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Abstract

Deep learning-based systems have shown superior performance in many ar-
tificial intelligence tasks in the last decade. Imaging systems are particularly well
suited to benefit from deep learning with the use of Convolutional Neural Net-
works (CNNs). CNNs and other deep learning methods are now the preferred
approach for nearly all computer vision and pattern recognition challenges, in-
cluding image classification, object detection, and biometric recognition. Not
only are CNNs used with images captured in the visible spectrum wavelengths,
but they have also been used with varying success on images captured in other
wavelengths, most often in the infrared (IR) spectrum. The different regions of
the IR band each have their own unique advantages, providing researchers with
new ways to investigate computer vision problems in challenging scenarios that
may be impossible to solve in the visible spectrum. Although deep learning-
based imaging systems have been used successfully for a variety of tasks in both
the visible and IR spectrums, many challenges remain, especially for biometric
recognition applications. Studies show that a performance gap exists between
the image-based systems that operate in different spectrums. These challenges
can generally be attributed to the large appearance variations of images captured
in the different spectrums and a limited availability of high quality data in the
non-visible bands.

In this dissertation I address several of the gaps that exist in the open lit-
erature for imaging systems that use multiple spectrums, particularly as they
relate to biometric systems and object detection. The dissertation includes an
introduction and background information for each of the challenges covered
in this work and a systematic review of the relevant literature. Methods are



proposed to address facial attribute analysis in the visible and middle-wave IR
bands, facial landmark detection and recognition via image synthesis using the
visible and passive (middle and long wave IR) bands, and detection of firearms
from surveillance videos in the visible band. The proposed approaches and re-
sults from this dissertation provide practical solutions and analysis for a variety
of imaging system challenges and provide helpful insights and directions for
future research.
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Chapter 1

Introduction

1.1 Problem Definition
In the last decade, deep learning has become the most popular machine learning
method for solving complex pattern recognition and computer vision problems.
One of the fields that has benefited greatly from deep learning is biometrics, a
subfield of computer vision. Biometrics is the science of identification and ver-
ification of an individual based on the behavioral and physiological traits of the
person. The traits are unique, permanent, and can separate one individual from
another Dargan and Kumar, 2020. Biometric recognition can be considered
as a verification or identification problem. In the context of face recognition,
verification is a 1:1 matching problem where a presented face is confirmed or
repudiated by comparing it with the claimed identity in the database. Identi-
fication is a 1:N matching problem where an unknown face is compared with
each face in a database of already known identities and a decision is made with
the comparisons Taskiran et al., 2020. Biometric systems are commonly used
with sensors that capture images in the visible spectrum, but they can also be
used with sensors in other spectra, including the infrared (IR) spectrum.

This dissertation presents work on several aspects of deep learning-based
imaging systems in multiple spectrums. The main focus is on biometric systems.
Most biometric systems are composed of three basic modules; (1) an acquisition
and preprocessing module where data is collected and any required attributes in
the data are detected and analysed. These attributes, often called soft biometrics
Jain et al., 2004, are normally not unique enough to identify specific individ-
uals but can be used as a compliment to the primary biometric modality; (2)
a keypoint detection and normalization module where important landmarks
are located, if necessary, and required alignment and image normalization pro-
cesses are performed. Each of these processes is dependent upon the biometric
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modality being used; (3) a feature extraction and matching module, where infor-
mation is extracted from the image and similarity scores are obtained between
biometric samples using an appropriate metric.

In this work I also focus on object detection, specifically firearm detection in
surveillance images. The detection of objects in images and videos is one of the
central and most challenging problems in computer vision. Given an image, the
generic object detection task is to determine whether or not there are instances
of objects from predefined categories and, if present, return the spacial location
and extent of those instances L. Liu et al., 2020. Previously, object detection
performance with handcrafted features reached a plateau after 2010 , but the
use of CNNs like AlexNet Krizhevsky et al., 2012 in 2012 allowed new object
detectors to learn robust and high-level feature representations of images Zou
et al., 2023. Advances in object detection have also lead to researchers addressing
more challenging objects to detect, such as firearms. The automatic detection
of firearms is very difficult due to variations in size, shape, and appearance. Sev-
eral algorithms have been proposed over the last few years to overcome these
challenges Iqbal et al., 2021; Yadav et al., 2022, focusing mainly on accuracy and
speed of detections. I contribute to this important research with an analysis
of which data augmentations improve and hinder firearm detection on a novel
dataset composed of only real-world surveillance images.

I present my contributions for each of the mentioned biometric modules
and object detection in the next sections. The remainder of the paper is or-
ganized as follows: Chapter 2 reviews previous works related to multispectral
imaging systems. Chapter 3 describes the methodology for each problem. The
experimental results are discussed in Chapter 4 and conclusions are drawn in
Chapter 5.

1.2 Acquisition and Preprocessing

1.2.1 Facial Attribute Analysis: Mugshot Data
In this section, I provide a brief introduction to forensic biometrics and intro-
duce a forensic toolkit for analysis of a variety of facial attributes that affect face
recognition. The contributions of this work are the following:

• Rapidly categorize face databases for factors that can degrade face recog-
nition accuracy.
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Figure 1.1: Overview of the toolkit work flow. Step 1: a mugshot image is im-
ported into the interface. Step 2: the face and eye pair (if possible) are detected.
Step 3: HOG features are extracted from the detected face and eyes. Step 4: the
features are used for classification. Step 5: The classification results are recorded
and returned to the examiner.

• Categorize the following factors (1) are the subject’s eyes open or closed,
(2) is the subject wearing glasses, and (3) is the facial pose of the subject
frontal or non-frontal.

• Train classical and deep learning classification models that are robust to
factors such as pose, illumination, expression, and resolution in high-
quality face datasets collected under ideal conditions and low-quality
mugshot face datasets collected under variable conditions.

The goal of both biometric recognition and forensic science is to link bio-
logical data to an individual Jain and Ross, 2015. However, the ability to use
biometric systems successfully in forensic scenarios is quite challenging. The
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challenges in this field, often referred to as forensic biometrics, as well as their
similarities and differences are well documented in Champod and Tistarelli,
2017; Dessimoz and Champod, 2008; Jain et al., 2011, 2012; Jain and Ross, 2015;
Lee et al., 2012; Meuwly and Veldhuis, 2012; Tistarelli et al., 2014. According to
Meuwly and Veldhuis, 2012, biometric technology plays a role in several foren-
sic applications: the identity management and the identity verification in the
criminal justice chain, the identification of missing persons from a mass disaster,
and the forensic investigation and intelligence as well as the forensic evaluation
of biometric evidence in court, which together form the field of forensic bio-
metrics. More specifically, and explained in Dessimoz and Champod, 2008,
forensic biometric systems are used as sorting tools which do not make any final
identification decisions. For forensic face recognition scenarios, an unknown
probe face image is compared to every other face image in a gallery database.
The FR system computes a similarity score for the probe with each sample in
the gallery and the top-K matches are returned, often ordered from most to
least similar. Then the forensic investigator performs a visual inspection of each
candidate from the list to determine if any of the returned faces are a match to
the unknown probe, meaning that the forensic biometric system is an external
tool from the manual identification process.

Some of the major challenges in unconstrained face recognition are varia-
tions in pose, expression, occlusion, age, and image quality factors such as illu-
mination, blurriness, and brightness. To improve face recognition performance
it is important to identify which images in a database have these attributes so
that they may be further analyzed or enhanced. The three factors I focus on are
(1) whether a subject’s eyes are open or closed, (2) whether the subject is wearing
glasses or not, and (3) whether the facial pose of the subject is either frontal or
non-frontal.

The goal of this work is to help the forensic operator by improving the
process of returning an accurate rank list of potential suspects. I propose a
toolkit that can rapidly categorize large databases for several factors that can
degrade FR accuracy by detecting facial photos where the subject’s eyes are
closed, the subject is wearing glasses, or has a non-frontal face pose. The ability
to identify these attributes from facial photos in a large database can benefit
law enforcement and give operators the option to exclude, group, or enhance
these images. An overview of the proposed system is presented in figure 1.1
where the system input is a mugshot or other face image from the database to
be categorized. Then, face detection is performed as well as eye pair detection,
if possible. Next, HOG features are extracted from the detected face and eyes
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and each of the three factors are categorized by trained classifiers. The results
are then recorded and available for analysis by an examiner.

1.2.2 Facial Attribute Analysis: Cellphone Data
The facial attribute analysis work from the previous section is expanded upon
here. The contributions of this work are the following:

• Rapidly categorize face databases for factors that can degrade face recog-
nition accuracy.

• Categorize the following factors (1) are the subject’s eyes open or closed,
(2) is the subject wearing glasses, and (3) is the facial pose of the subject
frontal or non-frontal.

• Train classical and deep learning classification models on challenging face
images collected using an iPhone 5S indoors and outdoors at distances
of 1 and 5 meters.

Facial attributes, sometimes called soft biometrics, can be used to support
human recognition systems in law enforcement scenarios where the focus is to
reduce the search space and retrieve more relevant results to the query face im-
ages Martin et al., 2016. Soft biometrics can also be fused with hard biometrics
to improve the efficiency of biometric systems Gonzalez-Sosa et al., 2018.

There are two main facial attribute analysis processes. The first one is Facial
Attribute Manipulation (FAM), in which generative models are used to modify
face images in order to alter or even remove a chosen attribute. I wil not cover
the FAM based methods, but more information can be found in Shen and Liu,
2017; Xiao et al., 2018.

The second process, which I focus on, is Facial Attribute Estimation (FAE),
in which specific classifiers are used to determine whether a particular facial
attribute is present in a query face image Zheng et al., 2018. While there are
several techniques proposed claiming to efficiently estimate different facial at-
tributes, many challenges have yet to be solved related to the performance of
face recognition systems. Thus, while common factors that affect face recogni-
tion systems include face pose, illumination, and occlusion, FAE challenges can
be summarized by three different aspects: data, algorithms, and applications
Zheng et al., 2018. Here, I am interested in using FAE processes to detect certain
facial attributes so that higher recognition performance can be achieved. This
is a difficult task, especially when working with a large amount of diverse, class
imbalanced, and attribute specific datasets. For instance, when trying to classify

5



whether or not a face has eyeglasses present, most publicly available face datasets
have far more face samples where the subjects are not wearing eyeglasses. This
problem can lead to overfitting and poor performance on new data. To over-
come this problem, data augmentation is often used to create more samples of
the minority class in order to correct the imbalance and avoid bias. In addition
to class imbalance, the source and distributions of data can affect a classifiers
ability to generalize to data from sources not seen during training. Exploring
the effects of the source and distributions of the data in object detection and
recognition performance is very important.

I address the previously mentioned challenges using data captured from
traditional cameras and mobile devices, when operating at multiple standoff
distances, in indoor and outdoor conditions. I propose an approach that auto-
matically and efficiently detects three specific facial attributes: (1) determining
whether the eyes of a subject are open or closed, (2) determining whether a sub-
ject is wearing glasses or not, and (3) detecting whether a subject’s facial pose
is either frontal or non-frontal. To detect all of the aforementioned facial at-
tributes, I trained and tested classical and deep learning based models. First, I
assessed the previously trained classifiers from my work in 5.1.1 using traditional
and deep learning methods on data collected with an iPhone 5S. Then, I re-
trained the classifiers on iPhone data to assess the performance changes. Finally,
I retrained on a face database containing the previous data and mobile data com-
bined. The proposed attribute-specific detection models are robust, yielding
up to 100% accuracy (in terms of F1 score) depending on the attribute tested.

1.2.3 Facial Attribute Analysis: Masked Data
Facial attribute Analysis in the visible and mid-wave spectrums is investigated in
this work during the COVID-19 pandemic, specifically focusing on deep learn-
ing methods for the classification of mask compliance. The main contributions
are the following:

• The creation of a multispectral masked face (MMF-DB) database of 100
subjects with various levels of non-compliant and compliant mask wear-
ing in the visible and middle wave infrared (MWIR) bands.

• The augmentation the MMF-DB with synthetically applied masks at
two levels of non-compliance, masks placed below the nose and below
the mouth.

• The assessment of the performance of nine well established CNN archi-
tectures on masked and unmasked face images.
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• The development of an efficient deep learning based approach on solving
the problem of classifying face images wearing masks as either compliant
or non-compliant when operating in either the visible or thermal bands.
Experimental results show that face mask compliance classification in
both studied bands yield a classification accuracy that reaches 100% for
most models studied, when experimenting on frontal face images cap-
tured at short distances with adequate illumination.

During the COVID-19 pandemic, caused by the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), the World Health Organization (WHO)
reported that wearing face masks helps prevent our respiratory droplets from
reaching others. In addition, when wearing a face mask over the nose and
mouth, the spray of droplets is reduced. In response to this recommendation,
different governments around the world started a set of initiatives, including
ones that aimed to utilize machine learning techniques to detect whether pas-
sengers are wearing face masks in metro stations. Many other members of the
artificial intelligence community also started developing various automatic face
mask detection models that can aid in the monitoring and screening of face
mask usage. However, most reported models typically focused on detecting
whether a mask is present in a face image or not. According to the mask guide-
lines provided by the Center for Disease Control and Prevention (CDC), face
masks should (1) have two or more layers of washable, breathable fabric, (2)
completely cover the nose and mouth, (3) fit snugly against the sides of the face
with no gaps, and (4) have a nose wire to prevent air from leaking out the top
of the mask. Therefore, the methods that only detect the presence of a mask
will fail to identify subjects who are improperly wearing their mask and thus,
not complying with CDC guidelines. It is important to note that in this work
I am using 2D face images, and I focus on detecting whether the guideline (2)
discussed above is being followed or not. More specifically, I want to determine
if a detected face is "compliant", where a face mask is properly worn over the
nose and mouth, or "non-compliant", where a detected face has either, (a) no
face mask, (b) a mask worn below the nose, or (c) a mask worn below the chin.
While I cannot account for all types of noncompliance, especially if the mask
fits snugly against the sides of the face without gaps, scenarios (b) and (c) seem
to be the most common cases of masked non-compliance observed during the
pandemic. In this work, when I mention compliance with face mask guidelines,
I will be specifically talking about the automation of monitoring and detecting
compliance of wearing face masks that properly cover the nose and mouth areas.

Although there are several mask detection works proposed since the start
of the pandemic, very few address different levels of face mask non-compliance,
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including (a) no face mask present, (b) face mask is below the nose, and (c) face
mask is below the mouth and nose. To my knowledge, only one large scale pub-
licly available dataset exists with visible band face images annotated for masks
that are present but not worn correctly Batagelj et al., 2021. I have found no
work extending face mask compliance in the thermal band, specifically, MWIR.
MWIR sensors operate on the passive IR band in the 3.0-5.0 µm spectral range.
The benefits of operating in the MWIR band are numerous, with many applica-
tions including biometrics and biomedical Bourlai, 2016; Bourlai and Hornak,
2016; Bourlai, Pryor, et al., 2012; Bourlai, Ross, et al., 2012; Mokalla and Bourlai,
2019, 2020; Osia and Bourlai, 2012, 2017a. Passive IR sensors need no exter-
nal light source, and instead detect IR radiation as heat emitted from objects.
In addition to being tolerant of other commonly encountered environmen-
tal conditions such as fog, smoke, and dust, MWIR imaging sensors are ideal
when operating under low light, night-time environments. Any operational
scenario with less-than-ideal lighting conditions can greatly benefit from the
use of MWIR imaging sensors.

In this work, I focus on classifying faces wearing masks as either compliant
(mask properly covers the nose and mouth face areas) or non-compliant (not
wearing a face mask or wearing one but it is placed below the nose or mouth). In
addition to evaluating classification performance on visible band face images, I
also investigate how different CNN architectures perform on face images where
subjects are wearing face masks captured with an MWIR imaging sensor.

1.2.4 MultiSpectral Face Dataset Collection
In this section I introduce the data collection activities that I was a part of that
used the latest MWIR imaging sensors, with and without telephoto capabilities,
i.e., the A8581 (for close-range) and the RS8500 series (for long-range imaging).
This work created the MILAB-VTF(B) dataset; a MWIR-Visible face dataset
from which a curated version will become publicly available. Thus, assisting
the research community by further closing the gap of MWIR-Visible datasets
availability. The contributions of this work are the following:

• An unconstrained, multispectral (visible and MWIR), unsynchronized,
paired face dataset with 400 identities.

• Challenging variations in terms of weather, pose, and distances.

• The largest multispectral face dataset to date by number of subjects, dis-
tances, and thermal sensor resolution.
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The raw dataset was collected within the 1st quarter of 2021, and is the largest
and most diverse of its kind to-date, collected in realistic operational conditions,
from 1.5 - 400 meters (1312 ft). In the next chapters I will discuss more of the
data collection activities as well as the demographics of the dataset. All work
in this dissertation related to the dataset collection will soon be published in
a journal that is accepted in IEEE Transactions on Biometrics, Behavior, and
Identity Science.

1.3 Keypoint Detection

1.3.1 Facial Landmark Detection
Detecting landmarks in face images is an important preprocessing step for a
variety of biometric and human physiology-related artificial intelligence appli-
cations, including head pose estimation, driver drowsiness detection, gaze track-
ing, emotion recognition, and face recognition. Face recognition in particular
is one of the most studied problems in the biometric literature because of its
many applications in security, surveillance, authentication, and identification
tasks. In the visible light domain, the accurate detection of facial landmarks and
alignment to canonical coordinates is a requirement for many face recognition
algorithms. If face recognition in low-light or nighttime environments is the op-
eration scenario of interest, thermal imaging cameras are often used due to their
ability to passively capture body heat emissions without being dependent on
the presence of or intensity level of ambient light conditions. However, facial
landmark detection algorithms made for the visible domain are not designed
to perform well when operating in the thermal domain. In order to accurately
detect landmarks in thermal face images, spectral-dependent approaches must
be developed. The contributions of this work are the following:

• Provide a comprehensive assessment of synthesis and transfer learning
facial landmark detection approaches on the ARL-VTF and MILAB-
VTF(B) datasets.

• Conduct a study where the focus is to train and evaluate HRNet facial
landmark detectors on thermal and multispectral (thermal and visible)
data. The purpose of such a study is to identify any performance gaps
that exist between learning the invariant features between two domains
and fine-tuning a model to the target domain with the chosen HRNet
architecture.
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• Propose a competitive facial landmark detection approach that yields
state-of-the-art results on the ARL-VTF and the recently developed MILAB-
VTF(B) datasets. Results are reported on face images captured at 1.5-, 100-,
200-, 300-, and 400-meter distances respectively.

Figure 1.2: Overview of the reference-guided and latent-guided thermal-to-
visible synthesis process using StarGAN v2. The thermal source face is the
input image for both synthesis methods. StarGAN v2 uses the style encoder
for reference-guided synthesis to output a visible image that looks similar to
the reference image. The mapping network performs latent-guided synthesis
to output a visible image using the latent codes learned from the dataset during
training.

Conventional facial landmark detection methods can be grouped into three
categories, Constrained Local Model (CLM) methods, holistic methods, and
regression-based methods Y. Wu and Ji, 2019. Many of these methods work
well on datasets collected under controlled conditions where there is little to
no variation in head pose, illumination, expression, and occlusions. However,
they often fail to accurately detect facial landmarks on "in-the-wild" scenarios
that are composed of many, or all, of the aforementioned challenges. Recently
developed algorithms based on Convolution Neural Networks (CNNs) and
deep learning have proven much more suited to handling the problem of un-
constrained in-the-wild facial landmark detection. These neural network algo-
rithms can be grouped into two categories:

1. Coordinate regression methods where the model predicts (x, y) coordi-
nates for every landmark.

2. Heatmap-based regression methods that use 2D heatmaps for every land-
mark Khabarlak and Koriashkina, 2021. Each heatmap is a 2D Gaussian
kernel, often with the same standard deviation for all landmarks. In this
approach, the values in the heatmap can be thought of as probabilities
of the landmark location. Overall, the heatmap-based algorithms are
generally more accurate on many of the common benchmark datasets.
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The coordinate regression and heatmap-based regression methods can both
be used in the thermal domain but require additional techniques to be imple-
mented in order to achieve accurate detections as they are primarily developed
using visible domain data. The two most commonly used techniques are trans-
fer learning Zhuang et al., 2020 and image synthesis L. Wang et al., 2020. Trans-
fer learning is widely used in many computer vision tasks. It fine-tunes previ-
ously trained networks to perform new tasks when a large scale labeled dataset
is not available to train the network from scratch. The goal of transfer learning
is to use weights learned from a model trained on a source domain and translate
it to the desired target domain. The other method that has gained interest in
the recent literature is the implementation of Generative Adversarial Networks
(GANs) Goodfellow et al., 2020 to synthesize new data.

Generative models for image synthesis have become very popular for com-
puter vision applications, and are one of many methods for face recognition in
the thermal domain Bourlai, 2016; C. Chen and Ross, 2019; Di et al., 2021; Di
et al., 2018; Fu et al., 2021; Osia and Bourlai, 2017a, 2017b; Osia et al., 2018; Peri
et al., 2021a; Z. Wang et al., 2018; H. Zhang et al., 2019. Synthesis approaches
use generative models to transform images from a source domain to a target
domain. The source domain often lacks sufficient amounts of data for training
a model using traditional methods. The target domain is usually well studied
and has an adequate amount of labeled data. Several successful techniques for
solving problems in this domain already exist. In this case, the source domain is
face images in the thermal infrared band, and the target domain is face images
in the visible band, see figure 1.2. The main challenge researchers face in this
area, is that many accurate facial landmark detectors have been developed for
the visible domain, largely due to the quality, size, and availability of visible face
landmark detection datasets Burgos-Artizzu et al., 2013; Koestinger et al., 2011;
Sagonas et al., 2013; W. Wu et al., 2018. In contrast, the thermal domain lacks
face datasets with the diversity and size of the visible domain, making it a very
challenging problem to solve. In this work, instead of creating new datasets
with a sufficient number of samples for training new models, it is arguably eas-
ier to leverage already existing methods in the visible domain and apply them
to the thermal domain using synthesis-based techniques.

There are several methods developed for facial landmark detection in the
thermal domain Bourlai and Jafri, 2011; Chu and Liu, 2019; Kopaczka et al.,
2018; D. Poster et al., 2019; Riggan et al., 2018, which can then be used to per-
form face recognition Anghelone et al., 2022. The methods that use transfer
learning on thermal datasets often lack a large enough number of subjects and
images to approach results reported in the visible domain. Additionally, thermal
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images frequently have lower resolutions than those in the visible domain. This
can largely be attributed to the higher cost of thermal imaging sensors compared
to visible ones. Training landmark detection models solely on thermal data via
transfer learning is most often used. However, thermal-to-visible synthesis us-
ing GANs has also proven to be a suitable approach. While both methods can
produce satisfactory results, there is discussion in the literature that there is
room for improvement. Synthesis methods are relatively new and are often
difficult to train Gonog and Zhou, 2019; Gui et al., 2021; Roth et al., 2017. Also,
many early synthesis models such as Osia and Bourlai, 2017a required paired
data, but there are relatively few face datasets with paired images. Those that do
have an inadequate number of images to train highly accurate models. With the
introduction of CycleGan Zhu et al., 2017, synthesis techniques were no longer
constrained to paired data. For this work, I choose methods based on the Cycle-
GAN principles that can preserve the thermal domain source characteristics of
a face, i.e., pose, location of the eyes, mouth, and so on, while generating faces
that are similar to those in the target visible domain without the requirement
of paired face image data.

Recent advances in synthesis methods, the improved image quality of new
thermal imaging sensors, as well as new datasets such as the ARL-VTF D. Poster
et al., 2021 and MILAB-VTF(B) Peri et al., 2021a are helping to advance the
state-of-the-art in thermal facial landmark detection. However, a performance
gap remains between results in the thermal and visible domains. In this work I
implement recently developed methods for image synthesis and facial landmark
detection. I use StarGAN v2 Choi et al., 2020 and CUT Park et al., 2020 for
image synthesis and HRNet J. Wang et al., 2020 for facial landmark detection.
I propose to find the strengths and limitations of these methods and determine
whether current synthesis methods are able to outperform transfer learning
techniques for thermal facial landmark detection.

1.4 Feature Extraction and Matching

1.4.1 Race and Gender Classification for Cross-spectral Face
Recognition

Face recognition (FR) in the visible and MWIR spectrums using thermal-to-
visible reference-guided synthesis is investigated in this work. The synthesis
process is aided by classification of gender and race for face images in the MWIR
spectrum in order to better preserve the discriminative features of the faces. The
main contributions are the following:
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• A multitask learning approach for predicting gender and race from MWIR
face images based on the VGG Simonyan and Zisserman, 2014 architec-
ture.

• An approach for cross-spectral face recognition that implements soft bio-
metrics to improve thermal-to-visible synthesis of face images in order to
reuse state-of-the-art face matchers.

• A comprehensive set of experiments investigating the effect of choosing
the wrong gender or race when selecting a face image using thermal-to-
visible reference-guided synthesis for cross-spectral face recognition.

• Superior face recognition performance using my proposed method for
race and gender classification when compared to selecting a random gen-
der or race.

• Baseline results for gender and race classification on the MILAB-VTF(B)
dataset.

Face recognition is one of the most important challenges in computer vision.
Face recognition is used in daily in many application and industries including
law enforcement, surveillance and security systems, entertainment, shopping,
and finance. Deep learning methods have been able to achieve human level
recognition performance or better since 2014 Taigman et al., 2014. Recent face
recognition algorithms perform very well on visible spectrum images collected
under controlled conditions. However, face recognition in low light and night-
time environments is far from being a solved problem. Methods developed
for face recognition in day time conditions do not work well when illumina-
tion conditions are not ideal. Therefore, new methods for these unconstrained
environments must be developed.

In order to use face recognition in night-time environments, researchers
have used images captured with sensors that operate outside the visible portion
of the electromagnetic spectrum, most often in the infrared spectrum. Recog-
nition using face images from different spectral bands is commonly referred to
as cross-spectral face recognition (CFR). CFR is more challenging than tradi-
tional visible spectrum FR due to three factors: (1) large intra-spectral variation,
when in the same modality, face samples of the same subject can display larger
appearance variations than face samples of different subjects, (2) the modality
gap, when appearance variation between two face samples of the same subject
can be larger than two samples belonging to two different subjects, and (3) a
limited availability of training data of cross-modality face image pairs can make
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it difficult to design successful CFR methods using deep neural networks Angh-
elone et al., 2022.

Earlier methods for cross-spectral face recognition with MWIR images used
CNNs to learn a shared feature representation between each spectral band, like
the work in Sarfraz and Stiefelhagen, 2017. More recently, synthesis methods
have become very popular C. Chen and Ross, 2019; Iranmanesh et al., 2020;
Peri et al., 2021a; T. Zhang et al., 2018. The goal of synthesis methods is to learn
a mapping between the thermal and visible domains. In this work, I transform
thermal images into the visible domain so that features can be extracted from
the transformed images.

Following recent trends, I also use a synthesis technique to perform CFR
so that retraining of a FR model is not necessary. Training face recognition
models requires large amounts of data and time, and by choosing to use a syn-
thesis model, I use the limited available data in a more efficient manner. I also
incorporate soft biometrics into the synthesis pipeline. Soft biometric traits
are physical, behavioral, or adhered human characteristics, classifiable in pre-
defined human compliant categories Dantcheva et al., 2011. They include, but
are not limited to age, race, gender, hair, scars, and tattoos. The have been used
to improve recognition performance by fusing scores between the primary and
soft biometric, and also by filtering the search space of the gallery database.

In this work, I use soft biometrics to improve thermal-to-visible face synthe-
sis, and therefore, face recognition performance. Several methods investigate
face recognition and gender classification in the different IR bands using syn-
thesis, but to the best of my knowledge, no other works attempt to classify race
using MWIR in the open literature in any capacity.

1.5 Other Applications

1.5.1 Firearm Detection
In this section I propose a method for firearm detection using images from
surveillance footage for the purpose of quickly alerting authorities to active
shooter incidents. The main contributions of this work are:

• Designing a Faster R-CNN firearm detector for both handguns and long
guns specifically for surveillance video.

• Generate a novel small arms database composed of only real surveillance
footage, which was manually annotated to establish a baseline.
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• Determine the combination of data augmentation techniques that boost
firearm detection performance.

The quick and accurate detection of firearms in surveillance and CCTV
systems can aid law enforcement and first responders in preventing loss of life
in many violent situations. According to the Federal Bureau of Investigation
(FBI) Uniform Crime Report, there were 10,265 homicides committed with
firearms in the United States in 2018. While many of these homicides are not
captured on camera, active shooter incidents, which the FBI defines as one or
more individuals actively engaged in killing or attempting to kill people in a pop-
ulated area, often take place in public areas where surveillance systems are in use.
The FBI designated 27 shootings as active shooter incidents in 2018 FBI, 1999.
These incidents often resulted in tremendous consequences, including the loss
of human lives. Thus, it is paramount to respond quickly to these incidents by
alerting the police and other law enforcement authorities on time. While differ-
ent strategies can be used to achieve such a goal, a potential solution is the use
of automated firearm detection algorithms that operate real-time on security
video camera footage in which such incidents may occur. These detections must
then be confirmed by a human operator. However, the detection of firearms in
surveillance video is very challenging. As identified in Tiwari and Verma, 2015a,
firearms are very difficult to detect in operational scenarios due to the weapons
being partially occluded, as well as variations in firearm shapes, camera angles,
firearm pose, noise, illumination, and scale. There are also unique and diverse
backgrounds in these videos captured by different camera sensors. Finally, false
positives must remain low so that the human operator, whose task is to confirm
detections, will not ignore the detection system because false detections are far
too common. In order to identify firearms quickly with a focus on minimizing
false positives, a large and diverse training set is needed to support an advanced
deep learning object detection model.

In this work, I propose a Faster R-CNN Ren et al., 2015 firearm detection
model that uses a ResNet-50 K. He et al., 2016 base network previously trained
on the COCO Lin et al., 2014 dataset. I trained this model on a novel database
consisting of only real-world images from surveillance and CCTV video where
firearms are present. In order to supplement the size of the database, I per-
formed a comprehensive assessment of data augmentation techniques in order
to identify the most efficient combination in terms of firearm detection perfor-
mance. Hence, I comprehensively assess eighteen (18) different data augmen-
tation techniques while training the models in order to identify the ones that
yield the highest detection performance.
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My experiments show that a Faster R-CNN-based model, trained solely
on challenging surveillance footage, can achieve high detection accuracy for
handguns and long guns. Specifically, the proposed model can accurately detect
firearms in video frames taken from real surveillance footage close to real-time,
yielding precision and recall scores of 93.9% and 96.4% for handguns, and 95.2%
and 94.6% for long guns. To the best of my knowledge, this is the first time in
the open literature where an object detection model was trained solely on real
surveillance footage for both handguns and long guns.
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Chapter 2

Literature Review

2.1 Acquisition and Preprocessing

2.1.1 Facial Attribute Analysis: Mugshot Data
Forensic biometric systems are available for many modalities including face,
sketch-to-photo-face, fingerprint, ear, forensic speaker recognition, and soft
biometrics like scars, marks, and tattoos (SMT). In situations where primary
biometrics like face and fingerprints are not available or sufficient, tattoos that
are often collected by law enforcement to aid in identification are commonly
used. In Lee et al., 2012, the authors proposed the Tattoo-ID automatic tattoo
matching and retrieval system, which extracts SIFT keypoints and then uses a
matching algorithm to measure visual similarities between the probe and gallery
images before retrieving the database images with the largest similarity. It proved
to be a significant improvement over using the ANSI/NIST-ITL1-2011 standard
that uses defined classes to query tattoo images Wing, 2013.

One of the most valuable tools for forensic biometrics is face recognition
Bourlai, 2016; Bourlai, Narang, et al., 2012. Biometric face recognition can aid
law enforcement in several ways, including the detection of multiple records in
a database, an additional method of identification when fingerprints or other
information may not be available, rapid identity checks in the field, and a lead
generator for investigations. Perhaps most importantly, biometric FR systems
can quickly return a list of potential suspects to forensic operators who must
manually perform the final identification of a suspect, leading to improved ef-
ficiency in both time and recognition accuracy. Returning accurate candidate
lists is especially important due to the inherent human error when conducting
face recognition. In White et al., 2015, the authors tested human performance
on FR candidate lists of adults and children. Results showed very poor face
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matching performance, with untrained participants making over 50% identi-
fication errors and trained participants making 20% fewer errors. Often, face
recognition scenarios require the investigator to match low quality images cap-
tured in uncontrolled conditions against a very large database. Many of the
face recognition and image retrieval challenges in forensics are discussed in Jain
et al., 2011 and Jain et al., 2012. Some of the major challenges in unconstrained
face recognition are variations in pose, expression, occlusion, age, and image
quality factors such as illumination, blurriness, and brightness. To improve face
recognition performance it is important to identify which images in a database
have these attributes so that they may be further analyzed or enhanced. The
three factors I focus on are (1) whether a subject’s eyes are open or closed, (2)
whether the subject is wearing glasses or not, and (3) whether the facial pose of
the subject is either frontal or non-frontal.

• Eyes are Open or Closed: Detecting the eyes in face images is an im-
portant step in many automated face recognition algorithms and facial
landmark localization Jain and Li, 2011. Much like face detection, the
eyes have variations in appearance due to size, pose, rotation, occlusion
from glasses, opening and closure of eyes, and illumination conditions
X. Ding and Wang, 2011. Common factors such as closed eyes and glasses
can affect different eye localization methods as observed in Bourlai and
Jafri, 2011; El-Sayed and Khafagy, 2014; Whitelam and Bourlai, 2015 and
therefore, FR systems. Several studies have shown that face normaliza-
tion schemes based on the centers of the eyes contribute to decreased
face recognition performance if eye locations are inaccurate Dutta et al.,
2015 or eyeglasses are occluding the face Du and Su, 2005. To overcome
some of these challenges, for example, law enforcement has used image
editing and enhancement techniques of probe images, such as manually
replacing closed eyes with open eyes to yield additional and more accurate
returns, leading to thousands of arrests M. Taylor, 2017.

The classification of open and closed eyes has applications in various
fields including driver drowsiness detection, facial expression classifica-
tion, and iris recognition. Extensive research has been done in this area us-
ing various methods including feature based González-Ortega et al., 2013;
Ji et al., 2018; Kim et al., 2017; Mandal et al., 2017; L. Zhao et al., 2017,
motion based Fogelton and Benesova, 2016; Hassan et al., 2016; Radlak
and Smolka, 2012, and appearance-based techniques Y. Dong et al., 2016;
Eddine et al., 2018; Pauly and Sankar, 2015. More recently, Ji et al., 2018
detected eye state by extracting contour features that are fitted by extract-
ing sclera border points before determining eye state using a proposed
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eyelid closure value. In Kim et al., 2017, a deep residual Convolutional
Neural Network (CNN) structure was trained and tested with images
collected in two different environments, achieving a lower equal error
rate (EER) for classification when compared to other CNN methods like
AlexNet, GoogLeNet, and other non-CNN based methods. The work
from L. Zhao et al., 2017 combined a deep neural network and a deep
CNN to construct a deep integrated neural network for characterizing
useful information in the eye region using a joint optimization method
and a transfer learning strategy to extract effective abstract eye features
and improve classification capability in uncontrolled scenarios. Their
experiments showed that the proposed method outperformed current
state-of-the-art methods.

• Wearing Glasses or Not: Eyeglasses are the most common occurrence
of facial occlusions and have a significant effect on face recognition per-
formance. Not only do eyeglasses occlude the face, eyeglass frames can
also be used to intentionally fool FR systems like the frames proposed
by Sharif et al., 2016. The quick and accurate detection and, if neces-
sary, removal of eyeglasses can be a critical factor in forensic biometric
scenarios.

The detection and removal of eyeglasses has been thoroughly studied
and methods fall into two main categories, conventional handcrafted fea-
tures Alorf and Abbott, 2017; Lazarus and Gupta, 2016; Mohammad
et al., 2017; Ying et al., 2014; M. Zhao et al., 2018 and deep learning ap-
proaches Basbrain et al., 2017; LIANG et al., 2017; Y. Wang et al., 2018.
In Ying et al., 2014, filtered edge intensities on grayscale images were used
to determine the presence of glasses before using PCA reconstruction
and inpainting to extract and remove the glasses respectively. Alorf and
Abbott, 2017 used local descriptors and support vector machines to de-
tect eye state, mouth state, and presence of glasses to achieve state-of-the-
art performance when compared to CNN methods. In M. Zhao et al.,
2018, a method for eyeglasses detection, location, and a frame discrimi-
nant based on edge information was proposed. By finding the horizontal
and vertical nose bridge, the existence of eyeglasses is determined and
the location was found using a bidirectional edge information projec-
tion. The authors then checked the existence of frames and can measure
frame width based on the location of the left and right glasses. An eye-
glasses detection framework based on a shallow CNN was created in
Basbrain et al., 2017. Using the pre-trained GoogLeNet architecture fine-
tuned for images with and without eyeglasses, the learned weights from
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GoogLeNet are copied to the corresponding layers in the shallow CNN
and used as a feature extractor to be classified by a trained linear SVM.
The shallow architecture CNN reduced detection time by almost a fac-
tor of two while retaining high detection accuracy. Y. Wang et al., 2018
proposed a facial obstructions removal scheme based on an Enhanced
Cycle-Consistent Generative Adversarial Network (ECGAN) for face
recognition. Eyeglasses were used as facial obstructions, which were de-
tected using a CNN. The eyeglasses are then removed using the ECGAN,
improving accuracy of face recognition compared to other existing ap-
proaches.

• Pose is Frontal or Non-Frontal: Face recognition with non-frontal
pose is another common problem that has yet to be completely solved
and degrades FR performance C. Ding et al., 2015. The same is true of
face recognition with frontal pose, where changes in terms of roll, pitch,
and yaw angles also impact FR performance. Examples of several tech-
niques to handle face recognition across pose are discussed in W. Deng
et al., 2017; C. Ding et al., 2015; Ho and Chellappa, 2013; Masi et al., 2018;
Oh et al., 2018; Shao et al., 2018; Xu et al., 2018; X. Zhang and Gao, 2009;
X. Zhang et al., 2015. In Ho and Chellappa, 2013, pose variations are
handled by a method for reconstructing the virtual frontal view from a
given non-frontal face image using Markov random fields and a variant of
the belief propagation algorithm. The approach divides the input image
into overlapping patches, estimating a globally optimal set of local warps
to transform the patches to the frontal view. Oh et al., 2018 proposed
an analytic Gabor feedforward network to handle pose invariance. The
network works directly on raw face images using a single sample per iden-
tity, and produces directionally projected Gabor magnitude features in
the hidden layer. Next, several sets of magnitude features obtained from
various orientations and scales are fused in the output layer for classifica-
tion. The work in Masi et al., 2018 handled extreme out-of-plane pose
variations. Using their proposed Pose-Aware Models (PAM), face images
were processed using several pose-specific deep CNNs. 3D rendering syn-
thesized multiple face poses from input images to train the models and
provide additional robustness to pose variations at test time. Their re-
sults showed the approach outperformed existing methods evaluated on
the IARPA Janus Benchmarks A (IJB-A) and PIPA datasets.
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2.1.2 Facial Attribute Analysis: Cellphone Data
According to Zheng et al., 2018, Facial Attribute Estimation can be generalized
into two groups, part-based methods K. He et al., 2018; Kalayeh et al., 2017;
Z. Liu et al., 2015b; N. Zhang et al., 2014 and holistic methods Cao et al., 2018;
Q. Dong et al., 2017; C. Huang et al., 2016; Lu et al., 2017. Part-based meth-
ods locate facial attributes in the image before extracting features and making
an attribute prediction. In contrast, holistic methods emphasize learning at-
tribute relationships and estimating facial attributes without any of the extra
localization modules commonly used with parts-based methods.

Part-based Methods

In N. Zhang et al., 2014, a part-based attribute classification method for peo-
ple under variations of viewpoint, pose, articulation, occlusion, and appear-
ance was presented. Employing powerful CNNs, their method used poselets to
help eliminate viewpoint and pose variations so that the CNN can learn pose-
normalized appearance differences. By then concatenating the features of each
poselet and adding a deep representation of the entire input image, the authors
created a generic feature representation that achieved state-of-the-art results on
the Berkeley Attributes of People Bourdev et al., 2011 and Labeled Faces in the
Wild (LFW) G. B. Huang et al., 2008 datasets.

Semantic segmentation was used to improve facial attribute prediction in
Kalayeh et al., 2017. To perform predictions, the authors used a CNN that
generates feature maps that are aggregated and sent to a classifier. Their model
learns where to attend and how to aggregate feature map activations, funneling
the attribute signals into semantic regions in an approach they call Semantic
Segmentation-based Pooling (SSP). By changing the max pooling operation
so that it does not mix activations in different semantic regions using a gating
mechanism, they also incorporated semantic segmentation into the earlier layers
of the network, named Semantic Segmentation-based Gating (SSG). They also
demonstrated that semantic face parsing improves with the presence of face
attributes, showing the benefits of jointly modeling these two tasks.

The work by Z. Liu et al., 2015b is another part-based method for predicting
face attributes in the wild. The authors proposed a framework that cascades
two CNNs that they call LNet and ANet. LNet is pre-trained on massive gen-
eral object categories for face localization, and ANet is pre-trained on massive
face identities for attribution prediction. This strategy showed that face local-
ization and attribute prediction performance can be improved using different
pre-training strategies for each network. As a result, their final framework was
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robust to background and face variations and able to use images of arbitrary size
with no normalization required. A dual-path CNN to learn facial attributes
was proposed in K. He et al., 2018. A facial abstraction image containing local
facial parts and texture information was created using a Generative Adversar-
ial Network (GAN). Then, features from the abstraction image and original
image were fused to learn all of the attribute tasks. Their method showed im-
provement over state-of-the-art methods on the CelebA Z. Liu et al., 2015a and
LFWA datasets.

Holistic Methods

A holistic method for face attribute classification on large-scale imbalanced data
was proposed in C. Huang et al., 2016. The authors first validated classic meth-
ods for dealing with class imbalanced data. Then, they showed that more dis-
criminative deep representations can be learned. These representation can main-
tain inter-cluster and inter-class margins that are expected to effectively reduce
the class imbalance that is innate in the local neighborhood data. Through
extensive testing, their proposed quintuplet sampling with triple-header loss
was shown to work very well for imbalanced learning. Imbalanced learning in
facial and clothing attributes was investigated in Q. Dong et al., 2017. Their pro-
posed Class Rectification Loss (CRL) model used batch-wise incremental hard
positive and negative mining of the minority classes to regularize the learning be-
havior on large scale data with substantial imbalanced class distributions. Their
end-to-end framework showed the advantages of using CRL on the CelebA
facial attribute and X-Domain clothing attribute Q. Chen et al., 2015 datasets.

A CNN based, scenario-dependent, and mobile device adaptable hierarchi-
cal classification framework was proposed by Narang et al., 2017 to automat-
ically categorize face data captured under challenging conditions, which was
followed by using face recognition algorithms. A multi-sensor database using
4 different phones was collected for face images indoors and outdoors using
yaw angles from -90°to +90°at two different distances, 1 and 10 meters. After
performing face detection and pose estimation to classify the face images into a
frontal and non-frontal class, a tri-level hierarchical classification was performed
where: Level 1, the face images are classified by phone type; Level 2, face images
are classified as indoor or outdoor images; and Level 3, face images are classi-
fied as close (1-meter) and far (10-meter) categories. Their results showed that
the proposed data groupings, when used before face matching is performed,
resulted in significantly improved rank-1 identification when compared to the
original all vs. all biometric system.
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In X. Yang and Bourlai, 2018, the authors addressed the problem of hu-
man identity recognition using off-angle faces. Their system is composed of a
physiology-based human clustering module and an identification module that
is based on facial features collected from face videos. First, they passively ex-
tracted breath as an important vital sign. Then, human subjects were clustered
into nostril motion versus nostril non-motion groups, a set of facial features
were localized, and finally, feature extraction and matching were performed.
This approach achieved improved identification rates on all datasets used, and
significantly higher identification rates with the use of a single or a combination
of facial features.

An automated approach for learning the structure of multitask deep learn-
ing architectures in the context of person attribute classification was proposed
in Lu et al., 2017. Starting with a thin network model, their method expands the
model during training using a multi-round branching mechanism. Within each
layer of the network, the tasks that share features are identified, while model
complexity is penalized. The proposed method is also not dependent upon the
underlying task, meaning that it can be applied to other multitask problems
outside the primary scope of person attribute classification. Another holistic
method was developed in Cao et al., 2018 where identity information and at-
tribute relationships are considered simultaneously to address multitask face
attribute learning. The authors proposed the Partially Shared multitask Con-
volutional Neural Network (PS-MCNN), in which task relation is captured
by a shared network and variability across tasks is captured by task specific net-
works. Then, by introducing a local learning constraint, the Partially Shared
multitask Convolutional Neural Network with Local Constraint (PS- MCNN-
LC) network was created. This network minimizes the differences between the
representations of each sample and its local geometric neighbors with the same
identity, which they call Local Constraint Loss. Experimental results on the
CelebA and LFWA datasets showed the effectiveness of their methods.

Methods for Active Authentication

One current area of research using facial attributes is active authentication on
mobile devices Niinuma et al., 2010; Samangouei and Chellappa, 2016; Saman-
gouei et al., 2015, 2017; Smith-Creasey et al., 2018. Actively authenticating users
after an initial login ensures that intruders do not gain access to system resources
until the user logs out. An early method for continuous user authentication
was developed in Niinuma et al., 2010. Instead of using hard biometric traits
like face to continuously authenticate a user, their framework used soft bio-
metrics, in this case clothes and facial skin color. Each time a user logs on, the
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soft biometric traits are enrolled and fused with the conventional authentica-
tion schemes, password, and face biometrics. Results showed that the system is
robust to the users posture and leads to better security. Binary facial attribute
classifiers trained on the PubFig Kumar et al., 2009 dataset were used for contin-
uous authentication on smartphones in Samangouei et al., 2015. Forty four (44)
different classifiers used an image of the current mobile device user’s face to ex-
tract attributes. Next, authentication is performed by comparing the differences
between the enrolled and acquired attributes of the user. Their experiments on
unconstrained mobile face data showed the method captures important face
attributes and improves verification.

In Samangouei and Chellappa, 2016, a multitask, part-based Deep Convo-
lutional Neural Network (DCNN) for attribute detection that enables contin-
uous authentication on a mobile device was proposed. Each network in the
architecture predicts multiple face attributes from a face component by map-
ping to a shared embedding space. Consequently, by investigating the subspace
clusters of the embedding space, new attributes are also extracted. Their ar-
chitecture outperformed previous attribute-based authentication methods and
was efficient in terms of speed and power consumption when used on a mo-
bile device. The authors in Smith-Creasey et al., 2018 also used facial features
for continuous face authentication on mobile devices. They introduced face
tracking to prevent attacks between re-authentication and liveness detection to
eliminate spoof attacks. They used a novel dataset to show that there are differ-
ences in face recognition and tracking performance when a user is performing
different activities (walking, sitting, and standing).

The aforementioned studies propose the detection of facial attributes when
using primarily popular publicly available face datasets that were not collected
using a mobile device. In the works where the researchers used mobile phones
to collect face data, the standoff distances are very close to the user being authen-
ticated. In this work, I use a set of challenging mobile-based face datasets, using
data captured from traditional cameras and mobile devices, when operating at
multiple standoff distances (1 meter and 5 meters), in either indoor or outdoor
conditions. I address the problem of facial attribute analysis by focusing on a set
of specific facial attributes for the purpose of improving face recognition based
human authentication on mobile based applications. I propose training both
conventional and deep learning based classifiers on challenging mobile face data.
I classify three important face attributes and yield highly accurate performance
results for each classifier, independent of the face dataset used. Specifically, the
proposed attribute-specific detection models are robust, yielding up to 100%
accuracy (in terms of F1 score) depending on the attribute tested.
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2.1.3 Facial Attribute Analysis: Masked Data

Masked Face Recognition

One of the major challenges in still image-based face recognition is the partial oc-
clusion of the face in unconstrained environments Guo and Zhang, 2019. While
there is a large amount of literature dedicated to the facial occlusion problem,
there are now several publications that have been reported after the COVID-19
outbreak that focus specifically on face masks. One of the first studies was per-
formed by the National Institute of Standards and Technology (NIST) on the
performance of face recognition algorithms on masked faces Ngan et al., 2020.
All algorithms used in the study were provided to NIST before the pandemic,
thus offering a verification benchmark for algorithms not specifically developed
to handle masked face images. The occlusions were made by synthetically ap-
plying masks of different shapes, colors, and nose coverage to the probe images.
Experimental results showed that the overall accuracy using masked probe im-
ages led to a substantial performance decrease for all algorithms used, and masks
that covered more of the face resulted in more false non-matches.

In Damer et al., 2020, the authors also assessed the effects of face masks
using their own database designed to simulate realistic use cases of people with
and without masks covering their faces. They assessed two high-performing
academic algorithms and one efficient Commercial Off the Shelf (COTS) algo-
rithm, finding that masks have a large impact on score separability between gen-
uine and imposter comparisons in all three methods. Their dataset was extended
to include more participants with real and simulated masks in Damer et al., 2021.
They compared the effect of masked faces on verification performance by eval-
uating 12 human experts and 4 popular face recognition algorithms. Among
several observations, they found that human experts and the verification per-
formance established by the algorithms are similarly affected when comparing
masked probes to unmasked references or pairs of masked faces. More recently,
the Masked Face Recognition Competition was held in the International Joint
Conference of Biometrics 2021 and summarized in Boutros et al., 2021. The
competition included ten teams from academia and industry from nine differ-
ent countries. The submissions were evaluated on a database of individuals
wearing real face masks on two different scenarios, masked vs masked face veri-
fication accuracy, and masked vs non-masked face verification accuracy. Ten of
the 18 solutions submitted by the teams were able to achieve lower verification
error than the ArcFace baseline.

Another challenge is face recognition in the thermal band, where there can
be either same spectral face matching (thermal to thermal), or cross-spectral face
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matching (visible to thermal). Face recognition in the MWIR band Bourlai,
2016; Bourlai, Ross, et al., 2012; Hu et al., 2015; Mokalla and Bourlai, 2019;
Osia and Bourlai, 2017a is an active area of research that can be applied to a
variety of surveillance or law enforcement applications. The face recognition
pipeline is often similar to that of the visible, where faces must be detected, nor-
malized, and matched. These challenges are addressed in Mokalla and Bourlai,
2019, where face detectors were trained and assessed on thermal data captured
at 5 and 10-meter distances, both indoors and outdoors. Then, same-spectral
cross-scenario (indoor vs outdoor) face recognition was used to compare faces
detected using the trained models versus the annotated ground truth faces.

Mask Detection and Classification

Interest in the problems of detection and classification of masked faces has in-
creased since the start of the COVID-19 pandemic. Earlier works Ge et al., 2017;
J. Wang et al., 2017 used the term "masked" as a description of faces that are
occluded in some way, and not necessarily from a homemade or medical face
mask. The more recent works focused on the localization and classification of
medical or cloth face mask occlusions only. Of the face mask occlusion litera-
ture recently produced, most detect either the presence or absence of a mask
on a human face Abbasi et al., 2021; Chowdary et al., 2020; Jiang et al., 2020;
Khandelwal et al., 2020; Loey et al., 2021a, 2021b; Mohan et al., 2021; Rahman
et al., 2020; Sethi et al., 2021; Suresh et al., 2021, and not whether or not it is
being worn correctly.

In Jiang et al., 2020, one of the first dedicated face mask detectors, Reti-
naFaceMask, was proposed. The one-stage detector utilized a feature pyramid
network with two novel additions to increase masked face detection. A context
attention detection head focuses on detecting masks, and a cross-class object
removal algorithm removes objects with low confidence and high IoU scores.
The authors assessed two different backbone architectures, namely a ResNet
architecture for high computational scenarios and a MobileNet architecture for
low computational scenarios. Results on images from the MAFA Ge et al., 2017
and WIDER Face S. Yang et al., 2016 datasets achieved state-of-the-art results.
In Rahman et al., 2020, an automated system to detect persons not wearing
a face mask in a smart city network was proposed. The authors created their
own novel CNN-based detection architecture that can accurately detect faces
with masks. Then, the decision is forwarded to a proper authority to ensure
precautionary measures are being maintained. An ensemble face mask detector
that uses a one-stage and two-stage detector during preprocessing was created
in Sethi et al., 2021. This approach resulted in high accuracy and low infer-
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ence time. The inclusion of a bounding box transformation that improved
mask localization performance allowed their model to achieve higher precision
in face and mask detection when compared to the previously mentioned Reti-
naFaceMask detector. The authors also addressed the large class imbalance of
the MAFA dataset by creating a balanced version where the imbalance ratio is
nearly equal to one.

Loey et al. proposed two different face mask detection methods. In Loey
et al., 2021b, classical machine learning and deep learning methods were com-
bined for accurate mask detection on three masked datasets. ResNet50 was used
for feature extraction, and SVM, decision trees, and ensemble algorithms were
used for classification. The proposed model outperformed related works, with
the SVM achieving 99.64% on the Real-World Masked Face Dataset Z. Wang
et al., 2020. In Loey et al., 2021a, the authors used a conventional deep learning
approach for face mask detection. In this work they again used the ResNet50
model for feature extraction and the YOLOv2 Redmon and Farhadi, 2017 de-
tector. Using the ADAM optimizer and mean IoU for estimating the number
of anchor boxes, they achieved better results than the related work reported in
their paper.

There are other works that not only detect whether a face mask is present
on the face, but if it is being worn correctly Batagelj et al., 2021; Chavda et al.,
2021; Qin and Li, 2020. In Qin and Li, 2020, the SRCNet was proposed for face
mask detection. The method consists of a super-resolution network and face
mask condition classification network that classifies three face mask wearing
conditions: no face-mask wearing, incorrect face-mask wearing, and correct
face-mask wearing. SRCNet applies super-resolution to all cropped faces, when
width or length are no more than 150 pixels. After the network enhances the
image to an output size of 224×224×3, face mask condition classification is
performed. An ablation study showed that both transfer learning and the super-
resolution network greatly contributed to the accuracy of SRCNet. Chavda et
al., 2021 used a two-stage CNN architecture for detecting masked and unmasked
faces that can be used with CCTV footage. The authors constructed their own
database from several publicly available masked datasets and online sources.
They noted that the dataset contains improperly worn face masks and palms
masking the face, and they labeled those instances as non-masked faces. After
training several face detectors and classifiers, the results yielding the highest
scores were achieved using the RetinaFace face detector and NASNetMobile
classifier. Results on video data were also improved with a modified Centroid
Tracking technique from Nascimento et al., 1999.
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One of the largest studies investigating the proper wearing of face masks was
carried out in Batagelj et al., 2021. The authors investigated three important re-
search questions, (a) how well do existing face detectors perform on masked face
images, (b) is it possible to detect compliant placement of face masks, and (c) are
existing face mask detection techniques useful for monitoring applications dur-
ing the current pandemic. To address these questions, they performed a com-
prehensive examination of seven pre-trained face detection models for masked
face detection performance and 15 classification models for correct face mask
placement. To implement the study, the authors also created the Face-Mask-
Label Dataset (FMLD), compiled from the MAFA and Wider Face datasets.
Most existing techniques only detect the presence of a face mask, so the FMLD
dataset is annotated for compliant and non-compliant face masks. The dataset is
also made publicly available. The authors, by evaluating the face detection and
classification stages separately, found that RetinaFace and ResNet152 yielded
the highest performance. Their results indicated that masked faces are a chal-
lenge for most face detectors, but RetinaFace was able to achieve an average
precision of 92.93% on the entire dataset. The classification models performed
better, with all methods achieving an average recognition accuracy of over 97%
and only a 1.12% difference between the least and most accurate models in terms
of accuracy performance.

Due to the COVID-19 pandemic, research on the detection and classifica-
tion of face masks has been studied with increasing urgency. However, at this
time there are still relatively few publications in the area, especially works that
specifically classify different levels of face mask compliance. Furthermore, at
the time of this writing, I could not find any literature classifying face mask
compliance in the thermal band. Due to the limited number of publications
in this area, I focus on the classification of face mask compliance in both the
visible and MWIR bands.

2.1.4 MultiSpectral Face Dataset Collection
In table 2.1, the MILAB-VTF(B) dataset that I took a lead role in collecting is
compared with similar datasets that were created in different spectra. Specif-
ically, the MILAB-VTF(B) raw dataset is characterized by the following key
advantages compared to the other thermal-visible datasets:

1. It is the largest thermal-visible face dataset to-date in terms of number of
subjects, images, and scenarios.

2. High resolution video and images at 1280×1024, double previous datasets.
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Table 2.1: The variable characteristics of each dataset are denoted as follows:
(P)ose, (I)llumination, (E)xpression, (T)ime-lapse, (G)lasses, (O)cclusion, and
(L)ocation. The subscript N is used to identify characteristics that occur due to
natural outdoor conditions (i.e. sunlight, clouds, and wind). MILAB-VTF(B)
uniquely captures high-resolution paired thermal and visible scenes outdoors
at large distances. Importantly, the dataset is diverse with respect to ethnicity,
age, and gender. This table is adapted from D. Poster et al., 2021.

Dataset Modalities Subjects Variability IR Resolution (W × H) Range (m)
UND Kevin and Bowyer, 2003 LWIR, Visible 241 I, E, T 320 × 240 Unspecified
NVIE S. Wang et al., 2010 LWIR, Mono 215 I, E, G 320 × 240 0.75
ULFMT Ghiass et al., 2018 MWIR, Visible 238 P, E, T, G 640 × 512 1.0
ARL-MMFD Hu et al., 2016 P-L, LWIR, Visible 111 E 640 × 480 (LW) 2.5, 5.0, 7.5
Tufts Panetta et al., 2018 NWIR, LWIR, Visible 100 P, E 336 × 256 1.5
ARL-VTF D. Poster et al., 2021 LWIR, Visible, Mono 395 P, E, G 630 × 512 2.1
MILAB-VTF(B) MWIR, Visible 400 P, L, IN , EN , ON 1280 × 1024 1.5, 100, 200, 300, 400

3. Facial images and videos captured both under indoor and outdoor con-
ditions.

4. Natural face expression variations, collected mostly outdoors, where the
weather dynamically impacted the facial expressions of participants.

5. Natural illumination and facial occlusion variations found in outdoor
conditions resulting in shadows and facial hair obscuring part or some-
times the whole face region.

6. Data at five different stand-off distances, ranging from 1.5 meters con-
trolled, and up to 400 meters (1312 ft) outdoors, in increments of 100
meters (100; 200; 300; 400 meters).

Finally, here are the common features, challenges, and benefits of the MILAB-
VTF(B) dataset when compared to the second largest dataset, i.e. the ARL-VTF:

1. The indoor and outdoor raw face videos in MILAB-VTF(B) were recorded
at the same time. Due to the complexity and the technical challenges of
the data collection in an outdoor environment, as well as the limited time
expected to deliver the dataset (6 weeks), the raw videos were not always
synced. The videos are manually synced for the curated version of the
dataset;

2. Both datasets were captured using commercially available thermal cam-
eras;
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3. Both datasets involve face data captured under variable facial expression
and pose. In ARL-VTF the subjects count from 1-10 and the face images
are captured under controlled conditions. In MILAB-VTF the facial
expressions are natural and face images are captured under uncontrolled
conditions.

4. The ARL-VTF offers a curated version that is publicly available (limited
distribution) that includes automatically annotated facial landmarks on
many face images samples. MILAB-VTF(B) curated version will also
include facial landmarks in a smaller scale.

5. Finally, both datasets support algorithm development in a set of areas,
including face/eye/ear detection, same- and cross-spectral face matching
Bourlai and Jafri, 2011, Whitelam et al., 2010, Mokalla and Bourlai, 2020,
Abaza and Bourlai, 2013, multi-modal fusion Kakadiaris et al., 2005, do-
main adaptation, and cross-domain image synthesis R. He et al., 2021.
An example of synthesis approach for thermal-to-visible face verification
is discussed in Isola et al., 2017.

2.2 Keypoint Detection

2.2.1 Facial Landmark Detection

Table 2.2: Summary of recent thermal facial landmark detection approaches. ∓
denotes number of images, not subjects.

Publication Dataset # Subjects # Landmarks Imaging Sensor Synthesis Model
Riggan et al., 2018 ARL Volume 1 Hu et al., 2016 60 68 Polarimetric LWIR Yes DLIB King, 2009
Kopaczka et al., 2018 RWTH Kopaczka et al., 2018 90 68 LWIR No DAN
Kopaczka et al., 2019 RWTH Kopaczka et al., 2018 90 68 LWIR No CNN w/PCA
D. Poster et al., 2019 ARL Vol 1, 2 H. Zhang et al., 2019 111 5 Polarimetric LWIR No DAN, MTCNN, PBC
Chu and Liu, 2019 RWTH Kopaczka et al., 2018 90 68 LWIR No multitask Unet
Keong et al., 2020 Eurocom Mallat and Dugelay, 2018a 50 68 LWIR No DMSL
Mallat and Dugelay, 2020 Helen Le et al., 2012, LFPW Belhumeur et al., 2013 2,330∓, 1,035∓ 68 RGB Yes AAM, DAN
D. D. Poster et al., 2021 ARL Vol 1, 2 H. Zhang et al., 2019, RWTH Kopaczka et al., 2018 111, 90 5, 68 Polarimetric, LWIR No CNN and Transfer Learning
Peri et al., 2021b ARL-VTF D. Poster et al., 2021, MILAB-VTF(B) Peri et al., 2021a 395, 400 6, 21 LWIR, MWIR Yes Thermal-to-Visible Synthesis
Kuzdeuov et al., 2022 SF-TL54 Kuzdeuov et al., 2022 142 54 LWIR No Regression trees and U-net
My Method ARL-VTF D. Poster et al., 2021, MILAB-VTF(B) Peri et al., 2021a 395, 400 6, 21 LWIR, MWIR Yes HRNet, CUT, StarGAN v2

Landmark Detection on Thermal Data

A summary of relevant thermal facial landmark approaches is presented in table
2.2. Many current methods predict landmarks directly on thermal data, while
more recent approaches make use of generative models to synthesize data from
the thermal to the visible domain. After synthesis, pre-trained visible models
predict the landmarks. One of the first works for facial landmark detection in
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the thermal band was Kopaczka et al., 2016, a face tracking method based on
active appearance models (AAM) that used long wave infrared (LWIR) images.
The authors assessed several methods for AAM generation and fitting using still
images and video sequences from a small manually annotated thermal database.
They found that a combination of DSIFT for modeling and SIC for fitting pro-
duces robust and stable results for face tracking in the thermal domain. The
need for datasets containing high resolution and high-quality annotations was
addressed in Kopaczka et al., 2018. The authors introduced a high-resolution
thermal face database with manual annotations for 68 facial landmarks. They
assessed the suitability of their data for deep learning using the Deep Align-
ment Network (DAN) Kowalski et al., 2017. They also assessed the landmark
detection performance of active appearance models, finding that DAN out-
performed their AAM-based approaches. Through this evaluation the authors
concluded that when there are sufficient amounts of data with quality annota-
tions, learning-based algorithms outperform algorithm-based approaches.

Chu and Liu, 2019 developed a network that jointly performed facial land-
mark detection and emotion recognition tasks on thermal images using a two-
stage training mechanism and U-Net. The first stage finds the optimum param-
eters for U-Net, while in the second stage, landmark loss and emotion loss are
minimized for landmark detection and emotion recognition, respectively. Their
results showed that this multitask approach performed better than a single-task
approach and was more robust for faces with different emotions. An efficient
landmark detection network using CNNs and PCA was proposed in Kopaczka
et al., 2019. The authors used PCA of landmark positions for generative model-
ing of facial landmarks. They avoided using iterative optimization in the neural
network by including the PCA with a novel layer. Their network predicts model
parameters in a single forward pass to achieve detection on hundreds of frames
per second. They evaluated their method on visible data using the 300W Sag-
onas et al., 2013 dataset and on thermal data with the RWTH Kopaczka et al.,
2018 dataset.

In D. Poster et al., 2019 the strengths and weaknesses of three modern land-
mark detection algorithms developed for visible images were assessed in the ther-
mal domain. The authors found the cascaded shape regression method used
in DAN to be the most efficient for adapting to thermal images. Furthermore,
they found that even small errors during the alignment process can have a dis-
proportionately negative impact on thermal-to-visible face verification results
when compared to manually aligned images. Keong et al., 2020 proposed the
Deep Multi-Spectral Learning (DMSL) network for facial landmark detection.
The network contains two sub-modules, the first performs face boundary detec-
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tion, and the second handles landmark coordinate detection. This architecture
enables landmark detection on both visible and thermal images and when faces
are partially occluded or off-pose. A method for visible-to-thermal parameter
transfer learning using a coupled convolutional network architecture was pre-
sented in D. D. Poster et al., 2021. Instead of training exclusively on thermal
images or requiring visible and thermal images at test time, their method allows
for the use of vast amounts of available visible data for training, while only using
thermal data during testing. Of the four types of parameter transfer learning
methods presented, three outperform the baseline single stage version of DAN
and an AAM that had been trained solely on thermal face image data.

Landmark Detection via Synthesis

Riggan et al., 2018 proposed a method for thermal-to-visible synthesis of face
images for cross-spectrum verification and facial landmark detection. Their
method was optimized using both global and local facial features to produce
more discriminative faces than previous synthesis methods. Mallat and Duge-
lay, 2020 addressed the lack of available thermal face datasets with ground truth
landmark annotations by performing visible-to-thermal synthesis on existing
face databases. The synthesized thermal datasets then shared the same land-
mark annotations as the visible ones. Synthesis was performed using cascaded
refinement networks trained with contextual loss on the Visible and Thermal
Paired Face Database Mallat and Dugelay, 2018b. Active appearance models and
DAN were trained on the synthesized data and then evaluated on low quality
and high quality real thermal data. In Z. Wang et al., 2018, landmark detection
was leveraged to aid in the generation of visible face images. During training, a
detector extracts face landmarks from the generated images and propagates the
loss of the predicted and ground truth landmarks back through the generative
network. This method helps preserve the identity features of the face and also
helps in generating more photo-realistic faces.

While the aforementioned approaches aim to successfully solve the prob-
lem of facial landmark detection, they are limited by either a small number
of thermal face samples in the dataset or the requirement of paired visible-to-
thermal face image data for the method to work. Additionally, to the best of my
knowledge, no current works investigate both transfer learning and synthesis
methods on the largest thermal face datasets, ARL-VTF and MILAB-VTF(B).
In this work I propose a new methodology where I address these limitations and
achieve competitive and, in some cases, better results in terms of the Normal-
ized Root Mean Square Error (NRMSE). The synthesis method works without
paired face images, and the two chosen datasets are at present the largest of their
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kind reported in the open literature. This enabled me to use transfer learning
on either one, or both, datasets and achieve low detection errors.

2.3 Feature Extraction and Matching

2.3.1 Race and Gender Classification for Cross-spectral Face
Recognition

Soft biometrics are attributes that are not unique to an individual, but can
be used in combination with a primary biometric trait to improve or expedite
recognition performance Dantcheva et al., 2015. Two commonly used soft bio-
metric traits used for improving face recognition are race and gender. These
traits are most often used in the visible spectrum, but several works exist in the
different regions of the IR spectrum. In this section I review relevant literature
for race and gender classification and cross-spectral face recognition in the IR
spectrums.

One of the early works to explore gender classification used NIR and ther-
mal face images C. Chen and Ross, 2011. The authors evaluated several gender
classification methods and found that SVM with local binary pattern histogram
features resulted in the best performance. Their method also outperformed hu-
man subjects who classified faces in the thermal spectrum. A hybrid method
for fusing visible and thermal IR images for gender recognition was proposed
by S. Wang et al., 2016. Utilizing explicit and implicit fusion techniques, their
results showed better performance for gender recognition than using only one
modality. They also found that the statistical thermal features of the cheek and
forehead are more reliable sources than other facial regions. A deep learning
approach based on ResNet was presented by Jalil and Reda, 2022. Their pro-
posed models achieved accuracy scores ranging from 96% to 99% and was more
accurate for males than females on two thermal face datasets.

Multispectral data across the visible and NIR bands was used for gender
classification by Raghavendra et al., 2018. The proposed approach was based on
the Spectral Angle Mapper to extract characteristic spectral features from the
high dimensional spectral data. A high classification accuracy of 93.51% was ob-
served using their method on a dataset of 78,300 images. Gender and ethnicity
classification for improving cross-spectral face recognition was investigated by
Narang and Bourlai, 2016. A VGG architecture was used to classify visible and
multi-distance NIR faces for Asian, Caucasian, Male, and Female groups. They
found that gender classification is more accurate than ethnicity classification,
and that utilizing ethnicity and gender soft biometrics resulted in significantly
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improved rank-1 identification rates for cross-distance and cross-spectral scenar-
ios.

Several synthesis methods exist in the literature for cross-spectral face recog-
nition. Iranmanesh and Nasrabadi, 2019 presented an attribute-guided deep
coupled learning framework for matching polarimetric thermal faces to visible
faces. Their framework used facial attributes and multiple loss functions to
learn discriminative features in a common embedding subspace. Experiments
showed that their model was superior to other state-of-the-art methods on the
polarimetric dataset. A method for thermal to visible synthesis by leveraging
global and local regions of the face was proposed by Riggan et al., 2018. This ap-
proach provided additional regularization terms from each local region and led
to better quality synthesized faces, improving cross-spectrum verification rates
over other approaches and also improving facial landmark detection results. An-
other work using polarimetric face images was proposed by Di et al., 2019. This
method used a self-attention guided GAN for synthesizing visible faces from
thermal faces and thermal faces from visible. Features are then extracted from
the original and synthesized images and fused for face verification.

The approach from Di et al., 2021 extracted attributes from visible images
to synthesize attribute-preserved visible images from thermal images to perform
cross-spectral matching. An attribute predictor network was used to extract the
visible attributes, and a multi-scale generator synthesized visible images from
thermal images using the extracted attributes. The proposed method achieved
state-of-the-art performance on three thermal face datasets over other methods.
Peri et al., 2021a studied the impact of face alignment, pixel-level correspon-
dence, and identity classification with label smoothing for face synthesis and
verification. By aligning the faces before training the synthesis model and enforc-
ing pixel-level correspondence and feature-level identity classification during
training, state-of-the-art results were observed on the ARL-VTF and TUFTS
datasets.

2.4 Other Applications

2.4.1 Firearm Detection
Detecting firearms in images and video has been studied for both concealed and
non-concealed scenarios. Concealed firearm detection works mostly focus on
using X-ray or millimeter wave images to identify weapons. The focus of this
work is the detection of firearms in the visible spectrum. Firearm detection is
performed using two machine learning-based object detection techniques. Clas-
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sical approaches, which use methods such as Histogram of Oriented Gradients
(HOG) and Scale-Invariant Feature Transform (SIFT) for feature extraction, in
combination with classifiers such as Support Vector Machines (SVM), and deep
learning approaches, where neural network-based techniques are used. I review
works using both techniques, with a focus on those with applications in surveil-
lance footage. I also present a collection of research found in the open literature
for firearm detection in table 2.3. In table 2.3, the “Surveillance Database” head-
ing indicates whether the data used is composed of only surveillance footage
or a combination of surveillance and other sources including TV, movies, and
homemade videos. The “Surveillance Source” column indicates if the database
containing surveillance footage is from real sources, created by the author, or a
combination of each (if applicable).

Table 2.3: An overview of data, firearm type, and detection method of relevant
works in the literature compared to my approach. It can be seen that there is a
gap in the open literature for work using a large surveillance database composed
of only real-world samples for the detection of handguns and long guns that
has not been addressed.

Authors Surveillance Database Surveillance Source Classes Detection Method
Olmos et al., 2018 Partial Real Handgun Faster R-CNN
Egiazarov et al., 2020 No - Long Gun Ensemble of Semantic Neural Nets
Tiwari and Verma, 2015a No - Handgun Color Segmentation\Harris points
Romero and Salamea, 2019 Partial Real Handgun VGG & ZF Net
Lim et al., 2019 Partial Real & Generated Handgun M2Det
Iqbal et al., 2019 Partial Real Both Orientation Aware Detector with VGG-16
Halima and Hosam, 2016 No - Both Bag of Visual Words & RANSAC
Grega et al., 2016 Yes Author Created Handgun Sliding Window & Neural Net
Gelana and Yadav, 2019 Yes Author Created Handgun Sliding Window & Neural Net
Fernandez-Carrobles et al., 2019 Partial Real Both Faster R-CNN
Proposed Approach Yes Real Both Faster R-CNN with ResNet-50

The intended use for firearm detection algorithms is often the monitoring
of surveillance and CCTV footage. One of the early publications for pistol
detection in CCTV footage used a neural network and MPEG-7-based descrip-
tor to classify frames from a set of CCTV test movies prepared by Grega et al.,
2013. In Grega et al., 2016, they again use the MPEG-7 feature descriptor to
detect both firearms and knives in CCTV images. In Tiwari and Verma, 2015a
a Harris corner detector with FREAK-features was used to locate firearms in
images that had been color segmented using the k-mean clustering algorithm.
The authors extended their work in Tiwari and Verma, 2015b, this time using
SURF features. Verma and Dhillon, 2017 used a VGG-16 CNN architecture
for feature extraction and SVM, K-Nearest Neighbor (K-NN), and ensemble
tree classifiers, achieving over 92% accuracy with the SVM classifier. Handguns
were detected in Singleton et al., 2018 by re-training a MobileNet network and
using Shi Tomasi key point detection, an enhancement to Harris corner detec-

35



tion, to identify regions in the image for binary classification. The key point
locations are used to crop out sections of the image to determine if the crop
contains a firearm or not. The work in Lai and Maples, 2017 used a Tensorflow-
based implementation of Overfeat-3, an integrated framework that uses CNNs
for classification, localization, and detection to achieve 93% training and 89%
test accuracy respectively, on images from movie, homemade, and surveillance
videos.

More recently, Olmos et al., 2018 proposed an automatic handgun detec-
tion system in videos for surveillance and control objectives, with a focus on
real time detection and minimizing false positives. They assessed both sliding
window and region proposal classification approaches using a VGG-16-based
classifier. The authors trained models on their own dataset of 3,000 firearms cre-
ated with a variety of online sources. They found that a region proposal-based
approach using a Faster R-CNN model obtained the highest performance with
zero false positives and 100% recall on their constructed dataset and promising
results when evaluated on low quality YouTube videos. In Iqbal et al., 2019, a
two-phase orientation aware object detector for firearms was proposed. Phase
1 predicts the orientation of the object that is used to rotate object proposals.
In phase 2, maximum area rectangles are cropped from the rotated proposals
which are then localized and classified. Their method showed improved detec-
tion performance over other models like YOLO and SSD. Another two-part
firearm detection system was developed in Romero and Salamea, 2019. The
front end used a YOLO object detection and localization scheme to identify
segments of an image where there are people. These segments were used as an
input to the back end of the system, where VGG and ZF Net architectures are
assessed to handle the final weapon detection. By first detecting persons in each
image, only the most important areas of the image are analyzed since a weapon
is most likely in the hands of a person. The authors were able to significantly
reduce the number of false positives with their method. Finally, a weapon detec-
tion system is detailed in Egiazarov et al., 2020 that uses an ensemble of semantic
CNN’s that split up the process of detecting and locating weapons into a set
of smaller problems by detecting individual weapon components. By using a
dataset composed of only AR-15 rifles and identifying 4 distinct components
of the rifle, their ensemble of simple neural networks was trained only to de-
tect those specific components of the rifle. By aggregating the outputs of these
networks, their proposed model showed preliminary but promising results.
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2.4.2 Data Augmentation
Deep CNNs are extremely useful for most computer vision tasks. Unfortu-
nately, to train these deep networks a large dataset is often necessary to avoid
overfitting. While techniques like transfer learning are effective in helping to
avoiding overfitting, it is often not enough. This is especially true when the
application has no large database with which to train on. Firearm detection in
surveillance video is currently one such application, so I implement data aug-
mentation techniques to aid in the training process. Data augmentation is a
solution to the problem of limited data that will enhance the size and quality of
training datasets Shorten and Khoshgoftaar, 2019. I review some of the relevant
works in the literature here.

Some of the most common data augmentations are basic image manipula-
tions, namely geometric and photometric transformations. Geometric trans-
formations include crops, flips, rotations, and translations. Photometric trans-
formations include changes to the image RGB channels such as contrast, color,
and brightness. L. Taylor and Nitschke, 2017 compared geometric and pho-
tometric transformations. They evaluated several methods on the Caltech101
dataset using a four-fold cross-validation and found that classification perfor-
mance increased when applying all data augmentation methods tested.

One of the newest methods for data augmentation is generative modeling,
where trained networks create artificial instances from a dataset. In Radford
et al., 2015, the DCGAN was one of the early architectures to use CNNs for
discriminator and generator networks. Using this architecture, the authors
in Frid-Adar et al., 2018 generate computed tomography (CT) images from a
small dataset of 182 images for liver lesion classification. They found that the
classification performance when using only classic data augmentations resulted
in 78.6% sensitivity and 88.4% specificity. When the synthetic data was added,
the results increased to 85.7% sensitivity and 92.4% specificity.

While the use of data augmentation techniques can often be beneficial, re-
searchers must be aware of application safety and other challenges when training
networks with data augmentations. The safety of a data augmentation method
refers to its likelihood of preserving the label post-transformation Shorten and
Khoshgoftaar, 2019. This means, for example, that horizontally flipping an
image for recognition of objects, such as animals or cars, will preserve the label
post-transformation. But flipping a digit, such as the number 3, will not preserve
the label and likely lead to problems when training the model. Additionally,
Shijie et al., 2017 investigated various augmentations and combinations of aug-
mentations on subsets of the CIFAR10 and ImageNet datasets and found that
certain individual augmentations and combinations will increase performance,
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while certain other combinations can degrade performance. Since the use of
augmentation techniques is often domain specific, when training my detection
models, it is beneficial to asses all techniques individually and in combination
to identify those that will increase and decrease detection performance.
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Chapter 3

Methodology

3.1 Acquisition and Preprocessing

3.1.1 Facial Attribute Analysis: Mugshot Data

Preprocessing of Faces

In order to account for the variation in image sizes between each database, I
first detected faces using the MTCNN face detector K. Zhang et al., 2016 and
normalized each face to 130×130 pixels. The entire cropped face image was used
for classification of the frontal face factor, while the eye pairs from each face
were found with a cascade object detector using the Viola-Jones algorithm Viola
and Jones, 2001. The eye pairs were then cropped to 90×30 pixels to classify
the eyes and glasses factors.

Feature Extraction

In this work I tested two common global feature descriptors, Histogram of
Oriented Gradients (HOG) Dalal and Triggs, 2005, and Local Binary Patterns
(LBP) Ojala et al., 1996. The LBP operator is a texture descriptor that computes
patterns in an image by thresholding local neighborhoods, commonly 3 x 3,
around every pixel in an image at the central pixel. The resulting possible 256
8-bit patterns are then converted to decimal form. The binary pattern for the
pixels in a 3 x 3 neighborhood are computed as follows,

LBP(Xc,Yc) =
7

∑
n=o

h(gn −gc)2n (3.1)
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where (Xc,Yc) is the location of the center pixel c, n is the number of neighbor
pixels, gn is the grayscale value at pixel n, gc is the grayscale value at c, and h(gn-gc)
is 1 if h(gn-gc) ≥ 0 and 0 otherwise.

HOG features were introduced in Dalal and Triggs, 2005 for human de-
tection and have been used successfully in a number of applications in object
detection and classification. HOG features divide the image into small regions
called cells, where a histogram of gradient directions are computed. To make
the descriptor more invariant to illumination changes, the histograms are then
normalized by accumulating a measure of local histogram energy over larger
spatial regions called blocks, the results of which are used to normalize all cells
in the block. The combination of all normalized histograms create the final
HOG descriptor.

After several comparisons using both methods I found that HOG features
consistently outperformed LBP for every factor, especially on more challenging
data. Therefore, in all experiments HOG features were used for classification
using a cell size of 8×8 pixels and a 2×2 block size for the eyes and glasses factors.
This created a feature descriptor for each sample of length 720. The cell size for
the frontal face descriptor was increased to 16×16 and used the same block size
in order to reduce each sample dimensionality for training. These descriptors
were of length 1764.

Conventional Models for Classification

I used 23 different models to perform the classification experiments, which in-
cluded multiple Support Vector Machines Cortes and Vapnik, 1995, K-Nearest
Neighbors Fix and Hodges Jr, 1951, Decision Trees Breiman, 2017, and Ensemble
classifiers Dietterich, 2000. To select the best performing classification models,
I performed 10-fold cross-validation on each factor in every database with all
available models, creating 9 total scenarios. The results from these experiments
allowed me to choose the models that generalized best to classify each of the
factors across diverse data.

CNNs for Classification

In addition to using the previously mentioned models, I also trained two popu-
lar CNNs, AlexNet and GoogLeNet, on DB3 for each of the three classification
factors.

AlexNet Architecture: AlexNet Krizhevsky et al., 2012 is an eight layer
CNN consisting of five convolutional layers, three fully connected layers, and
takes an input image of size 227×227 pixels. The output of the last fully-connected
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layer is fed to a 1000-way Softmax layer which outputs probabilities for 1000
class labels. For these purposes I used transfer learning and changed the last
three layers to classify 2 labels for each factor, e.g. are the eyes open or closed.

GoogLeNet Architecture: GoogLeNet Szegedy et al., 2015 is a 22 layer
CNN that takes an input image of size 224×224 pixels and can also classify
1000 class labels. GoogLeNet uses nine Inception modules that convolve 1×1,
3×3, and 5×5 filters in parallel, followed by a 3×3 max pooling. I again changed
the last three layers of this network to classify 2 labels for each factor.

3.1.2 Facial Attribute Analysis: Cellphone Data
In this work, I used Support Vector Machines and CNNs to classify three com-
mon face attributes using diverse databases captured with a variety of sensors.

Preprocessing

In each dataset, I accounted for image resolutions variations by, first, perform-
ing face detection using the MTCNN face detector K. Zhang et al., 2016. Then,
I normalized each face to 130×130 spatial resolution. These normalized faces
are used as the inputs for classifying the frontal or non-frontal face attribute.
To classify the eyes and glasses attributes, eye pairs from each frontal face are de-
tected using the Viola-Jones algorithm Viola and Jones, 2001. Next, the eye pairs
were normalized to 90×30 spatial resolution and used as the inputs for the eye
and glasses attributes. The number of instances where a face or eye pair are not
detected by these algorithms was extremely low. In the experiments, less than
10 faces were not detected, and these samples were left out of the final database.
There were almost 40 instances where an eye pair was not detected. Due to the
smaller amount of frontal faces and therefore, eye pairs, these instances were
manually cropped, resized, and included in the database.

Feature Extraction and Models

I used both conventional and CNN based classification algorithms. The con-
ventional classification approaches used linear and non-linear kernels for Sup-
port Vector Machines Cortes and Vapnik, 1995, K-Nearest Neighbors Fix and
Hodges Jr, 1951, Decision Trees Breiman, 2017, and Ensemble classifiers Diet-
terich, 2000. I also used the AlexNet and GoogleNet architectures, both pre-
trained on the Imagenet dataset J. Deng et al., 2009. Utilizing transfer learning,
these two models were trained as binary classifiers for all three face attributes.
For the conventional models, based on previous experience, Histogram of Ori-
ented Gradients (HOG) Dalal and Triggs, 2005 features were extracted for all
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experiments. Next, I performed an initial 10-fold cross-validation training on
each factor in every database with all conventional classification algorithms that
are available in MATLAB. This process created 9 total training scenarios. The
best performing model was chosen and used in all future experiments.

3.1.3 Facial Attribute Analysis: Masked Data

Classification Models

To determine face mask compliance in the visible and thermal spectra, I assessed
nine well established and pre-trained CNNs on unique dual-band face datasets.
All models determine if a cropped face belongs to the "compliant" class, where
a face mask is properly worn over the nose and mouth, or the "non-compliant"
class, where a cropped face has either, (a) no face mask, (b) a mask worn below
the nose, or (c) a mask worn below the chin. While there is no accounting for
all types of improper mask wearing, especially if the mask fits snugly against the
sides of the face without gaps, scenarios (b) and (c) seem to be the most common
cases of masked non-compliance observed during the pandemic. All cropped
faces were resized during training and inference based on the required input size
of the classification model. I selected a wide array of classifiers based on model
depth and number of parameters to identify any differences in performance due
to model complexity on the data, see table 3.1. All networks were trained using
MATLAB 2020b. The following classifiers were assessed in this work:

• AlexNet Krizhevsky et al., 2012 (2012): AlexNet heavily influenced the
field of deep learning, winning the ILSVRC in 2012 by a very large margin.
AlexNet features included using ReLU instead of Tanh to introduce non-
linearity, and dropout regularization to handle overfitting.

• SqueezeNet Iandola et al., 2016 (2016): I use SqueezeNet v1.1 in all ex-
periments. SqueezeNet uses 1×1 convolutions inside fire modules that
squeeze and expand feature maps, reducing the number of parameters,
while still maintaining accuracy.

• ResNet K. He et al., 2016 (2016): ResNet addresses the vanishing gradient
problem in very deep networks by using residual blocks that allow gradi-
ents to flow through skip connections. I used three versions of ResNet:
(1) ResNet18, (2) ResNet50, and (3) ResNet101.

• DenseNet-201 G. Huang et al., 2017 (2017): DenseNet is another architec-
ture for training deeper networks. DenseNet connects every layer directly
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with each other, which allows for feature reuse and reduces the number
of parameters.

• DarkNet53 Redmon and Farhadi, 2018 (2018): DarkNet53 is the feature
extractor used in the YOLOv3 object detector. It uses 3×3 and 1×1 con-
volutions and shortcut connections, which is an improvement over the
previous DarkNet19 feature extractor from YOLOv2.

• NASNetMobile Zoph et al., 2018 (2018): The Neural Search Architec-
ture (NAS) is an algorithm that learns the model architecture directly on
the training dataset. NASNetMobile is a smaller version of the NASNet
architecture.

• EfficientNet-B0 Tan and Le, 2019 (2019): The authors of EfficientNet use
the NAS algorithm to create the baseline EfficientNet-B0 architecture,
and a novel compound coefficient to scale up the network’s depth, width,
and resolution to improve performance.

Table 3.1: Model depth, parameters, and image input size. Parameters are in
millions. *From MATLAB, the NASNet-Mobile network does not consist of
a linear sequence of modules.

Model Depth Parameters Input Size
AlexNet 8 61 227×227

SqueezeNet v1.1 18 1.24 227×227
ResNet18 18 11.7 224×224
RenNet50 50 25.6 224×224
DarkNet53 53 41.6 256×256

EfficientNet-B0 82 5.3 224×224
ResNet101 101 44.6 224×224

DenseNet-201 201 20 224×224
NASNetMobile * 5.3 224×224

3.1.4 MultiSpectral Face Dataset Collection
In this section I discuss some details of the process that was followed when
collecting the MILAB-VTF(B) dataset.
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Figure 3.1: Overview of the data collection location and equipment setup.

Data Collection Procedures

Informed Consent and IRB Procedure To be able to de-identify the data
and avoid duplicate data, the participants were assigned a random identification
number associated with their biometric data after completing the registration.
The participants were also asked to consent or decline the use of his/her bio-
metric images in publications, i.e. their facial images can be used as examples
in future publications that may include but are not limited to, research papers,
journal articles, presentations, educational material, or other related documents.
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The study involved an approximately 40-minute 2 session process, on the same
day. First, an indoor session where the collection team operated using a black
camping tent that was reinforced internally so that limited light was coming in.
Next, an outdoor session, that involved facial image and video captured at short
and long stand-off distances. The collection used state-of-the-art camera sen-
sors from Canon (Mark IV), Nikon (PX1000) and two FLIR sensors, namely
short and a long range MWIR imaging sensors (see table 3.2).

Table 3.2: Sensors used to collect the MILAB-VTF(B) dataset.

Camera Spectrum Spectral Range Focal Length F-Stop Resolution
Canon Mark IV Visible - 70-200mm 2.8-32 1920×1080

Nikon P900 Visible - 24-2000mm 2.8-6.5 1920×1080
Nikon P1000 Visible - 24-3000mm 2.8-8 3840×2160
FLIR A8581 MWIR 3.0 - 5.0 µm 50m 2.5 1280×1024

FLIR RS8513 MWIR 3.0 - 5.0 µm 120-1200mm 5 1280×1024

Data Collection

An overview of the data collection location and equipment setup can be seen
in figure 3.1.

Indoor Session

Every subject first completed an Institutional Review Board (IRB) consent form
before beginning the collection process. After completing the IRB form, the
participants were taken inside the tent one at a time. Three images were cap-
tured using the Canon and A8581 cameras; (1)full frontal with the subject facing
the cameras, (2) full left profile, and (3) full right profile. Next, a video was cap-
tured where the participants were instructed to turn their head, starting from a
full frontal position to a full left profile, then to a full right profile, back to full
frontal, and then look up and then down before returning to a full frontal pose
at the end of the video.

Outdoor Session

After completion of the indoor session, the participants were taken outside to
the collection area outside the tent. Participants were instructed to walk to each
of the outdoor collection locations at 100, 200, 300 and 400 meters from the
camera. Videos of each subject were recorded with the Nikon P1000 and FLIR
8513 cameras at each distance. Participants were instructed to turn their head as
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they did in the indoor setting at each of the four different distances. Data was
collected in a variety of weather conditions.

Data Structure

Training and Evaluation Protocol

The MILAB-VTF(B) dataset provides unsynchronized, paired thermal-visible
videos and anonymized identifiers for each subject. Also provided are algorith-
mically generated frame synchronization between thermal and visible videos,
face bounding boxes, and key points, which will be useful for developing end-
to-end multispectral face verification pipelines.

After the collection was completed, 320 identities were selected for training
and 80 identities for evaluation. Following standard face verification protocols,
the collection team created gallery and query sets from the sequestered data.
Specifically, four non-overlapping galleries and four non-overlapping query sets
were created by splitting the evaluation data by pose (i.e., frontal/profile) and
location (i.e. indoor/outdoor).

In addition to the algorithmically generated face bounding boxes and key
points, there was also a manually labeled small subset of the dataset created to
allow for additional evaluation. Five images from each distance, location, and
spectrum for all 400 subjects are selected and labeled based on specific poses
(frontal, left profile, right profile, facing up and facing down). For each image, a
face bounding box and seven landmarks are annotated. The landmarks include
the inside and outside corners of both eyes, the tip of the nose, and the left and
right mouth corners.

3.2 Keypoint Detection

3.2.1 Facial Landmark Detection
In this section I describe the proposed approaches for facial landmark detection
in the thermal domain. The first approach is landmark detection via thermal-
to-visible synthesis. I start by training models to synthesize face images from
the Medium Wave Infrared (MWIR) spectrum into the visible domain. Then,
a pre-trained visible face landmark detector is used to predict landmarks on the
synthesized faces. The performance of my method is evaluated by mapping the
predicted landmarks back to the initial thermal image and is then compared with
the thermal ground truth. I use StarGAN v2 and CUT for thermal-to-visible
synthesis and HRNet for landmark detection on the ARL-VTF and MILAB-
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VTF(B) datasets. In the second approach, I train two HRNet facial landmark
detectors using visible and thermal data to learn the domain invariant features
for predicting landmarks on thermal face images. The proposed method allows
for the evaluation of predictions directly on the corresponding ground truth
annotations. In contrast, the first method predicts landmarks from synthesized
face images and maps them back to the thermal ground truth.

For all experiments in this work, I trained StarGAN v2 to perform thermal-
to-visible synthesis of face images. StarGAN v2 addresses two image-to-image
translation problems that many previous methods either struggle to or cannot
handle: translate an image of a source domain to diverse outputs of a target
domain and allow synthesis of more than two target domains. StarGAN v2 ad-
dresses these issues by generating diverse images from multiple domains. Specif-
ically, StarGAN v2 uses two approaches for image generation, (1) a mapping
network and (2) a style encoder.

– The mapping network takes a latent code as input and a domain that is
sampled randomly. The output is a style code for the given domain. With
multiple output branches to cover the number of domains, the mapping
network learns diverse style representations for all domains.

– The style encoder takes an image and its domain as input, again using
multiple output branches to account for the number of domains. The
style encoder uses the input image and learns to generate a style code
based on the styles from a reference image.

Using either the mapping network or the style encoder’s style code and a
source image as input, the generator produces an output image that reflects the
style and domain of the given style code. Furthermore, because the style codes
are domain specific, the generator does not need a domain label. This allows
for the output of diverse images from multiple domains.

I assess both of the style code generation methods to determine which one
results in the best facial landmark detection performance. The mapping net-
work performs latent-guided synthesis where latent codes learned from the train-
ing data are sampled at random and applied to the input image. This results in
a synthesized image with the same structural features as the input and one of
the diverse styles learned during training. The style encoder performs reference-
guided synthesis. This method applies the domain and style of a reference image
onto the input image, resulting in a synthesized image with the same structural
features of the input image and style of the reference image. For this work, the
thermal face image is the input, and the visible face image is the reference. Ad-
ditionally, I compare the StarGAN v2 results to CUT by training a model on
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the ARL-VTF dataset. I compare the synthesized faces from both models by
visual inspection and also in terms of facial landmark detection performance.

Thermal-to-Visible Synthesis

With the introduction of the first Generative Adversarial Network (GAN) in
Goodfellow et al., 2014, image synthesis has proven to be one of the most popu-
lar applications. While traditional GANs learn to generate output images from
random noise inputs, conditional GANs generate images by learning the map-
ping between the image input and image output. Conditional GANs, such
as the pix2pix Isola et al., 2017 approach, can produce realistic results but re-
quire paired (visible - thermal) face images. The scarcity of paired data can make
these methods undesirable in situations where large amounts of training data
are needed. The adoption of cycle consistency loss Zhu et al., 2017 removed
the requirement for paired data to perform image-to-image translation. Addi-
tionally, cycle consistency loss enforces the original reconstruction of the input
image, allowing only the style of the image to change. This is very important in
the context of my work, where I propose to map coordinates from a synthesized
visible band face image back to its thermal input. If the source characteristics of
the face cannot be preserved, e.g., the face pose, eye, nose, and mouth locations,
landmark detection performance decreases.

Facial Landmark Detection using Synthesis

After the trained generative models synthesize all test set images, facial landmark
detection can be performed. The ARL-VTF dataset contains six landmarks.
However, I use five as in D. Poster et al., 2021 and exclude the middle mouth
landmark. The five landmarks I assessed are the right and left eye centers, right
and left mouth corners, and the base of the nose. I use HRNet to detect all
face landmarks. The specific HRNet model was previously trained on 7,500
images from the Wider Facial Landmarks in-the-wild (WFLW) W. Wu et al.,
2018 dataset and predicts 98 landmarks. I predict all 98 landmarks from HRNet
and keep only the five that I require.

I established HRNet performance baselines on the ARL-VTF visible and
thermal datasets for all dataset sequences; baseline, expression, pose, and glasses.
The baseline sequence contains frontal images of subjects with a neutral ex-
pression. The expression sequence is also frontal face images with the subject
counting out loud, starting at one. The pose sequence contains subjects slowly
turning their heads from left to right. The glasses sequence is similar to the
baseline and contains only subjects who naturally wear glasses. These subjects
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removed their glasses for the three previously mentioned sequences. All images
were captured at a distance of about 2.1 meters. After evaluating baseline HR-
Net performance on visible and thermal test sets, I predicted landmarks on the
synthesized face images.

Multispectral Facial Landmark Detection

An assessment of the HRNet facial landmark detector when trained on visible
and thermal data is necessary to observe how well the model can generalize to
both domains, as opposed to using synthesized images. To accomplish this, I
fine-tuned HRNet on the MILAB-VTF(B) dataset and reported standard facial
landmark detection metrics on a manually labeled subset of test data.

3.3 Feature Extraction and Matching

3.3.1 Race and Gender Classification for Cross-spectral Face
Recognition

This section describes my proposed approach for cross-spectral face recognition.
First, I train a multitask CNN based on the VGG architecture and an Efficient-
Net B0 Tan and Le, 2019 model to classify race and gender with MWIR face
images. Then, the race and gender predictions are used to select random visible
face images from the MILAB-VTF(B) dataset that match the predicted race and
gender. The visible images are selected from the training set since the only other
option would be to select images from the test set. In order to minimize bias
during synthesis, the images used for training the StarGAN v2 synthesis model
and selecting the visible reference image do not overlap. Then, the selected im-
age is used by StarGAN v2 as a reference to synthesize the MWIR face from the
thermal to the visible domain. After synthesis, the MWIR face image now looks
like an image captured in the visible spectrum. Face recognition is performed
using ArcFace J. Deng et al., 2019 and VGG-Face Parkhi et al., 2015. A set of
experiments to evaluate the effectiveness of the race and gender classification
for thermal-to-visible synthesis are conducted. The experiments scenarios select
the correct or incorrect race and gender before performing synthesis and face
recognition. Baseline scenarios matching visible and thermal faces to visible
faces are also included.

49



Data Normalization

All images required face detection and geometric normalization before the clas-
sification, synthesis, and face recognition steps. All faces were cropped using
the ground truth bounding boxes from the MILAB-VTF(B) labels. Then, the
faces were geometrically normalized using the ground truth eye centers and
transformed so that the eyes lie on a horizontal plane.

Multitask Learning and EfficientNet

Two methods for classification of gender and race using MWIR face images are
evaluated. The first is a network that employs multitask learning and is based
on the VGG-16 architecture. Multitask learning is a method in which multiple
tasks are learned simultaneously by a shared model. In this case, race and gender
are the two tasks. In the multitask network, each task has it’s own loss function
that is optimized during training. Both tasks share early layers in the network,
which can more efficiently use a small amount of data and avoid overfitting
Crawshaw, 2020. Then, the network splits into separate branches for each task
where the weights learned during training are not shared.

The first two convolutional layers use the pre-trained weights from the Im-
ageNet J. Deng et al., 2009 dataset and are frozen during training. The next
eight convolutional layers are shared between the race and gender tasks. The
network is then split into the two tasks, each containing an additional three con-
volutional layers and a dropout layer set to a dropout value of 0.6. The gender
task classifies images as male or female and the race task classifies White, Asian,
and Black. Each task is optimized using the categorical cross-entropy.

In addition to designing a multitask network, I also use EfficientNet, a
state-of-the-art classification model. EfficientNet employs a technique called
compound scaling Tan and Le, 2019 to identify the optimal network depth,
width, and resolution that leads to the best performance. To train the network,
all layers use pre-trained weights from the ImageNet dataset and are frozen
during training. A global average pooling and dropout layer are added to the
top of the network to condense the output to a 1×1280 feature vector. Finally,
a new softmax layer is added to output predictions for the correct number of
classes. The model trained for gender classification has two outputs and the
model trained for race classification has three outputs. The EfficentNet and
multitask networks both use random horizontal flips as the only technique for
data augmentation during training. Several other augmentation techniques
were assessed but did not improve classification performance.
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Reference-guided Synthesis and Face Recognition

Synthesis of the faces used was performed by StarGAN v2, using the same tech-
nique described in Section 5.2.1. The only difference in the process was that the
StarGAN network was trained on the MILAB-VTF(B) dataset instead of ARL-
VTF. After synthesis, the synthesized face image is matched against a gallery
of visible images using ArcFace and VGG-Face. Both are state-of-the-art face
recognition models that achieved 99.83% and 98.78% recognition accuracy on
the Labeled Faces in the Wild benchmark dataset G. B. Huang et al., 2008. I
assessed several scenarios to investigate the effect that race and gender have on
face recognition when using a thermal-to-visible synthesis approach. A best
case scenario where the same subject’s face is used as the reference image for
synthesis and for face matching is included. This is theoretically the best recog-
nition scores that the proposed method can achieve because the correct race and
gender are used to perform synthesis with the same identity. Combinations of
incorrect race and gender selections are also assessed and compared against the
two models that I trained to predict race and gender.

The experimental scenarios are:

• Match visible to visible faces, no synthesis.

• Match thermal to visible faces, no synthesis.

• Select the same identity for the synthesis reference image as the identity
to be used for matching.

• Select a random race and gender for the reference image before synthesis.

• Select the wrong gender for the reference image before synthesis.

• Select the wrong race for the reference image before synthesis.

• Select the race and gender for the reference image using the trained Effi-
cientNet model.

• Select the race and gender for the reference image using the trained mul-
titask model.
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3.4 Other Applications

3.4.1 Firearm Detection
In this work, I assess the performance impact of different data augmentation
techniques for object detection on a novel firearm database. The following
section describes the augmentation techniques and object detection model.

Database Creation

To train deep learning models that can accurately make predictions on new
and unseen data, it is important to have a large and diverse training dataset.
Unfortunately, there is no publicly available dataset for firearm detection in
surveillance videos, so a novel dataset was created to overcome this issue. The
database consists of two classes, handguns and long guns. Handguns include
any type of pistol or revolver, and long guns include any type of rifle or shotgun.
All database images were collected from various sources on the web including,
but not limited to, videos uploaded by news stations, police departments, and
self-defense and concealed carry organizations that contain footage from mostly
indoor, but also some outdoor settings. After all frames were extracted from
the videos, they were manually labeled with standard bounding boxes. The
database consists of 11,652 frames from 90 surveillance videos.

Data Augmentation Techniques

The use of augmented data when training deep learning models is very effec-
tive in improving performance on a variety of computer vision tasks, especially
object detection. The Tensorflow Object Detection API J. Huang et al., 2017
provides a wide range of augmentation methods for improving object detection
performance and is used for all experiments. I chose eighteen of the provided
geometric and photometric techniques for further investigation. They are ap-
plied randomly to images during training, and include crops, flips, color, and
contrast changes. Table 3.3 summarizes all of the chosen methods as named in
the Tensorflow API.
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Table 3.3: Summary of the data augmentation techniques I tested from the
Tensorflow API. A * or ** denotes a technique that improved performance in
experiment 1. A ** also denotes a technique further evaluated in experiment 2

Augmentation Techniques
Normalize Image Horizontal Flip
Pixel Scale ** Image Scale **
Adjust Brightness ** Adjust Contrast *
Adjust Hue ** Adjust Saturation **
Distort Color * Jitter Boxes *
Crop Image Pad Image
Crop Pad Image Crop to Aspect Ratio
Black Patches Vertical Flip
Rotation 90 RGB to Gray *
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Chapter 4

Experiments and Results

4.1 Acquisition and Preprocessing

4.1.1 Facial Attribute Analysis: Mugshot Data

Databases

Figure 4.1: Sample images from DB1 captured at -90°to +90°poses at 45°intervals.
Additionally, every subject has an identical set of images with the eyes closed.

Figure 4.2: Sample images from DB2 with various poses, backgrounds, and
illumination conditions.

• Good Quality Face Database (DB1): The database contains face images
collected indoors at a distance of 2 meters from 1 session with a Canon
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EOS 5D Mark II and Mark III camera. Images were captured from -90°to
+90°poses at 45°intervals, each with the subject’s eyes open and closed.
Overall, the database is composed of 1719 subjects and 15240 images. This
data closely represents high quality mugshot photos and is therefore used
as our baseline database for classification. A sample of these images can
be seen in Figure 4.1.

• Multiple Encounter Dataset II (DB2): This database is a collection of
law enforcement submissions of deceased persons with multiple prior en-
counters. The dataset consists of 518 subjects collected indoors at various
profile, near frontal, and frontal poses under variable illumination condi-
tions. The sensors used to capture these images are unknown and result
in a wide range of image dimensions, with 70% being approximately 0.3
mega-pixels. The number of samples per subject varies, with 262 of the
subjects having 1 sample and the remaining 256 subjects having anywhere
between 2 and 18 samples, totaling 1,309 images. This mugshot data rep-
resents the range of variations that can be frequently encountered in real
world scenarios. A sample of these images can be seen in Figure 4.2.

• Combined Database (DB3): This database is the combination of DBs
one and two. By combining these databases, I train classifiers that capture
the variance in both high and low quality mugshot submissions.

• Database Partitioning: While the experiments are the same across each
of the three factors, the data used for each factor is unique. The eye and
glasses classification data in DB1 and DB2 are composed of only frontal
face images where both eyes can be detected. In order to compensate for
the low number of glasses, closed eyes, and non-frontal face samples in
DB2, data augmentation is performed in order to balance the classes. Syn-
thetic data was created to augment the eye and face factors. For the eyes,
all 21 subjects with closed eyes were augmented, creating 42 additional
images per subject and 882 images total. Each closed eye pair was flipped
along the horizontal axis. Then these two eye pairs, the original and
flipped samples, were additionally augmented with Gaussian noise, salt
and pepper noise, two levels of increased contrast, two levels of increased
brightness and two levels of decreased brightness, and two increasing lev-
els of Gaussian blur. This process created 22 total images. Then, each of
these 22 augmented images was given a random x and y axis translation
of± 5 pixels. For the face factor, the non-frontal face images were flipped
along the x axis and Gaussian blur was added to the original, creating two
additional images per sample, totaling 718 additional non-frontal face im-
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ages. Lastly, the glasses factor was supplemented with subjects from the
Labeled Faces in the Wild G. B. Huang et al., 2008 database, containing
labeled faces that span a range of in the wild conditions including pose,
lighting, race, accessories, occlusion, and background. 280 subjects with
glasses and 324 subjects without glasses were used from this database to
supplement DB2. A summary of the number of images by database for
each factor is shown in Table 4.1.

Table 4.1: Summary of the number of images used in each scenario from every
database. A * denotes the addition of augmented data.

Databases Number of Images
Eyes Open Eyes Closed Glasses No Glasses Frontal Non-Frontal

Good Quality Face Database 1636 1614 1174 1181 3283 6558
Multiple Encounter Dataset II 905 904* 287* 336* 940 1077*

Combined Database 2541 2518 1461 1517 4223 7635

In this work, I use CNNs, several traditional classifiers with different ker-
nel functions, including quadratic, cubic, and Gaussian to perform classifica-
tion. In the first experiments, I determine what models perform the best on the
datasets using HOG features with both good quality and challenging data. I
also find the models that generalize the best to the combination of those two
datasets and can perform well on real world data. In the second experiment,
I train and test two CNNs on DB3 to observe any improvements over using
HOG features, as well as implement score level fusion of the traditional and
CNN classifiers by summing the final scores from each class.

Training, Testing, and Optimization

In the experiments performed with CNNs, DB3 was split using 60% of the data
for training, 20% for validation, and 20% for testing on each of the three factors.
To train the networks I selected a batch size of 100 for the eyes and frontal face
factors, and 50 for the glasses factor due to the smaller amount of available data.
I performed empirical optimization on learning rate, epoch, and momentum
parameters, repeating the same process for both networks that resulted in the
best classification accuracy for each factor. First, an initial range of eight learning
rates (LR) were tested, evenly spaced from 0.01 to 0.0001, holding all other
parameters the same. Then a sub-range of learning rates that performed best
was selected, and a final set of five evenly spaced LRs were chosen from this
subset. Using each of these selected LRs, experiments for every combination of
epochs from 4, 8, ..., 20, and momentum parameter of 0.6, 0.65, ..., 0.95 were
conducted. An epoch value of 16 worked best for both networks in the eyes
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and frontal face classifiers, and a value of 12 for both networks for the glasses.
AlexNet momentum values of 0.85, 0.9, and 0.85 were the best for eyes, frontal
face, and glasses respectively, and 0.95 for every experiment using GoogLeNet.

Figure 4.3: Classification results for open and closed eyes (Left), frontal and
non-frontal faces (Middle), and presence or absence of glasses (Right) on the
same axis.

Classification Results

For the classification of eyes, frontal faces, and glasses in Experiment 1 I found
that SVMs achieved the best classification results with the exception of a Fine
KNN for classifying eyes open or closed in DB2. As expected, accuracy was
nearly the same or lower for DB2 in each of the three classification scenarios.
This is due to the unconstrained environments in which these images were cap-
tured as well as the relatively low number of training images when compared to
DB1. The classification performance across each database and each factor can
be seen in the box plot in figure 4.3. It is important to note that the substan-
tially larger number of training images in DB1 could skew the overall accuracy
reported in table 4.2 on DB3 by classifying a large number of good quality im-
ages and a much smaller number of low quality images. The results in table 4.2
show the best achieved accuracy for each of the three DBs, with DB3’s columns
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detailing how accurate that classifier was on DB1 and DB2 data and the final
accuracy on DB3. Table 4.2 also shows the accuracy of the best classifiers trained
only on DB1 and only on DB2 data separately. The results show that the ac-
curacy achieved with the classifier trained on DB3 was nearly identical to the
performance when training on each dataset individually. This means that the
best performing classifier of DB3 generalized very well to the combined data
and can accurately classify good and poor quality images.

Table 4.2: Summary of the average classification accuracy for each factor using
10-fold cross-validation in all databases. The three DB3 columns show the aver-
age cross-validation classification accuracy in terms of the data from DB1 and
DB2 individually, as well as the combined databases, DB3, in order to show how
well the final trained model can classify both good and challenging data.

Average Classification Accuracy

Factors DB1 DB2 DB3
DB1 DB2 DB3

Eyes Open or Closed 99.0 99.2 98.7 98.5 98.7
Frontal or Non-Frontal Faces 99.9 93.5 99.8 93.2 98.8

Glasses Present or Absent 99.6 89.2 99.6 89.7 97.6

Table 4.3: Comparison of the average classification accuracy on DB3 from 10-
fold cross-validation using SVMs, the best achieved accuracy from parameter
optimized CNNs on DB3 test data, and fusion of SVM and CNNs.

Accuracy: SVM vs CNN
Factors SVM Alexnet GoogLeNet SVM+AlexNet SVM+GoogLeNet

Eyes Open or Closed 98.7 99.4 99.2 99.5 99.5
Frontal or Non-Frontal Faces 98.8 98.4 98.7 99.7 99.7

Glasses Present or Absent 97.6 99.0 99.8 99.9 99.8

In the second experiment, I optimized AlexNet and GoogLeNet to train
and test on DB3 and compared classification accuracy against the SVMs from
experiment 1. The results are shown in table 4.3. I observed that both CNNs
improved classification of open and closed eyes by as much as 0.7% and the
glasses factor by over 2%. However, the CNNs for frontal and non-frontal face
classification were nearly the same as the SVM. After fusing the scores across
all scenarios, I was able to achieve almost 100% accuracy for all 3 factors.
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Table 4.4: Summary of the number of images used in each scenario from every
database.

Databases Number of Images
Eyes Open Eyes Closed Glasses No Glasses Frontal Non-Frontal

Database 1 2,540 2,516 1,462 1,516 4,226 7,635
Database 2 471 455 606 673 1,500 1,570

Total 3,011 2,971 2,068 2,189 5,726 9,205

4.1.2 Facial Attribute Analysis: Cellphone Data

Databases and Preprocessing

• Database 1 (DB1): There are 2 databases used in these experiments. The
first one is created from our previous work Rose and Bourlai, 2020, also
reported in section 4.1.1. It consists of two separate databases that are
combined to capture variations from high quality and low quality face
images. The dataset with high quality face images are from a single session
collected indoors at a distance of two meters using the Canon EOS 5D
Mark II and Mark III cameras. I call this dataset DB1-1. Samples from
each subject were collected from -90°to +90°poses at 45°intervals, with
the subject’s eyes open and closed for each pose.

The second portion of this dataset, DB1-2, includes mugshot samples
from law enforcement submissions of deceased persons who have multi-
ple prior arrests. These subjects were collected indoors at various poses
with different uncontrolled background and illumination conditions and
unknown sensors. These uncontrolled conditions make this data very
challenging to classify. In total, the database is composed of 2,237 sub-
jects and 16,549 images. Samples from this database are shown in figure
4.4.

• Database 2 (DB2): The second database is collected using an iPhone 5S.
Samples are captured indoors and outdoors at distances of 1m and 5m
each. Data captured at 1m show the subject from the waist up, while the
5m data shows the full body of the subject. This database contains 100
subjects totaling 3928 images. Samples from this database are shown in
figure 4.5.

• Database Partitioning: The experiments performed on all three face
attributes are the same, however, the data used for each attribute is not.
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Figure 4.4: Database 1 images collected from controlled (DB1-1,top) and uncon-
trolled (DB1-2, bottom) conditions.

The eyes and glasses attribute data are taken only from samples of frontal
face images, where both eyes can be detected. As previously discussed,
certain classes are imbalanced in most face attribute databases, and that is
true for the databases used here. Samples where a subject’s eyes are closed,
glasses are present, and the face has a frontal pose are underrepresented in
the data. To address this problem, random samples from DB1 and DB2
are automatically augmented to balance the classes. Several techniques,
including horizontal flips, Gaussian and salt and pepper noise, random
x and y axis translations, Gaussian blur, contrast, and brightness changes
are used until the classes are closely balanced. The number of images in
each database are summarized in table 4.4. Before augmentation, each
database is split into stratified training and test sets for each of the 3 at-
tributes, using 90% of images for training and 10% for testing. Stratifying
the test set ensures that I am testing the models on data would likely be
observed in real-world scenarios, i.e. open eyes will be encountered far
more often than closed eyes, so I ensure that the proportion of open and
closed eyes in our database is represented as such in the test set.

Experiments

To train the CNN models, I used 90% of the data for training and validation and
10% for testing. I assessed different learning rates ranging from 0.01, 0.03, 0.001,
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Figure 4.5: Database 2 images from left to right, 1m indoors, 5m indoors, 1m
outdoors, and 5m outdoors.

0,003, ..., 0,000001, 0.000003, while all other parameters were kept constant.
Then, once I determined which learning rates are the optimal ones for the model
tested, I used them with combinations of (a) epochs - ranging from 4, 8,...24,
and (b) momentum values for stochastic gradient descent - ranging from 0.6,
0.65,. . . ., 0.95 in increments of 0.05. This empirical study was conducted for
both CNN based models, and results in a set of parameters yielding the highest
classification performance in terms of classification accuracy.

Results

• Baseline Classifiers on Mobile Phone Data (Experiment 1): I clas-
sified the data in the mobile phone database, DB2, using baseline SVM
and CNN models that were trained on DB1 from my previous work Rose
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Table 4.5: Summary of cross-validation classification accuracy results using base-
line classifiers trained on DB1 from my previous work, on DB2. SVMs that were
trained on DB1, DB1-1, and DB1-2 are provided here, and also CNNs trained
on DB1.

Scenarios Indoor Outdoor
1m 5m 1m 5m

Cubic SVM DB1-1
Eyes 88.94% 82.56% 67.01% 66.84%

Glasses 81.91% 68.21% 73.60% 64.25%
Face 98.66% 99.32% 99.83% 99.48%

Ciubic SVM DB1-2
Eyes 86.93% 77.95% 60.91% 55.44%

Glasses 98.49% 92.31% 74.11% 61.14%
Face 90.48% 93.57% 88.78% 88.49%

Cubic SVM DB1
Eyes 97.49% 94.87% 74.62% 73.58%

Glasses 95.98% 90.26% 77.16% 61.14%
Face 93.99% 94.42% 92.18% 92.44%

Alexnet DB1
Eyes 98.99% 85.13% 75.63% 61.66%

Glasses 98.99% 93.33% 92.39% 82.90%
Face 97.07% 83.59% 86.22% 75.95%

GoogleNet DB1
Eyes 98.99% 89.23% 76.14% 60.10%

Glasses 99.50% 97.95% 88.32% 81.35%
Face 94.32% 77.33% 92.18% 80.58%

and Bourlai, 2020. The face dataset scenarios in DB2 are 1 and 5 meters
indoors, as well as 1 and 5 meters outdoors, captured using an iPhone 5S.

• Retrain Classifiers on Mobile Phone Data (Experiment 2): All four
scenarios of DB2, as mentioned in the previous section, are treated as
one dataset (namely they are all used as one dataset to train our models).
Then, I retrain the chosen models using a 10-fold cross-validation for the
SVM models tested and a 5-fold (due to computational complexity less
folds were used in this study) cross-validation for CNNs.

• Train on combined Databases (Experiment 3): Classifiers are trained
again using 5-fold cross-validation with 100% of DB1 and 80% of DB2 in
every training fold, and the remainder of DB2 is always the validation set.

I hold out 10% of DB2 to use as a final test set. This test set contains no
augmented data and is stratified so that the proportions of each class for each at-
tribute are represented. Due to the number of test set samples, cross-validation
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Table 4.6: Summary of cross-validation classification results from training on
DB2 and training on the combined dataset of DB1 and DB2. For the combined
dataset, DB2 is split into five folds, 80% is included in the training fold, and the
remaining 20% is the test fold. DB1 always remains in the training fold.

SVM Trained on DB2 Trained on Combined Data
Precision Recall F1 Accuracy Precision Recall F1 Accuracy

Eyes 88.19% 90.28% 89.23% 89.10% 88.55% 89.81% 89.18% 89.10%
Glasses 99.17% 98.68% 98.92% 98.91% 100.00% 100.00% 100.00% 100.00%

Face 99.72% 99.65% 99.68% 99.68% 100.00% 100.00% 100.00% 100.00%

Alexnet Trained on DB2 Trained on Combined Data
Precision Recall F1 Accuracy Precision Recall F1 Accuracy

Eyes 86.44% 89.10% 87.75% 87.56% 86.71% 85.07% 85.89% 86.02%
Glasses 96.59% 100.00% 98.26% 98.25% 97.69% 99.66% 98.67% 98.66%

Face 99.16% 99.93% 99.54% 99.54% 98.59% 98.52% 98.56% 98.55%

GoogleNet Trained on DB2 Trained on Combined Data
Precision Recall F1 Accuracy Precision Recall F1 Accuracy

Eyes 86.64% 92.18% 89.32% 88.98% 85.68% 87.91% 86.78% 86.61%
Glasses 95.50% 100.00% 97.70% 97.66% 97.53% 99.66% 98.58% 98.58%

Face 99.72% 99.86% 99.79% 99.79% 99.43% 98.17% 98.80% 98.80%

is always performed on the training data to account for the low statistical power
of the test set.

The baseline classifiers from my previous work Rose and Bourlai, 2020 are
first assessed on our mobile phone data, DB2. I report the overall accuracy using
the baseline classifiers that were trained on DB1, DB1-1, and DB1-2 for all three
face attributes from experiment 1 in table 4.5. Results from experiments 2 and
3 are reported in table 4.6. For all experiments, the true positive classes for each
attribute are eyes open, glasses present, and frontal face, while the true negative
classes are eyes closed, no glasses present, and non-frontal faces.

Figure 4.6: Misclassified open or closed eye images. Nearly 90% of all misclassi-
fied samples were from one of the outdoor scenarios.

• Eye Attribute: The best accuracy achieved for the eye attribute in exper-
iment 1 was 98.99%. The best F1 score in experiment 2 was 89.32%, and
the best F1 score achieved in experiment 3 was 89.18%. I propose using
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Figure 4.7: Misclassified frontal or non-frontal face images. Almost all mis-
classified samples were from one of the outdoor scenarios with harsh lighting
conditions or blur.

the cubic SVM trained in experiment 3 to achieve the best accuracy in
terms of F1 score.

• Glasses Attribute: The best accuracy achieved for the glasses attribute
in experiment 1 was 99.5%. The best F1 score in experiment 2 was 98.92%,
and the best F1 score achieved in experiment 3 was 100%. I propose using
the cubic SVM trained in experiment 3 to achieve the best accuracy in
terms of F1 score.

• Face Attribute: The best accuracy achieved for the face attribute in
experiment 1 was 99.83%. The best F1 score in experiment 2 was 99.79%,
and the best F1 score achieved in experiment 3 was 100%. I propose using
the cubic SVM trained in experiment 3 to achieve the best accuracy in
terms of F1 score.

As I achieved a baseline accuracy of nearly 99% or better on these datasets
from my previous work, see section 5.1.1, it is evident that using these classifiers
on DB2 resulted in a significant decrease in performance. This is most notable
with the eyes and glasses attributes, where even the scenarios that have face
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Figure 4.8: Misclassified glasses or no glasses images. Almost all misclassified
samples had very dark illumination where the eyes were barely visible.

images very similar to the DB1 data, indoor 1m and 5m, the classifiers performed
slightly worse than the baseline. The drop in performance is more noticeable in
the outdoor scenarios. There, the accuracy is nearly 30% lower when compared
to the same distance indoors. Interestingly, the face classifiers seem to be quite
robust to the new data by both distance and location.

For experiments 2 and 3, all trained models were able to achieve nearly 90%
performance in precision, recall, F1, and accuracy for the eyes open or closed
attribute, a significant improvement from the results seen in table 4.5, but still
not near the 99% I achieved previously on DB1. The misclassifications for this
attribute, as well as glasses and face, are almost exclusively from the outdoor
scenarios where many subjects were looking into the sun. This created harsh
illumination conditions and the subjects squinting their eyes so that they were
barely open enough to be labeled as open.

Limitations

Samples of incorrect classifications for eye pairs, faces, and glasses are shown in
figures 4.6, 4.7, and 4.8 respectively. The glasses and face attributes were able
to achieve performance of 95% or better range in all reported metrics. As was
observed from the first set of experiments, the face classifier continued to be ro-
bust to the distances and locations of the mobile data. The glasses classifier was
also able to achieve better performance since the presence of glasses is affected
less by the illumination conditions and distance changes.
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4.1.3 Facial Attribute Analysis: Masked Data

Dataset

The multispectral masked database Peri et al., 2021a was collected during the
winter of 2021 when mask mandates were the norm in most places. For this work,
I selected 100 of the 280 subjects who participated to compose the dataset. The
visible data was captured using a Canon EOS 5D Mark IV DSLR camera. It
uses a 30.4MP full frame CMOS sensor and a Canon EF 70-200mm f/2.8 L-
series lens. The thermal data was captured using a FLIR A8581 MWIR camera
with a 50mm, f/2.5 manual focus lens. The FLIR has an indium antimonide
detector and a 3.0-5.0 µm spectral range and thermal sensitivity of ≤ 30 mk.
Examples of the visible and thermal data are visualized in figure 4.9 and figure
4.10, respectively.

Figure 4.9: Visible spectrum examples of masked and unmasked faces.

All subjects were filmed with and without a mask on, indoors, at six feet
(this created a subset of our original MILAB-VTF(B) no mask face dataset).
All subjects wore their mask over the nose and mouth for the masked portion
of the data collection. For every subject, 10 frontal face frames were extracted
from each of the videos. Then, faces were cropped in the visible band using
the MTCNN face detector K. Zhang et al., 2016 and all thermal frames were
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Figure 4.10: Thermal spectrum examples of masked and unmasked faces.

manually cropped. The total number of images for each spectrum can be seen
in table 4.7

After the fully compliant and non-compliant faces were processed, syn-
thetic masks were added to the compliant faces to create the two levels of non-
compliant mask wearing. For visible images, the method used in Anwar and
Raychowdhury, 2020 was applied. It uses facial landmarks detected by Dlib
King, 2009 to identify the face tilt and six key features of the face that are re-
quired for applying the mask. These points include the nose bridge, chin, and
four points along the jawline, two on each side. The 6 key points were modified
to shrink and shift the mask downward to create non-compliant cases. The color
code and mask type code were set to select random masks that are surgical style
blue and white, and cloth style that are blue, gray, black, and dark green. For the
thermal face images, for which the Dlib detector did not work, the masks were
manually (via a software) applied on faces. First, a mask was extracted from a
face in the visible dataset and saved as a template. Then, the mask was shrunk
to a suitable size for each of the two non-compliant conditions and placed over
the face. Since the thermal images do not record color information, the color of
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the mask was restricted to black, similar to the masks captured with the FLIR
camera. Examples of synthetic masks in the visible spectrum are presented in
figure 4.11

Figure 4.11: Examples of synthetically masked faces.

Table 4.7: Compliant samples have real masks that cover the nose and mouth.
Non-compliant samples have synthetically applied masks that do not cover the
nose or the nose and mouth.

Spectrum Compliant Non-compliant Total
Visible 1,000 1,000 2,000

Thermal 995 1,000 1,995

Experimental Setup

In this section I discuss the experiments performed on the dataset. Due to the
small size of the dataset, a 5-fold cross-validation is performed. All folds are
split evenly between the compliant and non-compliant classes with no overlap
between samples. The different levels of non-compliant mask wearing are also
evenly distributed among the folds.
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For equal comparison, all models used pre-trained weights from the Ima-
geNet database J. Deng et al., 2009 and were then trained using the same hy-
perparameters via transfer learning. Transfer learning is a technique to leverage
the feature representations that the network has already learned and use this
knowledge to learn features on a new set of images. To perform transfer learn-
ing, generally, weights in the early and middle layers, where features such as
edges and textures have been learned, are frozen. Then, the final layers of the
network, where more complex features have been learned, are trained to learn
the new representations of the dataset. This process is especially useful when
the problem to be solved does not have a large amount of data available for
training.

I empirically assessed a range of learning rates and found a rate that would
converge quickly during training for all models, so I use this same parameter for
training every model. Optimization was performed using the ADAM Kingma
and Ba, 2014 algorithm, with an initial learning rate of 0.0001 and decreased
by a factor of 0.1 every 3 epochs. The models were trained for 5 epochs using
a batch size of 16 on an NVIDIA GeForce RTX 2080 Ti graphics card, with
11 GB of memory. Data augmentation was performed during training using
random reflection, scale, and translation changes. Training was performed 5
times for each model, once for every cross-validation fold, on the visible and
thermal datasets.

Evaluation Metrics

I report the classification accuracy, which is the number of predictions the
model got correct divided by the total number of samples, for all models. The
formula for computing accuracy is:

T P+T N
T P+FP+T N +FN

(4.1)

where TP = True Positive, TN = True Negative, FP = False Positive, and FN =
False Negative.

Results and Discussion

In this section I present the results of the experiments on face mask compliance
classification in the visible and thermal spectra. The goal is to provide results
of face mask compliance using established classification models in the thermal
band and a complimentary visible dataset that was simultaneously captured
under the same conditions.
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Table 4.8: Accuracy results for the problem of thermal and visible mask com-
pliance classification.

Model Thermal Visible
AlexNet 0.999 1

SqueezeNet v1.1 1 1
ResNet18 1 1
RenNet50 1 1
DarkNet53 1 1

EfficientNet-B0 1 1
ResNet101 1 0.999

DenseNet-201 1 0.999
NASNetMobile 1 0.996

Visible Results

The accuracy for all models is presented in table 4.8. Through all five folds, six
of the nine models were able to classify every sample correctly, and two of the
three models misclassified just a single image. NASNetMobile yielded the low-
est accuracy results, missing seven samples. Five of those seven misclassifications
were from the non-compliant class and the remaining two from the compliant
class. The non-compliant below the nose and non-compliant below the mouth
images each accounted for one of the errors, with the remainder being either
no mask/non-compliant or fully masked/compliant. Some of those misclassi-
fications are visualized on the left side of figure 4.12. Across all models, fully
compliant and non-compliant with no mask samples composed most of the mis-
classifications. The DenseNet and ResNet101 models both failed on the same
compliant subject wearing a bright red patterned mask, bottom right in figure
4.12. It is observed that all errors in the visible band are from the deepest models.
This could partially be due to overfitting on the relatively small database. These
models would likely benefit from training on a larger dataset. Other misclas-
sifications could be due to the large variability of the masks, including color,
texture, and patterns that may confuse the classifier.

Thermal Results

The results for the thermal dataset in terms of classification accuracy were very
high, with only one misclassification through all five folds when Alexnet is used,

70



Figure 4.12: Samples of compliant(top left) and non-compliant (bottom left)
faces misclassified using NASNetMobile. The only thermal face misclassified
by AlexNet (top right), and the face misclassified by ResNet101 and DenseNet
(bottom right).

as shown in the top right corner of figure 4.12. With only one sample classified
incorrectly, it is difficult to draw a conclusion about where these models strug-
gle with the face mask classification task in the thermal band. I can, however,
infer that mask compliance in the thermal spectrum is more accurate than in
the visible spectrum. This is likely to due to the lack of variance of the masks
themselves and how pronounced the nose is in thermal images. For thermal
masks, little to no texture or color information is present, with all of them be-
ing various shades of black to dark gray. The nose in most samples is colder than
the rest of the face, making it a very distinguishable feature and easy to detect if
it is covered by a mask or not. Additionally, different levels of mask compliance
appear to be easier to classify due to the lack of mask variation. In thermal im-
ages, a mask appears as a large dark covering over the face that is highly distinct.
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Figure 4.13: Samples of misclassified images from the FMLD test set. The true la-
bels are (A) compliant , (B) non-compliant with a mask, and (C) non-compliant
with no mask.

The masks in the visible images vary in color, pattern, and texture, which adds
difficulty to the final classification decision.

FMLD Test Set Results

I also evaluate the visible spectrum trained models on the FMLD test set in
Batagelj et al., 2021. This data is quite different from the dataset used in the
previous experiments, with a high degree of diversity in face pose, various oc-
clusions, degree of face mask coverage, illumination, and image resolution. All
results can be seen in table 4.9. It is shown that performance varied consid-
erably, with a 33.4% difference between the best and worst performing model.
SqueezeNet, ResNet101, and Alexnet performed the best, with accuracies of
89.3%, 87.3% and 85.9% respectively. Two of the top three were the shallowest
models in terms of depth, with the exception being ResNet101. DenseNet also
performed well.

These scores were not as good as the results in Batagelj et al., 2021, where
all models achieved over 97% accuracy and only a 1.12% difference between the
worst, AlexNet, and best, ResNet152, models. This was expected, as I did not
train on this data and was interested in getting a better understanding of where
the models fail on more challenging data. The compliant cases are much easier
to label correctly, with all models achieving over 91% and many over 99%. The
non-compliant cases where the mask is worn incorrectly was the most difficult,
with the best model getting 77% correct and the next best only getting half of
them correct. This case does highlight a need for more data because the con-
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Table 4.9: Accuracy results on FMLD test set using our trained classifiers. Com-
pliant samples account for 38% of the test set, while the non-compliant cases
account for the remaining 62%. The non-compliant incorrectly worn samples
are clearly the most difficult to classify for all models, with results ranging from
20.01% to 77.2% accurate.

Model Compliant(38%) NC-Incorrectly Worn(2.5%) NC-No Mask(58.5%) Total
AlexNet 0.981 0.438 0.796 0.859

SqueezeNet v1.1 0.921 0.500 0.891 0.893
ResNet18 0.992 0.407 0.482 0.678
RenNet50 0.969 0.503 0.726 0.814
DarkNet53 0.991 0.244 0.287 0.559

EfficientNet-B0 0.993 0.201 0.315 0.575
ResNet101 0.912 0.772 0.851 0.873

DenseNet-201 0.993 0.469 0.599 0.748
NASNetMobile 0.992 0.207 0.364 0.604

compliant class accounts for 2.5% of the training and test sets. The other non-
compliant cases, those with no mask present, were quite challenging. Results
varied between just over 31% to almost 90%. Samples of misclassified images
from all three levels of masking that I investigated are visualized in figure 4.13.

Limitations

Although the results from this evaluation are quite good on the collected ther-
mal and visible datasets, there are a few limitations that must be mentioned.
Most importantly, the dataset is quite small, using only 1,000 samples per class
in each spectrum. A larger dataset with additional subjects would introduce
more variance and likely more errors. This would allow for a more complete in-
vestigation into the factors that lead to a decrease in classification performance.
Next, the samples are relatively easy to classify because they were collected in-
doors with consistent lighting at the same distance. I also did not include any
profile faces, which would increase the degree of difficulty. Lastly, I ignored
the face detection step in the pipeline and only assessed the classification taks
using faces that have already been detected and cropped. All the mentioned
limitations should not be ignored in future work.
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4.1.4 MultiSpectral Face Dataset Collection

Dataset Demographics

White, 219

Hispanic, 33

Black, 
35

Middle 
Eastern, 9

Pacific 
Islander, 1

Asian, 99

Other, 4

Ethnicity
Not Mentioned, 1

Male, 163

Non-Binary, 1

Female, 235

Gender

18-20, 21021-25, 147

26-30, 15
31-39, 17 40+, 11

Age

Figure 4.14: Overview of the MILAB-VTF(B) ethnicity, age, and gender demo-
graphics.

I include an overview of the demographics from the dataset after the collec-
tion activities were completed in figure 4.14. Samples of the outdoor faces and
distances are shown in figure 4.15.

4.2 Keypoint Detection

4.2.1 Facial Landmark Detection

Datasets

I perform all experiments on the ARL-VTF and MILAB-VTF(B) datasets.

DEVCOM ARL-VTF

The DEVCOM ARL-VTF dataset D. Poster et al., 2021 is a large paired visible
and thermal face dataset. It includes annotated landmarks (left eye center, right

74



Figure 4.15: Samples of images collected for the MILAB-VTF(B) dataset out-
doors in the thermal (MWIR) and visible spectrums.

eye center, nose base, left mouth corner, center of mouth, and right mouth
corner) and face bounding boxes. The dataset contains 395 subjects captured
at a distance of ∼2.1 meters using one LWIR and three visible cameras. Four
sequences of data are captured for each subject; a baseline sequence of frontal im-
ages with a neutral expression; an expression sequence of frontal images where
the subject counts out loud; a pose sequence where the subjects slowly turn their
heads from left to right; and a glasses sequence where subjects who naturally
wear glasses put them on and repeat the baseline sequence.

MILAB-VTF(B)

The MILAB-VTF(B) dataset was first presented in Peri et al., 2021a. It is a very
challenging multispectral, multi-distance face dataset. Unsynchronized, paired
data of 400 subjects were captured indoors at a distance of 1.5 meters, and out-
doors at distances of 100-, 200-, 300-, and 400-meters. A Canon Mark IV and
Nikon P1000 were used to capture the indoor and outdoor data, respectively.
The MWIR data was captured with a FLIR A8581 indoors and a FLIR RS8513
outdoors. Each sequence recorded the subject turning their head left-and-right
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and up-and-down for approximately 30 seconds. Annotations for the dataset
include face bounding boxes and 21 facial landmarks using the method in Peri
et al., 2021a. An additional subset of the data includes five images of each subject
at every distance and spectrum, manually labeled for face bounding boxes and
seven facial landmarks. The landmarks include the left and right eye corners,
tip of the nose, and left and right mouth corners.

Evaluation Metrics

I use the NRMSE, the standard evaluation metric Zafeiriou et al., 2017 for
reporting landmark detection performance. The formula for NRMSE is

E(L̂,L) =
∥L̂−L∥2

Nscale
(4.2)

where L and L̂ are the ground truth and predicted shapes respectively, ∥.∥2

is the ℓ2 norm, and Nscale is the normalization factor. I also choose the face
diagonal for the normalization factor as in Zafeiriou et al., 2017 and D. Poster
et al., 2021 due to its ability to handle changes in face pose better than the inter-
ocular distance.

In addition to the mean error, I also report standard deviation (STD), me-
dian, Median Absolute Deviation (MAD), and maximum error. Area under
the curve (AUC) and failure rates are set to a threshold of 0.08. Failure rate is
the percentage of images where the average predicted landmark errors exceed
the chosen threshold. AUC and failure rates are visualized in Cumulative Error
Distribution (CED) curves as well as being reported in tables 4.10, 4.12, and
4.13.

Synthesis Details

StarGAN v2 and CUT: In this processing module I fine-tuned StarGAN v2
and CUT on the ARL-VTF dataset for the two classes, visible and thermal faces.
Over 8,000 images, split evenly between all subjects and scenarios, were used
during training. For StarGAN v2, I found that the default hyperparameters
from Choi et al., 2020 resulted in the best synthesis results. The model was
trained up to 150,000 steps, and I observed that 100,000 steps yielded the best
model in terms of landmark detection accuracy and is subsequently used for
all reported results. CUT was trained to 115 epochs, using the hyperparameters
from Park et al., 2020. StarGAN v2, CUT, and HRNet both require input
dimensions of 256×256, therefore, all face data was preprocessed by cropping
and scaling the faces in order to match the face images used in Choi et al., 2020.
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Then, the ground truth facial landmark locations were transformed to match
the cropped and scaled faces. Finally, face images were synthesized with both
models. After synthesis, facial landmarks could be predicted and evaluated
without requiring any further processing.

Samples of ground truth thermal and visible faces, and faces synthesized
by StarGAN v2 and CUT are visualized in figure 4.16. Both methods use the
visible ground truth faces as a reference for synthesis. I observed that, in general,
StarGAN v2 generates more realistic looking faces, but both models do a good
job of preserving the source characteristics of the face, especially the face pose,
eyes, and nose locations.

Figure 4.16: Comparison of the StarGAN v2 and CUT methods for thermal-
to-visible face synthesis on the ARL-VTF dataset.

Baseline Synthesis and Landmark Detection

A baseline HRNet model, pre-trained on visible data from the WFLW dataset,
was used to investigate the performance gap between landmark predictions on
visible and thermal data using the ARL-VTF dataset. The detection errors from
the thermal data were much higher, as expected, especially in the pose scenario.
The same HRNet model was used for landmark prediction on latent-guided and
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Table 4.10: Summary of results using an HRNet model pre-trained on the
WFLW dataset. Baseline results from the thermal and visible bands of the
ARL-VTF database show the performance gap between the two spectrums.
By synthesizing the thermal data using latent and reference-guided synthesis,
results improve closer to visible band performance.

Scenario Mean Std Median MAD Max Error AUC0.08 Failure Rate0.08

Visible
Baseline 0.0241 0.0197 0.0215 0.0042 0.2390 0.7137 0.0157
Expression 0.0223 0.0160 0.0200 0.0040 0.2194 0.7311 0.0144
Pose 0.0480 0.0458 0.0344 0.0134 0.5874 0.4990 0.1228
Glasses 0.0229 0.0063 0.0218 0.0036 0.0491 0.7141 0
Thermal
Baseline 0.0779 0.0551 0.0587 0.0174 0.3639 0.2655 0.2820
Expression 0.0597 0.0381 0.0491 0.0123 0.4421 0.3484 0.1572
Pose 0.1260 0.1057 0.0873 0.0336 1.2443 0.1228 0.5548
Glasses 0.0472 0.0142 0.0456 0.0077 0.0928 0.4136 0.0333
StarGAN v2 Latent-Guided Synthesis
Baseline 0.0569 0.0227 0.0540 0.0103 0.2012 0.3208 0.0960
Expression 0.0520 0.0225 0.0481 0.0102 0.3224 0.3769 0.0740
Pose 0.0815 0.0461 0.0700 0.0192 0.4885 0.1805 0.3764
Glasses 0.0582 0.0162 0.0587 0.0111 0.1068 0.2791 0.0867
StarGAN v2 Reference-Guided Synthesis
Baseline 0.0455 0.0183 0.0424 0.0102 0.1555 0.4417 0.0260
Expression 0.0437 0.0173 0.0413 0.0094 0.1716 0.4630 0.0268
Pose 0.0740 0.0427 0.0629 0.0188 0.4009 0.2351 0.3096
Glasses 0.0531 0.0172 0.0505 0.0085 0.1013 0.3478 0.1200
CUT Synthesis
Baseline 0.0391 0.0158 0.0364 0.0081 0.1268 0.5185 0.0260
Expression 0.0381 0.0163 0.0343 0.0078 0.1626 0.5299 0.0284
Pose 0.0691 0.0465 0.0566 0.0178 0.4931 0.2854 0.2560

reference-guided synthesized images from StarGAN v2. For reference-guided
synthesis, I used the same subject for the thermal source and visible reference
images. As seen in table 4.10, there is a clear performance advantage to using
a reference image to perform synthesis as opposed to latent codes. Samples of
these predictions can be seen in figure 4.18. The CED plots in figure 4.17 show
that the pose scenario remains the most challenging across all spectrums and
synthesis methods. The baseline and expression scenarios had the lowest error
on the synthesized data, with the expression data being slightly lower than the
baseline. The difference in error is likely due to the more distinguishable mouth
corners in the expression data when compared to the baseline, as the only dif-
ference between the two is the subject opening their mouth. I also compared
CUT to StarGAN v2 reference-guided synthesis in table 4.10. I observed im-

78



provement in landmark detection performance using the CUT model in the
baseline, expression, and pose scenarios. I discuss the reasons for this improve-
ment and analyze errors in more detail in the next sections.

(a) Visible (b) Thermal

(c) Latent-Guided (d) Reference-Guided

Figure 4.17: CED curves for visible (a), thermal (b), latent-guided (c), and reference-
guided (d) synthesis on the ARL-VTF dataset using StarGAN v2. Failure threshold is
shown at 0.08 (red line).

Error Analysis

I attribute the majority of landmark detection errors to two major factors. The
first is the synthesis process and how well the source characteristic locations are
preserved. The second is incorrect ground truth labels in the ARL-VTF dataset.
It is important to note that the ARL-VTF dataset was not manually annotated.

Table 4.11 reports the mean error of each landmark from the baseline and ex-
pression scenarios using visible faces and the StarGAN v2 and CUT synthesized
faces. These results illustrate two important observations.

• First, it helps confirm my previous assumption that the mouth corners
are easier to detect in the expression scenarios because the greatest de-
crease in landmark error between baseline and expression occurs at both
mouth corners.
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Figure 4.18: Examples of accurate thermal-to-visible synthesis and landmark
detections using reference-guided synthesis on ARL-VTF dataset. Visible ref-
erence (top), source thermal (middle), and (bottom) StarGAN v2 synthesized
faces with ground truth (green, from the method used in D. Poster et al., 2021)
and predicted (red) landmarks.

• Second, it reveals that the synthesis process projects most of its error
during image generation onto the mouth corners more than the other
landmarks.

When I take the mean error for the left and right eyes and compare them to the
mean error of the left and right mouth corners of the visible data, the mouth
corners have a 25.0 % and 16.7% higher error for the baseline and expression sce-
narios respectively. For the StarGAN v2 synthesis landmarks, errors are 41.8%
and 23.9% higher for the baseline and expression scenarios. This same pattern
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holds true for the CUT data, confirming that the mouth corners are more diffi-
cult to accurately synthesize, especially for the baseline scenario. While some of
this error may be unavoidable during the synthesis process, I believe that much
of the error can be explained by the challenging nature of the thermal images
in the dataset.

In figure 4.19 I show that it is often quite difficult to visually detect exactly
where the mouth corners begin when compared to the visible data. I find the
case on the left side of figure 4.19 to be more common than the case on the right
side, where the mouth is more clearly defined. As table 4.11 confirms, instances
where the mouth is open are often easier to synthesize the mouth corners more
precisely than when the mouth is closed.

Figure 4.19: Comparison of mouth corner visibility from two subjects in the
ARL-VTF dataset. The mouth corners are easily seen in the visible images (top).
Row 3 is the thermal face, cropped and zoomed in on the mouth. The bottom
row is a contrast-enhanced look at the same mouth, further illustrating how
some mouth corners can be more easily seen than others.
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Table 4.11: ARL-VTF mean error by landmark for the baseline and expression
scenarios comparing visible faces to StarGAN v2 reference-guided and CUT
synthesized faces.

Scenario Left Eye Right Eye Left MC Right MC Nose Base
Visible Baseline 0.0211 0.0213 0.0274 0.0255 0.0249
Visible Expression 0.0205 0.0203 0.0240 0.0235 0.0230
StarGAN v2 Baseline 0.0391 0.0364 0.0531 0.0541 0.0444
StarGAN v2 Expression 0.0420 0.0365 0.0489 0.0485 0.0422
CUT Baseline 0.0361 0.0318 0.0507 0.0449 0.0319
CUT Expression 0.0387 0.0351 0.0439 0.0400 0.0327

I further examine the landmark detection errors with figure 4.20. After
checking images where the error was greater than the 0.08 failure threshold, I
observed a significant number of images, especially those with errors closest to
the maximum error from the dataset, were simply due to inaccurate ground
truth labels. I show in figure 4.20 a few samples of images where the synthesis
and landmark predictions appear to be very accurate, but the ground truth la-
bels are not. Even when I factor in the previously discussed errors, where small
inaccuracies during the synthesis process created mouth corners in slightly dif-
ferent positions than the locations in the ground truth thermal face, the ground
truth landmarks are still very inaccurate. After visually checking all images for
errors created by reference-guided synthesis in the baseline, pose, and expres-
sion scenarios, I estimate about 18% of all images with errors over the failure rate
threshold have ground truth coordinates that can easily be observed as wrong
for multiple landmarks per face. In these cases, the predicted landmarks are
shown to be highly accurate nearly 100% of the time.

The error analysis leads to a few interesting observations. First, the synthesis
of both methods nearly always produces a realistic looking face with the source
characteristics preserved to an acceptable degree for facial landmark detection.
Second, the HRNet landmark detector seems to work very well for nearly all
synthesized faces, even in cases where the synthesis process does not produce
a realistic looking face. As I learned through our visual inspection of errors
that were over the failure threshold, it is rare for the landmarks to be predicted
in the wrong location. The majority of images with the largest errors come
from incorrect ground truth labels, while the other errors are mostly due to the
slight offset between ground truth source characteristic positions and their syn-
thesized positions, most commonly the mouth corners. Aside from accurate
ground truth annotations, I believe the most important part of the landmark
detection process is during the training phase of the synthesis model, where the
cyclic loss is key to preserving the correct locations of the source characteristics
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Figure 4.20: Examples of detections from StarGAN v2 synthesized ARL-VTF
faces where error is over the 0.8 failure threshold. In many cases using our
method, the predictions (red) appear accurate, but calculated as over the thresh-
old because of incorrect ground truth annotations (green).

on the synthesized faces. I hypothesize that CUT was able to outperform Star-
GAN v2 in terms of landmark detection, even with less visually appealing faces,
because it was better able to preserve the locations of the eyes, nose, and mouth
corners. This may have been due to CUT’s patch-based approach to translation
or better convergence during training than that of StarGAN v2.

Comparison with State-of-the-Art

I implemented transfer learning to train two HRNet models for comparison
against current state-of-the-art results reported on the ARL-VTF dataset. When
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training HRNet, I found that the learning rate made the largest difference in
performance, and an ideal learning rate was found for each dataset and spectrum.
The first model attempts to transfer knowledge already learned in the visible
domain to the thermal domain by training with only thermal data. The second
model shows the ability of HRNet to learn the domain invariant features shared
between the visible and thermal models by training with the entire dataset, using
visible and thermal images and all four sequences of data. Results from these
models are only reported for the thermal portion of the test set. Results are
shown in table 4.12, comparing my two methods with the results reported in
D. Poster et al., 2021 and Peri et al., 2021b.

Table 4.12: ARL-VTF landmark evaluation results. Our models trained on
thermal and multispectral (thermal and visible) data both perform better than
previous methods.

Scenario Method Mean STD Median MAD Max Error AUC0.08 Failure Rate0.08

Baseline

DAN D. Poster et al., 2021 0.0326 0.0155 0.0283 0.0119 0.0857 0.5798 0.0080
Novel Faster-RCNNPeri et al., 2021b 0.0192 0.0069 0.0179 0.0037 0.0631 0.7606 0.0
Ours (Thermal) 0.0186 0.0059 0.0177 0.0032 0.0554 0.7672 0.0
Ours (Multispectral) 0.0191 0.0056 0.0186 0.0031 0.0535 0.7609 0.0

Expression

DAN D. Poster et al., 2021 0.0324 0.0157 0.0276 0.0122 0.1109 0.5946 0.0076
Novel Faster-RCNNPeri et al., 2021b 0.0212 0.0095 0.0190 0.0047 0.1106 0.7345 0.0010
Ours (Thermal) 0.0183 0.0052 0.0176 0.0031 0.0472 0.7715 0.0
Ours (Multispectral) 0.0189 0.0050 0.0183 0.0033 0.0440 0.7640 0.0

Pose

DAN D. Poster et al., 2021 0.1012 0.0562 0.0949 0.0472 0.4431 0.1692 0.5868
Novel Faster-RCNNPeri et al., 2021b 0.0316 0.0186 0.0265 0.0086 0.2145 0.6116 0.0290
Ours (Thermal) 0.0267 0.0140 0.0233 0.0061 0.1700 0.6691 0.0100
Ours (Multispectral) 0.0264 0.0124 0.0235 0.0058 0.1272 0.6704 0.0056

Both of my models achieved better performance across all reported metrics
when compared to the other methods discussed in the recent literature. Results
for the baseline and expression scenarios were very similar, and slightly better
performance overall can be observed in the model trained on multispectral data
for the pose scenario. Figure 4.21 shows CED curves comparing both of my
models against a baseline model trained only on the ARL-VTF visible data
using the baseline, expression, and pose scenarios. An average of all scenarios is
also shown in figure 4.21d.

Evaluation on MILAB-VTF(B)

Baseline landmark detection results are presented for the manually annotated
portion of the MILAB-VTF(B) dataset. I used transfer learning with a pre-
trained HRNet model that predicted 19 points from the WFLW dataset onto
the five landmarks of the ARL-VTF training set. Then, I train this model again
on MILAB-VTF(B)’s training set of seven landmarks before evaluating on the
test set. Training and testing was performed using the thermal and visible data
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(a) Baseline (b) Expression

(c) Pose (d) All

Figure 4.21: CED curves for landmark detection models trained on visible, thermal,
and multispectral data from the ARL-VTF dataset. Failure threshold is shown at 0.08
(red line). Sequences include baseline (a), expression (b), pose (c), and the mean of all
sequences (d).

from all five distances. Default hyperparameters used in J. Wang et al., 2020 were
used throughout the entire process. Results in table 4.13 indicate that MILAB-
VTF(B) is much more challenging than the ARL-VTF dataset for landmark
detection. While the indoor and 100-meter error is only slightly higher than
ARL-VTF, the 200-, 300-, and 400-meter distances quickly degrade in perfor-
mance, especially in terms of AUC and failure rate. I observed that the mean
results for the 100-meter data are actually better than the indoor scenario. This
is likely due to the high resolution and zoom ratio of the thermal and visible
cameras that were used during the creation of the outdoor portion of the dataset,
making the face images look similar in quality to that of the data captured in-
doors.
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Table 4.13: MILAB-VTF(B) baseline multispectral landmark evaluation.

Distance Mean STD Median MAD Max Error AUC0.08 Failure Rate0.08

Indoor 0.0265 0.0247 0.0222 0.0055 0.4666 0.6883 0.0125
100 Meter 0.0260 0.0167 0.0231 0.0061 0.2478 0.6840 0.0100
200 Meter 0.0322 0.0237 0.0283 0.0077 0.4235 0.6155 0.0200
300 Meter 0.0391 0.0321 0.0339 0.0104 0.5561 0.5393 0.0451
400 Meter 0.0472 0.0307 0.0401 0.0149 0.3512 0.4497 0.0990
All 0.0342 0.0274 0.0280 0.0088 0.5561 0.5955 0.0373

4.3 Feature Extraction and Matching

4.3.1 Race and Gender Classification for Cross-spectral Face
Recognition

Dataset and Metrics

I use the MILAB-VTF(B) dataset from section 1.2.4 for all experiments in this
section. I do not use any outdoor data, and instead focus only on the baseline
indoor images. All face images have been preprocessed for detected faces and
geometrically aligned using the ground truth eye locations. The training set was
composed of 2,770 images and the test set was composed of 138 images. Subjects
were separated into train and test sets using the MILAB-VTF(B) protocol. All
face recognition experiments contained one image in the gallery set and one
image in the probe set. As seen in figure 4.22, the train and test sets are balanced
in terms of gender, but highly imbalanced in terms of race, with White being
nearly 60% of the dataset, Black almost 11%, and Asian 28%. Because of the data
imbalance, a multitask learning model for gender and race classification was
selected due to the models ability to efficiently use data and reduce overfitting
Crawshaw, 2020.

I used standard classification and face recognition metrics for all experi-
ments. I report precision, recall, and F1 scores for gender and race classification.
I evaluated results for the verification and identification tasks using standard
metrics Phillips et al., 2011. I plot the ROC curve for verification metrics and
report the EER and AUC. For identification metrics I plot the Cumulative
Match Characteristics curve and report rank scores.
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Figure 4.22: Summary of the training and test sets from MILAB-VTF(B).
Classes are balanced for gender (left) and imbalanced for race (right).

Race and Gender Classification

It is clear from the results that classification of race and gender in MWIR is very
challenging. Race classification is especially difficult. However, in table 4.14,
results show that the multitask network learned to classify all visible spectrum
classes successfully, with the lowest F1 score of 90.9% for the Black race and a
high of 98.9% for the White class. These results reflect the imbalance of the
dataset, but show that overfitting was avoided.

Table 4.14: Classification results from a multitask network trained with visible
images.

Precision Recall F1 Count
Asian 0.941 0.941 0.941 34
Black 0.833 1.000 0.909 10
White 1.000 0.978 0.989 94
Female 0.939 0.975 0.957 80
Male 0.963 0.913 0.938 58

The MWIR results in tables 4.15 and 4.16 show the two best performing
multitask classification models. The table 4.15 model generalized better to the
gender classes and table 4.16 model generalized better to the race classes. The
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results on the Asian class are clearly the most difficult, with a high F1 score of
45.2% from the model reported in table 4.16 and a low F1 score of 30.7% from
the model reported in table 4.15.

Table 4.15: Classification results from the multitask network trained with
MWIR images that performed better on the gender classes.

Precision Recall F1
Asian 0.444 0.235 0.307
Black 1.000 0.700 0.823
White 0.761 0.914 0.830
Female 0.975 1.000 0.987
Male 1.000 0.965 0.982

Table 4.16: Classification results from the multitask network trained with
MWIR images that performed better on the race classes.

Precision Recall F1
Asian 0.500 0.412 0.452
Black 1.000 0.900 0.947
White 0.792 0.851 0.821
Female 0.897 0.975 0.934
Male 0.961 0.845 0.899

The results using the EfficientNet model also confirm that race classifica-
tion is very difficult in the MWIR band, with similar results to the multitask
networks shown in table 4.17. This table shows the results of training two Ef-
ficientNet models, one for the gender task and one for the race task. When
training a single model for all classes, results were poor and have not been in-
cluded in any of the reported results.

The predictions for race and gender are used for synthesizing face images to
perform face recognition in the next section. In the face recognition scenario
where the multitask network is used for gender and race prediction, the gender
classification branch from the model in table 4.15 is used for predicting gender
and the race classification branch from the model in table 4.16 is used for the
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Table 4.17: Classification results from the EfficientNet models trained with
MWIR images. One model shows results from the race classes, the other shows
results from the gender classes.

Precision Recall F1
Asian 0.500 0.382 0.433
Black 0.750 0.600 0.667
White 0.779 0.862 0.818
Female 0.962 0.950 0.956
Male 0.932 0.948 0.940

race predictions as these were the most accurate for each task. The EfficientNet
face recognition scenario also uses the two models reported in table 4.17.

Cross-spectral Face Recognition

Results for all face recognition scenarios using ArcFace and VGGFace are shown
in tables 4.18 and 4.19, respectively. The visible to visible matching scenarios for
both matchers are almost perfect, as expected. The thermal-to-visible scenario
illustrates the gap in performance when using thermal images instead of visible
images to match against a visible image gallery. Figures 4.23 and 4.24 show the
CMC and ROC curves for the thermal-to-visible matching, respectively. The
third row, where the same subject is used as the reference image for the synthesis
process, shows the current best performance that can be achieved with my meth-
ods. This is the ideal scenario where the correct identity, gender, and race are
used for synthesizing a visible face from a thermal face. The ArcFace matcher
performed well, with a 47.8% rank-1 accuracy and 95.6% rank-10 accuracy for
the identification task, and almost 90% AUC for the verification task. For an
unknown reason the VGG-Face matcher reported much lower identification
scores compared to ArcFace in this scenario.

The other scenarios, where race and gender are selected to be incorrect for
one or both classes, performance drops significantly. All scenarios where any
combination of race and gender are incorrect for the reference image before
synthesis show a large drop in performance when compared to the ideal sce-
nario where the same identity is used for synthesis and matching. From the
VGG-Face experiments, it’s clear that choosing the wrong race is the most con-
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sequential factor face recognition performance. The effect was less noticeable
using ArcFace.

Table 4.18: All ArcFace recognition results. V-V is the
visible to visible matching scenario. T-V is the thermal-
to-visible matching scenario.

Scenario Rank-1 Rank-10 AUC EER
V-V 100 100 99.73 2.92
T-V 0.00 20.29 52.32 46.57
Same Ref. 47.82 95.65 88.71 19.29
Random R-G 1.45 24.64 59.93 40.89
Wrong Gender 0.00 24.64 58.14 44.19
Wrong Race 0.00 23.19 56.02 46.14
EffNet 4.35 30.43 58.83 44.44
Multitask 7.25 33.33 60.45 42.06

Table 4.19: All VGG-Face recognition results. V-V is the
visible to visible matching scenario. T-V is the thermal-
to-visible matching scenario.

Scenario Rank-1 Rank-10 AUC EER
V-V 100 100 100 0
T-V 4.34 23.19 55.77 45.39
Same Ref. 21.73 59.42 85.11 23.78
Random R-G 1.45 24.64 62.75 41.13
Wrong Gender 7.25 42.03 74.07 37.14
Wrong Race 5.79 21.74 59.15 41.48
EffNet 8.69 36.23 69.24 34.77
Multitask 7.25 39.13 68.59 37.54

When I use either of my trained race and gender classifiers to choose the
reference image for synthesis, there is a significant boost in identification and
verification performance. In many cases, the multitask network was the more
accurate classifier and led to better recognition performance overall. Figures
4.25 and 4.26 show the identification and verification performance, respectively.
Although there remains a gap between the proposed method and the ideal sce-
nario where the reference image is the same identity as the face being matched,
knowing the correct demographic information of the MWIR face image is help-
ful for improving cross-spectral face recognition performance.
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Figure 4.23: Identification results from the CMC curve
matching thermal faces to visible faces.

Figure 4.24: Verification results from the ROC curve
matching thermal faces to visible faces.
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Figure 4.25: Identification results from the CMC curve
using the multitask classifier to choose the reference im-
age when matching synthesized faces to visible faces.

Figure 4.26: Verification results from the ROC curve
using the multitask classifier to choose the reference im-
age when matching synthesized faces to visible faces.
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4.4 Other Applications

4.4.1 Firearm Detection

Data

Table 4.20 contains an overview of the dataset that was collected in this work,
showing the number of collected frames and the number of frames used for all
experiments after balancing the dataset and filtering our very poor quality data.
In figure 4.27, there is also a summary of the video resolutions, which vary from
360p to 1080p.

Figure 4.27: Count of the different video resolutions in the dataset.

Although over 11,000 images were collected and labeled, not all of them
could be used for the experiments for two reasons. First, a large portion of the
labeled data was determined to be very challenging and proved detrimental to
the training process due to harsh lighting or shadows, blur from videos captured
with low resolution or frame rate, very small class instances (mostly identified
in the handgun class), and occlusion. Second, the dataset was imbalanced in
terms of the number of usable images per class from each video. Some videos
had less than 15 images where a firearm is present, while others had hundreds.
In order to balance the final dataset that was uded in all experiments, I take no
more than 55 images from videos containing handguns and no more than 150
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images from videos containing long guns. This yielded a final dataset with 3,210
handgun images and 2,993 long gun images, totaling 6,203.

Table 4.20: An overview of our dataset showing the number of collected frames
and the number of frames used for all experiments after balancing the dataset
and filtering out very poor quality data.

# Videos Handgun Long Gun Total
90 5,773 5,879 11,652

# of Samples Used for Experiments
90 3,210 2,993 6,203

Detection Model and Metrics

Three sets of experiments are performed in this work. The first two experiments
evaluated the data augmentation techniques that resulted in better object de-
tection performance, while the last experiment optimizes the hyperparameters
of the final model using those techniques. For all experiments, and after experi-
menting with other architectures, I chose a Faster R-CNN architecture using
the ResNet-50 base network, previously trained on the COCO dataset. Using
transfer learning, I trained this model to detect the two firearm classes. I report
precision and recall at a 0.5 intersection over union (IoU) threshold, and the
mean average precision mAP0.5:.0.95, where mAP is averaged over 10 IoU thresh-
olds. Additionally, I report F1 scores for each of the two classes and plot the
true detection rate (recall) vs the false alarm rate, at different IoU thresholds.
All reported results use a confidence score threshold of 0.5.

Selecting Augmentation Techniques

Due to the large number of experiments needed to assess all 18 data augmen-
tations, I split the dataset into three non-overlapping folds with 90% of the
data used for training and 10% for testing. I used 3-fold cross-validation in the
first two experiments to avoid overfitting and also to train all models in a rea-
sonable amount of time. The data for each fold in every experiment was se-
lected randomly and avoided overlapping samples in the test folds. In the first
experiment, I trained a baseline model with the Faster R-CNN architecture
that was previously trained on the COCO dataset. Using that model’s default
hyperparameters, I retrained it on my data without any data augmentations.
The resulting model was used as the baseline. The baseline model was trained
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using stochastic gradient descent with a learning rate of 0.0001, momentum
value of 0.9, and 8 epochs. Then, I trained the model using cross-validation
for each of the eighteen data augmentations in order to identify which meth-
ods improved or impaired firearm detection performance. Once this evaluation
was completed, I identified the best 5 performing augmentations. I used these
for the next experiments to retrain the Faster R-CNN on all combinations of
these 5 augmentations, totaling 26 different trained models. I use only 5 aug-
mentations for the augmentation experiments because of time constraints. If 6
augmentations had been chosen, this decision would have resulted in 57 combi-
nations. Once completed, I choose the augmentation combination that yielded
the highest firearm detection performance and used it in final experiment.

Hyperparameter Optimization and Proposed Model

For this experiment I performed hyperparameter optimization and empirically
evaluated the impact of different optimization algorithms on firearm detection
performance. First, I used the most accurate object detection model that was
determined from the previous experiment and found the optimal hyperparam-
eters. This process resulted in the final proposed object detection model. Hy-
perparameter tuning was achieved by varying the epochs and learning rate of
the model and evaluating three different optimization algorithms; (1) stochastic
gradient descent with momentum Qian, 1999, (2) RMSprop Tieleman and Hin-
ton, 2012, and (3) ADAM Kingma and Ba, 2014. Once the optimization training
was completed using 8 epochs, I selected the best optimization algorithm and
tested another range of learning rates. I repeated the previous training strategy
except I used a smaller range of learning rates with 10-fold cross-validation to
complete the optimization process.

Augmentation Experiments

From the 18 augmentation techniques I assessed, nine were found to improve
performance and nine decreased or had little effect on performance in terms of
mean average precision, precision, recall, and F1 scores. Of those that improved
performance, I chose random pixel value scale, image scale, brightness, hue, and
saturation changes as techniques to evaluate further. I trained models for all
combinations of these five augmentation techniques to determine which of
them should be used for optimizing and training the final model. After com-
paring the results, I chose a combination of four out of the five augmentations.
The random pixel scale technique was not used in the final optimization exper-
iments, although there were several other combinations that had comparable
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scores to the one I chose. These scores were compared against the baseline model
using no augmentations in table 4.21. When compared to the baseline, there
is an almost 13% increase in mAP0.5:.0.95. The detection accuracy of handguns
increased significantly, especially the precision, recall, and F1 scores. The detec-
tion accuracy of long guns also improved, but marginally when compared to
the handgun class. This is not surprising because, as I empirically determined,
the long gun class has image samples that are larger in terms of spatial resolu-
tion and are often much better in terms of image quality, resulting in more
discriminating features when compared to the image samples of the handgun
class.

Table 4.21: Results of our baseline detection model that used no augmentation
techniques compared with optimized models that used augmentations. The
performance increase of our best model in terms of mAP0.5:.0.95, precision, recall,
and F1 score are provided for each class in the last column. All metrics use an IoU
of 0.5 except for mAP0.5:.0.95. Model 1 uses pixel scale and hue augmentations.
Model 2 uses brightness, hue, and saturation.

Detection Results
Metric Baseline Model 1 Model 2 Final % Change
mAP0.5:.0.95 0.541 0.554 0.565 0.672 + 13.1

Handguns
Precision 0.820 0.863 0.890 0.939 + 11.9
Recall 0.836 0.813 0.793 0.964 + 12.8
F1 0.828 0.887 0.889 0.951 + 12.3

Long Guns
Precision 0.873 0.893 0.877 0.952 + 7.9
Recall 0.923 0.920 0.917 0.946 + 2.3
F1 0.897 0.906 0.896 0.949 + 5.2

Final Optimization Experiments

After determining the best combination of augmentation techniques, I jointly
assess the learning rate and optimization method for three different algorithms,
stochastic gradient descent with momentum, ADAM, and RMSprop. I found
RMSprop to yield the highest performance in terms of detection accuracy. Af-
ter training again on a smaller range of learning rates that performed best, the
final model was trained using RMSprop with a learning rate of 0.0008 and a
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momentum value of 0.9 for a total of 16 epochs. Figure 4.28 plots the true de-
tection and false alarm rates for the handgun and long gun classes using an IoU
of 0.5 and 0.9.

Acceptance Criteria

This work required the creation of a new dataset. With the creation of this
dataset, an acceptance criteria of target metrics was set at the beginning of this
work by the project sponsor. This criteria included:

• Expected frame rate for processing detections between 7-15 frames per
second (fps).

• 80% or better True Detection Rate at 1% False Alarm (False Match) Rate
for small arm detection under direct sunlight illumination or artificial
spectrum illumination at distances of up to 15 meters for handguns and
up to 75 meters for long guns.

The expected frame rate criteria was achieved with a reported rate of 10 fps
using an Nvidia Titan Xp with 12 GB of memory and a 1.42GHz clock speed.
For the detection criteria, a True Detection Rate of 92.16% at 1% False alarm rate
was reported for the handgun class and a True Detection Rate of 93.41% at 1%
False alarm rate was reported for the long gun class. Each of these metrics were
well above the expected target metric of 80%. All detections were evaluated with
the Intersection over Union (IoU) metric set at 0.5, a common threshold for a
positive detection. The IoU is an evaluation metric where the area of overlap
between the predicted and ground truth bounding boxes is divided by the area
of union of the predicted and ground truth bounding boxes. The higher the
IoU threshold is set, the more precise the predicted bounding boxes are for a
positive detection. I also evaluated the weapon detector at an IoU threshold
of 0.9, and observed detection rates of 92.15% and 92.7% for the hand gun and
long gun classes, respectively.

Summary of Results

The plots at each of the IoU thresholds are very similar, meaning the bound-
ing box predictions in most cases remain very accurate as the IoU threshold
increases, all while maintaining a similar detection and false alarm rate. This
performance can partially be attributed to the nature of the objects that are be-
ing detecting. In most cases, the weapon is a very small portion of the image, so
it is very likely that any weapons that can be correctly detected at an IoU of 0.5
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(a) IoU = 0.5 (b) IoU = 0.9

(c) IoU = 0.5 (d) IoU = 0.9

Figure 4.28: True detection vs false alarm rates for handguns (top row) and long
guns (bottom row) using 0.5 and 0.9 IoU thresholds.

will still be detected at a much higher threshold. This is due to the margin for er-
ror when predicting bounding boxes for small objects being very low compared
to larger objects. Finally, obtaining a low false alarm rate is critical in weapon
detection systems because these systems will often be monitored by a human
who may ignore weapon alarms if false detections become common. While
the current false alarm rate is acceptable for this work, further improvement is
needed in order to operate the model in a real-world scenario (at a full frame
rate). To visualize how challenging this dataset is, figures 4.29 and 4.30 show
examples of successful and unsuccessful firearm detection.
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Figure 4.29: Examples of successful (top) and unsuccessful (bottom) detection
of long guns.

Figure 4.30: Examples of successful (top) and unsuccessful (bottom) detection
of hand guns.
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Chapter 5

Conclusion

5.1 Acquisition and Preprocessing

5.1.1 Facial Attribute Analysis: Mugshot Data
I investigated the advantages of rapid categorization of factors that impact face
recognition performance when processing large scale face datasets collected un-
der constrained and unconstrained conditions. To perform the experiments I
used three databases, Good Quality Face Dataset, Multiple Encounter Dataset
II, and a combination of the two. I proposed a software toolkit that uses multi-
ple trained classifiers to classify face images as frontal or non-frontal, eyes open
or closed, and presence or absence of glasses. To perform this classification I
trained a variety of algorithms with 10-fold cross-validation, including SVMs
using LBP and HOG features as well as two convolutional neural networks.

Several scenarios were trained for each factor, testing 23 different conven-
tional models with a number of kernel functions in order to select the model
and kernel function combination that best classified each factor. CNNs were
optimized to find the ideal parameters for training and testing. Experimental
results show that the models were able to classify each factor in the most chal-
lenging database at least 90% of the time, and over 99% for all factors in DB3
after implementing score level fusion. The most challenging factor was frontal
and non-frontal faces from DB2. This is likely due to the subjective nature of
the labeling process of these face images as either frontal or non-frontal because
many of them were very close to being in either class. The same can be said of
the eyes open or closed data, where a majority of the misclassified samples were
eyes that were very slightly open. When combined with variations in expression,
lighting, distance, and background, many of these samples proved to be quite
challenging to classify correctly.
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Based on the results I conclude that a toolkit which almost simultaneously
classifies several well-known factors that affect facial recognition systems can be
very beneficial to law enforcement and forensic operators at identifying individ-
uals in the gallery. The use of hand crafted features with well-known models
such as SVMs and popular CNNs can quickly find and categorize well over 90%
of face images in a large database correctly, raising the overall quality of images
to match against the gallery by excluding or grouping poor quality faces, or even
enhancing them. Future improvement for this work could include additional
factors that affect FR performance.

5.1.2 Facial Attribute Analysis: Cellphone Data
In this work I investigated the strengths and weaknesses of multiple binary facial
attribute classifiers on diverse datasets with both conventional and deep learn-
ing models. I used classifiers previously trained on a database that had no images
captured with a mobile device and assessed them on a database with scenarios
that were both quite similar (indoors) and very different (outdoors) using an
iPhone 5S. By retraining on only the mobile phone database and a combination
of the two databases, I was able to dramatically improve classification perfor-
mance and identify weaknesses. While frontal face and glasses classification
were well over 95% accurate in many scenarios, the eyes open or closed classifiers
were nearly 10% worse. Most of these misclassifications were due to the extreme
illumination conditions found on many of the outdoor samples that resulted
in a significant number of the subjects squinting their eyes into a barely open
position. Despite these weaknesses, fast and accurate facial attribute estimation
on both traditional camera and mobile phone images can be an essential step
for the improvement of many areas of research, including face recognition and
continuous active authentication on mobile devices. For future work, these
methods could be scaled to include additional data captured from other mobile
devices to asses the impact of different mobile sensors. I could also collect and
label more data and train new classifiers to include any number of additional
facial attributes that can help improve face recognition. Finally, improvements
to the eye attribute is needed. This attribute would benefit from several tech-
niques, including further image processing steps to correct illumination and
utilizing fusion with multiple classifiers.

5.1.3 Facial Attribute Analysis: Masked Data
In this work, I assessed nine CNN architectures for classification of face mask
compliance. A dataset of 100 subjects was collected and annotated for this task.
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All subjects were wearing a mask in a compliant state with the mask covering
their nose and mouth, and a non-compliant state with no mask on. Additionally,
the data was augmented with synthetic masks where the mask is either sitting
below the nose or below the mouth to account for common instances when
a mask is worn but not in compliance with the current CDC mask wearing
guidelines. The synthetic masks that were applied to visible images differ in
shape, color, and pattern to introduce as much variance as possible into the
dataset.

After assessing all classification models, I observed that the thermal band
offers a more accurate option for mask compliance classification, classifying
100% of all faces correctly except for the AlexNet classifier. The models trained
on the visible data are nearly as good, with accuracy well over 99% for all models.
Additionally, the SqueezeNet visible model, even though it was trained on a
small high-quality dataset, was able to achieve accuracy on the FMLD test set
that is only 9% less accurate than the same model that was trained on FMLD in
Batagelj et al., 2021.

Future work could involve the creation of a larger and more challenging
dataset, especially the thermal portion. This may include more subjects with off-
pose samples instead of only full-frontal samples. Additionally, data captured
outdoors and at longer distances would also benefit future research, as well as
assessing face detection and recognition with various levels of mask compliance.

5.1.4 MultiSpectral Face Dataset Collection
The MILAB-VTF(B) dataset is a multi-distance, unsynchronized, paired thermal-
visible face dataset that was collected using the latest MWIR imaging sensors.
The dataset is diverse with respect to ethnicity, age, and gender. It consists of
400 identities that were separated into training and evaluation sets that follow
standard face verification protocols. Algorithmically and manually annotated
face bounding boxes and keypoints are available for evaluation. In the future, a
curated version will become publicly available, assisting the research community
by further closing the gap of MWIR-Visible datasets availability. .

5.2 Keypoint Detection

5.2.1 Facial Landmark Detection
In this work, I presented a thermal-to-visible face synthesis pipeline for accu-
rate detection of facial landmarks. An extensive evaluation of two common
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synthesis methods, latent-guided and reference-guided, was conducted using
StarGAN v2 to identify the preferred approach for future synthesis experiments.
I also implemented the CUT synthesis method for further comparison. Land-
mark detection results on the synthesized data were reported using the HRNet
facial landmark detector, previously trained on visible face data. I also com-
pared the synthesis performance against HRNet models that were fine-tuned
on thermal and multispectral datasets. I found that synthesis-based approaches
can work very well and yield satisfactory results. However, recently developed
synthesis models such as StarGAN v2 are still not able to outperform the tra-
ditional technique of fine-tuning previously trained visible models on thermal
data, provided that sufficient amounts of data exist. The results on the ARL-
VTF baseline dataset showed that the lowest synthesis model error achieved, i.e.,
0.0391, is still considerably higher than the HRNet model trained solely on ther-
mal data that yielded and overall error of 0.0186, an improvement of 110%. The
fine-tuned models also achieved state-of-the-art landmark detection results on
the ARL-VTF dataset when compared to other methods discussed in the open
literature, and a new baseline for the MILAB-VTF(B) dataset at all distances.

An important point for consideration moving forward is that the latent-
guided and reference-guided synthesis methods are suitable for different use
cases. Reference-guided synthesis produced the best results, but for real-world
applications this method has fewer use cases, as a reference image that is the
same or similar to the face that you wish to synthesize may be required. This is
especially true when there will be additional processes after landmark detection,
such as face recognition. Latent-guided synthesis, however, is a very realistic use
case because it synthesizes any face without the requirement of a reference image.
Future work could include methods to improve the face synthesis process for
the purpose of facial landmark detection and face verification using the ARL-
VTF and MILAB-VTF(B) datasets.

5.3 Feature Extraction and Matching

5.3.1 Race and Gender Classification for Cross-spectral Face
Recognition

In this work I investigated race and gender classification of MWIR images for
thermal-to-visible reference-guided cross-spectral face recognition. I trained
two networks for race and gender classification. The first was EfficientNet, an
accurate and efficient network that reports state-of-the-art results on common
benchmark datasets, and a multitask network based on the VGG architecture.
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Both networks reported strong performance in terms of precision, recall, and
F1 scores for gender classification, with F1 scores from the multitask network
nearing 99%. Race classification was much more challenging, especially the
Asian class where results never surpassed 50% for any of the reported metrics.
The White class was the easiest to classify, with a high F1 score of 83%. Face
recognition results were improved when using the race and gender classifiers I
trained to select the reference image that is used during the synthesis process
when compared to selecting a random race or gender. The identification sce-
nario proved to be more challenging that matching in the verification scenario
for all experiments. When using the trained classifiers for guiding the synthesis
process, a high AUC score of 69.24% was reported using the EfficientNet model
and VGG-Face, while a the best rank-1 and rank-10 identification performance
was observed using the multitask network and VGG-Face with scores of 7.25%
and 39.13% respectively. It is clear that verification is the only viable method
of cross-spectral face recognition using synthesized face images at present, as
seen by the poor performance in the identification experiments. The challeng-
ing nature of the identification task in cross-spectral face recognition is also
likely why I could find no other papers reporting identification results in simi-
lar works. I believe that reporting these initial baseline identification results on
the MILAB-VTF(B) dataset is an important starting point for future research
and will encourage others to report their identification results that improve
upon the results presented here.

5.4 Other Applications

5.4.1 Firearm Detection
In this work I evaluated which data augmentation techniques improve or de-
crease object detection performance on a novel firearm database using only
real-world surveillance footage. I detected two classes of firearms, namely hand-
guns and long guns. I used the same Faster R-CNN ResNet-50 architecture for
all experiments and explored several augmentation techniques. Next, I found
optimal learning rates and optimization algorithms to create an accurate object
detection model for surveillance footage captured in a wide array of scenarios
and resolutions. The experiments show detection performance improvement
in all reported metrics by as much as 13% in some scenarios when compared to
the baseline. The trained model also remains very accurate as the IoU threshold
is increased up to a threshold of 0.9 and is robust to many challenging factors,
including illumination and pose.
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Although the proposed method works well, there are limitations with the
database and training methods. Most importantly, the results and selected aug-
mentations are likely very dependent upon the database. The model will likely
perform very poorly on data not captured in a surveillance or CCTV setting.
Next, more videos are needed to increase the variety of weapons and scenarios
in the database. Challenging factors like occlusion, low resolution, and pose
require additional data for more accurate detections. More data will also lead
to better training methods and allow for train and test sets to be split by video
instead of the current method, in which I sample images randomly from each
video to create train and test sets. Having a test set with samples from videos
that have not been trained on will result in a better understanding of how well
the detection system performs on new data. Additionally, since someone using
a firearm is a rare occurrence, assessment of how many false positives are trig-
gered by the model in surveillance videos with no weapons present will provide
a better understanding of model precision.

Future work could include assessing several different state-of-the-art archi-
tectures, including YOLO-based, SSD, and other recently developed detection
models. Augmentation could be further explored using generative models. An
analysis of selecting bounding box anchors prior to training is also an impor-
tant factor to explore. Finally, an assessment of how video resolution affects
performance, especially on the handgun class where instances are often very
small, would be very valuable for future work.
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