the variance function used, which explains why 

the estimated parameters and fit statistics are non-significantly different between these two models.  

A third alternative model was tested in which the variance was modeled as the sum of the two 

variances from M1 and M2, simulating what Garcia proposes when having process and observation 

errors as additive. For this model, the resulting parameters where highly influenced by the initial 

value of the parameters associated to each one of the variance functions. Thus, when the initial 

value for the parameter associated to the ‘process error’ was zero, the algorithm converged to zero 

for this parameter, and when the parameter associated to the ‘observation error’ (constant variance) 

was set equal to zero, the estimated ‘observation error’ was zero. In several applications of Garcia’s 

approach this conclusion of having either process or observation errors as zero is common (Garcia, 

2019, 2005, 1983; Orrego et al., 2021), which can be an indication that Garcia’s optimization 

algorithm is unable to separate the two sources of errors, at least when they are defined to be 

additive.  

When using the complete Loblolly dataset, results were on the same line. With the proposed 

models, parameter estimates, and fit statistics were very similar to what obtained with Garcia’s 
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approach. With this complete dataset, different to the single plot case, Garcia found the estimated 

observation error was zero, one more example of an application where the two sources of error 

cannot be separated. From the two models proposed, model M1, with constant variance, produced 

the same RMSE as with Garcia’s approach, with a much lower bias (MD), and slightly lower 

absolute bias (MAD).  

When testing the different methodologies for the slash pine dataset, results were similar to the 

Loblolly dataset. In general, Garcia’s approach generated higher (negative) bias (overestimation) 

when using several plots in both the examples tested, compared to almost unbiased results when 

using the proposed approach with either model M1 or M2. Although the estimation procedure 

proposed here does not have a derived maximum likelihood function that can be expressed in a 

closed form, as does Garcia’s approach, the effectiveness of the proposed methodology was 

demonstrated with two different datasets and its use is recommended when using differential 

equations with either a constant or a custom variance function.  

The examples presented in section 5.3 showed in practical terms how a simpler approach could 

be used instead of SDEs to model forest growth with similar (or better) results. Theoretically, 

another disadvantage of Garcia’s approach is that only models that have the form from Eq. 5-5 can 

be used. Although having the transforming parameter 𝑐 adds flexibility and growth curves of 

different shapes like the Bertalanffy-Richards, Logistic, and Gompertz can be approximated, this 

is still a limited range of models. Another drawback of Garcia’s approach is that the variance 

function is assumed to have a predetermined form defined by Eq. 5-7, which has the general form 

presented in Figure 5-4, and when fitting this model to a single plot, it is impossible to check if the 

variance of the process being evaluated follows the pattern imposed by this SDE.  
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When using SDEs, even small variations to the deterministic component generate a different 

variance function (or variance/covariance matrix), which completely changes the maximum 

likelihood function or the least squares estimation. Moreover, if the stochastic component is 

defined as dependent on time or the current state of the variable being modeled, the SDE quickly 

evolves to an equation that cannot be solved analytically and Garcia’s approach cannot be used. 

For these type of models, other parameter estimation approaches such as the method of moments, 

or Bayesian approaches need to be used (Nygaard et al., 2000). To illustrate how the complexity 

of the SDE quickly increases, we can define the dominant height model presented in Chapter 3, 

equation Eq. 3-3 as an SDE. The simplest approach to convert this model to an SDE would be to 

add white noise as in Eq. 5-3. Then, the SDE would have the following form: 

𝑑𝐻 = 𝜇0𝐻𝑒−𝐾𝑡 + 𝜎 𝑑𝐵𝑡 Eq. 5-10 

Using the theory for solving SDEs, a solution for this equation would be given by Eq. 5-11, a 

stochastic process for which the expected value is as in Eq. 5-12, and the variance is defined by 

Eq. 5-13. Nevertheless, different to the previous example used by Garcia, this variance function 

cannot be defined in a closed expression since the stochastic integral in Eq. 5-13 cannot be solved 

analytically and therefore, numerical methods need to be used to estimate this variance. This 

implies that a close form of the maximum likelihood function cannot be derived, and Garcia’s 

approach cannot be used.  
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𝐻 = 𝐻0 exp (−
𝜇0

𝐾
𝑒−𝐾𝑡) + 𝜎 exp (−

𝜇0

𝐾
𝑒−𝐾𝑡) ∫ exp (−

𝜇0

𝐾
𝑒−𝐾𝑡) 𝑑𝐵𝑡

𝑡

0

 Eq. 5-11 

𝐸(𝐻) = 𝐻0 exp (−
𝜇0

𝐾
𝑒−𝐾𝑡) Eq. 5-12 

𝑉𝑎𝑟(𝐻) = 𝜎 exp (−
𝜇0

𝐾
𝑒−𝐾𝑡) ∫ exp (

𝜇0

𝐾
𝑒−𝐾𝑡) 𝑑𝐵𝑡

𝑡

0

 Eq. 5-13 

When Eq. 5-10 is solved (numerically), it can be shown that the variance from Eq. 5-13 has the 

general form shown in Figure 5-5, a different form from the variance of the simplest case 

represented in Figure 5-4. This theoretical example highlights other limitations of using Garcia’s 

approach. Overall, although Garcia’s proposal was an innovative and elegant approach on how to 

apply SDEs to forestry data, not only its difficulty, but the limited set of functions that can be used, 

and the restricted variance that is obtained from the specific SDE being used, are limitations that 

support the use of other simpler and flexible approaches to estimate parameters for G&Y systems 

including uncertainty.  

5.5. CONCLUSIONS  

The appropriateness of using stochastic differential equations (SDEs) for modeling growth and 

incorporating uncertainty into forestry systems was evaluated. The strong mathematical 

background required to implement this approach had been recognized in the literature before, but 

in addition, other limitations of this approach were explained through different practical and 

theoretical examples. The limited set of functions that can be used with this approach along with 

the restricted form of the variance function that is derived from the SDEs were explained. Although 

the use of SDEs can be extended to include other function forms, the complexity of the models 

quickly increases to the point where only numerical solutions to the SDEs can be used, precluding 
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the derivation of analytical forms for the likelihood function to be minimized when using 

maximum likelihood for estimating the parameters of a model. As an alternative to Garcia’s 

approach, a simpler approach based on differential equations and maximum likelihood was 

presented, showing the same or better fit than Garcia’s approach. An example of how to implement 

this approach was attached as an appendix. 
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5.6. TABLES AND FIGURES 

Table 5-1. Comparison of Garcia’s approach and proposed approach to estimate parameters 

using differential equations. 

Garcia’s approach Proposed approach 

Uses stochastic differential equations 

(requires understanding of stochastic 

calculus) 

Uses regular (deterministic) differential 

equations (requires basic knowledge of 

differential equations) 

Applies only to linear equations that can be 

expressed in the form of Eq. 5-5  

Applies to any equation, even non-linear ones 

The differential equation is solved for 

consecutive pairs of observations 

The differential equation is solved for the 

whole time series 

Autocorrelation is incorporated Autocorrelation is ignored 

Both observation and process errors are 

proposed 

A single error is proposed 

Uses the variance function derived after 

solving the SDE for a specific group of 

curves. This function cannot be modified to 

assume other forms without mathematically 

deriving the proper function 

Can use any variance function proposed by 

the user, including constant or a custom 

function similar to the one proposed by 

Garcia 

Can be applied using maximum likelihood or 

using non-linear least squares 

Can be applied using maximum likelihood 

Can incorporate local values per plot Can incorporate local values per plot 
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Table 5-2. Fit statistics for the Loblolly 301 data (fixing 𝑐̂ = 0.5024), using Garcia’s approach 

and models proposed (M1 and M2).  

Approach Parameter estimates Fit statistics 

 
𝒂̂ 𝒃̂ 𝝈̂ 

RMSE 

(ft) 

MD 

(ft) 

MAD 

(ft) 

Garcia (2019) 72.550 0.097 
𝜎̂𝑜𝑏𝑠   = 0.049 

𝜎̂𝑝𝑟𝑜𝑐 = 0.000 
0.581 0.005 0.506 

M1: Constant variance  72.540 0.097 𝜎̂        = 0.049 0.581 0.002 0.506 

M2: Variance function  72.677 0.096 𝜎̂        = 0.0235 0.576 0.010 0.504 
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Table 5-3. Fit statistics for the whole Loblolly data (14 plots, fixing 𝑐̂ = 0.49182), using 

Garcia’s approach and models M1 and M2. 

Approach Parameter estimates Fit statistics 

 
𝒂̂ 𝒃̂ 𝝈̂ 

RMSE 

(ft) 

MD 

(ft) 

MAD 

(ft) 

Garcia (2019)1 

𝑎̂1 = 74.77, 

⋮ 
𝑎̂14 = 70.44 

0.095 
𝜎̂𝑜𝑏𝑠   = 0.000 

𝜎̂𝑝𝑟𝑜𝑐 = 0.034 
0.850 -0.143 0.694 

M1: Constant 

variance  

𝑎̂1 = 74.23 

⋮ 
𝑎̂14 = 69.22  

0.095 𝜎̂        = 0.070 0.850 0.005 0.673 

M2: Variance 

function 

𝑎̂1 = 74.34 

⋮ 
𝑎̂14 =68.69 

0.096 𝜎̂        = 0.035 0.891 -0.002 0.680 

1 Note that the estimated values for the local parameter (𝑎) for Garcia’s model do not match the values reported 

directly in the supplementary material of Garcia (2019). The difference lies in the order in which these 

parameters were estimated, in the appendix presented by Garcia, the value of 𝑎̂1 does not correspond to the 

parameter of the first plot (Seed=301), but to plot 13 (Seed =329). This was generated by the order in which 

the factor levels of the variable Seed are ordered by default for that dataset (not in increasing order). 
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Table 5-4. Fit statistics for the slash pine dataset (dominant height) using Garcia’s approach (𝑐 

fixed at 𝑐 = 0.5) and the proposed approach with models M1 and M2. 

Approach Parameter estimates Fit statistics 

 
𝒂̂ 𝒃̂ 𝝈̂ 

RMSE 

(m) 

MD 

(m) 

MAD 

(m) 

Garcia (2019) 

𝑎̂1   = 26.25, 

⋮ 
𝑎̂72 = 23.64 

0.107 
𝜎̂𝑜𝑏𝑠   = 0.000 

𝜎̂𝑝𝑟𝑜𝑐 = 0.075 
0.809 -0.120 0.643 

M1: Constant 

variance  

𝑎̂1   = 26.09 

⋮ 
𝑎̂72 = 24.02  

0.105 𝜎̂        = 0.120 0.787 0.014 0.603 

M2: Variance 

function 

𝑎̂1   = 25.89 

⋮ 
𝑎̂72 = 23.82 

0.106 𝜎̂        = 0.061 0.823 0.002 0.624 
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Figure 5-1. Brownian motion example, taken from (Dobrow, 2016a), Figure 8.1. Superimposed 

are normal density curves with mean 0 and variance 𝑡. 
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Figure 5-2. Comparison between assuming variance as a constant and as an increasing function 

of time.  
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Figure 5-3. Loglikelihood values calculated using a constant value (M1) or an increasing variance 

function (M2). The labels indicate the age of the observation being evaluated. 
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Figure 5-4. Variance from an SDE of the form from Eq. 5-5, using Eq. 5-7 with 𝑟 = 0.1 and 𝜎 =
0.05. 
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Figure 5-5.Variance form for the model from Eq. 5-13, with 𝜎 = 0.1 , 𝜇0 = 0.4, and 𝐾 = 0.12. 
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CHAPTER 6 

6. OVERALL CONCLUSIONS 

The effect of bedding and vegetation control on slash pine growth was evaluated and modeled 

in this dissertation. In Chapter 2, a long-lasting effect of the vegetation control treatment on 

dominant height was observed, with estimated increments in site index (base age 25) of about 5 m, 

and some residual effect still present at year 31. Higher responses (relative to the control) were 

observed in low quality sites (i.e., base site index of 14 m), while higher quality sites (i.e., 

SI > 22 m) showed no significant increase in observed site index due to the treatment application. 

On the other hand, growth responses due to bedding were no longer observed for stands older than 

20 years. This treatment improved dominant height for younger ages only. Results from this 

chapter imply that a more efficient application of herbicides can be done by targeting low quality 

sites which will show higher responses.  

The treatments evaluated did not show any significant differences on mortality/survival. 

Although this component was greatly affected by the percentage of trees affected by fusiform rust 

within a plot. In Chapter 3, this is explained and a mortality/survival model including average 

fusiform rust infection rates at age 5 was proposed to describe stand mortality. Although the use 

of differential equations in which height increments are used instead of time increments had been 

found in the literature as a better alternative to model survival mortality, this was not the case for 

the models and data used for this research.   

Results from chapters 2 and 3 were used to construct the final growth and yield model proposed 

for slash pine plantations. This system included the stand-level characteristics of dominant height, 
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mortality, and basal area. The effect of bedding and vegetation control was successfully 

incorporated into the dominant height and basal area components by using dummy variables. The 

average error and bias of the models were reduced when parameter modifiers were added, 

compared to base models without these factors. Fusiform rust infection rates were crucial to 

describe mortality rates. These rates were modeled as a function of the initial infection rate per 

plot as presented in Chapter 3. Dominant height and mortality were used as predictor variables for 

the basal area model proposed. When having these variables as predictors, correlation between the 

errors of the variables is present. This correlation was addressed by estimating the variance-

covariance matrix of the system along with the parameters of the system. The G&Y system 

proposed was shown to have lower errors for short projection intervals, and therefore its use is 

recommended for these intervals. When using an independent validation dataset to validate the 

model for the control plots, the error obtained increased but was maintained within acceptable 

ranges.  

Finally, the appropriateness of using of stochastic differential equations (SDEs) for modeling 

growth and incorporating uncertainty into forestry systems was evaluated. The strong 

mathematical background required to implement this approach had been recognized in the 

literature before, but in addition, other limitations of this approach were explained through 

different practical and theoretical examples. The limited set of functions that can be used with this 

approach along with the restricted form of the variance function that is derived from the SDEs 

were explained. Although the use of SDEs can be extended to include other function forms, the 

complexity of the models quickly increases to the point where only numerical solutions to the 

SDEs can be used, precluding the derivation of analytical forms for the likelihood function to be 

minimized when using maximum likelihood for estimating the parameters of a model. As an 
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alternative to using SDEs, a simpler approach based on differential equations and maximum 

likelihood was presented, showing the same or better fit than an approach using SDEs. An example 

of how to implement this approach was attached as an appendix. 
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APPENDIX A: CHAPTER 4 R CODE TO USE G&Y SYSTEM FOR A SINGLE PREDICTION 

# Loading the packages 
library(deSolve) 

#---------Estimated parameters---------------- 
#DH parms 
u0 <- 0.3737; K <- 0.1128; b1 <- 0.9178; b2 <- 1.1057 
#N parms 
a0 <- -0.0151; a1 <- -0.3596; d <- -0.6292; 
#BA parma 
B1 <- 10.4090; B2 <- -0.2776; B3 <- -1.4977 ; B4 <- 1.5512; d1 <- 0.8747;  
d2 <- 0.7449 
 
parms_sys <- c(u0, K, b1, b2, a0, a1, d, B1, B2, B3, B4, d1, d2) 
#--------Initial conditions------------------- 
hini  <- 3 
Nini  <- 1100/1000 #Needs to be divided by 1000 
BAini <- 1.5 
t1    <- 5 
t2    <- 8 
FR    <- 0.1 
Z1    <- 0.0 
Z2    <- 0.0 
#--------Define system (differential equations)------ 
System <- function(t, u, p) { 
  h0  <- u[1] 
  N0  <- u[2] 
  BA0 <- u[3] 
   
  dH <- (h0 * p[1] * p[3]^Z1) * exp(-p[2] * p[4]^Z2 * t) 
  dN <- N0 * (p[5] + p[6] * FR) * t^p[7] 
  dB <- (p[8] + p[9] * h0 + p[10] * N0)*BA0 / t^p[11]) * p[12]^Z1 * p[13]^Z2 
   
  return(list(c(dH, dN, dB))) 
} 
#-----Solve the system numerically-------------------- 
y0    <- c(hini, Nini, BAini) 
times <- c(t1,t2) 
sol   <- ode(y = y0, times = times, func = System, parms = parms_sys) 
 
#---- extract the values of interest----------------- 
HDOM_pred <- sol[2,2] 
N_pred    <- sol[2,3] * 1000 #Needs to back transform the variable 
BA_pred   <- sol[2,4]  



 

163 

 

 

APPENDIX B: CHAPTER 4 JULIA CODE TO USE G&Y SYSTEM FOR A SINGLE OR 

MULTIPLE PREDICTIONS AND WITH DIFFERENT PLOTS 

#Loading the packages 

using DifferentialEquations   

using Plots 

#---------Estimated parameters---------------- 

#DH parms 

u0 = 0.3737;K  = 0.1128;b1 = 0.9178;b2 = 1.1057 

#N parms 

a0 = -0.0151;a1 = -0.3596;d  = -0.6292; 

#BA parma 

B1 =10.4090;B2 = -0.2776;B3 = -1.4977 ;B4 = 1.5512;d1 = 0.8747; d2 = 0.7449 

 

parms_sys = [u0;K;b1;b2;a0;a1;d;B1;B2;B3;B4;d1;d2] 

 

#--------Initial conditions------------------- 

hini  = 3 

Nini  = 1100/1000 #This variable need to be scaled 

BAini = 1.5 

t1    = 5 

t2    = 8 

FR    = 0.1 

Z1    = 0.0 

Z2    = 0.0 

 

#--------Define system (differential equations)------ 

function System(du,u,p,t) 

   h0 =  u[1] 

   N0 =  u[2] 

   BA0 = u[3] 

 

 du[1]   =(h0.*(p[1]).*(p[3].^Z1)).*exp.(-p[2].*(p[4].^Z2).*t) 

 du[2]   = N0.*(p[5].+p[6].*FR).*(t.^p[7]) 

 du[3]   =(p[8].+p[9].*h0.+p[10].*N0).*(BA0./(t^p[11])).*(p[12].^Z1).*(p[13].^Z2) 

    nothing 

end 
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#-----1. Predicting one plot, one single time -------------------- 

#--- Solve the system numerically--------------------- 

prob_sol = ODEProblem(System,vcat(hini,Nini,BAini),(t1, t2), parms_sys) 

sol      = solve(prob_sol,Tsit5(),saveat = t2); 

 

#---- Extract the values of interest----------------- 

HDOM_pred  = transpose(hcat(sol.u...))[2,1]; 

N_pred     = transpose(hcat(sol.u...))[2,2].*1000; #scale back this variable 

BA_pred    = transpose(hcat(sol.u...))[2,3]; 

 

#----2. Predicting one plot, different times-------------------- 

ages = collect(5:30) 

t1   = minimum(ages) 

t2   = maximum(ages) 

prob_sol = ODEProblem(System,vcat(hini,Nini,BAini),(t1, t2), parms_sys) 

sol      = solve(prob_sol,Tsit5(),saveat = ages); 

 

#---- Extract the values of interest----------------- 

HDOM_pred  = transpose(hcat(sol.u...))[:,1]; 

N_pred     = transpose(hcat(sol.u...))[:,2].*1000; #scale back this variable 

BA_pred    = transpose(hcat(sol.u...))[:,3]; 

 

plot(ages, HDOM_pred) 

plot(ages, N_pred) 

plot(ages, BA_pred) 

 

#----3. Predicting different plots, several different times-------------------- 

#--------Initial conditions------------------- 

hini  = [3,2.5,3.5] #Assuming 3 plots 

Nini  = [1100,1000,1150]./1000 

BAini = [1.5,1.3,1.6] 

FR    = [0.1,0.0,0.5] 

Z1    = [0.0,1.0,1.0] 

Z2    = [1.0,0.0,1.0] 

 

nplot = length(hini) 

ages = collect(5:30) 

t1   = minimum(ages) 

t2   = maximum(ages) 

 

#Necessary to take advantage of system of DE 

h1  = 1 

hn  = nplot 
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N1  = nplot+1 

Nn  = 2*nplot 

BA1 = 2*nplot+1 

BAn = 3*nplot; 

 

#----------------Define system for vectors-------------------------------- 

function System2(du,u,p,t) 

    h0 =  u[h1:hn] 

    N0 =  u[N1:Nn] 

    BA0 = u[BA1:BAn] 

 

    du[h1:hn]   .=(h0.*(p[1]).*(p[3].^Z1)).*exp.(-p[2].*(p[4].^Z2).*t) 

    du[N1:Nn]   .= N0.*(p[5].+p[6].*FR).*(t.^p[7])  

    du[BA1:BAn].=(p[8].+p[9].*h0.+p[10].*N0).*(BA0./(t^p[11])).*(p[12].^Z1).*(p[13].^Z2) 

     

    nothing 

end 

 

#-------------------Plots (predicted lines)----------------------------- 

prob_sol2 = ODEProblem{true}(System2,vcat(hini,Nini,BAini),(t1, t2), parms_sys) 

sol2      = solve(prob_sol2,Tsit5(),saveat = ages); 

 

sol_DH    = transpose(hcat(sol2.u...))[:,1:nplot]; 

sol_N     = transpose(hcat(sol2.u...))[:,(nplot+1):2*nplot].*1000; 

sol_BA    = transpose(hcat(sol2.u...))[:,(2*nplot+1):3*nplot]; 

 

plot(sol2.t, sol_DH) 

plot(sol2.t, sol_N) 

plot(sol2.t, sol_BA) 

 

  



 

166 

 

 

APPENDIX C: CHAPTER 5 JULIA CODE TO ESTIMATE PARAMETERS OF A DE 

C1. CODE TO DIRECTLY COMPARE WITH GARCIA’S APPROACH 

#Loading the packages 

using DifferentialEquations  

using Plots 

using Optim  

using ForwardDiff 

using DataFrames 

using Distributions 

using CSV 

using BenchmarkTools 

using StaticArrays 

using LinearAlgebra 

using StatsBase 

using NLSolversBase 

using Preferences 

using DelimitedFiles 

using Plots.Measures 

#----------------Reading data----------------------------- 

#Need to export the Loblolly dataset beforehand from R 

data_lob = DataFrame(CSV.File("Data/data_lob.csv"))  

plot(data_lob.age,data_lob.height,group  = data_lob.Seed) 

 

#---------------Definig variables as constant--------------- 

nplot = length(unique(data_lob.Seed))  

AGE   = data_lob.age 

nAge  = length(unique(AGE)) 

unique_AGES = sort(unique(AGE)) 

HLob = data_lob.height 

inits = fill(0,nplot) 

c_fix = 0.49182 #all sites, from Garcia (2019) 

 

#---------------------Defining DDEEs---------------------------------------- 

function f(du,u,p,t) 

    du .= p[nplot+1]*(abs.(p[1:nplot].+0im).^c_fix .-(u)) 

    nothing 

end 

#This function can be modified; it was just created to match Garcia's 

#see the Alternative option at the end  
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#the abs.(..+0im) is a trick to avoid the optimization algorithm to stop 

#if it finds complex numbers during the search 

#This differential equation is being defined for the transformed variable H^c 

 

#-----------------Solving DE numerically------------------------------------- 

function DEsol_l(Age,parms) 

    

    time_int      = (0,maximum(Age)) #Time interval to solve the DE    

    u0            = inits            #Initial values to solve the DE 

     

    prob          = ODEProblem{true}(f, u0,time_int, parms) 

    sol           = solve(prob, Tsit5(),saveat = unique_AGES) 

    sol_v         = vec(transpose(Array(sol)))    

    return sol_v 

 

end 

 

#---------------------Log-lik function------------------------------------------- 

function loglik(time, vari,θ) 

 

    sig           = θ[nplot+2]   

    hpred         = DEsol_l(time,θ) 

    var_trans     = vari.^c_fix  

    residual      = var_trans .- hpred  

    sigma_fx      = exp(sig) #Constant variance, defined as sd 

 

    result        = sum(logpdf.(Normal.(0,sigma_fx ),skipmissing(residual)))    

    return -result 

 

end 

#Variance was defined as constant here, it can be modified to be 

#any function. The exp guarantees positive numbers.  

 

#Function to create initial values for the optimization 

function get_par_inits(pars) 

    inits = combine(groupby(data_lob, :Seed), :height => maximum) 

    inits = inits[!,2] 

    inits = [inits;pars] 

end  

par_inits = get_par_inits([0.1,log(0.1)]); #initial values for the optim 

loglik(AGE,HLob,par_inits) #testing if everything is working 
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#----------------- Optimization--------------------------- 

func_twice = TwiceDifferentiable(b -> loglik(AGE, HLob, b), par_inits; 

autodiff=:forward); #Function to be minimized, using automatic differentiation 

@time opt = optimize(func_twice, par_inits,Newton(),Optim.Options(iterations = 

1000000)) 

#Results 

opt.minimum  

res = Optim.minimizer(opt) 

res[(nplot+1):(nplot+2)]  

exp(res[nplot+2]) 

 

#Plot solution 

inits_trans = inits.^c_fix 

prob_sol = ODEProblem{true}(f,inits_trans,(0, 31), res) 

sol      = solve(prob_sol,Tsit5(),saveat=unique_AGES); 

plot(sol, legend=false) 

 

data_lob.Hpred_trans = vec(transpose(Array(sol)))  

data_lob.Hpred_orig  = data_lob.Hpred_trans.^(1.0/c_fix) 

 

plot_res =  plot(data_lob.age,data_lob.height, 

             group  = data_lob.Seed,  

             seriestype=:scatter, 

             xlabel = "Time (years)", ylabel = "HD (ft)",legend = 

false,xlims     = (0, 30)) 

plot!(data_lob.age,data_lob.Hpred_orig,group  = data_lob.Seed,linewidth = 

1,color="grey") 

 

#---------------- Fit statistics--------------------------------------- 

#RMSE 

sqrt(mean(skipmissing((HLob.-data_lob.Hpred_orig).^2))) 

 

#Average bias 

mean(skipmissing((HLob.-data_lob.Hpred_orig))) 

 

#Average absolute bias 

mean(abs.(skipmissing((HLob.-data_lob.Hpred_orig))))  
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#----------Alternative with variance function-------------------------------  

#---------------------Log-lik function------------- 

function loglik(time, vari,θ) 

     

    r             = θ[nplot+1] 

    sig           = θ[nplot+2] 

    hpred         = DEsol_l(time,θ) 

    var_trans     = vari.^c_fix  

    residual      = var_trans .- hpred  

    sigma_fx      = ((sig^2)/(2*r)).*(1.0.-exp.(-2*r*time)) #this is var not sd 

 

    result        =sum(logpdf.(Normal.(0,sqrt.(sigma_fx)),skipmissing(residual))) 

   

    return -result 

 

end 

 

#Function to create initial values 

function get_par_inits(pars) 

    inits = combine(groupby(data_lob, :Seed), :height => maximum) 

    inits = inits[!,2] 

    inits = inits 

    inits = [inits;pars] 

end  

par_inits = get_par_inits([0.09,0.05]); 

loglik(AGE,HLob,par_inits) 

 

#----------------- Optimization--------------------------- 

func_twice = TwiceDifferentiable(b -> loglik(AGE, HLob, b), par_inits; 

autodiff=:forward); 

@time opt = optimize(func_twice, par_inits,Newton(),Optim.Options(iterations = 

1000000)) 

 

#Results 

opt.minimum  

res = Optim.minimizer(opt) 

res[(nplot+1):(nplot+2)]  

 

var_teo =(((res[nplot+2])^2)/(2*res[nplot+1])).*(1.0.-exp.(-

2*res[nplot+1]*unique_AGES)) #checking the variance form 

plot(unique_AGES, var_teo, ylims=(0.002,0.007)) 
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#Plot solution 

inits_trans = inits.^c_fix 

prob_sol = ODEProblem{true}(f,inits_trans,(0, 31), res) 

sol      = solve(prob_sol,Tsit5(),saveat=unique_AGES); 

plot(sol, legend=false) 

 

data_lob.Hpred_trans = vec(transpose(Array(sol)))  

data_lob.Hpred_orig  = data_lob.Hpred_trans.^(1.0/c_fix) 

 

plot_res =  plot(data_lob.age,data_lob.height, 

             group  = data_lob.Seed,  

             seriestype=:scatter, 

             color =data_lob.Seed, 

             xlabel = "Time (years)", ylabel = "HD (ft)",legend = 

false,xlims     = (0, 30)) 

plot!(data_lob.age,data_lob.Hpred_orig,group  = data_lob.Seed,linewidth = 1,color 

=data_lob.Seed) 

 

#---------------- Fit statistics--------------------------------------- 

#RMSE 

sqrt(mean(skipmissing((HLob.-data_lob.Hpred_orig).^2))) 

#Average bias 

mean(skipmissing((HLob.-data_lob.Hpred_orig))) 

#Average absolute bias 

mean(abs.(skipmissing((HLob.-data_lob.Hpred_orig))))  
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C2. CODE WITH PROPOSED METHODOLOGY AND SLASH PINE DATASET 

This code cannot be run with publicly available data but is another example of how to use the 

proposed approach using a model different that the one used by Garcia. The Gompertz model from 

chapters 3 and 4, with a constant variance is exemplified here (without treatments).  

This dataset has 72 different plots and local parameters corresponding to the initial state of the 

system for which the differential equation is solved are estimated. There are between 7 and 9 

observations per plot (unbalanced dataset). The minimum age is 5 and the maximum is 31. If 

another dataset is used, change these values accordingly when plotting the solution. Each plot has 

a unique identifier called ‘myPlot’.  

 

#Loading the packages 

using DifferentialEquations 

using Plots 

using Optim  

using ForwardDiff 

using DataFrames 

using Distributions 

using CSV 

using BenchmarkTools 

using StaticArrays 

using LinearAlgebra 

using StatsBase 

using NLSolversBase 

using Preferences 

using DelimitedFiles 

 

#-----------Reading the data------------------------ 

data_s = DataFrame(CSV.File("Data/data_trt.csv")) 

data_s = sort!(data_s,[:myPlot,:AGE]) 

 

#Definig variables as constant (better for optimization) 

const nplot = length(unique(data_s.myPlot))  

const AGE   = data_s.AGE 

const nAge  = length(unique(AGE)) 

const unique_AGES = sort(unique(AGE)) 

const unique_plot = sort(unique(data_s.myPlot)) #Needs to be sorted by myplot 
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#Expanding dataset to be used in matrix form 

#This is necessary to work efficiently with the unbalanced data 

df_full      = DataFrame(myPlot  = repeat(unique_plot,inner = nAge), 

                         AGE  = repeat(unique_AGES,outer = nplot)) 

data_sfullNA = sort!(leftjoin(df_full,data_s, on =[:myPlot,:AGE]),[:myPlot,:AGE]) 

const HDOM_NA = data_sfullNA.HDOM 

#----------- Required functions---------------------- 

#Defining the Gompertz differential equation  

function f(du,u,p,t) 

    du.=(u.*(p[1])).*exp.(-p[2].*t) 

    nothing 

end 

 

#Solving DE numerically 

function DEsol_l(Age,parms)    

    time_int      = (minimum(Age),maximum(Age))     

    u0            = @view parms[1:nplot] #@view is used to speed up the optim 

     

    prob          = ODEProblem{true}(f, u0,time_int, @view parms[(nplot+1):(nplot+2)]) 

    sol          = solve(prob, Tsit5(),saveat = unique_AGES) 

    sol_v        = vec(transpose(Array(sol)))    

    return sol_v 

 

end 

 

#Log-lik function 

function loglik(time, var,θ) 

     

    sigma         = exp(θ[nplot+3]) #constant variance 

    hpred         = DEsol_l(time,θ) 

    residual      = var .- hpred  

    result        = sum(logpdf.(Normal(0, sigma),skipmissing(residual))) 

     

    return -result 

 

end 

 

#Function to create initial values 

function get_inits(pars) 

    inits = combine(groupby(data_s, :myPlot), :HDOM => minimum) 

    inits = inits[!,2] 

    inits = [inits;pars] 

end  

inits = get_inits([0.4,0.12,0]); 

loglik(AGE,HDOM_NA,inits) 
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#---------------Optimization--------------------------------------- 

@time result = optimize(b -> loglik(AGE, HDOM_NA, b), 

inits,Optim.Options(iterations = 1000000))  

#Results 

result.minimum 

res = Optim.minimizer(result) 

res[(nplot+1):(nplot+3)] 

 

#Plot solution 

prob_sol = ODEProblem{true}(f,res[1:nplot],(5, 31), res[(nplot+1):(nplot+3)]) 

sol      = solve(prob_sol,Tsit5(),saveat=unique_AGES); 

 

plot_res =  plot(data_s.AGE,data_s.HDOM, 

             group  = data_s.myPlot,  

             xlabel = "Time (years)", ylabel = "HD (m)", 

              legend =false, xlims     = (0, 35)) 

plot!(sol, linewidth = 1,  xlabel    = "Age (years)",color="grey" , 

      xlims     = (0, 35)) 

 

#---------------- Fit statistics--------------------------------------- 

#RMSE 

sqrt(mean(skipmissing((HDOM_NA.-vec(transpose(Array(sol)))).^2))) 

#Average bias 

mean(skipmissing((HDOM_NA.-vec(transpose(Array(sol)))))) 

#Average absolute bias 

mean(abs.(skipmissing((HDOM_NA.-vec(transpose(Array(sol))))))) 

 

#----------------- Optimization with AD to get- Hessian and standard error--- 

func_twice = TwiceDifferentiable(b -> loglik(AGE, HDOM_NA, b), inits; 

autodiff=:forward); 

@time opt = optimize(func_twice, inits,Newton(),Optim.Options(iterations = 

1000000)) 

 

#Solution 

Optim.minimizer(opt) 

opt.minimum 

 

#Parameters  

parameters = Optim.minimizer(opt); #All parameters, including local 

parameters[(nplot+1):(nplot+3)] #Want to focus on the global parameters 

 

#Hessian-standard error 

numerical_hessian = hessian!(func_twice,parameters); 

var_cov_matrix = inv(numerical_hessian); 
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β    = parameters; 

temp = diag(var_cov_matrix) 

SE   = sqrt.(temp) 

SE[(nplot+1):(nplot+3)] #Standard error of the global parameters  
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