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ABSTRACT 

 Human seasonal influenza viruses cause significant morbidity and mortality on a global scale. The 

constant evolution and seasonal epidemic transmission of these viruses has allowed the virus to continually 

evade human population immunity and produce novel strains. To develop effective preventative measures, 

it is critical to leverage available data and algorithmic frameworks to accurately characterize and track virus 

evolution.  This body of work describes methods that aim to robustly characterize influenza virus evolution 

on the national and international scale. To perform this characterization each chapter interrogates and 

introduces different statistical methodologies for the study of influenza. In the first aim of this thesis, 

phylogeographic methods were employed to study the nature of viral diffusion in the United States. A data 

informed geographic partitioning schema was used to developed and leverages in jointly estimated discrete 

trait diffusion models over a decade of H3N2 influenza transmission. This work identified major geographic 

sources and sinks for influenza across seasonal epidemics and identified important predictors for the 

transmission process. The second aim of this work combines Bayesian phylogenetic methods with antigenic 

cartographies inferred using inhibition assay data in a generalized additive model to study the influence of 

different predictors, such as climate and demographic information, on the evolutionary landscape for 

multiple seasonal influenza viruses (H3N2, H1N1, B-Yamagata, and B-Victoria).  This work introduces a 

novel methodology for using phylogenetic metrics as a response variable to study the partial effects of 

antigenic space on virus evolution. In the third and final aim of this work antigenic cartographies for H3N2 

viruses are compared to assess the assays they are derived from. Antigenic cartography methods use log 

transformed titer data, traditionally hemagglutinin inhibition assay titer data, to study the differences 

between isolates of influenza. Newer neutralization-based assays have been introduced to address recent 

changes in HI assay sensitivity. This chapter compares the ordinations made by different assays as well as 

with phylogenetic distances and shows a stronger correlation between neutralization-based assays as well 

as low correlation with phylogenetic history across assays. Overall, this thesis provides a framework to 

make actionable inferences about influenza transmission and evolution. 
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CHAPTER 1 

INTRODUCTION 

 Seasonal influenza viruses are respiratory viruses that are implicated in annual global 

epidemics in humans which cause significant morbidity and mortality. Globally between 5-15% 

of the human population is infected with seasonal infauna viruses resulting in ~500 thousand 

annual deaths (1). Seasonal influenza epidemics are responsible for 9.2 - 35.6 million infections 

annually in the United States (2). Influenza viruses belong to the family Orthomyxoviridae and 

have a segmented single stranded negative sense RNA genome, and have four types, influenza A-

D (3). Human seasonal influenzas are comprised of two influenza A viruses (H3N2 and H1N1) 

and two influenza B viruses (B-Yamagata and B-Victoria).  These viruses cause several symptoms 

including but not limited to fever, cough, sore throat, and fatigue (4). The severity of infections is 

more pronounced in younger and older individuals as well as individuals with compromised 

immune function (5)(6)(7).  

At the cellular level, infection with influenza viruses is primarily facilitated by the Hemagglutinin 

(HA) and Neuraminidase (NA) surface proteins (8). The HA surface protein is responsible for 

cellular attachment where the receptor binding domain of the HA protein attaches to the sialic acid 

terminating surface receptors of the host cell to facilitate cellular attachment and invasion via 

membrane fusion endosomes. The NA surface protein allows for the release of newly formed 

virions via the cleavage of sialic acid/HA protein bonds (9). The process of antigenic drift allows 

influenza viruses to evolve and evade population immunity and vaccine coverage through the 

gradual accumulation of genetic changes over time in gene segments of the surface proteins (10). 
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Evidence shows differential rates of evolution in the head region of  HA protein as opposed to the 

stalk domain (11).  In addition to antigenic drift, the influenza viruses segmented genome allow a 

process called reassortment to occur resulting in “antigenic shift”. Reassortment occurs when two 

or more different virions with differing gene segments co-infect a given cell where their gene 

segments can mix, this results in the creation of hybrid virions containing different combinations 

of gene segments. This diversity in reassortant viruses allows them to evade previously developed 

population immunity causes zoonoses from avian/swine hosts to humans (12).  Human seasonal 

influenzas historically have origins in avian reservoirs of waterfowl where the process of 

reassortment is common (13). The zoonoses (infection jumping from a nonhuman animal to 

human) of these avian influenzas viruses has been observed to be facilitated by human reared 

swine populations which act as major reassortment vessels, the 2009 swine flu pandemic was 

caused by a reassorted H1N1 strain (called H1N1 pdm) which later became the strain that replaced 

the previously predominate H1N1 seasonal influenza (14).  

The emergence of novel strains of influenza virus by antigenic drift can result in increased 

transmission in a naive population (15). A measure of the transmission potential of a pathogen is 

the basic reproductive number R0 which is defined as the average number of secondary cases 

caused by a given infection in a susceptible population (16). The reproductive number for seasonal 

influenza has varied over time with a median value of 1.28, and major pandemics (1918, 

1957,1968, and 2009 pandemics) having median values between 1.46 and 1.8 (17). Viral sequence 

data is a key tool in understanding the evolution of influenza viruses where the rate of evolution 

over time can be estimated sequenced data that has associated temporal metadata. The intensity of 

sampling and genomic sequencing for seasonal influenzas viruses has intensified after the 2009 

swine flu pandemic, spurred by the adoption of major data sharing platforms such as NCBI and 
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GISAID for real-time genomic data sharing during epidemics (18)(19). The availability of 

sequence data for influenza viruses has grown as sequencing technologies have become cheaper 

and surveillance apparatuses were established. An example of the breadth of the sequence data 

that was generated is seen in the number of H3N2 genomes submitted to the sequence data sharing 

platform GISAID (Figure 1.1).  

Figure 1.1. Number of H3N2 genomes submitted to GISAID by collection date for isolates 

collected in the United States during epidemic seasons.  

 

The amount of sequence data generated daily during the epidemic season (typically between 

September and April of the following year) has increased considerably after the 2009 pandemic. 
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The importance and power of molecular surveillance became extremely apparent as genomic data 

began to be used to study both on finer and wider scales how viruses evolve over time and 

geographic space.  

When the collection of sequence data is further broken down by the constituent lineage (or clade) 

of the H3N2 subtype, the importance of the breadth of sampling becomes more apparent were 

circulating diversity is not restricted to a single lineage in each season (Figure 1.2). 

Figure 1.2. Number of H3N2 genomes submitted to GISAID by collection date for isolates 

collected in the United States during epidemic seasons, colored by the constituent clade of the 

isolate. 
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When attempting to perform phylodynamic analyses, responsible sampling strategies are critical 

in making meaningful and unbiased inferences. The amount of sequence data has grown over time, 

but the sampling is not uniform across the U.S. (Figure 1.3).   

 

Figure 1.3. Number of available sequences by U.S. State by epidemic season between 2011 and 

2020.  

Despite the greater magnitude of sampling over time, it is critical that appropriate subsampling 

methods are utilized to create uniform datasets with less geographic bias. In this time the collection 

of sequence-paired antigenic data, as well as environmental data is more widely spread and greater 
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in intensity than in the previous decades which has allowed for greater breadth of analysis to be 

performed. The Right Size sampling methodology proposed by the Centers for Disease Control 

and Prevention (CDC) and Association of Public Health Laboratories (APHL) attempts to address 

sampling biases by creating guidelines for the genomic and antigenic sampling of strains and their 

reporting to both the CDC and sharing in public repositories (20). 

The heterochronous sampling of viruses allows for the estimation of an evolutionary rate and 

allows for selection of an appropriate molecular clock model which describes the rate of evolution 

across the diversity of a phylogeny (21). The calculation of evolutionary rate, in terms of 

nucleotide substitutions per site and time, can be used as a proxy of antigenic drift within the 

population. Additionally antigenic data in the form of assay data from Hemagglutinin Inhibition 

(HI) assays and Focus Reduction assays (FRA) can be used to create antigenic cartographies where 

the change in antigenic units over time in the cartography is used as a measure of antigenic drift 

(22)(23). These laboratory assays allow for a measure of antibody reactivity to given isolates and 

transforms the value associated with the level of reactivity, the titer, into a measure of distance that 

can be used to estimate the Euclidean distances between isolates.  

The term “Phylodynamics” was coined by Grenfell et al. and refers to the use of phylogenetic 

history to infer the effects of population immunity and study the transmission dynamics of 

pathogens (24). Phylodynamic methods utilize a Bayesian approach to studying the evolutionary 

history of pathogens by allowing for the integration of different models of population evolution 

(Coalescent models), evolutionary clock models, and nucleotide substation models (21)(25)(26). 

The primary programmatic framework to carry out Bayesian phylodynamic analyses globally is 

the BEAST suite of programs. The BEAST program, which stands for Bayesian Evolutionary 
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Analysis Sampling Trees, has two distinct versions BEAST 1 and BEAST 2 which are unrelated 

in development which offer different tools and packages to augment phylodynamic analyses 

(27)(28).  

There has been a wide range of analysis that have aimed to use phylodynamic frameworks to study 

the evolution and transmission of influenza viruses. Previous work has attempted to correlate 

antigenic drift with the transmission using several different methods. Antigenic drift has been 

compared to weekly incidence purely though the use of Influenza-Like Illness data (ILI) where 

drift was estimated through the use of time-series data to estimate a measure of infective pressure, 

it was found that antigenic drift was non-uniform between years and that certain years showed 

substantially increased infection pressure due to new strains (29). The epochal nature of influenza 

virus evolution, where major phenotypic changers occur in a step-wise manner was explored where 

the genetic diversity within a given period was compared to the overall infectivity and it was found 

that the typical boom-and-bust nature of influenza epidemics occurs during a period when 

antigenic diversity grows and episodic reduction in diversity during antigenic cluster transitions 

(30). Other phylodynamic studies have also focused on the circulation of the seasonal influenza 

globally and found that that when global circulation estimated as the discrete trait transition rates 

between major geographic regions, was low, there was a coincident reduction in antigenic 

evolution (estimated calculating several measures of strain persistence) for A/H1N1, B-Yamagata, 

and B-Victoria viruses (31). The nature of major source populations for novel strains of influenza 

has been another major focus of phylodynamic analysis which have shown that shifting meta-

populations between major geographic locales might act as seeding regions for global epidemics 

(32). The evolutionary rate which was estimated as the nucleotide substitution rate was compared 

to the R0 which was calculated from the initial exponential growth rate estimated using parametric 
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growth models (33). Phylodynamic analyses have allowed for inferences about the size of 

pathogen populations through the  estimation of the effective population size (Ne) and the growth 

rate from coalescent-based phylodynamic analysis, these estimates can be treated as proxies 

number of infections and colonization of a given pathogen in a population (34).  

The objective of the work contained in this thesis is to understand the diffusion and evolution of 

seasonal influenza viruses across demographically, climatologically, and socially heterogeneous 

landscapes through Bayesian phylodynamic methods. Additionally, the evaluation of existing 

methods for the characterization of seasonal influenza molecular epidemiology and the proposal 

of novel methods is a major focus of this body of work. Seasonal influenza evolution is primarily 

marked by gradual antigenic drift in which a population gains immunity to introduced viruses over 

time. The United States is a country with many large metropolitan regions which host major hubs 

for international and regional travel which facilitate the introduction and rapid spread of n novel 

virus strains into vulnerable populations (35)(36). These regions have large populations and are 

typically densely populated. Previous characterizations of transmission history in the United States 

used phylogenetic analyses inferred from sequence data and antigenic characterization from 

Hemagglutination Inhibition (HI) assay data, on a global scale across many seasons (31). The 

pairing of genetic and antigenic methods has allowed for a more accurate estimation of 

transmission patterns between major demographic regions and can aid in determining regions that 

experience significant evolutionary pressures. These analyses can be further augmented through 

the inclusion of other data such as case numbers, transportation statistics, and climate data. The 

first experimental chapter of this body of work studies the effects population demographic factors 

and region of spread within the United States and how this impacts the evolution and transmission 

of influenza viruses. The second experimental chapter of this body of work characterizes the 
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evolution of seasonal influenzas in the context of the interruption of typical seasonal patterns due 

to the SARS-Cov-2 pandemic and aims to integrate phylogenetic data with antigenic data to 

characterize recent influenza evolution.  The third experimental chapter compares different 

laboratory assays utilized to antigenically characterize influenzas viruses and compare them both 

to each other and phylogenetic history. 

Chapter 2 of this dissertation takes a data informed approach to partitioning phylogeographic space 

to allow for the better characterization of the evolution of H3N2 influenza and the effects of major 

co-variates on the diffusion process. Quantifying the importance of different external factors on 

virus evolution is critical when trying to understand the transmission of important human 

pathogens like seasonal influenza viruses. Characterizing the evolutionary features of virus 

transmission can give measures of strain diversification and evolutionary pressures within a given 

geographic range and timeframe. Additionally, understanding the transmission of viruses across a 

large geographic range and determining key transmission regions is important in control efforts. 

In this chapter the geographic diffusion of influenza viruses within the United States is elucidated 

using discrete trait diffusion models. These discrete trait models are used to describe the 

geographic dispersal of viruses as a study of the phylogeography; the diffusion between geographic 

regions will be analyzed and the most significant transition rates can be described using the 

Bayesian Stochastic Search Variable Selection (BSSVS) (37). An important aspect of this study is 

the development of meaningful geographic regions to describe the diffusion process. Regions such 

as those created by the U.S. Census Bureau provide a geographic breakdown that is not necessarily 

data-driven and can be arbitrarily drawn (38). A regionalization schema for geographic discrete 

traits was developed, informed by state level influenza like illness data which was used in the 

creation of adjacency matrices for community detection algorithms. This community detection 
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approach can create regions that more accurately describe a geographic space with variable 

populations densities. The diffusion process for influenza viruses between different geographic 

regions can be affected by different environmental factors, the different metadata collected during 

the period of virus circulation was analyzed as evolutionary covariates through the Generalized 

Linear Model (GLM) (39) . The GLM allows us to determine the impact of a specific type of data 

i.e., mean temperature, population size, road coverage, and calculate a level of support for that 

data's inclusion in describing the diffusion process.  In addition to these data types, antigenic data 

in the form of HI assay data provided from the Centers for Disease Control (CDC) for assays 

performed before 2020 was used to create profiles of reactivity to vaccines across the study space 

through antigenic cartography. The working hypothesis of this work states that covariates relating 

to climate, population demography, and the antigenic profile of circulating viruses are the most 

consistent drivers of transmission and evolution across seasons.  This study identified the major 

drivers of evolution in influenza as climate and transportation factors, this has implications for 

future surveillance and resources towards important evolutionary factors and significant 

geographic locales of infection.  

The second experimental chapter, Chapter 3, explored the molecular epidemiology of seasonal 

influenza viruses for a contemporary dataset of influenza isolates for each seasonal influenza 

subtype between 2017-2022. Recent transmission of seasonal influenzas has been interrupted by 

the ongoing COVID-19 pandemic and understanding how this might have affected the evolution 

and transmission of seasonal influenzas viruses is important in making future determinations about 

public health interventions. Characterizing the evolutionary space for each subtype of seasonal 

influenza is important to determine whether influenza evolution was fundamentally affected by 

the introduction of another major respiratory pathogen. The availability of paired antigenic and 
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sequence data provides valuable information for the characterization of this evolutionary space 

and allow for the implementation of models to study the impact of different predictors on the 

evolutionary process. The generalized additive model (GAM) was used in this chapter to study 

antigenic evolutionary space (in the form of antigenic cartographies) as a function of phylogenetic 

distance for each isolate. The GAM offers a method to integrate metadata and estimate the effects 

of that metadata on the overall evolutionary rate.  The working hypothesis of this chapter posits 

that the interruption of typical seasonal influenza epidemic patterns due to the COVID-19 

pandemic has led to marked reduction in evolutionary rate and diversity in seasonal influenzas. 

The findings of this study illustrate that influenzas rates of evolution remained constant despite the 

disruption in the intensity of seasonal influenzas epidemics. Furthermore, this study introduced a 

new data integration method, via GAMs, that allows for the integration of phylogenetic history 

and antigenic cartography with secondary metadata to highlight major drivers of evolution and 

provides a novel framework for studying the evolution of influenza viruses using paired genomic 

and antigenic data.  

The third and final experimental chapter of this thesis, Chapter 4, examines the different antigenic 

assays and their resulting antigenic cartographies for H3N2 seasonal influenza.  Different 

neutralization based antigenic assay, FRA and HINT have been introduced characterize the 

antigenic characteristics of circulating H3N2 influenza viruses and the antigenic distance between 

isolates can be estimated using antigenic cartography methods, as is done for HI data. These 

neutralization assays were introduced due to the reduction in sensitivity of HI assay (40). The 

relative sensitivity and ability to discern major changes in antigenic space for each assay is 

important to determine to make better decisions regarding vaccine strain selection. The comparison 

of the antigenic cartographies and how ordinations differ between assays via the Procrustes 
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analysis allows for a quantification of differences and examine the importance of methodology 

when studying antigenic space. Additionally, the phylogenetic history of isolates that is paired 

with these antigenic cartographies is used to study the correlation of phylogenetic history with the 

different estimated cartographies.  The working hypothesis of Chapter 4 posits that antigenic 

cartographies of HI data will be less correlated with ordinations built for FRA and HINT assay 

data. The results of the analysis show that the HI assay is less correlated with the neutralization-

based assays, with the neutralization assays are better correlated to each other. Additionally, each 

of the antigenic assays were poorly correlated with phylogenetic distance, with neutralization 

assays showing the greatest overall correlation with phylogenetic history.  

This body of work presents important contributions to the fields of phylogeography and molecular 

epidemiology and ultimately will help to augment public health response to these major human 

pathogens.  
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CHAPTER 2: ANALYSIS OF SEASONAL H3N2 INFLUENZA DIFFUSION IN THE 

UNITED STATES, 2011-2020 
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Abstract 

Seasonal influenza virus epidemics in the United States cause significant morbidity and mortality 

every year. One of the pathogens which make up the typical influenza season is the H3N2 influenza 

A virus which typically co-circulates with the H1N1, B-Yamagata, and B-Victoria influenza virus 

sub-types. An important aspect of understanding influenza evolution is the characterization of 

diffusion patterns across large geographic space to understand which locales need significant 

attention and resources for mitigation strategies. In our study, we employ a data-driven geographic 

partitioning schema to study the phylogeographic diffusion patterns of H3N2 seasonal influenza 

viruses across the United States in the past decade. We integrate genomic sequence data and 

associated metadata and antigenic assay data to characterize the transmission patterns across the 

United States between epidemic seasons. We used influenza-like-illness data to create a 

transmission network across the United States and then employed community detection algorithms 

to create the optimal regional schema for use in a jointly estimated discrete trait diffusion model 

across multiple seasons. The regions defined through community detection algorithms differed 

from administratively defined regions such as the U.S. Health and Human Services and U.S. 

Census regions. Our model shows a significant diffusion activity from regions in the Western and 

Middle Atlantic United States to other sink regions. Furthermore, we aimed to study the influence 

of different co-variates on the diffusion process. We organized antigenic, climate, demographic, 

and transportation metadata based on the regional schema developed and employed a Generalized 

Linear Model to study the co-variate influence on influenza diffusion. We found that antigenic 

distance to vaccine candidates for circulating strains, climate incidences of temperature, population 

density at the origin region, and airline passenger numbers were positively correlated with the 

diffusion process. 



   

15 

Introduction 

Seasonal influenza virus epidemics in the United States cause 9.2-35.6 million infections and 

140,000 - 710,000 hospitalizations each year (2). Influenza viruses are single-stranded negative 

sense RNA viruses belonging to the family Orthomyxoviridae with three major types that cause 

respiratory disease in humans; types A and B are responsible for seasonal epidemics while type C 

is less prevalent in human populations (41). Influenza seasons are characterized by the co-

circulation of two influenza A virus sub-types (H3N2 and H1N1pdm) and two influenza B virus 

sub-types (B-Yamagata and B-Victoria). A major factor in the evolution of influenza viruses is the 

gradual accumulation of mutations over time leading to the emergence of new lineages in a process 

called antigenic drift (42)(31)(43). These gradual changes not only allow the pathogens to 

continually burden the public health but also provide an opportunity for the spatiotemporal 

characterization of transmission among populations using molecular epidemiology approaches 

(44). 

Phylogenetic models can be used to study the transmission and evolutionary dynamics of a 

pathogen across space and time by assessing the gradual changes in pathogen genomes. These 

changes between pathogens are used to estimate the relatedness between collected virus isolates 

and can divulge larger-scale immunological and epidemiological characteristics, the use of these 

phylogenetic methods and the addition of different mathematical models has broadly been 

described as “Phylodynamics” (24)(45). Data for virus isolates, such as the time and place of 

isolation, can be used to augment models based solely on molecular sequence data to characterize 

the diffusion of the virus more accurately between different geographic locations by modeling 

them as discrete traits across a phylogenetic history (46)(47)(48). Additionally, when 

implementing geographic discrete trait diffusion models, data on the place of isolation are used to 
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create phylogeographic discrete trait models and the impact of co-variates on the diffusion process 

can be investigated (37)(49). Modeling the diffusion process using discrete traits allows the 

estimation of rates of transition from any given state to another. In this context, transitions between 

locations as discrete traits correspond to the geographic diffusion of virus strains, a cross-scaling 

inference of virus transmission (48). Past characterizations of population dynamics in H3N2 

influenza viruses indicate fluid population dynamics where shifting meta-populations are 

responsible for the emergence of seasonal epidemics (32). Other characterizations of H3N2 

population dynamics indicate a major source region that acts to seed epidemics in the other areas 

seasonally (50)(51). The majority of phylogeographic studies typically aggregate study space into 

administrative levels. These levels can vary from smaller scales such as the city/town and can be 

larger at the state/country level (52)(53). Population structure can have profound effects on the 

transmission of pathogens and their epidemic behavior. Previous work has shown that urban 

centers and areas of high population density are positively correlated with incidence of influenza 

viruses (54). A major limitation of using administrative boundaries is that population structure and 

travel within a region or between regions might be obscured. An example of this lost signal would 

be highly mobile populations which travel for work across administrative borders (55). Previous 

studies in public health and livestock health have sought to create “regionalizations” using spatial 

models that consider different data to capture regional variation and identify major regions of 

increased incidence for a given disease, but these have not been applied to phylogenetic discrete 

trait models (55)(56)(57)(58). Taking a data-informed approach to the regionalization of 

geographic transmission space can potentially create more meaningful regions that account for 

differences in regional characteristics such as population density and connectedness. 
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In this study, incidence data in the form of Influenza-Like Illness (ILI) count was used to create a 

data-informed regionalization schema for phylogeographic discrete trait diffusion modelling and 

the characterization of co-variate influence on the diffusion process of H3N2 influenza virus in the 

United States. We estimated a case data-informed regional structure across a decade of influenza 

transmission, which partitioned the United States into regions. The results of this study suggest 

that a data-informed region schema provides granularity to the source-sink dynamics described via 

the discrete trait diffusion process. The regions determined were then used to estimate the influence 

of different data types on the diffusion process, indicating the strongly supported importance of 

population demographic structure and climate. 

Materials and Methods 

Sequence data collection and primary phylogenetic analysis 

Sequence data sets for the hemagglutinin segment and associated metadata was downloaded from 

the public repository GISAID for H3N2 viruses for each season in the United States between May 

2011 and April 2020 (67). The timing of the season was determined using case data observing the 

initial rise and fall of the epidemic (generally between September of the start year and May of the 

following year). Multiple sequence alignment was performed for each season data set using 

MAFFT v7.453, and visual inspection of alignments was conducted using Geneious v 9.0.5 

(68)(69). 

Initial phylogenetic trees were created using the maximum likelihood program IQTREE v 1.6.12 

for each season data set using all available sequence data (70). The maximum likelihood trees were 

then used to sub-sample the sequence data using the Phylogenetic Diversity Analyzer (PDA) 

program (v.1.0.3) to create data sets for use in Bayesian phylodynamic analysis by creating subsets 
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which preserve clade diversity across the phylogenetic tree (71). The tree construction and 

temporal outlier detection process was performed for each season subset to identify and remove 

outliers. The temporal outliers and the “clockliness” of each of the season datasets were analyzed 

through root-to-tip regression using TempEst v 1.5.3 (46). 

Antigenic Cartography 

HI assay titer data for H3N2 influenza isolates collected in the United States between 2011 and 

2020 was provided from the Centers for Disease Control. The lineage of the isolates analyzed with 

paired antigenic data was determined using the Nextclade program (72). The “Racmacs” R 

package was used for the calculation of antigenic cartographies. The Euclidean distance between 

vaccine candidates and antigens within the cartography were calculated with an in-house python 

script. The Euclidean distances to vaccine candidates was further used in and implementation of 

the generalized linear model described below. 

Multiple season phylogenetic tree estimation 

To reproduce and confirm the seasonal epidemic behavior of H3N2 in the United States an initial 

Bayesian phylogenetic analysis was carried out to estimate the effective population size over time 

via the Skyride coalescent. All following Bayesian phylogenetic reconstructions and analyses were 

performed using BEAST v 1.10.4 (27). To create a multi-season phylogeny, a sub-sample of 150 

sequences were taken for each season using the PDA as well as two independent random samples 

of 150 sequences each (Table S4). Initial phylogenetic reconstruction was performed for this multi-

season dataset using IQTREE v 1.6.12, and temporal signal and outliers were diagnosed using 

TempEst v 1.5.3. Bayesian phylogenetic reconstruction was performed using the SRD06 codon 

partitioning model, the GMRF skyride coalescent, and a lognormal relaxed clock (73)(74)(75). Six 
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independent Markov Chain Monte Carlo (MCMC) runs were performed with a chain length of 100 

million states, sampling every 10,000 states. The results of these runs were visualized in Tracer 

v1.7.2 and runs with inadequate effective sampling score (ESS) were discarded; an ESS above 200 

is generally accepted as an adequate score and indicates proper mixing in the Bayesian algorithm 

(76). The three best runs were selected, which maximized the combined ESS score. The runs were 

combined using LogCombiner v1.10.4 for both log and tree files, 10% burn-in was removed, and 

the runs were re-sampled at a frequency of 30,000 states to produce a posterior set of 9,000 trees 

and a log file with the corresponding 9000 states logged. The maximum clade credibility (MCC) 

tree was estimated using the posterior set of trees though the program TreeAnnotator v1.10.4, 

using annotation cutoff for nodes with at least 95% posterior support. These files were used in 

Tracer v1.10.4 to estimate the effective population size over time using the GMRF Skyride 

reconstruction tool. 

Empirical tree set estimation 

Empirical tree sets of 500 posterior trees were created for further analysis of discrete trait diffusion. 

These empirical tree sets were created for each season data set, and identical sequences were 

removed, retaining one representative sequence. Bayesian phylogenetic reconstruction was 

performed using BEAST v1.10.4, a chain length of 100 million states sampling every 10000 states. 

The SRD06 codon partition model was chosen as the nucleotide substitution and codon 

partitioning model. The Gaussian Markov Random Field (GMRF) skyride coalescent was used as 

the population model. Following temporal analysis of the ML trees, an uncorrelated relaxed clock 

model was used for the temporal model. The rate of nucleotide substitution observed in primary 

Bayesian phylogenetic analysis of the multi-seasons dynamics was used to set prior rate of 10^-3 

substitutions/per site/per year for seasonal influenza, therefore a ucld.mean prior of 0.0033 was 
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used. Six runs were performed, and the four best runs with appropriate parameter estimations and 

adequate ESS were chosen to create an empirical set of 9000 trees by re-sampling at 40000 states 

and removing the burning of 10 million states from each run. The empirical tree set of 9000 trees 

was down sampled to 500 posterior trees for use in further phylogenetic analysis. 

Regionalization using incidence data 

Data for the ILI activity at the state level in the United States were downloaded from ILInet. Due 

to reporting policies at the state level, ILI data for the state of Florida was requested directly from 

the Florida Department of Public Health. 

We used the ILI incidence data to explore clustering using spatial scan statistics with SaTScan™ 

v 9.6 (77). The data were fit to each week’s estimates separately as to only assess the spatial 

autocorrelation. The scan statistics were estimated assuming a Poisson distribution probability 

model with rates consisting of ILI cases per total patients seen in each week. We used the clusters 

detected by this algorithm to generate an adjacency matrix representing the pairwise frequencies 

of co-occurrence within clusters. Using the adjacency matrix to represent the regional network of 

the states, we then assessed the modularity of the network and implemented the Louvain 

community detection algorithm (78). Communities, i.e., possible divisions within the network, 

were iteratively created by combining adjacent nodes and assessing the resulting effects on the 

network modularity. The community detection algorithm was used twice in a hierarchical fashion; 

that is, we first implemented the Louvain algorithm on the entire network, and then, we re-

implemented the algorithm on the detected communities separately to identify sub-communities. 

The communities that were detected using these methods were used in the phylogeographic 

analysis for discrete trait diffusion. 
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Newman and Girvan (2004) define the modularity of a weighted network as: 

� = 1
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The regions that were developed using the Louvain method were used in downstream 

phylodynamic analyses of discrete trait diffusion and will be referred to as the “Louvain” regional 

schema. 

Discrete trait diffusion BSSVS 

To study the viral exchange between geographic locations an asymmetric substitution model for 

discrete traits was employed using a non-reversible continuous time Markov chain for the 

regionalization schema defined below for every season in the study space. 

The taxa were labeled according to a place of isolation metadata available with molecular sequence 

data from GISAID, this metadata was used to categorize sequence data into regions based on the 

data-informed regionalization schema described previously (Louvain schema) and two 

administrative regions schema. The administrative regions used in this study are the Health and 

Human Services (HHS) regions and the U.S. Census divisions (79)(38). Broader regions (< 6 

distinct regions) were excluded from further analysis due to the lack of characteristic value. 

To determine the most parsimonious diffusion network and reduce the number of rates to only 

those with significant non-zero transition rates, the BSSVS was utilized (37). The level of support 
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for each transition was calculated using the BF support, the program SpreaD3 v0.9.7 used to 

calculate this BF support (80). The relative significance and support of a given rate is determined 

by the value of the BF where the following ranges apply BF > 3 substantial support, BF > 10 strong 

support, BF > 30 strong support, and BF > 100 decisive support. The median transition rates and 

the Bayesian credible interval (BCI) were calculated from the non-zero actual rates of the BSSVS 

log files using the python module PyMC (81). 

Generalized Linear Models 

The GLM was used to determine the importance of a given co-variate on the diffusion dynamics 

between regions. The GLM was implemented using a jointly estimated diffusion matrix calculated 

via the joint estimation method described previously for the BSSVS. The following schema was 

used for each regional schema. 

The joint matrix of across multiple seasons, �	
 is defined: 

�	
 = ∑��� + ��+. . . ��� / n 

Where �� represents the number of distinct discrete trait diffusion matrices, one for each season 

in this analysis. 

And the GLM is implemented as a function of this joint matrix: 

log��	
� = !���log�"1	
� + !���log�"2	
� + … !���#log�"$	
� 

Where ! represents the coefficient, � represents the the binary inclusion/exclusion indicator value, 

and "$	
 represents the predictor. Here n represents the number of independent predictors analyzed 

in the GLM. 
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The following data was downloaded at the state level and was further organized into respective 

regions based on the regional schema. Transportation data was collected from the U.S. Department 

of Transportation’s Bureau of Transportation Statistics. The Monthly Transportation Statistics data 

set was utilized (82). Population estimates were collected from the U.S. Census Bureau for each 

state using the “State Population Totals and Components of Change: 2010-2019” data set (83). 

The “nclimdiv” data set was utilized to download and organize climate metrics at the state level 

(using averages across the area of a given state) for the different regionalization schema used in 

this study. NARR data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from 

their Web site: https://psl.noaa.gov/cgi-bin/data/timeseries/timeseries1.pl. The ILI incidence data 

collected previously was used in this analysis as well and was organized respectively. The mean 

antigenic distance to vaccine candidates previously described were calculated for each 

regionalization schema, additionally the inter-region distance was calculated. 

All data were filtered for the relevant time period of a given epidemic season for each season 

between 2011 and 2020. Each predictor was organized for a given influenza season and the average 

of the values across all seasons in the study was used in the joint estimation GLM for each 

predictor. The full list of predictors and their descriptions can be found in Supplemental Table S5. 

Batch predictor data sets were created for each regionalization schema. The GLM was 

implemented in BEAST v 1.10.4 using an MCMC chain of 10 million states, logging every 1000 

states. Three independent runs were performed and combined. The results were summarized and 

visualized using in-house scripts (provided in GitHub). 
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Investigation of model fit 

To investigate model fit the marginal likelihood estimation was performed using the generalized 

stepping stone sampling method which combines the methodology of path sampling and stepping-

stone sampling methodologies to yield reliable estimates of the log marginal likelihood (84)(85). 

The MLE was used to calculate the BF support for a given model compared to another model. The 

log marginal likelihood of two models can be compared using the framework described by Kass 

and Raftery (1995) where: 

log(BF) = log(M1)-log(M2)) 

Additionally, to investigate the fit of the regionalization models in a phylogenetic context a 

Bayesian association of tip-states (BaTS) analysis was performed using the program Befi-BaTS v 

0.1.1 (86). 

All analytic scripts and BEAST XML files used for described analyses can be found at the 

following github repo: https://github.com/ldamodaran/US-H3N2-Diffusion-2011-2020 

Results 

Regionalization of the United States 

The initial pass of the community detection algorithm used for ILI data collected between 2011 

and 2020 resulted in 3 large clusters which, in a secondary iteration, were further subdivided to 

detect 7 sub-clusters (Figure 2.1, Figure S2.1).  
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Figure 2.1. Map of the United States colored by geographic grouping schema. The maps for the 

HHS and U.S. Census Division show administrative regions created by the United States 

government. The Louvain map shows regions created using the Louvain community detection 

algorithm applied to incidence data for influenza. 
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These sub-clusters (C1-C7) are the regions of the Louvain community detection algorithm which 

will be referred to as the Louvain schema. All regions were continuous except region C2, which 

separates the mid-Atlantic states from North and South Carolina between the state of Virginia. 

This non-contiguous region might be the result of population movement differences across the 

eastern seaboard, where the DC metro area, which brings in commuters from several surrounding 

states, might act as an abnormal centroid of travel. Additionally, the existence of a major airport 

hub on the North Carolina/South Carolina border can act as a major point of connectivity to the 

middle Atlantic region, potentially causing the disjointed region. These regions show some 

similarities to the structure of the HHS and U.S. Census regions, but some regions show different 

subdivisions of states. For example, the western United States is divided into two and three regions 

for the U.S. Census and HHS regions, respectively, whereas in the Louvain regional schema the 

western United States is a contiguous large region comprised of 10 states. 

When comparing the regional structure of data-informed regions to administrative regions, there 

are some similarities and differences depending on the administrative region being compared 

(Figure 2.1). In the broader data-informed Louvain region the large region C3, encompasses the 

western and upper-Midwestern regions which is divided in the U.S. Census regions. The U.S. 

Census regions divide the continental United States into four administrative regions, the region 

designated “South” in the Census regions is divided between states further south, which belong to 

the Louvain C1 region, and states which are part of Louvain C2, which are designated as the 

Northeast region. When comparing the different regionalization schema, the administrative 

regions have a smaller number of constituent states than the data-informed regions. This could be 

due to the relative sizes of populations between states where states with greater densities might 
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create better administrative regions while a regional schema formed based on infectious activity 

might have more regional fluidity due to travel. 

Phylogenetics of H3N2 across a 10-year period 

Phylogenetic reconstruction was performed for sub-samples of sequences from each epidemic 

season between 2011 and 2020. A Bayesian phylogenetic reconstruction was performed across the 

10-year period. The “ladder-like” structure of influenza evolution where selection for novel strains 

is evident by extinction of clades over time and the emergence of new clades from the most 

immediately persisting clade (Figure 2.2).  
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Figure 2.2. Genetic and antigenic analysis of H3N2 in the United States between 2011 and 2020 correlated with the geographic schema as defined in Figure 2.1. 

A) Maximum Clade Credibility tree of H3N2 isolates collected between 2011 and 2020 in the United States. The corresponding heatmap shows the geographic 

discrete trait associated for a given tip in the tree for three different geographic schema. Nodes with a posterior probability greater than 90% are annotated with a 

purple bar for the 90% BCI of the given node. B) Antigenic Cartography of H3N2 isolates collected between 2011-2020 in the United States. Isolates are colored 

by season of collection and the major vaccine candidates for the study period were labeled. C) Antigenic Cartography of H3N2 isolates collected between 2011-

2020 in the United States with isolates colored by respective clade determined using paired nucleotide data with the Nextclade program. 
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The temporal signal was analyzed, a nucleotide substitution rate of 4.587E-3 sub/site/per was 

observed with a tMRCA of 2010.392. The GMRF skyride estimates of the mean effective 

population size over time were visualized and captured the seasonal epidemic pattern with 

oscillating waves of infection which occur in the northern hemisphere, these correspond to 

oscillations seen in when visualizing ILI data at the state level across the study period (Figure 

S2.2-3). The tips of the phylogenetic tree were colored to reflect the discrete character associated 

with a given taxa for each geographic schema. All clades were heterogeneous for a given discrete 

trait which illustrates the diffuse nature of the virus across the United States (Figure 2.2a). 

In order to study the diffusion patterns across the 10-year period, the Markov jumps between states 

across the tree were analyzed for each geographic schema (Figure S2.3). The western U.S. showed 

the greatest source activity with the Louvain region C7, HHS region 9, and Census region 9 

showing the greatest number of Markov jumps origination from these regions to other regions. 

Particularly, the major sink region for each regional schema seemed to be the Southern Atlantic 

regions of the United States. The Louvain regional schema partitions the Southern Atlantic region 

and middle Atlantic regions by including North and South Carolina as a part of the major region. 

This might contribute to the major sink indicated as region C2. 

The marginal likelihood estimates were calculated for each geographical schema to determine 

statistical support for each discrete trait model. The Marginal Likelihood estimates (MLE) 

indicated that the Louvain geographic schema has slightly greater marginal likelihood support than 

the HHS and Census schema. The Louvain model had greater marginal likelihood support (loglik 

= -71246.42 BCI: [-94484.94, -56708.76]) than the HHS (loglik = -71712.17 BCI: [-94515.89,-

57774.84]) and Census (loglik = -71342.15, BCI: [-94258.52, -57247.86]) models. The Bayes 

Factor (BF) support between the Louvain model and the HHS and U.S. Census models was 465.75 
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and 95.73 respectively. A log BF support > 100 is considered overwhelming support while a BF 

support > 20 is considered strong support (Kass and Raftery (1995))(59). 

To further investigate the fit of the discrete traits to the phylogeny, the program BaTS was 

employed and showed a lower mean association index score (AI) and mean Fitch parsimony score 

(PS), 108.2 and 773.81 respectively compared to the HHS (AI: 119.97, PS: 888.55) and Census 

regions (AI: 117.82, PS: 862) (Table S1-S2.3). The maximum exclusive single state clade size, 

which describes the maximum frequency of a given discrete trait on clades consisting only of taxa 

with one discrete trait, showed that the Louvain method had the largest observed mean value (4.6) 

compared to the HHS (3.97) and Census regions (3.62). The larger mean value indicates that 

transmission events that were linked closely in time were also captured in the regional structure of 

the schema through the community detection algorithm. 

The data-informed regional schema developed shows similar statistical support to the 

administrative regions used. Administrative regions are developed centering around major 

population centers and regions and encompass large areas of commerce which overlap with regions 

of transmissions determined using ILI data. This similarity in geographic space can potentially 

capture transmission routes across the community network in each area which allows for 

comparable phylogenetic reconstructions of regional schema. 

Antigenic Cartography of H3N2 across 10-year period 

Antigenic data in the form of Hemagglutinin inhibition (HI) assay titer values were used to create 

an antigenic cartography showing the antigenic distance between isolates (22). The resulting 

antigenic cartography shows the wide range of antigenic diversity occurring over the 10-year 

period (Figure 2.2b-c). When the isolates were visualized according to their geographic schema 
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there was no apparent geographic structuring for any of the regional schema (Figure S2.4-S2.6). 

Visual inspection of antigenic cartographies indicates temporal structuring when coloring isolates 

by epidemic season where isolates are grouped by season. The temporal structuring is most 

apparent when plotting each antigenic dimension by time and coloring isolates by season, inter-

epidemic isolates demarcate the space between epidemic seasons (Figure S2.9-S2.10). When 

annotating the northern hemisphere vaccine candidate (WHO) positions on the antigenic 

cartography there is an antigenic space ~2 antigenic units wide where most of the vaccines are 

situated. A given antigenic unit corresponds to a 2x dilution of antisera in the HI assay, this 

indicates that the antigenic space that the vaccines are found is tightly constrained. The overall 

antigenic space is large with about 8 antigenic units in space in both dimensions indicating a wide 

antigenic diversity. This antigenic diversity can also be compared to the diversity of lineages as 

determined by paired sequence data. The Nextclade program was used to determine the clade that 

a given influenza strain belongs to, when visualized in the antigenic cartography there is a wide 

diversity of lineages that co-circulate within epidemic periods. The persistence of clades such as 

3C.3a is evident when visualizing the antigenic dimensions against time (Figure S2.7-S2.8). The 

wide distance of circulating strains to the vaccine candidates indicates that there is a wide range of 

circulating viruses whose antigenic diversity is not captured with chosen candidates, potentially 

allowing for the persistence and escape of variants that can cause future epidemics. 

Discrete trait diffusion model of data informed regions of the United States. 

Discrete trait model across different seasons 

The individual season phylogeny was estimated to characterize each epidemic season individually 

and to jointly estimate a phylogenetic discrete trait diffusion model across the 10-year study space. 

The diffusion patterns across multiple seasons, each independently estimated, were examined, and 
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summarized to identify major sources and sinks of transmission across the United States. Broader 

regional schema (U.S. Census Regions and initial broad partitioning of communities) does not 

provide enough granularity to make strong inferences about the overall diffusion across the U.S. 

To observe the finer scale diffusion patterns, observation of the U.S. Census divisions, HHS 

regions, and Louvain 2 regions is more informative. When examining the Louvain 2 the clusters 5 

and 6, which encompass the Western and South Atlantic regions, are shown to be major sources 

for all other regions across the 10-year period (Figure S2.11). These results of the data-informed 

regions show similar source-sink patterns across the study space, when compared to the 

administrative regions where the Pacific and South Atlantic regions for the U.S. Census divisions 

are major sources to all other regions. The predominance of these major regions, which host large 

population centers and major transportation hubs for air travel which, would allow for greater 

diffusion to different regions across the United States and sustained transmission. 

Observing each season’s transition rates individually and comparing the results across seasons, 

shows the major source of the Western and South Atlantic regions, which was summarized across 

the 10-year period (Figure S2.11). By taking a season-by-season approach, the signal of the South 

Atlantic regions becomes more defined as opposed to the initial phylogenetic analysis of a large 

sub-sample across multiple seasons. In addition to the major sources, some seasons show source 

activity from clusters 1, 2, and 3 (Louvain 2), which encompass the Southern and Mideast regions. 

The seasons where clusters 1, 2, and 3 show source activity indicate that clusters 5 and 6 are major 

sinks as well. Clusters 5 and 6 of the Louvain 2 regions were previously identified as major source 

regions, and they may also act as important sinks due to their importance as major population 

centers and air traffic hubs. This can allow for a wider diversity of circulating viruses and a greater 

frequency of importations from other regions. 
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The Markov rewards were estimated for each regional schema jointly and the trunk reward 

proportion was visualized for each epidemic season (Figure S2.14-S2.16). The results indicate that 

transmission is seemingly sporadic between different regions during the epidemic season. The 

proportions of regions across the tree varies depending on the season where certain seasons are 

observed with periodic waves of high proportions of a given region are seen as opposed to other 

seasons where the proportion is variable throughout the season. 

Jointly estimated discrete trait model 

The jointly estimated discrete trait model allows for the characterization of multiple phylogenetic 

histories of transmission to be combined to create a more comprehensive characterization of the 

diffusion process. When jointly estimating the diffusion across all seasons in the study space, the 

major sources of transmission become evident. The jointly estimated BSSVS diffusion model 

across the 10-year period shows clusters 5 and 6 (Louvain 2) as the major sources, and this 

reaffirms the results seen which estimating individual seasons that showed the same clusters as 

major sources (Figure 2.3).  
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Figure 2.3.  jointly estimated BSSVS of epidemic seasons between 2011 and 2020 for the Louvain 

regional schema. The thickness of the chord corresponds to the discrete trait transition rate and the 

color corresponds to the Bayes Factor support. Only chords with a posterior probability of 50% or 

greater are visualized. Color of source and sink bins correspond to the colors seen in Figure 2.1.  
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These results show decisive support for the major sources, and the relative intensity of the mean 

transition rate is much greater for clusters 5 and 6. The Markov jump history was jointly estimated 

and showed cluster 7 was a major source population with the most jumps occurring from cluster 7 

to all other sink regions (Figure S2.12). The result of the jointly estimated Markov jumps for the 

HHS and U.S. Census division schema show the western region of the United States acting as 

major sources, Region 9 and Census Division 9 respectively. The jointly estimated BSSVS results 

for the HHS and Census Divisions show similar results to the Louvain model where western U.S. 

regions act as major sources, however the Southern United States (HHS: Region 4, Division: 

South-Atlantic, Louvain: Cluster 2) is seen as another major source population across all three 

regional models (Figure S2.13). The Southern United States and Western United States act as 

major sink populations across models. 

Jointly estimated Generalized Linear Model 

A GLM of antigenic, climate, population demographic, transportation, and epidemiological data 

allowed for the identification of important co-variates for the diffusion rates across multiple 

seasons for each regional schema. The Louvain GLM model indicated a positive correlation with 

climatological incidences of temperature, population density at the origin region, airline passenger 

numbers with the diffusion process and had BF > 3, indicating support for the conditional effect 

size calculated (Figure 2.4).  
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Figure 2.4.  Results from Generalized Linear Model implemented in BEAST v 1.10.4 for co-variates of the diffusion 

process between regions of the Louvain regional schema. The conditional effect size panel on the right indicates the 

level of inclusion for a given variable as a covariate for the diffusion process of the jointly estimated diffusion matrix. 

The posterior probability panel shows the level of posterior support for the inclusion of a given variable in the GLM. 

The solid blue line and dotted blue line in the posterior probability panel represent the calculated BF support equal 

100 and 3 respectively. The * denotes coefficient HPDs that are greater than 5 and less than -5.  
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When comparing across the different schema, this was a consistent result where the climate data 

associated with temperature and temperature indices was correlated with the diffusion process as 

well as the major demographic factors of population density and migration (Figure S2.17-S2.18). 

Previous studies have indicated that climate, particularly temperature and humidity, and flight 

connectivity play significant roles in the epidemic behavior of the virus and transmission across 

the country. The antigenic co-variates of antigenic distance to vaccine candidates and inter-region 

distances showed a generally negative conditional effect for the GLM of Louvain diffusion rates. 

This differed from both the HHS and Census Division results where the HHS GLM model shows 

half of the vaccine indices are positively correlated and half of indices are negatively correlated. 

The Census Division GLM model little effect (near zero) of the vaccine indices. 

Discussion 

This work demonstrates the need for approaches that estimate data-informed regions for use in the 

phylogeographic analysis. When trying to control for locales that are disproportionate in size and 

population density, it is important to use available information to create a cohesive network of 

infection, especially when looking at a given region’s smaller divisions such as those found at the 

precinct district, county, and state level. Information on the place of collection often suffers from 

a lack of consistent reporting and the reporting of broad regions in administrative units. These 

quirks of reporting can affect the inferences about transmission made between man-made borders 

as opposed to a more continuous space of transmission. The case data approach used in this study 

can also be used for the partitioning of the United States during an epidemic or pandemic to study 

the progression and regional dynamics of the disease and allow for targeted resource distribution. 
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A limitation of phylogeographic discrete trait methods is the simplification of a large area that can 

have complex internal transmission patterns, by using case data and drawing finer divisions within 

a larger region, these complex diffusion patterns can be observed and accounted for in a wider 

geographical model. An important limitation of this approach is the availability of sequence data 

for a given region that is being used. As sequencing technology becomes cheaper and practices of 

routine clinical isolate sequencing become more regularized, especially regarding the COVID-19 

pandemic, the lack of sequence data for a given region can be accounted for. As surveillance 

systems are developed to study the diversity and transmission of influenza and other pathogens, 

the joint estimation of phylogenetic histories allows us to study epidemics that are not directly 

linked over large periods of time and allow us to characterize important transmission patterns that 

occur frequently, these signals might otherwise be obscured by taking a season-by-season 

approach where sequence data may be lacking or less representative of a given population. 

The United States is a diverse country geographically, climatically, and demographically and this 

can present major challenges in understanding how these features can affect the evolution and 

transmission of pathogens in a complex system. Previous studies in North America explore the 

factors that relate to the transmission of influenza viruses in the United States and have found that 

temperature and precipitation heavily influence transmission (60). The effects of other major 

climate variables such as humidity have also been implicated in the transmission and seasonality 

of influenza viruses (51)(61). A major focus in the study of seasonal influenza virus transmission 

and evolution is the development of predictive models to forecast the emergence/prevalence of a 

given lineage in future epidemic seasons. Forecasting efforts aid the development of effective 

vaccines for potentially emerging lineages and can inform non-pharmaceutical control strategies 

(62)(63). When attempting to create models that predict the emergence of virus variants and the 
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potential of a lineage to dominate in a coming epidemic season, it is important to identify and 

include the major co-variates of transmission in a holistic and effective predictive model. As more 

robust data are made available, especially in regard to climate and transportation data, important 

inferences can be made about the importance of these factors in the overall transmission and 

evolutionary dynamics of the virus. 

The GLM has previously been used to identify important predictors of pathogen transmission such 

as air passenger flow in the study of global H3N2 influenza transmission and spatial distance 

between bat populations in the transmission of Rabies (49)(39). Our study reaffirms the previous 

findings of past research into drivers of influenza transmission, which found that climate variables 

such as temperature and humidity played a critical role in the epidemic behavior of the virus 

(64)(65)(54). Additionally, our results support previous studies which provide evidence of the 

importance of transportation in the transmission where air traffic has especially been seen as a 

major indicator (36)(35)(66). Other transportation data available from the U.S. federal government 

for Amtrak usage and highway miles driven also given important insight into less rapid but 

potentially important routes of transmission across state boundaries. We encountered difficulty in 

the somewhat-arbitrary-until-now choice of locations for discrete traits (primarily what scales are 

available and which are even feasible given sequence data). Sensitivity analyses when identifying 

which predictors are chosen (and their effect sizes) based on which regionalization schema are 

critical when using data-informed regions as opposed to administrative regions. 

Future work would augment this regionalization by attempting to source data that has a finer scale 

to case data (county, city, district level) and use these smaller divisions to better define the regional 

variation in cases and the overall social network. A finer administrative scale would also allow 

researchers to group these regions by geographic centroids using latitude and longitude data for a 
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given locale to try to eliminate the geographic bias that arbitrary state borders might create. These 

models can be further applied to other influenza sub-types and respiratory viruses such as 

respiratory syncytial virus and SARS-CoV-2 where incidence data and sequence data are available. 
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CHAPTER 3: GENETIC AND ANTIGENIC CHARACTERIZATION OF GLOBAL 

SEASONAL INFLUENZA EVOLUTION, 2017-2022 
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Abstract 

The evolution and transmission of seasonal influenza viruses on a global scale has been 

characterized using genomic data from virus isolates, laboratory tests, and epidemiological 

models. These methods allow researchers to understand major drivers of virus diversity and the 

drivers of epidemic behavior. Despite the wide assortment of available data associated with 

influenza transmission, methods that effectively combine different types of data to create a holistic 

representation are still lacking. In this study the recent evolution of seasonal influenza subtypes 

between 2017 and 2022 is described and the results from studying genetic data through 

phylodynamic modelling and antigenic cartography are combined to utilize antigenic assay data. 

The combination of phylogenetic metrics and antigenic cartography coordinates is achieved using 

generalized additive models (GAM). From these analyses it was observed that recent evolution of 

seasonal influenza is marked by less genetic diversity but consistent rates of evolution. 

Additionally, the implementation of the GAMs to study to association of phylogenetic distance to 

antigenic cartography identified major clades and geographic place of isolation for each influenza 

virus subtype. This analysis presents a framework for the delineation of virus evolution that can 

provide major avenues for the prediction of evolutionary patterns. 

Introduction 

Seasonal influenza virus epidemics present an important public health challenge causing 

significant morbidity and mortality on a global scale (87)(6). The viruses that are recognized as 

seasonal influenza belong to the family Orthomyxoviridae and include two type A influenza 

viruses, subtypes H3N2 and H1N1pdm09, and two type B influenza viruses, subtypes B-Victoria 

and B-Yamagata (41). This respiratory pathogen is responsible for seasonal epidemics that 

oscillate between the southern and northern hemispheres of the globe, correlating with the timing 
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of the winter months (51)(88)(31). With the emergence of the SARS-COV-2 virus and the ongoing 

COVID-19 pandemic human behaviors resulting from pandemic response have disrupted the 

transmission of these viruses and have potentially created important bottlenecks for the evolution 

and transmission of these subtypes (89)(90)(91). 

Characterization of the molecular epidemiology of seasonal influenza using genetic data has 

allowed for the inference of important evolutionary patterns and drivers of transmission. 

Phylodynamic methods which utilize a Bayesian framework for phylogenetic reconstruction and 

co-inference of different evolutionary models provide a conventional framework for molecular 

epidemiology of viral pathogens (44)(92). Studies using phylodynamic models have leveraging 

genomic data and associated metadata to make inferences about the evolution of seasonal 

influenza. These studies capture important facets of transmissions and evolution such as the boom-

and-bust cycle of major epidemics and the how the transitions between major lineages of influenza 

viruses are affected by cluster specific immunity and the level of population immunity to a given 

lineage (30)(93). Phylodynamic models have also been used to understand the transmission of 

seasonal influenza on different geographic scales. Additionally, have been used to identify major 

locations that serve as source populations for epidemics as well as the drivers of global migration 

patterns (50)(32)(49). 

In addition to genetic data, antigenic data in the form of hemagglutinin inhibition (HI) assay titer 

data has allowed for the estimation of antigenic space between different influenza isolates using 

traditional multidimensional scaling (MDS) of titer data for isolates against different antisera 

(22)(94). These traditional MDS methods allow for the definition of evolutionary space using 

biological measure of immunity to influenza infection and add important information about virus 

evolution when compared, contrasted, and added to genetic characterizations of isolates through 
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phylogenetic methods. The introduction of models such as the Bayesian MDS model, further aim 

to better utilize available HI data by modeling variability in testing conditions and virus 

immunology, providing comprehensive evolutionary analysis with paired genetic data (95). 

Several studies have been conducted that pair different genetic data, associated metadata, and 

antigenic data with the aim of better representation of the evolutionary history of viruses and other 

organisms (96). The field of ecology has explored the use of pairing genetic data with landscape 

features through redundancy analysis which constrain geographic space in relation to genomic data 

(97)(98). Previous work characterizing dengue virus evolution has implemented the Generalized 

Additive Model (GAM) utilizing antigenic cartography data by using the distance between and 

within antigenic groups of as a function of time (99). Despite these studies, few studies have 

leveraged linear models, such as the generalized linear model and GAM, to associate phylogenetic 

measures and antigenic locations. 

In this study we use the antigenic coordinate for each isolate as a functional term combining both 

dimensions against a phylogenetic distance metric, the root-to-tip distance, as a response variable 

to allow for the paired genomic and antigenic inference of evolutionary space. We find that the 

GAM allows for the identification of major geographic locations and clades that have previously 

been correlated with seasonal influenza transmission and evolution. Furthermore, we characterize 

the molecular epidemiology and evolution of landscape and interrogate important features of 

recent influenza transmission and evolution. We find that despite a reduction in incidence and 

number of distinct lineages for each subtype there is a constant rate of evolution over time. 
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Materials and Methods 

Data 

Sequence data for the hemagglutinin protein and associated metadata for all H3N2 isolates 

collected globally between 2017-06-01 and 2022-06-15 was downloaded from GISAID (18). 

Sequence data was aligned using MAFFT and sequences causing gaps were removed after visual 

inspection of sequence alignments (68). Sequences with metadata indicating variant H3N2, 

chimeric sequences, experimental sequences, poor sequence quality were removed. Sequence 

data was then merged with associated antigenic data provided from CDC. Antigenic data sets for 

titer data collected after 2005 were used (2022-06-15), filtering for all related data for each 

subtype and available HI assay data, for H3N2 viruses HI and HI+ Oseltamavir assay data were 

combined. Only Isolates with paired sequence and antigenic data were used for further analysis. 

For each sub-type this resulted in the following number of characterized isolates: H3N2 

(n=2740), H1N1 (n= 4172), B-Victoria (n= 2006), B-Yamagata (n= 2388). The lineage and 

number of nucleotide and amino acid substitutions from reference were obtained using 

NextClade using the alignment for isolate of each subtype (72). 

MDS 

The RACMACS R program was used to create antigenic cartographies for associated antigenic 

data (22). Antigenic data in the form of HI assay titer data was filtered by date and duplicate 

pairs of antigen-sera pairs were removed, taking the first occurrence by test date of the given 

pair. All experimental antigen/sera were removed. The antigenic cartography was run for 100 

optimizations in two dimensions. The Euclidean distance for each isolate to the vaccine strain 

was calculated using a provided in-house python script. The vaccine candidate strains were 

determined using the WHO vaccine candidate recommendation strain (100). The nomenclature 
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for vaccine strains were abbreviated to the place of origin as first two characters and year of 

isolate as last two characters e.g. A/Hong Kong/2019 = HK19. 

Phylogenetics 

The associated sequence data for each antigen used in the MDS analysis for each subtype were 

used for Bayesian phylogenetic reconstruction using BEAST v.1.10.4 (27). The following 

models, priors, and parameters for were used for each subtype. The SRD06 codon partition 

model, uncorrelated relaxed clock, and constant coalescent model were used (73)(74). Maximum 

likelihood phylogeny inferred using IQ-TREE v.1.6.12 for each subtype were analyzed in 

TempEst v1.5.5 to provide mean values for normally distributed root height and ucld.mean priors 

(70)(46). Six independent MCMC with a 50 million chain length were performed. The results of 

each independent chain were analyzed using Tracer v1.7.2, and the three best runs were 

combined to ensure adequate effective sampling size (ESS) of parameters greater than 200 (76). 

The root-to-tip distances of all taxa for each sub-type MCC tree was calculated using the 

program TreeStat v.1.10.4. 

BMDS 

HI assay titer data previously described for each subtype of influenza used in traditional MDS 

was formatted for use in BMDS (95). The BMDS model was implemented in BEAST v1.10.4. A 

posterior set of 500 trees from previously described phylogenetic reconstructions of each subtype 

were used as an empirical tree set for use in the tree inclusive BMDS model. For each model 

described an MCMC chain length of 500 million steps was used. 

GAM 

The “mgcv” R package was used to estimate the GAM models for each subtype (110). The 

estimated root-to-tip distances for the Bayesian phylogenetic reconstruction of each subtype 
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were used as the dependent response variable used in the GAM. In implementation of the GAM 

antigenic coordinate data was used as a smooth were the x and y coordinates were combined in 

the following function: 

 

RTT = %(x,y) + %(predictor 1) +%(predictor 2) + … + ⍺ 

 

Where y is the root-to-tip distance response variable, %() represents the smoothing function, (x,y) 

represents the antigenic coordinates, and ⍺ is the model intercept. 

 

To incorporate categorical variables into our GAM the variables were set as ordered factors and 

the smooth function was applied to the coordinate as the parametric term for the factor. An 

example implementation in pseudo code: (“gam(rtt ~ (x,y, by = factor))”). An interaction term 

between x and y coordinate is implemented in the model which allows the terms to be treated 

together and using a categorical-continuous interaction (i.e, the by= form) allows us to 

interrogate the different factors of a given categorical trait for isolates such as place of isolation 

or constituent clade. 

 

All code and XMLs used in this analysis can be found in the following Github repository: 

https://github.com/ldamodaran/Influenza-antigenic-2017-2022 
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Results 

Bayesian phylogenetic reconstruction and Multidimensional scaling 

Nucleotide sequence data for the hemagglutinin protein and paired antigenic data for isolates 

collected between 2017-06-01 and 2022-06-01 were used to reconstruct the phylogeny and 

antigenic cartographies for each seasonal influenza subtype (Figure 3.1).  
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Figure 3.1. Antigenic and genomic characterization of seasonal influenza subtypes globally between 2017 and 2022. The results of multidimensional scaling for HI assay titer 

data are shown with the vaccine candidate isolates marked by dashed line and abbreviated name/year, isolates are colored by clade as designated by genomic data using NextClade. 

The corresponding time-scaled maximum clade credibility Bayesian phylogenetic reconstructions for the HA protein of each subtype is seen below the corresponding antigenic 

cartography with the lineages of each major clade colored with legend. The 95% BCI for nodes with a posterior support of at least 70% were visualized with red bars. 
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Bayesian phylogenetic reconstruction using BEAST for each subtype showed that the time to most 

recent common ancestor for each subtype was within 3-5 years of the oldest isolate consistent with 

seasonal influenza evolutionary pattern, H3N2: 2015.578 (BCI: 2012.421, 2014.6566), H1N1: 

2015.317 (BCI: 2014.7136, 2015.9504), B-Victoria: 2015.164 (BCI: 2014.2814, 2015.9503), B-

Yam: 2013.29 (BCI: 2012.0103, 2014.6456). Nucleotide substitution rates (substitutions/site/year) 

were also consistent for each subtype, H3N2: 5.139 x 10-3 (BCI: 4.7588 x 10-3, 5.5204 x 10-3), 

H1N1: 5.66 x 10-3 (BCI: 5.377 x 10-3, 5.925 x 10-3 ), B-Victoria: 2.626 x 10-3 (BCI: 2.417 x 10-3 , 

2.846 x 10-3), and B-Yamagata: 2.881 x 10-3 (BCI: 2.6491 x 10-3, 3.1225 x 10-3). When isolates 

were colored on the phylogeny by genetic lineage, as described by Nextclade, the clear separation 

of clades is seen for each subtype. Upon visual inspection of corresponding antigenic 

cartographies, constructed using traditional MDS, there is some separation in antigenic space 

between different genetic lineages for each of the subtypes. Of note, B-Yamagata only has one 

constituent genetic lineage, the Y3 lineage. 

Bayesian Multidimensional scaling 

To further characterize the molecular epidemiology of seasonal influenza, the paired genetic and 

antigenic data were integrated into Bayesian multidimensional scaling (BMDS) frameworks which 

allow for the modelling of different antigenic constraints (95). Using previously described HI titer 

data and an empirical set of trees from prior Bayesian phylogenetic reconstruction (Figure 3.1), 

multiple BMDS models were implemented to define the antigenic space and estimate different 

measures of antigenic variability. The BMDS method allows for models that account for the 

variability in the reactiveness of ferret antisera and the reactiveness of the antigens themselves 

taking an empirical Bayesian approach to specifying the mean and variance of titers for both serum 

potency and virus avidity. The models that account for this variation are henceforth referred to as 
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“effects” models. Additionally, BMDS it allows for the modelling of drift in the antigenic space 

through the inclusion of a diffuse prior on the relative location of viruses and sera in cartographic 

space due to the potential for separate cartographies to have equal likelihood values with differing 

positions of tested antigens and sera. The results of the BMDS models showed some variation in 

the scale of antigenic units between models and across subtypes (SI Appendix, Figure S3.1). The 

antigenic cartographies for the BMDS model that includes the phylogenetic history showed the 

widest range in antigenic units for each subtype. When cartographies were annotated by genetic 

lineage, separation of antigenic space by was less pronounced for BMDS models of H3N2, while 

H1N1 and B-Victoria models showed greater distinction between major lineages. The results of 

antigenic parameter estimates showed that serum potency for H3N2 and H1N1 models with 

phylogenetic history were higher than all other models for other subtypes (Figure 3.2). Measures 

of virus avidity were generally similar across models and subtypes with a slightly wider 95% 

Bayesian credible interval for the H3N2 model with phylogenetic history. The overall diversity of 

multiple competing lineages and continued epidemic occurrence might account for the higher 

avidity in H3N2 viruses compared to other subtypes. Lower values for location drift were observed 

for H1N1 and B-Yamagata subtypes, this is consistent with the reported lower rates of antigenic 

drift seen in lineages during global circulation (31). 
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Figure 3.2. – Results of BMDS for each subtype and evolutionary model. The median value 

and the 95% BCI for serum potency, virus avidity, and location drift for each subtype and 

evolutionary model of BMDS implemented in BEAST.        
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Estimation antigenic drift 

To further investigate the evolutionary trends and quantify antigenic drift within the study space, 

the traditional MDS antigenic cartographies for each subtype were used to estimate the Euclidean 

distance for each isolate to the WHO recommended vaccine candidates isolated between 2017 and 

2022 (100). These results were used to estimate the antigenic distance of isolates from each vaccine 

candidate over time, annotating by the constituent clade and by the number of amino acid 

substitutions from reference (SI Appendix, Figure S3.2-S3.6). For H3N2 vaccine candidates the 

antigenic distance over time was positively correlated for the SW17, SA19, and HK19 strains 

(Pearson correlation: r 0.1 - 0.45) while the KS17 and CM20 showed negative correlations 

overtime (Pearson correlation: r = -0.13 and -0.041 respectively). For each of the vaccine 

candidates of H1N1 viruses there were significant positive correlations (Pearson correlation: r 

=0.42 - 0.6) with antigenic distance over time. B-Victoria isolates showed highest correlation of 

antigenic distance from vaccine candidate over time (Pearson correlation: r = 0.72). For each 

subtype there is considerable diversity in the number of clades represented before 2020, with only 

2-4 lineages persisting post-2020. The number of amino acid substitutions was greater for each 

subtype after 2020, indicating consistent antigenic drift over time. To further characterize the 

molecular epidemiology of seasonal influenza viruses the antigenic distance to vaccine candidates 

can provide an important measure of isolate relatedness to implemented vaccines and other 

circulating viruses. An antigenic unit represents a two-fold dilution of antiserum in the HI assay 

(22). Isolated viruses are considered similar antigenically if there is less than or equal to 4-fold  

titer difference when compared to vaccine strains (101)(97). Using this information as a guide, the 



   

54 

proportion of isolates for a given epidemiological week that are antigenically distinct from the 

vaccine candidate can be shown for each subtype (Figure 3.3). 

Figure 3.3. – Proportion of antigenically similar and antigenically different isolates to vaccine 

candidates by epidemic week. Proportion of global influenza isolates characterized antigenically that are 

antigenically different from the recommended vaccine strain, by CDC epidemic week for H3N2 and 

H1N1. Isolates that are antigenically different are defined as having a four-fold dilution in antisera (two 

antigenic units). The dashed red line represents the maximum proportion of the U.S. population (0.521) 

that is vaccinated against seasonal influenza (Data = CDC FluVaxView). The vertical dashed black line 

indicates when a given vaccine candidate was implemented.  
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Quantifying the level antigenic similarity for an isolate to given vaccine can indicate how robust 

sampling measures are for virus isolates and can show the breadth of diversity within the virus 

population. Importantly it can be observed that in most cases the vaccine greater than 50% of 

viruses characterized are antigenically distinct from the vaccine candidate. This is an important 

metric to consider as a wide diversity of circulating viruses allow for vaccine escaped lineages to 

persist and go on to seed future epidemics. Because this represents a global sampling of diversity 

it is important to note that in the inter-epidemic season period for the northern hemisphere, when 

the proportion of the population vaccinated is lowest, there are high proportions of virus isolates 

that are antigenically different from the vaccine, this naive population might allow for greater 

chance of genetically similar lineages to emerge. Additionally, it can be inferred that the increase 

in proportion of isolates that are antigenically different post-implementation of a vaccine candidate 

can be the result of the elimination of strains antigenically similar to the vaccine due to increase 

population immunity. The proportion of all isolates over the entirety of the study space that are 

antigenically different for a given vaccine candidates varied (SI Appendix, Figure S3.7). For 

influenza B-viruses all the samples characterized within the last 3 years were antigenically 

different from the vaccine candidate. Vaccine candidates for H3N2 showed a higher proportion of 

escape than H1N1 vaccine candidates, H1N1 vaccine strains WS19, HI19, and VI19, showed only 

~50% of isolates being antigenically distinct. 

Root-to-tip distances and antigenic drift 

In addition to the antigenic distances to vaccine candidates, another metric to study antigenic drift 

is the root-to-tip distance, which measures the cumulative branch lengths from given taxa to the 

root of a phylogeny and estimates genetic distance over time. For each subtype the number of 

nucleotide and amino acid substitutions from reference vs the root-to-tip distance was plotted 
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showing a significant (p < 0.05) positive correlation (SI Appendix, Figure S3.8). This result is 

indicative that the constant antigenic drift and rate of evolution that occurs in seasonal influenza 

is persistent. There are a higher number of nucleotide and amino acid substitutions for H3N2 and 

H1N1 viruses compared to B-Victoria and B-Yamagata. When the relationship between root-to-

tip distance and nucleotide substitutions was faceted by the constituent clade the Pearson 

correlation for all significantly supported lineages was positive (SI Appendix, Figure S3.9-S3.12). 

These different clades showed different ranges in correlation coefficients for each subtype, H3N2: 

Pearson Correlation R= 0.31-0.79, H1N1: Pearson Correlation R= 0.55-0.91, and B-Victoria: 

Pearson Correlation R= 0.42-0.71. 

Generalized additive model 

The root-to-tip distance can be further used as a measure of genetic evolution over time for each 

isolate in a phylogeny and can be paired with other data to make inferences about virus evolution. 

This allowed for the inference of the effects of different variables on the root-to-tip using the 

generalized additive model (GAM). The implemented GAM combined terms for the antigenic 

location of a given isolate to study the relationship between the root-to-tip distance and the 

antigenic cartography, different linear predictors, and metadata factors associated with the isolate. 

The results of the GAM showed that for each subtype different places of collection for the isolate, 

the constituent clade, and the number of nucleotide substitutions can be identified as major 

predictors of genetic evolution (Figure 3.4).  
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Figure 3.4. Results of GAM of root-to-tip distance to selected predictors. Predictors with highest F statistic value for place of 

isolation, constituent clade, and genetic distance metric for each isolate of each subtype are visualized. The color of across cartographic 

space represents the partial effect of the predictor where red indicates a positive partial effect and blue indicates a negative partial effect. 

For the total substitutions the confidence interval for estimated partial effect is shown.  
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The results for the GAM of each subtype identified predictors with strong support for the 

significance of smoothing terms and when preforming basis dimension checks, and identifies 

predictors that that have little to no support at all (Table S3.1-S3.8) The partial effects of the 

different predictors on each the response root-to-tip distance response variable for each subtype 

were visualized and indicate that certain genetic lineages, geographic locations, and metrics 

associated with have positive effects on areas to a given subtype cartography (SI Appendix, Figure 

S3.13-S3.28). The partial effects for the constituent clade of a given isolate of H3N2 were high for 

most clades, with the highest support for 3c.2a and 3c.2a1b.2a2 (F=67.22 and 60.34 respectively). 

The 3c.2a clade was a major clade that circulated early in the study space, the 3c.2a1b.2a2 clade 

arose pre-2020 and went on to predominate in subsequent seasons. Similarly, for H1N1 viruses, 

the 6B.1 clade was identified as the most supported clade within the subtype model (F=22.958), 

the second most supported clade was 6B.1A.5a.1 (F= 11.115) which was a major lineage that arose 

pre-2020 and persisted into subsequent seasons. Geographic partial effects showed that for H3N2 

viruses Oceania and North America had the greatest support, while H1N1, B-Victoria and B-

Yamagata indicated Asia, Oceania, and Africa. The highly supported partial effects of nucleotide 

substitution on the root-to-tip distance are consistent with previous results, of note for H1N1, B-

Victoria and B-Yamagata subtypes there is a plateau in the partial effect of nucleotide substitutions 

as the number of substitution increases. Diagnostics of the model fit were preformed and showed 

that models had good fit for each subtype. Quantile-Quantile plots of residuals showed strong 

linear relationship (SI Appendix, Figure S3.29-S32). 

Discussion  

The use of the GAM with measures of genetic evolution and antigenic coordinate data can 

potentially be used to predict the divergence of isolates from vaccine isolates in the absence of 
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robust testing by allowing for the prediction of novel coordinates from genetic measures such as 

the root-to-tip regression. The GAM is a powerful tool which can allow for the more robust use 

of antigenic coordinate data in the future. To accurately analyze antigenic space it is critical that 

the GAM and other methods that account for and analyze differences in antigenic ordinal space, 

such as the Procrustes rotation test and Non metric multidimensional scaling, are investigated for 

their use in paired genetic analysis (102)(103). It is important to recognize the importance of 

changes in the efficacy of HI assays in distinguishing H3N2 viruses. Recent changes to receptor 

binding domain of the HA protein through glycoslyation have reduced the sensitivity of the HI 

assay and has resulted in the introduction of alternative neutralization assays such as the focus 

reduction assay and HINT assays (40). Estimating antigenic cartographies with these different 

assays can for H3N2 viruses can allow for more accurate characterization of antigenic space for 

subsequent paired genetic analyses. 

The possible extinction of the B-Yamagata lineage is important consider in this analysis 

(90)(104)(105). Due to the lineages lack of genetic diversity as seen by it only having one clade, 

this might have played an important factor in its overall elimination when non pharmaceutical 

interventions (NPIs) were implemented. There is considerable evidence that NPIs play a major 

role in halting transmission of seasonal influenza which would allow for both restriction of 

available hosts and existing immunity and vaccination to effectively prevent further chains of 

transmission (106)(107)(108). 

Taken together, this analysis shows that there is still a constant rate evolution occurring in 

seasonal influenza viruses despite global pressures from COVID-19 and NPIs and that constant 

characterization of the molecular epidemiology of seasonal influenza viruses is important in 

adequately capturing important trends in evolution and transmission. Recently in the beginning 
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of the 2022-2023 northern hemisphere influenza season there has been a significant increase in 

influenza like illness activity with H3N2 viruses accounting for the bulk of influenza infections 

(109). It is important that these paired genomic and antigenic approaches are utilized by public 

health practitioners to robustly characterize and respond to the ongoing and growing burden of 

seasonal influenza epidemics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

61 

CHAPTER 4:  COMPARISON OF ANTIGENIC CARTOGRAPHY BETWEEN 

DIFFERENT H3N2 INFLUENZA VIRUS ASSAY TYPES  
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Abstract 

The antigenic characterization of seasonal H3N2 influenza viruses has been primarily achieved 

using the hemagglutination Inhibition Assay. In recent years changes in the binding affinity to 

surface proteins have due to changes in the receptor binding region have led to a lack of discerning 

power in these assays. To address this neutralization-based assays such as the focus reduction 

assay and the HINT assay have been adopted. These new assay types produce titer data that can 

be used to construct antigenic cartographies to assess the evolution of the virus over time. Using 

previously described multidimensional scaling methods for log-transformed titer data (Smith et al, 

2004), the ordinations of antigenic cartographies and phylogenetic distance matrices for 

overlapping sets of isolates for H3N2 seasonal influenza viruses were compared. It was observed 

that there is strong correlation in the antigenic space for isolates for contemporary assays (FRA 

and HINT). Additionally, distance matrices for each assay cartography had low correlation with 

phylogenetic distance matrices. The HINT assay had the greatest linear relationship between 

phylogenetic distance and the Euclidean distance for isolates. These findings indicate the necessity 

of different methods to characterize the antigenic evolution of seasonal influenza viruses and the 

importance of finding methods for comparing their resulting antigenic cartography ordinations. 

Introduction 

Seasonal influenza virus epidemics are responsible for significant morbidity and mortality 

resulting in between 9.2-35.6 million cases and between 140 -710 thousand hospitalizations United 

States every season (2)(111). One of the primary influenza viruses that represent the bulk of 

infections during a seasonal influenza epidemic is the H3N2 influenza A virus. In the study of 

H3N2 influenza evolution different methods have been used to antigenically characterize viral 
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isolates and understand their relative transmission potential and their immunological properties. 

The Hemagglutination Inhibition (HI) assay has been the primary laboratory test to characterize 

the relative antigenic properties of different virus isolates for wide array of other pathogens over 

the past 60 years such as human influenza B viruses, H5N1 avian influenza viruses, and rubella 

virus (112)(113). The HI assay measures the level of agglutination in red blood cells (RBC) from 

hosts sera inoculated with a given reference strain of virus to measure the differential agglutination 

in the presence of different test antigen strain. The hemagglutinin (HA) surface protein of the 

influenza virus binds to the sialic acid receptors of host cells (114). The antibodies found in the 

host sera (typically ferret sera) inhibit erythrocyte agglutination by binding the receptor binding 

domain of the HA present in the host RBCs (115). Serial dilutions of virus are used to determine 

the amount of virus needed to visually measure the agglutination of RBCs resulting in a titer value 

associated with a given antigen and antisera. While HI assays typically use ferret sera but have 

also used sera from humans and other animals such as swine and guinea pigs (116)(117)(118). 

Recent changes in the receptor binding domain (RBD) of the HA protein have led to the decreased 

efficacy of HI assays due to the inability to agglutinate RBCS. This is most likely due to 

glycosylation of the RBD which has been shown to modulate virus release and virulence (119). 

This change in sensitivity lead to the adoption of the Focus Reduction assay (FRA) and later the 

high content imaging-based neutralization test (HINT) assays (40). The FRA and HINT assays are 

virus neutralization assays which quantify virus kinetics and antigenicity through the imaging of 

infected host cells and the quantification of numbers of infected cells in the presence of antibodies. 

These assays determine serum neutralization titer which quantifies the titer at which a given 

antigen virus is cleared by measuring the infected number of cells post inoculum (120)(121)(122). 

These neutralization assays were implemented with the intent to address changes in agglutination 
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and virus adaptation to cell culture. The HINT assay is a strictly controlled neutralization assay 

that strictly controls the amount of inoculum used in each imaging well and uses an empirically 

determined an optimal ratio between the number of cells, dilution of virus, concentration of 

reagents, and incubation time. 

Epidemic Identification and characterization of influenza isolates has primarily been performed 

via the HI assay and, as sequencing technology has become more widely available, genomic data 

with associated metadata (123). The addition antigenic assays like the FRA and HINT assays to 

HI assay data and genetic allow for a more robust modeling of evolution. Multidimensional scaling 

(MDS) of the log-transformed HI assay titer data has allowed for the estimation of distances 

between virus isolates and host sera (22). MDS methods are utilized to optimize the Euclidean 

distances between points and allow for a visual representation of antigenic evolution that can 

discern major antigenic clusters. These MDS methods have been implemented to create “antigenic 

cartographies” to represent evolution in seasonal influenza and changes in population immunity 

over time (124)(51). Despite the recent introduction of the FRA and HINT assays, comparison of 

the resultant antigenic cartographies to HI antigenic cartographies is lacking. In the following 

study the comparison of ordination through the Procrustes test and the comparison of distance 

matrices via the mantel test was performed to investigate the differences between assays and their 

resultant ordinations (102)(125). A greater correlation of antigenic space between the FRA and 

HINT assays as opposed to the HI assays was observed. Additionally, phylogenetic distance 

between isolates had low correlation with antigenic distances derived from corresponding 

antigenic maps. 
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Materials and Methods 

Phylogenetics and antigenic cartography 

Antigenic data in the form of HI, FRA, and HINT assay data for H3N2 seasonal influenza isolates 

collected globally between 2017-06-01 and 2022-06-01 was obtained from the CDC. The paired 

genomic data for the HA gene segment was downloaded from GISAID using the isolate identifiers 

and strain name (18). The genetic lineage of isolates was determined using the Nextclade program 

(72).  

The Racmacs package v.1.0.14 was used to construct antigenic cartographies in 2-dimensions 

using 100 optimization for each assay data set (126). The paired genomic data for each assay data 

set was used to reconstruct Bayesian time-scaled phylogeny. Genomic data was aligned using 

MAFFT v7.453 and alignments were visually inspected using Geneious (68). To account for the 

region of the HA protein which is immunologically recognized in the HI and neutralization assays 

separate genomic data sets for the HA1 region of the HA segment were constructed by trimming 

genomic sequences to the HA1 region and were used for each of the following analyses.  Initial 

phylogenetic reconstruction to diagnose temporal signal was performed for each data set using 

IQtree v1.6.12 and TempEst v1.5.3 (127)(46). Bayesian phylogenetic reconstruction was 

performed using BEAST v1.10.4. (27).  A constant coalescent model, relaxed log normal clock 

model, and SRD06 codon partition model were utilized (27)(74)(73)(128). A UPGMA starting 

tree was used and normal priors on the root-height with a mean value corresponding to the root-

height of previously constructed maximum likelihood phylogeny, as well as a uniform prior on the 

ucld.mean from the substitution rate of ML trees were used. Each genomic dataset was run in 

triplicate for an MCMC chain-length 50 million states, sampling every 5000 states. Diagnosis of 

runs was preformed using Tracer v.1.7.2 to ensure adequate effective sampling size (ESS) for all 
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parameters (76). Runs were combined removing 10-20% burn-in and a maximum clade credibility 

(MCC) tree was constructed using the LogCombiner v1.10.4 and TreeAnnotator v1.10.4 programs 

respectively (129).   

Procrustean randomization test 

To statistically compare different ordinations of assays, the coordinate data for isolates that were 

shared between two given assays were used in the Procrustean randomization test. This 

randomization test is a statistical test that randomly varies the distance between coordinates to 

assess the significance of the Procrustes distance between any two given sets of coordinates. The 

non-randomness (significance) between two ordinations was determined using the ‘protest’ 

function which performs a symmetric Procrustes analysis multiple times to estimate the 

significance of the Procrustes statistic by creating a null distribution of Procrustes distances based 

on random permutations of the coordinates (130). The Procrustean randomization test was 

preformed using the ‘vegan’ R package (103)(131). 

Distance matrix comparisons 

The phylogenetic genetic distance matrices for each Bayesian phylogeny were calculated using 

the cophenetic pairwise distance between taxa of the MCC phylogeny for each genomic data set 

using the ‘ape’ R package (132). The comparison of distance matrices was performed using the 

Mantel test implemented using the ‘vegan’ R package (131). The Mantel test calculates the 

correlation between corresponding positions of dissimilarity or distance matrices. This allows for 

the estimation of a measure of correlation between two matrices (133). 



   

67 

Results 

Phylogenetic analysis and MDS 

The Bayesian phylogenetic reconstructions for each antigenic assay and corresponding antigenic 

cartographies show different levels of separation between major lineages of H3N2 influenza 

(Figure 4.1).
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Figure 4.1 Results of MDS and Bayesian phylogenetic reconstruction for isolates collected between 2017 and 2022 across different 

antigenic assays. The antigenic cartography corresponds to the phylogeny directly below. The color of coordinate points and the tips 

of the phylogeny correspond to the lineage determined using NextClade. The 95% BCI is labeled with a red bar for nodes with at least 

70% posterior support
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When labeling antigenic cartography points using discrete values for the genetic lineage of the 

isolate, visual inspection shows that there is greater segregation in the antigenic space for the FRA 

and HINT assay cartographies. The position of vaccine candidate isolates, as indicated by the 

abbreviated place and year shorthand notation, shows that the placement of vaccine candidates in 

antigenic space is similar with differing space between candidates across assays. The HINT assay 

cartography showed the greatest separation among vaccine candidates in Cartesian space while HI 

and FRA had a more condensed grouping of isolates. Using available metadata for isolates 

associated with sequence data the cartographies were labeled accordingly with different metadata 

for the year and continent of isolation (Figure S4.1-S4.4.3). There was no apparent geographic 

structuring for each assay with the majority of isolates characterized originating from North 

America. The temporal structuring of antigenic space was most pronounced for the HINT assay 

data while the HI and FRA data showed some heterogeneity. 

The phylogenetic reconstructions for each assay in BEAST allowed for estimation of time to the 

most recent common ancestor (TMRCA) and substitution rate. The TMCRA estimates for HI, 

FRA, and HINT assay data sets respectively were as follows: 2013.578 (95% BCI: 2012.421, 

2014.657), 2013.633 (95% BCI: 2012.333, 2014.766), and 2014.262 (95% BCI: 2012.647, 

2015.777). Nucleotide substitution rates (substitutions/site/year) for the HI, FRA, and HINT assay 

data sets respectively were as follows: 5.139E-3 (95% BCI: 4.759E-3, 5.52E-3), 4.786E-3 (95% 

BCI: 4.465E-3, 5.106E-3), and 3.842-3 (95% BCI: 3.372E-3, 4.33E-3). 

Ordination stress was evaluated using scree plots which allow for the inference of the minimal 

number of dimensions for appropriate ordination. Using the heuristic breakpoints of the scree plot 

for each assay it was observed that the ordination stress for at least 2 dimensions were appropriate 

to visualize the ordinations of antigenic data (Figure S4.4-S4.6). Additionally, the validity of 
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ordinations was diagnosed using the Shepard stress plot. These plots show the relationship between 

data matrices and the ordination distances. These plots allow for the inference of stress in the 

ordination and identification of potential outliers and to diagnose the validity of a given ordination. 

The stress pots for each assay showed a linear relationship between map distance and the table 

distances (Figure S4.7-S4.9). The FRA stress plot showed a slight drop for higher map/table 

values. The grouping of points in the HI and FRA stress plots reflects the different graduated values 

for titer values (i.e. 180,360,720 etc) whereas the stress plot for HINT data more diffuse grouping 

of points reflects the neutralization tests ability to quantify a specific value associated with the 

number of infected cells in a given assay well. 

Procrustean Randomization Test 

To compare the different ordinations of the antigenic data the Procrustes test was used and showed 

some varying differences in position between assays. The Racmacs Procrustes map function 

visualization of the shared isolates between and their relative positioning between ordinations 

(Figure 4.2
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Figure 4.2.  Procrustes projections for each antigenic assay comparison. Arrows indicate the relative positioning of a given isolate in 

the comparison assay ordination. Points without errors are isolates that do not have overlap between the two antigenic datasets.

HI - FRA HI - HINT FRA - HINT
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The visual inspection of the Procrustes positioning of the assays shows that, in relation to the HI 

coordinates, isolates in both the FRA and HINT assay points were closer together. This 

relationship is seen also for FRA and HINT, where coordinates associated with HINT assay were 

situated closely in the map. This is reflected in the results of the Procrustes randomization test 

were the range of Procrustes errors for the FRA/HINT assay [Procrustes comparison is much 

smaller than the HI/FRA and HI/HINT assay Procrustes comparisons (Figure S4.10-S4.12). 

There was a higher correlation between the FRA and HINT assays than the other assay 

comparisons (Table 4.1).  

Assay Comparison Sum of Squares Correlation (m2) Significance 

HI,FRA 0.8839 0.3408 0.001 

HI,HINT 0.7262 0.5233 0.001 

FRA,HINT 0.4265 0.7573 0.001 

Table 4.1. Results of Procrustean randomization test for each pair of assay coordinate data. The 

sum of squares, correlation in a symmetric Procrustes rotation and the significance of the test are 

reported for Procrustean randomization for 999 permutations. 

 

There was a greater sum of squares value for the HI/FRA assay comparison than the HI/HINT and 

FRA/HINT comparisons. The higher sum of squares indicates a higher variability in Procrustes 

distance values towards the mean. The combination of high sum of squares and low correlation 

indicate that the HI/FRA comparison are not identical in the scale and rotational transformations 

for the coordinate locations. The residual errors for the different assay comparisons showed that 
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there were larger residual errors in the HI/FRA assay comparison than the HI/HINT and 

FRA/HINT comparisons (Figure S4.13-S4.15). 

Mantel test 

The result of the comparison of phylogenetic distance matrices of isolates to the Euclidean 

distances estimated between isolates as determined by MDS coordinates shows that the FRA and 

HINT assay distances were slightly more correlated with phylogenetic distance than the HI assay 

distances. The Mantel statistic r values, which are based on the Pearson product-moment 

correlation, for comparisons against phylogenetic trees constructed for the whole HA gene 

segment the r = 0.3719 for the HI assay, r = 0.4523 for the FRA assay, and r = 0.4189 for the HINT 

assay.  The Mantel statistic values were similar for the mantel test of phylogenies constructed for 

the HA1 region of the HA segment showing a lower value for the FRA assay comparison, r = 

0.3802, the lowest value for HI assay comparison, r = 0.3533, and the HINT assay have the highest 

value r = 0.4175.  All comparisons showed a low correlation with phylogenetic distance, had a 

statistical significance of p=0.001, and were based on 999 permutations. 

Mantel correlograms for each assay were estimated to show the spatial correlation of the data sets. 

with the resulting shape of the correlograms representing the spatial gradient by which the two 

matrices are related (Figure 4.3).  
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Figure 4.3. Mantel correlogram for antigenic assays tested against corresponding phylogenies 

for the complete HA sequence.  The non-significant correlation values were not plotted for a 

given distance class index. 

 

A linear gradient is observed for the HINT assay correlation indicating that the distances of both 

the phylogenetic distance matrix and the HINT antigenic distance matrix were directly correlated. 

For both the HI and FRA assay correlations there is a single “bump” in the gradient for the lowest 

distance which indicates a significant positive correlation for the lower values followed by a 

significant negative spatial correlation gradient which reverses at distance class of 8 to a positive 
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spatial correlation (133). This behavior in the HI and FRA correlograms can be interpreted as 

certain regions of the cartography being more correlated with phylogenetic distance than other 

regions. In the case of the HI assay this might be due to the relative lack of sensitivity and ability 

to segregate antigenic space. Similar trends in the correlograms for the mantel test between 

antigenic distances and phylogenies constructed using the HA1 genomic region of the HA protein 

were observed (Figure S4.16).  

Discussion 

Understanding the similarities in discerning antigenic space between these different assays is 

important in assessing the virulence and evolution of novel strains of influenza viruses. The recent 

reduction of discerning power of the HI assay is partly what lead to the adoption of the FRA and 

HINT assays due to glycosylation and changes at the RBD of the HA protein. As the relative 

sensitivity of these compared to both other assays and genetic data, it is important to provide a 

quantification of the correlation between these assays to inform the use of these assays when 

determining the emergence of novel strains and when studying different pathogens. There is 

evidence that single amino acid changes near the RBD of the HA protein can result in major 

antigenic changes, this warrants robust and sensitive methods to detect these changes antigenically 

across different assays (134)(135). In addition to this attention should be paid to the NA protein 

and the antigenic landscape that is potentially under characterized due to the lack of utilization of 

other assays on a wider scale. These NA protein-based assays such as the Micro-neuraminidase 

inhibition assay and the Enzyme-linked lectin assay provide more data on antibody neutralization 

that can be used in antigenic cartography (136). 
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The availability of FRA data over time is not as robust as HI data and is currently not a major 

antigenic assay in use. This results in a smaller data for use in comparison, warranting further 

antigenic characterization with the assay for more robust comparison. The relatively recent 

adoption of the HINT assay has resulted there being less data available for isolates collected before 

2019, leading to contemporary data representing the bulk of cross analyzed isolates. The 

interruption of the typical seasonal influenza epidemic patterns by the COVID-19 pandemic 

further reduced the sampling of isolates between after March of 2020 (90)(119). The Global 

scientific community’s ability to implement assays other than the HI assay is another major point 

of concern. The cost of materials and access to appropriate lab facilities remains a challenge in the 

wider usage of assays like the HINT assay which is why HI assays, which are relatively cheap to 

conduct, remain a major comparative tool today. 

The use of spatial analysis methods for different datatypes is important to consider for further 

inquiry into the significance of cartographies between assays and how they relate genetic data. 

Euclidean distances be augmented by different multi-scale analysis methods such as Trend-surface 

analysis, Moran’s eigenvector maps, and multivariate ordination methods (137). The analysis 

conducted in this study and future spatial techniques should also be further expanded to other 

pathogens such as the B-Victoria and H1N1 pdm seasonal influenza viruses. 

The antigenic similarity based on distance in antigenic units between isolates can be different 

between assays the threshold for similarity is typically recognized as a 2-fold titer dilution (1 

antigenic units) for HI assay data, 4-fold titer dilution (2 antigenic units) for FRA assay data, and 

8-fold titer dilution (4 antigenic units) for HINT assay data (97). This consideration is important 

when looking at the separation and emergence of major lineages. Further study into the inter-

laboratory variation between assays and for the same for the same set of isolates as there is 
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evidence of variation that could potentially impact the diagnostic power of these assays (138). This 

analysis which attempts to quantify the differences between antigenic cartographies of antigenic 

assays is a preliminary attempt to study this variation, further research into the different methods 

of antigenic cartography such as the Bayesian MDS and other assays is critical in comprehensively 

characterizing influenza viruses for effective and actionable surveillance and prevention. 
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CHAPTER 5: CONCLUSION 

Thesis Summary 

This thesis has presented methodological advances in the field of phylogeography and has 

identified and utilized new and important methods to pair different forms of data to 

comprehensively study the evolution and transmission of human seasonal influenzas viruses. 

Additionally, this work provides important comparisons of major characterization tools and 

provides a level of correlation between these different tools to evaluate their diagnostic capability.  

Chapter 2 of this dissertation describes a novel methodology for the partitioning of geographic 

space for use in phylogeographic analysis. This chapter focused on the influenza dynamics of 

H3N2 influenzas in the United States between 2011 and 2020. The state level ILI based network 

that was analyzed using the Louvain community detection algorithm provided discrete trait 

partitions for the United States which had a greater marginal likelihood support than the U.S. 

Census Divisions and administrative regions. This data-driven discrete trait partitioning was used 

in further phylogeographic analyses, jointly estimating the discrete trait diffusion across a 10-year 

period. The jointly estimated discrete trait diffusion matrix was finally used to study the influence 

of different climate, demographic, and antigenic predictors on the viral diffusion process via the 

GLM.  The results of the GLM show that the diffusion process was affected by antigenic, climate, 

and demographic factors relating to the source/sink regions. This work underscores the importance 

of studying separate seasonal epidemics together to make large scale inferences about general 
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source/sink diffusion dynamics and associating different environmental and demographic factors 

with the viral diffusion process.  

Chapter 3 of this thesis describes the global phylodynamic analysis of H3N2, H1N1, B-Yamagata, 

and B-Victoria seasonal influenza viruses between 2017 and 2020. This work combines the results 

from studying genetic data through phylodynamic modelling and antigenic cartography to utilize 

antigenic assay data. The combination of phylogenetic metrics and antigenic cartography 

coordinates is achieved using generalized additive models (GAM), treating the root-to-tip distance 

of taxa from a Bayesian phylogenetic reconstruction as the response variable in relation to the 

placement of isolates in an antigenic cartography. From these analyses we find that recent 

evolution of seasonal influenza is marked by less genetic diversity but consistent rates of 

evolutions. Additionally, the implementation of the GAMs to study to association of phylogenetic 

distance to antigenic cartography identified major clades and geographic place of isolation for each 

influenza virus subtype. This analysis presents a framework for the delineation of virus evolution 

that can provide major avenues for the prediction of evolutionary patterns. This work describes the 

recent evolution and transmission of seasonal influenza on a global scale that leverages different 

paired datatypes with existing and new models. The methods used in this study provide a more 

comprehensive investigation of contemporary influenza evolution and a framework for the use of 

paired genetic and antigenic data in the study of seasonal influenza and other pathogens. 

Furthermore, it offers an investigation into influenza dynamics under the pressures associated with 

the COVI-19 pandemic. 

Chapter 4 described the comparison of antigenic cartographies resulting from different antigenic 

assay types.  The ordinations of isolates in relation to each other can be different depending on the 

assay used in antigenic characterization. This analysis compares the ordination of isolates that were 
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tested for the HI assay and two neutralization-based assays, the FRA and HINT assays. The 

antigenic characterization of seasonal H3N2 influenza viruses has been primarily achieved using 

the hemagglutination Inhibition Assay. In recent years changes in the binding affinity to surface 

proteins have due to changes in the receptor binding region have led to a lack of discerning power 

in these assays. To address this neutralization-based assays such as the focus reduction assay and 

the HINT assay have been adopted. These new assay types produce titer data that can be used to 

construct antigenic cartographies to assess the evolution of the virus over time. Using the 

procrustean randomization test it was found that there is strong correlation in the antigenic space 

for isolates for contemporary neutralization assays (FRA and HINT). Additionally, each of the 

antigenic assays were compared with the phylogenetic distance matrices for the taxa in the 

cartographies paired Bayesian phylogeny. Utilizing the mantel test to see the correlation between 

distance matrices for each assay cartography showed that there was   low correlation with 

phylogenetic distance matrices for each antigenic assay. The HINT assay had the greatest linear 

relationship between phylogenetic distance and the Euclidean distance for isolates. These findings 

indicate the necessity of different methods to characterize the antigenic evolution of seasonal 

influenza viruses and the importance of finding methods for comparing their resulting antigenic 

cartography ordinations. 
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Challenges 

There are important challenges that need to be addressed when characterizing the transmission and 

evolution of seasonal influenza viruses. Chief among these issues is sampling bias. The sampling 

of genomic data has grown substantially overtime but still has important issues that need to be 

addressed. One such issue is the lack of comprehensive metadata associated with the timing and 

place of isolation. Geographic place of isolation associated with genomic data in major repositories 

lacks fine granularity and typically the lowest geographic resolution provided for sequence data is 

at the State level. Information at different finer scales such as on the city, municipality, and district 

of isolation is seldom found and may only be derived from descriptive strain names that include 

the city name for the isolate. Furthermore, longitude and latitude data are virtually unavailable for 

most publicly available isolates. Health privacy is a chief reason for a lack in depth for geographic 

place of isolation information, the concern that having in-depth data on place of isolation can 

identify were individuals may life or work can be a major concern for patient safety (139). These 

safety concerns can be addressed by taking relative centroids in a grid-like fashion across 

geographic space and associating sequence data with these centroids to provide a deeper level of 

geographic spread information. Geographic place of isolation can allow for the collection of 

several different associated datatypes which can be used in subsequent analysis such as the climatic 

data, demographic data and transportation data which have been used to study influenzas 

transmission and can be used in a similar fashion using GLM models as described in Chapter 2.  

Climate data associated with place of isolation can take the form of local temperature, humidity, 

and precipitation. Demographic data associated with place of isolate can take the form of local 

population size, age structure, and socio-economic background. Transportation data can take 

several different forms when associated with the place of isolation, a chief example is human 
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mobility to workplace which is collected by the American community survey of the U.S. Census 

bureau (140). Additionally, flight data for origin and destination from the FAA can more 

accurately associated with place of isolation if geographic metadata has greater level of resolution. 

It is a challenging to adequately integrate these different transportation data without fine scales 

and as metadata for place of isolate becomes finer the network models that can be created from 

mobility and flight data can be efficiently integrated. Another important metadata characteristic 

for strains is comprehensive data about the host. This includes but is not limited to age, gender, 

race, socio-economic background, and infection severity. It is imperative that stricter measures for 

data quality are adhered to by major genetic data repositories in order to better aid in 

comprehensive analyses of outbreaks and transmission.  In many cases for submission to 

repositories such as NCBI’s Genbank and GISAID, there are very few required data labels for 

submission of sequence data. Countries in the global north represent the bulk of available isolate 

data with North America being the major contributor of sequence data to public repositories. These 

patterns for influenza data have been observed for data relating to COVID-19 sequence data where 

the vast majority of sequence data has strong biases to North America and Europe. In Chapter 3 

of this thesis sequence data is used for influenza viruses that circulated during the COVID-19 

pandemic, this is during a time when transmission of influenzas viruses was greatly depressed due 

to non-pharmaceutical interventions by the human population such as quarantine, social 

distancing, and mask wearing (90). This lack of data is important to consider when attempting to 

make observations about the overall trajectory of influenza virus evolution. As COVID-19 

continues to circulate it is important that the global surveillance apparatus is actively testing 

clinical isolates for respiratory cases robustly to detect influenza viruses in addition to suspected 

COVID-19 and other respiratory pathogens.  
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In the study of phylogeography the use of state defined administrative regions is the basis of 

determining viral diffusion rates between major geographic locations. These administrative 

regions and borders can be arbitrary and based on socio-political boundaries that do not necessarily 

reflect the demographics of a region. This arbitrary nature in defining administrative boundaries 

can translate to artificial grouping of populations in discrete traits used in diffusion models that 

can obscure important internal transmission signals and may lead to misrepresentations in the 

identity of the most probable source and sink populations. Continuous space phylogeographic 

diffusion models offer one administrative border agnostic method to study viral diffusion but is 

reliant on accurate data regarding the location of isolation for a sample (141). These methods allow 

for a diffuse view in space and time of viral dispersion. The pairing of continuous space 

phylogeographic methods and fine-scale discrete location data for isolates can potentially identify 

major sources of spread within a given community or between major metropolitan districts.  

In Chapter 2 the adjacency matrix representing the network of transmission for the United States 

was studied using a Louvain community detection algorithm. This is considered a “greedy” 

algorithm, meaning that it chooses a heuristic threshold to use in the optimization of cluster 

detections, in the case of community detection the heuristic threshold which maximizes the 

modularity of the network is used. The use of greedy algorithms for cluster detection such as the 

k-means clustering algorithm method offer strong benefits for computational tractability but can 

be extremely sensitive to outliers (142). This can be a challenge if data sources used for adjacency 

matrix construction are poorly or erratically sampled. Another important challenge in dealing with 

greedy algorithms is its inability to consider the veracity of previous steps in the clustering process, 

this can mean that if the researcher does not robustly and repetitively test the algorithm 

implementation randomly the algorithm can choose a sub-optimal clustering to base successive 
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modularity steps on (143). While this iterative process is simple to implement via recursion, it can 

be computationally expensive. It is important to test a wide host of algorithms and assess not only 

the differences in resultant clusters and the computational tractability but a level of statistical 

support for a given partitioning schema.  

Antigenic cartography is utilized as an important tool in the study of influenza evolution and is 

used in each experimental chapter of this thesis. The accuracy and variability in antigenic assay 

data, particularly HI data is an important challenge that needs to be addressed especially in regard 

to the construction of antigenic cartographies. The challenges to antigenic cartography presented 

by the changes in the RBD of the HA protein in the past decade are important to study as the HI 

assay has become less reliable. In addition to the problem of identifiability the nature of immunity 

exhibited by the host is important to consider as ferrets produce monoclonal antibodies versus in 

human populations where individuals produce polyclonal antibodies and their respective immune 

pressures are potentially more variable (144)(43). The BMDS method attempts to account for 

variability in serum potency and virus avidity and is an important step in trying to address the 

variability in testing conditions and host biology (95). Additional parameters such as the scaling 

of antigenic distances between isolates based on two different antigenic assays can potentially aid 

in better identifying antigenic space. Neutralization assays are important tools that are 

continuously being developed and utilized, it is important that differences between neutralization 

assays are studied, and their utility is gauged as a cost-effective and accurate tool for influenzas 

characterization. In addition to differences in assays is important to immunologically and 

antigenically characterize other surface proteins for the influenza virion, namely the 

Neuraminidase (NA) protein. The NA protein which facilitates the viral release after virus 

replication has emerged as a major target for humoral immune responses and evidence shows that 
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they play an important role overall in the recognition and elimination of influenza from the host 

(145). The methods used for antigenic cartography can be used with titer data for inhibition and 

neutralization assays studying the NA protein and can give some insight in the antigenic landscape 

for this other major protein which is critically important in attempting a more holistic and accurate 

immunological understanding of influenzas viruses in human populations (146).  

Another major challenge presented is the availability of computational resources and the 

computational tractability of the analyses laid out in this work. Phylodynamic models require 

considerable resources to perform complex computation this necessitates access to high 

performance computing infrastructure to robustly test hypothesis. As computational resources 

become more widely available and cheaper this challenge has been lessened but it is important to 

be aware of, especially when considering the effects on public health surveillance and response. 

Computational resource sharing via online platforms such as CIPRES are powerful open-source 

tools that allow for the distribution of computational resources for public use. As the demands for 

phylodynamic models and their inferences increases in addressing major public health problems it 

is important that these public resources are bolstered. It is critical that a robust computational 

infrastructure is maintained for groups that are utilizing phylodynamic methods to answer serious 

real-time epidemics and future pandemics.  
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Future Work 

Each chapter of this thesis represents important contributions to the study influenza viruses and 

their molecular epidemiology. There are several important avenues for future work that are 

important to consider for each experimental chapter. In the study of the phylogeography the use of 

a data driven framework for the partitioning of discrete geographic space for use in discrete trait 

phylogenetic analysis is lacking. In this study, ILI data was used to create adjacency matrices that 

were analyzed using community detection algorithms. The data input of the proportion of ILI visits 

for each state is only one such possible data that can help to elucidate networks of transmissions. 

The analysis of different data such as human mobility data from different sources such as cell 

phone location data and transportation surveys have been used in different studies of disease 

dispersion but have not been used in phylogenetic studies (147).  By studying and comparing 

difference network constructions for influenza viruses, and other respiratory viruses, important 

inferences can be made about potential sites for public health interventions and the deployment of 

resources for transmission mitigation.  

The future implementation of different linear models in a Bayesian framework is important to 

consider as they provide methods for the testing of associated metadata that allow for deeper study 

of influenza evolution.  Co-variates of the discrete trait diffusion process have been studied using 

GLM models, allowing for the association of different datatypes phylogenetic diffusion process 

directly. The Generalized Additive Model is one such framework that might allow for a similar 

inference with greater variable flexibility, allowing for the inference of partial effects in a robust 

framework that, while potentially more computationally complex, will allow for the more accurate 

representation of predictor data.  Additionally, the framework adopted in Chapter 3 of this thesis, 
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treating the root-top-tip distance for isolates as an independent variable of different isolate 

associated meta offers another potentially useful framework for Bayesian phylodynamic inference 

This would allow for the use of GLMs to study a taxa associated metrics such as the root-to-tip 

distance with different co-variates predictors as opposed to studying the discrete trait diffusion 

process.  

Realtime tracking of virus evolution can provide stronger insights into the transmission dynamics 

of seasonal influenzas and can help to evaluate and identify a novel strains potential to cause 

epidemics. The right size approach to sampling can help to capture some of the circulating diversity 

of influenza viruses and allow for a real-time tracking system (20). Platforms like the Nextstrain 

platform have allowed for the real-time tracking of epidemics and the evolutionary history of 

pathogens can be studied as data becomes available (148). Another major platform to study the 

real-time evolutionary history of pathogens is the UShER program which curates a large-scale 

phylogeny for SARS-COV-2 sequences to aid in the placement of isolates in major evolutionary 

clades.  The Nextstrain platform utilizes a maximum likelihood phylogenetic framework while the 

UShER program utilizes a parsimony based phylogenetic reconstruction method. Both 

phylogenetic reconstruction methods have certain pros and con, for example computational 

efficiency and tractability is much higher for these methods than Bayesian phylogenetic 

reconstructions, but this might come at the expense of accuracy. Methodologies have been 

developed to allow for the addition of sequence data to ongoing Bayesian phylogenetic 

reconstructions in BEAST as new isolate data is made available (149). It is important that future 

phylogenetic work in real-time characterization considers the use of Bayesian reconstruction as a 

viable and tractable methodology as technological demands such as computational power become 
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less burdensome, and this provides a public health practitioner and public facing GUI for use in 

real-time tracking of epidemics.  

An important and less discussed aspect in the field of Phylodynamics, and more broadly the field 

of computational biology, is the environmental impact of computation. It is imperative that future 

work focuses on computational efficiency to reduce the carbon footprint of these analyses. The 

onus on scientists to take active steps to make their computation more efficient and reduce the 

amount of unneeded or redundant analysis and computation has never been so salient as our society 

battles climate change. This can in part be aided by preliminary analyses which allow for the 

selection of informative priors and providing analyses highly supported maximum likelihood 

starting trees to reduced probability space. 

Conclusion 

This body of work was attempted with a goal producing accurate molecular epidemiology analyses 

that provide actionable results for public health interventions. This work aimed to study seasonal 

influenzas viruses at varying geographic scales and utilized a diverse set of data to answer 

important questions about the recent evolution of seasonal influenzas. In addition to the molecular 

epidemiology characterizations of recent seasonal influenza transmission the comparison of 

antigenic cartographies and their originating data is important in ensuring a more accurate 

characterization of influenza evolution. The use of Bayesian phylodynamic frameworks is a 

powerful tool used in this body of work and has demonstrated its power provide key insights into 

influenza transmission and evolution. In this thesis these methods elucidated major geographic 

source and sink regions for H3N2 seasonal influenza and provided a framework to study the 

phylogeography of data-driven discrete traits. These methods also aided in the identification of 
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major co-variates of the diffusion process and allowed for the paired inference of influenza 

evolution with antigenic assay data in the form of antigenic cartographies.  

The methods and research that are described in this body of work are not restricted in their utility 

to the study of human seasonal influenza. The described phylodynamic methods can be utilized 

for the study of other RNA viruses as well as other pathogens. It is important that as the global 

public health community looks to address ongoing and future epidemics and pandemics, methods 

such as those used in this body of work are considered to make important decisions that can 

ultimately lead to a reduction in morbidity and mortality to influenza viruses.  
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Supplemental information Chapter 2: Analysis of seasonal H3N2 

influenza diffusion in the United States 

 

1. Figure S2.1 – Initial pass of Louvain community detection algorithm 

2. Figure S2.2 – ILI incidence per 100 patients by U.S. State 

3. Figure S2.3 – GMRF Skyride reconstruction for H3N2 across 10yr period 

4. Figure S2.4 - Antigenic Cartography of H3N2 isolates collected between 2011-2020 in 

the United States. (U.S. Census Divisions) 

5. Figure S2.5 - Antigenic Cartography of H3N2 isolates collected between 2011-2020 in 

the United States. (HHS regions) 

6. Figure S2.6 - Antigenic Cartography of H3N2 isolates collected between 2011-2020 in 

the United States. (Louvain) 

7. Figure S2.7 - Antigenic Cartography of H3N2 isolates collected between 2011-2020 in 

the United States with isolates colored by respective clade (Dim 1) 

8. Figure S2.8 - Antigenic Cartography of H3N2 isolates collected between 2011-2020 in 

the United States with isolates colored by respective clade (Dim 2) 

9. Figure S2.9 - Antigenic Cartography of H3N2 isolates collected between 2011-2020 in 

the United States with isolates colored by season (Dim 2) 

10. Figure S2.10 - Antigenic Cartography of H3N2 isolates collected between 2011-2020 in 

the United States with isolates colored by season (Dim 1) 

11. Figure S2.11 – BSSVS results for each epidemic season and regional schema from 2011 

to 2020. 

12. Figure S2.12 - Jointly estimated Markov Jumps between geographic discrete trait schema 

for a subsample of H3N2 isolates in the United States between 2011-2020. 

13. Figure S2.13 - Results of jointly estimated BSSVS of epidemic seasons between 2011 

and 2020 for each regional schema. 

14. Figure S2.14 - Markov reward trunk proportions for the Louvain regional schema for 

each epidemic season phylogeny (Louvain) 

15. Figure S2.15 - Markov reward trunk proportions for the Louvain regional schema for 

each epidemic season phylogeny (HHS) 

16. Figure S2.16 - Markov reward trunk proportions for the Louvain regional schema for 

each epidemic season phylogeny (Division) 

17. Figure S2.17 - Results from Generalized Linear Model for co-variates of the diffusion 

process between regions (HHS) 

18. Figure S2.18 - Results from Generalized Linear Model for co-variates of the diffusion 

process between regions (HHS) 
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Tables 

1. Table S2.1 - Results of BaTS. AI: Association Index, FP: Fitch Parsimony score. The 

maximum exclusive single state clade size is shown for each region in the HHS regional 

schema.  

2. Table S2.2 - Results of BaTS. AI: Association Index, FP: Fitch Parsimony score. The 

maximum exclusive single state clade size is shown for each region in the U.S. Census 

Division regional schema. 

3. Table S2.3 - Results of BaTS. AI: Association Index, FP: Fitch Parsimony score. The 

maximum exclusive single state clade size is shown for each region in the Louvain 

regional schema. 

4. Table S2.4 - Multi-season phylogeny datasets, a sub-sample of 150 sequences were taken 

for each season using the PDA as well as two independent random samples of 150 

sequences each season. 

5. Table S2.5 - List of predictors for the GLM and their descriptions. See TableS5.csv.  
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Figure S2.1. Initial pass of community detection algorithm resulting in three distinct regions 

across the continental United States. 
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Figure S2.2. ILI incidence per 100 patients by state from October 2010 to February 2021. Each 

line represents the ILI data for a single U.S. State with the average of all states shown by the 

solid black line.  
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Figure S2.3.  Effective population size estimated using the GMRF skyride reconstruction in 

BEAST. The solid black line represents the mean effective population size estimate, and the gray 

boarders indicate the 95% BCI. 
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Figure S2.4. Antigenic Cartography of H3N2 isolates collected between 2011-2020 in the 

United States. Isolates are colored by associated geographic metadata for U.S. Census Division 

region the isolate was collected in.  
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Figure S2.5. Antigenic Cartography of H3N2 isolates collected between 2011-2020 in the 

United States. Isolates are colored by associated geographic metadata for the HHS region the 

isolate was collected in.  
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Figure S2.6. Antigenic Cartography of H3N2 isolates collected between 2011-2020 in the 

United States. Isolates are colored by associated geographic metadata for the Louvain region the 

isolate was collected in.  
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Figure S2.7. Antigenic Cartography of H3N2 isolates collected between 2011-2020 in the 

United States with isolates colored by respective clade determined using paired nucleotide data 

with the Nextclade program. The results of the 2D antigenic coordinates are used by plotting 

antigenic coordinate dimension 1 against time. 
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Figure S2.8. Antigenic Cartography of H3N2 isolates collected between 2011-2020 in the 

United States with isolates colored by respective clade determined using paired nucleotide data 

with the Nextclade program. The results of the 2D antigenic coordinates are used by plotting 

antigenic coordinate dimension 2 against time. 
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Figure S2.9. Antigenic Cartography of H3N2 isolates collected between 2011-2020 in the 

United States with isolates colored by the epidemic season the isolate was collected in. The 

results of the 2D antigenic coordinates are used by plotting antigenic coordinate dimension 2 

against time. 
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Figure S2.10. Antigenic Cartography of H3N2 isolates collected between 2011-2020 in the 

United States with isolates colored by the epidemic season the isolate was collected in. The 

results of the 2D antigenic coordinates are used by plotting antigenic coordinate dimension 2 

against time. 
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Figure S2.11. BSSVS for each epidemic season and regional schema from 2011 to 2020. The 

mean transition rate is colored for all rates with at least 50% posterior probability. 
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Figure S2.12 Jointly estimated Markov Jumps between geographic discrete trait schema for a 

subsample of H3N2 isolates in the United States between 2011-2020 
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Figure S2.13. Results of jointly estimated BSSVS of epidemic seasons between 2011 and 2020 

for each regional schema. The thickness of the chord corresponds to the discrete trait transition 

rate and the color corresponds to the Bayes Factor support. Color of source and sink bins 

correspond to the colors seen in Figure 1. 
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Figure S2.14 Markov reward trunk proportions for the Louvain regional schema for each 

epidemic season phylogeny estimated in BEAST. The color of chart area corresponds to the 

color of the Louvain regions as seen in Figure 1. 
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Figure S2.15 Markov reward trunk proportions for the HHS regional schema for each epidemic 

season phylogeny estimated in BEAST. The color of chart area corresponds to the color of the 

HHS regions as seen in Figure 1. 
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Figure S2.16 Markov reward trunk proportions for the US Census Division regional schema for 

each epidemic season phylogeny estimated in BEAST. The color of chart area corresponds to the 

color of the U.S. Census Divisions as seen in Figure 1. 
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Figure S2.17 Results from Generalized Linear Model implemented in BEAST v 1.10.4 for co-

variates of the diffusion process between regions of the HHS regional schema. The conditional 

effect size panel on the right indicates the level of inclusion for a given variable as a covariate for 

the diffusion process of the jointly estimated diffusion matrix. The posterior probability panel 

shows the level of posterior support for the inclusion of a given variable in the GLM. The solid 

blue line and dotted blue line in the posterior probability panel represent the calculated BF 

support equal 100 and 3 respectively. The * denotes coefficient HPDs that are greater than 5 and 

less than -5. 
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Figure S2.18 Results from Generalized Linear Model implemented in BEAST v 1.10.4 for co-

variates of the diffusion process between regions of the U.S. Census Division regional schema. 

The conditional effect size panel on the right indicates the level of inclusion for a given variable 

as a covariate for the diffusion process of the jointly estimated diffusion matrix. The posterior 

probability panel shows the level of posterior support for the inclusion of a given variable in the 

GLM. The solid blue line and dotted blue line in the posterior probability panel represent the 

calculated BF support equal 100 and 3 respectively. The * denotes coefficient HPDs that are 

greater than 5 and less than -5. 
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Supplemental Tables 

 

Table S2.1 Results of BaTS. AI: Association Index, FP: Fitch Parsimony score. The maximum 

exclusive single state clade size is shown for each region in the HHS regional schema.  

 

Table S2.2 Results of BaTS. AI: Association Index, FP: Fitch Parsimony score. The maximum 

exclusive single state clade size is shown for each region in the U.S. Census Division regional 

schema. 
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Table S2.3 Results of BaTS. AI: Association Index, FP: Fitch Parsimony score. The maximum 

exclusive single state clade size is shown for each region in the Louvain regional schema. 

 

 

 

 

Table S2.4 Multi-season phylogeny datasets, a sub-sample of 150 sequences were taken for each 

season using the PDA as well as two independent random samples of 150 sequences each season. 
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Predictor Type Description 

Mean Temp 

F 

Climate Average mean temperature (F) for the influenza season time period 

Mean Precip 

Inches 

Climate Average precipitation in inches for the influenza season time period 

Mean Palmer 

Drought 

Index 

Climate Average Palmer drought index for the influenza season time period 

Mean Tmax Climate Average max temperature (F) for the influenza season time period 

Mean Tmin Climate Average min temperature (F) for the influenza season time period 

Mean HDD Climate Average Heating degree days (HDD) for influenza season time period. 

HDD is a measure of how cold the temperature was on a given day or 

during a period of days (ela.gov) 

Mean CDD Climate Average Cooling degree days (CDD) for influenza season time period. 

CDD is a measure of how hot the temperature was on a given day or 

during a period of days.(ela.gov) 

Pop Estim 

10yr 

Demographic Annual Population Estimates, Estimated Components of Resident 

Population Change, and Rates of the Components of Resident Population 

Change for the United States, States, and Puerto Rico: April 1, 2010 to 

July 1, 2019, File: 7/1/2019 National and State Population Estimates, 

Source: U.S. Census Bureau, Population Division, Release Date: 

December 2019 

Births 10yr Demographic Birth Estimates, Estimated Components of Resident Population Change, 

and Rates of the Components of Resident Population Change for the 

United States, States, and Puerto Rico: April 1, 2010 to July 1, 2019, File: 

7/1/2019 National and State Population Estimates, Source: U.S. Census 

Bureau, Population Division, Release Date: December 2019 

Deaths 10yr Demographic Death Estimates, Estimated Components of Resident Population Change, 

and Rates of the Components of Resident Population Change for the 

United States, States, and Puerto Rico: April 1, 2010 to July 1, 2019, File: 

7/1/2019 National and State Population Estimates, Source: U.S. Census 

Bureau, Population Division, Release Date: December 2019 

International 

Migration 

10yr 

Demographic Net international migration in period, Estimated Components of Resident 

Population Change, and Rates of the Components of Resident Population 

Change for the United States, States, and Puerto Rico: April 1, 2010 to 

July 1, 2019, File: 7/1/2019 National and State Population Estimates, 

Source: U.S. Census Bureau, Population Division, Release Date: 

December 2019 

Domestic 

Migration 

10yr 

Demographic Net domestic migration in period, Estimated Components of Resident 

Population Change, and Rates of the Components of Resident Population 

Change for the United States, States, and Puerto Rico: April 1, 2010 to 

July 1, 2019, File: 7/1/2019 National and State Population Estimates, 

Source: U.S. Census Bureau, Population Division, Release Date: 

December 2019 

Net 

Migration 

10yr 

Demographic Net migration in period, Estimated Components of Resident Population 

Change, and Rates of the Components of Resident Population Change for 

the United States, States, and Puerto Rico: April 1, 2010 to July 1, 2019, 

File: 7/1/2019 National and State Population Estimates, Source: U.S. 

Census Bureau, Population Division, Release Date: December 2019 

ILI 10yr Avg Epidemiologic Influenza like illness data downloaded from CDC 

Fluview.Epidemiological data for cases within the United States. 
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Table S2.4 List of predictors for the GLM and their descriptions 

Air 

Passengers 

10yr Avg 

Transportation Number of air passengers in the United States (Domestic flights) 

Amtrak 

Passengers 

10yr Avg 

Transportation Number of air passengers in the United States (Domestic flights) 

Highway 

Transit 10yr 

Avg 

Transportation Number of air passengers in the United States (Domestic flights) 

Highway 

Vehicle 

Miles 10y 

rAvg 

Transportation Number of air passengers in the United States (Domestic flights) 

Inter-region 

Antigenic 

distance 

Antigenic Average Euclidean distance from an antigenic cartography between all 

antigens from a given geographic region to another. 

antigenic 

distance to 

vaccine 

VC11 

Antigenic Average Euclidean distance from an antigenic cartography for all 

antigens in a given geographic region to the vaccine candidate Victoria 

2011 

antigenic 

distance to 

vaccine 

TX12 

Antigenic Average Euclidean distance from an antigenic cartography for all 

antigens in a given geographic region to the vaccine candidate Texas 

2012 

antigenic 

distance to 

vaccine 

SW13 

Antigenic Average Euclidean distance from an antigenic cartography for all 

antigens in a given geographic region to the vaccine candidate 

Switzerland 2013 

antigenic 

distance to 

vaccine 

SN16 

Antigenic Average Euclidean distance from an antigenic cartography for all 

antigens in a given geographic region to the vaccine candidate Singapore 

2016 

antigenic 

distance to 

vaccine PT09 

Antigenic Average Euclidean distance from an antigenic cartography for all 

antigens in a given geographic region to the vaccine candidate Perth 2009 

antigenic 

distance to 

vaccine 

KS17 

Antigenic Average Euclidean distance from an antigenic cartography for all 

antigens in a given geographic region to the vaccine candidate Kansas 

2017 

antigenic 

distance to 

vaccine 

HK14 

Antigenic Average Euclidean distance from an antigenic cartography for all 

antigens in a given geographic region to the vaccine candidate Hong 

Kong 2014 
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Supplemental information Chapter 3: Genetic and antigenic 

characterization of global seasonal influenza evolution, 2017-2022. 
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Figure S3.1. BMDS antigenic cartographies estimated for each subtype and evolutionary model. 

The color of isolates corresponds to the clade determined through NextClade. The shape of 

points, circle, and triangle, corresponds to viruses and sera respectively.  
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Figure S3.2. Antigenic distance of H3N2 isolates from vaccine candidates over time. The 

Euclidean distance of each isolate in antigenic units calculated from the corresponding subtype 

cartography was used to estimate distances. The coloring of isolates corresponds to the 

NextClade designation based on isolate genomic data.  
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Figure S3.3. Antigenic distance of H3N2 isolates from vaccine candidates over time. The 

Euclidean distance of each isolate in antigenic units calculated from the corresponding subtype 

cartography was used to estimate distances. The coloring of isolates corresponds the number of 

amino acid substitutions from NextClade reference. 
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Figure S3.4. Antigenic distance of H1N1 isolates from vaccine candidates over time. The 

Euclidean distance of each isolate in antigenic units calculated from the corresponding subtype 

cartography was used to estimate distances. The coloring of isolates corresponds to the 

NextClade designation based on isolate genomic data.  
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Figure S3.5. Antigenic distance of H1N1 isolates from vaccine candidates over time. The 

Euclidean distance of each isolate in antigenic units calculated from the corresponding subtype 

cartography was used to estimate distances. The coloring of isolates corresponds the number of 

amino acid substitutions from NextClade reference. 
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Figure S3.6. Antigenic distance of B-Vic isolates from vaccine candidate WA19 over time. The 

Euclidean distance of each isolate in antigenic units calculated from the corresponding subtype 

cartography was used to estimate distances. The coloring of isolates in the left panel corresponds 

to the NextClade designation based on isolate genomic data. The coloring of isolates in the right 

panel corresponds the number of amino acid substitutions from NextClade reference. 
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Figure S3.7. Proportion of all isolates that are vaccine escapes to a given vaccine candidate over 

study space. The proportion of isolates with an antigenic distance greater than 2 units from the 

vaccine strain is reported for all isolates with paired genetic data characterized between 2017 – 

2022. 

 

  



   

134 

 

Figure S3.8. The number of nucleotide substitutions vs the root to tip distance for isolates of 

each subtype in the study space with paired antigenic/genomic data in the top panel. The number 

of amino acid substitutions vs the root to tip distance for isolates can be seen in the bottom panel. 
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Figure S3.9. The number of nucleotide substitutions vs the root to tip distance for isolates of 

H3N2 with paired antigenic/genomic data for each NextClade lineage in the study space. 
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Figure S3.10. The number of nucleotide substitutions vs the root to tip distance for isolates of 

H1N1 with paired antigenic/genomic data for each NextClade lineage in the study space. 
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Figure S3.11. The number of nucleotide substitutions vs the root to tip distance for isolates of B-

Vic with paired antigenic/genomic data for each NextClade lineage in the study space. 
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Figure S3.12. The number of nucleotide substitutions vs the root to tip distance for isolates of B-

Yam with paired antigenic/genomic in the study space. 
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Figure S3.13. Visualization of GAM predictors for place of isolation for H3N2 isolates.  

Predictors with statistically supported smooth terms and basis dimension check are visualized.  
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Figure S3.14. Visualization of GAM predictors for clade of H3N2 isolates.  Predictors with 

statistically supported smooth terms and basis dimension check are visualized.  
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Figure S3.15. Visualization of GAM predictors for clade of H3N2 isolates (cont.). Predictors 

with statistically supported smooth terms and basis dimension check are visualized.  

  



   

142 

 

 

Figure S3.16. Visualization of GAM predictors for antigenic and genomic distance metrics for 

H3N2 isolates.  Predictors with statistically supported smooth terms and basis dimension check 

are visualized.  

  



   

143 

 

Figure S3.17. Visualization of GAM predictors of non-coordinate predictors for H3N2 isolates.  

Predictors with statistically supported smooth terms and basis dimension check are visualized. 
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Figure S3.18. Visualization of GAM predictors for place of isolation for H1N1 isolates.  

Predictors with statistically supported smooth terms and basis dimension check are visualized.  
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Figure S3.19. Visualization of GAM predictors for clade of H1N1 isolates.  Predictors with 

statistically supported smooth terms and basis dimension check are visualized.  
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Figure S3.20. Visualization of GAM predictors for antigenic and genomic distance metrics for 

H1N1 isolates.  Predictors with statistically supported smooth terms and basis dimension check 

are visualized.  
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Figure S3.21. Visualization of GAM predictors of non-coordinate predictors for H1N1 isolates.  

Predictors with statistically supported smooth terms and basis dimension check are visualized.  
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Figure S3.22. Visualization of GAM predictors for place of isolation for B-Vic isolates.  

Predictors with statistically supported smooth terms and basis dimension check are visualized.  
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Figure S3.23. Visualization of GAM predictors for clade of B-Vic isolates.  Predictors with 

statistically supported smooth terms and basis dimension check are visualized.  

  



   

150 

 

Figure S3.24. Visualization of GAM predictors for antigenic and genomic distance metrics for 

B-Vic isolates.  Predictors with statistically supported smooth terms and basis dimension check 

are visualized.  
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Figure S3.25. Visualization of GAM predictors of non-coordinate predictors for B-Vic isolates.  

Predictors with statistically supported smooth terms and basis dimension check are visualized.  
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Figure S3.26. Visualization of GAM predictors for place of isolation for B-Yam isolates.  

Predictors with statistically supported smooth terms and basis dimension check are visualized.  
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Figure S3.27. Visualization of GAM predictors for antigenic and genomic distance metrics for 

B-Yam isolates.  Predictors with statistically supported smooth terms and basis dimension check 

are visualized.  
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Figure S3.28. Visualization of GAM predictors of non-coordinate predictors for B-Yam isolates.  

Predictors with statistically supported smooth terms and basis dimension check are visualized.  
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Figure S3.29. Diagnostic results for GAM of H3N2 isolates. QQ plot of residuals and residual 

frequencies, the residuals by the linear predictor and the observed vs fitted values are plotted.  
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Figure S3.30. Diagnostic results for GAM of H1N1 isolates. QQ plot of residuals and residual 

frequencies, the residuals by the linear predictor and the observed vs fitted values are plotted.  
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Figure S3.31. Diagnostic results for GAM of B-Vic isolates. QQ plot of residuals and residual 

frequencies, the residuals by the linear predictor and the observed vs fitted values are plotted.  
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Figure S3.32. Diagnostic results for GAM of B-Yam isolates. QQ plot of residuals and residual 

frequencies, the residuals by the linear predictor and the observed vs fitted values are plotted.  
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Table S3.1.  Significance of smoothing terms for H3N2 isolates.  Predictors for the GAM 

implemented for H3N2 isolate root to tip distance as the response variable with corresponding 

statistical support. 
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Table S3.2. Basis dimension checking for H3N2 isolates.  Basis dimension indices for predictors 

for the GAM implemented for H3N2 isolate root to tip distance as the response variable with 

corresponding statistical support. 

 

  



   

161 

Table S3.3. Significance of smoothing terms for H1N1 isolates.  Predictors for the GAM 

implemented for H1N1 isolate root to tip distance as the response variable with corresponding 

statistical support. 
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Table S3.4. Basis dimension checking for H1N1 isolates.  Basis dimension indices for predictors 

for the GAM implemented for H1N1 isolate root to tip distance as the response variable with 

corresponding statistical support. 
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Table S3.5. Significance of smoothing terms for B-Vic isolates.  Predictors for the GAM 

implemented for B-Vic isolate root to tip distance as the response variable with corresponding 

statistical support. 
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Table S3.6. Basis dimension checking for B-Vic isolates.  Basis dimension indices for predictors 

for the GAM implemented for B-Vic isolate root to tip distance as the response variable with 

corresponding statistical support. 
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Table S3.7. Significance of smoothing terms for B-Yam isolates.  Predictors for the GAM 

implemented for B-Yam isolate root to tip distance as the response variable with corresponding 

statistical support. 

 

  



   

166 

Table S3.8. Basis dimension checking for B-Yam isolates.  Basis dimension indices for 

predictors for the GAM implemented for B-Yam isolate root to tip distance as the response 

variable with corresponding statistical support. 

 

 

 

 

 

Code availability. All BEAST XMLs, and code used for analyses and visualization of results are 

provided in the following GitHub repository: https://github.com/ldamodaran/Influenza-antigenic-

2017-2022 
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Supplemental Figures Chapter 4: Comparison of estimated 

antigenic space between different laboratory assays for H3N2 

influenza viruses  
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Figure S4.1. Antigenic cartography of HI assay data collected between 2017 and 2022 colored 

by discrete associated metadata. A) Colored by antigen and sera. B) Colored by lineage as 

determined by NextClade. C) Colored by year of isolation. D) Colored by continent of isolation. 
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Figure S4.2. Antigenic cartography of FRA assay data collected between 2017 and 2022 colored 

by discrete associated metadata. A) Colored by antigen and sera. B) Colored by lineage as 

determined by NextClade. C) Colored by year of isolation. D) Colored by continent of isolation. 
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Figure S4.3. Antigenic cartography of HINT assay data collected between 2017 and 2022 

colored by discrete associated metadata. A) Colored by antigen and sera. B) Colored by lineage 

as determined by NextClade. C) Colored by year of isolation. D) Colored by continent of 

isolation. 
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Figure S4.4. Scree plot for the dimension test of HI assay data. Dimension test was carried out 

for 5 dimensions with 100 optimizations and 100 replicates for each dimension of data.  
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Figure S4.5. Scree plot for the dimension test of FRA assay data. Dimension test was carried out 

for 5 dimensions with 100 optimizations and 100 replicates for each dimension of data.  
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Figure S4.6. Scree plot for the dimension test of HINT assay data. Dimension test was carried 

out for 5 dimensions with 100 optimizations and 100 replicates for each dimension of data.  
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Figure S4.7. Shepard stress plot for table distances vs map distances for HI assay data. Dotted 

line represents the linear regression of the datapoints.  
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Figure S4.8. Shepard stress plot for table distances vs map distances for FRA assay data. Dotted 

line represents the linear regression of the datapoints.  
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Figure S4.8. Shepard stress plot for table distances vs map distances for HINT assay data. 

Dotted line represents the linear regression of the datapoints.  
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Figure S4.10. Procrustes errors for the comparison of HI and FRA assays. Blue arrows represent 

the position in the second assay for a given isolate in the first assay being compared.  
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Figure S4.11. Procrustes errors for the comparison of HI and HINT assays. Blue arrows 

represent the position in the second assay for a given isolate in the first assay being compared.  
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Figure S4.12. Procrustes errors for the comparison of HINT and FRA assays. Blue arrows 

represent the position in the second assay for a given isolate in the first assay being compared.  
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Figure S4.13. Procrustes residuals for individual isolates between the HI and FRA assays. The 

index represents a given isolate and the horizontal line represents the mean Procrustes residual 

value and 95% confidence interval.  
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Figure S4.14. Procrustes residuals for individual isolates between the HI and HINT assays. The 

index represents a given isolate and the horizontal line represents the mean Procrustes residual 

value and 95% confidence interval.  
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Figure S4.15. Procrustes residuals for individual isolates between the HINT and FRA assays. 

The index represents a given isolate and the horizontal line represents the mean Procrustes 

residual value and 95% confidence interval.  

 

 

 

 

0 20 40 60 80 100 120 140

0
.0

0
0
.0

5
0

.1
0

0
.1

5

Procrustes errors

HINT and FRA assay

Index

P
ro

c
ru

s
te

s
 r

e
s
id

u
a

l



   

183 

 

 

 

 

 

 

Figure S4.16. Mantel correlogram for antigenic assays tested against corresponding phylogenies 

for HA1 genomic region of the HA protein.  The non-significant correlation values were not 

plotted for a given distance class index. 
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