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Abstract

Inspired by biological neural networks (BNNs), artificial neural networks
(ANNs) have achieved great success in revolutionizing a wide range of tasks and
scenarios from computer vision (CV) to natural language processing (NLP).
Given their powerful representation capabilities, ANNs have also been widely
used in the brain science community to represent the organization and dynam-
ics of the human brain from the perspective of BNNs, such as functional brain
networks (FBNs). Despite this, the connections between ANNs and BNNs re-
main largely unexplored due to the lack of effective tools to bridge and connect
two different domains, i.e., the brain and artificial intelligence. Furthermore,
how to leverage the prior knowledge of BNNs to inspire the design of ANNs
and boost their performance is still an open question. To overcome these chal-
lenges, we proposed a series of computational frameworks to bridge the gap
mentioned above. Our approaches involve exploring the hierarchical organiza-
tion of brain activities, representing the brain structure and function as embed-
dings, connecting them with ANNs to couple the semantics of two domains,
and utilizing the prior knowledge from the human brain to inspire and guide
the design of ANNs. Extensive experiments demonstrated that the proposed
computational frameworks could effectively explore the connection between
ANNs and BNNs, yielding neuroscientifically meaningful interpretations. Ad-
ditionally, our brain-inspired design of ANNs, informed by prior knowledge
from human brains, achieved comparable and state-of-the-art performances in
several tasks. Overall, this study provides novel insights from brains toward
brain-inspired artificial intelligence.

Index words: [Brain-inspired AI, Brain, Biological Neural Network,
Artificial Neural Network, Functional Brain Network]
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Chapter 1

Introduction

1.1 The Connection of Brain and Artificial Intel-
ligence

Inspired by biological neural networks (BNNs), artificial neural networks (ANNs)
have achieved great success in revolutionizing a wide range of tasks and scenarios
from computer vision (CV) to natural language processing (NLP) (LeCun et al.,
2015). With a biologically plausible inspiration from the cat visual cortexHubel
and Wiesel, 1959; LeCun, Bengio, et al., 1995, convolutional neural networks
(CNNs) (LeCun, Bengio, et al., 1995) hierarchically learn the visual representa-
tions of images/videos as low-level to high-level features and have been widely
used in many real-word CV applications (Khan et al., 2020; LeCun et al., 2015).
Inspired by human visual attention, a large group of deep learning approaches
successfully integrated attention mechanisms into their deep neural networks to
improve the performance and the interpretability (Hassabis et al., 2017; Vaswani
et al., 2017). For example, in the CV field, a lightweight attention module was
introduced into CNNs and demonstrated consistent improvements on both
image classification and object detection tasks (Woo et al., 2018). In the NLP
field, based on the self-attention mechanism, the Transformer model (Vaswani
et al., 2017) has been widely adopted in NLP tasks such as machine transla-
tion, text classification, and question answering. Based on the Transformer
architecture, BERT (Bidirectional Encoder Representations from Transform-
ers) (Devlin et al., 2018) model achieved state-of-the-art results on a wide range
of benchmarks, becoming a popular choice for NLP tasks due to its strong per-
formance and ease of use with pre-trained models available for many languages.
Recently, by adapting self-attention mechanism into image processing, Vision
Transformer (ViT) Dosovitskiy et al., 2020 model demonstrated state-of-the-
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art performance in various CV tasks by representing the image as a sequence of
patches.

Concurrently, ANNs have also been widely adopted in the brain science
community to model the brain structure, represent the organization and dy-
namics of brain function, to help us understand the mechanism of the hu-
man brain. For example, deep convolutional autoencoder (DCAE) model was
used to extract dozens of features from functional magnetic resonance imaging
(fMRI) time series to explore the temporal characteristics of brain activities (H.
Huang et al., 2017; L. Zhao, Dai, et al., 2021). Deep sparse recurrent autoen-
coder (DSRAE) (Q. Li et al., 2019) was employed to simultaneously decompose
BNNs, i.e., the spatiotemporal FBNs, from 4D fMRI volumes. CNNs were
utilized to characterize the rhythm of brain activity in gyri and sulci (M. Jiang
et al., 2020; H. Liu et al., 2019; Q. Wang et al., 2022), and it was found that gy-
ral/sulcal signals exhibit different frequency characteristics across different brain
regions. Recently, a group of studies employed Transformer-based models and
self-attention mechanism to model brain activity and function given the pow-
erful ability to model sequential data (Dong et al., 2020; M. He et al., 2022; L.
Zhao, Wu, et al., 2022). Despite the successes of the aforementioned ANNs, the
architectures of those ANNs are manually crafted, which may not be optimized
for addressing domain-specific questions such as representing brain functional
activity. Neural Architecture Search (NAS) provided feasible approaches for
automatically selecting the optimal architecture that may be congruent with
the human brain. For example, W. Zhang et al., 2019 adopted an evolutionary
optimization method to search the optimal deep belief networks (DBNs) for
identifying spatiotemporal FBNs. Q. Li, Wu, et al., 2021 take advantage of the
differentiable method to search the optimal spatial/temporal brain function
network decomposition.

1.2 Challenges in Brain-inspired AI
Despite the progress mentioned above, the connections between ANNs and
BNNs remain largely unexplored due to the lack of effective tools to bridge and
connect two different domains. For example, whether the visual representation
space of ANNs such as CNNs or ViT retains biologically meaningful semantics
as in the initial inspiration, BNNs, is still an open question. The challenges for
answering this question are multi-fold. Even though the natural stimulus fMRI
paradigm provides a powerful tool for investigating visual perception, current
approaches for representing high-dimensional fMRI data are limited in inter-
preting and describing the semantics perceived by the human brain given the

2



complexity of dynamic brain activities. Meanwhile, the brain responses evoked
by naturalistic stimuli exhibit great inter-subjects variability (Golland et al.,
2007; Ren et al., 2017), while the existing methods do not encode the regularity
and variability of different brains, and thus do not offer a general, comparable,
and stereotyped embedding space for representing the brain activity and seman-
tics. In addition, the development of computational methods for linking the
functional embedding and semantic representation of the human brain with
external natural stimuli remains highly unexplored and desirable.

How we can utilize the prior knowledge from human brains to inspire and
optimize the ANNs for better performances is another challenging problem.
Recently, a group of studies suggested that artificial neural networks (ANNs)
and biological neural networks (BNNs) may share common principles in opti-
mizing the network architecture. For example, the property of small-world in
brain structural and functional networks are recognized and extensively stud-
ied in the literature (Bassett & Bullmore, 2017; Bassett & Bullmore, 2006; Bull-
more & Sporns, 2009). Interestingly, in (S. Xie et al., 2019), the neural networks
based on Watts-Strogatz (WS) random graphs with small-world properties yield
competitive performances compared with hand-designed and NAS-optimized
models. Through quantitative post-hoc analysis, (You et al., 2020) found that
the graph structure of top-performing ANNs such as CNNs and multilayer per-
ceptron (MLP) is similar to those of real BNNs such as the network in macaque
cortex. These studies suggest the potential of taking advantage of prior knowl-
edge from brain science to guide the model architecture design. However, the
practical way of incorporating prior knowledge of the brain into neural net-
work design remains uncharted territory, i.e., there is significant potential for
exploration and advancement in the area of brain-inspired AI.

1.3 Contributions
To address these challenges and explore brain-inspired AI, we proposed a series
of computational frameworks to bridge the gap between the brain and artificial
intelligence. Our approaches involve exploring the hierarchical organization of
brain activities, representing the brain structure and function as embeddings,
coupling the semantics of two domains, and utilizing the prior knowledge from
the human brain to inspire the design of ANNs. The contributions of this
dissertation are summarized as follows:

• We proposed a novel hierarchical interpretable autoencoder (HIAE) model
for representing the brain functional activities as hierarchical spatiotem-
poral features across different scales, which is interpretable and meaning-
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ful. The analysis based on it indicated hierarchical functional differences
between gyri and sulci and suggested a potential core-periphery organi-
zation of human brain function.

• We developed a novel approach to encode the cortical region as a dense
embedding vector. The derived embeddings can simultaneously profile
the structural, connectional and functional information of a brain re-
gion and provide a feasible solution for representing the regularity and
variability of human brain architectures.

• A novel and generic embedding framework was proposed for represent-
ing the human brain function in a general, comparable, and stereotyped
space. The learned embeddings are neuroscientifically meaningful and
interpretable, paving the road for bridging the gap of semantic spaces
between human brain function and ANNs.

• We proposed a synchronized activation (Sync-ACT) framework to con-
nect the visual representation and semantics between FBNs and ANNs.
Significant correlations were found between the two domains’ semantics
and the relationship with the CNNs performance in image classification
tasks.

• Inspired by the biased competition process in the brain’s visual system,
we developed a brain-inspired adversarial visual attention network (BI-
AVAN) to characterize and decode the visual attention in movie watch-
ing. Experimental results show that BI-ANAN achieves robust and promis-
ing results when inferring meaningful human visual attention and map-
ping the relationship between brain activities and visual stimuli.

• We proposed a novel eye-gaze guided vision transformer (EG-ViT) model
to infuse the human expert’s visual attention to guide the model focusing
on the region with potential pathology, avoiding the harmful shortcut
learning and improving models’ interpretability with much higher per-
formance.

• We incorporated core-periphery organization recognized in the human
brain to design a core-periphery principle guided convolutional neural
network (CP-CNN) for image classification. The evaluation on various
datasets demonstrated consistent improvement compared with the base-
lines.
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Overall, this dissertation paves the road for future studies in brain-inspired
AI and provides novel insights for a better understanding of the connections
between brains and artificial intelligence.

1.4 Dissertation Outline
This dissertation contains 7 chapters.

Chapter 2 introduces the investigation of human brain function and the
inspirations for neural architectures. A novel hierarchical interpretable autoen-
coder (HIAE) model was proposed to extract and interpret hierarchical spa-
tiotemporal features of brain activities. The analyses based on the extracted
features demonstrated the hierarchical functional differences between gyri and
sulci. A potential core-periphery organization of human brain function was
also discussed.

Chapter 3 covers the two embedding methods for representing brain struc-
ture and function. First, a novel approach was proposed to encode each cortical
region as a dense embedding vector which simultaneously profiles the struc-
tural, connectional and functional information of a brain region. Second, a
generic framework for embedding human brain function was introduced to lay
the foundation for the following works.

Chapter 4 details the Sync-ACT framework for connecting the visual rep-
resentation and semantics between FBNs and ANNs. We introduce of details
of Sync-ACT framework and discuss the finding of correlations between the
two domains’ semantics and the relationship with the ANNs performance in
image classification tasks.

Chapter 5 covers the two studies related to human visual attention. An
eye-gaze guided vision transformer model was developed to infuse radiologists’
visual attention into model training for rectifying the shortcut learning and im-
proving the performances. A brain-inspired adversarial visual attention network
(BI-AVAN) was also introduced to characterize and decode visual attention di-
rectly from brain activity.

Chapter 6 introduces the brain-inspired CP-CNN model for image classi-
fication. We designed a novel core-periphery graph generator and introduced
the details of CP-CNN’s wiring patterns and convolution operation.

Chapter 7 concludes the whole dissertation and discusses future works.
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Chapter 2

Investigation of Human
Brain Function

2.1 Overview
Gyri and sulci are two basic cortical folding patterns of the human brain. Recent
studies suggest that gyri and sulci may play different functional roles given the
heterogeneity in both structural substrates and functional organization. How-
ever, our understanding of gyri/sulci functional differences is still limited in the
sense that a) previous studies focused on either spatial domain or temporal do-
main, while brain functions are intrinsically spatiotemporal; b) the analyses are
limited to either local scale or global scale. Whether hierarchical functional dif-
ferences exist remains unclear; c) lack of suitable analytical tools to interpret the
hierarchical spatiotemporal features that may answer the question. To address
those limitations, in this section, we proposed a novel Hierarchical Interpretable
Autoencoder (HIAE) to explore the hierarchical functional difference between
gyri and sulci.

2.2 Background
The convex gyri and concave sulci are recognized as the prominent features of
the human cerebral cortex and have attracted the interests of the neuroscience
community for decades (Armstrong et al., 1995; Llinares-Benadero & Borrell,
2019; Welker, 1990; Zilles et al., 1988; Zilles et al., 2013). Previous neuroimag-
ing studies have demonstrated the structural differences of gyri and sulci using
multi-modality neuroimages (H. Chen et al., 2013; X. Jiang et al., 2021; S. Liu
et al., 2022; Nie et al., 2012; Yang et al., 2019; T. Zhang et al., 2014). For ex-
ample, it was found that the wiring diagrams of white matter axonal fibers are
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significantly different between gyri and sulci at macro-scale (Nie et al., 2012;
G. Xu et al., 2010). The axonal fiber bundles course around the sulcal regions
in a U-shape and align radially inside gyri (G. Xu et al., 2010; T. Zhang et al.,
2014). Such structural differences were also distinguished in cyto- and myelo-
architecture at micro-scale (Essen, 1997; Goldman-Rakic et al., 1984; Hilgetag &
Barbas, 2005; Richman et al., 1975), and across species such as mouse, macaque,
and chimpanzee cerebrum (H. Chen et al., 2013; Nie et al., 2012; T. Zhang et al.,
2014), suggesting the different functional roles that gyri and sulci may play.

Inspired by this, various computational tools have been recruited to explore
the functional differences between gyri and sulci and the connections with their
structural substrates based on functional magnetic resonance imaging (fMRI).
These approaches can be roughly categorized into functional connectivity based
methods, sparse dictionary learning (SDL) based methods and deep learning
based methods. By constructing the functional connectivity matrix, F. Deng
et al., 2014 found that gyri-gyri pair have the strongest functional connectiv-
ity than gyri-sulci pair (modest) and sulci-sulci-pair (weakest). Based on this
observation, a functional model was proposed that gyri could be functional
centers exchanging information remotely while sulci communicate locally with
the neighboring gyri (F. Deng et al., 2014). SDL was employed in(X. Jiang et al.,
2015; Lv et al., 2015; Lv et al., 2014; L. Zhao et al., 2019) to decompose the whole
brain function as functional brain networks and examined the functional differ-
ences from a network perspective (X. Jiang et al., 2015; H. Liu, Jiang, et al., 2017;
L. Zhao, Zhang, et al., 2021). For instance, it was found that gyri have strong
overlap patterns regarding those functional networks than sulci (X. Jiang et al.,
2015; X. Jiang et al., 2016; X. Jiang et al., 2018). H. Liu, Jiang, et al., 2017 inves-
tigated the interactions within and across gyral and sulcal functional networks
and found gyri are more functionally integrated while sulci are more function-
ally segregated. A recent work studied the signal representation residual of SDL
and suggested that gyri were more involved in global functions and interregional
communications of the human brain across different task conditions and in-
trinsic functional networks (L. Zhao, Zhang, et al., 2021). Recently, deep neural
networks have been employed to study the functional differences between gyri
and sulci due to their powerful representation ability (M. Jiang et al., 2020; H.
Liu et al., 2019; Q. Wang et al., 2022; S. Zhang et al., 2018). In (H. Liu et al., 2019),
a convolutional neural network (CNN) was utilized to classify the gyral/sulcal
fMRI signals. By examining the corresponding convolutional filters, it was
found that gyral signals are of low frequency while sulcal signals are of high fre-
quency. (M. Jiang et al., 2020) showed that gyral/sulcal signals exhibit different
frequency characteristics across different regions based on a regional-specific
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1D CNN model. An intrinsic connectivity network (ICN)-guided pooling-
trimmed convolutional neural network(I-ptFCN) was proposed in (Q. Wang
et al., 2022), and it was demonstrated that sulcal signals show the heterogeneous
frequency features across different ICNs while gyral signals are homogeneous.

Despite the remarkable progresses made in the aforementioned studies, our
understanding of gyral/sulcal functional differences is still limited by the lack
of appropriate analytical tools (L. Zhao, Dai, et al., 2021). First, the current
analytical tools mainly act on either spatial domain such as SDL for the spatially
distributed functional networks, or temporal domain such as CNN for tem-
poral characteristics of fMRI signals. However, the brain activities recorded in
the 4D fMRI data are intrinsically spatiotemporal, and previous studies have
suggested that the spontaneous brain function exhibit a spatiotemporal orga-
nization and dynamics (Gutierrez-Barragan et al., 2022; Kourtzi & Huberle,
2005; Moon et al., 2013). The investigations from either spatial or temporal
perspective cannot provide comprehensive characterizations of the gyral/sulcal
functional differences. Whether there exist spatiotemporal functional differ-
ences between gyri and sulci remains to be elucidated. Moreover, both the
analytical tools and result interpretation approaches are limited in a single-scale
functional architecture. For example, the SDL-based studies were confined at
a global scale as the functional brain networks are globally decomposed from
whole-brain fMRI signals (X. Jiang et al., 2015; X. Jiang et al., 2018; H. Liu,
Jiang, et al., 2017; L. Zhao, Zhang, et al., 2021). CNN used in previous works
focused on a local scale due to the limited receptive field and the shallow struc-
ture (M. Jiang et al., 2020; H. Liu et al., 2019; Q. Wang et al., 2022). Hence,
our understanding of gyral/sulcal functional differences is also limited to a sin-
gle scale. In fact, the external stimuli span across different time scales and over
extended regions, and consequently, the neuronal activity patterns of human
brain function were suggested to be organized in a hierarchical manner both
spatially and temporally (Deco & Kringelbach, 2017; Friston, 2008; Golestani,
2014; Kiebel et al., 2008), where the higher levels process the information from
the lower levels Golestani, 2014. In this sense, with an appropriate approach, the
gyral/sulcal functional differences can also be deciphered from the local scale
to the global scale in a hierarchical manner, compensating the aforementioned
scale gaps. To explore the hierarchical differences between gyri and sulci, a deep
neural network with multiple layers and hierarchical organization seems suit-
able for this objective, e.g., deep convolutional autoencoder (DCAE) model (H.
Huang et al., 2017). However, the features from deep layers of neural networks
are usually abstractive, multi-dimensional and hard to be interpreted or to have
a straightforward neuroscientific meaning. Previous studies did not addressed
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it directly and systematically, while trying to avoid it. For example, the CNN
model adopted in aforementioned studies consists of only one or two convolu-
tional layers for the ease of interpretation (M. Jiang et al., 2020; H. Liu et al.,
2019; Q. Wang et al., 2022). The DCAE model in (H. Huang et al., 2017) only
interpreted the features picked from one dimension while those from other
dimensions remained agnostic to human perception.

2.3 Hierarchical Interpretable Autoencoder
To facilitate our understanding of gyri/sulci functional roles beyond these lim-
itations, in this subsection, we develop a novel analytical tool, hierarchical in-
terpretable autoencoder (HIAE) to conduct an in-depth investigation of the
hierarchical differences between gyri and sulci. We adopted an unsupervised
convolutional autoencoder framework (H. Huang et al., 2017) as the backbone
to extract the spatiotemporal features hierarchically from the fMRI signals at
different scales. In the HIAE model, features from the previous layer are the
inputs for the next layer, and thus a hierarchy is naturally formed between layers.
Meanwhile, layers in HIAE have different receptive fields, and the correspond-
ing features are also at different scales. We represent the extracted spatiotem-
poral hierarchical features through a carefully designed feature interpreter (FI)
which embeds the features corresponding to the fMRI time series in a voxel as a
one-dimensional vector. The vectors of all voxels can be stacked and each digit is
interpreted as the spatial distribution of the learned temporal features. The cor-
responding temporal activity patterns can be obtained by regressing the spatial
distributions to the fMRI signals. In this way, the spatiotemporal features of
brain function at different scales can be hierarchically extracted and interpreted,
and the gyri/sulci functional differences can be then contrasted and analyzed.

2.3.1 Materials and Methods
The main idea is to utilize deep neural networks to extract hierarchical features
from the fMRI time series of gyri/sulci and interpret those features for analyz-
ing the gyri/sulci functional differences. First, in Section 2.3.1, we introduce
the data and dataset for validating the proposed method. In Section 2.3.1, we
propose a novel hierarchical interpretable autoencoder (HIAE) based on a con-
volutional autoencoder (CAE) and a carefully-designed feature interpreter (FI).
We illustrate the parcellation of gyri and sulci in Section 2.3.1 and finally intro-
duce the activation ratio (AR) for contrasting the gyri and sulci in Section 2.3.1.
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Figure 2.1: The architecture of the proposed HIAE model. a) The encoder con-
sists of 4 convolution layers. The number on the left side of each rectangular
(i.e., feature map) denotes the number of channels. The number on the right
side indicates the length of each feature map. b) The feature interpreter consists
of two fully-connected layers. By stacking the embedded vectors along the spa-
tial dimension, the digit values of embedded vectors can be mapped back to the
cortical surface to reveal the spatial distributions. The details of this layer are
on shown in the right-most inset. c) The decoder for reconstructing the input
fMRI time series.

Data Acquisition and Pre-Processing

In this work, we adopt HCP grayordinate-based task fMRI (tfMRI) data from
Human Connectome Project (HCP, S1200 release) (Barch et al., 2013; Van
Essen et al., 2013) to validate the proposed framework. HCP grayordinate-
based data consist of high-resolution cortical surface mesh and accurate map-
ping of fMRI time series from volume space to surface space, which greatly
facilitates our exploitation of gyral/sulcal functional differences. Specifically,
HCP tfMRI dataset has seven different task paradigms including Emotion (176
frames), Gambling (253 frames), Language (316 frames), Motor (284frames), Re-
lational (232 frames), Social (274 frames) and Working Memory (405 frames).
We use all seven task paradigms as our testing beds. The acquisition parameters
of tfMRI data are as follows: 90×104 matrix, 72 slices, TR=0.72 s, TE=33.1
ms, 220 mm FOV, flip angle = 52◦, BW =2290 Hz/Px, in-plane FOV = 208 ×
180 mm, 2.0 mm isotropic voxels. More details of seven task designs and data
acquisition are referred to (Barch et al., 2013).

The HCP tfMRI data were preprocessed by HCP minimal preprocessing
pipelines including spatial artefacts and distortions removal, tissue segmenta-
tion and cortical surfaces generation, within-subject cross-modal registration
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(between T1-weighted MRI and fMRI), cross-subject registration to standard
volume and surface spaces, cortical ribbon-constrained volume to surface map-
ping, and Gaussian surface smoothing (Glasser et al., 2013; Robinson et al.,
2014). In addition, we normalize all fMRI time series with zero mean and stan-
dard deviation one. For all healthy adult participants in HCP S1200 release, we
randomly select 300 subjects for each task and extract fMRI time series only
from cortical surface vertices (64,984 vertices for each subject). In the model
training phase, the training/validation dataset comprises 80%/20% of the ex-
tracted tfMRI time series, respectively. After the model training, all subjects
are included with the whole-brain fMRI time series for analysis.

Hierarchical Interpretable Autoencoder (HIAE)

The technical limitations of the previous studies are: a) employing the shallow
model, such as SDL in (L. Zhao, Zhang, et al., 2021); b) the employed neural net-
work only consists of one layer for the ease of analyses, e.g., 1D-CNN in (H. Liu
et al., 2019; Q. Wang et al., 2022). In this study, we adopt an autoencoder model
with multiple layers to extract the hierarchical features and then analyze those
features based on feature interpreter (FI). The overall architecture of the pro-
posed HIAE model is illustrated in Figure 2.1, which has a 4-layer autoencoder
and 4 corresponding FIs.

Convolutional Autoencoder We propose a convolutional autoencoder
(CAE) model to extract the hierarchical features from fMRI time series. The
CAE model is composed of an encoder (Figure 2.1(a)) which encodes the input
fMRI time series into high-level latent space in a step-wise manner and a decoder
(Figure 2.1(b)) which reconstructs the fMRI series from latent representations.
There are three major advantages of CAE for feature extraction in our study:
a) The training process is completely unsupervised, which eliminates the class-
specific biases of learnt features compared with supervised learning methods
like the CNN model in (H. Liu et al., 2019); b) It inherits the powerful ability of
CNN for hierarchical feature abstraction. In CAE, features from the previous
layer are the inputs for the next layer, and a hierarchy is thus naturally formed
between layers; 3) Different layers inherently capture features with specific char-
acteristics. The low-level layers capture local/high-frequency features while the
high-level layers capture global/low-frequency features.

In detail, as illustrated in Figure 2.1(a), the encoder consists of 4 one-dimensional
convolution layers which extract features of neural activities from low-level to
high-level with rectified nonlinearity unit (ReLU) as the activation function.
ReLU helps interpret feature representation in a more neuroscientifically mean-
ingful way given its intrinsic sparsity (H. Huang et al., 2017). After each convo-
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lution operation (except the last one), max-pooling is recruited to down-sample
the feature maps with a stride of 2. The effects of max-pooling are two folds: 1)
The computational costs for deep and high-level layers are reduced. 2) It enlarges
the receptive field and reduces the sampling frequency of fMRI time series. In
this sense, features from subsequent convolution layers are of low frequency
compared with those from the previous layers. Feature maps from each convolu-
tion layer are also input into a Feature Interpreter (Figure 2.1(b)). In the decoder
(Figure 2.1(c)), the deconvolutions are implemented as up-sampling and convo-
lution instead of transposed convolution to eliminate potential Checkerboard
Artifacts induced by hyperparameter settings (Odena et al., 2016). The activa-
tion function of deconvolutions is tanh for reconstructing the original fMRI
time series. For the first deconvolution layer, it operates directly on the feature
maps reconstructed by the highest-level FI For the rest layers, up-sampled fea-
tures from the previous deconvolution layer are firstly concatenated with those
reconstructed by the corresponding FI and then fed for deconvolution. The
reconstructed fMRI time series are output by the last deconvolution layer.

Feature Interpreter
The CAE model can extract features of fMRI time series from shallow layer

to deep layer hierarchically. However, the interpretability of those extracted fea-
tures is relatively tricky considering: 1) Except for those in the first convolution
layer, features from deep layers are much more abstract and complex without
a straightforward neuroscientific meaning; 2) Feature maps for whole brain
fMRI time series at each convolution layer are usually multi-dimensional, and
it is consequently difficult to derive the one-dimensional spatial/temporal pat-
terns of those learnt features for region-based analysis. To address these issues,
we proposed a novel Feature Interpreter. As illustrated in Figure 2.1(b) (as well
as the inset), each convolution layer and its symmetrical deconvolution layer are
connected by a Feature Interpreter which consists of two fully connected (FC)
layers: the first one is for embedding the feature maps as an-digit embedded vec-
tor; the second one is for reconstructing the feature maps from the embedded
vector. For a specific feature map f ∈ Rt×c with t time points and c channels, it
is firstly stretched into a one-dimensional vector z ∈ R1×tc and then embedded
as a n digits vector h ∈ R1×n by:

h = tanh(zWe + be) (2.1)

where We ∈ Rtc×n and be ∈ R1×n are the trainable weight and bias
of the first FC layer, respectively. tanh(·) is the tanh activation function. In
the reconstruction process, the embedded vector h is firstly up-sampled to a
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one-dimensional vector z′ ∈ R1×tc as defined in:

z′ = tanh(hWd + bd) (2.2)

where Wd ∈ Rn×tc and bd ∈ R1×tc denote the trainable weight and bias
of the second FC layer, respectively. Then, we can simply reshape z′ to yield the
reconstructed feature map f ′ ∈ Rt×c.

Generally, FI performs the task of embedding multi-dimensional feature
maps into a one-dimensional vector. For the first FC layer, it actually learns n
independent nonlinear functions over the input feature map, each of which
distills the information to a specific value (the digit value in embedded vector)
representing an activation degree regarding the input feature. Because those
functions are the same for all fMRI time series in the whole brain, the differ-
ences of this value reveal the differences in cortical regions with respect to feature
activation degree and corresponding intrinsic properties (e.g., frequency char-
acteristic). Thus, we can simply map the digit value to the corresponding vertex
in the cortical surface to visualize spatial heterogeneity or distribution pattern.
The corresponding temporal pattern can be obtained by regressing the spatial
distribution pattern to the whole-brain fMRI signals as in (Lv et al., 2014). In
this way, the complex and multi-dimensional features extracted by the autoen-
coder are interpreted in a more straightforward and familiar way as decoupled
spatial and temporal patterns, based on which the neuroscientific investigation
and discussion throughout our work are performed.

The parameters of the proposed model are optimized by minimizing the
Mean Square Error (MSE) between the original fMRI time series X ∈ Rk×t

and the reconstructions X ′ ∈ Rk×t:

min
1

2
∥X− X′∥2F (2.3)

where k is the number of fMRI time series in each training batch and t is
the number of time points/frames. The proposed framework is implemented
by PyTorch (https://pytorch.org/). We use Adam optimizer (Kingma & Ba,
2014) to minimize the loss function in Eq. (2.3). Training is performed for 100
epochs with a batch size of 128 for each task on a single NVIDIA GTX 1080Ti
GPU. Early stopping strategy is also employed to terminate the training process
when overfitting starts.

Parcellation of Gyri and Sulci on Cortical Surface

To divide gyral/sulcal regions on the cortical surface, we follow the method in
(H. Liu et al., 2019) to segment gyri and sulci based on the geometric informa-
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tion of convoluted cortical surfaces. Specifically, each surface vertex of HCP
grayordinate system has fMRI time series and is associated with geometric infor-
mation such as principal curvature (i.e., “curv” map in FreeSurfer) and average
convexity (i.e., “sulc” map in FreeSurfer). Average convexity is the signed dis-
tance that a vertex moves during the inflation process, which mainly depicts
the primary folding patterns (Destrieux et al., 2010; Fischl, 2012). In this study,
we take advantages of it to annotate the region that each vertex belongs to (Fig-
ure 2.2). In order to minimize the wrong annotations, we mainly focus on the
crown of primary gyri and fundi of primary sulci as well as the relatively small
neighborhood around them. In particular, the 30% vertices with the most pos-
itive convexity value were considered gyral vertices; the 30% vertices with the
most negative convexity value were considered sulcal vertices. The remaining
40% vertices were excluded to guarantee sufficient geodesic distances between
gyral/sulcal regions and thus enhance the reliability of the subsequent region-
based analysis.

Gyri SulciIn-between

Figure 2.2: The cortical surface mesh of one randomly selected subject
to illustrate the parcellation of gyri/sulci on cortical surfaces. Areas with
red/blue/green color are gyral/sulcal/in-between regions, respectively.

Activation Ratio for Contrasting Gyri and Sulci

As discussed in Section 2.3.1, the digit value can indicate the differences of cor-
tical regions regarding the activation degree of the input feature, and further
indicate the activation degree of the intrinsic characteristics that the input fea-
ture retains. Considering that the low-level convolution layers in CAE extract
high-frequency/local features whereas high-level convolution layers extract low-
frequency/global features, the digit value can be used to investigate the hier-
archical differences of gyri and sulci regarding the frequency and scale across
different layers. To this end, we define an Activation Ratio (AR) for each layer
of each subject:

AR = r × 1

n

n∑
i=1

gi
si

(2.4)
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where gi/si denotes the number of gyral/sulcal vertices with digit value
larger than zero with respect to the ith digit, n is the number of digits at each
layer and r is the ratio of the total number of sulcal vertices to the total number
of gyral vertices (around one in our parcellation method in Section 2.3.1). IfAR
is greater than one, it means that gyri are more activated at this layer and tend to
have more corresponding characteristics (e.g., high/low frequency) than sulci,
and vice versa. The differences of AR across layers also reveal the hierarchical
differences of those characteristics in gyri and sulci. In this way, the functional
difference and organization of gyri and sulci can be contrasted and measured
for each data modality.

2.3.2 Experimental Results
In this section, we first visualize and analyze the interpreted spatial/temporal fea-
tures from the proposed HIAE model in Section 2.3.2. Then we investigate the
differences of activation degree and AR metric of gyri and sulci in Section 2.3.2.

Visualization of Interpreted Spatiotemporal Features
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Figure 2.3: The group-averaged spatial distribution pattern with its preceding
counterparts of a randomly selected digit in Layer #4 for all seven tasks. The
regions with red color have larger digit value than regions with blue color. These
spatial patterns are rescaled for different layers and tasks for ease of visualization.

The interpreted spatial patterns can be obtained by stacking the embedding
vectors from the FI as a matrix and then mapping each row (corresponding
to a specific digit in embedding vector) to the cortical surface. In Figure 2.3,
we randomly select one digit in the Layer #4 and visualize its spatial pattern
as well as the most similar counterparts in preceding layers. It is observed that
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Temporal Feature Task Design
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Figure 2.4: The averaged temporal pattern over all subjects from one randomly
selected digit at each layer. The blue and orange curves represent the temporal
pattern and task design, respectively.

the activated areas (regions in green and red colors) for the first two layers are
randomly distributed in the whole brain as several small and disjunct regions.
Conversely, in the deep layers such as Layer #4 , the activated areas form several
larger and connected regions. These observations are well reproduced across
different spatial patterns of each layer. Notably, the activated regions in deep
layers are meaningful and relevant to some well-recognized functional networks.
For example, the spatial patterns of Layer #3 and Layer #4 for Working Memory
task in Figure 2.3 could be Visual Network locating on the occipital lobe (Smith
et al., 2009). For Motor task, the spatial patterns of Layer #4 are relevant to
Sensorimotor Network in Smith et al., 2009.

With the concatenated embedding vectors as a matrix for each layer, we
regress the original fMRI time series matrix on it, and obtain the estimated
coefficients of linear regression as the temporal patterns for all subjects. We
randomly select one temporal pattern corresponding to a digit in embedding
vector for each layer, and demonstrate the averaged pattern over all subjects in
Figure 2.4. It is observed that the temporal patterns in shallow layers (e.g., Layer
#1 and Layer #2) are in faster or high-frequency oscillation than those in deep
layers (e.g. Layer #3 and Layer #4) for all seven tasks. And the frequency of oscil-
lation seems to decrease with deeper layers. To further verify such observation,
we perform the Fast Fourier Transform (FFT) for all temporal patterns, and, in
Figure 2.5, report the averaged power spectrum of all temporal patterns at each
layer. We find that the power spectrum of deep layers is more concentrated in
low-frequency bands, and decreases quickly against increasing frequency. Com-
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pared with the following layer, the previous layer has the power spectrum more
concentrated in higher-frequency band.
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Figure 2.5: The averaged power spectrum over all temporal patterns at each layer
for seven tasks, respectively

Table 2.1: Mean (± standard deviation) digit value for gyri and sulci averaged
over all subjects at each layer, and the proportion of subjects (%) with significant
digit value differences (two-sample t-test, p < 0.025, corrected) between gyri
and sulci (gyri<sulci for Layer #1 and #2; gyri>sulci for Layer #3 and #4).

Tasks Layer #1 Layer #2 Layer #3 Layer #4

Emotion
Gyri 29.86±2.81×10−2 24.97±1.89×10−2 18.78±1.77×10−2 11.52±1.10×10−2

Sulci 31.72±2.31×10−2 25.70±1.62×10−2 18.29±1.59×10−2 10.73±1.07×10−2

Proportion 97.33% 85.67% 77.33% 99.00%

Gambling
Gyri 29.19±2.35×10−2 19.81±1.69×10−2 16.39±1.39×10−2 10.36±1.29×10−2

Sulci 29.31±1.95×10−2 20.08±1.44×10−2 16.12±1.18×10−2 9.56±1.27×10−2

Proportion 50.33% 62.33% 62.67% 99.33%

Language
Gyri 34.38±2.66×10−2 22.84±1.89×10−2 16.75±1.44×10−2 12.42±1.07×10−2

Sulci 34.95±2.37×10−2 22.82±1.70×10−2 16.63±1.24×10−2 11.64±1.10×10−2

Proportion 72.00% 41.33% 53.33% 96.00%

Motor
Gyri 32.76±2.50×10−2 21.45±1.77×10−2 16.29±1.33×10−2 9.39±0.89×10−2

Sulci 33.37±2.40×10−2 21.56±1.62×10−2 15.84±1.16×10−2 8.68±0.92×10−2

Proportion 73.33% 48.67% 78.33% 99.00%

Relational
Gyri 33.58±2.25×10−2 17.14±1.59×10−2 15.71±1.38×10−2 11.95±1.32×10−2

Sulci 34.61±1.98×10−2 17.47±1.42×10−2 15.39±1.20×10−2 11.06±1.28×10−2

Proportion 90.00% 69.67% 70.33% 98.33%

Social
Gyri 32.59±2.82×10−2 26.73±2.65×10−2 21.61±1.92×10−2 16.10±1.61×10−2

Sulci 33.01±2.50×10−2 27.37±2.46×10−2 21.51±1.73×10−2 15.00±1.61×10−2

Proportion 64.33% 76.33% 51.00% 98.00%

WM
Gyri 24.98±2.57×10−2 15.65±1.74×10−2 12.31±1.14×10−2 8.60±1.02×10−2

Sulci 26.24±2.27×10−2 16.03±1.49×10−2 11.95±1.01×10−2 7.96±0.97×10−2

Proportion 93.33% 74.67% 81.00% 99.00%

In general, all of those observations are consistent with what we assumed
in Section 2.3.1, i.e., the shallow and low-level layers in CAE capture local/high-
frequency features whereas the deep and high-level layers capture global/low-
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frequency features. This also indicates that the designed Feature Interpreter is
capable of interpreting the extracted features of the CAE model into meaning-
ful spatial/temporal patterns.

The Differences of Digit Values and Activation Ratio

In this subsection, we investigate the differences of digit values andAR between
gyri and sulci across different layers. In Table 2.1, we report the averaged digit
values of all subjects at each layer for gyri and sulci, respectively.

R2 = 0.8755
p-value < 0.001

R2 = 0.7019
p-value < 0.001

R2 = 0.6893
p-value < 0.001

R2 = 0.7859
p-value < 0.001

R2 = 0.8204
p-value < 0.001

R2 = 0.6858
p-value < 0.001

R2 = 0.8427
p-value < 0.001

EMOTION GAMBLING LANGUAGE MOTOR

RELATIONAL SOCIAL WM

Layer #1
Layer #2
Layer #3
Layer #4

Figure 2.6: The linear regression modeling the relationship between AR values
and different layers. The distribution of AR values across different layers is also
demonstrated as box plots.

In general, the average digit value of gyri is smaller than that of sulci in Layer
#1 and Layer #2 (except the Layer #2 of Language task), while the average digit
value of gyri is larger than that of sulci in Layer #3 and Layer #4. From Layer
#2 to Layer #3, it demonstrates a transition that the digit value of gyri becomes
larger than that of sulci. Such transition of digit values becomes more evident in
Layer #4 with a larger variation between gyri and sulci. We further confirm our
observation by two-sample one-tailed un-pair-wise t-test with the alternative
hypothesis that the digit value of gyri is smaller/larger than that of sulci (p <

0.025, corrected) for Layer #1, #2/Layer #3, #4, respectively. The proportion
of subjects which reject the null hypothesis is also reported in Table 2.1. It is
observed that except for the Gambling and Social tasks, the proportion Layer #2
is smaller than that of Layer #1. For all seven tasks, the proportion of Layer #4
exceeds the proportion of Layer #3. This is probably because of the consistency
that gyri tend to have larger digit values becomes more pronounced in the deep

18



layers. For Layer #1, more than 50% subjects have smaller digit values for gyri,
and for Layer #4, more than 95% subjects have larger digit values for gyri. The
proportion of Layer #2 and Layer #3 varies across different tasks. We assume
that the activation degree of gyri and sulci varies across different task conditions,
and thus the degree of aforementioned transition also varies in Layer #2 and
Layer #3.

Table 2.2: Mean (± standard deviation) AR (Activation Ratio) of each layer
averaged over all subjects for all seven tasks of HCP tfMRI dataset.

Tasks Layer #1 Layer #2 Layer #3 Layer #4

Emotion 94.01±2.88×10−2** 97.11±2.41×10−2** 102.64±2.87−2 ** 107.45±2.90×10−2**
Gambling 99.55±2.35×10−2** 98.60±2.77×10−2** 101.63±2.95×10−2** 108.43±2.91×10−2**
Language 98.33±2.18×10−2** 100.07± 2.87×10−2 100.66± 2.79×10−2** 106.79± 3.08×10−2**

Motor 98.17±2.16×10−2** 99.46±2.56×10−2** 102.81±3.05×10−2 ** 108.40±3.28×10−2**
Relational 97.00±2.06×10−2** 98.09±2.64×10−2** 102.07±2.70×10−2** 108.09±3.01×10−2**

Social 98.68±2.44×10−2** 97.60±2.80×10−2** 100.42±2.90×10−2* 107.48±3.05×10−2**
WM 95.11±2.81×10−2** 97.49±3.16×10−2** 102.94±3.08×10−2 ** 108.11±3.23×10−2**

Table 2.2 demonstrate the meanAR value over all subjects at different layers
across different tasks. We observe that theAR is smaller than 1 (except the Layer
#2 of Language task) in Layer #1 and Layer #2 while larger than 1 in Layer #3 and
Layer #4. It demonstrates a gradient that the AR increases along with deeper
layers and a transition between Layer #2 and Layer #3 that theAR values increase
from less than 1 to larger than 1. To confirm the existence of such gradient, we
conduct linear regression to model the relationship between the AR values of
all subjects and different layers. The results are reported in Figure 2.6 along
with the distribution of AR values. It is found that the relationship can be well
represented by the linear model (blue lines in Figure 2.6) with R2 larger than
0.65 and p-value smaller than 0.001 for all seven tasks. This is consistent with
what we observe in Table 2.2, indicating the gradient that gyri become more
activated in the deep layers exists among different task conditions.

Similar to the differences of digit value in Tab. 2.1, the differences of AR are
also confirmed by employing a one-sample one-tailed t-test under the alternative
hypothesis that AR is smaller/larger than 1 for Layer #1 and #2/Layer #3 and
#4, respectively. The significant difference is indicated by a star (p < 0.025)
or double stars (p < 0.005) in Table 2.2. In general, except for the Layer #2
in Language task, most of the AR have a significant result. This suggests that
sulci are more activated in Layer #1 and Layer #2 while gyri are more activated
in Layer #3 and Layer #4.

Overall, these experimental results suggest that sulci are more activated with
a bigger activation value in shallow layers while gyri are more activated with a
bigger activation value in deep layers.

19



2.3.3 Conclusion
In this section, we proposed a novel computational framework for representing
the brain functional activities in a hierarchical and interpretable manner, based
on which we investigated the spatiotemporal functional difference of gyri and
sulci at different scales. We found that gyri are of low-frequency and have more
global features while sulci are of high-frequency and have more local features
when the scale increases. A hypothesis was then inferred that gyri are the core
while sulci are the periphery of brain function. We also demonstrated the con-
nection of our observation and hypothesis to existing neuroscientific findings.
Overall, our study offers a novel computational tool for studying the functional
differences across different regions, and provides novel insights about advancing
our understanding of gyral/sulcal functional differences.

2.4 Discussion
We propose a novel computational framework based on CAE and FI in this
study to explore the functional differences between gyri and sulci. We demon-
strate that our framework was capable of extracting hierarchical features and
embedding those features into a vector, the digit value of which can be further
transformed as neuroscientifically meaningful spatial and temporal patterns.
The differences of digit value and AR defined as the contrast of activation de-
gree between gyri and sulci are systematically investigated. We find that gyri are
more activated in deep layers while sulci are more activated in shallow layers.
Considering the differences of feature characteristics in shallow and deep layers,
such gyro-sulcal contrasts indicate that gyral signals are more global and of low-
frequency than sulci while sulcal signals are more local and of high-frequency.
This finding agrees the previous study based on supervised CNN arguing that
sulcal fMRI signals are more diverse and of more high frequency than gyral
signals (H. Liu et al., 2019). Our framework exhibited similar findings but in an
unsupervised manner, eliminating the task-specific bias in (H. Liu et al., 2019).
It is also consistent with the previous studies showing that high-frequency brain
activity reflects local domains of cortical processing, while low-frequency brain
activity synchronizes across distributed brain regions (Buzsáki et al., 2013).

Compared with previous methods such as SDL which only has a global
receptive field (L. Zhao, Zhang, et al., 2021) and CNN which only has a local
receptive field (H. Liu et al., 2019; Q. Wang et al., 2022), our framework ex-
tract meaningful neural activities with different receptive filed ranging from
local one to global one. We find that with a small and local receptive field in
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the temporal domain, the corresponding spatial patterns also demonstrate local
property as dozens of small and disjunct regions distributed over the whole cor-
tex. Meanwhile, those small regions with larger digit value seem to be located
more in sulci than gyri. When the receptive field becomes larger and global, the
activated regions in spatial patterns begin to concentrate and merge as several
large and global regions. And at this time, the most activated region lies more
on gyri than sulci. Such observation along with the activation degree contrasts
in Table 2.1 and Table 2.2 suggested that gyri are more involved in long-time
neural activities and the global functional communication and sulci are more
involved in short-time neural activities and the local information integration.
More importantly, with the increasing receptive field, the transitions of activa-
tion degree and spatial distribution of gyri and sulci form a gradient from the
local side to the global side. This finding is in line with the literature arguing that
gyri are more functionally integrated while sulci were more functionally segre-
gated in the organizational architecture of cerebral cortex (H. Liu, Jiang, et al.,
2017), and the study suggesting that gyri are the global functional connection
centers which perform interregional neural communication among distinct re-
gions on emotion processing (X. Jiang et al., 2018). It is also congruent with
(L. Zhao, Zhang, et al., 2021) proposing that gyral regions are more involved in
global functions of the brain. Our findings supplemented those studies from a
hierarchical and spatiotemporal perspective.

Based on these works and the findings in this section, a hypothesis can be
inferred that the brain function follows a bisectional core-periphery organiza-
tion, i.e., gyri are the core of brain function which accounts for the global and
interregional communication and information integration, while sulci are the
periphery for local brain function and information processing. Previous studies
have demonstrated that the core-periphery structure can effectively boost the
efficiency of information communication and processing (Everett & Borgatti,
1999; Rombach et al., 2014). The core-periphery organization also exists in the
brain functional networks of human and other mammals(Bassett et al., 2013;
Gu et al., 2020). Our hypothesis for brain functional organization is from a
cortical folding perspective, and is coherent with structural studies finding that
gyri possess denser axonal connections than sulci (H. Chen et al., 2013; Nie et al.,
2012), and that the axonal fiber bundles course around the sulcal regions in a
U-shape to connect the neighboring gyri (T. Zhang et al., 2014). We believe
this hypothesis deserves more independent works to thoroughly investigate and
exploit.

From the perspective of technique, the proposed HIAE framework actually
performs an embedding task, i.e., representing the fMRI time series as embed-
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ding vectors at different scales which embody both temporal and spatial infor-
mation. Recently, representing the brain function as embeddings has attracted
more interests because of the advantages over traditional matrix decomposi-
tion method (L. Zhao, Wu, et al., 2022), e.g. SDL, and the convenience for
multi-modality studies of brain function and computer vision (H. Huang et al.,
2022; L. Zhao, Dai, et al., 2022). For example, in (L. Zhao, Wu, et al., 2022),
an autoencoder model based on Transformer model was proposed to represent
a 3D fMRI volume at a time point as an embedding vector. This method can
be considered as performing the embedding from the spatial perspective. Our
method represents fMRI time series as a set of embedding vectors. It can be
viewed as performing the embedding task from the temporal perspective, and
supplementing the current fMRI embedding methods.

A potential limitation of the current HIAE model is that it does not explic-
itly model the spatial correlations of all time series. Meanwhile, the hyperpa-
rameters of our framework are manually defined. Although we did sensitivity
analysis regarding those hyperparameters in previous work (L. Zhao, Dai, et al.,
2021) and showed that the results and findings are not produced by a specific
setting, integrating a data-driven approach to determine those hyperparame-
ters is supposed to lead to more reasonable receptive fields which may match
the actual neural activities better at different scales. Moreover, the functional
organization and differences of gyri and sulci are explored in this study at a
macro-imaging level. Whether our findings and conclusions still hold for cyto-
and myelo- architecture at micro-scale are still unanswered and worth a further
attention.
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Chapter 3

Embedding Brain
Structure and Function

3.1 Embedding Human Brain Architecture

3.1.1 Overview
Representing human brain architectures and constructing their correspondence
across individual brains have been a long-standing challenge in the brain map-
ping field. Current brain image registration and cortical surface parcellation
methods build brain’s correspondence at voxel or region level, which can be
viewed as representing each voxel or region as an “one-hot” vector for the match-
ing algorithms to seek their correspondence across individuals. However, these
"one-hot" vector representations do not encode the regularity and variability
across different brain regions and individuals, thus degenerating the mapping
accuracy or even causing the mismatch. In this section, we develop a novel
approach to encoding each cortical region as a dense embedding vector. The de-
rived embeddings can simultaneously profile the structural, connectional and
functional information of a brain region.

3.1.2 Background
Delineating the human brain architectures and mapping their correspondence
across different individual brains have attracted the interests of neuroscientists
for more than a century (Brodmann, 1909; Fischl et al., 1999; Huntenburg et al.,
2018; D. Shen & Davatzikos, 2002). To match the common and corresponding
anatomical/functional regions across individuals, image registration has been
one of the dominant methodologies in the brain mapping field by aligning
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neuroimaging data geometrically into a common reference space (D. Shen &
Davatzikos, 2002; Toga & Thompson, 2001). One of the challenges for brain
image registration is dealing with the huge structural and functional variabil-
ity of human brain, and many efforts including the recent deep learning ones
have been made to remedy the mapping inaccuracy and even mismatch due to
the intrinsic human brain variability (Cao et al., 2017; T. Liu et al., 2004; Shi
et al., 2010; Wu et al., 2011; Z. Xu & Niethammer, 2019). Besides registration,
parcellation of cerebral cortex is another important approach for human brain
mapping, which can be broadly classified into model-driven and data-driven
categories. The first group usually warps the brain atlases onto the cortex for
parcellation (Fischl et al., 2004), while the second group relies on the discrim-
inative features such as morphological, structural and functional features (T.
Zhang et al., 2016). Some recent works also employ deep learning models to
learn from labeled regions and directly perform the parcellation(R. He et al.,
2020; Tang et al., 2020), thus achieving promising results.

Despite the remarkable progresses in those works, the image registration
and surface parcellation methods build the correspondence across different sub-
jects in a voxel-to-voxel or region-to-region manner. From our perspective, each
voxel/region is actually viewed as a discrete "one-hot" vector and the correspon-
dence is built by matching the “one-hot” vector across subjects. However, the
discrete and sparse "one-hot" representations do not encode the regularity and
variability of different voxels/regions across different subjects. In addition to
those discrete methods, an increasing interest in presenting brain structures and
functions as large-scale gradients, on which the respective spatial relationship
between cortical regions and across subjects is encoded and aligned (Hunten-
burg et al., 2018). By far, the gradient and alignment based on it, however, were
obtained and implemented in a group-wise manner, still regardless of the inter-
individual variability. To address this critical problem, an intuitive way is to
profile the regularity and variability into a continuous high-dimensional space
where the cortical region is represented as a dense vector and the relationship be-
tween different regions and across individuals can be measured by the geometric
distance in that space. Recent embedding approaches seem suitable to our aim.
For example, in the natural language processing (NLP) filed, word embedding
captures both semantic and syntactic information of words and represents them
as dense vectors in a continuous space where the words have similar meaning
are closer to each other (Mikolov et al., 2013). For graph representation, graph
convolutional network (GCN) learns the continuous embedding of nodes in
a graph with both local graph structure and features (Kipf & Welling, 2016),
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Figure 3.1: Illustration of the proposed embedding framework. GyralNet mod-
els the human brain architecture as a connected graph where the 3-hinge gyri
(the conjunction of gyri, circled by red color) are represented as nodes. (a) The
GyralNet embedding based on graph embedding approach with Tracemap that
encodes the connectional patterns as input features. After k iterations, the em-
bedding vector is concatenated with coordinates of 3-hinge gyrus for (b) cortical
region classification and (c) 3-hinge gyrus matching downstream tasks.

which is used for downstream tasks such as node classification with significant
improvements.

3.1.3 Methods
We represent the human brain architecture in a novel way using embedding.
The key idea is that each brain region, regardless of its size or location, can be
represented as an embedding vector which profiles anatomy, connectivity, func-
tion of that region from the corresponding features (e.g., structural,functional,
and connectivity patterns). Within the embedding space, the regions with sim-
ilar profiles are closer while individual variance is still retained. In this way, the
mapping of corresponding regions can be conducted by computing the simi-
larity of embedding vectors. The variance of regions/individuals can be also
quantitatively measured by the calculation of distance. In this section, the Gy-
ralNet (H. Chen et al., 2017) is adopted as a test bed which models the cortical
architecture as a graph of gyral crests. We learn the embeddings for the nodes in
the GyralNet, i.e., the conjunction of gyri (T. Zhang et al., 2018), based on struc-
tural and connectional features with graph embedding approaches (Hamilton
et al., 2017).
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GyralNet Embedding

As illustrated in Figure 3.1, GyralNet models the cortical architecture as a con-
nected graph in which the gyral crests are considered as edges and the conjunc-
tions of gyri with the degree more than 2 are regarded as nodes (H. Chen et
al., 2017). Most of the nodes in GyralNet have the degree equal to 3, which
are defined as 3-hinge gyri and have been shown to have unique and consis-
tent anatomical, structural, and functional patterns across subjects (T. Zhang
et al., 2018). In this study, we aim to learn the embeddings for 3-hinge gyri in
GyralNet.

Intuitively, graph embedding methods such as graph convolutional network
(GCN) (Kipf & Welling, 2016) are suitable for this task. However, due to the
complexity and variability of cortical folding patterns, the number of nodes
and edges in GyralNet varies significantly across subjects, and thus GCN based
transductive methods which focus on a single fixed graph are not feasible in our
task. Inspired by GraphSAGE in (Hamilton et al., 2017), we adopt an inductive
approach to learn an embedding function which aggregates features from a
node’s neighbors to generate the embeddings, iteratively. Specifically, given a
graph G(V , E) and node features{hk

v ,∀v ∈ V} in the k − 1th iteration, the
aggregation of neighborhood nodes’ features hk

N (v) can be represented as:

hk
N (v) ← AGG

(
hk−1
u ,∀u ∈ N (v)

)
(3.1)

where AGG(·) is an aggregation function andN (v) represents the neighbor-
hood nodes of node v. The node featurehk

v in thekth iteration are then updated
as:

hk
v ← σ

(
W k · CONCAT(hk−1

v , hk
N (v))

)
(3.2)

where σ(·) is an activation function, W k denotes a trainable parameter in the
kth iteration and CONCAT(·) represents a concatenation operation. For the
first iteration, the h0

v is initialized as the input features of nodes. The hn
v in the

last iteration (totally n iterations) is considered as the learned node embedding.
It is noted that for each iteration, the node only aggregates the information
from its directly connected neighbors. As the process iterates, the nodes can
aggregate the information from further nodes indirectly. Given that the em-
bedding function is learned based on a single node and its neighbors, it can be
trained in a batch-wise manner and can be easily extended to new nodes and
new graphs. So with this approach, we can learn a more general embedding
function for 3-hinge gyri across different cortical regions and subjects.
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Cortical Region Classification

In this subsection, we formulate the learning of embedding function for a cor-
tical region as a classification task. Specifically, the cortical surface is firstly par-
cellated into 74 anatomical regions with no overlaps based on (Destrieux et al.,
2010). Then, in a specific region, e.g., precentral gyrus, we obtain 3 different
classes by assigning label 0 to the 3-hinge gyri nodes in the left hemisphere, 1
to those in the right hemisphere, and selecting the same number of nodes ran-
domly in other cortical regions with label 2. We perform the classification task
by employing an additional fully-connected (FC) layer with softmax activa-
tion function after the embedding layer. Considering that the embeddings
are heavily based on the input features which might be similar among spatially
distinct but structurally connected regions, we incorporate the coordinates of
each 3-hinge gyrus by concatenating it with its GyralNet embeddings. So, the
concatenated embeddings will have 3 additional dimension. The FC layer takes
the concatenated embedding as input and outputs the probability of each class.
The whole framework is optimized in an end-to-end manner by minimizing
the cross-entropy between predictions and labels.

Matching the corresponding 3-hinge Gyrus

We formulate the matching of corresponding 3-hinge gyrus across different sub-
jects as a classification task. Our hypothesis is that the corresponding gyrus of
different subjects have the similar structure, connectivity and function, such
that their embeddings will be similar and can be easily classified into the same
group. Here, we firstly choose a target 3-hinge gyrus and obtain its GyralNet
embeddings. The GyralNet embedding is concatenated with the coordinates,
and then fed into a FC layer for classification where the target 3-hinge gyrus
is recognized as positive sample while other randomly selected 3-hinge gyri in
GyralNet are considered as negative samples. After the training, the correspon-
dence of target 3-hinge gyrus can be matched by selecting the one classified into
the target group.

3.1.4 Experiments

Dataset and Pre-Processing

In this study, we adopted the structural MRI (T1-weighted) and diffusion tensor
imaging (DTI) data of 300 subjects from Human Connectome Project (HCP)
S1200 release (https://www.humanconnectome.org/) (Van Essen et al., 2013).
The training, validation and testing dataset have 200/50/50 subjects, respec-
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tively. The T1-weighted MRI data was preprocessed by the HCP minimal pre-
processing pipeline (Glasser et al., 2013) including brain skull removal, tissue
segmentation and the reconstruction of cortical surface mesh. The Destrieux
Atlas (Destrieux et al., 2010) was used to parcellate the cortical surface into 74
anatomical regions, among which 8 different regions at each hemisphere were
selected as testing beds for cortical region classification task.

The GyralNet and 3-hinge gyri of each subject are extracted on the recon-
structed cortical surface according to the pipeline in (H. Chen et al., 2017).
More details are referred to (H. Chen et al., 2017). The preprocessing of DTI
data included skull removal, motion correction and eddy current correct. Fiber
tracking was then performed by MedInria (https://med.inria.fr/). We extracted
the white matter fiber bundles around each 3-hinge gyrus and projected them
to a standard sphere space called Tracemap (Zhu et al., 2011). Tracemap can
be represented by a vector of 144 dimensions and encodes the fiber density in-
formation and the connectivity patterns. The Tracemap was used as the initial
input features for 3-hinge gyrus in GyralNet. We also obtained the coordinates
of 3-hinge gyrus as additional 3 dimensions of embedding. The coordinates are
normalized by deducting the centroid of all surface mesh points.

Implementation Details

In our experiments, we use the mean function as our aggregation function in
Eq. (3.1), i.e., the features from all neighborhood nodes are averaged. For the
GyralNet embedding model, in cortical region classification task, the embed-
ding size of the first/last iteration is 128/64, respectively. As for the middle
iterations, the embedding size is 96. For 3-hinge gyrus matching, the embed-
ding size is 128 for all iterations. The framework is implemented with PyTorch
(https://pytorch.org/) deep learning library. We used the Adam optimizer
(Kingma & Ba, 2014) with β1 = 0.9 and β2 = 0.999. The batch size is 16
and the model is trained for 150 epochs with a learning rate 0.001 on a single
GTX 1080Ti GPU.

Cortical Region Classification Results

In this subsection, we selected 8 regions to evaluate the embeddings learned
from our framework: precentral (PRC), postcentral (PTC), superiorfrontal
(SF), rostralmiddlefrontal (RMF), lateraloccipital (LO), superiortemporal (ST),
middletemporal (MT), inferiortemporal (IT). The division of these regions on
the cortical surface is shown in Figure 3.2.
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Figure 3.2: The illustration of the selected 8 different regions (totally 16 in two
hemispheres) on cortical surface. Different regions are denoted by different
colors.

Table 3.1: The classification results of several baselines and the proposed method
in 8 different cortical regions. Red and blue denotes the best and the second-
best results, respectively. Abbreviations: PRC: precentral; PTC: postcentral;
SF: superiorfrontal; RMF: rostralmiddlefrontal; LO: lateraloccipital; ST: su-
periortemporal; MT: middletemporal; IT: inferiortemporal.

Methods PRC PTC SF RMF LO ST MT IT
Coor 0.5173 0.6925 0.8420 0.6023 0.5907 0.7926 0.8274 0.8245
Identity 0.5539 0.5542 0.5518 0.5594 0.5644 0.6210 0.5987 0.5777
GN-Embed1 0.6084 0.6217 0.6370 0.6441 0.6198 0.6466 0.6323 0.6340
GN-Embed1+Coor 0.7906 0.7765 0.9568 0.9020 0.9181 0.8997 0.9271 0.9372
GN-Embed2+Coor 0.8220 0.8518 0.9670 0.9362 0.9494 0.9008 0.9305 0.9436
GN-Embed3+Coor 0.8314 0.8816 0.9655 0.9432 0.9628 0.9030 0.9350 0.9404

We introduce two baselines for cortical region classification task: Coor and
Identity. Here, Coor means the only the 3 dimension coordinates are used as the
embeddings for classification; Identity means the input features, i.e., Tracemap
features, are directly used as the embeddings for classification. We report the
classification results in Table 3.1.

It is observed that the baseline Coor performes better than the baseline Iden-
tity in some regions. This is consistent with our expectation that the Tracemap
features (structural connectivity) are similar among some distinct regions and
the coordinates can provided additional information to differentiate these re-
gions. The GyralNet embedding model with only one iteration, i.e., GN-Embed1,
outperforms the baseline Identity, suggesting the effectiveness of embeddings
to encoding the structural and connectional information. By concatenating the
learned embeddings with the coordinates (e.g., GN-Embed1+Coor), the classi-
fication accuracy is significantly improved among all regions. We also observed
that increasing the number of iterations in GyralNet embedding contributes to
the classification performance. This is probably because with more iterations,
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Figure 3.3: The illustration of the 4 3-hinge gyri from 3 randomly selected sub-
jects on cortical surface. Different 3-hinge gyri are denoted by different colors.

the embedding of a 3-hinge gyrus has more information from its further neigh-
bors, which makes the delineation of a 3-hinge gyrus more precise. But the
improvements become saturated with 3 iterations. Overall, these results suggest
that the concatenated embeddings with structural, connectional and stereotaxic
information is more powerful in representing the variability of human brain.

Correspondence of 3-Hinge Gyri

We manually labeled 4 3-hinge gyri: left/right postcentral gyrus (lPoG/rPoG)
and dorsal left/right precentral gyrus (lDPrG/rDPrG), to evaluate whether the
corresponding 3-hinge gyrus can be matched by our framework. These 3-hinge
gyri are reported to be consistently preserved across different subjects (X. Li
et al., 2017). We randomly select 3 subjects and visualize the gyri locations in
Figure 3.3.

We include two additional classifications between lDPrG/rDPrG and be-
tween lPoG/rPoG to evaluate whether our framework is capable in learning
discriminative embeddings for gyri which are spatially close in the same region.
The results are reported the in Table 3.2. It is noted that in testing dataset (50
subjects), we have 100 samples for each classification in Table 3.2.

For the classification of target 3-hinge gyrus with others, we observed that
the performance of Identity and GN-Embed1 model are comparable for all
3-hinge gyri while the baseline Coor is slightly better than those two. When
combining the learned embeddings with coordinates, the accuracy is improved
significantly, especially for GN-Embed2+Coor with two iterations, indicating
the effectiveness of our model in matching the corresponding 3-hinge gyrus.
However, the performance degenerate in GN-Embed3 model. For the classi-
fication between lDPrG/rDPrG and between lPoG/rPoG, it is observed that
the accuracy of baseline Coor is 0.5 which is closed to random guess. This is
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Table 3.2: The 3-hinge gyri classification accuracy of several baselines and the
proposed method. Red and blue denotes the best and the second-best results,
respectively. Abbreviations: lDPrG: dorsal left precentral gyrus; rDPrG: dorsal
right precentral gyrus; lPoG: left postcentral gyrus; rPoG: right postcentral
gyrus.

Methods lDPrG rDPrG lPoG rPoG lDPrG/rDPrG lPoG/rPoG
Coor 0.74 0.75 0.70 0.76 0.50 0.50
Identity 0.59 0.77 0.66 0.66 0.81 0.76
GN-Embed1 0.62 0.75 0.66 0.67 0.85 0.77
GN-Embed1+Coor 0.85 0.85 0.88 0.83 0.97 1.00
GN-Embed2+Coor 0.95 0.87 0.94 0.93 0.90 0.98
GN-Embed3+Coor 0.86 0.83 0.85 0.72 1.00 0.98

probably because the two 3-hinge gyri are spatially close to each other. Given
the variability of coordinates for different subjects, they cannot be simply differ-
entiated by coordinates. The GN-Embed1 model is slightly better than Identity
with an accuracy over 0.7. However, when concatenating the embeddings with
coordinates, the accuracy is very closed to 1.0. This suggests that the concate-
nated embeddings can provide enough information to differentiate the gyri
accurately.

3.1.5 Conclusion
In this section, we proposed a novel framework for delineating the human brain
architecture using embeddings. Our method represents the brain architecture
as a connected graph on gyral crests and embeds the structural and connectional
information of 3-hinge gyrus into a dense vector, which can be used for down-
stream tasks such as cortical region classification and correspondence matching.
The key advantage of our approach is that the regularity and variability of hu-
man brain are encoded as embeddings in a general, comparable, and stereotyped
space. Future works include incorporating the functional features in the em-
bedding process to improve the accuracy and validating the framework in more
downstream tasks.
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3.2 Embedding Human Brain Function

3.2.1 Overview
Learning an effective and compact representation of human brain function
from high-dimensional fMRI data is crucial for studying the brain’s functional
organization. Traditional representation methods such as independent compo-
nent analysis (ICA) and sparse dictionary learning (SDL) mainly rely on matrix
decomposition which represents the brain function as spatial brain networks
and the corresponding temporal patterns. The correspondence of those brain
networks across individuals are built by viewing them as one-hot vectors and
then performing the matching. However, those one-hot vectors do not encode
the regularity and/or variability of different brains very well, and thus are limited
in effectively representing the functional brain activities across individuals and
among different time points. To address this problem, in this section, we for-
mulate the human brain functional representation as an embedding problem,
and propose a novel embedding framework based on the Transformer model
to encode the brain function in a compact, stereotyped and comparable latent
space where the brain activities are represented as dense embedding vectors.

3.2.2 Background
Functional magnetic resonance imaging (fMRI) has been widely used in study-
ing the human brain’s functional organization and the responses to external
stimuli (Engel et al., 1994; Heeger & Ress, 2002; Huettel et al., 2004; Logothetis,
2008). However, the fMRI-based imaging studies face a major challenge that
the number of voxels in 4D spatiotemporal fMRI data is far beyond the number
of subject brains included in the study. (Mwangi et al., 2014), i.e., the "curse-
of-dimensionality" (Bellman, 2015). To diminish the negative impacts of this
intrinsic imbalance, various computational tools have been recruited to extract
the representative features from the raw voxels and dump the redundant infor-
mation as well as the noises. (Andersen et al., 1999; Calhoun & Adali, 2006; Lv
et al., 2014). For example, principal component analysis (PCA) extracted the
relevant features by linearly transforming the correlated voxels into several un-
correlated variables, i.e., the principal components which capture most of the
data variance (Andersen et al., 1999). Independent component analysis (ICA)
based studies assumed that the raw fMRI signals are linear mixtures of indepen-
dent and relevant components (e.g., paradigm-related patterns in task fMRI).
(Calhoun & Adali, 2006; Calhoun et al., 2001; Calhoun et al., 2009). By de-
composing those independent components as temporal and spatial patterns,
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the following analysis can be performed with a much more compact represen-
tation rather than within the vast volume space. In addition, sparse dictionary
learning (SDL) has also been applied to decoupling the spatial and temporal pat-
terns of brain functional activities from the 4D spatiotemporal data (X. Jiang
et al., 2015; X. Jiang et al., 2018; Lv et al., 2015; Lv et al., 2014; L. Zhao et al., 2019;
L. Zhao, Zhang, et al., 2021), where the learned dictionary is regarded as tem-
poral activation patterns and the sparse coefficient matrix is recognized as the
spatial distributions of the corresponding temporal patterns, i.e., spatial brain
networks.

Despite that the aforementioned matrix decomposition techniques are widely
adopted and applied, the temporal and/or spatial patterns decomposed by those
approaches are not intrinsically comparable across different subject brains. The
correspondence of the spatial/temporal patterns from different brains does not
exist even with the same hyper-parameter setting in those matrix decomposi-
tion methods such as ICA or SDL. To build such correspondence, group-wised
ICA and SDL methods were proposed by concatenating the fMRI signal matri-
ces from different subjects spatially or temporally, resulting in common spatial
brain networks/temporal activation patterns and individual temporal/spatial
features (Calhoun et al., 2009; Ge et al., 2018; H. Liu, Zhang, et al., 2017; L.
Zhao et al., 2019). However, a fundamental problem of those group-wised
methods is that the huge spatial/temporal variability of brain function is over-
looked and not encoded. From our perspective, these methods represent the
brain functional organization as functional brain networks and then try to map
the correspondence of those networks across individuals and populations. In
this process, the functional brain networks are viewed as one-hot vectors (i.e.,
common spatial/temporal patterns), based on which the mapping is performed.
Actually, the one-hot vectors do not represent the spatial/temporal variability
very well, while the individual features do not encode the temporal/spatial regu-
larity of different brains. In other words, those methods represent the regularity
in one dimension but the variability in another, failing to offer a general, compa-
rable, and stereotyped representation encoding both regularity and variability
of different brains. To address this intrinsic limitation, an intuitive and poten-
tial way is to represent the human brain function in a general, comparable, and
stereotyped space where the brain functional activities can be meaningfully and
compactly represented as embeddings.

As an effective embedding method for high-dimensional data, deep learn-
ing has achieved great successes and superior performances than traditional
matrix decomposition methods in modeling fMRI data (Dong et al., 2020; Q.
Li, Dong, Ge, Qiang, et al., 2021; Qiang et al., 2021; L. Zhao, Dai, et al., 2021).
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However, to the best of our knowledge, current deep learning based fMRI rep-
resentation studies were not specifically designed for constructing a compact
embedding space where the regularity and variability of different brains can be
effectively represented. Instead, the prior methods targeted specific tasks and
applications such as time series classification (M. Jiang et al., 2020; H. Liu et al.,
2019), brain network decomposition (Q. Li, Dong, Ge, Qiang, et al., 2021; Q.
Li, Zhang, et al., 2021; Qiang et al., 2020; Yu et al., 2022; W. Zhang et al., 2019),
brain state differentiation (H. Wang et al., 2018), among others. Therefore,
the current deep learning based methods still do not offer a general, compara-
ble, and stereotyped space for encoding human brain function. Importantly,
a generic embedding framework can be easily integrated with other represen-
tation learning methods for multi-model representation learning, providing a
potential way for connecting the semantic space of human brain function with
the one in Natural Language Processing (NLP) or Computer Vision (CV).

3.2.3 Methods
We formulate the representation learning of human brain function as an embed-
ding problem. The regularity and variability of brain function across individ-
ual brains and at different time points are represented in a general, comparable,
and stereotyped embedding space, where the 3D volumes of fMRI data that
record functional brain activities at different time points are profiled as dense
vectors. Specifically, we design a novel unsupervised Temporally Correlated Au-
toencoder (TCAE) based on the Transformer model (Vaswani et al., 2017) and
self-attention mechanism to construct an effective embedding space. The major
theoretical and practical advantage of the proposed framework is that it explic-
itly models the temporal correlations of different time points and implicitly
attends to the information of different representation sub-spaces.
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Figure 3.4: Illustration of the proposed TCAE embedding framework. The 4D
fMRI data are firstly rearranged into a 2D signal matrix. Then the matrix are
input into the encoder consisting of an input embedding layer and a multi-head
self-attention module. The output of the encoder is recognized as the learned
embedding, which can be used for downstream tasks and for reconstructing
the input signal matrix with the decoder.
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Temporally Correlated Autoencoder

The traditional matrix decomposition methods represent the human brain
function as functional brain networks and the corresponding temporal acti-
vations, which are not intrinsically comparable across individuals. Thus, we
aim to construct a unified and stereotyped embedding space, where the brain
function can be compactly represented and compared. Given that fMRI data
are multi-dimensional with both spatial/temporal information and numerous
voxels, the spatial dimensionality should be compressed and the temporal cor-
relations should be explored in order to obtain a compact embedding with
representative spatiotemporal features. Meanwhile, the learning of such em-
bedding should be done in an unsupervised manner considering the lack of
"group truth".

Therefore, we introduce a novel computational framework, Temporally
Correlated Autoencoder (TCAE), based on the Transformer model (Vaswani
et al., 2017). As demonstrated in Figure 3.4, TCAE has an encoder-decoder
architecture. The encoder and decoder both consist of an embedding layer
and a multi-head self-attention module. In the encoder, the embedding layer
represents the 3D fMRI volumes as 1D feature vectors through a linear trans-
formation for compressing the spatial dimensionality. The features vectors of
all time points are then input into the multi-head self-attention module for
modeling the temporal correlations of different time points and generating the
final embedding aggregating both spatial and temporal information. Compared
with recurrent neural networks (RNNs), the self-attention mechanism is more
capable in capturing the global and long-distance temporal dependencies and
thus improves the quality of the learned embedding.

Specifically, the 4D fMRI data are firstly rearranged into a 2D fMRI signal
matrix S ∈ Rt×n, where t is the number of time points and n is the number
of voxels, by extracting the time series of each voxel and concatenating them
together. Then, the rearranged 2D fMRI signal matrix S is embedded as a
feature matrix Sf ∈ Rt×m by the embedding layer for spatial dimensionality
reduction, where m is the reduced feature dimension (m ≪ n). The feature
matrix Sf is then input into the multi-head self-attention module to model the
iterations of all time points. For each attention head i, the self-attention map
that captures the temporal correlations of different time points is computed as:

ATTNi = SfWQ
i (SfW

K
i )

T (3.3)

where WQ
i ∈ Rm×k and WK

i ∈ Rm×k are projection matrices and k is the
feature dimension of the self-attention operation. With the self-attention maps,
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the output of attention head i can be computed as:

Sattni
= softmax(

ATTNi√
k

)SfWV
i (3.4)

where WV
i ∈ Rm×v and v is the feature dimension for the output of attention

heads. The output of each head Sattni
is then concatenated along the feature

dimension and transformed into a new feature matrix Sheads ∈ Rt×m as:

Sheads = Concat(Sattn1 , . . . , Sattnh
)WO (3.5)

where Concat(·) represents the concatenation operation. h is the number of
heads and WO ∈ Rhv×m is the projection matrix. Sheads is further fed into the
feed forward layer to obtain the learned embedding E ∈ Rt×m:

E = ReLU(SheadsWff1 + bff1)Wff2 + bff2 (3.6)

where Wff1 ∈ Rm×dff , Wff2 ∈ Rdff×m, bff1 and bff2 are biases. dff
represents the inner feature dimension of the feed-forward layer.

To facilitate an end-to-end training, we also include a decoder to recon-
struct the 2D fMRI signal matrix. The hypothesis here is that if the learned
embedding is informative and representative, the original signal matrix can be
better reconstructed from it. In this way, by maximizing the similarity of origi-
nal signal matrices and the reconstructed ones, the embedding framework can
be optimized in an unsupervised manner. The decoder in our framework also
consists of a multi-head self-attention module and an embedding layer which
increases the feature dimension from m to n to match the input signal matrix.

The whole framework is optimized by minimizing the Mean Square Error
(MSE) between the original fMRI signals S ∈ Rt×n and their corresponding
reconstruction S′ ∈ Rt×n:

min
1

2
∥S− S′∥2F (3.7)

Prediction of Brain State

In this subsection, we introduce a brain state prediction downstream task to
evaluate the learned embedding. During the task fMRI acquisition, each par-
ticipant is required to perform a specific task according to the block-design
paradigm. Accordingly, the fMRI data at each time point can be classified into
a specific brain state according to the task that the subject participated in, e.g.,
math calculation or listening to a story. Here, we use the learned embedding of
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each time point to predict the brain state for each subject. Specifically, we pre-
train a TCAE model to construct an embedding space. Then, the pre-trained
model is fixed and the embeddings are obtained through the inference. The em-
beddings are input into a classifier f(·) to derive the prediction of brain state ŷ.
Here, we implement the classifier as a two-layer multi layer perceptron (MLP):

ŷ = softmax(W2(tanh(W1E+ b1)) + b2) (3.8)

The MLP can be optimized by minimizing the cross-entropy between pre-
dictions ŷ and labels y:

min −
∑
i

yilog(ŷi) (3.9)

The classification performance indicates whether the learned embedding
represents the current brain activity well. Also, the learned embedding is not
taks-specific, and thus the effectiveness and generalizability of our embedding
framework can be fairly evaluated.

Interpretation of Embedding Space

Besides the performance on downstream tasks, the interpretability of learned
embedding and embedding space is another important criteria for a compre-
hensive evaluation of our framework. Here, we explore the spatial distribution
of voxels mixed into a digit in embedding vector and the temporal variance of
the digit value, i.e., the temporal pattern.
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Figure 3.5: Interpretation of learned embedding and embedding space. (a) Map-
ping the spatial compositions of digits to 3D volume space. (b) Digit values of
different time points naturally form a time series, i.e., temporal activity patterns

As illustrated in Figure 3.5(a), the linear transformation matrixWl ∈ Rn×m

in the encoder embedding layer maps the all voxels as a embedding vector. Each
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column of Wl contributes to a specific digit of embedding vector, which can
be mapped back to 3D volume space to visualize the spatial composition of this
digit. Meanwhile, the digit values of different time points naturally form a time
series (Figure 3.5(b)). Similar to (Q. Li, Dong, Ge, Qiang, et al., 2021), we assume
that it reflects the temporal activity pattern of that digit. It is noted that digits in
the embedding vector correspond to subspaces spanning the whole embedding
space. By computing the Pearson Correlation Coefficient (PCC) between the
temporal pattern and the Hemodynamic Response Function (HRF) responses
of task stimuli, we can examine if there exists subspaces corresponding to the
task stimuli and their correlations. In this way, the embedding space can be
interpreted from both spatial and temporal perspectives.

3.2.4 Experiments

Dataset and Pre-Processing

We adopt the publicly available HCP task fMRI (tfMRI) dataset of S1200 re-
lease (https://www.humanconnectome.org/) (Barch et al., 2013). In this sec-
tion, we select Emotion, Motor, Language and Working Memory (WM) tasks
as testbeds. The acquisition parameters of HCP tfMRI data are as follows:
90 × 104 matrix, 72 slices, 220 mm FOV, in-plane FOV = 208 × 180 mm, 2.0
mm isotropic voxels, TR=0.72 s, TE=33.1 ms, flip angle = 52◦, BW =2290
Hz/Px. The preprocessing pipelines of tfMRI data are implemented by FSL
FEAT (Woolrich et al., 2001), including skull removal, motion correction, slice
time correction, spatial smoothing, global drift removal (high-pass filtering) and
registration to the standard MNI 152 4 mm space for reducing the computa-
tional overhead. Besides, the time series from each voxel are normalized with
zero mean and standard deviation one before rearranging into 2D signal matrix.
For a total of more than 1000 subjects in HCP S1200 release, we randomly se-
lect 600 subjects as training set, 200 subjects as validation set, and another 200
subjects as testing set. All the experimental results in the following sections are
reported on the testing set.

Brain State Prediction Results

We report the brain state prediction downstream task performance is this subsec-
tion. Here, we introduce several baseline models with various architectures for
comparison: Autoencoder (AE), deep sparse recurrent autoencoder (DSRAE)
(Q. Li, Dong, Ge, Qiang, et al., 2021), deep recurrent variational autoencoder
(DRVAE) (Qiang et al., 2021), spatiotemporal attention autoencoder (STAAE)
(Dong et al., 2020). AE represents an autoencoder model composed of one
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embedding layer with tanh activation function for both encoder and decoder,
which can be assumed as our baseline model without the multi-head self-attention
module. Notably, DSRAE was designed for decomposing the spatial/temporal
brain networks; DRVAE model was designed for the augmentation of fMRI
data; STAAE was proposed for the classification of Attention Deficit Hyperac-
tivity Disorder (ADHD) based on resting state fMRI. We re-implement these
frameworks, and take the latent representation from the encoder as the learned
embedding. More details about the configuration of those baselines refer to
supplemental materials.

Table 3.3: The averaged prediction accuracy (ACC), F1 score (F1), Precision, Re-
call and Area Under the Curve (AUC) of baselines and the proposed framework
on brain state prediction task. For each cognitive task, the results are averaged
among all subjects in the test dataset. Red and blue denotes the best and the
second-best results, respectively.

Tasks Methods ACC F1 Precision Recall AUC

Emotion

AE 0.6499 0.5915 0.6297 0.5926 0.7701
STAAE (Dong et al., 2020) 0.5341 0.4641 0.5292 0.4745 0.6705
DRVAE (Qiang et al., 2021) 0.5623 0.5096 0.5819 0.5084 0.6939
DSRAE (Q. Li, Dong, Ge, Qiang, et al., 2021) 0.6182 0.5655 0.6297 0.5633 0.7485
TCAE (ours) 0.7315 0.6747 0.7465 0.6712 0.8261

Language

AE 0.8211 0.6303 0.7175 0.6227 0.8789
STAAE (Dong et al., 2020) 0.7821 0.5383 0.5268 0.5564 0.8056
DRVAE (Qiang et al., 2021) 0.8167 0.5939 0.6849 0.5976 0.8598
DSRAE (Q. Li, Dong, Ge, Qiang, et al., 2021) 0.8216 0.5957 0.6829 0.6002 0.8542
TCAE 0.8550 0.5881 0.5713 0.6079 0.8758

Motor

AE 0.5545 0.5212 0.5367 0.5363 0.8416
STAAE (Dong et al., 2020) 0.3638 0.2764 0.3231 0.3067 0.7007
DRVAE (Qiang et al., 2021) 0.4384 0.3729 0.4152 0.3938 0.7599
DSRAE (Q. Li, Dong, Ge, Qiang, et al., 2021) 0.5039 0.4555 0.4845 0.4753 0.8126
TCAE 0.6426 0.6136 0.6347 0.6262 0.8908

WM

AE 0.4795 0.4330 0.4533 0.4294 0.7901
STAAE (Dong et al., 2020) 0.3000 0.1852 0.2133 0.2093 0.6629
DRVAE (Qiang et al., 2021) 0.3924 0.3217 0.3407 0.3251 0.7378
DSRAE (Q. Li, Dong, Ge, Qiang, et al., 2021) 0.4176 0.3545 0.3723 0.3574 0.7589
TCAE 0.5822 0.5522 0.5785 0.5476 0.8456

In Table 3.3, we report the averaged brain state classification results over all
subjects including accuracy (ACC), F1 scores (F1), precision, recall, area under
the curve (AUC) for each task, respectively. In Table 3.4, we report the number
fo parameters and the number of multiply–accumulate operations (MACs) of
those baselines and the proposed method. The dimension of embedding vector
is set as 64 for all mehtods. It is observed that the proposed TCAE embedding
framework significantly outperforms all other baselines in terms of all metrics
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Table 3.4: The number of parameters (Params) and the number of multi-
ply–accumulate operations (MACs) of different baselines and the proposed
framework.

Methods Params (M) MACs (G)

AE 3.68 10.29
STAAE 14.70 41.32
DRVAE 15.13 42.54
DSRAE 15.12 42.52
TCAE 3.75 10.47

(two-sample one-tailed un-pair-wise t-test (p < 0.025, corrected)) except on
Language task. On Emotion, Motor and WM tasks, TCAE demonstrates su-
perior performance far beyond the baselines with much less parameters and
MACs (Table 3.4), indicating the effectiveness of introducing self-attention
mechanism to explore the temporal correlations. It is also noted that the base-
line AE exceed other compared methods with the second best performances.
This is probably because other baselines such as DRVAE are designed for a spe-
cific task which requires a specially designed architecture with more parameters.
However, an architecture with more parameters may not be generalizable for
our embedding task and thus degenerates the performance. On Language task,
the performances of all methods are comparable with an accuracy around 0.8.
This is probably because the brain states in Language task (3 classes) is relatively
easy to be recognized compared with other tasks (e.g., Motor task have 7 classes
and WM task have 9 classes), so the performance differences become smaller.
Overall, these experimental results suggest that the proposed TCAE framework
is compact and able to learn a more generalizable and effective embedding com-
pared with other baselines.

Interpretation of the Embedding Space

In this subsection, we firstly explore the temporal activity patterns of each digit
as illustrated in Section 3.2.3. With the extracted temporal pattern of each digit,
we compute the Pearson Correlation Coefficient (PCC) between each temporal
pattern and the Hemodynamic Response Function (HRF) responses of task
stimuli. Among all digits, the one with the highest PCC value are selected
as the task-relevant digit which is an indicator of the embedding’ relevance to
task stimuli. Here, we randomly select four subjects as examples to show the
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temporal pattern of task-relevant digit from the TCAE model as well as the
corresponding HRF responses in Figure 3.6.

Temporal Pattern HRF Response

Subj #1 Subj #2 Subj #3 Subj #4 Subj #1 Subj #2 Subj #3 Subj #4

M5

W1

W3

W5

E1

L1

M1

M3

W7

PCC=0.472 PCC=0.585 PCC=0.532 PCC=0.713

PCC=0.371 PCC=0.415 PCC=0.488 PCC=0.578

PCC=0.396 PCC=0.489 PCC=0.481 PCC=0.547

PCC=0.371 PCC=0.492 PCC=0.567 PCC=0.554

PCC=0.593 PCC=0.605 PCC=0.612 PCC=0.670

PCC=0.638 PCC=0.673 PCC=0.747 PCC=0.829

PCC=0.468 PCC=0.527 PCC=0.498 PCC=0.603

PCC=0.394 PCC=0.449 PCC=0.416 PCC=0.631

PCC=0.396 PCC=0.458 PCC=0.461 PCC=0.537

M6

W2

W4

W6

E2

L2

M2

M4

W8

PCC=0.387 PCC=0.519 PCC=0.583 PCC=0.644

PCC=0.359 PCC=0.496 PCC=0.531 PCC=0.528

PCC=0.341 PCC=0.341 PCC=0.498 PCC=0.650

PCC=0.370 PCC=0.465 PCC=0.496 PCC=0.553

PCC=0.570 PCC=0.606 PCC=0.670

PCC=0.637 PCC=0.661 PCC=0.732 PCC=0.702

PCC=0.539 PCC=0.477 PCC=0.487 PCC=0.546

PCC=0.357 PCC=0.476 PCC=0.504 PCC=0.572

PCC=0.366 PCC=0.468 PCC=0.441 PCC=0.559

PCC=0.732

Figure 3.6: The temporal pattern of task-relevant digit from TCAE model
compared with HRF responses of 4 randomly selected subjects for each task
stimulus, respectively. Abbreviations: E1: ‘Faces’ stimulus; E2: ‘Shapes’ stim-
ulus; L1: ‘Math’ stimulus; L2: ‘Story’ stimulus; M1: ‘Task cues’ stimulus; M2:
‘Left foot’ stimulus; M3: ‘Right foot’ stimulus; M4: ‘Left hand’ stimulus; M5:
‘Right hand’ stimulus; M6: ‘Tongue’ stimulus; W1: ‘0Back body’ stimulus; W2:
‘0Back faces’ stimulus; W3: ‘0Back places’ stimulus; W4: ‘0Back tools’ stimu-
lus; W5: ‘2Back body’ stimulus; W6: ‘2Back faces’ stimulus; W7: ‘2Back places’
stimulus; W8: ‘2Back tools’ stimulus.

Generally, the temporal pattern of task-relevant digit matches the corre-
sponding HRF response well, indicating that the digits of the learned embed-
ding may be correlated with task stimuli. To quantitatively measure such cor-
relation, we average the PCC of all subjects and compare it with those from
baseline models in Table 3.5. It is observed that in Motor and WM task, the av-
eraged PCC of TCAE model is larger than all compared baselines. However, in
the Language task, AE and STAAE have the highest PCC for two task designs,
respectively. In Emotion task, AE has the highest PCC in ’Shapes’ stimulus
while the TCAE has the highest PCC in ’Faces’ stimulus. A possible reason is
that for Motor and WM task, the responses of task stimuli are more complex
and harder to be decoded and decomposed from the raw fMRI data. Our em-

41



beddings from TCAE model can better characterize such responses, which is in
alignment with the highest brain state prediction accuracy in Table 3.3. While in
the Language task, the responses are quite straightforward and can be easily cap-
tured by other deep learning models. It is consistent with overall higher brain
state prediction accuracy in Table 3.3 for all compared methods. The TCAE
embedding model may focus on more intrinsic responses and patterns which
are still task-relevant but discriminative, resulting in a comparable accuracy in
brain state prediction but relatively lower PCC than baselines.

Table 3.5: Mean (± standard deviation) PCC (Pearson Correlation Coefficient)
between the temporal pattern of task-relevant digit and the HRF response. Ab-
breviations: E1: ‘Faces’ stimulus; E2: ‘Shapes’ stimulus; L1: ‘Math’ stimulus;
L2: ‘Story’ stimulus; M1: ‘Task cues’ stimulus; M2: ‘Left foot’ stimulus; M3:
‘Right foot’ stimulus; M4: ‘Left hand’ stimulus; M5: ‘Right hand’ stimulus;
M6: ‘Tongue’ stimulus; W1: ‘0Back body’ stimulus; W2: ‘0Back faces’ stimu-
lus; W3: ‘0Back places’ stimulus; W4: ‘0Back tools’ stimulus; W5: ‘2Back body’
stimulus; W6: ‘2Back faces’ stimulus; W7: ‘2Back places’ stimulus; W8: ‘2Back
tools’ stimulus. Red and blue denotes the highest and the second-highest PCC,
respectively.

Tasks Stimulus Methods

AE STAAE DRVAE DSRAE TCAE

Emotion E1 0.45±0.09 0.48±0.11 0.45±0.11 0.48±0.11 0.53±0.09
E2 0.51±0.11 0.40±0.11 0.40±0.10 0.45±0.10 0.49±0.09

Language L1 0.76±0.10 0.73±0.09 0.59±0.08 0.68±0.08 0.60±0.08
L2 0.61±0.10 0.72±0.09 0.68±0.10 0.71±0.08 0.59±0.08

Motor

M1 0.41±0.09 0.38±0.10 0.39±0.08 0.39±0.08 0.42±0.08
M2 0.34±0.05 0.30±0.09 0.31±0.07 0.34±0.08 0.38±0.07
M3 0.35±0.05 0.28±0.08 0.30±0.07 0.34±0.07 0.40±0.07
M4 0.34±0.05 0.30±0.08 0.33±0.07 0.34±0.07 0.37±0.07
M5 0.33±0.04 0.29±0.08 0.32±0.07 0.34±0.07 0.40±0.07
M6 0.40±0.05 0.47±0.09 0.42±0.08 0.45±0.10 0.52±0.09

WM

W1 0.29±0.04 0.26±0.07 0.31±0.07 0.31±0.08 0.36±0.07
W2 0.27±0.05 0.27±0.07 0.30±0.07 0.32±0.07 0.34±0.08
W3 0.28±0.04 0.28±0.07 0.31±0.08 0.32±0.08 0.35±0.07
W4 0.28±0.05 0.30±0.06 0.34±0.07 0.36±0.06 0.37±0.07
W5 0.29±0.05 0.25±0.09 0.30±0.08 0.32±0.08 0.35±0.08
W6 0.28±0.05 0.23±0.08 0.29±0.07 0.29±0.08 0.35±0.08
W7 0.28±0.04 0.27±0.07 0.31±0.07 0.31±0.06 0.35±0.07
W8 0.27±0.05 0.25±0.08 0.32±0.08 0.31±0.08 0.34±0.08

We also demonstrate the spatial composition of digits and compare them
with spatial maps from the general linear model (GLM) (Monti, 2011) and rest-
ing state networks (RSNs) reported in (Smith et al., 2009). For each task stim-
ulus, we select the most similar spatial composition from our model and visu-
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Figure 3.7: Visualizations of spatial compositions from the selected digits. (a)
The comparison of the GLM maps and the most similar spatial composition
for each task stimulus. (b) The comparison of the RSNs and the most similar
spatial composition selected from different tasks. Abbreviations: E1: ‘Faces’
stimulus; E2: ‘Shapes’ stimulus; L1: ‘Math’ stimulus; L2: ‘Story’ stimulus; M2:
‘Left foot’ stimulus; M6: ‘Tongue’ stimulus; W1: ‘0Back body’ stimulus; W4:
‘0Back tools’ stimulus; EMO: Emotion; LAN: Language; MOT: Motor WM:
Working Memory; RSN: Resting State Network.

alize them in Figure 3.7(a). It is observed that for each stimulus, we can find
a similar spatial composition from a digit. This indicates that our embedding
framework extracts the features that are in close relationship with task stimuli
and the learned embedding has encoded the corresponding information. In
Figure 3.7(b), we select and visualize the spatial compositions similar to RSNs.
RSN #1-#3 correspond to visual networks locating on occipital lobe, and the
visual system of human brain is involved in Emotion and Working Memory
task. RSN #4 is the Default Mode Network (DMN). It is widely reported that
DMN plays a crucial role for the emotion process (Satpute & Lindquist, 2019;
X. Xie et al., 2016; J. Zhao et al., 2017). RSN #6 is the somatomotor network
and we successfully match a spatial composition with it from the Motor task.
RSN #7 corresponds to Auditory Network. In the acquisition of Language task
fMRI data, the participants were presented with brief auditory stories. RSN #9
and RSN #10 are frontoparietal networks located on frontal lobe and parietal
lobe. The involvements of these networks in emotion regulation and working
memory were reported widely in literature (Braunlich et al., 2015; Harding et
al., 2015; Lindquist & Barrett, 2012; Sabatinelli et al., 2014; Salazar et al., 2012).
Overall, these results indicate that the learned embedding and the embedding
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space are neuroscientifically meaningful and interpretable, and also coincide
with the task designs.

Implementation Details

In our experiments, we uniformly set the embedding size as 64 for the proposed
model and all compared baselines. In TCAE model, them,k, v in TCAE model
are set to 64 anddff is set to 128. For the MLP for brain state prediction task, the
dimension of two layers are 64/32, respectively. The framework is implemented
with PyTorch (https://pytorch.org/) deep learning library. We use the Adam
optimizer (Kingma & Ba, 2014) with β1 = 0.9 and β2 = 0.999. The batch
size is 16 and the model is trained for 100 epochs with a learning rate 0.005
for each tasks on a single GTX 1080Ti GPU. It is noted that all experiments
were performed on testing dataset based on the model with the lowest loss on
validation dataset.

3.2.5 Conclusion
In this section, we represented the human brain function in a general, com-
parable, and stereotyped space through a novel transformer-based embedding
framework, with which the brain activities measured by fMRI data at differ-
ent time points and across populations are meaningfully and compactly rep-
resented. The experimental results on brain state prediction downstream task
demonstrated the effectiveness and generalizability of learned embedding. It
was also found that the embedding and embedding space is interpretable and
neuroscientifically meaningful. Our future works include employing the pro-
posed framework to explore the connections between the semantic spaces of
human brain function and those in deep visual models or language models such
as ViT (Dosovitskiy et al., 2020) or BERT (Devlin et al., 2018). We will also ap-
ply the embedding for disease diagnosis such as ADHD and Alzheimer’s disease
with resting state fMRI data.
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Chapter 4

Coupling the Semantics
of ANNs and BNNs

4.1 Overview
Artificial neural networks (ANNs), originally inspired by biological neural net-
works (BNNs), have achieved remarkable successes in many tasks such as vi-
sual representation learning. However, whether there exists semantic corre-
lations/connections between the visual representations in ANNs and those in
BNNs remains largely unexplored due to both the lack of an effective tool to link
and couple two different domains, and the lack of a general and effective frame-
work for representing the visual semantics in BNNs such as human functional
brain networks (FBNs). To answer this question, we propose a novel computa-
tional framework, Synchronized Activations (Sync-ACT), to couple the visual
representation spaces and semantics between ANNs and BNNs in human brain
based on naturalistic functional magnetic resonance imaging (nfMRI) data.

4.2 Background
Inspired by the biological neural networks (BNNs), artificial neural networks
(ANNs) have achieved great success in a variety of tasks and scenarios due to
their powerful representation ability (LeCun et al., 2015). In computer vision
(CV) field, convolutional neural networks (CNNs) (LeCun, Bengio, et al., 1995)
hierarchically learn the visual representations of images/videos as low-level to
high-level features in embedding space and have been widely used in many real-
word applications (Khan et al., 2020; LeCun et al., 2015). Recent Vision Trans-
former (ViT) (Dosovitskiy et al., 2020) demonstrates promising performance
by representing the image as a sequence of patches and embedding the image
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patches as latent vectors, based on which the dependencies/correlations among
those vectors are modeled. However, the semantics of those embedding spaces
for visual representation are not manifest for human perception and challenge
us for a comprehensive understanding of representation learning of ANNs. To
unveil and describe the semantics of latent space of ANNs for visual represen-
tation, increasing efforts have been devoted to interpret the ANNs’ behaviors
and annotating their neurons with semantic concepts (Bau et al., 2017; Zhou
et al., 2016). For example, (Bau et al., 2017) proposed to label the hidden units
of convolutional layer with visual concepts from a broad dataset. A recent study
employed fine-grained natural language description to annotate the semantics
of neurons in various ANNs (Hernandez et al., 2021). Despite the remarkable
progresses achieved by these methods, whether the visual representation space
of ANNs retains biologically meaningful semantics as in the initial inspiration,
BNNs, is still an open question.

In the field, researchers now have employed naturalistic functional magnetic
resonance imaging (nfMRI) to assess the activity and functional mechanism of
BNNs (Hu et al., 2010; T. Liu et al., 2014; Ren et al., 2021; J. Wang et al., 2017),
e.g., functional brain networks (FBNs), under the naturalistic stimuli such as
real-life images and video streams. This natural stimulus fMRI paradigm pro-
vides a powerful tool for investigating the visual perception of human brain
and representing the corresponding semantics (T. Liu et al., 2014), allowing us
to answer the aforementioned question and annotate the neurons in ANNs
with biological description even further. However, the current approaches for
representing high-dimensional fMRI data, e.g., matrix decomposition based on
independent component analysis (ICA) (Calhoun & Adali, 2006) and sparse
dictionary learning (SDL) (Lv et al., 2014), are commonly used for task and
resting state fMRI. Considering the brain activities encoded by nfMRI are dy-
namic and complex, it is quite challenging to interpret and describe the seman-
tics perceived by the human brain. In addition, the brain responses evoked by
naturalistic stimuli exhibit great inter-subjects variability (Golland et al., 2007;
Ren et al., 2017), while those existing methods do not encode the regularity
and variability of different brains, and thus do not offer a general, comparable,
and stereotyped embedding space for representing the brain activity and func-
tional semantics. Recently, deep learning approaches demonstrated superior
performance in modeling fMRI data (Dong et al., 2019; Q. Li, Zhang, et al.,
2021; H. Liu et al., 2019; H. Wang et al., 2018; W. Zhang et al., 2019; L. Zhao,
Dai, et al., 2021). However, as far as we know, these deep learning methods were
designed for specific tasks. A more general and effective framework of embed-
ding brain function and representing semantics under naturalistic stimuli is still
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much needed. In parallel, linking such human brain’s functional embedding
and semantics representation with external natural stimulus is very desirable
and significant.

4.2.1 Related Works

4.2.2 Visual Representation Interpretation
Interpreting the behavior of deep neural networks and the learned visual rep-
resentation has attracted growing interest in the CV field. As the semantics of
visual representation in deep networks are not manifest for human perception,
a possible approach is to visualize the activation of neurons and characterize
the visual concept they recognize (Bau et al., 2017; Dalvi et al., 2019; Morcos
et al., 2018; Mu & Andreas, 2020). For example, (Bau et al., 2017) labels the
neurons (i.e., convolutional filters) of CNNs with visual concepts by aligning
the activation of neurons with a set of images with semantic concepts. Mu &
Andreas (Mu & Andreas, 2020) searches the compositional logical concepts
defined on primitive visual concepts that closely approximate neuron behavior.
A recent study employed fine-grained natural language description to annotate
the semantics of neurons in various ANNs (Hernandez et al., 2021) by maxi-
mizing the mutual information between the language description and imaging
regions in which the neuron is activated. Our work is inspired by and in line
with the aforementioned interpretation studies. The neuron’s behaviors are
measured by the maximum activation over time, forming a temporal activation
series with which the temporal activation of FBNs is compared and correlated
for alignment. In this way, we contribute a biologically meaningful description
of the neurons in ANNs.

4.2.3 fMRI Data Representation
A major challenge for fMRI data representation learning is that the number
of voxels in 4D spatiotemporal fMRI data is greatly larger than the number of
subject brains (Mwangi et al., 2014). To deal with this imbalance, a variety of
computational tools have been proposed to select the task-related features and
discard the redundant ones as well as the noises (Calhoun & Adali, 2006; Lv
et al., 2014). For example, independent component analysis (ICA) (Calhoun &
Adali, 2006) and sparse dictionary learning (SDL) were employed to decompose
the fMRI as two compact matrices (temporal and spatial patterns). However,
the temporal and/or spatial patterns obtained from ICA or SDL based meth-
ods are not intrinsically comparable across different individual brains. Recently,
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deep learning has been widely employed in fMRI data modeling and achieved
superior results over the traditional matrix decomposition methods (Dong et
al., 2019; Q. Li, Zhang, et al., 2021; H. Liu et al., 2019; H. Wang et al., 2018; W.
Zhang et al., 2019; L. Zhao, Dai, et al., 2021). However, as far as we know, prior
deep learning models of fMRI data were not specifically designed towards a gen-
eral, comparable and compact representation of brain function. Instead, prior
methods were designed for some specific tasks, such as fMRI time series classi-
fication (H. Liu et al., 2019), brain network decomposition (Dong et al., 2019;
Q. Li, Dong, Ge, Qiang, et al., 2021), brain state differentiation(H. Wang et al.,
2018), among others. Even though some methods derive comparable temporal
patterns (Q. Li, Dong, Ge, Qiang, et al., 2021; Q. Li, Zhang, et al., 2021), which
might be suitable for our objective, they still rely on matrix decomposition to
obtain spatial patterns that are not comparable across different individuals. In
this work, we proposed a more general and unified framework to represent the
fMRI data from different subjects as functional brain networks and their tem-
poral activations in a general, comparable and stereotyped latent space. This
design enables us to explore the correlation between the semantics of this latent
space and those in CNNs.

4.2.4 Connection of ANNs and BNNs
Current ANNs are inspired by the BNNs at the beginning. For example, CNNs
are inspired by the hierarchical organization of the vision systems in the human’s
primary vision cortex (Kim et al., 2016). Recently, there is a growing interest in
exploring the potential connections between ANNs and BNNs. For instance,
the receptive field analysis reveals that the receptive fields of filters in CNNs
become progressively larger (W. Luo et al., 2016) and more complex, which is
similar to the ventral pathway in cerebral cortex (Barrett et al., 2019). The filters
in the last convolutional layer have class-specific receptive fields akin to concept-
cells in the visual cortex (Mahendran & Vedaldi, 2016). (Yamins & DiCarlo,
2016; Yamins et al., 2014) synthesized CNNs outputs by linear regression to
predict the neural responses in both the V4 and inferior temporal (IT) cortex.
This shows a strong correlation between a CNN’s categorization performance
and its ability to predict individual IT neural responses, implicitly indicating
the potential representation similarity between ANNs and BNNs. (You et al.,
2020) proposed a graph-based representation of ANNs called relational graph,
and found that top-performing ANNs have graph structures similar to those
of BNNs. Inspired by these studies, we explore the semantic similarity of visual
representations in CNNs and the functional representation of the human brain,
providing a novel insight into the connection between ANNs and BNNs.
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Figure 4.1: The proposed Sync-ACT framework. The temporal activation of
FBNs and convolutional filters are synchronized for matching the embedding
space and cross-annotation.

4.3 Methods
In this section, we propose a novel computational framework, Synchronized
Activations (Sync-ACT) (Figure 4.1), to explore the connections of the visual
representation space and semantics between ANNs and BNNs in human brain.
Based on Sync-ACT, we describe and annotate the neurons in ANNs with bio-
logically meaningful descriptions for the first time, bridging the gaps between
these two drastically different domains.

4.3.1 Formulation of Sync-ACT Framework
Even though the ANNs are originally inspired by the BNNs, the input/output,
operating, and reasoning processes of neural networks in the two domains are
quite different and not comparable. Our intuition is to avoid being trapped by
the remarkable differences but focus on their responses, such as the activation of
neurons, to the external stimuli. In this way, the behavior of the neural networks
measured by the responses (i.e., the temporal activation of neurons) in two
domains can be directly compared if the stimuli are synchronized, and thus the
most similar neurons in two domains can be easily identified and paired. Let
F : Xa → Ya represents an artificial neural network, and fi(xa) represents
the temporal activation of neuron fi with respect to stimulus sequence xa.
Similarly, let G : Xb → Yb represent a biological neural network, and gj(xb)

denotes the temporal activation of neuron gj with the stimulus sequencexb. If
the stimulixa andxb are synchronized, the paired neuron offi in the biological
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neural network G can be defined by:

Sync-ACT(fi,G) = argmax
gj∈G

δ(fi(xa), gj(xb)), (4.1)

where δ(·) is the measurement of similarity between two temporal activations.
Similarly, we could define the paired neuron of gi in the artificial neural network
F as:

Sync-ACT(gi,F) = argmax
fj∈F

δ(gi(xb), fj(xa)). (4.2)

In this work, we adopt the Pearson correlation coefficient (PCC) for similarity
measurement δ(·). Based on Eq. (4.1) and Eq. (4.2), we can obtain the paired
neuron gj/fj for any fi/gi by choosing the one with the most significant simi-
larity value. With the neuron pairs, the semantics of one neural network can be
used to annotate the other, i.e., the cross-annotation. We define the semantic de-
scription of neurons fi/ gi as dfi/dgi . The cross-annotation of paired neurons
is then denoted as dfi → dgj and dgi → dfj .

We adopted nfMRI data to evaluate the Sync-ACT framework by leverag-
ing the fact that, during nfMRI scan, video frames (stimuli for both ANNs
and BNNs) and functional brain responses measured by fMRI are temporally
aligned in an intrinsic fashion.

4.3.2 fMRI Embedding Framework
In the brain imaging field, it is common to represent the brain function as in-
teractions of FBNs and the corresponding temporal patterns. Thus, the FBNs
can be viewed as the neurons of BNN in the human brain, and temporal pat-
terns represent the activations of those FBNs. However, the previous methods
including the deep learning ones do not offer a general and stereotyped space
in modeling FBNs. The FBNs and corresponding temporal activations are not
intrinsically comparable across different individual brains.

So, in this section, we propose a general fMRI embedding framework to rep-
resent brain function as FBNs and derive the temporal activations in a unified
and comparable embedding space. Specifically, the fMRI embedding frame-
work has an encoder-decoder architecture. Figure 4.2 illustrates the major com-
ponents in the encoder. The rearranged 2D fMRI signal matrix S ∈ Rt×n,
where t is the number of time points andn is the number of voxels, is firstly em-
bedded as a new feature matrixSf ∈ Rt×m through a learnable transformation
matrixW ∈ Rn×m, wherem is the reduced feature dimension (m≪ n). This
transformation can be viewed as compressing the voxels in 3D volume space into
m components, i.e., m functional brain networks, by linear combination. The
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columns in the transformation matrix W recorded the contributions of the
voxels to each FBN, i.e., the composition of each FBN, which can be mapped
back to 3D volume space for visualizing the spatial pattern of FBN. It is noted
that the linear transformation in the encoder parameterized by W is optimized
in a data-driven manner and consistent for all subjects, which guarantees the
comparability of Sf for all subjects.
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Figure 4.2: The illustration of the encoder in fMRI embedding framework. The
green and red boxes correspond to the first and last FBNs and their temporal
activations.

The row vectors in matrixSf recorded the activation of all resulted FBNs at
different time points, and the column vector represents the temporal activation
of a specific FBN. We further model the temporal correlations of the column
vectors with a neural network F (x). Here, we explore two popular neural net-
works for modeling temporal data, long short-term memory (LSTM) (Hochre-
iter & Schmidhuber, 1997) and multi-head self-attention (MSA) module in the
Transformer model (Vaswani et al., 2017). The column vector li in the resulted
matrix L = F (Sf ),L ∈ Rt×m is the temporal activation of the ith FBNs,
which encodes the regularity and variability of different brains in the same la-
tent space. We average the vector li from all subjects in the testing dataset as the
temporal activation for neuron gi

The decoder has a symmetrical architecture as the encoder. The whole
framework is optimized in an unsupervised manner by minimizing the Mean
Square Error (MSE) between the original fMRI signals matrix S ∈ Rt×n and
their corresponding reconstruction S′ ∈ Rt×n.

4.3.3 Neurons and Activations in CNNs
We adopt CNNs as the representative ANNs in this work because of CNNs’
powerful visual representation ability and wide application in many computer
vision tasks. We recognize the convolutional filters as the neurons in ANN. To
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derive the temporal activation of CNN’s filters, we adopt a simple but effective
strategy by collecting the feature mapAfi(xt) of each CNN filter fi with image
xt from the image sequence x at time point t. Then the maximum value in
feature map max(Afi(xt)) is extracted to represent the activation degree of
filter fi at time point t, resulting in the temporal activation fi(x). When the
image sequence x is the corresponding movie frames of nfMRI, the derived
temporal activations are automatically synchronized with the ones in FBNs.
This strategy can be easily applied to any pre-trained CNN model.

With the obtained temporal activations fi(xa) and gj(xb), given synchro-
nized stimuli xa and xb, we will be able to pair the neurons between ANNs
and BNNs and perform cross-annotation following Eq. (4.1) and Eq. (4.2). It
is noted that the Sync-ACT is a general framework that is also compatible with
temporal activations derived from other representation methods, such as those
potentially from other fMRI embedding methods or ViT.

4.4 Experiments
Datasets. In this study, we adopt the publicly available HCP 7T movie-watching
fMRI dataset (http://www.humanconnectomeproject.org/) of S1200 release
(Barch et al., 2013). The dataset contains 184 subjects who were scanned in 4
runs while watching short independent films and Hollywood movie excerpts
concatenated into .mp4 files. The important fMRI acquisition parameters are
as follows: 130×130 matrix, 85 slices, TR=1.0 s, TE=22.2 s, 208 mm FOV, flip
angle = 45◦, 1.6 mm isotropic voxels. The fMRI data are preprocessed by HCP
minimal preprocessing pipeline (Glasser et al., 2013). Then, we downsample
and register the preprocessed fMRI data into the standard MNI 152 4mm space
for reducing the computational overhead. The movie clips have a resolution
of 1024×720 pixels (24fps). We extracted the last movie frame in each second
as the corresponding image for fMRI data and resized it with a resolution of
256×180 pixels.

In addition, we adopt the StudyForrest movie-watching fMRI dataset (https:
//www.studyforrest.org/) (Hanke et al., 2016) with 15 subjects watching 2 hours
of Forrest Gump movie. The important acquisition parameters are as follows:
80×80 matrix, 35 slices, TR=2.0 s, TE=30.0ms, 240mmFOV, flip angle = 90◦,
3.0 mm isotropic voxels. The fMRI data in StudyForrest dataset are prepro-
cessed using fMRIPrep (Esteban et al., 2019). The movie clips have a resolution
of 1280×720 pixels (25fps). We extracted the last movie frame every two seconds
as the corresponding image for fMRI data and resized it with a resolution of
320×180 pixels. It is noted that the data quality and spatial/temporal resolution
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of the StudyForrest dataset are relatively low and only 15 subjects are available,
so we just use it for validation.

For both datasets, the time series from the voxels of preprocessed fMRI data
is rearranged into a 2D array with zero mean and standard deviation one. We
used 60%/10% of the subjects for model training/validation and the rest 30% for
testing. Unless we specifically mentioned, all the experimental results are based
on testing data of HCP 7T movie-watching dataset.

Implementation Details. In our experiments, we uniformly set the num-
ber of derived FBNs from our fMRI embedding framework as 64. The investiga-
tion of its influences can be found in supplementary materials. For StudyForrest
fMRI dataset, we cut the fMRI data from run #1 to run #7 with 430 time points
and consider them as the same samples for training due to the lack of subjects.
The inference is conducted for each run with uncut data. The framework is im-
plemented with PyTorch (https://pytorch.org/) deep learning library. We use
the Adam optimizer (Kingma & Ba, 2014) withβ1 = 0.9 andβ2 = 0.999. The
batch size is 16 and the model is trained for 100 epochs with an initial learning
rate 0.01 for both tasks on a single GTX 1080Ti GPU.

4.4.1 Correlations of Representations in Two Spaces
Correlations with different CNN Models. We firstly explored the correla-
tion of temporal activations between the FBNs and convolutional filters in a
variety of CNN models pre-trained on the ImageNet dataset (J. Deng et al.,
2009) and Places365 dataset (Zhou et al., 2017). The filters in the last convo-
lutional layer for all CNNs are selected and paired with FBNs. In Table 4.1,
the averaged PCC values over all pairs across different CNN models and differ-
ent runs of HCP 7T movie-watching dataset are reported. It is observed that
for almost all CNN models across different runs (except the AlexNet, VGG-
16, ResNet-18 at Run #1 and/or Run #2), the correlation measured by PCC is
statistically significant with values larger than 0.2. The significance is well repro-
duced on the models pre-trained on different datasets (ImageNet and Places365)
though the averaged PCC values may vary on different pre-trained models and
runs.

We perform a similar analysis on the StudyForrest movie-watching fMRI
dataset for validation, and the results are reported in Table 4.2 with CNN mod-
els pre-trained on ImageNet dataset. However, the averaged PCC values are
smaller than those on HCP 7T movie-watching dataset. This might be due to
that the number of subjects in StudyForrest dataset (15) is smaller than those
in HCP 7T fMRI dataset (184); the spatial/temporal resolution, image quality
and signal-to-noise ratio of nfMRI data are worse than those in HCP 7T fMRI
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Table 4.1: The averaged PCC on HCP dataset for the pairs of FBNs and the
filters on CNN models pre-trained on ImageNet and Places365 dataset. The
correlations measured by PCC in this table are all statistically significant(p-
value≤ 0.05) for different runs.

Methods ImageNet (J. Deng et al., 2009) Places365 (Zhou et al., 2017)
Run #1 Run #2 Run #3 Run #4 Run #1 Run #2 Run #3 Run #4

AlexNet (Krizhevsky et al., 2012) 0.2323 0.2223 0.2558 0.2607 0.2651 0.2374 0.2788 0.2774
VGG-16 (Simonyan & Zisserman, 2014) 0.2376 0.2176 0.2654 0.2617 - - - -
ResNet-18 (K. He et al., 2016b) 0.2415 0.2267 0.2516 0.2530 0.2703 0.2536 0.2896 0.2931
ResNet-50 (K. He et al., 2016b) 0.2862 0.2660 0.2942 0.3022 0.3008 0.2745 0.3076 0.3159
DenseNet-161 (G. Huang et al., 2017) 0.3031 0.2767 0.3051 0.3152 0.3052 0.2879 0.3134 0.3199
Inception V3 (Szegedy et al., 2016) 0.2720 0.2615 0.2747 0.2895 - - - -
ShuffleNet V2 (Ma et al., 2018) 0.2663 0.2515 0.2742 0.2831 - - - -
MobileNet V2 (Sandler et al., 2018) 0.2628 0.2517 0.2635 0.2870 - - - -
ResNeXt-50 (S. Xie et al., 2017) 0.2774 0.2607 0.2904 0.2940 - - - -
MNASNet (Tan et al., 2019) 0.2612 0.2422 0.2669 0.2699 - - - -

Table 4.2: The averaged PCC on StudyForrest dataset for the pairs of FBNs
and the filters on CNN models pre-trained on ImageNet dataset. The PCC
value with a * marker indicates that the corresponding pairs (less than 10) are
not statistically significant(p-value≤ 0.05), otherwise, it is significant.

Methods Run #1 Run #2 Run #3 Run #4 Run #5 Run #6 Run #7 Run #8

AlexNet (Krizhevsky et al., 2012) 0.1369* 0.1659* 0.1712 0.1540 0.1609 0.1724 0.1590 0.1961
VGG-16 (Simonyan & Zisserman, 2014) 0.1398* 0.1836 0.1822 0.1777 0.1752 0.1839 0.1732 0.2112
ResNet-18 (K. He et al., 2016b) 0.1474* 0.1854 0.1851 0.1708 0.1821 0.1840 0.1823 0.2134
ResNet-50 (K. He et al., 2016b) 0.1584 0.2075 0.2111 0.1956 0.1983 0.2113 0.1983 0.2344
DenseNet-161 (G. Huang et al., 2017) 0.1673 0.2143 0.2154 0.1985 0.2049 0.2158 0.2049 0.2497
Inception V3 (Szegedy et al., 2016) 0.1617 0.2015 0.2070 0.1967 0.1979 0.2024 0.1956 0.2371
ShuffleNet V2 (Ma et al., 2018) 0.1488 0.1922 0.2004 0.1900 0.1898 0.1986 0.1920 0.2324
MobileNet V2 (Sandler et al., 2018) 0.1499 0.1961 0.2001 0.1898 0.1906 0.1958 0.1929 0.2350
ResNeXt-50 (S. Xie et al., 2017) 0.1624 0.2083 0.2046 0.1886 0.1982 0.2070 0.1936 0.2365
MNASNet (Tan et al., 2019) 0.1553 0.2036 0.2015 0.1907 0.2013 0.2029 0.1974 0.2387

dataset. However, it is still found that the correlations are significant for almost
all models and runs of fMRI except the AlexNet, VGG-16 and ResNet-18 on
run #1 and/or run #2. Overall, these results consistently suggest that there exists
a significant correlation between the convolutional filters in CNN model and
FBNs in the human brain.

Correlations with different CNN Layers. We further assess the correla-
tions of FBNs with convolutional filters in different layers of 4 different CNN
models. The PCC values averaged over all FBN-filter pairs in each layer are re-
ported in Table 4.3. We observe that the correlations are significant for pairs
in the last two blocks/layers while some of them in the first two blocks/layers
are not significant. The PCC values in different layers also show a trend that it
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increases and reaches a peak at the third layer, which is in line with the literature
study (Yamins et al., 2014) reporting that the model’s intermediate layers are
highly predictive of the brain’s neural responses.

Table 4.3: The averaged PCC for the pairs of FBNs and filters in different con-
volutional layers of CNN model and the ratio of NOT statistically significant
pairs. The colors red and blue denote the highest and the second-highest PCC
value among different layers, respectively.

Methods Layer Run 1 Run 2 Run 3 Run 4
PCC Ratio PCC Ratio PCC Ratio PCC Ratio

ResNet-18 (K. He et al., 2016b)

Block #1 0.2401 1/64 0.2012 2/64 0.2189 6/64 0.2286 0/64
Block #2 0.2534 0/64 0.2150 0/64 0.2513 1/64 0.2480 0/64
Block #3 0.2743 0/64 0.2483 0/64 0.2821 0/64 0.2791 0/64
Block #4 0.2415 0/64 0.2267 0/64 0.2516 0/64 0.2530 0/64

ResNet-50 (K. He et al., 2016b)

Block #1 0.2607 0/64 0.2276 0/64 0.2664 0/64 0.2504 0/64
Block #2 0.2876 0/64 0.2498 0/64 0.2851 0/64 0.2768 0/64
Block #3 0.2962 0/64 0.2684 0/64 0.3059 0/64 0.3060 0/64
Block #4 0.2862 0/64 0.2660 0/64 0.2942 0/64 0.3022 0/64

ShuffleNet V2 (Ma et al., 2018)

Stage #2 0.2634 0/64 0.2226 0/64 0.2511 1/64 0.2460 0/64
Stage #3 0.2633 0/64 0.2365 0/64 0.2640 0/64 0.2647 0/64
Stage #4 0.2749 0/64 0.2511 0/64 0.2861 0/64 0.2968 0/64
Conv #5 0.2663 0/64 0.2515 0/64 0.2742 0/64 0.2831 0/64

ResNeXt-50 (S. Xie et al., 2017)

Block #1 0.2633 0/64 0.2280 0/64 0.2525 2/64 0.2478 0/64
Block #2 0.2803 0/64 0.2501 0/64 0.2840 0/64 0.2769 0/64
Block #3 0.2954 0/64 0.2635 0/64 0.3026 0/64 0.3030 0/64
Block #4 0.2774 0/64 0.2607 0/64 0.2904 0/64 0.2940 0/64

4.4.2 PCC Variance in Different CNN Models
From Table 4.1 and Table 4.2, we can observe that the ResNet-50 and DenseNet-
161 have higher PCC values than the VGG-16 and ResNet-18, which suggests
that the PCC values may have correlations with the model’s representation abil-
ity and performance. To verify this hypothesis, we conduct linear regression to
model the relationship between the PCC values and the CNN model’s top-1
accuracy on ImageNet classification task. The results are reported in Figure 4.3.
We found that the relationship can be represented well by the linear model with
R2 larger than 0.7 and p-value smaller than 0.05 across all 4 runs of HCP 7T
movie-watching task fMRI dataset. This result indicates that if the visual repre-
sentations of CNN models are more similar to those of human brain function,
its performance on image classification tasks will be better. This is consistent
with the study (You et al., 2020) finding that the top-performing ANNs have a
graph structure similar to those of BNNs.
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Figure 4.3: The linear regression modeling the relationship between PCC and
CNN’s top-1 image classification accuracy on ImageNet. Different CNN mod-
els are marked as circle with different color.

4.4.3 Visualizations of the Cross-Annotation
We conduct the cross-annotation based on Eq. (4.2) to pair each FBN with a
filter at the last convolutional layer of ResNet-18 and visualize several sample
pairs in Figure 4.4. The left panel in Figure 4.4 shows the FBNs to be paired and
the corresponding semantic description from fMRI meta-analysis. The right
panel shows the most activated images obtained by (Bau et al., 2017) from the
movie frame sequence of paired CNN filters. The filter’s corresponding seman-
tic description and representative images are also demonstrated. In Figure 4.4,
we found some interesting connections between the semantic description of
the paired FBN and filters. For example, the description of FBN #25 is related
to place and navigation, while the paired filters are labeled as rock and the repre-
sentative images are related to some natural scenes. Such observation is obvious
on some pairs, which is congruent with the results in Section 4.4.1. We provided
more samples in supplementary materials for comparison.

4.4.4 Ablation Studies of fMRI Embedding Framework
We conduct the ablation studies for our fMRI embedding framework on three
variants: a) encoder/decoder only has one linear transformation (LT) layer;
b) encoder/decoder has one LT layer and two LSTM layers with tanh activa-
tion function; c) encoder/decoder has one LT layer followed by multi-head self-
attention module. We measure the similarity of temporal activations of FBN-
filter pairs identified by PCC. The averaged values for different metrics over all
pairs and runs are reported in Table 4.4. Overall, the similarity of LT+LSTM
and LT+MSA is larger than the linear transformation baseline. The LT+LSTM
and LT+MSA have comparable performances in terms of similarity. However,
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Figure 4.4: The visualization of FBN-Filter pairs obtained from our model.
The left panel is the FBNs to be paired and semantic description from fMRI
meta-analysis. The middle panel shows the synchronized activations from FBN
and paired CNN filter. The right panel shows the most activated frames and the
corresponding semantic description and filter’s representative images in (Bau
et al., 2017).

the LT+MSA has better FBNs quality. We provide the details in the supplemen-
tary materials. The results and analysis of our work are based on LT+MSA.

4.5 Conclusion
In this section, we proposed a novel computational framework, Sync-ACT,
to couple the visual representation spaces and semantics between ANNs and
BNNs in the human brain by synchronizing their activations to visual stimuli.
We found a significant correlation in the semantics between the visual repre-
sentations in CNNs and those in the human brain. Also, CNN’s visual repre-
sentation similarity to the human brain is closely related to its performance on
the image classification tasks. In the future, our Sync-ACT model can be easily
generalized to other naturalistic stimuli such as natural language and/or audio
to explore the connection of the model’s semantic space with the one in the
human brain. Overall, our study introduces a general and effective paradigm to
couple the ANNs and BNNs and provides novel insight into their connections.
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Table 4.4: The comparison of temporal activations similarity of FBN-filter pairs
identified by PCC. The colors red and blue denote the best and the second-best
results, respectively. Abbreviations: LT: linear transformation; MSA: multi-
head self-attention.

Methods MAE↓ MSE↓ RMSE↓ DTW↓ PCC↑

a) LT 0.9781 1.5309 1.2360 18.0688 0.2346
b) LT+LSTM 0.9392 1.4411 1.1986 18.4683 0.2794
c) LT+MSA 0.9658 1.5136 1.2289 18.7328 0.2432

4.6 Discussions
Interpretability. The proposed Sync-ACT framework matches and pairs the
neurons in ANNs and BNNs, based on which the cross-annotation is per-
formed to annotate the neurons in one domain with the semantic description
in the other. The Sync-ACT framework opens a new paradigm for the inter-
pretability studies of ANN by using the prior knowledge in neuroscience to
interpret ANNs. In parallel, we can understand the dynamic function of FBNs
with visual and language descriptions from the paired ANNs’ neurons in a di-
rect way, providing a novel way for unveiling the complex brain function.

Neural architecture search (NAS). One important finding of this study
is that the performance of CNNs on image classification tasks is closely re-
lated to its visual representation similarity with the human brain. In the lit-
erature (Elsken et al., 2019; H. Liu et al., 2018; Zoph & Le, 2016), the typical
evaluation criteria for NAS is the performance of the searched neural network
on a specific task. Our Sync-ACT framework provides new inspirations: the
ANN’s representation similarity to the human brain could be a reliable and
meaningful criterion for NAS and thus guide the NAS approaches to improve
interpretability and performance. Our Sync-ACT framework contributes to
the emerging field of brain-inspired AI, i.e., using domain knowledge of brain
science to inspire and guide the design of AI models.

Limitations. Our approach has several potential limitations. a) We use the
maximum value in the feature map to represent the activation degree of convolu-
tional filters. Currently, how to characterize the activation degree of filters is still
an open question. b) The semantics descriptions from meta-analysis (Yarkoni
et al., 2011) and (Bau et al., 2017) for neurons in FBNs and CNNs are coarse-
grained and ad-hoc (e.g., Figure 4.4, unit #440, Bank Vault) due to their intrinsic
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limitations. More fine-grained descriptions can be explored and adopted in the
future. c) We mainly focus on CNNs for image classification. CNNs and ViTs
for other tasks should be investigated in the future.
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Chapter 5

Exploring Human Visual
Attention

5.1 Eye-gaze Guided Vision Transformer

5.1.1 Introduction
Deep neural networks have been widely used and achieved remarkable successes
in many fields including natural language processing, computer vision, and
medical image analysis (LeCun et al., 2015), etc. Recent studies suggest that
deep neural networks may be prone to learn the shortcut knowledge (Geirhos
et al., 2020) such as the spurious correlations between the background and
objects in the image (e.g., cows usually stand on the grass land) rather than the
intended relevant features. Recent studies (X. Luo et al., 2021; Xiao et al., 2021)
revealed that background is a harmful shortcut which drastically impacts the
deep learning model’s performance in a negative way. The harmful shortcut
knowledge, on the one hand, may not be able to generalize to new domains and
tasks, and thus degenerates the performance in some scenarios such as few-shot
learning (FSL). On the other hand, it jeopardizes the interpretability of the
model and prevents humans from validating its underlying reasoning which is
crucial in many applications, e.g., disease diagnosis with medical images.

Medical image analysis is a representative scenario where the harmful short-
cut learning should be rectified because the generalizability and interpretability
are highly desired and required, considering the scarcity of the clinical data (e.g.,
MR images with pathology) and the importance of reliability and transparency
in clinical applications. The literature has already reported the existence of
shortcuts in medical image analysis (L. Luo et al., 2021; Zech et al., 2018). For
example, in (Zech et al., 2018), convolutional neural networks (CNNs) were em-
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ployed to detect pneumonia and performed well with extremely high accuracy
on the chest X-rays from a group of hospitals. However, it failed to general-
ize to the X-rays from other external hospitals with much lower performance:
CNNs unexpectedly learned to detect a hospital-specific metal token at the cor-
ner of scans and utilized it for disease prediction indirectly (Geirhos et al., 2020;
Zech et al., 2018). To motivate the work in this section, in Figure 5.1, we also
visualize four samples of harmful shortcuts learned by vision transformer (ViT)
(Dosovitskiy et al., 2020) model which are the medical images’ background.

To solve this problem, one possible way is to enforce the model to concen-
trate on task-related objects or features rather than the harmful shortcuts by
using prior knowledge (X. Luo et al., 2021). For example, the bounding box
and voxel/pixel-level segmentation mask of medical image directly indicate the
location of the lesion on which the model should focus. However, accurate
manual annotation/segmentation requires experienced radiologists and the de-
votion of their additional time, which is costly and not easily accessible. On
the other hand, radiologists read dozens of patients’ images and write diagno-
sis reports on average in their routine work. This means that there is a huge
amount of valuable data that is not collected and fully exploited. For example,
the eye-gaze information can indicate the regions-of-interest (ROIs) of radiolo-
gists, which might be highly related to potential pathology and is easily accessi-
ble by installing the eye-tracker. Such domain knowledge embedded in ROIs
of an expert is naturally interpretable and generalizable because it reaches the
professional standard and has been validated and widely used in longstanding
clinical practice. Some recent deep learning studies have already integrated eye-
gaze of radiologists to improve the performance of medical image applications
(Karargyris et al., 2021; S. Wang et al., 2022), suggesting the potential usage
and convenience of using eye-gaze rather than precious annotation in avoiding
harmful shortcut learning.

Inspired by this, we propose an intuitive and effective method to infuse the
domain knowledge of an expert, i.e., eye-gaze, with the training of deep learning
models for rectifying the harmful shortcut learning in medical image analysis.
Specifically, based on vision transformer (ViT) (Dosovitskiy et al., 2020), we
introduce a novel eye-gaze-guided vision transformer (EG-ViT) model which
applies an eye-gaze mask to input image patches to screen out those irrelevant
to radiologist’s visual attention and guide the model to focus on patches that
are highly related to potential pathology during the model training/fine-tuning.
Meanwhile, a residual connection between the unmasked input and the last
ViT encoder layer is intentionally added to maintain the interactions and rela-
tionships of all patches. In the testing stage, the mask operation and residual
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Figure 5.1: Illustration of the shortcuts learned by ViT model. The first row
is the enhanced source image from the public INbreast dataset. The second
row corresponds to the model’s attention derived by Grad-CAM without the
guidance of eye-gaze. It is observed that the model focuses on background
shortcuts (yellow arrows) rather than the breast tissues. The third row is the
Grad-CAM from our eye-gaze-guided vision transformer (EG-ViT) model. The
regions-of-interest (ROIs) of EG-ViT are denoted by white arrows.

connection are removed to maintain the original structure of ViT model. In
this way, the EG-ViT model infuses the expert’s domain knowledge to enforce
the model to avoid learning harmful shortcut while takes the power of data-
intensive ViT model in a more effective manner. We evaluate the proposed
EG-ViT on disease diagnosis with two publicly available datasets, namely, IN-
breast (I. Moreira et al., 2012) and SIIM-ACR (“SIIM-ACR Pneumothorax Seg-
mentation”, 2020). Our extensive experiments demonstrate that the proposed
EG-ViT model effectively avoids the harmful shortcut learning (Figure 5.1). The
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diagnostic accuracy is also improved, compared with CNN (about 4%) and ViT
(about 2%) baselines with limited data.

In general, the main contributions of our work are as follows:

1. We propose a novel EG-ViT model to infuse the human expert’s prior
knowledge to guide the model focusing on the region with potential
pathology, avoiding the harmful shortcut learning and improving mod-
els’ interpretability with much higher performance.

2. The proposed EG-ViT model only includes an additional mask operation
and a residual connection compared with vanilla ViT, thus allowing the
inheritance of the parameters from a pre-trained ViT model without any
additional cost.

3. We introduce a novel evaluation metric for quantifying the degree of
shortcuts in models and measuring the improvement in rectifying the
shortcut learning, which can also be generalized to other scenarios and
tasks.

5.1.2 Related Works

Shortcut Learning

Deep neural networks often solve the task-specific problem, e.g., image classi-
fication, by learning the shortcuts such as the correlations between cows and
grass instead of the intended solution, e.g., the features from cows (Geirhos
et al., 2020). Recently, the shortcut in deep learning models gains increasing
attention across the deep learning field from computer vision (CV) (Dancette
et al., 2021; Minderer et al., 2020; Xiao et al., 2021), natural language process-
ing (NLP) (McCoy et al., 2019; Niven & Kao, 2019) to reinforcement learning
(Amodei et al., 2016). Various methods have been devised to mitigate the neg-
ative effects of shortcuts (Du et al., 2021; X. Luo et al., 2021; X. Shen & Lam,
2021). For example, in (X. Luo et al., 2021), a framework named COSOC was
proposed to tackle this shortcut problem by extracting the foreground objects
in images to get rid of background-related shortcuts based on a contrastive learn-
ing approach. (Du et al., 2021) proposed a measurement for quantifying the
shortcut degree, with which a shortcut mitigation framework was introduced
for natural language understanding (NLU). (X. Shen & Lam, 2021) forced the
network to learn the necessary features for all the words in the input to alleviate
the shortcut learning problem in supervised Paraphrase Identification (PI).

In medical image analysis, shortcut learning not only has a negative impact
on the models’ generalizability, e.g, the same type of medical images the model
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performance often varies greatly between images from different vendors (C.
Chen et al., 2020), but also degenerates the interpretability and the reliability of
the applications. Recently, more studies begin to scrutinise the shortcut learn-
ing in different scenarios of medical imaging applications. For example, (L. Luo
et al., 2021) demonstrated that models for the localization task are less prone to
shortcut learning than models for the classification task, because the data anno-
tation for the localization task is more fine-grained. (Mahapatra et al., 2022) mit-
igated the shortcut learning in medical image classification and segmentation
by introducing an interpretability-guided inductive bias loss function which
is composed of the class-distinctiveness and spatial coherent loss between the
attention maps. (Nauta et al., 2022) made the model more focusing on the
lesion area by replacing some image patches of the original image.

However, the aforementioned methods still need sufficient samples (more
than 10,000) and even with fine-grained annotations such as pixel-level segmen-
tation mask. In this section, we rectify possible shortcut learning on small-scale
medical image datasets (around 1,000) by infusing the accessible coarse eye-gaze
data from radiologists.

Eye Tracking in Radiology

Visual diagnosis plays a central role in radiology, and eye-tracking procedures
have proven to be a valuable tool in the study of visual diagnostic processes in ra-
diology for decades (Krupinski, 2010). A group of early studies have found that
experts can quickly locate potential lesions with a global search and use a larger
functional field of view and more conceptual knowledge than novices to find
abnormalities (Drew et al., 2013; Kundel et al., 2007; Swensson, 1980). (Kok
& Jarodzka, 2017) showed that experts searched normal CXR more systemati-
cally than novices. With the rise of deep learning in computer aided diagnosis
(CAD), the integration of radiologists’ eye movement into deep learning mod-
els becomes more popular. For example, (Mall et al., 2018) modeled the visual
search behavior of radiologists and their interpretation of mammography with
CNNs. Furthermore, they (Mall et al., 2019) investigated the relationship be-
tween human visual attention and CNNs in finding lesions in mammography.
Recently, (Karargyris et al., 2021) developed a dataset with CXR, eye-gaze, and
text diagnosis reports. They proposed a multi-task framework which predicted
eye-gaze and diagnosed diseases at the same time. (S. Wang et al., 2022) used
radiologists’ visual attention to supervise the CNN’s attention via an attention
consistency module, thus improving the diagnosis performance in osteoarthri-
tis assessment of knee X-ray images.
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Despite the successes of combining the radiologists’ eye-gaze information
with CNNs, how to integrate eye-gaze information with powerful ViT model
to further boost its performance in medical imaging applications still needs
investigations.

Vision Transformer

Since ViT (Dosovitskiy et al., 2020) was introduced, transformer structure has
been receiving increasing attention in the computer vision community (K. Han
et al., 2022). Several effective strategies have been proposed to improve model
performance and efficiency in image classification, such as knowledge distilla-
tion in DeiT (Touvron, Cord, Douze, et al., 2021), depth-wise convolution in
CeiT (Yuan et al., 2021), shifted windows in Swin Transformer (Z. Liu et al.,
2021b), and tree-like structure in NesT (Z. Zhang et al., 2021). However, the
data-intensive characteristic of ViT makes it challenging to adapt to the target
domain quickly with limited amount of data. To address this problem, sev-
eral methods with distillation approach (Touvron, Cord, Douze, et al., 2021),
smoothing the loss landscapes at convergence (X. Chen et al., 2021), incorpo-
rating CNNs like CCT (Hassani et al., 2021) and locality information (Y. Li
et al., 2021) have been proposed to reduce the demand for extensive training
data to a certain extent. Nonetheless, fast adaption to the target domain still
requires more innovative and effective methods to further reduce the demand
for training data.

In medical image analysis, for models trained on large datasets, ViT-style
models have been explored in CAD tasks on the chest X-ray (CXR) images
(Shamshad et al., 2022). For example, (Krishnan & Krishnan, 2021) and (Park
et al., 2021) utilize ViT-based models to achieve higher COVID-19 classification
accuracy through CXR images. COVID-Transformer (Shome et al., 2021) and
xViTCOS (Mondal et al., 2021) have been proposed to improve classification
accuracy and focus on diagnosis-related regions. (Bhattacharya et al., 2022) com-
bined the radiologists’ eye gaze information using a transformer model based on
the teacher-student approach to effectively improve the diagnostic performance
of chest X-ray disease. However, the aforementioned methods still requires large
amount of training data. In the scenarios with limited amount of data, it is more
likely to trigger shortcut learning by exploiting the redundant information such
as backgrounds, which leads to serious consequences. In addition, the small
scale of medical image datasets also limits the performance of ViT. In this sec-
tion, we guide the transformer model to focus on the important regions directly
by introducing the radiologists’ eye-gaze as auxiliary information and demon-
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strate the vanilla ViT model can handle the diagnosis task even on small scale
datasets.

5.1.3 Method
The main idea of our EG-ViT model is to utilize the eye-gaze data to mask the
patches out of radiologists ROIs for ViT model. We first illustrate the collection
of eye-gaze data and generation of eye-gaze heatmap in Section 5.1.3. Then, we
introduce the generation of eye-gaze mask used in EG-ViT model in Section 5.1.3.
Finally, we elaborate the architecture of our EG-ViT model.

Eye-Gaze Data Collection and Heatmap

Compared with fine-grained annotations such as pixel-level segmentation masks,
coarse eye-gaze data is much more accessible during the radiologists routine
works. However, we are still lacking a eye-gaze collection systems specially de-
signed for radiologists for the diagnosis with the minimal interruption. To this
end, we design a new collection system specifically for capturing eye-gaze data
from radiologists. Specifically, we use Tobii pro Nano as the hardware platform
to collect eye-gaze data. In addition, we develop a software system that support
radiologists to manipulate images freely while collecting the eye-gaze and mouse
data simultaneously. To the best of our knowledge, this is the first eye-gaze col-
lection software that supports free image adjustment. More details about the
collection system can be found in the project page.

After the collection of the raw eye-gaze data, we apply two pre-processing
steps. The first step is to remove the noises. As a result of blinking or turning
the head, the radiologist’s eye-gaze points can fall into the areas outside of the
breast tissue (such as the black background in a mammogram image), which
will be filtered out. The second step is to extract the effective fixation points.
Eye movements mainly consist of fixation and saccade, where saccade is a rapid
movement process between two gaze points and thus does not reflect the re-
gion of attention. So we filter the saccade part and only keep the fixations of
radiologists ("Processed Gaze Points" in Figure 5.3) by using the well-established
I2MC method (Nyström & Holmqvist, 2010). Finally, the eye-gaze heatmap
("Gaze Heatmap" in Figure 5.3) of whole image is generated by smoothing the
binary eye-gaze points map through a two-dimensional Gaussian kernel with
the radius of 150 pixels and the sigma 25.

Generation of Eye-Gaze Guided Mask

Image Cropping Strategy
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Medical images often have a large resolution, for example, the INbreast (I.
Moreira et al., 2012) dataset used in this study consists of images with a size of
3000 × 4000 pixels. Direct utilization of images with the original resolution
requires huge amount of computational resources which is infeasible in practice
especially for model training. However, compressing the whole image with a
lower resolution can cause the loss of details and even miss smaller lesions. We
introduce a strategy to crop the original image into image patches and use the
cropped image patches as samples for training and testing. Specifically, in the
training stage, we adopt random cropping to generate image patches for each
image as well as the corresponding heatmap. If a cropped image contains the
lesion area, we assign a corresponding label for it. Then, we balance the number
of cropped images with different labels. In the testing stage, we apply a large
view sliding window to crop the whole image as patches with overlap for model
evaluation.

Eye-Gaze Guided Mask With the cropped eye-gaze heatmap as in pre-
vious section, we can generate the eye-gaze guided mask for the correspond-
ing cropped image during the model training. We introduce two types of eye-
gaze guided masks: Focused Eye-Gaze Mask and Separated Eye-Gaze Mask. As
shown in Figure 5.2, the focused eye-gaze mask is defined as a rectangular binary
mask centered at the pixel with the largest value in heatmap. The separated eye-
gaze mask is obtained by selecting a certain percentage of pixels according to the
values in heatmap in a descending order and setting the selected positions of
the mask to 1. The focused mask only keeps the greatest interest of radiologists
while the separated mask tends to include all sub-regions of radiologists’ inter-
est. If the cropped image does not have eye-gaze data, mask is not used in the
training process. For comparison, we also include a random mask and generate
a self-supervised mask based on model’s own attention by using Grad-CAM
(Selvaraju et al., 2017) method.

Eye-Gaze-Guided Vision Transformer

Compared with natural images, medical images usually have a higher resolution
while pathology such as lesions locates in a small region with a noisy background,
which makes model prone to learning background shortcuts rather than the
intended meaningful features. To avoid learning harmful shortcuts, an intuitive
idea is to guide the model to focus on the regions that are potentially related
to pathology based on some prior knowledge. As discussed in Section 5.1.2, the
visual attention from a radiologist during the diagnosis can serve as such prior
knowledge as the guidance for the model training. We implement this idea by
introducing an eye-gaze guided mask on input image patches of ViT model to
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Focused Mask Separated Mask

ROI Image

Transformer 
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Grad-CAM Mask Random Mask

Patch 

Embedding

Figure 5.2: Illustration of different masks: the focused/separated eye-gaze masks
are generated by using eye-gaze heatmap; the grad-cam mask is generated by
binarizing the Grad-CAM of the model; random mask is also included for com-
parison. These masks are used to mask the corresponding patch embedding,
which is the input of the encoder layer in EG-ViT model.

screen out the background patches. The overall architecture of EG-ViT model
is shown in Figure 5.3. Specifically, we first pre-process the collected radiologists’
eye-gaze data. Then, we generate the eye-gaze heatmap and randomly crop the
original image and corresponding heatmap into a smaller size for model train-
ing. After the patch embedding, we mask out the regions out of radiologists’
ROI based on the mask generated by heatmap to make the network only focus
on specific regions (i.e, ROI of radiologists). Meanwhile, to maintain the in-
formation and interaction of all patches, a residual connection is introduced in
the last layer of the EG-ViT model.

Eye-Gaze Guided Mask Operation With the eye-gaze guided mask, we can
perform a mask operation on the input patches of the ViT model. Specifically,
the input cropped image can be divided into N patches where N = (H ×
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Figure 5.3: The architecture of the proposed EG-ViT model. The eye-gaze
points are collected and pre-processed to generate the eye-gaze heatmap. Then,
the original image and the corresponding heatmap are randomly cropped with
a smaller size. The cropped image is divided into several image patches for
patch embedding. The eye-gaze mask is then applied to screen out the patches
that may be unrelated to pathology and radiologists’ interest. The masked im-
age patches (green rectangle) are treated as input to the transformer encoder
layer. Note that to maintain the information of all patches including those
been masked, we add an additional residual connection (highlighted by the red
arrow) from the input and the last encoder layer.

W )/P 2 is the patch number, H and W are the height and weight of images, P
is the patch size. The ViT model maps the images patches xi

p (i = 1, 2, · · · ,N)
to D dimension patch embedding z0 ∈ R(N+1)×D (contacted with a class
token) with a trainable linear projection E ∈ RP 2C×D where C is the number
of channels of the images:

z0 = [xclass;x
1
pE;x2

pE; · · · ;xN
p E] + Epos (5.1)

where z00 = xclass ∈ RN is the class token for classification and Epos ∈
R(N+1)×D is the learnable position embedding. Then, the embedding of the
input image patch z0 is masked as:

z̃0 = [z00 ; z
1:N
0 ⊙mask] (5.2)

where mask ∈ RN is the binary eye-gaze mask detailed in Section 5.1.3 and
z1:N0 = [x1

pE;x2
pE; · · · ;xN

p E] is the embedding of image patches. The masked
patch embedding z̃0 is then input into the first layer of ViT encoder, forcing
the model only exploiting the patches with potential pathology.
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Residual Connections Preserving Global Features For the EG-ViT model,
the forward propagation of each transformer encoder layer can be written as:

z̃′l = MSA(LN(z̃l−1)) + z̃l−1 (5.3)
z̃l = MLP (LN(z̃′l)) + z̃′l (5.4)

where z̃′l is the l-th layer’s embedding of masked patches. MSA, MLP , and
LN are the multiheaded self-attention, multilayer perceptron, and layer norm
in each block, respectively.

However, masking some patches in the first layer results in a risk of missing
useful background information and positional relationships among all patches.
So we add the initial patch embedding to the last layer’s embedding through
a residual connection to maintain the information from all patches and the
correlations among them. Therefore, the input of the last transformer encoder
layer ẑil−1 (i=0,1,2 · · · N) can be written as:

ẑil−1 =


z̃0l−1, if i = 0

zi0, if maski = 0

z̃il−1 + zi0, otherwise

(5.5)

where z̃l−1 and ẑl−1 are the embeddings before and after additive operations.
Pre-training and Fine-tuning Style As mentioned in Section 5.1.2, al-

though the ViT model has a strong feature representation ability, it relies heav-
ily on large amount of training data. However, medical images are often limited
and the ViT models trained from scratch on small-scale medical images datasets
often perform poorly. So instead of training from scratch, we initialize the EG-
ViT parameters with the weights pre-trained on ImageNet-1K (Russakovsky et
al., 2015) and fine-tune on the small-scale medical image datasets. It is noted that
EG-ViT does not introduce any addition parameters to the vanilla ViT model,
thus allowing our model to directly inherit the parameters of the pre-trained
models. In this way, the time required for model training is greatly reduced
while the performance can be also guaranteed. Notably, the computational
overhead of the transformer model is related to the number of patches, so by
adding a mask, the resources for training EG-ViT model are further reduced.

5.1.4 Experiments
In this section, we conduct detailed experiments to demonstrate the effective-
ness and advantages of EG-ViT model in rectifying the shortcut learning and
improving the accuracy in diseases diagnosis. We firstly introduce the datasets
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used in this study for training and evaluation (Section 5.1.4) and then propose
a new metric for quantifying the degree of shortcut learning in disease diag-
nosis (Section 5.1.4). We demonstrate the performance of EG-ViT model in
shortcut rectification in Section 5.1.4. In Section 5.1.4, we compare the EG-ViT
model with several baselines with and without eye-gaze data in disease diag-
nosis. Finally, we evaluate the effects of different masks for EG-ViT model in
Section 5.1.4.

Datasets

To evaluate the proposed EG-ViT model, we adopt two different public clinical
datasets with approval: INbreast (I. Moreira et al., 2012) and SIIM-ACR (Saab
et al., 2021; “SIIM-ACR Pneumothorax Segmentation”, 2020). The INbreast
dataset (I. Moreira et al., 2012) includes 410 full-field digital mammography
images which were collected during low-dose X-ray irradiation of the breast.
We invited a radiologist with 10 years of experience to diagnose the images in
this dataset and collected the complete eye movement data using the aforemen-
tioned collection system. According to BI-RADS (Liberman & Menell, 2002)
assessment of masses, these images can be classified into three groups: normal
(302 cases), benign (37 cases), and malignant (71 cases), respectively. As for SIIM-
ACR dataset (“SIIM-ACR Pneumothorax Segmentation”, 2020), (Saab et al.,
2021) randomly selected 1,170 images with 268 cases of Pneumothorax and col-
lected gaze data from three experienced radiologists. More details refer to (Saab
et al., 2021).

For INbreast dataset (I. Moreira et al., 2012), we apply the following three
experimental setups. 1). In the training stage, we adopt a random cropping
strategy instead of sliding window in order to ensure the balance and diversity of
different samples. Specifically, we first randomly split the patients into 80% and
20% as training and testing datasets. To balance the training dataset, we perform
several random cropping as well as the contrast-related augmentation for each
image. Finally, our training set consists of 482 normal samples, 512 benign mass
samples, and 472 malignant mass samples. 2). In the testing phase, the images of
the remaining 20% patients were cropped by using a sliding window as described
in Section 5.1.3. The windows size is set as 1024 and the stride is set as the half of
windows size, i.e., 512. For the SIIM-ACR dataset (“SIIM-ACR Pneumothorax
Segmentation”, 2020), the size of the original images are all 1024 × 1024, so
we directly use the original image as the input for the model.
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Evaluation Metrics

For the evaluation of model’s performance in disease diagnosis, we report the
accuracy (ACC), area under curve (AUC), and F1-score (F1) on testing dataset.
For evaluating the performance in rectifying the shortcut learning, we adopt the
Structure Similarity Index Measure (Z. Wang et al., 2004) (SSIM) to assess the
similarity between model’s attention and the radiologists’ attention heatmap
during the testing stage. In addition, we propose a new metric for assessing the
degree of shortcut learning. As shown in Figure 5.4, we first generate model’s
attention heatmap by using Grad-CAM (Selvaraju et al., 2017). Then we select
the region with highest values in heatmap and make an intersection with the
mask region of the lesion AM to get AU . Next, we set the single sample eval-
uation score Omm = AU/AM . If Omm is greater than 0.9, it is counted as 1,
if Omm is between 0.3 and 0.9, it is counted as 0.5, and Omm below 0.3 is not
counted. Finally, the average counted score is used as the measure score. Note
that the Omm here is the score generated by the model’s own attention during
the testing phase. For comparison, we also compute the radiologist’s eye gaze
heatmap as described above and finally obtain a score of 0.53 in the INbreast
(I. Moreira et al., 2012) dataset and 0.56 in the SIIM-ACR (“SIIM-ACR Pneu-
mothorax Segmentation”, 2020) dataset. Therefore, Omm

0.53 and Omm
0.56 represent

a standard for INbreast and SIIM-ACR, respectively.

Model’s Attention

Lesion Mask

Overlay

Unite Area : 𝐴𝑈

Unite Area

Mask Area: 𝐴𝑀

Figure 5.4: Generation of unite area between model’s attention heatmap and
the lesion area.
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Evaluation of Shortcut Rectification
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Figure 5.5: (a) Harmful shortcut learning rectified by eye gaze guidance. (b)
Useful feature learning enhanced by eye gaze guidance. In each panel of (a) and
(b), the first row is the enhanced source image, the second row is the attention
map of ViT obtained using Grad-CAM, and the third row is the attention map
of EG-ViT. Each column corresponds to the same example.

Table 5.1: Comparison results with other baselines with eye-gaze (the bottom
half) and without eye-gaze (the top half) in terms of Accuracy, F1, and AUC
scores. The number of parameters in each model is also reported. And the
SSIM and Omm are our metrics for shortcut learning evaluation. Red and blue
denote the best and the second-best results, respectively.

Method Params INbreast SIIM-ACR

Acc. ↑ AUC ↑ F1 ↑ SSIM ↑ Omm
0.53 ↑ Acc. ↑ AUC ↑ F1 ↑ SSIM ↑ Omm

0.56 ↑

ResNet-18 (K. He et al., 2016a) 11M 87.84 83.73 86.28 0.283 0.50 82.40 68.33 81.33 0.161 0.28
ResNet-50 (K. He et al., 2016a) 24M 89.19 89.62 87.59 0.276 0.40 84.80 71.97 83.88 0.153 0.14
ResNet-101 (K. He et al., 2016a) 43M 90.54 89.85 87.73 0.302 0.17 84.80 70.55 83.54 0.152 0.28

EfficientNet b0 (Tan & Le, 2019) 5.3M 87.84 79.59 86.65 0.258 0.43 80.40 70.65 79.31 0.147 0.22
EfficientNet b4 (Tan & Le, 2019) 19M 90.54 89.08 87.71 0.390 0.13 81.00 71.14 79.57 0.196 0.13
EfficientNet b7 (Tan & Le, 2019) 66M 91.45 85.79 88.73 0.341 0.27 83.20 72.12 81.81 0.215 0.19

SwinT v1 (Z. Liu et al., 2021a) 49M 91.80 88.10 90.27 0.227 0.23 85.20 73.64 84.52 0.149 0.06
ViT-S (Dosovitskiy et al., 2020) 22M 91.89 86.94 90.16 0.395 0.43 84.00 70.76 83.03 0.205 0.17

ResNet-18+Gaze (S. Wang et al., 2022) 11M 87.84 86.56 87.47 0.208 0.50 84.80 71.26 83.71 0.266 0.27
ResNet-50+Gaze (S. Wang et al., 2022) 24M 89.19 82.12 86.79 0.209 0.40 83.20 70.25 82.35 0.220 0.14
ResNet-101+Gaze (S. Wang et al., 2022) 43M 91.88 89.63 89.75 0.212 0.31 84.80 72.68 84.03 0.254 0.19

U-Net+Gaze (Karargyris et al., 2021) 6M 86.25 83.01 85.33 0.331 0.19 81.88 72.27 81.10 0.205 0.07
EG-ViT (ours) 22M 93.24 93.32 92.92 0.402 0.53 85.60 75.30 85.14 0.280 0.29

In this subsection, we evaluate the performance of EG-ViT model in recti-
fying the shortcut learning both qualitatively and quantitatively. For a better
visualization, we employ the Grad-CAM (Selvaraju et al., 2017) to generate the
model’s attention map. Grad-CAM uses gradient to calculate the attention
map of the model, which does not require any changes to the model structure
and thus can be easily deployed to the ViT model.

Figure 5.5 shows two ways of rectification by our EG-ViT model for qualita-
tive comparison. In Figure 5.5(a), the enhanced source images are shown in the
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first row. The Grad-CAM maps from fine-tuned vanilla ViT model and from
EG-ViT model are demonstrated in the second and third rows, respectively. It
is observed that without the expert’s domain knowledge, ViT model is likely to
make classification decisions from the areas that are related to unrelated regions,
such as background edge, rather than valid human tissues. But with the help of
visual attention from radiologists, the EG-ViT model focuses on disease-related
areas, such as the inner mammary region. Figure 5.5(b) demonstrates the cases
that EG-ViT model enhances its attention to be congruent with the radiolo-
gist’s attention. The regions with mass are more emphasized by EG-ViT model
compared with the vanilla ViT model, which makes the decision of the EG-ViT
model more interpretable.

In Table 5.1, we compare the results of different models with and without
eye-gaze guidance. The comparison results in terms of SSIM andOmm of ViT-S
and EG-ViT are also consistent with our observation that the attention heatmap
generated by the EG-ViT model is more similar to the radiologist’s attention
and it focuses more on the lesion area. We also manually count the number
of samples with differences in EG-ViT model’s attention map compared with
the ViT model’s attention. We found that with 64% (264 cases) of all 410 cases
have the significant differences compared with ViT in INbreast dataset. Among
them, 151 cases with shortcut learning are rectified and 113 cases are enhanced.
Overall, these experiments demonstrate that the proposed EG-ViT model can
effective rectify the shortcut learning in medical imaging classification task.

Comparison with Baselines in Disease Diagnosis

Here, we adopt ResNet (K. He et al., 2016a), Efficientnet (Tan & Le, 2019), the
vanilla Vision Transformer (Dosovitskiy et al., 2020) and Swin Transformer (Z.
Liu et al., 2021a) as baselines for comparison. The baseline models were pre-
trained on ImageNet dataset (J. Deng et al., 2009) and fine-tuned on the two
clinical datasets. The experimental results of each model are reported in the top
half of Table 5.1. It is observed that the proposed EG-ViT model outperforms
all compared baselines in terms of all evaluation metrics, with a relatively small
number of parameters. We also observed that the ViT-S is inferior to those of
CNN based models for some metrics. One possible reason is that ViT has a
larger model capacity than CNN based models while lacks some inductive bi-
ases, making it difficult to be pretrained and fine-tuned on a small dataset like
the INbreast and SIIM-ACR datasets. However, with the guidance of eye-gaze
from the radiologist, the performance of ViT-based EG-ViT model is signifi-
cantly improved, which suggests that eye-gaze serves as a strong prior guidance
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Table 5.2: Comparison of performance using different masks and different de-
gree of mask operation. Red and blue denote the best and the second-best
results, respectively.

Method INbreast SIIM-ACR

Acc. ↑ AUC ↑ F1 ↑ SSIM ↑ Omm
0.53 ↑ Acc. ↑ AUC ↑ F1 ↑ SSIM ↑ Omm

0.56 ↑

ViT-S (Dosovitskiy et al., 2020) (Baseline) 91.89 86.94 90.16 0.395 0.43 84.00 70.76 83.03 0.205 0.17
Grad-CAM Mask 90.54 88.06 88.79 0.387 0.47 84.00 71.79 83.58 0.303 0.05

Random Mask 89.92 84.53 88.94 0.365 0.33 84.20 71.51 84.06 0.232 0.03
Focused Gaze Mask 91.18 83.33 89.42 0.392 0.50 83.60 68.70 82.10 0.241 0.13

Separated Gaze Mask 93.24 93.32 92.92 0.402 0.53 85.60 75.30 85.14 0.280 0.29

80% Eye Gaze Mask 91.91 87.67 90.19 0.388 0.47 85.20 72.13 84.06 0.252 0.24
75% Eye Gaze Mask 93.24 93.32 92.92 0.402 0.53 85.60 75.30 85.14 0.280 0.29
70% Eye Gaze Mask 91.40 89.09 90.59 0.372 0.57 84.40 73.62 82.37 0.239 0.20
65% Eye Gaze Mask 92.61 91.64 90.95 0.393 0.40 85.60 73.31 83.42 0.263 0.13
60% Eye Gaze Mask 90.74 88.91 88.72 0.384 0.53 83.60 71.83 81.98 0.238 0.27

to assist the model training and reduces the potential overfitting problem in-
duced by insufficient samples.

In the bottom half of Table 5.1, we compare our EG-ViT model with two
recent studies that also utilized eye-gaze for medical image classification tasks
(Karargyris et al., 2021; S. Wang et al., 2022) . In (S. Wang et al., 2022), ResNet
(K. He et al., 2016a) was used as the classification backbone, with which visual
attention from eye-gaze data was incorporated to enhance osteoarthritis assess-
ment on knee X-ray images. (Karargyris et al., 2021) used a U-Net structure
to classify three chest diseases and output the attention map to compare with
human attention. We train these two methods for the disease diagnosis on IN-
breast (I. Moreira et al., 2012) and SIIM-ACR (“SIIM-ACR Pneumothorax
Segmentation”, 2020), respectively. As shown in Table 5.1, our proposed EG-
ViT model outperforms the compared methods on both INbreast (I. Moreira et
al., 2012) and SIIM-ACR datasets (“SIIM-ACR Pneumothorax Segmentation”,
2020) in terms of all metrics. It is also observed that using eye-gaze guidance
can improve the performance of ViT model on small datasets, which is even
beyond the CNNs with inductive biases.

Ablation Study

In this subsection, we first discuss the effect of different types of masks, and then
we investigate the degree of mask operation. The comparison of performance
using four types of masks (Figure 5.2) is shown in the top part of Table 5.2. The
first row of the table shows the results of the vanilla ViT-S (Dosovitskiy et al.,
2020) model. The second to fifth rows correspond to four types of masks. We
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found that separated mask is better than the other ones, especially for separated
eye-gaze mask. This might be attributed to the advantage of separated regions
in guiding the model to learn the relationship between features that are far apart
in larger images. We also observed that the focused gaze position mask is worse
than other masks. This may be related to the radiologists’ individualized reading
habits. If the radiologists’ gaze points are spread out and the saccade path is long,
the use of a focused position mask will ignore the features at other locations
within radiologists’ ROI.

For the separated eye-gaze mask, we also explore different degrees of mask
operation. The degree of mask operation is the percentage of the masked region
with respect to original image. Specifically, the pixels of the original image are
firstly sorted according to their values in the eye-gaze heatmap in a descending
order. Then the pixels with the top 20%, 25% or 30% value are selected as the
areas that the radiologist focuses on, which means 80%, 75%, or 70% region of
the original image are masked. In the bottom part of the Table 5.2, we demon-
strate the model’s performance with different degree of mask operation. It is
observed that using a 75% degree of mask has a better result, except for theOmm

0.53

in INbreast dataset. We also found that the metrics of the model decrease wit
a smaller degree. The performance of the model with a degree of 60% is even
inferior than the Vanilla ViT-S. A potential explanation for such observation is
that the lesion area in two datasets is relatively small, so masking out more irrel-
evant or redundant areas is an effective way to improve the performance of the
model. This is also in parallel with the findings in Masked Autoencoder (MAE)
(K. He et al., 2022) that masking a high proportion of the original image, e.g.,
75% yield a meaningful self-supervised image representation. Meanwhile, for
eye-gaze data, except for the most concerned regions, the rest of the regions may
contain redundant information that misleads the model training, resulting in a
lower performance.

Implementation Details

We fine-tune the model for 60 epochs based on a cosine decay learning rate
scheduler with an initial learning rate of10−4 and 8 warm-up epochs. An Adam
optimizer (Kingma & Ba, 2014) with a batch size of 64 are used for optimization
in our study. The cropped images are resized to 224×224 pixels. For all models
in our experiment, we use the weights pre-trained on ImageNet (J. Deng et al.,
2009) and fine-tune on each dataset above. It should be noted that our EG-ViT
model only uses eye-gaze data in the training stage. In the testing stage, we use
the vanilla ViT architecture to load the trained weights for inference. All models
were trained on an internal server with 10 NVIDIA GeForce RTX 1080Ti GPUs
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(11GB). All experiments used the PyTorch deep learning framework (Paszke et
al., 2019).

5.1.5 Conclusion
In this section, we proposed a novel eye-gaze-guided vision transformer (EG-
ViT) to infuse human expert’s intelligence and domain knowledge into the train-
ing of deep neural networks. This EG-ViT model is designed and implemented
via the combination of eye-gaze guided mask generation and mask-guided vi-
sion transformer. The experiments on the INbreast (I. Moreira et al., 2012)
and SIIM-ACR (“SIIM-ACR Pneumothorax Segmentation”, 2020) datasets
demonstrated that the radiologist’s visual attention can effectively guide the
model to concentrate on regions with potential pathology and achieve better
performance. In particular, our EG-ViT model successfully rectifies the harm-
ful shortcut learning and effectively improves the model’s interpretability.

Overall, this work contributes a feasible solution for rectifying the harm-
ful shortcuts in medial imaging application. It also provides a novel insight
towards advancing current artificial intelligence paradigms by infusing human
intelligence. Our future works include extending and evaluating the EG-ViT
framework on other types of images, e.g., natural images, with eye-tracking data
for few-shot learning problems and various downstream tasks.

5.2 Brain-inspired Adversarial Visual Attention
Network

5.2.1 Introduction
Visual attention refers to the capability of selectively focusing on part of a visual
scene rather than the entirety, given the limited processing capacity of the hu-
man visual system (Kastner & Ungerleider, 2000). Inspired by this fundamental
biological process of the brain, a large group of deep learning studies successfully
integrated attention mechanism into their deep neural networks for improving
the performance and the interpretability (Hassabis et al., 2017; Vaswani et al.,
2017). For example, in the computer vision (CV) field, a lightweight attention
module has been introduced into convolutional neural networks (CNNs) and
demonstrated consistent improvements on both image classification and object
detection tasks (Woo et al., 2018). Also, those attention based neural networks
have been employed to predict and study the human visual attention (N. Liu
et al., 2015; W. Wang & Shen, 2017). In general, bridging the gap between brain
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Figure 5.6: (a) An illustration of biased visual competition in human brain. (b)
Overview of the proposed BI-AVAN model. Inspired by the biased competition
in human brain, the attention module outputs the attention-related/neglected
contents for visual competition to decode the human visual attention from
brain activity.

science and artificial intelligence, e.g., incorporating the attention mechanism
into deep learning can not only inspire and guide the design of neural networks
with better performance/interpretability but also facilitate the understanding
of our human brain.

In previous visual attention studies, eye-tracking based technology has been
the dominant method to characterize human visual attention(H. Liu & Heyn-
derickx, 2011; N. Liu et al., 2015; Sood et al., 2020; W. Wang & Shen, 2017).
Researchers have demonstrated the close relationship between eye movements
and visual attention (S. Liu et al., 2016; Sheliga et al., 1994). However, as an
indirect way to study human visual attention, e.g., by linking the locations of
eye gaze and brain attention, eye-tracking based methods may be limited in com-
prehensively and robustly characterizing human visual attention. For instance,
some studies have reported that eye-tracking based methods may ignore the
complex selective process of human brains including visual recognition, mem-
ory retrieving, and social perception (Kastner & Ungerleider, 2000). Therefore,
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some studies turned to a more natural way by using functional magnetic reso-
nance imaging (fMRI) to directly study visual attention from brain activity (Hu
et al., 2015; Kanwisher & Wojciulik, 2000; Parhizi et al., 2018), and their results
indicate the importance and superiority of fMRI in studying visual attention.
But these studies only focus on the neuroscientific findings of visual attention,
such as which brain regions (mainly visual cortex) are related to specific visual
attention tasks (visual stimulus). Using functional brain activities to character-
ize and represent attention remains largely unexplored. Meanwhile, many brain
science studies suggested that human visual attention has a biased competition
(the top-down mechanisms of biased competition theory) (Beck & Kastner,
2009; Duncan et al., 1997). That is, the capacity of an individual’s visual system
is limited, and visual objects have to compete for the limited brain resources (Fig-
ure 5.6(a)). Hence, the attention-related objects and the neglected background
always have an adversarial relationship: at the neural level, whenever there is a
widespread maintenance of the attention related object’s representation, there
is a widespread suppression response to neglected background objects at the
same time (Duncan et al., 1997). Unfortunately, this adversarial relationship has
not been fully exploited, neither in neural networks design nor in characterizing
the human visual attention using deep learning methods.

To bridge these gaps, in this section, we developed a Brain-inspired Adver-
sarial Visual Attention Network (BI-AVAN) to characterize and decode the
visual attention in a more real-world and complex scene (movie watching) with
fMRI-derived brain activities. Specifically, in the visual attention decoding
process, our BI-AVAN model imitates the biased competition process between
attention-related and neglected objects (Figure 5.6(b)). To do so, we introduced
an attention module to divide the outer environment (e.g., an image or a frame
of the movie) into attention-related and neglected parts in an adversarial man-
ner, in which each visual object in the image can only belongs to one of them. A
relational module is then employed to maximize/minimize the relation between
the attention-related/neglected parts and the brain activities. The rationale be-
hind our BI-AVAN model design is that attention-related parts gain dominance
in brain activities while neglected parts are suppressed in the brain. Thus, we
can use the brain activities to guide the BI-AVAN model in the training stage. In
the inference stage the attention module can locate the attention-related objects
which are more coherent with brain activities. We adopted an fMRI dataset
with simultaneous eye-tracking data to evaluate the performance of proposed
BI-AVAN model. The experimental results demonstrate that the BI-AVAN
model can effectively and robustly decode group-wise and individual-specific
human visual attention. The brain networks identified from our BI-AVAN
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model are meaningful and have a close relationship with the biased competi-
tion in the human brain. The objects of interests in human visual attention are
also analyzed based on the inferred attention-related content. Overall, our BI-
AVAN model provides novel insights on the computational aspects of the visual
attention mechanism and contributes to the emerging field of brain-inspired
AI.

5.2.2 Methods

Overview

Our proposed BI-AVAN model is an imitation of the biased competition pro-
cess in human visual attention. Figure 5.7 illustrates the major modules of the
BI-AVAN model, which consists of an attention module for locating the visual
attention (Figure 5.7(a)), a feature encoding module for extracting both image
and brain activity features (Figure 5.7(b)), and a relational module for discrimi-
nating attention-related and attention-neglected content (Figure 5.7(c)).

Attention Module with Adversarial Learning

The attention module is designed to imitate the biased competition process in
human visual attention for characterizing the attention-related and attention-
neglected parts. In order to maintain the adversarial relationship between these
two parts in the attention module, the pixels of the input image are enforced
to belong to only one of the two parts: mathematically, we use F (x) to map
pixel x to a possibility value α which denotes the probability of the pixel x
belonging to the attention-related part. The possibility of pixel x belonging to
the attention-neglect part is then represented as1−α to maintain the adversarial
relationship. In this section, we illustrate the architecture of residual network
in the attention module of BI-AVAN.

In this study, we used a residual neural network (ResNet-18) (K. He et al.,
2016b) as the core component of our attention module to learn the function
F(x). We removed the fully connected layer in ResNet-18 and modified the
last convolution layer to produce a probability matrix α which represents the
current probability of attention-related content (Figure 5.7(a)). 1 − α repre-
sents the probability of attention-neglected content in the image. Specifically, as
shown in Figure 5.8(a), the residual network contains one 2D convolution layer
and four residual building blocks (Figure 5.8(b)) followed by a Sigmoid activa-
tion function. For an input image, the residual network will process it layer by
layer and output the probabilistic matrices α and 1− α. The residual building
blocks input the images/feature maps into a 2D convolution layer followed by
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Attention-related and attention-neglected content are obtained by dot product
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Figure 5.8: The architecture of the residual network in the attention module.
(a) The residual network contains one 2D convolution layer and four residual
building blocks, and the structure of which is shown in (b).

Batch Normalization (BN) and Relu activation function. Then, the output of
another convolution layer with BN is concatenated with the input and passed
into a final convolution layer to obtain the final output. Both α and 1−α have
the size of 7 × 7, which can be up-sampled to the original image size as two
probability masks. The segmentation of attention-related/neglected parts are
obtained by the dot product of the input image with the two probability masks,
respectively. After segmentation, the resulted attention-related/neglected im-
ages will be the input of the feature encoding module (Section 5.2.2) for feature
extraction.
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Figure 5.9: (a) The fMRI feature extractor is a regular feedforward neural net-
work. Before the model training, it will be initialized with the encoder’s weights
in a pre-trained autoencoder (b).

The feature encoding module consists of an image feature extractor for
attention-related/neglected images and an fMRI feature extractor. Both image
and fMRI data will be encoded as feature vectors with sizes of 1×1024. For im-
age feature extractor, we used ResNet-18 and replaced the last average pooling
layer with a global average layer. The fully connected layer was correspond-
ingly modified with 1024 units and tanh activation function. For fMRI feature
extractor, we used a single fully connected layer to conduct a linear decompo-
sition of fMRI data. A L1 regularization (with a penalty coefficient 5e-6) was
applied to introduce the sparsity of the decomposition for the convenience of
brain activity pattern visualization (Lv et al., 2015). It is noted that we adopted a
pre-trained fMRI autoencoder to initialize the fMRI feature extractor. Specif-
ically, before starting the training of the whole BI-AVAN model, we initialize
the fMRI feature extractor with the encoder’s weights in a pre-trained fMRI
autoencoder (Figure 5.9). Considering that fMRI data is very high-dimensional,
if we try to directly optimize the fMRI feature extractor, the number of param-
eters will be 48637× 1024. Notably, the acquisition of fMRI is very expensive
and time-consuming, and we only have 53,985 fMRI volumes in this study. So,
such initialization can help reduce the overfitting and make model converge
much faster. In our experiments, we found that by initializing the fMRI fea-
ture extractor with a pre-trained fMRI autoencoder, the model’s performance
can be significantly improved.

Relational Module

The relational module is the core component in our BI-AVAN model. Here,
we assume the brain activities should show different patterns when focusing on
the attention-related and attention-neglected content in the movie. Therefore,
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the goal of the relational module is to discriminate the attention-related con-
tent from attention-neglected content by maximizing/minimizing the relation-
ship between the brain activities (fMRI features) and the potential attention-
related/neglected pixels in the images. Here, we formulate the relational module
as a neural network frel(·). Figure 5.7(c) is an illustration of the relational mod-
ule consisting of multiple fully connected layers followed by batch normaliza-
tion. Specifically, the feature vectors (1×1024) of the attention-related/neglected
images (va/vn) and fMRI data (vf ) are concatenated as a single vector (1 ×
2048). The relational module takes it as input and outputs a scalar, ranging
from -1 (for attention-neglected image) to 1 (for attention-related image). In
addition, we introduced two additional regularization terms in the relational
module. The first regularization term makes the concatenation of the fMRI
feature vector and the original image feature vector towards to 0 (original image
= attention related contents + neglected contents). This regularization term
will prevent the BI-AVAN model from identifying the entire image as atten-
tion related or neglected content. The second regularization term makes the
concatenation of feature vectors from a blank image and fMRI data towards 0,
which can effectively exclude the influence of fade in (fade out) movie frames.
The training objective of the relational module is then formulated in Eq. (5.6):

Lrel =(1− frel(vaf ))
2 + (−1− frel(vnf ))

2

+ frel(vanf )
2 + frel(vbf )

2 (5.6)

where vaf , vnf and vbf represent the concatenation of fMRI feature vector,
the feature vector of attention-related, attention-neglected and blank images,
respectively. vanf is the concatenation of fMRI feature vector and the vector of
original image (equals to va+vn). We also designed a triplet loss term to exclude
some randomness of BI-AVAN model by introducing an fMRI reconstruction
network frec(·) which is consisted of a fully connected layer followed by batch
normalization. We use the feature vector of attention-related/neglected images
to reconstruct the original fMRI data. The rationale behind this triplet loss is
that the attention-related images should have a stronger relation to the brain ac-
tivities and thus should have lower reconstruction error compared to neglected
ones. By introducing the triplet loss, the order of attention related contents (ne-
glected contents) will be fixed. The equation of triplet loss is shown in Eq. (5.7):

Ltrip = max{d(s, frec(va))− d(s, frec(vn)) +m, 0} (5.7)

where the d is Euclidean distance function, s is the original fMRI data. We used
a very small margin value (m = 0.1) to avoid the reconstruction network from
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dominating the training of relational module. By combining the Eq. (5.6) and
Eq. (5.7), the final loss function of BI-AVAN model is shown in Eq. (5.8):

L = Lrel + Ltrip (5.8)

In general, the training objective of our BI-AVAN model is to minimize the
loss function Eq. (5.8). In this study, we trained our model in a GeForce GTX
1080Ti graphics card with Adam optimizer, it takes us 51.5 hours to train the
entire model.

Individual-specific Attention Related Content

It is worth noting that our attention module does not combine any individual
brain activities or eye-tracking information to infer the visual attention, which
means the derived attention related content is an inference of group interest.
To obtain the individual-specific attention, first, we used the image feature ex-
tractor (the global average and dense layer are temporarily removed) to encode
it as feature maps. As shown in Figure 5.10, for each movie frame we can obtain
512 feature maps (feature map size is 40x22), and each location in the feature
maps corresponds to a 32x32 image block in the original movie frames (the
size of receptive field is 32x32). Then, for each location in the feature maps,
we applied a sliding window (window size is 3x3) to achieve a corresponding
image codes vector (with the global average layer and dense layer). The code
vector is then concatenated with individual’s fMRI code vector to generate a
relational value from the relational module. The relational values represent
the correlation strength between image content and brain activities. The final
individual-specific attention is obtained by dot product of the original image
with individual’s relational map (the relational map is up-sampled to the same
size of the original image).

5.2.3 Experimental Results

Dataset

In this study we used a public movie dataset with simultaneous fMRI and eye-
tracking data (Forrest Gump dataset, (Hanke et al., 2016)). The fMRI and
eye-tracking data were recorded during watching a movie (2 hours of Forrest
Gump). The dataset contains 15 subjects with 53,985 fMRI volumes (each sub-
ject has 3,599 fMRI volumes and each fMRI volume has 48,637 valid voxels). To
preprocess the fMRI data, we used the standard and widely used fMRIprep pre-
processing pipeline (Esteban et al., 2019). The preprocessing steps include: skull
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Figure 5.10: The computational pipeline of individual-specific attention. Each
element on relational map represents the corresponding image blocks’ relation
to brain activities. In this figure, input image is center cropped for illustration
purpose.

stripping, motion correction, slice time correlation, registration to standard the
MNI space and global drift removal. More details are referred to (Esteban et
al., 2019). After the standard preprocessing, we normalized voxels’ signal with
zero mean and standard deviation, and then applied a pre-defined brain mask
to extract valid fMRI signals from these preprocessed 3D fMRI volumes. The
extracted signals are flattened as 1D vectors for model training and validation.
In our experiment, we have 15 subjects in total. Each subject has 3,599 fMRI
volumes and each fMRI volume contains 48,637 valid fMRI time series signals.

The movie used in this study was encoded as H.264 video with a resolution
of 1280 × 720 pixels (25fps). It contains 179,926 movie frames in total, and
the viewing distance is 63cm which ensures that the participants can see the full
screen (Hanke et al., 2016). For eye-tracking data preprocessing, we excluded
the off-screen eye movements as well as the slow eye blinks (blink more than
300 milliseconds). Median filter with a window size of 40 was applied to reduce
the noise in the eye-tracking data. According to the biased competition the-
ory, the competition of visual objects only happens within the human visual
field, which means for a large movie screen, only the objects around eye gaze
point competes for the human attention. Thus, to obtain more accurate train-
ing data for every movie frame, we cropped the original movie frame around
the eye-tracking points to a size of 224x224. By doing so, we implicitly intro-
duced an assumption that all the cropped image contains both attention-related
content and attention-neglected content. However, this assumption could be
inaccurate considering the selective process of human brain. It is possible that
the cropped image does not contain any attention-related content if it is not
selected by the brain. Thus, to exclude the uncertainty, we used a regularization
term in the relational module to force all original images to have zero relation
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values. With this regularization term, the BI-AVAN model is forced to not build
any relationships between the entire movie frame and the brain activities.

The eye movements of subjects were recorded at the frequency of 1000Hz.
It is noted that the frequency for fMRI (0.5Hz), eye-tracking (1000Hz) and
movie (25Hz) data are different. In order to eliminate such frequency difference
and build the correspondence among different data sources, we downsampled
the eye-tracking data to the same frequency as movie and up-sampled the fMRI
data by interpolation.

In this study, we used 70% of the samples for model training and the rest
30% for testing. Unless we specifically mentioned, all the experimental results
are based on testing data.

Evaluation of Group-wise Visual Attention

We first evaluated the performance of BI-AVAN model in generating the attention-
related/neglected content. Since the attention-related content we directly ob-
tained from the attention module is an inference from group interest, it con-
tains all possible objects that the participants might be interested in. Figure 5.11
displays some random-selected results from training data (Figure 5.11(a)) and
testing data (Figure 5.11(b)). More examples can be found in appendix. An
interesting observation is that our attention module performs a semantic seg-
mentation on image when identifying attention-related/neglected content: for
most of the movie frames, the backgrounds (such as sky, ground, buildings,
trees) are considered as attention-neglected content while other objects (such
as people, poster, television, letters) are considered as attention-related content.
We further compared the generated attention-related content to the results of
eye-tracking. The corresponding eye-tracking points (the locations of the eye
gaze) are marked as red dots in Figure 5.11. On both training and testing data,
we found that most of the eye-tracking points are located within the attention-
related regions instead of neglected regions. To quantitatively evaluate the per-
formance of our attention module, we calculated the hit rates (hit rate equal
to the ratio of eye-tracking points that are located within the attention-related
region among all the eye-tracking points). For all 15 subjects, we have 1,586,459
eye-tracking points on the training data and 679,911 eye-tracking points on the
testing data. We achieved 0.7793 and 0.5951 hit rate on training and testing data,
respectively. The relatively high hit rates suggest that the attention-related part
in our attention module has relatively higher possibility to draw participants’
attention than the neglected part.

We also calculated the averaged values of the positive/negative/regularization
terms in the relational module, as summarized in Table 5.3. In general, the out-
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Table 5.3: The average output of relational module on training data and testing
data

Positive Negative Regularization
Target 1 -1 0

Training dataset 0.91 -0.94 0.023
Testing dataset 0.86 -0.83 0.12

puts of relational module indicate that the distance between attention-related
and attention-neglected components, as expected, have been successfully max-
imized. Meanwhile, we observed the output values on training data are closer
to targets than those on testing data, which suggests that over-fitting may exist
due to the lack of fMRI data, given 53,985 fMRI volumes versus 179,926 movie
frames. However, in our experiments, we found the over-fitting can be allevi-
ated by initializing the parameters of fMRI feature extractor using a pre-trained
fMRI autoencoder.

Movie Frame Attention-related
Contents(a) (b)Attention-neglected

Contents
Movie Frame Attention-related

Contents
Attention-neglected

Contents

Figure 5.11: The group-wise attention-related content and attention-neglected
content of BI-AVAN model from 4 randomly selected movie frames. Eye-
tracking points are marked as red dots. (a) The segmentation results on training
data; (b) The segmentation results on testing data.

Individual-specific Visual Attention and Eye Movements

In this section, we focus on individual-specific attention-related content and
discuss its relationship with eye movements. Figure 5.12 shows an example of
the obtained group-wise attention map as well as three individual-specific at-
tention maps (participant #1-#3). Their corresponding eye-tracking points are
highlighted in red, purple and blue color, respectively. More examples can be
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Figure 5.12: An example of group-wise attention and individual-specific atten-
tion. The eye-tracking points of different subjects are marked with different
colors.

found in appendix. We can see that the individual-specific attention maps tend
to be subsets of group-wise attention. The eye-tracking points are properly lo-
cated in the individual-specific content, suggesting close relationship between
individual attention and brain activities. Like the group-wise attention, we use
the eye-tracking data to verify the individual results. Our model achieves 0.4189
(training data) and 0.3685 (testing data) hit rate on individual-specific atten-
tion. To investigate the reason of hit rate decrease, we visualized the individual-
specific attention-related content maps and compared them to their correspond-
ing eye-tracking points. We found that the decrease of hit rate is mainly caused
by the random visual search of participants. Figure 5.13 illustrates a random
case with three frames in a movie clip. We can see that during the movie watch-
ing, the participant quickly moved his/her eye gaze from Forrest to the sunset
in Frame #2 and then moved back to Forrest in Frame #3. Although the eye
movement happened in a real situation, our model will not capture it (high-
light with green arrow in Figure 5.13) due to the sampling frequency of fMRI.
The quick eye gaze movements here are usually related to human visual search,
which is inevitable, since it is human instinct to scan visual environment for
objects (Horowitz & Wolfe, 1998).
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Figure 5.13: The illustration of human visual search. The images on top row
are original movie frames, while those on the bottom row are the individual-
specific attention. The eye-tracking points are highlighted as red cross-hair. The
visual search happened in frame #2, where the individual-specific attention and
eye-tracking point are mismatched.

Delay of Hemodynamic Response

It is noted that the brain activities measured by fMRI always lag behind the
events (stimulus) due to the delay of hemodynamic response (HDR) (Aguirre
et al., 1998). Therefore, we need to align the fMRI with the movie to eliminate
the delay caused by HDR. We did several experiments to find the delay time for
our case by assuming the delay time is 0s (no lag), 2s, 4s and 6s, respectively. For
each assumption, we trained a corresponding BI-AVAN model and evaluated
their performances according to their attention locating abilities (hit rate with
eye-tracking points) as well as the relation value (output value) of attention-
related components in the relational module. The comparison results are shown
in Figure 5.14. From these experiments, we observed the best results when the
delay time is 2s (in terms of the highest hit rate and the highest relation value,
highlighted with black arrow) and the worst performance when delay time is 0s.
In Figure 5.14, it is interesting to see relatively good results when the delay time is
4s and 6s. This might be related to the memory of the human brain (Nichols et
al., 2006). Our experiment results are also consistent with previous fMRI study
(DeYoe et al., 1994) which suggested that the fMRI response evoked by visual
stimuli delayed 1-2s and reached 90% of peak in 5s. All experimental results in
this study are based on the 2s delay time. However, we should point out that
although we achieved reasonable results in this study, 2s delay time might not
always be the optimal delay time for natural stimulus studies. We are not able to
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continue narrowing down the range of the optimal delay time (a value between
0-2s) due to the physical limitations of fMRI. In the future, the results could
be improved by utilize a higher temporal resolution fMRI scanner.

0

0.5

1

Hit Rate Relation Value

0s 2s 4s 6s(b)

fMRI

Movie

Eye

0s 2s 4s 6s

(1000 Hz)

(25 Hz)

(0.5 Hz)
time

Scan 1 Scan 2 Scan 3 Scan 4(a)

Figure 5.14: (a) An illustration of the frequency difference between different
data sources. The black boxes represent the presence of samples. The movie
frames and eye-tracking points between each two fMRI scans are highlighted
in different colors. (b) The influence of different delay times with respect to the
model’s performance.

Brain Networks Learned by BI-AVAN Model

In this subsection, we evaluate if the BI-AVAN model learns meaningful brain
networks from raw fMRI data for visual attention decoding. In BI-AVAN, the
fMRI feature extractor is responsible for encoding the input fMRI signal to a
feature vector. After the training process, the weight matrix of fMRI feature
extractor contains the patterns learned from raw fMRI signals and each pattern
can be interpreted as a specific brain network (Lv et al., 2015). The weight matrix
has the size of 1024 × 48637, thus each row of the matrix represents a brain
network. To visualize these brain networks, the values in each row are mapped
back to the brain volume space and results in 1024 brain networks in total. The
original fMRI data can be represented as a linear combination of these 1024
brain networks (Lv et al., 2015).
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Figure 5.15: The comparison between the learned brain networks from BI-
AVAN model and brain network templates shown in the same orthogonal slices
with the same threshold value (3.0).

To verify if the learned brain networks are neurologically meaningful, we
compared them with the widely used network templates (Smith et al., 2009)
which include typical functional networks in human brain. Almost all the brain
network templates can be found in our results (Figure 5.15). It is also inspiring
that we found several brain networks which are highly related to the biasing
attention of human brain. Previous fMRI studies (Henseler et al., 2011) demon-
strated there is a control system located in rostral prefrontal cortex (rostral PFC).
The rostral PFC acts as a gateway of human attention and plays a key role in bal-
ancing attentional orienting to external and internal information. In this study,
the rostral PFC identified from BI-AVAN model are shown as three separate
sub-regions in Figure 5.16. It is consistent with (Henseler et al., 2011) where they
demonstrated the functional segregation exists between medial part and lateral
part of rostral PFC. Specifically, the medial part (Rostromedial PFC) is respon-
sible for processing external information by interacting with other parts of the
brain, the lateral part (Rostrolateral PFC) processes the internally represented
information and the anterior rostromedial PFC has relation to attentional bi-
ases generation.
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Anterior Rostromedial PFC (R) Rostromedial PFC (R) Rostrolateral PFC (R)

Figure 5.16: The rostral prefrontal cortex (rostral PFC) obtained from BI-AVAN
model as three separate subareas. Only the right hemisphere is shown.

Objects of Interests in Visual Attention

We performed a statistical experiment to investigate which kind of movie objects
have higher possibility to draw participants’ attention. Figure 5.17 shows the
statistical results of our experiment. We start from the main category (moving
objects vs. stationary objects) and end up with specific sub-categories (facial
features). During the movie watching, most subjects pay their attention to the
moving objects rather than the stationary objects. The difference is significant
(0.783 vs 0.217), indicating that when the moving and stationary objects present
at the same time, the information of stationary objects is rarely processed by
the participants (21.7% chance). This is probably because of the slow process of
visual transduction, which has been suggested in (Berry et al., 1999) that visual
stimulus evokes neural activity with a delay of 30-100 millisecond, therefore, the
human brain may need to extrapolate the trajectory of a moving object in order
to perceive its actual location. Among all the moving objects, participants are
particularly interested in the human objects, and we are surprised to see that the
human mouth has the highest possibility for drawing participants’ attention
(Figure 5.17). The underlying reasons still need to be investigated, but there are
some studies suggest that the attention on mouth usually related to language
learning or the intention of creating more opportunities for communication
(Barenholtz et al., 2016). Because all the participants are Germans while the
movie was filmed using English, so it is likely that the participants were trying to
process language information of movie characters by focusing on their mouths.

5.2.4 Conclusion
In this work, we proposed a novel brain-inspired adversarial visual attention
network (BI-AVAN) to characterize the human visual attention directly from
functional brain activity. Our design of BI-AVAN model was inspired by the
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Figure 5.17: The objects of interests in visual attention. The y-axis denotes
possibilities of objects drawing the human attention.

biased competition in the human visual system and can identify and locate the
visual objects in a movie frame on which the human brain focuses. We evalu-
ated the proposed BI-AVAN model with eye-tracking data and found that it
achieved a high hit rate on both group-wise and individual-specific visual atten-
tions. We also visualized the brain networks learned by the BI-AVAN model
and discovered their strong correlations with the human visual attention. Fi-
nally, we studied the objects of interests in human visual attention statistically
based on the proposed model. Overall, our BI-AVAN model contributes to the
emerging field of leveraging the brain’s functional architecture to inspire and
guide the model design in AI, e.g., deep neural network. In our future work, we
will try to use even larger scale natural stimulus fMRI data to further improve
and evaluate the BI-AVAN model.
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Chapter 6

Core-Periphery Principle
Guided Convolutional

Neural Network

6.1 Overview
The evolution of convolutional neural networks (CNNs) can be largely at-
tributed to the design of its architecture, i.e., the network wiring pattern. Neural
architecture search (NAS) advances this by automating the search for the opti-
mal network architecture, but the resulting network instance may not generalize
well in different tasks. To overcome this, exploring network design principles
that are generalizable across tasks is a more practical solution. In this section,
We explore a novel brain-inspired design principle based on the core-periphery
property of the human brain network to guide the design of CNNs.

6.2 Background
Convolutional neural networks (CNNs) have greatly reshaped the paradigm
of image processing with impressive performances rivaling human experts in
the past decade (LeCun, Bengio, et al., 1995; LeCun et al., 2015; Q. Li et al.,
2014). Though with a biologically plausible inspiration from the cat visual cor-
tex(Hubel & Wiesel, 1959; LeCun, Bengio, et al., 1995), the evolution and success
of CNNs can be largely attributed to the design of network architecture, i.e.,
the wiring pattern of neural network and the operation type of network nodes.
Early CNNs such as AlexNet (Krizhevsky et al., 2017) and VGG (Simonyan &
Zisserman, 2014) adopted a chain-like wiring pattern where the output of the
preceding layer is the input of the next layer. Inception CNNs employ an In-
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ception module that concatenates multiple branching pathways with different
operations (Szegedy et al., 2015; Szegedy et al., 2016). ResNets propose a wiring
pattern x+F (x) aiming to learn a residual mapping that enables much deeper
networks, and have been widely adapted for many scenarios such as medical
imaging with superior performance and generalizability (K. He et al., 2016b).
Orthogonally, depthwise separable convolution operation greatly reduces the
number of parameters and enables extremely deeper CNNs (Howard et al.,
2017). Recent studies also suggest that CNNs can benefit from adopting con-
volution operation with large kernels (e.g., 7× 7) (Q. Han et al., 2021; Z. Liu
et al., 2022) with comparable performance with Swin Transformer (Z. Liu et
al., 2021b). By combining dilated convolution operation and large convolution
kernel, a CNN-based architecture can achieve state-of-the-art in some visual
tasks (Guo et al., 2022).

Neural Architecture Search (NAS) advances this trend by jointly optimiz-
ing the wiring pattern and the operation to perform. Basically, NAS methods
sample from a series of possible architectures and operations through various
optimization methods such as reinforcement learning (RL) (Zoph & Le, 2016),
evolutionary methods (Real et al., 2019), gradient-based methods (H. Liu et al.,
2018), weight-sharing (Pham et al., 2018), and random search (L. Li & Talwalkar,
2020). Despite its effectiveness, NAS does not offer a general principle for net-
work architecture design. The outcome of NAS for each run is a neural network
instance for a specific task, which may not be generalized to other tasks. For
example, an optimal network architecture for natural image classification may
not be optimal for X-ray image classification. Hence, some studies explored the
design space of neural architectures (Radosavovic et al., 2020) and investigated
the general design principles that can be applied to various scenarios.

Recently, a group of studies suggested that artificial neural networks (ANNs)
and biological neural networks (BNNs) may share common principles in opti-
mizing the network architecture. For example, the property of small-world in
brain structural and functional networks are recognized and extensively studied
in the literature (Bassett & Bullmore, 2017; Bassett & Bullmore, 2006; Bull-
more & Sporns, 2009). In (S. Xie et al., 2019), the neural networks based on
Watts-Strogatz (WS) random graphs with small-world properties yield compet-
itive performances compared with hand-designed and NAS-optimized models.
Through quantitative post-hoc analysis, (You et al., 2020) found that the graph
structure of top-performing ANNs such as CNNs and multilayer perceptron
(MLP) is similar to those of real BNNs such as the network in macaque cortex.
(L. Zhao, Dai, et al., 2022) synchronized the activation of ANNs and BNNs
and found that ANNs with higher performance are similar to BNNs in terms
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of visual representation activation. Together, these studies suggest the poten-
tial of taking advantage of prior knowledge from brain science to guide the
architecture design of neural networks.

6.3 Related Works

6.3.1 Neural Architecture of CNNs
Wiring Pattern. The development of the wiring pattern significantly con-
tributes to CNN’s performance. The early neural architecture of CNNs adopted
chain-like wiring patterns, such as AlexNet (Krizhevsky et al., 2017) and VGG
(Simonyan & Zisserman, 2014). Inception (Szegedy et al., 2015; Szegedy et al.,
2016) concatenates several parallel branches with different operations together
to "widen" the CNNs. ResNets(K. He et al., 2016b) propose a wiring pattern
x + F (x) for residual learning, which eliminates the gradient vanishing and
makes the CNNs much deeper. DenseNet adopted a wiring pattern [x, F (x)]

which concatenates the feature maps from the previous layer. The wiring pat-
tern of ResNet and DenseNet is well generalized in various scenarios and appli-
cations with improved performances.

Sparsity in Convolution Operation. Early CNNs used dense connectivity
between input and output features, where every output feature is connected to
every input feature. To reduce the parameter of such dense connectivity, depth-
wise separable convolution (Howard et al., 2017) was proposed to decompose
the convolution operation as depthwise convolution and pointwise convolu-
tion, enabling much deeper CNNs. Another group of studies explored the
pruning-based method to introduce sparsity in convolution operation, includ-
ing channel pruning(Y. He et al., 2017), filter pruning (Q. Huang et al., 2018;
J.-H. Luo et al., 2018), structured pruning (Z. Wang et al., 2021). The intro-
duced sparsity reduced the number of parameters, making the networks easier
to train, and also improved their performance on various tasks (Hoefler et al.,
2021).

Neural Architecture Search. NAS jointly optimizes the wiring pattern and
the operation to perform. NAS methods predefined a search space, and a se-
ries of possible architectures and operations are sampled and selected based on
various optimization methods such as reinforcement learning (RL) (Zoph &
Le, 2016), evolutionary methods (Real et al., 2019), gradient-based methods (H.
Liu et al., 2018), weight-sharing (Pham et al., 2018), and random search (L. Li
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& Talwalkar, 2020). However, the predefined search space still limited the feasi-
ble neural architectures to be sampled, regardless of the optimization methods.
Meanwhile, the search process usually demands huge computational resources,
while the searched architecture may not generalize well for different tasks.

6.3.2 Core-Periphery Structure
Core-periphery structure represents a relationship between nodes in a graph
where the core nodes are densely connected with each other while periphery
nodes are sparsely connected to the core nodes and among each other (Borgatti
& Everett, 2000; Rombach et al., 2014). Core-periphery graph has been ap-
plied in a variety of fields, including social network analysis (Borgatti & Everett,
2000; Cattani & Ferriani, 2008), economics(Kostoska et al., 2020), biology
such as modeling the structure of protein interaction networks(F. Luo et al.,
2009). In the brain science field, it has been shown that brain dynamics has
a core-periphery organization (Bassett et al., 2013). The functional brain net-
works also demonstrate a core-periphery structure(Gu et al., 2020). A recent
study revealed the core-periphery characteristics of the human brain from a
structural perspective (Yu et al., 2023). It is shown that gyri and sulci, two
prominent cortical folding patterns, could cooperate as a core-periphery net-
work which improves the efficiency of information transmission in the brain
(Yu et al., 2023).

6.3.3 Connection of ANNs and BNNs
Recently, a group of studies suggested that artificial neural networks (ANNs)
and biological neural networks (BNNs) may share some common principles in
optimizing the network architecture. For example, the property of small-world
in brain structural and functional networks are recognized and extensively stud-
ied in the literature (Bassett & Bullmore, 2017; Bassett & Bullmore, 2006; Bull-
more & Sporns, 2009). Surprisingly, in (S. Xie et al., 2019), the neural networks
based on Watts-Strogatz (WS) random graphs with small-world properties yield
competitive performances compared with hand-designed and NAS-optimized
models. Through quantitative post-hoc analysis, (You et al., 2020) found that
the graph structure of top-performing ANNs such as CNNs and multilayer per-
ceptron (MLP) is similar to those of real BNNs such as the network in macaque
cortex. (L. Zhao, Dai, et al., 2022) synchronized the activation of ANNs and
BNNs and found that ANNs with higher performance are similar to BNNs in
terms of visual representation activation. Together, these studies suggest the
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potential of taking advantage of prior knowledge from brain science to guide
the model architecture design.

6.4 Method
We explore a brain-inspired Core-Periphery (CP) principle for guiding the ar-
chitecture design of CNNs in this section. Core-Periphery organization is well-
recognized in structural and functional brain networks of humans and other
mammals (Bassett et al., 2013; Gu et al., 2020), which boosts the efficiency
of information segregation, transmission and integration. In core-periphery
graph, core-core node pairs have the strongest connection in comparison to core-
periphery node pairs (moderate) and periphery-periphery node pairs (the low-
est). We design a novel core-periphery graph generator according to this prop-
erty and introduce a novel core-periphery principle guided CNN (CP-CNN).
CP-CNN follows a typical hierarchical scheme of CNNs (e.g., ResNet (K. He et
al., 2016b)) which consists of a convolutional stem and four consecutive blocks.
For each block, we abandon the traditional chain-like wiring pattern but adopt
a directed acyclic computational graph which is mapped from the generated
core-periphery graph where each node corresponds to an operation such as con-
volution. In addition, we sparsify the convolution operation in a channel-wise
manner and enforce it to follow a core-periphery graph constraint.

6.4.1 Generation of Core-periphery Graph
The core-periphery graph (CP graph) has a fundamental signature that the
"core-core" node pairs have the strongest interconnections compared with the
"core-periphery node" pairs (moderate) and "periphery-periphery" node pairs
(weakest). According to this property, we introduce a novel CP graph generator
to produce a wide spectrum of CP graphs in this subsection.

Specifically, the proposed CP graph generator is parameterized by the total
number of nodesn, the number of "core" nodesnc, and the wiring probabilities
pcc, pcp, ppp between "core-core", "core-periphery", "periphery-periphery" node
pairs, respectively. The CP graph is generated based on the following process:
for each "core-core" node pair, we sample a random number r from a uniform
distribution on [0, 1]. If the wiring probability pcc is greater than the random
number r, the "core-core" node pair is connected. The same procedure is also
applied to "core-periphery" node pairs and "periphery-periphery" node pairs
with the wiring probability pcp and ppp, respectively. We summarize the whole
generation process in Algorithm 1. With different combinations of n, nc and
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wiring probabilities pcc, pcp, ppp, we can generate a wide range of CP graphs
in the space, which are then used for constructing the CP-CNN framework
introduced in the following subsections.

Algorithm 1: Generation of core-periphery graph
Input: n: number of nodes;

nc: number of core nodes;
pcc, pcp, ppp: wiring probabilities

Output: G: core-periphery graph
1 G = ∅;
// "core-core" node pairs

2 for i← 0 to nc do
3 for j ← i to nc do
4 Sample a uniform random number r ∈ [0, 1) if r < pcc then
5 G← (i, j)

6 end
7 end
8 end
// "core-periphery" node pairs

9 for i← 0 to nc do
10 for j ← nc to n do
11 Sample a uniform random number r ∈ [0, 1) if r < pcp then
12 G← (i, j)

13 end
14 end
15 end

// "periphery-periphery" node pairs

16 for i← nc to n do
17 for j ← i to n do
18 Sample a uniform random number r ∈ [0, 1) if r < ppp then
19 G← (i, j)

20 end
21 end
22 end
23 return G

6.4.2 CP-CNN Framework
Our macro design of CP-CNN architecture follows a typical hierarchical scheme
of CNNs (e.g., ResNet (K. He et al., 2016b)) with a convolutional stem and
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Figure 6.1: Illustration of the proposed CP-CNN framework. (a) The architec-
ture of the CP-CNN with one convolution stem, four consecutive CP-Blocks,
followed by one 1× 1 convolution, one pooling and one fully-connected layer.
(b)The construction of CP-Block and the illustration of the node in CP-Block.
The core-periphery graph is mapped as a computational graph for CP-Block
based on the node operation. (c) Utilizing core-periphery graph to constrain
the convolution operation.

several convolution blocks (Figure 6.1(a)). Specifically, the input image is firstly
input into a convolution stem which consists of two 3× 3 convolutions with
a stride of 2. The feature maps from the convolution stem are then processed
by four consecutive core-periphery blocks (CP-Blocks, discussed in detail in
Section 6.4.3 below). Within each CP-Block, the size of the feature map is de-
creased by 2×while the number of channels is increased by 2×. A classification
head with 1×1 convolution, global average pooling and a fully connected layer
is added after the CP-Block to produce the final prediction.

6.4.3 Core-periphery Block
Unlike the traditional chain-like structure, our core-periphery block has a "graph"
structure (Figure 6.1(b)) which is implemented based on the generated core-
periphery graph. To construct the core-periphery block, we need to convert the
generated core-periphery graph into computational graph in the neural network.
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However, the generated core-periphery graphs are undirected while the com-
putational graph in neural networks are directed and acyclic. So the first step
is to convert the generated core-periphery graph into a directed acyclic graph
(DAG), and then map the DAG into a computation graph for the CP-Block.

Specifically, we adopt a heuristic strategy to perform such conversion. For
each node in the core-periphery graph, we randomly assign a unique label rang-
ing from 1 ton (the number of nodes in the graph) to it. Then, for all undirected
edges in the graph, we convert it into directed edges which always start from
the node with the small label and end with the node having the large label. This
approach guarantees that there are no circles in the resulting directed graph, i.e.,
the resulting graph is a DAG. The next step is to map the DAG into a compu-
tational graph in the neural network. To do so, we first need to define the node
and edge in the computational graph.
Edges. Similar to edges in most computation graphs, we define that the directed
edge in our implementation represents the direction of data flow, i.e., the node
sends the data to another node along this flow.
Nodes. We define the nodes in our computational graph as processing units that
aggregate and process the data from input edges and distribute the processed
data to other nodes along the output edges. As illustrated in Figure 6.1(c), the
data tensors along the input edges are firstly aggregated through a weighted
sum. The weights of the aggregation are learnable. Then, the combined tensors
are processed by an operation unit which consists of ReLU activation, 3 × 3

core-periphery convolution (discussed in detail in Section 6.4.4 below), and
batch normalization. The unit’s output is distributed as the same copies to
other nodes along the output edges.

Using the defined nodes and edges, we obtain an intermediate computa-
tional graph. However, this graph may have several input nodes (those without
input edges) and output nodes (those without output edges), while each block
is expected to have only one input and one output. To address this, we intro-
duce an additional input node that performs convolution with a stride of 2 on
the previous block’s output or the convolution stem, sending the same feature
maps to all original input nodes. Similarly, we introduce an output node that
aggregates the feature maps from all original output nodes using a learnable
weighted sum, without performing any convolution within this node. This
creates the CP-Block, which can be stacked in the CP-CNN as previously dis-
cussed.
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6.4.4 Core-periphery Constrained Convolution
The CP-Block can also be constructed using conventional convolution in the
nodes of the computational graph. However, traditional convolution is more
"dense" whereas incorporating sparsity into the neural network can significantly
lower its complexity and enhance its performance, especially in scenarios with
limited training samples such as medical imaging.

Inspired by this, we propose a novel Core-Periphery Constrained Convo-
lution that utilizes a core-periphery graph as a constraint to sparsify the con-
volution operation. Specifically, we divide the input and output channels of
the convolution into n groups and represent the relationship between them
as a bipartite graph (Figure 6.1(c)). In conventional convolution, the bipartite
graph is densely connected, with all input channels in a filter contributing to the
production of all output channels. For example, output channels in node #1

integrate information from all input channels. In contrast, a sparse bipartite
graph means that only a portion of input channels is used to generate output
channels. As shown in Figure 6.1(c), the output channels in node #1 only inte-
grate information from input channels in node#1 and node#2. By sparsifying
the convolution operation with a predefined bipartite graph, the convolution
is constrained by a graph.S

We use the core-periphery graph as a constraint by converting the generated
graph into a bipartite graph. The core-periphery graph is first represented as
the relational graph proposed in (You et al., 2020) which represents the message
passing between nodes. The relational graph is then transformed into a bipar-
tite graph, where the nodes in two sets correspond to the divided sets of input
and output channels, respectively. The edges in the bipartite graph represent
message passing in the relational graph. We apply the resulting bipartite graph
as a constraint to the convolution operation to obtain the core-periphery con-
strained convolution. It is worth noting that we apply the same core-periphery
graph across the whole network, while the constrained convolution may vary
among different nodes and blocks due to the varying number of channels.

6.5 Experiments
Datasets. We evaluate the proposed framework on three datasets, including
one for natural images and two for medical images. CIFAR-10 (Krizhevsky,
Hinton, et al., 2009) consists of 60,000 32 × 32 images in 10 classes, with
50,000 images in the training set and 10,000 images in the test set. In our experi-
ments, we upsample all original images in CIFAR-10 to 224×224. NCT-CRC
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(Kather et al., 2018) contains 100,000 non-overlapping training image patches
extracted from hematoxylin and eosin (H&E) stained histological images of
human colorectal cancer (CRC) and normal tissue (Kather et al., 2018). Addi-
tional 7,180 image patches from 50 patients with no overlap with patients in
the training set are used as a validation set. Both training and validation sets
have 9 classes and size of 224 × 224 for each patch. INbreast dataset (I. C.
Moreira et al., 2012) includes 410 full-field digital mammography images col-
lected during low-dose X-ray irradiation of the breast. These images can be
classified into normal (302 cases), benign (37 cases), and malignant (71 cases)
classes. We randomly split the patients into 80% and 20% as training and testing
datasets. To balance the training dataset, we perform several random cropping
with a size of 1024 × 1024 as well as the contrast-related augmentation for
each image, resulting in 482 normal samples, 512 benign mass samples, and 472
malignant mass samples. The images in both sets are downsized into 224×224.

Implementation Details. In our experiments, we set the number of nodes
in the core-periphery graph to 16 and vary the number of core nodes. The
three probabilities are set as pcc = 0.9, pcp = 0.5, pcc = 0.1. The proposed
model and all compared baselines are trained for 50 epochs with a batch size
of 512. We use the AdamW optimizer (Kingma & Ba, 2014) with β1 = 0.9

and β2 = 0.999 and a cosine annealing learning rate scheduler with initial
learning 10−4 and 5 warm-up epochs. The framework is implemented with
PyTorch (https://pytorch.org/) deep learning library and the model is trained
on 4 NVIDIA A5000 GPU.

6.5.1 Comparison with Baselines
To validate the proposed CP-CNN, we compare the performance of CP-CNN
with various state-of-the-art baselines, which can be roughly categorized as CNN-
based methods and ViT-based methods. CNN-based category contains ResNet(K.
He et al., 2016b), EfficientNet (Tan & Le, 2019), RegNet(Radosavovic et al.,
2020), ConvNeXt(Z. Liu et al., 2022). The ViT-based class contains vanilla
ViT(Dosovitskiy et al., 2020), CaiT(Touvron, Cord, Sablayrolles, et al., 2021)
and Swin Transformer(Z. Liu et al., 2021b). Considering the amount of data, we
set the number of nodes in the CP graph as 16, resulting CP-CNN model with
around 22 million parameters. For the compared methods, we re-implement
them and only report the tiny- or small-scale setting with comparable parame-
ters as CP-CNN.

Table 6.1 demonstrates a comprehensive comparison of the Top-1 classifica-
tion accuracy (%) achieved by different models on three datasets, as well as the
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Table 6.1: Top-1 classification accuracy (%) of proposed and compared models
on the CIFAR-10, NCT-CRC, and INBreast datasets, along with the number
of parameters (M) and flops (G). The models with the highest accuracy are
highlighted in bold. For some settings, the models do not get converged and
are indicated by a slash (/) symbol.

Category Models CIFAR-10 NCT-CRC INBreast Param (M) Flops (G)

CNNs

ResNet-18 90.35 95.96 83.56 11.18 1.8
ResNet-50 90.55 95.11 82.19 23.53 4.1
EfficientNet-B3 82.52 95.25 / 10.71 1.8
EfficientNet-B4 81.73 95.21 / 17.56 4.4
RegNetY-016 88.03 95.91 / 10.32 1.6
RegNetX-032 88.78 95.91 / 14.30 3.2
ConvNeXt-Nano 86.88 95.10 / 14.96 2.5
ConvNeXt-Tiny 86.32 94.64 / 27.83 4.5

ViTs

ViT-Tiny 76.10 90.63 / 5.50 1.3
ViT-Small 69.37 89.79 / 21.67 4.6
CaiT-XXS-24 73.99 92.06 / 11.77 2.5
CaiT-XXS-36 74.36 92.41 / 17.11 3.8
SwinV2-T 81.76 95.61 / 27.57 5.9

CP-CNN

N=16, C=2 91.22 95.28 85.75 22.21 3.4
N=16, C=4 91.71 95.43 82.19 22.21 3.4
N=16, C=6 91.99 96.34 83.01 22.21 3.4
N=16, C=8 92.41 96.78 83.01 22.21 3.4
N=16, C=10 94.43 96.65 83.28 22.21 3.4
N=16, C=12 92.54 96.29 83.56 22.21 3.4
N=16, C=14 92.65 96.60 84.11 22.21 3.4

number of parameters and flops. It is observed that CNNs generally exhibit
superior performance compared to ViTs. This can be attributed to the induc-
tive biases in CNNs, which are essential in scenarios with a limited number
of training samples. This is also suggested by the observation that SwinV2-T,
which incorporates inductive biases, outperforms other ViT models.

Our proposed CP-CNN model achieves state-of-the-art performance com-
pared to other CNN-based methods, demonstrating its superiority in terms of
accuracy. Specifically, our CP-CNN outperforms baseline models in all settings
on the CIFAR-10 dataset. For the NCT-CRC dataset, our CP-CNN model
achieves higher accuracy compared to both CNNs and ViTs, except for sparse
settings with only 2 or 4 core nodes. Furthermore, on the INBreast dataset, our
sparse CP-CNN model with 2 core nodes achieves state-of-the-art performance.
Importantly, our CP-CNN model’s superior performance is achieved while re-
quiring a comparable number of parameters and flops as other models. Thus,
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the proposed CP-CNN can be a promising solution for image classification
tasks, offering both high accuracy and efficiency.

It is also noted that our CP-CNN model outperforms the RegNet model
which is also based on the exploration of design space of neural architecture.
This indicates that the brain-inspired core-periphery design principle may be
more generalized than the empirical design principles as those in RegNet.

6.5.2 Sparsity of CP Graph
The number of core nodes c controls the sparsity of the generated CP graph.
More core nodes indicate the dense connections in the CP graph. In this sub-
section, we investigate the effects of CP graph sparsity on classification perfor-
mances.

As illustrated in Table 6.1, we fix the number of total nodes to 16 and vary
the number of core nodes from 2 to 14 in steps of 2, resulting in graph sparsity
ranging from 0.125 to 0.875 with an interval of 0.125. For the CIFAR-10 dataset,
we observed an increase in classification accuracy with the increase in the num-
ber of core nodes, reaching a peak with 14 core nodes (sparsity=0.875). It is
probably because a dense graph increases the capacity of the CP-CNN model,
so it can represent more complex relationships. In contrast, for the INBreast
dataset, the sparsest CP-CNN model (2 core nodes, sparsity=0.125) yields the
best performances. This may be due to the dataset having only thousands of
training samples. A large and dense model may suffer from the overfitting prob-
lem, which reduces performance. For the NCT-CRC dataset, the performance
increased with sparsity, with the highest accuracy achieved at a sparsity of 0.5.
The accuracy slightly decreased with a more dense graph. This may be because
a sparse model with low capacity may not be able to represent the complex re-
lationships in the dataset, while a dense model may overfit. At a sparsity of 0.5,
the right balance between model capacity and dataset complexity was achieved.
Overall, the sparsity of the CP Graph can affect the capacity of the CP-CNN
model and, thus, the performances on different datasets. Despite this, the CP-
CNN model still has comparable and superior performances compared with
baseline models.

6.5.3 Comparison with Random Graphs
To validate the effectiveness of the CP graph, we replace the CP graph in the
CP-CNN model with two random graphs: Erdos-Renyi (ER) graph (Erdos,
Rényi, et al., 1960) and Watts-Strogatz (WS) graph(Watts & Strogatz, 1998).
ER graph is parameterized by P , which is the probability that two nodes are
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connected by an edge. WS graph is considered to have the small-world property.
In our experiment, we randomly generate 10 samples for ER, WS, and CP graphs
with the same sparsity. In Figure 6.2, we demonstrate the average classification
accuracy across the 10 samples for different graphs and sparsity.
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Figure 6.2: The comparison of ER, WS, and CP graph with varying sparsity
based on the CP-CNN model, in terms of accuracy, using the INBreast and
NCT-CRC datasets.

It is observed that the CP graph with a sparsity of 0.125 outperforms all
other settings and graphs on the INBreast dataset, whereas on other sparsity
settings, different graphs achieve the best accuracy. For the NCT-CRC dataset,
the CP graph outperforms the ER and WS graphs with sparsity values of 0.375,
0.5, and 0.625, and achieves the highest accuracy among all settings and graphs
with a sparsity of 0.5. These results suggest that the choice of graph type and
sparsity can significantly affect the performance of the CP-CNN model on dif-
ferent datasets. However, with specific sparsity settings, CP graph can provide
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superior performance compared to ER and WS graphs, i.e., the CP graph has
an upper performance bound than ER and WS graphs.

In addition, the CP-CNN models based on ER and WS graphs also have
competitive performances than the CNNs and ViTs in Table 6.1], highlighting
the potential of incorporating graph structures in CNNs for improving their
performance and generalization ability.

6.6 Discussion
Brain-inspired AI. The brain is a highly complex network of interconnected
neurons that communicate with each other to process and transmit informa-
tion. Core-periphery property is a representative signature of the brain net-
work. The results reported in the study suggest that incorporating the prop-
erties/principles of brain networks can effectively improve the performance of
CNNs. Our study provides a promising solution and contributes to brain-
inspired AI by leveraging the prior knowledge of the human brain to inspire
the design of ANNs.

Limitations. The sparsity of the CP graph can affect the capacity of CP-CNN
model. The experiments demonstrated that the optimal capacity of the CP-
CNN model may vary depending on the dataset and the specific problem being
solved. Line and grid search may help us to determine the optimal sparsity for
different datasets. However, how to effectively search the optimal sparsity is still
an opening question. In addition, the proposed CP-CNN model is evaluated
at a scale of 22 million parameters, which is suitable for relatively small datasets,
especially those in medical imaging scenarios. The performances of a larger-scale
CP-CNN model on a larger dataset, such as ImageNet-1K will be investigated
in the future.

6.7 Conclusion
In this study, we explored a novel brain-inspired core-periphery design principle
to guide the design of CNNs. The core-periphery principle was implemented in
both the design of network wiring patterns and the sparsification of the convolu-
tion operation. The experiments demonstrate the effectiveness and superiority
of the CP principle-guided CNNs compared to CNNs and ViT-based meth-
ods. In general, our study advances the growing field of brain-inspired artificial
intelligence by integrating prior knowledge from the human brain to inspire
the design of artificial neural networks.
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Chapter 7

Conclusion and Future
Works

This dissertation summarizes the major research works during my doctoral
study. The investigation of human brain function in chapter 2 facilitates our
understanding of the human brain’s functional architecture, i.e., a potential
core-periphery organization and the connections to its structural substrates. To
leverage such prior knowledge for designing ANNs, the connection between
ANNs and BNNs should be explored. The two embedding methods proposed
in chapter 3 represent the brain structure and function in embedding spaces,
providing a potential bridge to connect two areas. Based on the embedding of
human brain function, a Sync-ACT framework was proposed to coupe the vi-
sual representation and semantics between FBNs and ANNs. We also explored
human visual attention for training the neural network and proposed A brain-
inspired adversarial visual attention network to decode the visual attention di-
rectly from brain activity. Finally, we introduce a brain-inspired core-periphery
principle-guided CNN model which integrates prior knowledge from the hu-
man brain to inspire the design of artificial neural networks. To conclude, this
dissertation contributes to the emerging field of brain-inspired artificial intel-
ligence. Together, these contributions represent an important step forward in
the field of brain-inspired artificial intelligence, and provide a foundation for
future research and development in this exciting and rapidly evolving area.

The research works presented in this dissertation represent initial explo-
rations in the field of brain-inspired artificial intelligence. Despite the progress
made, there are still many promising avenues for future research. For instance,
large language models (LLMs) like ChatGPT have recently shown remarkable
performance in natural language processing (NLP) tasks, with 175 billion pa-
rameters, which is already comparable to the number of neurons in the human
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brain (around 100 billion). Investigating the connection between LLMs and
the human brain could prove to be a fruitful area of research. Additionally, fur-
ther efforts are needed to better represent human brain function, which could
lead to advances in the decoding of visual and linguistic information perceived
by the brain. Attention and memory are also fundamental cognitive processes
that are crucial to human brain function. Understanding how attention and
memory work in the brain and incorporating these processes into artificial neu-
ral networks to improve their performance are promising directions for future
research.
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