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ABSTRACT 

Extreme weather variations, chronic food insecurity, and lack of coping mechanisms 

place children in South Asia at a high risk. While there is a large body of literature documenting 

the effect of precipitation extremes on child health in this region, there is a lack of research work 

focusing on temperature- related extremities and analyzing differential vulnerabilities among 

various socio-demographic groups. This study examines the effect of climate variability on birth 

and early childhood health parameters by combining high-resolution climate data with child 

anthropometry and demographic data from four South Asian countries (India, Pakistan, 

Bangladesh, and Nepal). We find temperature and precipitation anomalies to be strong negative 

predictors of child health outcomes with their effects concentrated mostly in-utero period. We 

further expand on our findings by looking at how these effects differ across groups based on 

economic, gender and social vulnerabilities. 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

The manifestation of climate change in the form of changing variation in global 

temperature and precipitation has been well recognized in the past few decades and has sparked 

the discussion of how climate change affects human health (UNICEF, 2014). A report of the 

Intergovernmental Panel on Climate Change (IPCC) published in 2007 identified the effect of 

climate variation on food security and undernutrition of developing countries as the largest single 

most detrimental effects of climate variation on health (Hales & Akhtar, 2007). Those suffering 

the greatest from climate variations are the poorest and most vulnerable sub-groups of world 

population like pregnant women and children belonging to the marginalized communities because 

of their limited adaptive capacity, higher dependence on climate sensitive resources and direct 

exposure to climate change effects. However the extent of these effects is still unclear (WFO, 

2009). With further projections of disruptions in food supply systems due to worldwide changes 

in climate patterns worldwide, the vulnerability of at-risk populations to the effect of climate 

change is a critical research topic (Thiede, 2019; McMahon & Gray, 2021).  

This study investigates the level to which exposure to climate variation affects early 

childhood health parameters of children from four developing South Asian countries. Despite of 

various previous studies, there are many identified research gaps which have not been fully 

addressed fully. First, most of these studies lack a specific focus on child group populations; they 

study relationship between climate and human health while including children as a subgroup of 

analysis. Second only, few of these articles try to dig deeper by differentiating the analysis based 
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on various vulnerability categories like sex, age, caste, and others. Third, lack of quantitative 

research restricts a comprehensive understanding of the climate-child health relationships 

(Sheffield & Landrigan, 2011). Finally, most of these studies are focused only on high-income 

countries in Europe and North America even though the effect on children varies largely based on 

the prevailing inequalities both within and between countries (Helldén et al., 2021). Disadvantaged 

children of developing countries suffer from a disproportionately higher unjust burden of climate 

change impacts which further exacerbates the inequalities in income and health status (Stephenson 

et al., 2010). Mendelsohn et al. (2006) links this vulnerability to the location of the poor countries, 

followed by the reasoning that these countries lying in low latitudes already start with higher 

temperatures meaning more increase in temperature adds on to the effects seen in climate-sensitive 

economic sectors.  

Coupled with the insufficiency in technology, wealth, and overall mitigation strategies 

studies on the effect of climate change on human health needs to be focused on low-income 

developing countries of the world, however there is limited knowledge and research on identifying 

which regions suffers the most from the effect of climate change (Rylander et al., 2013).  

Our study deviates from the previous literatures and makes the following contributions. 

First, we provide a comprehensive summary of climate and child health relationship by quantifying 

the impact of temperature and precipitation variation, measured as deviations from locations 

specific historic norms, on both childbirth weight and child nutritional indicators. Previous 

literature focus only on either one of the climate variables or one of the child health parameters. 

Second, identification of vulnerable periods in first 1000 days of child’s life to such exogenous 

(assumed) effects of climate variation is done. To do so, we divide these 1000 days of exposure 
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into different time like prenatal (in-utero) period1, first year and second year of child life so that 

we can identify the period of highest vulnerability. Third, we test of differential level of 

vulnerability among various socio-demographic groups to identify populations at highest risk of 

exposure. Finally, we add to the scarce literature on climate vulnerability and health in the South 

Asian region and identify potential mitigating measures that affect this vulnerability. 

To explore the relationship between climate variation and child health, we first link the 

socio-demographic and health data of each individual child, obtained from Demographic and 

Health Survey (DHS), with their location specific climate data, taken from publicly available 

Climate Research Unit Time Series (CRU TS) data. DHS surveys provide rich information not 

only on our main dependent variables: childbirth weight and child anthropometric measures (like 

height-for-age, weight-for-height, and weight-for-age) but also specify socio-demographic 

variables which are essential to be used as controls. Based on the Global Positing System (GPS) 

information we can identify the geographic locations (latitude and longitude) of each survey 

clusters which is then linked with its respective monthly climate data from CRU TS. Then, based 

on child’s birth date and detailed spatial information, we construct our main explanatory variables 

(i.e., deviations of time specific climate variables from long-run average of total climate variables) 

for each individual child clusters2. 

Using exogenous variation in temperature or precipitation deviation from long term local 

average to which the child was exposed, we reach the following findings. First, both temperature 

and precipitation variability are important predictors of early child health outcomes, with 

precipitation anomalies displaying comparatively stronger negative effects in case of nutritional 

 
1 In case of birth weight, we further divide the prenatal period into four different trimesters of pregnancy. 
2 The word “time-specific” here refers to what the variable of interest is, for example if we are looking at prenatal 
temperature anomalies then our calculation time is 9 months, similarly if we are looking at anomalies in first year of 
child’s life then our calculation time is 12 months. 
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indicators while temperature variability doing so in case of birthweight measures. Second, in-utero 

exposure to these climate anomalies seem to significantly affect child health parameters as 

compared to exposure during other first 1000 days of child’s life. Third, socio-demographic 

characteristics also play a highly significant role on either buffering the child against such shocks 

or adding on to the pre-existing vulnerabilities of the economically and socially disadvantaged 

groups. Finally, we find that mitigative measures like basic awareness on cleanliness and hygiene, 

access to improved toilet and drinking water, promoting maternal education and development of 

human capital can help mitigate the detrimental impacts of climate variation on child health 

outcomes in South Asia region. 
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The remainder of the thesis is organized as follows: Chapter 2 provides a literature 

review. Chapter 3 describes our data source and summary statistics, following this Chapter 4 

explains the empirical methods. Chapter 5, then reports the estimated result which is discussed in 

more detail in Chapter 6. Finally, Chapter 7 provides a conclusion of the thesis along with 

limitations and recommendation for future research.  
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CHAPTER 2 

LITERATURE 

2.1. Climate variability and vulnerability of South Asia 

The climate of South Asia can be characterized by strong seasonal variations, high 

temperature and humidity, and seasonal monsoon with heavy precipitation (Janes et al., 2019) 

which can also be seen in the graphs plotted in figure 1 and 2. A recent increase in occurrence of 

extreme weather events in different parts of this region is now seen as an evidence of climate 

change. For example, during the period of 1990 to 2010 Afghanistan experienced the highest 

temperature increase of 0.270C and Maldives the smallest temperature increase of 0.070C (Tiwari 

et al., 2022). Similarly, from 2005 to 2016, the region experienced a total of 481 climatic disasters 

in the form of landslides, droughts, wildfires, cyclone, and floods which are also projected to 

increase (Tiwari et al., 2022). Researchers have reached a common consensus of projected increase 

in temperature and heavy intense annual precipitation across various South Asian countries by the 

end of 21st century (Kumar et al., 2013; Philip et al., 2019).  

Despite an improvement in economic conditions, many countries in South Asia still 

report high rate of child and maternal mortality (Alimohamadi et al., 2019). South Asia is home to 

over 600 million children, and among them it bears the burden of 2/3rd of the global malnutrition 

and 34% of the global child death with an estimated half of the global maternal deaths (Bhutta et 

al., 2004). Global stunting rates decreased by more than 40% since the past two decades, but still 

almost 37% of South Asian children continue to suffer from stunting with higher increase rates 

among poor rural children (UNICEF, 2016). Malnutrition is a major public health issue in South 
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Asia leading to cases of wasting, underweight and stunting, all of which have been recognized to 

cause serious economic distress among at-risk populations (Akhtar, 2016).   Similarly, South Asia 

also reports 21-28%, the highest rate of low-birth-weight incidences (i.e., birthweight less than 

2500g) in the world (UN, 2009).  

 
Figure 1. Annual average temperature variation in South Asia 

Source: Self constructed from the CRU TS database 
 

Coupled with an unprecedented rate of natural resource degradation, high rate of 

population increases, and continuing growth in levels of food insecurity and poverty, these effects 

of climate change make South Asia a highly vulnerable region  (Sivakumar & Stefanski, 2011). 

By 2050, projections have shown an increase in moderate stunting of 1-29% along with an 

estimated increase in rate of severe stunting in South Asia by 62% because of climate change 

(Llyod et al., 2011). UNICEF (2021) published its first ever child focused “Children’s Climate 

Risk Index (CCRI)” where it ranked four South Asian countries namely, India, Pakistan, 
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Afghanistan, and Bangladesh at an extremely high risk of climate crisis impacts with calls for 

immediate investment in education, nutrition, and child health.  

 
Figure 2. Annual average precipitation variation in South Asia 

Source: Self constructed from the CRU TS database 
 
Figure 3 shown below is a state-wise representation of the low birth and stunting 

prevalence in four countries of South Asia- India, Pakistan, Bangladesh, and Nepal. This figure 

was plotted from the child health data obtained from DHS for the most recent survey years of each 

country. Color coding is done to identify states with highest rate of child health depravities. It is 

evident from the figure, that most of these states display high rate of child health depravity in terms 

of percentage of children stunted (as high as 31.57%) and born with low birthweight (as high as 

26.66%). 
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Figure 3. Study area plotted with low-birth-weight indicator (left) and stunting indicator (right) 

Source: Self constructed from the DHS database 
 

2.2.Relationship between climate variation and child health 

A rich body of literature has already established that climate change acts through various 

pathways to negatively affect the health and well-being of children (Ebi & Paulson, 2007; O’Neill 

& Ebi, 2009; Seal & Vasudevan, 2011; Philipsborn & Chan, 2018; Helldén et al., 2021). In general, 

studies agree that children are more exposed to the consequences of climate change because of 

their developing physiology and the probability of long-term exposure (Bunyavanich et al., 2003; 

Patz et al., 2007; Helldén et al., 2021). Bust and Pedro (2022) identify the first 1000 days of child’s 

life as the most vulnerable period of exposure in South Africa where the effects are manifested 

directly or indirectly through mechanisms like heat stress, extreme weather events, food insecurity 

or mass migration (Patz et al., 2005; Kim et al., 2014).  

Generally, three pathways are commonly explored when trying to understand the climate-

child health relationship: heat stress, infectious disease transmission and agricultural livelihood 
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(Randell et al., 2020; Bratti et al., 2021). Prolonged exposure to high temperatures causes heat 

stress that has proven to lead to significant impairments in fetal development (Ravanelli et al., 

2019). Also, most of the developing countries depend on favorable temperature and rainfall 

conditions to improve food security and household income through abundant livestock and crop 

harvest (Kotir, 2011). Finally, adverse weather conditions also exacerbate cases of water borne 

diarrheal diseases or vector-borne malarial diseases considered highly detrimental to the health of 

young children and pregnant mothers (McMicheal, 2015).  

These above effects can be described as either direct or indirect. Direct effects act through 

pathways like heatwaves, flooding and droughts. Heatwaves have been reported to evidently 

increase the risk of child mortality, more strongly among infants and older age populations in low- 

or middle-income households (Nathalie et al., 2015; Philipsborn & Chan, 2018). Similar effect has 

been seen because of flooding or extreme precipitation where the damages get further amplified 

over long term because of nutritional insecurity and spread of communicable diseases (Zhang et 

al., 2019). Similarly, in case of indirect effects, studies report alterations in distributions of vectors 

and pathogen transmissions because of climate change extracting heavy toll on children (UNICEF, 

2008). Climate change in the form of frequent and extreme weather events has also been linked 

with increase in mental health illness with higher level of emotional distress among young people 

(Ojala, 2012). Recent literature has now focused on studying the effect of in-utero and early life 

exposure to climate change. Empirical studies have shown detrimental effects of climate change 

on child nutrition, though the interaction between climate change and under/overnutrition is less 

understood and complex (Swinburn et al., 2019). Likewise, studies have also associated 

temperature change during pregnancy with preterm birth, and low precipitation and extreme 
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temperature with cases of lower birthweight and pregnancy complications (Carolan-Olah & 

Frankowska, 2014; Ngo & Horton, 2016).  

Several climate and child health relationships in low-income country context have been 

examined in the previous literature, however most of them tend to focus specifically on Sub-

Saharan African countries (SSA). The literature on climate change and child anthropometrics is 

growing but at a relatively small rate (Freudenreich et al., 2022) and since, different countries face 

different levels of climate exposures and employ country-specific mitigation measures it makes 

sense to focus on relatively new study regions like South Asia. 

There are previous studies in SSA,  Thiede and Strube (2020) studied the effect of climate 

variability on child nutrition in 18 SSA countries. Using linear regression models, the authors 

reported positive relationship between child weight reduction and high temperature and low 

precipitation anomalies, and high temperatures to increase the risk of wasting. Davenport et al. 

(2017) conducted an extensive study of child health outcomes in SSA by studying the relationship 

between child malnutrition and low birth weight with projected scenarios of climate change 

differing between various socio-economic development conditions revealing possible mitigation 

of the negative effect of drying and warming on child stunting through increased access to 

electricity and educational level of mother. The authors also reported relatively small changes in 

birth weights because of projected warming and drying scenarios which could not be mitigated by 

similar positive trends in socio-economic developments. 

Grace et al. (2015) studied the relationship between temperature and precipitation on 

birth weight outcomes in 19 African countries by matching birth weight and socio-demographic 

data from DHS surveys from 1986 to 2010 with gridded climate dataset from CRU time series. 

The results suggested that decreasing precipitation and an increase in number of hot days positively 
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correlated with lower birth weight and increase the probability of low birth weight (LBW). The 

authors also allowed the observed effect of weather variables to vary across different livelihood 

zones to test different level of vulnerability among population with different covariates. Finally, 

the authors conclude increasing women’s education and household electricity access as possible 

control mechanisms. Baker and Anttila-Hughes (2020) quantified the relationship between 

increase in ambient temperature and child nutrition by combining anthropometric data for 192,000 

children from 30 African countries with historical temperature data. The authors first established 

strong negative relationship between temperature increase in months leading to survey, year 

leading to survey and child’s lifetime with decline in acute malnutrition measures. Then, predicted 

an increase (as high as 37%) in prevalence of wasting by 2100 based on local temperature 

projections.  

Looking individually at Nigeria, van der Merwe et al. (2022) used LSMS (Living 

Standards Measurement Study) dataset to report higher probability of malnutrition among children 

exposed to decreasing precipitation and increasing temperature with the observed effect 

concentrated more in rural areas. More specifically, one unit increase in previous year temperature 

seemed to increase the probability of a child being stunted in urban area by 0.53% and by 0.71% 

in rural areas. For countries like Nigeria with majority of population subsisting through agriculture, 

the authors suggest policies promoting climate-smart agricultural practices to reduce these 

detrimental effects.  

Thiede et al. (2022) studied the relationship between temperature and precipitation 

variability on plausible changes in probabilities of childbearing combining high resolution global 

gridded climate dataset with birth histories data from DHS across 23 SSA countries. The authors 

reported mothers who experienced spells of precipitation and temperature anomalies showing 
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reductions in fertility probability in the following year. In another study, focused on analyzing the 

relationship between women’s reproductive goals and climate variability in SSA, Eissler et al. 

(2019) used 40 rounds of DHS survey collected between 1990 to 2015 to estimate statistical 

relationship between temperature and precipitation anomalies with women’s Ideal Family Size 

(IFS) and fertility preferences. One S.D. increase in temperature anomalies 12 and 60 months prior 

to survey time was associated with respective reduction in IFS by greater then 0.042 and 0.101 

children. Similarly, a women exposed to high temperatures had decreased preference of wanting a 

first or additional child meaning environmental stress can lead to expected fertility decline the 

reasoning behind it being entry of women into labor force and increase in incidence of intra-

household conflict. In contrast precipitation anomalies during the 60 months prior period seemed 

to positively increase IFS which the authors attribute to generation of favorable agricultural 

condition leading to need for additional household labor force. 

Blom et al. (2022) studied the cumulative effects of exposures to different bins of 

temperature on child nutrition in six different SSA countries linking 15 rounds of DHS surveys 

with gridded weather dataset from Princeton Terrestrial Hydrology Research Group. Restricting 

their study to children within 3-36 months of age, the authors found significant increase in 

prevalence of chronic and acute malnutrition because of lifetime exposure to temperatures above 

350C and recent exposures to temperature of 30-350C respectively. These extreme temperature 

range were also related to a 18% and 16% increase in prevalence of stunting and wasting, 

respectively. Deviating slightly from this, Bratti et al. (2021) studied the effects of prenatal 

exposure of heat waves among children in SSA. Using Heat Wave Magnitude Index, as an 

indicator of heat wave, the authors investigated the effect of in-utero exposure to heat waves on 

child health variables like Height-for-age z scores (HAZ), Weight-for-age z scores (WAZ), 
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undernutrition and severe undernutrition, stunting and severe stunting, anemia, birth weight and 

low birth weight. The second and third trimester of pregnancy were identified to be highly 

vulnerable to heat waves of higher intensity. Also, the overall detrimental effects were calculated 

to be most severe in increasing the probability that the child is stunted because of these exposures. 

Unlike previous research, the authors reported no significant role of adaptation mechanisms like 

electricity, improved water, and housing on mitigating these negative impacts, at least in the case 

of SSA countries.  

Looking at a different region, Molina and Saldarriaga (2017) studied the effects of in 

utero exposure of temperature variability (measured as fluctuate=ions from historical mean) on 

different birth outcome variables focusing on three developing countries in the Andean region. 

The authors reported exposure to temperature anomalies one S.D. above the historical mean during 

pregnancy reduced birth weight by 20 grams while increasing the probability of low birth weight 

in child by 0.7 percentage points. They also explored potential channels explaining their derived 

results and identified decrease in health care and increase in food insecurity for pregnant mother 

as the major pathway variables. Similarly, being focusing on Kyrgyzstan, a country predicted to 

suffer from extreme future scenarios of weather events and climate change, Freudenreich et al. 

(2022) analyzed the effect of three types of weather shocks (cold winters, droughts, and extreme 

rainfall events) on the probability of being stunted among children of 0-60 month of age. 

Employing fixed effect regression models by controlling for household, children, mother, year and 

state fixed effects, the authors reported cold shocks experience in winter to be highly detrimental 

for children under 20 months of age with the effects being more pronounced for households 

depending on electricity for indoor heating. Excessive rainfall in autumns were also seen to be 

more harmful which the authors attribute to the geographical delineation of Kyrgyzstan citing 
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majority of its population to be vulnerable to flooding and landslides which frequently abrupt 

health care access and increases food prices.  

With respect to studies focused within South Asian region, McMahon and Gray (2021) 

combined high resolution climate dataset with socio-demographic dataset from DHS to calculate 

the effect of climate change on child nutrition in four South Asian countries (India, Nepal, 

Pakistan, and Bangladesh). Along with monthly measures of climate exposures the authors 

supplemented their climate variable by including data on daily maximum and minimum 

precipitation and temperature rate for each survey unit. The authors reported child growth in these 

four South Asian countries are undermined severely by unusually wet days on first year of child’s 

life and extreme temperature exposure during the first two year of life with these effects being 

severely concentrated among resource poor households with low rate of maternal education and 

access to electricity. Likewise, Le and Nguyen (2021) studied how does in-utero rainfall shock 

affects child health by combining DHS and CRU, TS dataset for 55 low-income countries.  

Assuming long run deviations of in-utero rainfall exposures as exogenous shocks, the authors first 

conclude adverse early childhood health outcomes because of increased rainfall variability. Then, 

by grouping children of similar age brackets, they report comparatively stronger effects during 

first year of child’s life and in some cases the harmful effects lasting till later years. Finally, using 

heterogeneity analysis, the authors identify severe detrimental effects among socially 

disadvantaged population groups.  

Focusing on one South Asian country, Tiwari et al. (2016) analyzed the seasonal 

agriculture of Nepal and timing of rainfall shocks to figure out the effect of precipitation variability 

on early anthropometric measures of children in rural places of Nepal. The authors report excess 

monsoon rainfall in second year of child life to significantly impact male and female stature linking 
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this vulnerability to the transitional period of shift towards family diet. However, they do mention 

this effect to be only transitory, disappearing completely by the time the child turns 5 years of age 

while also identifying food insecurity as the major pathway variable. Finally, the authors conclude 

a 0.13 S.D. increase in weight for height for children aged 0-60 months who experienced a 10% 

increase in rainfall as compared to historic means.  

Similarly, Dimitrova and Bora (2020) studied the detrimental effects of monsoon weather 

shocks on early childhood undernutrition in India. Using multivariate logistic regression, the 

authors reported increased risk of child undernutrition because of exposure to climate anomalies 

during in-utero and infancy period. Diving a bit deeper into various topographical setting, they 

found elevated risk of stunting among children residing in tropical wet and sub-tropical humid 

regions, whereas reduced risk of stunting for those in mountainous regions. Finally, the authors 

identify water-transmittable disease like diarrhea as the channel connecting excessive rainfall with 

stunting. 

Focusing on the socio-economic settings of South Asia and its relation to child health 

variables, Krishna et al. (2018) studied the socio-economic disparities in child stunting rates among 

four South Asian countries-India, Bangladesh, Nepal, and Pakistan. Using logistic regression 

model to study the relationship between probability of stunting and three groups of disadvantages 

(social, economic, and dietary), the authors recorded high rate of stunting across all countries 

which seem to increase with increase in socio-economic adversities. More specifically, stunting 

was found to be concentrated among households which displayed all types of adversity i.e., poor 

dietary diversity, low or no maternal education and weak economic status. Likewise, Sathi et al. 

(2022) analyzed socioeconomic disparities in low birth weight (LBW) in South Asia and reported 

wealth and educational inequalities to be negatively related with LBW among under-five children 
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in South Asia. The study also revealed significant adverse effect of multiple birth, female gender, 

lack of health seeking behavior and early childbearing- common occurrences in South Asia- on 

birth weight of newborn babies.  

Similarly, Fikree and Pasha (2004) also talk about gender-based health disparity in South 

Asia. Gender based discrimination starting right from birth is found to contribute significantly to 

various health inequalities, sex selective abortions, neglect of girl child, reproductive mortality and 

poor or no health care access. Likewise, Aguayo and Menon (2016) focus on how economic 

growth alone is not sufficient to solve the issues of child malnutrition and stunting in South Asia. 

The authors first identify poor diets of children, insufficient nutrition of mother during and before 

pregnancy and unsanitary household practices as important factoring affecting child stunting in 

South Asia, then go on to suggest potential strategies to reducing stunting by focusing within these 

problems. 

 

 

 

 

 

 

 

 

 

 

 



 18 

 

 

CHAPTER 3 

DATA 

3.1. Health and socio-demographic data 

This study is based on nationally representative cross-sectional data taken from the 

Demographic and Health Surveys (DHS) funded by the U.S. Agency for International 

Development (USAID) (accessible through IPUMS-DHS) combined with high-resolution gridded 

weather dataset taken from the Climate Research Unit (CRU) a project running under the 

University of East Anglia. DHS collects periodic data on health and population in more than ninety 

low- and middle-income countries (LMICs). DHS respondents are selected through a multi-stage 

sampling process, with geographical areas first being randomly selected followed by a systematic 

sampling of 20-30 households chosen randomly from a complete list of household dwellings 

collected for each selected region (Corsi et al., 2012). DHS surveys have been extensively used 

for demographic and health research and are among the highest quality population health surveys 

among LMICs (Theide, 2019). Additionally, recent DHS survey also provide high resolution 

geographic identifiers needed to link it with climate dataset. To be able to integrate demographic 

data with weather data, we used only those DHS surveys which provided GPS location of the 

enumeration areas, hence totaling  to 13 rounds of DHS surveys including five rounds in 

Bangladesh (2004, 2007, 2011, 2014, 2017), four rounds in Nepal (2001, 2006, 2011, 2016), and 

two rounds each in India (2015 and 2020) and Pakistan (2006 and 2017). Clustered level geocodes 

allow us to link individual survey dataset with gridded temperature and precipitation dataset from 
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CRU. A sample figure of how these clusters is spread across the surveyed country is given in 

Figure A1 in the appendix. 

We focus our study on two key variables of child health outcomes: childbirth weight and 

child anthropometric variables. In the case of childbirth weight, we construct two study variables 

from the DHS dataset which provides detailed information on various indicators of neo-natal 

health (delivery method, birth weight, birth size, birth complication) for children under five years 

of age. First, we restrict the sample to remove mothers who were not permanent resident of the 

enumeration area and were just visiting during the survey time. Similarly, we remove children 

from multiple births (duplets, triplets, etc.) because twinning is related to low birth weight 

(Kramer, 1987). Also, we exclude mothers younger than 15 years of age or older than 45 years, so 

that health condition of the studied children is not in any way affected by mother’s age (Kramer, 

1987).We also exclude observations with birth weight below 500 gm or above 6500 gm, since they 

are out of the normal range as defined by the medical literatures (Molina & Saldarriaga, 2017). 

Based on this dataset, we construct two dependent variables measuring fetal health: a) birth weight 

of child, a continuous variable containing child weight at birth in grams (gm) and, b) low birth 

weight, a dummy variable that takes a value of one if the birth weight of the child is less than 

2500gm (WHO, 2013). We also construct a dummy independent variable called “birthweight 

recall” that takes a value of 1 if the reported birthweight was collected from health card or 0 if it 

was collected from mother’s memory. 

Similarly, the main dependent variable representing the child nutritional outcomes were 

the standardized z-scores calculated from the anthropometric height and weight measures of 

children in relation to sex and age of a reference population. Specifically, three such measures 

were calculated: height-for-age Z score (HAZ), weight-for-age Z score (WAZ) and weight-for-
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height Z score (WHZ) and based on them we constructed six more indicator variables based on 

World Health Organization (WHO, 2006)  specifications. For example, from our study if we 

consider one child of a specific age then first, we calculate their HAZ score by subtracting that 

child’s height from a reference height (De Onis et al., 2004) based on the child’s age and then 

divide this by a reference standard deviation. Now, a child with a HAZ score equal to or less than 

-2 (two or more standard deviations form a reference mean population) is labelled as “stunted”, 

and “severely stunted” if the z score is equal to or less than -3. Similarly, we compute WHZ score 

and from it “wasting” and “severe wasting” if WHZ is less than or equal to -2 and -3 respectively. 

The same approach is used to compute WAZ score and from it “underweight” and “severe 

underweight” dummy variables if WAZ is less than or equal to -2 and -3 respectively. Through 

this process, we end up with three continuous and six dummy variables representing child 

nutritional status. Similarly, we remove biologically implausible observations based on the cut-off 

score published by WHO (2006). We remove observations for which the child’s HAZ score is 

below -6 or above +6, WAZ score is below -6 or above +5 and WHZ score is below -5 or above 

+5. A visual representation of our main variables is given in figure 4.  

 
Figure 4. Visual representation of our main study variables 

Source: Self constructed 
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3.2. Climate data 

Information on temperature and precipitation is taken from the University of East Anglia 

Climate Research Unit (CRU). CRU is a global dataset of monthly climate variables like 

temperature, precipitation, wind velocity, humidity, etc, that is widely used in population-

environment research (Randell & Grey, 2019; Theide, 2019). It offers gridded climate dataset at 

0.5o X 0.50-degree resolution (approximately at 56 km at the equator) that can then be linked to 

the GPS location of DHS surveyed households(Harris et al., 2020).  For our study, we extract 

temperature and precipitation records from 1991 to 2020 for each grid cells the survey location 

falls in and based on historic deviation calculate climate anomalies for each survey cluster as 

described below. 

To measure temperature and precipitation anomalies, we measure deviations from the 

long-term average conditions within each cluster of the DHS surveys. Using the geo-codes/GPS 

location, we first extract 30 year (1991 to 2020) monthly temperature and precipitation records for 

each surveyed cluster. Then, we define climate anomalies based on fluctuations from historic mean 

temperature or total precipitation during a given time “t” (Scherrer et al., 2005). To put it simply, 

these are z-scores that represent standard deviations of temperature/precipitation in a community 

during the time period t and in reference to long term mean and standard deviation of 

temperature/precipitation in that community for all t periods from 1991 to 2020.  

The time period (t) with respect to which the anomaly is calculated differs based on the 

dependent variable of study. If it is child birthweight, then we calculate two kinds of climate 

anomalies. The first represents pre-natal climate anomaly for which t=9 and the other represents 

climate anomalies during the three trimesters of pregnancy for each of which t=3. For instance, if 

pre-natal temperature anomaly indicates the number of standard deviations during the pre-natal 
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period (9 months) before the child’s date of birth with respect to the cluster’s historical temperature 

mean. For a child born in cluster c in year y and month t, where t = {1, 2, ...,12}, it can be 

represented as follows:  

SDcyt = [!
"
	∑ (#

$%#&' temp()$ - temp((((((((()] / 𝜎*  

Here, SDcyt measures the temperature anomaly experienced by the child in utero. The 

variable tempcyT is the average monthly temperature in the cluster for the Tth month before the birth 

month of the child, temp((((((((( is the cluster’s historical temperature mean for 30 years (1991 to 2020) 

and 𝜎* is the standard deviation if temperature for this time. A visual representation of time 

specific climate anomalies calculated for this study is given in figure 5. 

 
Figure 5. Visual representation of climate anomalies time specific calculation 

Source: Self constructed 
 

Similarly, analysis can be done to calculate pre-natal precipitation anomalies. However, 

if our dependent variable is one of the nine nutritional status indicators, then we calculate three 



 23 

kind of climate anomalies. The first of which is the pre-natal climate anomalies measured just like 

we explained above. The second one is the climate anomaly measured during the first year of 

child’s life for which t= 12 months after birth and the third one if the climate anomaly measured 

during the second year of child’s life for which t= 12 months after the first year of birth. The 

temporal sequence in which the climate variables are calculated is also illustrated in Figure 6. 

These standardized climate variables provide a comparatively more meaningful deviations from 

local conditions and can be interpreted as exogenous shocks and are a stronger predictor than raw 

climate values (McMahon & Gray, 2021).   

The compiled dataset is finally divided into two components: those containing data on 

child birthweight parameters and the other on child nutritional outcomes. These are then cleaned 

to form a uniform data. We also restrict our sample to include children aged only 24-59 months. 

This is done to focus on climate exposures within the prenatal period of the children and the two 

years of life to cover the first 1000 days of child’s life which is considered the most vulnerable 

and key period in child development (Schwarzenberg & Georgieff, 2018) and exposure during 

these times is shown to be a strong representation of health and development till adulthood 

(Ramakrishnan et al., 2012). Table 1 provides weighted summary statistics for child nutritional 

and birthweight parameters.  After thorough cleaning and assumed restrictions, we end up with an 

estimation sample of 81,211 for child nutritional parameters and 87,635 for childbirth weight 

parameters. The unevenness in size between these two samples can be attributed to incomplete 

survey information from different survey waves. Table A1 in the appendix provides the country-

wise survey year list used to derive out final estimation sample which gives a brief glance of dataset 

used for this study. In order to link the DHS dataset with calculated climate anomalies we only use 

those surveys which provide geographic information of enumeration area. 
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Table 1. Summary Statistics  

Variable Mean Std. Dev. Variable Mean Std. 
Dev. 

Child nutritional indicators 
(A) 

Child birthweight indicators 
(B) 

Dependent variables 

HAZ -1.437 1.613 Birth weight 2813.52
4 555.040 

WAZ -1.504 1.224 Low birth weight 0.167 0.373 
WHZ -0.896 1.389 - - - 
Stunting 0.230 0.421 - - - 
Severe stunting 0.135 0.342 - - - 
Under weight 0.234 0.424 - - - 
Severe under weight 0.098 0.298 - - - 
Wasting 0.110 0.312 - - - 
Severe wasting 0.067 0.250 - - - 
Independent variables 
Demographics-Child 
Child is a girl 0.481 0.500 Child is a girl 0.480 0.500 
Childs’ age (month) 41.765 10.295 Childs’ age (month) 36.570 13.960 
Child’s birth order 2.035 1.211 Child’s birth order 2.026 1.203 
Demographics-Mother 
Age of mother 27.881 4.729 Age of mother 27.334 4.784 
Marital status 0.004 0.066 Marital status 0.013 0.115 
Education status of mother 
None (reference) 0.189 0.392 None (reference) 0.193 0.394 
Primary 0.132 0.338 Primary 0.122 0.327 
Secondary 0.533 0.499 Secondary 0.531 0.499 
Higher 0.146 0.354 Higher 0.155 0.362 
Employment status 0.033 0.179 Employment status 0.033 0.180 
Children ever born 2.378 1.244 Children ever born 2.335 1.235 
Household characteristics 
Total household 
members 6.267 2.688 Total household 

members 6.166 2.630 

Number of children 
under 5 in household 1.691 0.843 Number of children 

under 5 in household 1.709 0.833 

Male household head 0.869 0.337 Male household head 0.855 0.352 
Rural residence 0.454 0.498 Rural residence 0.656 0.475 
Wealth quantile of the family 
Poorest 0.209 0.407 Poorest 0.218 0.413 
Poorer 0.221 0.415 Poorer 0.214 0.410 
Middle 0.202 0.401 Middle 0.204 0.403 
Richer 0.199 0.399 Richer 0.199 0.399 
Richest 0.170 0.375 Richest 0.165 0.371 
WASH variables 
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Water location (not on 
premise) 0.273 0.289 Water location (not on 

premise) 0.280 0.449 

Sanitation 
(unimproved) 0.339 0.445 Sanitation 

(unimproved) 0.346 0.479 

Hygiene (poor) 0.240 0.477 Hygiene (poor) 0.236 0424 
Historical climate trend 
Historical monthly 
prep., SD 130.731 79.926 Historical monthly 

prep., SD 125.153 73.371 

Historical monthly 
prep., mean 101.641 61.746 Historical monthly 

prep., mean 100.553 56.643 

Historical monthly 
temp., SD 4.446 1.541 Historical monthly 

temp., SD 4.345 1.547 

Historical monthly 
temp., mean 25.975 2.063 Historical monthly 

temp., mean 26.035 2.094 

Main independent variables 
Prenatal temperature 
anomaly 0.086 0.327 Temp. anomaly in zero 

trimester -0.008 0.856 

Temperature anomaly 
in first year of life 0.080 0.101 Temp. anomaly in first 

trimester -0.007 0.867 

Temperature anomaly 
in second year of life 0.048 0.093 Temp. anomaly in 

second trimester 0.126 0.851 

Prenatal precipitation 
anomaly 0.013 0.323 Temp. anomaly in 

third trimester 0.124 0.824 

Precipitation anomaly 
in first year of life 0.020 0.127 Prep. anomaly in zero 

trimester -0.016 0.799 

Precipitation anomaly 
in first year of life 0.014 0.152 Prep. anomaly in first 

trimester -0.067 0.797 

- - - Prep. anomaly in 
second trimester 0.008 0.811 

- - - Prep. anomaly in third 
trimester 0.093 0.841 

Observations 81,211  Observations 87,635  

As we can see, on average, children of our sample have HAZ, WAZ and WHZ scores of 

roughly -1.44, -1.5 and -0.89 standard deviations correspondingly with 23% of entire sample 

suffering from stunting and under-weight, and 11% of them suffering from wasting. Similarly, the 

average birthweight of children in our sample is 2813.53 grams which is very close to the 

benchmark of being classified as a low birthweight case (i.e., 2500 grams). Likewise, the negative 

measures (below the reference of median population) of our main nutritional variables also indicate 

that our sample consist of children from low- and middle-income countries. Several socio-
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demographic characteristics of the survey sample also points to high prevalence of deprivation and 

poverty in our data set. For example, about 19% of the mother population received no education 

at all, with only about 15% reporting higher level of education. Similarly, only 3.3% of the mother 

population are employed and almost 90% of the households are headed by a male. Likewise, most 

of the study population reside in rural areas (as high as 65%), with 28% of them not having 

drinking water within their household premises and 34% of them falling under unimproved 

hygiene category. 
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CHAPTER 4 

METHODS 

4.1. Conceptual framework 

Our analysis expands on the conceptual relationship developed by UNICEF in 1990 that 

explores the underlying causes of child malnutrition so that local governments or organizations 

can pinpoint effective areas of interventions. This multi-dimensional framework primarily 

identifies the immediate, underlying, and basic causes of child nutrition and how these factors 

interact or interconnect with each other. To sum it up, briefly, food and nutrient intake, and disease 

exposure are identified as immediate causes of child malnutrition which are further influenced by 

socio-economic resources of the household like food availability and feeding practice, sanitation, 

hygiene, and health care use. Following these are the basic causes that affect capital use and 

distribution like social norms and cultures, economic systems, governance, and institutions 

(UNICEF, 2014). Exposure to climate, though not included in this basic model, was later identified 

as a key factor that affects and exacerbates all these causes (Tirado et al., 2013; Dimitrova & 

Muttarak, 2020; Le & Nguyen, 2021). Primarily, climate variability influences child nutrition 

through the underlying causes of undernutrition, like maternal and childcare, food access and 

feeding practices, health care facilities and household health factors (sanitation, drinking water, 

hygiene) (Tirado et al., 2013). Based on this framework, we investigate the effect of climate 

variation on several child health parameters. 

4.2. Baseline model 



 28 

In our baseline model we exploit the exogenous variation in climate experienced by the 

child during the study period relative to the cluster specific normal climate trend for the same 

period to identify the plausible impacts of climate variation on child health outcomes with the basic 

assumption that the observed deviations in temperature and precipitation compared to the long-

term means are random within and across clusters. This follows the framework employed by 

similar previous studies (Dimitrova & Muttarak, 2020; Le & Nguyen, 2021). 

We use multivariate regression models to study the association between climate 

anomalies and child health status. When the dependent variable is a continuous measure (birth 

weight or z-scores) we use ordinary least squares (OLS) regressions and if it is a dummy variable 

then a logistic regression model is used. Sampling weights, provided by DHS survey design are 

applied to all models. All the standard errors are clustered at cluster level of enumeration areas. 

With data for child i born in cluster c during year y and month t, we estimate the following 

model:  

ℎ+()# = 𝛽, + 𝛽!W-./0+𝛾𝑋+()#1 +𝛿(+𝜎)+𝜇#+𝜀+()#                                 (1) 

Where, ℎ+()# represents our main variable of interest, 𝛿(, 𝜎) and 𝜇# represents state, birth 

year and month fixed effects, respectively. These fixed effects account for the health and 

seasonality at birth. 𝑊+()# represents our calculated climate variable. 𝑋+()# is a vector for controls 

to account for individual, maternal and household variables that are known to affect our child 

health outcomes. Child controls include age in months3, sex and birth order to account for 

biological factors that influences child health (Shrimpton et al., 2001). Similarly, maternal controls 

include age of mother at childbirth, marital status, education level, work status and total number 

of child ever born, while household controls include total number of household members, number 

 
3 All age variables are also squared to account for non-linearity. 
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of kids under 5 years, sex of household head, wealth quantile and urban/rural status. The last two 

controls account for allocation and availability of household resources (de Silva & Sumarto, 2018).  

4.3. Differential vulnerabilities 

Next, we examine the potential differential vulnerabilities across subgroups of 

populations by including an interaction term between the climate measure and specific 

sociodemographic measures of interest. The main socio-demographic variables that we are 

interested in are gender of the child, urban-rural residence, wealth quantile of the household, 

mother’s level of education and WASH (Water, Sanitation and Hygiene indicators) variables.  

𝑌+()# = 𝛽, + 𝛽!W-./0+𝛽2𝐷+()#+𝛽3(𝑊 ∗ 𝐷)+()# + 𝛿(+𝜎)+𝜇#+𝜀+()#                       (2) 

Table 1 also includes the summary statistics for these variables. The five classes of wealth 

quantiles listed were constructed based on information on building materials and assets of the 

households. Similarly, from the DHS dataset we also construct three types of indicators commonly 

grouped as WASH variables. First, water availability is classified as the presence or absence from 

the household premise based on location of drinking water. Second, sanitation facilities are 

classified as improved or unimproved based on the type of toilet facilities. Improved sanitation 

includes facilities like flushed toilet, sewer system or other safe toilets that do not contaminate the 

surrounding. Unimproved sanitation includes facilities like absence of toilet, pit latrines, and other 

unsafe facilities. Third, we construct indicators for high and low hygiene based on how the mother 

disposes child’s stool. Hygiene classified as high indicates proposal disposal of stool either in toilet 

or by burial. However, low hygiene indicators identify improper disposal of stool like in a ditch or 

garbage or left in open. All these variables were constricted following the specification of 

Dimitrova and Muttarak (2020). 
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To ensure our analysis is easily interpretable, we focus only on one climate and child 

health variable. We restrict our dependent variable to either indicate the probability of being 

stunted or the probability of low birth weight while our independent climate measure represents a 

single temperature or precipitation variable summed up for the entire vulnerable period of 

exposure.  The availability of all these records across every wave of DHS country wise survey is 

quite hard to find or focused only on specific sub-sections of populations which also leads to a 

subsequent reduction of our estimation sample size.   
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CHAPTER 5 

RESULTS 

5.1. Baseline model 

The estimated impact of climate variability on child health parameters is reported in 

Tables 2-4. Starting with Table 2, each three column headings represent the estimated OLS 

coefficients for the main three dependent variable of interest. Then, Table 3 represents the logistic 

regression table with calculated odds ratio for the six-indicator nutritional variables derived from 

these three dependent variables.  In general, the results display that early childhood exposure to 

climate variation does have a significant negative impact on child health with effects being more 

pronounced in cases of precipitation variability. Although, few estimates are statistically 

significant in case of temperature variability, the negative sign of the estimates does indicate 

negative effects to child health parameters and we should also notice that the effects get reversed 

in some period of exposure, meaning higher heat benefits child health outcomes.  

Interpreting some of the derived results in Table 2. (Column 1), estimates show that one 

standard deviation increase in precipitation variability during pre-natal period (in-utero exposure) 

reduces child’s HAZ score by 0.027 standard deviations at an alpha of 0.01. Likewise, a one 

standard deviation increases in precipitation anomaly during the prenatal, first and second year of 

child’s life significantly decreases WAZ score by 0.043, 0.095 and 0.1 standard deviations 

respectively at 0.01 level of significance. Similar significances were not seen in case of 

temperature variability. Likewise in case of WHZ score, 1 S.D. increase in precipitation anomaly 

in first and second year of life reduces it by 0.165 and 0.141 S.D. respectively at an alpha of 0.001. 
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Table 2. Fixed effect regression for child nutritional indicators4 
 

Variables 

HAZ 
(Height for age z 

scores) 
(1) 

WAZ 
(Weight for age z 

scores) 
(2) 

WHZ 
(Weight for height 

z scores) 
(3) 

Prenatal temperature 
anomaly -0.005 0.005 0.012 

 (0.046) (0.034) (0.039) 
Temperature 
anomaly in first year 
of life 

-0.063 -0.199* -0.346 

 (0.164) (0.114) (0.156) 
Temperature 
anomaly in second 
year of life 

-0.040 -0.080 -0.039 

 (0.156) (0.113) (0.149) 
Prenatal 
precipitation 
anomaly 

-0.027** -0.043** -0.051** 

 (0.032) (0.020) (0.024) 
Precipitation 
anomaly in first year 
of life 

0.048 -0.095** -0.165*** 

 (0.064) (0.045) (0.053) 
Precipitation 
anomaly in second 
year of life 

0.026 -0.100** -0.141*** 

 (0.062) (0.043) (0.048) 
Observations 81,211 81,211 81,211 
All controls Yes Yes Yes 
Fixed effects Yes Yes Yes 
 

Likewise, the results of Table 3 can be interpreted in form of odds ratio. For instance, a 

one standard deviation increase in precipitation anomaly in first year of life (column 1) increases 

the log odds of stunting by 1.139, severe stunting by 0.865, wasting by 1.208 and severe wasting 

by 1.492 respectively. Likewise, temperature anomaly in first year of child life increases the log 

odds of wasting and severe wasting by 1.560 and 0.511 respectively. 

 
4 Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001. Fixed effects include state, birth month and birth year fixed effects. 
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Table 3. Logistic regression for child nutrition parameters5 
 

Variables Stunting 
(1) 

Severe 
stunting 

(2) 

Underwe
ight 
(3) 

Severe 
underweight 

(4) 

Wasting 
(5) 

Severe 
wasting 

(6) 
Prenatal 
temperature 
anomaly 

0.984 0.978 1.008 0.926 0.919 0.937 

 (0.058) (0.086) (0.028) (0.078) (0.074) (0.058) 
Temperature 
anomaly in 
first year of 
life 

0.913 0.767 0.905 0.941 1.560* 0.511** 

 (0.173) (0.187) (0.164) (0.245) (0.373) (0.174) 
Temperature 
anomaly in 
second year 
of life 

1.192 1.183 1.158 1.230 1.279 0.437*** 

 (0.205) (0.274) (0.196) (0.286) (0.271) (0.136) 
Prenatal 
precipitation 
anomaly 

1.007 0.948 0.970 1.129** 1.079* 1.052 

 (0.040) (0.046) (0.039) (0.063) (0.049) (0.055) 
Precipitation 
anomaly in 
first year of 
life 

1.139** 0.865* 1.037 1.071 1.208** 1.492*** 

 (0.075) (0.074) (0.068) (0.104) (0.108) (0.189) 
Precipitation 
anomaly in 
second year 
of life 

1.077 1.069 1.128* 1.119 1.120 1.169 

 (0.067) (0.082) (0.070) (0.098) (0.095) (0.136) 
Observations 81,211 81,211 81,211 81,211 81,211 81,211 
All controls Yes Yes Yes Yes Yes Yes 
Fixed effects Yes Yes Yes Yes Yes Yes 

Similarly looking at column 6 we can say that at 99.9% confidence interval, a one 

standard deviation increase in temperature anomaly in second year of life increases logs odds of 

the child being severely wasted by 0.437. 

 
5 Note: Exponentiated coefficients; Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 Fixed effects include state, birth month and birth year fixed effects. 
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Following this, we now move on to our next variable of interest: the effect of climate 

variability on birth weight of the child. Estimates for this variable are presented in Table 4 and 5 

which includes three columns each representing both the estimated results for the fixed and logistic 

effect regression respectively. Column (1) of each table is then followed by the method of data 

collection, if the birth weight of the surveyed child was recalled by mother’s memory or by a health 

card. Thus, the sample of Column (1) of each table is split in two samples, one if birthweight was 

recalled by the mother (i.e., Column (2)) and the other if recalled by a health card (i.e., Column 

(3)). Also, each table consist of two panels, the first one representing results for entire prenatal 

period and the second one representing result divide by trimester of pregnancy. 

Table 4. Fixed effect regression for birth weight parameters 
 

Variable 
Birth weight 

(For all sample) 
(1) 

Birth weight 
(Recalled by health 

card) 
(2) 

Birth weight 
(Recalled by 

mother’s memory) 
(3) 

Prenatal 
precipitation 
anomaly 

-15.256 -10.686 -15.740 

 (11.988) (14.502) (23.075) 
Prenatal temperature 
anomaly 4.155 14.799 -24.831 

 (17.032) (19.643) (33.049) 
Prep. anomaly in 
zero trimester 4.203 -5.984 18.338 

 (6.620) (8.068) (11.894) 
Prep. anomaly in 
first trimester 2.320 -5.287 15.411 

 (6.491) (7.697) (12.356) 
Prep. anomaly in 
second trimester -7.424 -13.280 5.292 

 (6.697) (8.214) (12.149) 
Prep. anomaly in 
third trimester 8.372 2.362 14.657 

 (6.159) (7.497) (11.514) 
Temp. anomaly in 
zero trimester -22.694 -35.200* 11.180 

 (12.542) (14.738) (25.561) 
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Temp. anomaly in 
first trimester -5.424 -12.834 14.407 

 (13.618) (15.916) (26.352) 
Temp. anomaly in 
second trimester -24.749* -36.612** 8.510 

 (12.082) (14.004) (26.116) 
Temp. anomaly in 
third trimester -17.163 -32.373* 27.283 

 (13.179) (15.442) (25.356) 
Observations 87,635 51,902 35,733 
All controls Yes Yes Yes 
Fixed effects6 Yes Yes Yes 
 

In general, we see statistically significant result when the birth weight is recalled by a 

health card which makes sense considering the accuracy of these data source as compared to those 

recalled through mother’s memory years after childbirth. Likewise, in case of birthweight 

parameter, we see temperature variability to be a significant predictor of child health outcomes, 

with effects distributed throughout various trimester of pregnancy.  

Table 5. Logistic effect regression for birth weight parameters 
 

Variable 
Low birth weight 

(For all sample) 
(1) 

Low Birth weight 
(Recalled by health 

card) 
(2) 

Low Birth weight 
(Recalled by 

mother’s memory) 
(3) 

Prenatal 
precipitation 
anomaly 

1.039 0.999 1.100 

 (0.045) (0.055) (0.078) 
Prenatal temperature 
anomaly 0.891* 0.836** 1.027 

 (0.051) (0.058) (0.102) 
Prep. anomaly in 
zero trimester 0.975 1.004 0.945 

 (0.023) (0.030) (0.036) 
Prep. anomaly in 
first trimester 0.971 0.969 0.984 

 (0.022) (0.028) (0.038) 

 
6 Fixed effects include state, birth month and birth year fixed effects. 
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Prep. anomaly in 
second trimester 1.021 1.020 1.030 

 (0.023) (0.030) (0.037) 
Prep. anomaly in 
third trimester 0.972 0.990 0.951 

 (0.022) (0.029) (0.035) 
Temp. anomaly in 
zero trimester 1.048 1.053 1.036 

 (0.044) (0.054) (0.080) 
Temp. anomaly in 
first trimester 0.948 0.951 0.950 

 (0.041) (0.049) (0.075) 
Temp. anomaly in 
second trimester 1.035 1.016 1.074 

 (0.045) (0.053) (0.085) 
Temp. anomaly in 
third trimester 0.993 0.995 0.981 

 (0.043) (0.053) (0.076) 
Observations 87,635 51,902 35,733 
All controls Yes Yes Yes 
Fixed effects7 Yes Yes Yes 

 

We see reduction in birth weight and increase in odds ratio of the child being low birth 

weight, though significant effects are seen only in case of temperature variability as compared to 

precipitation variability. For instance, temperature anomaly in-utero period increases the log odds 

of the child being born with a low birth weight by 0.891 at an alpha of 0.01. Likewise, a one 

standard deviation increase in temperature anomaly during second trimester of pregnancy 

decreases the birthweight of a child by 24.749 grams for overall birthweight measure and by 

36.612 grams when the birthweight is recorded in a health card. 

Most of the socio-demographic variables included in the model as explained in equation 

(1) also show significant relationship with the dependent variables. This has been shown for HAZ 

scores and birthweight measures in Table A2 of the appendix (col. 1 and 2., respectively). To 

 
7 Fixed effects include state, birth month and birth year fixed effects. 
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briefly explain these results, on average boys have lower HAZ scores and birthweight compared 

to girls. Also, children born from educated mother have higher HAZ scores and birthweight as 

compared to mother with no formal education and the rate of increase seems to be proportional 

with increases in level of education. Likewise, children from wealthier households have higher 

HAZ scores and birthweight compared to the poorer reference group, with similar proportional 

increase as wealth quantile increases. 

5.2. Differential vulnerabilities: 

Table 6. Mean HAZ scores and birthweight summarized for each socio-demographic groups. 
 

Variables Child nutritional 
indicators 

(A) 

Child birthweight 
indicators 

(B) 
Mean 
HAZ 

% stunted Mean 
Birthweight 

% of low 
birthweight 

Sex of child 
Female -1.426 23.2% 2775.36 18.2% 
Male -1.447 22.8% 2843.27 15.4% 
Residence 
Urban -1.177 18.7% 3036.57 12.7% 
Rural -1.764 29.6% 3007.5 15.1% 
Education 
No -1.786 26.1% 2768.57 18.6% 
Primary -1.661 27.8% 2774.44 18.6% 
Secondary -1.388 22.7% 2813.56 16.6% 
Higher -0.962 15.8% 2900.03 12.9% 
Wealth quantiles 
Poorest -1.814 27.8% 2752.3 19.6% 
Poorer -1.606 25.7% 2789.64 17.9% 
Middle -1.460 24.2% 2819.61 16.0% 
Richer -1.226 19.8% 2844.14 15.3% 
Richest -0.972 16.0% 2880.88 13.5% 
Water location 
Not on premise -1.590 24.7% 2789.63 17.9% 
On premise -1.379 22.4% 2822.82 16.2% 
Sanitation 
Unimproved -1.685 26.4% 2782.48 15.9% 
Improved -1.308 21.2% 2830.63 18.0% 
Hygiene 
Low -1.677 26.7% 2786.82 17.6% 
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High -1.522 24.0% 2826.33 16.3% 
 

Table 6. shows the mean table for HAZ scores and birthweight calculated separately for 

each of the socio-demographic classes. It is evident that HAZ is lower for more socially deprived 

groups with higher percent of stunted children and children with lower birth weight. For instance, 

with increase in either wealth status of the family or educational level of mother, we see a decrease 

in HAZ scores and birthweight and increase in prevalence of stunting and low birth weight.  

Similarly, Table 7 shows the interaction effect calculated individually for each of the 

socio-demographic variables. In case of HAZ scores, we look at the interaction effect on prenatal 

climate anomalies and climate anomalies over the entire first two years of child life. Similarly, for 

birthweight we look at the interaction effect of climate anomalies during in-utero period. 

First, significant differences between boys and girls were seen only in case of two years 

temperature anomalies, where boys seem to benefit by having a 0.581 S.D. (Column 4) increase 

in HAZ scores as compared to boys who were not exposed to these anomalies. Second, children 

in rural areas appear to be suffering the most from climate anomalies as compared to children from 

urban areas.  

Third, in case of every WASH variable, children with improved sanitation, high hygiene 

and water on premise are almost entirely protected from climate anomalies in any given period 

with the effects being significantly stronger for HAZ scores during the two-year anomaly’s 

exposure. Likewise, children with no maternal education (another indicator of depravity) are 

suffering the most from climate anomalies in case of both HAZ and birthweight. With an increase 

in mother’s level of education, the negative effects seem to go down and we even see positive 

association for mothers with higher level of education. The trend seems to continue for wealth 

quantiles, with children from poorer families suffering the most. Children from richer families 
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seem to benefit from the positive effects of climate across all developmental periods. A 

generalization can be made from the observed values that higher the level of depravity in the 

observed population group, more concentrated are the negative effect of climate variabilities. 

Table 7. Interaction effects of socio-demographic variables with climate anomalies. 

Interaction 
term 

 

HAZ scores Birth weight  
Prenatal anomalies 2 years anomalies Prenatal anomalies 

Prep. 
(1) 

Temp. 
(2) 

Prep. 
(3) 

Temp. 
(4) 

Prep. 
(5) 

Temp. 
(6) 

Sex of child 
Boy -0.031 -0.048 -0.112  0.581** -2.298 10.73 
Girl 0.031 0.048 -0.263  0.368 1.167 -11.20 
Residence 
Urban -0.110 -0.122***   0.118 

 
-0.466 -3.602 32.51* 

Rural -0.124*** -0.195***  -0.791*** -1.296*** 6.386 -37.46*** 

WASH variables 
High 
hygiene 

0.076 0.130 -0.116 -0.841* 23.81 21.92 

Low 
hygiene 

-0.005 -0.042 -1.525*** -2.136*** -5.243 -6.884 

Improved 
sanitation 

0.028 0.069 0.255 0.156 6.912 2.954 

Unimproved 
sanitation 

-0.025 -0.071 -1.029*** -2.258*** -9.112 -9.036 

Water on 
premise 

0.0257 0.046 0.308* -0.239 5.624 11.26 

Water not 
on premise 

 
-0.025 

 
-0.046 

 
-1.314*** 

 
-1.496*** 

 
-5.624 

 
-11.26 

Educational status of mother 
No -0.047 0.0942 -1.548*** -2.954*** -49.27* -24.35 

Primary 0.021 -0.111 -0.977** -2.687*** 3.018 -9.253 

Secondary 0.012 -0.107* 0.0001 -0.292 29.75 3.274 
Higher 0.078 0.036 1.404*** 1.578*** 

 
6.789 -6.209 

Wealth quantiles 
Poorest -0.200** -0.108 -1.985*** -3.551*** -16.45 -14.61 

Middle 0.067 -0.129 0.160 -0.945** 21.25 -37.95 
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Richest 0.165* 0.061 1.288*** 2.362*** 13.10   23.23 
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CHAPTER 6 

DISCUSSION 

South Asia covers a significant burden of global child health disparities having the largest 

percentage of stunted children (33.3%) under 5 years, second highest population of children with 

low cognitive and early development scores, and one-fourth of the low-birth-weight cases (26%) 

of the world  (Lee et al., 2013; McCoy et al., 2016; UNICEF, WHO, & World Bank group, 2018). 

South Asia is also home to the highest proportion of children worldwide at risk of poor 

development because of extreme poverty exposure and stunting risk (Lu et al., 2020). Following 

this, in this study we focus on how severe the effect of early childhood climate variability exposure 

is to the already suffering children population of South Asia as well as explore some potential 

mechanisms to mitigate these effects.  

First, we show that temperature and precipitation variability experienced during in utero 

and early child’s life does play a significant role in child health outcomes in South Asia and the 

effects seem to add on to the pre-existing vulnerabilities of various health inequities that are 

already present there.   We find that precipitation (as compared to temperature) is a strong predictor 

of child nutrition indicator when the study parameter is child nutritional indicator, whereas 

temperature variability in case of childbirth weight parameters. Prenatal precipitation anomaly was 

found to decrease child’s HAZ, WAZ and WHZ score by 0.027, 0.043 and 0.051 respectively, and 

in case of WAZ and WHZ the effects seem to continue till second year of child’s life. Likewise, 

precipitation anomaly in first year of life increases the log odds of stunting by 1.139, severe 

stunting by 0.865, wasting by 1.208 and severe wasting by 1.492 respectively. Similar findings 
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have been reported by other studies (Tiwari et al., 2016; Molina & Saldarriaga, 2017; Baker & 

Anttila-Hughes, 2020; Thiede & Strube, 2020; McMahon & Gray, 2021; Blom et al., 2022; 

Freudenreich et al., 2022; van der Merwe et al., 2022), though the severity and timing of impacts 

does seem to vary based on study areas. 

Our results seem to be in line with some previous studies who highlight the importance 

of safe in-utero condition to early health parameters (Cornwell & Inder, 2015; Randell et al., 2020; 

Dimitrova and Bora, 2020). In accordance with these previous works, we deduct that nutritional 

deprivation and mother’s health condition during the intrauterine growth period detrimentally 

affects child’s initial health shocks which, in some cases, even gets resonated to later phases. 

Similarly, Dimitrova and Muttarak (2020) also identify in-utero period as the most critical period 

of exposure and cite their reasoning to the hypothesis of developmental origin given by Mandy 

and Nyirenda (2018) which states that environmental conditions before and shortly after birth have 

a long-lasting impact on health during childhood.   

 However, in case of nutritional indicators, some of the previous literature literatures 

report precipitation extreme during first year of life as the major determinant of decreasing HAZ 

scores and increasing stunting ( McMahon & Gray, 2021) which we do not find in this study. As 

compared to these detrimental impacts of precipitation, the negative effects of temperature 

anomaly seem to be less pronounced in case of nutritional indicators. We even find positive 

association of temperature variability in some cases. Similar cases were also reported by 

(McMahon & Gray, 2021; Nicholas et al., 2021) who argue that considering the agricultural 

dependence of the studied countries initial warming may prove to be beneficial for local 

agricultural conditions. However, the thing to consider is that a causal relationship between climate 

variation and health parameters is quite hard to find. Bakhtsiyarava et al. (2018) provides two 
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reasoning for this firstly, small health effects of climate variation that cannot be easily detected 

due to various indirect pathways affecting this relationship and secondly issues with data 

availability and quality which has been briefly discussed at the end. 

But, talking about birthweight parameters, we see significant relationship only in case of 

temperature variability which explains why previous similar studies only reported association 

between temperature anomalies and birthweight (Molina & Saldarriaga, 2017). Like the authors, 

we do not see a statistically stronger effect of a particular term of gestational period which leads 

us to conclude that the effect of temperature variability on childbirth outcomes is likely driven by 

the overall variability experienced throughout the period of pregnancy. 

Similarly, we see that socio-demographic factors play a significant role in determining 

the interaction between climate anomalies and child health outcomes in South Asian countries.  

We add to the previous literatures which emphasize that the effects of exposure to climate 

anomalies hit the hardest when the exposed population is socially and economically disadvantaged 

(Tiwari et al., 2017; Krishna et al., 2018; Dimitrova & Muttarak, 2020; McMahon & Gary, 2021; 

Le & Nguyen, 2021).  

The effects are more concentrated among poorer families of the communities who in turn 

have less access to drinking water, practice poor hygiene practices like disposal of baby’s stool 

and/or do not have access to improved toilet facilities. These findings are also in accordance with 

previous studies from (Victora et al., 2003; Pappachan & Choonara, 2017; Omidakhsh & von 

Ehrenstein, 2021) who identify poverty, sanitation, and nutritional insecurity as major drivers of 

child health disparities in South Asia. Following this, Aguayo and Menon (2016) conclude that 

along with economic growth it is also equally important to make investment in improving child 

and women’s nutrition and household hygiene and sanitation.   
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Finally, we highlight the importance of mother’s education in safeguarding the children 

from the detrimental effect of climate exposure. Krishna et al. (2018) report similar findings and  

reported largest decline in stunting among South Asian children who had mothers with higher 

educational status. Likewise, Sathi et al. (2022) reported significant relationship between lower 

levels of maternal education and rise in cases of low birth weight (LBW). This also points out to 

the fact that better education can buffer against the effect of climate exposure by improving 

awareness on dietary intake and sanitary behaviors during pregnancy and child rearing (Khan et 

al., 2020; Tessema et al., 2021) 

To summarize, we find that increasing access to basic resources like education, toilet, 

and water along with spreading awareness about simple hygiene and cleanliness condition are 

mechanisms that can substantially protect against the negative impacts of climate variabilities. 

However, these interactions are significant only within South Asia as studies in other regions e.g. 

(Thiede &Strube, 2020; Nicholas et al., 2021) do not seem to follow the same patterns of socio-

demographic analysis.  
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CHAPTER 7 

CONCLUSION 

The discussion on the effects of climate change on human health has primarily been 

focused within human health of more developed countries or adult sub-populations. The study of 

the relationship between climate variability and the effects of its exposure to infants and young 

children of developing countries has received less attention. In this study, we aim to shed light on 

this topic by focusing our estimation sample to children aged 5 years or younger belonging to one 

of the four South Asian countries under study – India, Nepal, Pakistan, and Bangladesh. We further 

expand on our findings by looking at how the effects of climate exposure differs based on different 

socio-demographic groups varying in terms of economic, gender and social vulnerabilities and 

focus on potential mitigation mechanisms. 

First combine the health and socio-demographic data from Demographic and Health 

Surveys (DHS) with global gridded high resolution monthly climate dataset from Climate 

Research Unit (CRU TS). Assuming climate variations as exogenous factors, we then empirically 

analyze the effect of temperature and precipitation variability on two kinds of child health 

parameters (child birthweight and child nutritional indicators). 

Our results shows that both precipitation and temperature variabilities are strong 

predictors of early childhood health parameters. More specifically, we find strong relationship 

between prenatal climate anomalies and precipitation anomalies spread over the first 1000 days of 

child’s life. We find that 1 S.D. increase in temperature and precipitation variability during pre-

natal period decreases child’s HAZ score by 0.005 and 0.027 S.D., respectively. Likewise, 1 S.D. 
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increases in precipitation anomaly during the prenatal, first and second year of child’s life 

decreases WAZ score by 0.043, 0.095 and 0.1 S.D., respectively. We also find that a 1 SD increase 

in prenatal temperature and precipitation anomaly decreases the odds of child being stunted by 

15.3% and increases the odds of child being stunted by 4.5% respectively. Similar results were 

found in case of child birthweight parameters. In case of precipitation anomalies experienced by 

the child during various stages of pregnancy, we find a reduction in birth weight and increase in 

odds ratio of the child being low birth weight. In comparison, the effects of temperature anomaly 

on birth weight seems to be less pronounced or even opposite in some cases (meaning positive 

effects of heat exposure on child birthweight). Overall, we find in-utero period to be the most 

vulnerable time of climate exposure and conclude that with projections of strong climate 

extremities health and nutritional interventions should be targeted within pregnant mothers and 

infants. 

Finally, we interreact different socio-demographic groups with climate anomalies to 

identify the level of vulnerabilities and ways we can protect and improve child health conditions. 

The set of results suggests that child health outcomes not only depend on climate exposures but 

also on the existence and severity of socio-demographic vulnerabilities. Children born in 

economically and socially disadvantaged households seem to suffer the most from the effect of 

climate variations. We also identify mechanisms like promoting mother’s education, improving 

hygiene and sanitation awareness, providing access to drinking water within household premise 

and improved toilet infrastructure, and investment in human capital as adaptive measures that can 

strengthen resilient capacity of at-risk groups against the detrimental effects of climate anomalies. 

We acknowledge several potential limitations in our study which could not be accounted 

because of restrictions in data availability and choice of empirical modelling. First the use of cross-
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sectional data limits our ability to directly establish a causal relationship between child health 

variables and climate anomalies. Second, the selectivity issue because of in-utero mortality and 

selection into parenthood. In-utero mortality refers to the possibility that climate variabilities 

become so extreme such that it causes in-utero mortality which then excludes such children from 

our estimation sample. Similarly, selection into parenthood refers to the possibility that educated 

parents may choose the option of delaying conception till the projected climate extreme scenarios 

pass away. We were not able to address these issues because of our data restriction (i.e., DHS 

dataset does not distinguish between stillbirth, miscarriage and abortion or reasons for terminated 

pregnancies) or because of social desirability bias which may exist during reporting of fetal loss. 

Finally, all our control variables are self-reported during the DHS survey which means there is 

possibility of mis-reporting bias in our sample which we are not able to control.  

Future research can build upon this work by expanding the temporal dimension of the 

calculated climate anomalies. In this study, we look at climate anomalies calculated at monthly 

period but given the availability of suitable data it would be interesting to see the effects estimated 

at daily climate anomalies. Likewise, it is quite hard to obtain data on direct (heatwaves) and 

indirect (food insecurity, infectious disease) effects of climate change based on the DHS dataset, 

however a study to identify these effects would also be interesting. Finally, given that we 

concentrated on only one country, it will also be interesting to see how effective intervention 

measures have been to mitigate the effects of climate variation on child health outcomes. 
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APPENDIX 

Table A1. List of country and each wave of DHS survey  

Country Survey year Country  Survey year 
Child nutritional indicator Child birthweight indicator 

Bangladesh 2000 Bangladesh 2018 
2004 India 2015 
2007 2020 
2011 Nepal 2001 
2014 2006 

India 2015 2011 
2020 2016 

Nepal 2001 Pakistan 2006 
2006 2017 
2011  
2016 

Pakistan 2017 
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Table A2. Regression result for control variables  

Variable HAZ (OLS) Birthweight (OLS) 
Demographics-Child 
Child is a girl (ref=male) 0.001 -63.145*** 
 (0.015) (6.117) 
Childs’ age (month) -0.026*** -1.141** 
 (0.008) (0.462) 
Child’s age squared 0.000*** 0.023*** 
 (0.000) (0.008) 
Child’s birth order -0.151*** 19.511*** 
 (0.017) (5.486) 
Demographics-Mother 
Age of mother 0.067*** 21.148*** 
 (0.012) (3.604) 
Age of mother squared -0.001*** -0.338*** 
 (0.000) (0.062) 
Marital status  0.102* 26.987 
 (0.062) (17.760) 
Education status of mother (ref= no formal education) 
Primary 0.074*** 5.896 
 (0.022) (7.434) 
Secondary 0.235*** 35.248*** 
 (0.020) (6.024) 
Higher 0.450*** 91.243*** 
 (0.033) (8.912) 
Employment status 0.038 -5.295 
 (0.030) (11.135) 
Children ever born 0.067*** 5.075 
 (0.016) (5.563) 
Household characteristics 

Total household members 0.008*** 0.009 

 (0.003) (0.922) 
Number of children under 5 
in household -0.111*** 5.753* 

 (0.012) (3.398) 
Male household head 0.011 5.785 
 (0.018) (5.031) 
Rural residence -0.007 19.675*** 
 (0.021) (6.004) 
Wealth quantile of the family (ref=poorest) 
Poorer 0.170*** 20.907*** 
 (0.020) (6.750) 
Middle 0.301*** 54.382*** 
 (0.024) (7.482) 
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Richer 0.459*** 73.468*** 
 (0.028) (8.125) 
Richest 0.675*** 128.293*** 
 (0.034) (10.274) 
Observations 81,211 87,635 
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Table A3. Results for range specific climate anomalies 

Variability 
range 

Temperature Precipitation 

Trimester 
zero 

1st 
trimester 

2nd 
trimester 

3rd 
trimester 

Trimester 
zero 

1st 
trimester 

2nd 
trimester 

3rd 
trimester 

<-1.5𝜎 -16.18 7.659 -11.76    -12.45   -68.56   -137.4    -33.80    -0.866 

(-0.60) (0.35) (-0.40)   (-0.78)   (-1.07) (-1.47)   (-0.41) (-0.01)   
[-1.5 𝜎, -
0.5 𝜎) 

-19.09   44.94 22.14   26.57   3.790    -20.36 -31.85   -94.84 

(-1.05) (2.52) (1.41) (1.50) (0.15) (-0.31) (-0.76) (-3.98) 
[-0.5 𝜎, 
0.5 𝜎] 

-5.556   15.80   -30.56   -21.14   -24.43    -69.68    12.91    -18.63    

(-0.19) (0.94) (-1.01)    (-1.76) (-1.17)   (-1.90) (0.71) (-1.17) 
(0.5 𝜎, 
1.5 𝜎] 

25.31   0.872 37.31   -9.610    53.15* 26.91 -0.171    -4.234    

(1.23) (0.05)   (1.37)   (-0.34) (1.24) (0.83) (-0.00) (-0.18)   
>1.5 𝜎 -56.28* -51.50*  -0.788    -51.95   -17.59   -23.95 -30.52    7.254 

(-1.33)   (-1.18) (-0.02)   (-1.35) (-0.58) (-1.29) (-1.46) (0.36) 
 

Estimates in Table A3 compare the effect of five different classes of climate anomalies on 

child birthweight. Though, significance results were not quite evident, generally they point out that 

stronger and positive anomaly (i.e., 1.5 deviation above the mean) have more severe effect on 

birthweight variable. Similar analysis could not be conducted for nutritional indicator variables 

because of lack of needed diversification among climate anomalies.  
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Table A4. Sensitivity analysis for birthweight results 

Variable 

OLS/coef. Logit/OR 

1 
Birth wt. 

2 
Mother’s 
memory 

3 
Health 
Card 

4 
Low 

birth wt. 

5 
Mother’s 
Memory 

6 
Health 
Card 

Prenatal 
precipitation 
anomaly 

-30.322 2.819 -82.655* 1.142* 1.037 1.297** 

 (19.056) (24.632) (32.186) (0.074) (0.090) (0.134) 
Prep. anomaly 
in zero trimester -0.857 -5.952 7.151 1.025* 1.044* 1.002 

 (4.204) (5.181) (7.150) (0.015) (0.020) (0.022) 
Prep. anomaly 
in first trimester 8.707 -5.218 30.989* 0.947* 0.976 0.914* 

 (8.012) (10.281) (13.218) (0.026) (0.035) (0.039) 
Prep. anomaly 
in second 
trimester 

-0.273 -14.116 23.520 0.996 1.034 0.950 

 (7.660) (9.643) (12.982) (0.026) (0.036) (0.039) 
Prep. anomaly 
in third trimester 6.734 3.924 7.862 0.977 1.008 0.940** 

 (5.443) (6.884) (9.491) (0.019) (0.026) (0.028) 
Prenatal 
temperature 
anomaly 

-4.244 30.450 -97.644 1.009 0.971 1.131 

 (26.305) (30.140) (51.521) (0.097) (0.116) (0.188) 
Temp. anomaly 
in zero trimester -0.259 -8.186 20.011 1.023 1.010 1.029 

 (7.993) (9.823) (13.751) (0.028) (0.035) (0.046) 
Temp. anomaly 
in first trimester 12.158 -3.584 52.427* 0.973 0.977 0.938 

 (12.373) (14.961) (22.854) (0.043) (0.054) (0.070) 
Temp. anomaly 
in second 
trimester 

1.620 -16.798 51.084* 1.006 0.992 0.994 

 (11.991) (14.424) (22.231) (0.044) (0.054) (0.074) 
Temp. anomaly 
in third trimester 3.477 -8.978 36.699* 0.977 0.956 0.984 

 (9.441) (11.750) (16.315) (0.032) (0.040) (0.053) 
Observation 87635 51902 35733 87635 51902 35733 

Note: We test for another model by using different sets of fixed effects. We replace birthyear and 

month with interview year with the reasoning that climate exposure before birth should not be 

affected by after birth factors. 
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Table A5. Sensitivity analysis for nutritional indicator results 

Variables 
HAZ 
(1) 

WAZ 
(2) 

WHZ 
(3) 

Stunti
ng 
(4) 

Severe 
Stunti

ng 
(5) 

Under
weight 

(6) 

Severe 
Under
weight 

(7) 

Wasti
ng 
(8) 

Severe 
Wasti

ng 
(9) 

OLS coef. Odds ratio 
Prenatal 
temperature 
anomaly 

0.064** 0.065**
* 0.040 1.008 0.846**

* 0.932** 0.821**
* 1.021 1.075 

 (0.024) (0.019) (0.021) (0.028) (0.030) (0.025) (0.031) (0.041) (0.059) 
Temperatur
e anomaly 
in first year 
of life 

-0.140 0.168 0.346* 0.965 0.864 0.754 0.715 1.489 0.416** 

 (0.150) (0.098) (0.136) (0.160) (0.185) (0.124) (0.171) (0.350) (0.140) 
Temperatur
e anomaly 
in second 
year of life 

-0.082 -0.163 -0.140 1.459* 1.068 1.146 1.283 1.249 0.472* 

 (0.129) (0.094) (0.120) (0.218) (0.207) (0.175) (0.263) (0.265) (0.148) 
Prenatal 
precipitatio
n anomaly 

-0.013 -0.039* -0.048* 0.992 1.041 0.987 1.124** 1.004 0.973 

 (0.022) (0.018) (0.020) (0.026) (0.034) (0.026) (0.041) (0.036) (0.048) 
Precipitatio
n anomaly 
in first year 
of life 

0.012 -0.051 -0.067 1.123 0.967 0.992 1.053 1.161 1.412** 

 (0.060) (0.043) (0.050) (0.071) (0.078) (0.062) (0.099) (0.103) (0.176) 
Precipitatio
n anomaly 
in second 
year of life 

0.033 -0.084* -
0.124** 1.073 1.054 1.116 1.131 1.111 1.188 

 (0.060) (0.042) (0.048) (0.065) (0.079) (0.067) (0.096) (0.093) (0.135) 

Observation 
81211 81211 81211 81211 81211 81211 81211 81211 81211 

Note: We test for a different model with fixed effects set at interview year of the compiled survey. 
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Figure A1. Country wise survey clusters in DHS  

 

    

 

 

 

 

 

 

Legend:               India                 Pakistan                Bangladesh                 Nepal 


