
Robust Autocovariance Change Point Analysis

for Heavy-tailed Time Series

by

Kaiwen Han

(Under the Direction of Yuan Ke)

Abstract

This dissertation studies autocovariance change point problems in heavy-tailed and high-dimensional

time series under both offline and online scenarios. In the first project, we consider the offline multiple au-

tocovariance change point detection problems in high-dimensional and heavy-tailed time series. First, we

introduce an element-wise truncated autocovariance estimator for high dimensional and nonstationary

time series. Next, we introduce a moving sum statistic and a binary segmentation segmentation algo-

rithm to detect the number and locations of change points. Detection consistency is guaranteed under

mild moments, dependence and signal-to-noise ratio conditions. Simulation study demonstrates superior

performance of the proposed approach. The second project of this dissertation involves autocovariance

change point problems in a online manner. Besides the element-wise truncated estimator, we introduce a

spectrum-wise truncated estimator of which the nonasymptotic property is provided. Next, we construct

CUSUM-type statistics with the two estimators to run through the data sequence as new observation

arrives concurrently and detect the change point as soon as it occurs. We show that, under mild moments,



dependence and signal-to-noise ratio conditions, with appropriate threshold of certain order, false alarm

rate of the scheme can be controlled, and detection delay is upper bounded with high probability. We

introduce a more efficient algorithm with linear computational cost, which preserve the same theoretical

guarantees as before. In addition, we study the delay and provide a minimax lower bound from indepen-

dent Gaussian setting. The proposed online approach is evaluated by two experiments in the end. The

last project is concerned about application of proposed change point detection approach to pandemic

time series data. We conduct retrospective analysis with offline method and identify several change points

which might relate to several important events over the course of Covid-19 pandemic. Besides that, we

apply the online method in the monitoring case and provide a hybrid model with the assistance of change

points to improve the forecasting. Results shows the proposed model moderately improves the accuracy

and dramatically boosts the efficiency.

Index words: autocovariance change point, offline detection, online detection, heavy-tailed time

series
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Chapter 1

Introduction

1.1 Overview

Over the past decade, time series analysis has become increasingly important and been widely applied in

various aspects of science and industry. Time series is a sequence of observations taken in time order,

measuring the behavior of the subject over time. Due to some internal or external events, the property of

the series may abruptly change. Change point detection (CPD) is a common task in time series analysis

and signal processing. It is to identify the times when the underlying structure of the observed data

changes. The fundamental assumption of CPD is that the observed process is stationary between the

change points (Truong et al., 2018).

The discovered change point may signal valuable retrospective information for researchers to analyze

or raise alarm on the monitored system for timely reaction. CPD methods have extensive applications in

various domains. Some examples are shown as follow.
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Finance. CPD has been widely applied in financial market time series such as stock and foreign ex-

change market (Lynch and Mestel, 2019; Liu et al., 2010; Takayasu, 2015).

Climate Analysis. CPD methods are applied to find discontinuities in the climatological records such

as temperature and precipitation (Reeves et al., 2007; Ducré-Robitaille et al., 2003; Itoh and Kurths,

2010).

Speech Recognition. Change points are detected for online environment learning in automatic speech

recognition and audio segmentation, which is an essential preprocessing step in audio processing applica-

tions (Rybach et al., 2009; Harchaoui et al., 2009; Chowdhury et al., 2012).

Medical Analysis. Online medical condition monitoring utilize CPD to evaluate the patient’s health.

For examples, heart rate and electroencephalogram (EEG) monitoring (Ping et al., 2006; Gao et al., 2018).

Brain image analysis Functional magnetic resonance imaging (fMRI) is now a well-established tech-

nique for studying the brain. CPD can help infer connectivities in the brain and model the onset times and

durations of underlying psychological activity when they are unknown(Lindquist et al., 2007; “Detecting

changes in the covariance structure of functional time series with application to fMRI data”, 2021).

In general, change point detection methods can be divided into two branches: ’online’ and ’offline’.

Offline methods focus on identifying the location and the number of change points in a retrospective

manner when the entire series is available. The change points fond often contain meaningful information

and represent some events of interest, which are valuable for practitioners to interpret and investigate.

On the other hand, Online techniques are applied in a streaming setting where they run concurrently

with each data point acquired. The objective is to detect the change point as soon as it occurs for prompt

reaction while keeping the chance of falsely triggering alerts as small as possible.
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In the next two sections, we will briefly introduce a number of popular offline and online CPD meth-

ods in the last few decades.

1.2 Introduction to offline change point detection

In this section, we review important works in the literature regarding change point detection in the offline

setting. Consider a Rd-valued random process {Yt}Tt=1 where d ≥ 1. We say it is piecewise stationary

if the statistical property of the series change at some unknown times t0 < t1 < t2 < . . . tK < tK+1,

where t0 = 1 and tK+1 = T . Consequently, thoseK change points will divide the sequence intoK + 1

segments, with the ith segment Y(ti−1+1):ti . The offline change point detection consists in estimating the

locations ti, where i = 1, 2, . . . , K , and the number of change pointsK , if it is unknown.

In the context of model selection, the task of identifying multiple change points can be viewed as deter-

mining the best segmentation T according to some criterion V (T ) that needs to be minimized (Truong

et al., 2018). Here the offline detection problem can be framed as the following discrete optimization

problem

min
T
V (T , Y ) + P (T ), (1.2.1)

where P (T ) can regarded as a penalty on the number of change points |T | = K , measuring the com-

plexity of a segmentation, and it equals zero whenK is known. V (T ) can be defined as the sum of costs

for a particular segmentation

V (T , y) =
K∑
i=0

C(Y(ti−1+1):ti),
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where K is the number of change points, and C(·) is a cost function measuring the goodness-of-fit of

each segment.

In terms of cost function, negative log likelihood is a common choice, especially for the distributional

change in the normally distributed data (Horvath, 1993; Pein et al., 2017; Keshavarz et al., 2018). When

detecting the change in mean, it is ubiquitous to use the quadratic loss function (Sen and Srivastava, 1975;

Yao and Au., 1989; Lavielle and Moulines, 2000). It is equivalent to minimise the negative log likelihood

when assuming i.i.d Gaussian with unchanged variance. Due to the fact that squared-error loss suffers

from outliers, Fearnhead and Rigaill, 2019 adapt the idea of robust estimation and propose to use absolute

error loss, Huber loss and bi-weight loss to estimate the change points in the presence of outliers.

The cumulative sum (CUSUM) has been widely adopted in offline change point detection. In general

it can also be viewed as a way to construct the objective function V (T , Y ) in 1.2.1 although it is not often

connected with cost function. Many efforts have been made on this to deal with both first and second order

change. Inclan and Tiao, 1994 use cumulative sums of squares to identify multiple changes in variance

in the sequence of independent variables. J. Chen and Gupta, 1997 construct a CUSUM-type statistic

based on Schwarz information criterion and study the variance change in the sequence of independent

Gaussian variables. Cho, 2016a propose the double CUSUM statistic which aggregates the signals in

multivariate series to detect mean changes in panel data. Jirak, 2015 introduced coordinate-wise CUSUM

statistic for testing mean in high dimensional dependent time series data. Zhang and Lavitas, 2018 propose

an unsupervised self-normalized test statistic for testing changes in mean and and other quantites such

as median. They use a function of CUSUM process as self-normalizer to avoid the direct estimation of

asymptotic variance.
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Moreover, non-parametric methods have appeared in the literature in the sense that they do not

impose any parametric assumptions on the distribution of the series. Zou et al., 2014) develop a non-

parametric multiple change point detection procedure based on the empirical cumulative distribution.

Lung-Yut-Fong et al., 2015 propose rank-based homogeneity test statistic to compare multiple samples and

apply it on the change point detection problem. S. Li et al., 2015a adopt the idea of B-test and construct

two computationally efficient kernel-based M-statistic using the maximum mean discrepancy to compare

the difference between the right window and re-sampled left window. Shi et al., 2017 consider the change

point in distribution based on the minimal spanning trees and design a Bayesian-type running statistic

with the shortest Hamiltonian path.

Generally speaking, there are two major approaches to solve the minimization problem 1.2.1, exact

search and approximate search. Exact search aims to find the optimal solution of problem 1.2.1. A naive

example is to find the exact solution by exhaustively searching all possible segmentations. Thanks to the

dynamic programming (Bellman & Dreyfus, 1962), several exact search algorithms have been designed over

the past decade. Jackson et al., 2005 introduce the Optimal Partitioning (OP) which first considers the cost

for the last segment according to the last change point and then minimizes the cost of the segmentation

given the last change point. The time complexity of this recursion is or orderO(T 2). Killick et al., 2012

propose the Pruned Exact Linear Time (PELT) method which increase the computational efficiency by

introducing a pruning step within the OP algorithm. The expected CPU cost of PELT is shown to be

bounded above byLT for some constantL <∞ under certain assumptions while the optimality of the

solution remains unchanged. Functional Pruning Optimal partitioning (FPOP) (Maidstone et al., 2017)

is another updated version of OP, which uses functional pruning to reduce the computational cost and is

shown to prune more and therefore works more efficiently than PELT.
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When the computational complexity of exact search methods for detecting change points is too high

for a particular application, approximate methods can be used instead.

Binary segmentation (BinSeg) (Scott & Knott, 1974) is arguably the most popular search algorithm in

the change point literature. The idea is to iteratively apply single change point detection method on sub-

sequences. BinSeg first searches for the change point with the largest signal. The series is then split into

two sub-sequences, and the search is repeated on the new sequences. This procedure will continue until

certain stopping criterion is met. The computational cost of BinSeg is of orderO(T log T ). Thanks to its

low complexity and well-established theory, BinSeg has been widely adopted in the detection procedure

(Bai, 1997; Olshen et al., 2004; Niu and Zhang, 2012; Cho, 2016a; Jirak, 2015 ; M. Yu and Chen, 2021; Wang

et al., 2020). However, BinSeg may not always be as accurate or reliable as optimal methods. Jandhyala

et al., 2013 argues that the change points tends to be inaccurately identified in the presence of short spacing

between them. The following approach can mitigate this issue.

A well-known extension to BinSeg is Wild Binary Segmentation algorithm (WBS) (Fryzlewicz, 2014).

In short, the single change point detection in each iteration is performed on a number of random sub-

intervals of which the starting and ending indices are drawn (independently with replacement ) uniformly

from the the parent interval. WBS is shown to be effective when the change points are close and jump

magnitude of the signal is small.

In the context of the machine learning, one possible way to approach the offline CPD is to frame

it as a binary classification problem, where one class represents all possible change points and the other

class includes all sequences in-between the change points. Some interpretable supervised models such

as support vector machines and logistic regression (KD et al., 2015) can help address this problem if

informative features are available. However, such a learning problem will become more complicated if a
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large number of possible types of change point exist and may also suffer from class imbalance problem

(Cook & Krishnan, 2015). From a different perspective, the problem of change point detection can be

considered as a clustering problem with a unknown number of clusters, such that observations within

clusters are identically distributed. One famous clustering approach used for change point detection

combines sliding window and bottom up methods into an algorithm called SWAB (Sliding Window and

Bottom-up) (Keogh et al., 2001).

1.3 Introduction to online change point detection

Most of the change point literature is centered around the offline or posterior analysis on the observed data

sequence, as introduced in the preceding section. Despite its long history, online change point detection

algorithms has grown in popularity over the last decade and has been applied in many situations due to the

dramatic development in technology. Online or sequential change point analysis involves monitoring the

sequence as each data point arrives successively and conducting quickest detection once the underlying

statistical structure of the monitored sequence has changed. A false alarm occurs when a change point is

identified before it actually happens. The goal of sequential change point detection is to detect the change

point as soon as it occurs while keeping the probability of raising a false alarm small. In this section, we

review important works in online methods.

The earliest research on online or sequential change point detection can trace back to Shewhart’s

control chart (Shewart, 1931) and Page’s cumulative sum or CUSUM (Page, 1954). They were originally

designed from the standpoint of quality control. Typically, at a production line, people tend to observe

the output and assume that a particular feature fluctuates within a specific control limit. However, there
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are instances where this feature unexpectedly starts to fluctuate outside of that control limit, possibly due

to a malfunction of the production equipment.

CUSUM is arguably the most prominent and established statistic in the online change point literature

and many variants or extensions have been developed. Suppose we are monitoring a sequence of i.i.d

univariate Gaussian variables {Xt} with mean µ and unit variance and see if the mean changes or not.

We define the partial sum S(s, t) =
∑t

i=s(xi − µ). Based on that, Kirch and Weber, 2018 pointed out

several commonly used statistics.

CUSUM
1√
n
S(0, t)

Page’s CUSUM
1√
n
max1≤s≤t−1S(s, t)

MOSUM
1√
w
S(t− w, t)

mMOSUM
1√
⌊kt⌋

S(t− ⌊kt⌋, t)

MOSUM was first considered in Eiauer and Hackl, 1978 and studied in Horváth et al., 2008, Aue et al.,

2012 and Avanesov and Buzun, 2021. Its modified version mMOSUM was proposed by Z. Chen and Tian,

2010. The scaler is used to standardize the variance of S(). Usually we monitor the statistic value of data

stream and declare a change point if it exceeds some pre-determined threshold. The threshold is often a

function of the length of observed sequence so far.

Mean change is a fundamental topic that researchers focus heavily on. Mei, 2010 focuses on mean

change in multiple data streams by looking at the sum of local CUSUM statistics. Aue et al., 2012 develop
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the theory the MOSUM statistic for monitoring univariate mean change and focus on the limiting distri-

bution for the delay time. Y. Yu et al., 2020 study the CUSUM-type statistic for univariate mean change

of which the detection delay is nearly minimax optimal while controlling the false alarm rate. Romano

et al., 2021 propose a efficient online algorithm using functional pruning CUSUM statistics of which

the expected time complexity isO(log T ). Gösmann et al., 2022 consider the weighted CUSUM-type

statistic to learn mean change in high-dimensional time series with temporal and spatial dependence. Y.

Chen et al., 2022 study the change in mean of high-dimensional Gaussian data by utlizing likelihood ratio

test and aggregating statistics across different scales and coordinates.

In contrast to the extensive research on mean change, second-order change is uncommonly studied in

the literature. Choi et al., 2008 propose non-parametric spectral-based methods to identify change in the

autocorrelation structure by looking at the change in the Fourier or wavelet-based spectrum. Avanesov

and Buzun, 2021 construct a MOSUM statistic for testing change in covariance matrix and propose a

non-standard bootstrap scheme for selecting threshold. L. Li and Li, 2019 propose a stopping rule for

change in covariance structure of M-dependent time series and derive explicit expression for detection

delay.

When monitoring a data sequence, which characteristics has shifted is in fact unknown to us. This

will bring issues if we are not specifically aware of how to deal with the data at hand. Fortunately, many

approaches have been developed that can monitor more than one characteristic or general distributional

change. Kawahara and Sugiyama, 2009 provided a detection algorithm based on direct density-ratio

estimation that can be computed very efficiently in an online manner. S. Li et al., 2015b constructed a

B-statistic based on maximum mean discrepancy that can identify change points in various settings. H.

Chen and Zhang, 2015 developed graph-based methods to measure the similarity between the left and
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right windows around the candidate change points. H. Chen, 2019 propose a two sample test based on

k-nearest-neighborhoods. They both can be applied to sequences of multivariate observations. Bayesian

Online Change Point Detection (BOCPD) proposed by Adams and MacKay, 2007 utilize a recursive

message passing algorithm to evaluate the posterior probability of run length given the data sequence.

Saatchi et al., 2010 use the BOCPD algorithm in Gaussian process and allow the algorithm to learn the

hyper parameters which have to be manually chosen before.

Other than the common time series, sequential change point detection has been adopted in many

other models in the recent year of study. Chu et al., 1996 develop the CUSUM statistic of recursive

residuals and the parameter fluctuation to detect change of parameters in linear regression. Marangoni-

Simonsen and Xie, 2015 develop three algorithms for identifying the emergence of a community in large

networks. Keshavarz et al., 2020 focus on the shift in the precision matrix of high-dimensional sparse

Gaussian graphical models in the sequential setting. Non-parametric approaches such as graph-based

methods also appeared in recent years of study. Dubey et al., 2021 consider online change point detection

in dynamic networks with missing values.

1.4 Organization of this dissertation

The flow of this proposal is as follow. In this chapter, we introduce the background of change point

detection and review existing research work in the literature. In chapter 2, we proose an offline autocovari-

ance change point detection approach. We construct a moving sum statistic with element-wise truncated

autocovariance estimator and apply binary segmentation to detect the number and locations of change

points. The consistency is shown under mild moments, dependence and signal-to-noise ratio condition.
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In chapter 3, we consider the online monitoring scenario and propose CUSUM-type statistic with both

element-wise truncated autocovariance and spectrum-wise truncated estimators. In addition, chapter 4,

pandemic time series data related to Covid-19 mortality is investigated using both offline and online tech-

niques. We conduct retrospective analysis on state-level mortality data and study detected change points.

Under online monitoring setting, we use change points in a sequential manner to facilitate the forecasting

of time series.

1.5 Notation

LetZ,N andR denote the set of integers, natural numbers and real numbers, respectively. Let |S| denotes

the cardinality of a set S. For n1, n2 ∈ N and n1 ≤ n2, we denote [n1, n2] = {n1, n1 + 1, . . . , n2}.

The superscript ⊺ denotes the transpose of a matrix or a vector. Given a vector x = (x1, . . . , xd)
⊺ ∈ Rd,

we write the vector lq-norm as |x|q =
(∑d

j=1 |xj|q
)1/q for 1 ≤ q < ∞ and the vector l∞-norm as

|x|∞ = maxj∈[d] |xj|. Let Sd−1 = {x ∈ Rd : |x|2 = 1} denotes the d-dimensional unit sphere.

Given two vectors x,y ∈ Rd, we write the inner product ⟨x,y⟩ =
∑d

j=1 xjyj . Given a matrix A =(
Akl

)
k∈[d1];l∈[d2]

∈ Rd1×d2 , if d1 = d2 = d, tr(A) and det(A) denote the trace and the determinant

of A, respectively. If A is a symmetric matrix, λmax(A) and λmin(A) denote the largest and smallest

eigenvalues of A, respectively. The spectral-norm, Frobenius-norm, 1-norm,∞-norm and max-norm

of A are respectively ∥A∥F =
√

tr(A⊺A), ∥A∥1 = maxl
∑d

k=1 |Akl|, ∥A∥∞ = maxk
∑d

l=1 |Akl|

and ∥A∥max = maxk,l |Akl|. For a sequence of matrices {Ai}i∈S with S ⊆ Z, we write Ai,(kl) as the

(k, l)-th entry of matrix Ai. Let Id denote the d-dimensional identity matrix. For an R-valued random

variable X with mean µ and variance σ2, let kurt(X) = E[(X − µ)4]/σ4 be the kurtosis. For q > 0,
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we write the Lq-norm of X as ∥X∥q =
(
E[|X|q]

)1/q. For a ∈ R, let ⌊a⌋ = max{z ∈ Z, z ≤ a} and

⌈a⌉ = min{z ∈ Z, z ≥ a}. For a, b ∈ R, let sign(a) be the sign of a, and denote a ∧ b = min(a, b)

and a ∨ b = max(a, b). For two positive values a and b, we write a ≍ b (resp. a ≲ b) if there exists a

positive constantC such thatC−1 ≤ a/b ≤ C (resp. a/b ≤ C). LetC,C1, C2, . . . be positive absolute

constants which may be different in each place.
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Chapter 2

Autocovariance change point

analysis for high-dimensional

time series

We establish a framework to study multiple autocovariance change-points problems in high-dimensional,

piece-wise stationary, and heavy-tailed time series. First, we propose an element-wise truncated autoco-

variance estimator for high dimensional and nonstationary time series. We prove the estimator enjoys

nice nonasymptptic and asymptotic properties when the time series data exhibits nonlinear temporal

dependency and heavy-tailedness. Next, we introduce a moving sum statistic and a binary segmenta-

tion algorithm to consistently detect the number and locations of autocovariance change-points in high-

dimensional time series. The detection threshold in the algorithm is selected by a block-wise Gaussian

multiplier bootstrap method. Further, we study the inference for the existence of a change-point around a

pre-specified location and false discovery rate control for multiple autocovariance change-points detection.
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In Section 2.1, we illustrate the setup for multiple autocovariance change-points problems. In Section

2.2, we introduce a tail-robust autocovariance matrix estimation method for nonstationary time series

and study its properties. In Section 2.3, we propose a multiple autocovariance change-points detection

algorithm and a data-driven threshold selection strategy. In Section 2.4, we discuss several inference

problems with asymp- totic analysis. In Sections 2.5 and 2.6, we use simulation experiments to assess the

empirical performance of the proposed methods.

2.1 Problem Setup

We define {Yt}Tt=1 as an Rd-valued time series of the following form

Yt = Gt(Ft), (2.1.1)

whereGt(·) =
(
gt1(·), gt2(·), . . . , gtd(·)

)⊺ is anRd-valued measurable function, andFt = σ(. . . , ϵt−1, ϵt)

is a filtration with {ϵt}t∈Z being a sequence of i.i.d. random variables. In this paper, we allow {Yt}Tt=1

to follow various heavy-tailed distributions. Besides, we would like to emphasize that the functionGt is

time-dependent, thus the representation (3.1.1) covers a large amount of nonstationary time series models,

including the second-order piece-wise stationary model that we will study in this paper. The represen-

tation (3.1.1) can also be regarded as a generalization of the stationary process Ỹt = G(Ft) with the

measurable functionG(·) being independent of time.

Let {ϵt−k+1, . . . , ϵt} = ∅ when k ≤ 0. We define Yt,{t−k} = Gt(Ft,{t−k}) as a coupled version of

Yt, whereFt,{t−k} = σ(. . . , ϵt−k−1, ϵ
′

t−k, ϵt−k+1, . . . , ϵt) and ϵ′t−k is an i.i.d. copy of ϵt−k. To measure

the dependence of {Yt}t∈Z, we define the functional dependence measure in Wu and Zhou, 2011 for a
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nonstationary process as

δk,q,j = sup
t
∥Yt,j − Yt,{t−k},j∥q, for k ≥ 0, q ≥ 1, and j ∈ [1, d],

whereYt,j is the j-th component ofYt. As a generalization of the classical functional dependence measure

Wu2 for stationary time series, δk,q,j uniformly quantifies the lag-k dependence by the moment of order q.

As the lag k increases, δk,q,j would decrease in general, and we will further impose dependence conditions

by restricting the decay rates of δk,q,j with respective to k.

Next, we introduce a general second-order piece-wise stationary model for {Yt}Tt=1. For the simplicity

of presentation, we assume E[Yt] = 0 for 1 ≤ t ≤ T . Let K ∈ N be the number of underlying

change-points, and the change-points {tk}Kk=1 satisfy

1 = t0 < t1 < t2 < · · · < tK < tK+1 = T.

Here, t0 and tK+1 are defined only for notational convenience. For a nonnegative integer ℓ, we define the

lag-ℓ autocovariance matrices as Σℓ(t) ≡ E[Yt−ℓY
⊺
t ] ∈ Rd×d. Note that for any ℓ ≥ 0, k ∈ [1, K + 1]

and t ∈ [tk−1 + ℓ, tk], we have Σℓ(t) = Σ⊺
−ℓ(t− ℓ). Without loss of generality, we only consider Σℓ(t)

with ℓ ≥ 0 throughout this paper. We say {Yt}Tt=1 is second-order piece-wise stationary, if the following

three conditions are satisfied:

(a) {Yt}tkt=tk−1+1 is a stationary process, for any k ∈ [1, K + 1];
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(b) Σℓ(t) depends on t such that

Σℓ(t) =



Σ1
ℓ , t ∈ [1 + ℓ, t1],

Σ2
ℓ , t ∈ [t1 + 1 + ℓ, t2],

. . . ,

ΣK+1
ℓ , t ∈ [tK + 1 + ℓ, T ],

(2.1.2)

where Σk−1
ℓ ̸= Σk

ℓ for any k ∈ [2, K + 1].

2.2 Element-wise truncated estimator

Let {Yt}Tt=1 be a centered Rd-valued time series following the representation (3.1.1). For ℓ ≥ 0, denote

Iℓ = [ℓ+ s, e] ⊆ [1, T ] with s, e ∈ [1, T ] and e− s ≥ ℓ. For any t ∈ Iℓ, the lag-ℓ outer product of Yt

is defined as

Ht,ℓ = Yt−ℓY
⊺
t =

(
Ht,ℓ,(jk)

)d
j,k=1

. (2.2.1)

Define the truncation function ψτ : R 7→ R as

ψτ (u) = sign(u)(|u| ∧ τ), (2.2.2)
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where τ > 0 is a robustification parameter. It is easy to see that ψτ (u) is Lipschitz continuous and the

first order derivative of the Huber loss function defined as follows

ℓτ (u) ≡


u2/2, if |u| ≤ τ

τ |u| − τ 2/2 if |u| > τ

, u ∈ R.

Using the truncation operator ψτ (·), the truncated estimator of E[Ht,ℓ,(jk)] is defined as

γ̂Iℓ,(jk) =
1

|Iℓ|
∑
t∈Iℓ

ψτℓ(Ht,ℓ,(jk)), for 1 ≤ j, k ≤ d.

By collecting the element-wise truncated estimators, the tail-robust lag-ℓ autocovariance matrix estimator

is formed as

Σ̂Iℓ =
(
γ̂Iℓ,(jk)

)d
j,k=1

. (2.2.3)

Assumption 1. Suppose that the marginal fourth moment of {Yt}Tt=1 satisfies

ω4 ≡ max
1≤j≤d

sup
t∈Z
∥Yt,j∥4 <∞.

Assumption 2. There exists some ρ ∈ (0, 1), such that the coordinate-wise dependence adjusted fourth

moment of {Yt}Tt=1 satisfies

∥Y.∥4 ≡ max
1≤j≤d

sup
m≥0

ρ−m

∞∑
k=m

δk,4,j <∞.
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Theorem 2.2.1 (Nonasymptotic error bound). Let {Yt}t∈Z be a centered Rd-valued time series following

(3.1.1). Denote the long-run variance of the lag-ℓ cross term as

ν2H ≡ max
1≤j,k≤d

∞∑
l=−∞

sup
t∈Z

∣∣ cov (ψτℓ(Ht,ℓ,(jk)), ψτℓ(Ht+ℓ,ℓ,(jk))
)∣∣.

For any integer interval Iℓ = [ℓ + s, e] with |Iℓ| ≥ 2 and for any m > 0, we choose the robustification

parameter as

τℓ = Cτ
|Iℓ|1/2max{ω2

4, νH}
log(|Iℓ|)(m+ log d)1/2

, (2.2.4)

where Cτ > 0 is an absolute constant. Then, under Assumptions 7 and 8, we have νH < ∞ and the

following result holds with a probability at least 1− 2e−m,

∥Σ̂⋄
Iℓ∥max ≲

max{ω2
4, νH} log(|Iℓ|)(m+ log d)1/2

|Iℓ|1/2
,

where Σ̂⋄
Iℓ ≡ Σ̂Iℓ − |Iℓ|−1

∑
t∈Iℓ Σℓ(t).

2.2.1 Gaussian approximation

Theorem 2.2.1 has shown that, with a proper chosen robustification parameter τℓ, the element-wise

truncated autocovariance estimator possesses an exponential type error bound even for nonstationary

and heavy-tailed time series. In this subsection, we study the Gaussian approximation for our element-

wise truncated autocovariance estimator. To be specific, we aim to show that the limiting distribu-

tion of |Iℓ|1/2
∥∥Σ̂⋄

Iℓ

∥∥
max

can be approximated well by the l∞ norm of an Rd2 -valued Gaussian vector
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ZIℓ ∼ N(0,Γ). Moreover, Γ can be defined as a long-run covariance matrix, i.e.

Γ ≡ lim
|Iℓ|→∞

var
(
UIℓ
)
, (2.2.5)

where UIℓ is the vectorization (i.e. staking the columns into a vector) of |Iℓ|1/2Σ̂Iℓ . We give the Gaussian

approximation result in Corollary 2.2.1. The proof of Corollary 2.2.1 is a direct application of Theorem ??.

Next, we introduce and discuss several assumptions before stating the corollary. Note that instead of pur-

suing the minimum moment condition (θ ∈ (0, 1]) required by Theorem ??, the following assumptions

are based on θ = 1 for the simplicity of presentation.

Assumption 3. Suppose that the marginal sixth moment {Yt}Tt=1 satisfies

ω6 ≡ max
1≤j≤d

sup
t∈Z
∥Yt,j∥6 <∞.

Assumption 4. There exists some ρ ∈ (0, 1), such that the coordinate-wise dependence adjusted sixth

moment of {Yt}Tt=1 satisfies

∥Y.∥6 ≡ max
1≤j≤d

sup
m≥0

ρ−m

∞∑
k=m

δk,6,j <∞.

Assumption 5. There exists an absolute constant b > 0, such that

min
1≤j,k≤d

inf
S⊆[n]

1

|S|
var
(∑

t∈S

Yt−ℓ,jYt,k

)
> b.
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Remark 2.2.1. Assumption 3 requires finite coordinate-wise moments up to sixth order for all dimensions of

{Yt}Tt=1. Assumption 4 requires an exponential decay of dependence measure for all dimensions of {Yt}Tt=1.

Assumptions 3 and 4 are imposed on higher order moments of {Yt}Tt=1 and hence can imply Assumptions

7 and 8. Assumption 5 ensures the nondegeneracy of the partial sums of lag-ℓ cross products, which is a very

mild condition.

Corollary 2.2.1 (Gaussian approximation). Suppose Assumptions 3, 4 and 5 hold. LetC,Cτ > 0 be some

absolute constants. Assume that log d = C|Iℓ|β for some β < 1/19. Choose the robustafication parameter

τ = Cτ

[
|Iℓ|16/19(log d)−1

]1/3. Then, as |Iℓ| → ∞, we have that

sup
t∈R

∣∣∣P(|Iℓ|1/2∥∥Σ̂⋄
Iℓ(c)

∥∥
max
≤ t
)
− P

(∣∣ZIℓ
∣∣
∞ ≤ t

)∣∣∣ ≲ |Iℓ|−2(1/19−β)/3 → 0,

where ZIℓ ∼ N(0,Γ).

The Gaussian approximation result in Corollary 2.2.1 paves the way for the inference problems to

be discussed in Section ??. Note that the asymptotic covariance matrix Γ is usually unknown to us, and

hence need to be estimated. We propose a block-wise Gaussian multiplier bootstrap method in Section

2.5.1 to address this issue.

2.3 Tail-robust moving sum statistic

Suppose we observe {Yt}Tt=1 as a centered Rd-valued time series following the second-order piece-wise

stationary model defined in Section ??. Let c be a checkpoint of interest andW be a pre-specified window

size, such that 1 < c −W + 1 < c < c +W < T . Further, for a lag ℓ ≥ 0, we denote the integer
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intervals IBℓ (c) ≡ [ℓ+ c−W +1, c] and IAℓ (c) ≡ [ℓ+ c+1, c+W ] as two windows before and after

the checkpoint c, respectively. Follow the definition in (3.2.3), we can construct element-wise truncated

lag-ℓ autocovariance matrix estimators based on IBℓ (c) and IAℓ (c) as

Σ̂B
ℓ (c) ≡ Σ̂IB

ℓ (c) and Σ̂A
ℓ (c) ≡ Σ̂IA

ℓ (c).

Note that |IBℓ (c)| = |IAℓ (c)| = W − ℓ. Next, we define a lag-ℓ moving sum difference matrix at

checkpoint c as

Sℓ(c) =[(W − ℓ)/2]1/2
[
Σ̂B

ℓ (c)− Σ̂A
ℓ (c)

]
=[(W − ℓ)/2]1/2

[Σ̂B
ℓ (c)−

1

|IBℓ (c)|
∑

t∈IB
ℓ (c)

Σℓ(t)
]
−
[
Σ̂A

ℓ (c)−
1

|IAℓ (c)|
∑

t∈IA
ℓ (c)

Σℓ(t)
]

+ [2(W − ℓ)]−1/2
[ ∑
t∈IB

ℓ (c)

Σℓ(t)−
∑

t∈IA
ℓ (c)

Σℓ(t)
]

≡S⋄
ℓ(c) + S∗

ℓ(c), (2.3.1)

where S∗
ℓ(c) = [2(W − ℓ)]−1/2

[∑c
t=c−W+1+ℓ Σℓ(t) −

∑c+W
t=c+1+ℓΣℓ(t)

]
is the population counter-

part of Sℓ(c) and S⋄
ℓ(c) = Sℓ(c) − S∗

ℓ(c). Note that S⋄
ℓ(c) is a re-scaled difference of the estimation

errors before and after c. The expectation of S⋄
ℓ(c) is not zero in general as the element-wise truncated

autocovariance estimators are biased. However, the biases can be well controlled with a properly chosen

robustifcation parameter. The next corollary gives a nonasymptotic error bound for the max-norm of

S⋄
ℓ(c) under general heavy-tailed settings.
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Corollary 2.3.1 (Max-norm of re-scaled estimation error difference matrix). For any window sizeW such

thatW − ℓ ≥ 2 and for anym > 0, we choose the robustification parameter as

τℓ = Cτ
(W − ℓ)1/2max{ω2

4, νH}
log(W − ℓ)(m+ log d)1/2

, (2.3.2)

where Cτ > 0 is an absolute constant. Then, under Assumptions 7 and 8, we have νH < ∞ and the

following result holds with a probability at least 1− 2e−m,

∥∥S⋄
ℓ(c)
∥∥
max

≲ max{ω2
4, νH} log(W − ℓ)(m+ log d)1/2.

Provided the max-norm of S⋄
ℓ(c) is well controlled, we use the max-norm of Sℓ(c) to construct a

tail-robust lag-ℓmoving sum statistic at the checkpoint c, i.e.

Tℓ(c) ≡
∥∥Sℓ(c)

∥∥
max

. (2.3.3)

Note that Tℓ(c) is a non-negative quantity. When there is no change-point in IBℓ (c) ∪ IAℓ (c), we

have Tℓ(c) =
∥∥S⋄

ℓ(c)
∥∥
max

. On the other hand, when there is a significant enough autocovariance change

in IBℓ (c) ∪ IAℓ (c), we have that Tℓ(c) is dominated by
∥∥S∗

ℓ(c)
∥∥
max

which should be distinct from 0.

Therefore, a large value of Tℓ(c) provides some evidence that an autocovariance change occurs near c and

vice versa.
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2.4 Detection algorithm

In this subsection, we introduce a generic algorithm to detect all autocovariance chagnepoints that lie in

the observed time series. To begin with, we consider a simple scenario by assuming there exists only one

change-point for the lag-ℓ autocovariance of {Yt}Tt=1. In other words, for a reasonable W and some t1

satisfyW ≤ t1 ≤ T −W , we assume that

Σℓ(t) =


Σ1

ℓ , t ∈ [1 + ℓ, t1],

Σ2
ℓ , t ∈ [t1 + 1 + ℓ, T ].

(2.4.1)

Note that (2.4.1) is a simplified version of (2.1.2) with only one change-point. It is easy to check that,∥∥S∗
ℓ(c)
∥∥
max

is maximized at c = t1. Empirically, we slide the checkpoint c over the interval [W,T −W ].

For each c, we construct two windows IBℓ (c) and IAℓ (c), and compute the moving sum statistic Tℓ(c) =∥∥Sℓ(c)
∥∥
max

. Let t̂1 = argmaxc Tℓ(c) and χ > 0 be a suitable threshold to represent the minimal signal

strength. If Tℓ
(
t̂1
)
> χ, we estimate t1 by t̂1.

When there are multiple change-points, say K > 1 in (2.1.2), we propose a recursive segmentation

procedure to detect all change-points, which is summarized in Algorithm 1 below. The algorithm starts

with finding one change-point in the interval [W,T−W ]. LetAbe an empty set and t̂1 = argmaxc Tℓ(c).

If Tℓ
(
t̂1
)
> χ, we add t̂1 toA as the first detected change-point. Then, the algorithm divides the interval

[W,T −W ] into two sub-intervals [W, t̂1] and [t̂1 + 1, T −W ]. For each sub-interval, the algorithm

recursively detects if there exist at least one change-point. If so, the algorithm adds the newly detected

change-point to A and further divides the current sub-interval into two smaller ones. The algorithm
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stops dividing an sub-interval if there is no change-point to be detected in it or its size is no larger than

2W . The algorithm stops if no new change-point can be added toA. The algorithm outputs the setA

which contains the locations of all detected change-points.

Algorithm 1 Multiple Autocovariance Change-points Detection. MACD(s, e,W, ℓ, χ)
1: Input: {Yt}et=s, a window sizeW , a lag ℓ ≥ 0, and a detection threshold χ.
2: Initialize FLAG← 0,A ← ∅, s = 1, and e = T .
3: while e− s > 2W and FLAG = 0 do
4: Compute Tℓ(c) =

∥∥Sℓ(c)
∥∥
max

for c ∈ [s+W − 1, e−W ], and find t̂← argmaxc Tℓ.
5: if Tℓ(t̂) ≤ χ then
6: FLAG← 1.
7: else
8: Add t̂ toA; Do MACD(s, t̂− 1,W, ℓ, χ) and MACD(t̂, e,W, ℓ, χ).
9: Output: A.

Next, we analyze the properties of Algorithm 1. We define an event as follows

E [1,T ]
ℓ (λ) ≡

{
max

W≤c≤T−W

∥∥S⋄
ℓ(c)
∥∥
max
≤ λ

}
. (2.4.2)

If the event E [1,T ]
ℓ (λ) holds, the estimation errors of autocovariance matrices are uniformly bounded by

λ over all checkpoints in the interval [W,T −W ]. The probability of the event E [1,T ]
ℓ (λ) to hold can be

discussed in low and high dimensional regimes, respectively.

I. (Fixed/low-dimensional regime: d ≲ T ) By Corollary 2.3.1 and letm = ξ log T for some absolute

constant ξ > 1, we have

P
(
E [1,T ]
ℓ (λ0)

)
≤ 1− 2T 1−ξ,
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where λ0 = Cmax{ω2
4, νH} log(W − ℓ)(log T )1/2, for some sufficiently large absolute constant

C > 0.

II. (High-dimensional regime: d≫ T ) By Corollary 2.3.1 and letm = log d, we have

P
(
E [1,T ]
ℓ (λ0)

)
≤ 1− 2Td−1,

where λ0 = Cmax{ω2
4, νH} log(W − ℓ)(log d)1/2, for some sufficiently large absolute constant

C > 0.

In either regime, we can uniformly upper bound
∥∥S⋄

ℓ(c)
∥∥
max

with a high probability. Next, we

prove that Algorithm 1 can consistently detect the number and locations of all change-points under mild

conditions on δ and κ, as well as a properly chosen threshold χ. The detailed results are stated in the

theorem below.

Theorem 2.4.1 (Detection consistency). Assume that the event E [1,T ]
ℓ (λ0) holds with probability at least

aT → 1. Let bT be any slowly divergent sequence. Assume that the minimal jump size κ and the minimal

spacing δ satisfy that

κ−1 = o(bT ) and δκ ≥ CsnrbTλ0
√
W − ℓ, (2.4.3)

for some sufficiently large absolute constantCsnr > 0. Choose the threshold

χ = Cχκ
−1λ0, (2.4.4)
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for some sufficiently large absolute constant Cχ > 3. LetA = {t̂k}K̂k=1 be the locations of change-points

detected by Algorithm 1. We have that

P
(
K̂ = K and max

1≤k≤K
|tk − t̂k| ≤ 2

√
2κ−1λ0

√
W − ℓ

)
≥ aT .

Remark 2.4.1. In Theorem 2.4.1, we restrict the ratio between the maximal and minimal jump sizes by

the diverging sequence bT . Since bT appears also in the signal-to-noise condition in (2.4.3), the stronger the

signal-to-noise condition one imposes, the weaker the restriction will be. Note that we allow the scenarios that

some (or all) of κk vanishes.

Further, the discussion of E [1,T ]
ℓ (λ) above suggests that we can choose m and λ0 such that aT → 1

in both low and high dimensionality regimes. Therefore, we have the following corollary.

Corollary 2.4.1. Let Csnr, C > 0 and Cχ > 3 be sufficiently large absolute constants, and bT be any

slowly divergent sequence. Under the same conditions as in Corollary 2.3.1 and Theorem 2.4.1. Assume that

δκ ≥ CsnrbT log(W − ℓ)
√

(W − ℓ) log(max{T, d}).

For any window size W such that W − ℓ ≥ 2, we choose the robustification parameter and the threshold

respectively as

τℓ = Cτ

√
W − ℓ

log(W − ℓ)
√

log(max{T, d})
and χ = Cχ

log(W − ℓ)
√

log(max{T, d})
κ

.
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LetA = {t̂k}K̂k=1 be the locations of change-points detected by Algorithm 1. It holds with probability at least

1− (max{T, d})−2 that

K̂ = K and max
1≤k≤K

|tk − t̂k| ≤ C
log(W − ℓ)

√
(W − ℓ) log(max{T, d})

κ
.

Corollary 2.4.1 follows directly from Corollary 2.3.1 and Theorem 2.4.1 by lettingm = 4 log(max{T, d}).

Then, it follows that λ0 = C log(W − ℓ)(log(max{T, d}))1/2 and

P
(
E [1,T ]
ℓ (λ0)

)
≥ 1− 2T (max{T, d})−4.

2.4.1 Threshold selection by block-wise Gaussian multiplier bootstrap

The threshold χ plays an important role in Algorithm 1. If χ is chosen too large, the algorithm may

miss some underlying change-points. On the other hand, if χ is chosen too small, the algorithm can

commit several false discoveries. The theoretical order of the optimal choice of χ, provided in Theorem

2.4.1, involves some unknown quantities and hence may not readily guide the practice. In this subsection,

we propose a data-driven threshold selection method based on a novel block-wise Gaussian multiplier

bootstrap idea.

Recall that, Ht,ℓ is the lag-ℓ outer products at time t defined as in (3.2.1). For a given checkpoint

c, we construct two sets of lag-ℓ outer products {Ht,ℓ}t∈IB
ℓ (c) and {Ht,ℓ}t∈IA

ℓ (c) based on the intervals

IBℓ (c) and IAℓ (c) defined in Section 2.3. Let R ≪ (W − ℓ)/2 be a positive integer. We divide each

window into 2R blocks. For simplicity, we assume the window length is divisible and let the block size
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S = (W − ℓ)/(2R). The total 4R blocks, denoted by S1, . . . ,S4R, can be expressed as

Sr =


[c−W + ℓ+ (r − 1)S, c−W + ℓ+ rS], r = 1, . . . , 2R,

[c−W + 2ℓ+ 1 + (r − 1)S, c−W + 2ℓ+ 1 + rS], r = 2R + 1, . . . , 4R.

For r ∈ {1, . . . , 2R}, the local tail-robust autocovariance estimators in odd and even blocks can be

written as follows

Σ̂S2r−1(c) =
1

S

∑
t∈S2r−1

ψτℓ(Ht,ℓ) and Σ̂S2r(c) =
1

S

∑
t∈S2r

ψτℓ(Ht,ℓ).

With block-wise quantities, we can rewrite the lag-ℓmoving sum difference matrix Sℓ(c) as

Sℓ(c) = [2(W − ℓ)]−1/2S

{ R∑
r=1

[
Σ̂S2r−1(c) + Σ̂S2r(c)

]
−

2R∑
r=R+1

[
Σ̂S2r−1(c) + Σ̂S2r(c)

]}
.

Next, we describe the block-wise Gaussian multiplier bootstrap. LetM be the number of bootstrap

samples. Let {er}2Rr=1 be a sequence of i.i.d. standard normal random variables, and {e(m)
r }2Rr=1 be an i.i.d.

copy of {er}2Rr=1 used in them-th bootstrap sample, form = 1, . . . ,M . Them-th Gaussian multiplier

lag-ℓmoving sum difference matrix can be constructed by

S
(m)
ℓ (c) = [2(W − ℓ)]−1/2S

2R∑
r=1

e(m)
r [Σ̂S2r−1(c)− Σ̂S2r(c)], for m = 1, . . . ,M.
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Then, we define them-th Gaussian multiplier bootstrapped sample of Tℓ(c) as

T
(m)
ℓ (c) ≡

∥∥S(m)
ℓ (c)

∥∥
max

=
∣∣U (m)

ℓ (c)
∣∣
∞, for m = 1, . . . ,M, (2.4.5)

where U (m)
ℓ (c) is the vectorization of S(m)

ℓ (c). The block-wise differences [Σ̂S2r−1(c) − Σ̂S2r(c)] are

tailored for piece-wise stationary time series. When there is a change point in [c−W+l+1, c+W ], it will

cause an autocovariance structure change in at most one pair of consecutive odd and even blocks, while

the rest 2R− 1 pairs remain unaffected. Thus, the bootstrap sample {T (m)
ℓ (c)}Mm=1 well approximates

the empirical distribution of Tℓ(c) under the “null case" whenR is reasonable andM is large.

Here we use a toy example to illustrate the intuition of block-wise Gaussian multiplier bootstrap. We

generate a two-dimensional time series by concatenating three stationary VAR(1) segments with different

transition matrices. Each VAR(1) segment is of length 300. Hence, the autocovariance changes occur

at time 301 and 601. The generated time series are shown in Figure 2.1(a). Figure 2.1(b) plots the lag-1

moving sum statistic of each checkpoint and highlights the values at two true change-points. In Figure

2.1(c), we plot the ingredients of computing the moving sum statistics, i.e each entry of the 2 by 2 lag-1

outer products at each checkpoint, and highlights the checkpoint (and the windows around it) which

outputs the largest moving sum statistic. Figure 2.1(d) enlarges the segment highlighted in Figure 2.1(c)

and illustrates the 4R blocks to be divided. For each divided block, we multiply it by an independent

standard norm random. Two Gaussian multiplied copies of Figure 2.1(d) are presented in Figure 2.1(e)

and (f). Clearly, the moving sum statistics based on the block-wise Gaussian multiplier bootstrap sample

are significant smaller than the actual moving sum, and thus can be utilized to identify the existence of a

change-point.
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(a) Time series plot
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(b) MOSUM Statistics
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(c) Window around a check point
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(d) Blocks in the window (MOSUM: 6.461)
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(e) GMB1 (MOSUM: 1.341)
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(f) GMB2 (MOSUM: 0.785)

Figure 2.1: An illustrative example (d = 2) for block-wise Gaussian multiplier bootstrap. The bi-variate
time series contains two autocovariance change-points which are correctly detected.

Since {e(m)
r }2Rr=1 are i.i.d. standard normal, we have the conditional distribution of U (m)

ℓ (c) given the

sampleY(c,W ) ≡ {Yt}t∈IB
ℓ (c)∪IA

ℓ (c) satisfies

U
(m)
ℓ (c)|Y(c,W ) ∼ N

(
0,

S

2(W − ℓ)

2R∑
r=1

Dr(c)Dr(c)
⊺
)
, (2.4.6)

whereDr(c) = (Dr,j)
d2

j=1 is the vectorization of
√
S[Σ̂S2r−1(c)−Σ̂S2r(c)]. Then, for a pre-specifiedα ∈

(0, 1), we propose to choose the data-driven threshold at the checkpointc, denoted byχα(c), as the (1−α)-

th empirical quantile of {T (m)
ℓ (c)}Mm=1. In practice, we can chooseχα(c) as the ⌊αM⌋-th largest value in

{T (m)
ℓ (c)}Mm=1 whenM is large enough. On the other hand, if we sort {Tℓ(c), T (1)

ℓ (c), . . . , T
(M)
ℓ (c)} in
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descending order, we can compute an empirical p-value forTℓ(c) as p̂(c) = Rank(c)/M , whereRank(c)

is the rank of Tℓ(c) in the sorted sequence.

2.5 Inference

2.5.1 Test the existence of a lag-ℓ change-point

A fundamental inference problem in multiple change-points detection is to test if there exist a change-

point in a neighborhood of a checkpoint. Following our model setup, we formalize this testing problem

as follows. Let c ∈ [W,T −W ] be a checkpoint of interest and t∗ ≡ t∗(c; ℓ) ∈ {tk}Kk=1 be the lag-ℓ

autocovariance change-point that is the closest to c. The null and alternative hypotheses are formulated

as

H0 : |c− t∗| > W vesus H1 : |c− t∗| ≤ (1− ηW )W, (2.5.1)

where ηW ∈ (0, 1) is some slowly vanishing sequence to be discussed later.

We use the tail-robust moving sum statistic Tℓ(c) defined in (2.3.3) as our test statistic. The following

corollary provides the limiting distribution of Tℓ(c) when the null hypothesis is true.

Corollary 2.5.1 (Limiting distribution under the null). Suppose Assumptions 3, 4 and 5 hold. LetC,Cτ > 0

be some absolute constants. Assume that log d = CW β for some β < 1/19. Choose the robustafication

parameter as

τℓ = Cτ

((W − ℓ)16/19
log d

)1/3
. (2.5.2)
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For any checkpoint c ∈ [W,T −W ], when the null hypothesisH0 in (2.5.1) is true, we have that

sup
t∈R

∣∣∣P(Tℓ(c) ≤ t
)
− P

(
|Z|∞ ≤ t

)∣∣∣ ≲ (W − ℓ)−2(1/19−β)/3 → 0, as W →∞,

where Z ∼ N(0,Γ) and Γ is defined as in (2.2.5).

Remark 2.5.1. Corollary 2.5.1 follows directly from Corollary 2.2.1. Please notice that the choice of the robust

parameter τℓ in (2.5.2) is slightly different from the choice in (2.3.2). Both choices try to balance the bias

and robustness trade-off but under different measurement. The bias and robustness are measured by the

Kolmogorov distance in Corollary 2.5.1, while they are measured by the matrix max norm in Corollary 2.3.1.

However, these two choices of τℓ can of the same order if we setm in (2.3.2) as

m = C1
W 25/57(log d)2/3

[log(W − ℓ)]2
.

The above choice of m leads to m → ∞ as W → ∞. Therefore, Corollary 2.3.1 together with λ0 =

C2W
25/114(log d)1/3 can still guarantee

P
(
E [1,T ]
ℓ (λ0)

)
≥ 1− 2 exp(−m)→ 1 as W →∞.

Moreover, with this choice of m and λ0, we can update the signal-to-noise condition and the choice of the

threshold in Theorem 2.4.1 accordingly, and show that Algorithm 1 achieves consistency of detecting multiple

change-points.
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For a pre-specified significance level α ∈ (0, 1), Corollary 2.5.1 suggests us to choose the critical value

for the test as the (1 − α)-th quantile of |Z|∞, which can asymptotically control the probability of

committing a type-I error at α.

2.6 Simulation

In this section, we use simulated experiments to assess the empirical performance of the proposed multiple

autocovariance change-points detection method. Throughout this section, we use MACD to represent

the autocovarience change-points detection method proposed in Algorithm 1 . The threshold parameter

χα is selected by the block-wise Gaussian multiplier bootstrap procedure introduced in Section 2.4.1. The

robustificaion parameters in tail-robust autocovariance matrix estimations are chosen by the gap-block

cross-validation (Shu & Nan, 2019). In this section, we set the window size W = 300, the number of

blocks as 4R = 24, the number of bootstrap samplesM = 100, and α = 0.01 unless otherwise stated.

We also compare MACD with three state-of-the-art second-order change-points detection methods:

the sparsified binary segmentation algorithm (SBS, Cho & Fryzlewicz, 2015) and the double CUSUM

algorithm (D-CUSUM, Cho, 2016b). The implementation of the competing methods follows the

instructions in their respective literature. Due to the limitation of space, we present selective simulation

results in this section and defer more results to an appendix in the supplementary material.
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2.6.1 Experiment 1: covariance change-points detection

Consider an Rd-valued VAR(1) model

Yt = ρYt−1 +Zt, t = 1, . . . , T, (2.6.1)

where ρ = 0.5, Zt = Σ1/2ϵt, and Σ1/2 =
(
σij
)
i∈[1,d];j∈[1,d] ∈ Rd×d is a symmetric and deterministic

matrix. Further, {ϵt}Tt=1 is an i.i.d. random sequence with E(ϵt) = 0 and var(ϵt) = Id. In this

experiment, we set d = 100 and 300, and we set the total length of time series as T = 3, 200 with three

covariance change-points located at t1 = 800, t2 = 1600 and t3 = 2400, respectively. For 1 ≤ t < t1

and t2 ≤ t < t3, we set σij = 0.5|i−j|. For t1 ≤ t < t2, we set σij = 2 if 1 ≤ i = j ≤ d/10, and

σij = 0.5|i−j| otherwise. For t3 ≤ t ≤ T , we set Σ1/2 = 2Id

Denote ϵt,j the j-th entry ofϵt for t ∈ [1, T ] and j ∈ [1, d]. We generate ϵt,j from one of the following

two heavy-tailed distributions.

(1) (Student’s t). ϵt,j follows a standardized Student’s t4 distribution, i.e. ϵt,j = 2−1/2Xt,j where

Xt,j ’s are i.i.d. from a t4 distribution.

(2) (Log-Normal). ϵt,j follows a standardized Log-normal distribution, i.e. ϵt,j = (e2−e)−1/2[exp(Xt,j)−

exp(1/2)] whereXt,j ’s are i.i.d. from a standard Normal distribution.

In each scenario, we simulate 200 replications. For each competing method, we report the number of

detected change-points in Table 2.1. According to Table 2.1, the histograms of MACD correctly detects 3

change-points in more than 95% of replications in all scenarios. In contrast, all three competing methods

tend to under/over-estimate the number of change-points in a good proportion of replications in most
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scenarios. Further, to evaluation the estimation accuracy of change-point locations, we report the sample

mean and sample standard deviation of adjusted Rand index hubert1985comparing over 200 replications in

Table 2.2. Adjusted Rand index uses the permutation model to measure the similarity between estimated

set of change-point locations and the ground truth. The results in Table 2.2 show that MACD has a

high sample mean and a low sample standard deviation of adjusted Rand index in every scenario. All three

competing methods fail to achieve high adjust Rand index when the dimension is high and the data is

heavy-tailed. The experiment results suggest MACD can accurately detect the number and locations

of covariance changes in high-dimensional and heavy-tailed time series, while all three state-of-the-art

second-order change-points detection methods perform poorly.

Table 2.1: Experiment 1: number of detected change-points over 200 replications.

Noises 2*Dimension Methods Number of Change Points
≤ 1 2 3 4 ≥ 5

t4 MACD 0 0 97% 3% 0
100 SBS 0 0 27% 32% 41%

D-CUSUM 44.5% 0 53.5% 1% 1%
MACD 0 0 97% 3% 0

300 SBS 0 0 0% 0% 100%
D-CUSUM 95.5% 0 4% 0 0.5%

Log-Normal MACD 0 1.5% 95% 3.5% 0
100 SBS 39% 11% 40% 8% 2%

D-CUSUM 93.5% 2.5% 1.5% 0.5% 2%
MACD 0 0 99% 1% 0

300 SBS 1.5% 3% 15% 27.5% 53%
D-CUSUM 98% 1.5% 0 0 0.5%

2.6.2 Experiment 2: autocovariance change-points detection

In this experiment, we generate an Rd-valued time series {Yt}3200t=1 with three autocovariance change-

points located at t1 = 800, t2 = 1600 and t3 = 2400. We design the data generating process such that
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Table 2.2: Experiment 1: sample mean and sample standard deviation (in parentheses) of adjusted Rand
index over 200 replications.

Noises Dimension MACD SBS D-CUSUM
t4 100 0.96 (0.03) 0.93 (0.05) 0.70 (0.33)

300 0.96 (0.03) 0.83 (0.04) 0.36 (0.14)
Log-Normal 100 0.96 (0.04) 0.63 (0.33) 0.33 (0.02)

300 0.97 (0.03) 0.84 (0.22) 0.33 (0.01)

the covariance matrix of {Yt}3200t=1 is unchanged over the whole period, while the autocovariance matrices

with lage ℓ ≥ 1 changes at t1 = 800, t2 = 1600 and t3 = 2400.

To be specific, we generate the four segments {Yt}800t=1, {Yt}1600t=801, {Yt}2400t=1601 and {Yt}3200t=2401 sequen-

tially as follows. First, we generate {Yt}800t=1 from the VAR(1) model (2.6.1) with ρ = 0.5 and Σ = Id.

Also, we generate ϵt,j from either the standardized Student’s t4 or standardized Log-normal distributions

as described in Section 2.6.1. For the second segment, we first generate 4000 observations {Zs}4000s=1 using

the same setting as we generate the first segment. Denote Yt,j and Zt,j the j-th entries of Yt and Zt,

respectively. We obtain {Yt}1600t=801 as

{Yt,j}1600t=801 =


∪

s mod 5=0
Zs,j, if 1 ≤ j ≤ d/10,

{Zs,j}1600s=801, if d/10 < j ≤ d.

In other words, the first 10/d entries of {Yt}1600t=801 are obtained by removing the first four observations

per five from the the first d/10 entries of {Zs}4000s=1 , while the rest entries of {Yt}1600t=801 are the first 800

observations of corresponding entries in {Zs}4000s=1 . We generate the third segment {Yt}2400t=1601 using the

same setting as we generate the first segment. Finally, for the fourth segment, we generate {Z̃t}4000t=1 use the
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same setting as we generate the first segment. We obtain{Yt}3200t=2401 by removing the first four observations

per five in {Z̃t}4000t=1 .

We use MACD with lags ℓ = 0, 1 as well as the two competing methods to detect change-points in

{Yt}3200t=1 . We setd = 300 and500. For each scenario, we simulate 200 replications. In Table 2.3, we report

the number of detected change-points for all competing methods. For all scenarios, MACD correctly

detects all three change-points at lag ℓ = 1 and identifies there is no change point at lag ℓ = 0 in most

replications. In contrast, the competing methods completely fail when the second-order change-points

do not appear in the covariance matrix. In Table 2.4, we report the sample mean and sample standard

deviation of adjusted Rand index over 200 replications for MACD with lag ℓ = 1 and the two competing

methods. Again, MACD achieves the highest adjusted Rand index in all scenarios, while the competing

methods struggle.

Table 2.3: Experiment 2: number of detected change-points over 200 replications.

Noises Dimension Methods Number of Change Points
0 1 2 3 4 ≥ 5

t4 MACD(ℓ = 1) 0 2.5% 10% 82% 5% 0.5%
MACD(ℓ = 0) 84.7% 14.7% 0 0.6% 0 0

300 SBS 0 0 0 0 0 100%
D-CUSUM 0 97.5% 0 1.5% 0 1%

MACD(ℓ = 1) 0 2% 9.5% 84.5% 4% 0
MACD(ℓ = 0) 85.6% 13.6% 0.8% 0 0 0

500 SBS 0 0 0 0 0 100%
D-CUSUM 0 62% 0.5% 34.5% 1.5% 1.5%

Log-Normal MACD(ℓ = 1) 0 3% 6% 89% 2% 0
MACD(ℓ = 0) 88.6% 10.9% 0.5% 0% 0% 0%

300 SBS 0 17% 6.5% 35% 26.5% 15%
D-CUSUM 0 100% 0 0 0 0

MACD(ℓ = 1) 0 2.5% 7.5% 85.5% 4.5% 0 0
MACD(ℓ = 0) 88.7% 12% 1.3% 0 0 0

500 SBS 0 1.5% 0.5% 18.5% 27.5% 52%
D-CUSUM 0 100% 0 0 0 0
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Table 2.4: Experiment 2: sample mean and sample standard deviation (in parentheses) of adjusted Rand
index over 200 replications.

Noises Dimension MACD(ℓ = 1) SBS D-CUSUM
t4 300 0.91 (0.13) 0.84 (0.04) 0.35 (0.10)

500 0.92 (0.12) 0.81 (0.05) 0.58 (0.32)
Log-Normal 300 0.92 (0.12) 0.77 (0.28) 0.33 (2e-05)

500 0.92 (0.12) 0.87 (0.15) 0.33 (1e-05)

2.7 Proofs for chaper 2

2.7.1 Proof of Theorem 2.2.1

Proof of Theorem 2.2.1. Under Assumption 8, for any s ≥ 0, 1 ≤ j, k ≤ d and τl > 0, the functional

dependence measure of
{
ψτl(Ht,ℓ,(jk))

}
i∈Z, satisfies that

sup
t
∥ψτl(Ht,ℓ,(jk))− ψτl(Ht,{t−s},ℓ,(jk))∥2

≤ sup
t
∥Yt−ℓ,jYt,k − Yt−ℓ,{t−s},jYt,{t−s},k∥2 ≤ ω4(δs−ℓ,4 + δs,4),

where the first inequality follows from the Lipschitz continuity of ψτ (·), the second inequality follows

from Hölder’s and the triangle inequalities. So,

sup
m≥0

ρ−m

∞∑
s=m

sup
t
∥ψτℓ(Ht,ℓ,(jk))− ψτℓ(Ht,{t−s},ℓ,(jk))∥2 ≤ (1 + ρ−ℓ)ω4∥Y.∥4.
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Since |ψτℓ(Ht,ℓ,(jk))| ≤ τℓ, the conditions of Theorem ?? are fulfilled. Moreover, by Lemma ??, we have

that the long-run variance of
{
ψτl(Ht,ℓ,(jk))

}
i∈Z satisfies that

lim
|Iℓ|→∞

var
( 1√
|Iℓ|

∑
t∈Iℓ

ψτℓ(Ht,ℓ,(jk))
)

≤ max
1≤j,k≤d

∞∑
l=−∞

sup
t∈Z

∣∣ cov (ψτℓ(Ht,ℓ,(jk)), ψτℓ(Ht+ℓ,ℓ,(jk))
)∣∣ = ν2H <∞.

For any u > 0, set x = max
{√

u(ν2H |Iℓ|+ τ 2ℓ ), uτℓ(log n)
2
}

. Then, for any |Iℓ| ≥ 2 and any u > 0,

we have with probability at least 1− 2e−u/C that

|Iℓ|
∣∣γ̂Iℓ,(jk) − E[γ̂Iℓ,(jk)]

∣∣ ≤max
{√

u(ν2H |Iℓ|+ τ 2ℓ ), uτℓ(log |Iℓ|)
2
}

≤
√
u|Iℓ|νH +

√
uτℓ + uτℓ(log |Iℓ|)2, (2.7.1)

where the second inequality follows from Lemma ??. Moreover, we have for any 1 ≤ j, k ≤ d that

∣∣E[Ht,ℓ,(jk)]− E[ψτℓ(Ht,ℓ,(jk))
∣∣

=
∣∣E[(Yt−ℓ,jYt,k − τℓ)1{Yt−ℓ,jYt,k > τℓ}

]
+ E

[
(Yt−ℓ,jYt,k + τℓ)1{Yt−ℓ,jYt,k < −τℓ}

]∣∣
≤E
[
Yt−ℓ,jYt,k1{Yt−ℓ,jYt,k > τℓ}

]
+ E

[
− Yt−ℓ,jYt,k1{Yt−ℓ,jYt,k < −τℓ}

]
=E
[
|Yt−ℓ,jYt,k|1{|Yt−ℓ,jYt,k| > τℓ}

]
≤ E[(Yt−ℓ,jYt,k)

2]/τℓ ≤ ω4
4/τℓ,

where the second inequality follows from Markov’s and Hölder’s inequalities. Thus, it follows that

∣∣∣∑
t∈Iℓ

E[Ht,ℓ,(jk)]− |Iℓ|E[γ̂Iℓ,(jk)]
∣∣∣ ≤ ω4

4|Iℓ|/τℓ, (2.7.2)
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By the triangle inequality, it follows for any j, k ∈ [1, d] that

∣∣∣|Iℓ|γ̂Iℓ,(jk) −∑
t∈Iℓ

E[Ht,ℓ,(jk)]
∣∣∣ ≤ |Iℓ|∣∣γ̂Iℓ,(jk) − E[γ̂Iℓ,(jk)]

∣∣+ ∣∣∣∑
t∈Iℓ

E[Ht,ℓ,(jk)]− |Iℓ|E[γ̂Iℓ,(jk)]
∣∣∣.

To balance the upper bounds given in (2.7.1) and (2.7.2), we set

τℓ =
|Iℓ|1/2max{ω2

4, νH}
2
[(

log(Iℓ)
)2
u+
√
u
]1/2 = Cτℓ

|Iℓ|1/2max{ω2
4, νH}

log(Iℓ)u1/2
,

we have for u > 0, with probability at least 1− 2e−u

∣∣∣γ̂Iℓ,(jk) − |Iℓ|−1
∑
t∈Iℓ

E[Ht,ℓ,(jk)]
∣∣∣ ≲max{ω2

4, νH} log(|Iℓ|)u1/2

|Iℓ|1/2
. (2.7.3)

Finally, setting u = m+ log d2 and applying the union bound concludes the proof.

2.7.2 Proof of Theorem 2.4.1

Proof of Theorem 2.4.1. Throughout this proof, we assume the event E [1,T ]
ℓ (λ0) holds. Define

η = 2
√
2κ−1(W − ℓ)−1/2λ0.

The proof is by induction.

Step 1: We discuss all the possible cases which would happen for the current segment [s, e], and show that

with the threshold χ, we can distinguish the undetected change-points and the detected change-points.
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Case 1: There exists at least one undetected true change-point in [s, e]. Let tk ∈ [s, e] be (any of)

the undetected change-point(s). Due to the fact that tk is undetected from the previous steps, we have

min{tk − s, e− tk} > δ − η(W − ℓ). Then we have that

max
s+W−1≤c≤e−W

∥∥Sℓ(c)
∥∥
max
≥ max

s+W−1≤c≤e−W

∥∥S∗
ℓ(c)
∥∥
max
− max

s+W−1≤c≤e−W

∥∥S⋄
ℓ(c)
∥∥
max

≥[δ − η(W − ℓ)][2(W − ℓ)]−1/2κ− λ0

≥2−1/2CsnrbTλ0 − 3λ0 > χ,

where the first inequality follows from (2.3.1) and the triangle inequality, the second inequality follows

from the fact that ∥S∗
ℓ(c)∥max is maximized at (one of) the undetected change-point(s) and the event

E [1,T ]
ℓ (λ0), and the third inequality follows from the assumption that δκ ≥ CsnrbTλ0

√
W − ℓ.

Case 2: There exists no true change-point in [s, e]. Then, we have that

max
s+W−1≤c≤e−W

∥∥Sℓ(c)
∥∥
max
≤ max

s+W−1≤c≤e−W

∥∥S∗
ℓ(c)
∥∥
max

+ max
s+W−1≤c≤e−W

∥∥S⋄
ℓ(c)
∥∥
max

≤λ0 < χ,

where the first inequality follows from (2.3.1) and the triangle inequality, the second inequality follows

from the fact that ∥S∗
ℓ(c)∥max = 0 for any c ∈ [s+W − 1, e−W ] and the definition of E [1,T ]

ℓ (λ0).

Case 3: There exists one detected true change-point from previous steps in [s, e]. Let tk ∈ [s, e] be such

change-point. Since tk is detected from the previous steps, we have thatmax{tk−s, e−tk} ≤ η(W−ℓ).
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Then, it follows that

max
s+W−1≤c≤e−W

∥∥Sℓ(c)
∥∥
max
≤ max

s+W−1≤c≤e−W

∥∥S∗
ℓ(c)
∥∥
max

+ max
s+W−1≤c≤e−W

∥∥S⋄
ℓ(c)
∥∥
max

≤[(W − ℓ)/2]1/2ηκ+ λ0 =
(
1 + 2κ−1κ

)
λ0 ≤ 3κ−1κλ0 < χ.

Case 4: There exists two detected true change-points from previous steps. For instance, we consider

s ≤ tk < tk+1 ≤ e. Since tk and tk+1 are detected from the previous steps, we havemax{tk−s, e−tk} ≤

η(W − ℓ) and max{tk+1 − s, e− tk+1} ≤ η(W − ℓ). Then

max
s+W−1≤c≤e−W

∥∥Sℓ(c)
∥∥
max
≤ max

s+W−1≤c≤e−W

∥∥S∗
ℓ(c)
∥∥
max

+ max
s+W−1≤c≤e−W

∥∥S⋄
ℓ(c)
∥∥
max

≤[(W − ℓ)/2]1/2ηκ+ λ0 ≤ 3κ−1κλ0 < χ.

Step 2: Consider an undetected change-point tk ∈ [s, e] which satisfies that min{tk − s, e − tk} >

δ − η(W − ℓ) and that tk = argmaxs+W−1≤c≤e−W ∥S∗
ℓ(c)∥max. In order to complete the loop of

induction, we need to show that if a checkpoint b such that b ∈ argmaxs+W−1≤c≤e−W

∥∥Sℓ(c)
∥∥
max

,

then it must follows that |b− tk| ≤ η(W − ℓ). For tk, we have

∥S∗
ℓ(tk)∥max =[2(W − ℓ)]−1/2 max

s+W−1≤c≤e−W

∥∥∥ ∑
t∈IB

ℓ (c)

Σ(t)−
∑

t∈IA
ℓ (c)

Σ(t)
∥∥∥
max

≤ max
s+W−1≤c≤e−W

∥∥Sℓ(c)
∥∥
max

+ λ0 =
∥∥Sℓ(b)

∥∥
max

+ λ0
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≤[2(W − ℓ)]−1/2
∥∥∥ b∑

t=b−W+1+ℓ

Σ(t)−
b+W∑

t=b+1+ℓ

Σ(t)
∥∥∥
max

+ 2λ0, (2.7.4)

and by triangle inequality, we have that

∥∥∥ tk∑
t=tk−W+1+ℓ

Σ(t)−
tk+W∑

t=tk+1+ℓ

Σ(t)
∥∥∥
max
−
∥∥∥ b∑

t=b−W+1+ℓ

Σ(t)−
b+W∑

t=b+1+ℓ

Σ(t)
∥∥∥
max

=(W − ℓ)κk −
(
W − ℓ− |tk − b|

)
κk = |tk − b|κk. (2.7.5)

Combining (2.7.4) and (2.7.5), we have

|tk − b| ≤ 2
√
2λ0κ

−1
k

√
W − ℓ ≤ 2

√
2λ0κ

−1
√
W − ℓ ≤ η(W − ℓ).

Combining Step 1 and Step 2 concludes the proof.
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Chapter 3

Autocovariance change point

detection for streaming time

series

In this chapter, we study the second-order autocovariance change point detection in an online manner,

i.e. with each data point being monitored and processed, we determine if the data collected so far or in the

near past present enough evidence for ocurance of change point. We construct a CUSUM-type statistics

which is robust against heavy-tailed distribution. The quality of a online monitoring scheme is measured

by false alarm rate or average run length and the detection delay. A good online procedure is considered to

have less chance of making type I error or incorrect identifications if no shift happened as well as shorter

delay after the true change point occurs. We show that with proper choice of threshold, false alarm rates

of our procedure can be controlled and also the high-probability upper bound for the detection delay. In

the end, we present results for simulation study.
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3.1 Problem Setup

In this section, we introduce the sequential change point problem associated with second-order structure

change in autocovariance matrix Σℓ, which is characterized by its lag-ℓ, l = 0, 1, 2 . . . . We begin this

section with conditions of temporal dependence on the nonstationary process {Yt}t∈N+ .

Consider an Rd-valued process

Yt = Gt(Ft), (3.1.1)

whereGt(·) =
(
gt1(·), gt2(·), . . . , gtd(·)

)⊺ is anRd-valued measurable function, andFt = σ(ϵ1, ϵ2, . . . , ϵt)

is a filtration with {ϵt}t∈N+ being a sequence of i.i.d. random variables. Again, in this paper, {Yt}t∈N+ is

allowed to follow various heavy-tailed distributions. Besides, we would like to emphasize that the func-

tion Gt is time-dependent, thus the representation (3.1.1) covers a large amount of nonstationary time

series models, including the piece-wise stationary model in 6. The representation (3.1.1) can also be re-

garded as a generalization of the stationary process Ỹt = G(Ft) with the measurable functionG(·) being

independent of time.

Let{ϵt−k+1, . . . , ϵt} = ∅when k ≤ 0. We defineYt,{t−k} = Gt(Ft,{t−k}) as a coupled version ofYt,

whereFt,{t−k} = σ(ϵ1, . . . , ϵt−k−1, ϵ
′

t−k, ϵt−k+1, . . . , ϵt) and ϵ′t−k is an i.i.d. copy of ϵt−k. To measure

the dependence, we define the functional dependence measure Wu2 for a nonstationary process as

δk,q,j = sup
t
∥Yt,j − Yt,{t−k},j∥q, for k ≥ 0, q ≥ 1, and j ∈ [1, d],

whereYt,j is the j-th component ofYt. As a generalization of the classical functional dependence measure

(Wu, 2005) for stationary time series, δk,q,j uniformly quantifies the lag-k dependence by the moment of
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order q. As the lag k increases, δk,q,j would decrease in general, and we will further impose dependence

conditions by restricting the decay rates of δk,q,j with respective to k.

For simplicity, we assume EYt = 0 throughout rest of the chapter. For ℓ ∈ N, we define the lag-ℓ

autocovariance matricesΣℓ(t) := E(Yt−ℓY
⊺
t ) ∈ Rd×d. We unfold this problem by a general assumption

as follows.

Assumption 6. Assume that there exists a positive integer ∆ such that

Σ1
ℓ = Σ2

ℓ = ... = Σ∆
ℓ ̸= Σ∆+1

ℓ = Σ∆+2
ℓ = ... . (3.1.2)

In addition, define the jump sizes with respect to matrix max and spectral norms respectively as

κmax = ∥Σ∆+1
ℓ −Σ∆

ℓ ∥max

and

κspec = ∥Σ∆+1
ℓ −Σ∆

ℓ ∥spec.

Note that ∆ = ∞ indicates that change point does not exist, and without loss of generality, we

consider ℓ to be fixed.

In this paper, we are concerned with change of second-order structure in autocovariance matrix. Tem-

poral dependence undoutedly brings difficulties to sequential detection. Besides that, we allow {Yt}t∈N+

to follow various heavy-tailed distributions. This will considerably affect the detection as well. Before

presenting our detection procedure, we introduce two tail-robust autocovariance estimators studied in

Xu et al., 2021.
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3.2 Tail-robust Autocovariance Estimators

3.2.1 Element-wise truncated estimator

Let {Yt}t∈N+ be a centered Rd-valued time series following the representation (3.1.1). For a segment of

observations{Yt}et=s with starting and ending indices s, e satisfying e−s ≥ ℓ ≥ 0, denoteIℓ = [ℓ+s, e]

. The lag-ℓ outer product of Yt is defined as

Ht,ℓ = Yt−ℓY
⊺
t =

(
Ht,ℓ,(jk)

)d
j,k=1

, for t = s+ ℓ, . . . , e. (3.2.1)

Define the truncation function ψτ : R 7→ R as

ψτ (u) = sign(u)(|u| ∧ τ), (3.2.2)

where τ > 0 is a robustification parameter. Notice that ψτ (u) is the first order derivative of the Huber

loss function huber1984finite defined as follows

Lτ (u) ≡


u2/2, if |u| ≤ τ

τ |u| − τ 2/2 if |u| > τ

, u ∈ R.

Using the truncation operator ψτ (·), the truncated estimator of E[Ht,ℓ,(jk)] is defined as

γ̂
[s,e]
(jk) = (e− s− ℓ+ 1)−1

e∑
t=s+ℓ

ψτℓ(Ht,ℓ,(jk)), for 1 ≤ j, k ≤ d,
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where the robustification parameter τℓ needs to be chosen properly to balance the tail-robustness and the

bias due to the truncation. By collecting the element-wise estimations, the tail-robust lag-ℓ autocovariance

matrix estimator is formed as

Σ̂
[s,e]
ele,ℓ =

(
γ̂
[s,e]
(jk)

)d
j,k=1

. (3.2.3)

The nonasymptotic properties of Σ̂ele,ℓ has been studied in Xu et al., 2021 when {Yt}Tt=1 is stationary,

i.e. Gt(·) = G(·) in (3.1.1).

Assumption 7. Suppose that the marginal fourth moment of {Yt}t∈N+ satisfies

ω4 ≡ max
1≤j≤d

sup
t∈N+

∥Yt,j∥4 <∞.

Assumption 8. There exists some ρ ∈ (0, 1), such that the coordinate-wise dependence adjusted fourth

moment of {Yt}t∈N+ satisfies

∥Y.∥4 ≡ max
1≤j≤d

sup
m≥0

ρ−m

∞∑
k=m

δk,4,j <∞.

Theorem 3.2.1 (Theorem 2 in Xu et al., 2021). Consider the setting described in 3.1.1. For any integers

0 < s < e and e− s ≥ ℓ, and for anym > 0, choose the robustification parameter

τℓ,(jk) ≍ ω2
4(log(e− s+ 1− ℓ))−1

√
e− s+ 1− ℓ
m+ 2 log d

. (3.2.4)
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Then, under Assumptions 7 and 8, if e − s + 1 − ℓ ≥ 4
∨
log(ρ−1)/2, we have with probability at

least 1− 4e−m,

∥∥Σ̂[s,e]
ele,ℓ −Σℓ

∥∥
max
≤ Ce[ρ

−l∥X.∥4 + ω4 log(n− ℓ)]ω4

√
m+ 2 log d

e− s+ 1− ℓ
. (3.2.5)

3.2.2 Spectrum-wise truncated estimator

In contrast to the previous element-wise truncated estimator, the spectrum-wise truncated estimator is

robust in the spectrum domain against extreme deviations from the mean, and it results in a bound of error

with respect to the spectral norm. We begin introducing the estimator with two definitions as follows.

Definition 3.2.1. Given a function f defined on R and a symmetric matrixA ∈ Rd×d and the eigenvalue

decomposition A = UΛUT such that λi(A) ∈ R, i = 1, 2, . . . , d, define f(A) = Uf(Λ)UT where

f(Λ) = diag(f(λ1), f(λ2), . . . , f(λd)).

Definition 3.2.2. Consider any square matrixA ∈ Rd×d, define the Hermitian dilation ofA as

Ā :=

 0 A

A⊺ 0

 .

Remark 3.2.1. Definition 3.2.1 cannot be applied to asymmetric matrices. To address this issue, we transform

the asymmetric square matrix into a symmetric one by its Hermitian dilation Ā. In addition, Ā is a block

anti-diagonal matrix and therefore ∥Ā∥spec = ∥A∥spec.
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Hence, we have the spectrum-wise truncation by definition 3.2.1,

ψτ (Ā) = ψτ (∥A∥spec)
Ā

∥A∥spec
,

and the eigenvalues of Ā are now bounded by τ. In general, the lag-ℓ outer product Ht,ℓ = Yt−ℓY
⊺
t is

asymmetric when ℓ > 0, and we then apply the Hermitian dilation on Ht,ℓ for ℓ > 0.

Let {Yt}t∈N+ be a centered Rd-valued time series following the representation (3.1.1). For a segment

of observations {Yt}et=s with starting and ending indices s, e satisfying e − s ≥ ℓ ≥ 0, we define the

spectrum-wise truncated estimator by

Σ̂
[s,e]
spec,ℓ =


(e− s+ 1)−1

∑e
t=s ψτ (Ht,0), if ℓ = 0

(e− s− ℓ+ 1)−1
∑e

t=s+ℓ Tψτ (H̄t,ℓ)T
⊺, if ℓ > 0

(3.2.6)

where Td×2d = (0d×d, Id×d) is to take the upper-right d× dmatrix of the 2d× 2d block anti-diagonal

matrix ψτ (H̄t,ℓ).

Later in this subsection, we provide the nonasymptotic properties of the spectrum-wise truncated

estimator studied in Xu et al., 2021. Before that, we first state several necessary assumptions. Denote

σ2 := σ2
j = (γ0,jj)j∈[d] as the diagonal of Σ0.

Assumption 9. σ2 := maxj∈[d]σ
2
j <∞.

Assumption 10. The kurtosis of linear forms:

K := sup
u∈Rd

[kurt(⟨u,Y0⟩)]
1
4 = sup

u∈Rd

∥⟨u,Y0⟩∥4
∥⟨u,Y0⟩∥22

<∞.
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Assumption 11. There exist constantsC1, C2 > 0 and some ρ1, ρ2 ∈ (0, 1) such that for all i ≥ 0

∥|Yi − Yi,0,−∞|2∥2 ≤ C1

√
tr(Σ0)ρ

i
1,

and

sup
v∈Sd−1

∥⟨v, Yi − Yi,0,−∞⟩2∥2 ≤ C2∥Σ0∥
1
2ρi2.

Assumption 12. There exists a constantK∗ > 0 such that

K∗ := sup
i≥0

sup
u∈Rd

[kurt(⟨u,Yi −Yi,{0,−∞}⟩)]
1
4

= sup
i≥0

sup
u∈Rd

∥⟨u,Yi −Yi,{0,−∞}⟩)]⟩∥4
∥⟨u,Yi −Yi,{0,−∞}⟩)]⟩∥22

<∞

In comparison to the coordinate-wise conditions on moment and dependence measure in matrix

norm, Assumptions 9-12 consider the projected sequences by l2-norm and linear forms.

Theorem 3.2.2. (cf. Theorem 6 in Xu et al., 2021) Let γℓ(ρ) := logn
log 2

max(1, 8log(dηℓn
6)

logρ−1 ) , ηℓ := C(1 +

ρ−ℓ)
√
tr(Σ0) and r(Σ0) := tr(Σ0)/∥Σ0∥spec be the effective rank of the covariance matrix Σ0. For

m ≥ 0, if we choose the robustification parameter

τℓ ≍ K2∥Σ0∥specγℓ(ρ)−
1
2

√
e− s− ℓ+ 1

m+ log(2d)
,
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then under assumptions 9-12, we have with probability at least 1− 2e−m,

∥Σ̂[s,e]
spec,ℓ −Σℓ∥spec ≤ CeK

2∥Σ0∥spec(
√
γℓ(ρ) + (K∗/K)

1
2ρ

ℓ
2

√
r(Σ0))

√
m+ log(2d)

e− s− ℓ+ 1

3.3 CUSUM-type Statistic

In this section, we adopt the CUSUM statistic with the element-wise truncated estimator and spectrum-

wise truncated estimator to detect change points associated with autocovariance matrix. Following the

representation in (3.1.1), for any pair of integers 0 < s < t, we define the CUSUM statistics with respect

to max norm and spectral norm as

D̂max
s,t = ∥Σ̂[s,t]

ele,ℓ − Σ̂
[1,s]
ele,ℓ∥max, (3.3.1)

and

D̂spec
s,t = ∥Σ̂[s,t]

spec,ℓ − Σ̂
[1,s]
spec,ℓ∥spec. (3.3.2)

Algorithm 2 run through the current data sequence with a pre-specified and time-dependent threshold.

Alarm will be triggered as long as there exists an integer s ∈ (1, t−ℓ) such that the statistic D̂s,t > ξs,t. In

the rest of the section, we analyze the algorithm 2 and provide theoretical guarantees for the two statistics.

We begin with the signal-to-noise ratio for D̂max
s,t in assumption 13.

Assumption 13 (Signal-to-noise ratio).

κ
√
∆− ℓ = CSNRω4

√
log(

d∆

α
) (3.3.3)
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Algorithm 2 CUSUM
1: Input: {Yk}k=1,2,..., ℓ, ξ
2: t← 1 + ℓ
3: while FLAG = 0 do
4: t← t+ 1;
5: s = 1
6: while FLAG = 0 and s < t− ℓ do
7: s← s+ 1
8: FLAG = 1

{
D̂s,t > ξs,t

}
9: end while

10: end while

In 3.3.3, the signal is characterized by the jump size κ and the pre-change length ∆ while the noise is

related to the dimension d, fourth moment ω4 and adjusted fourth moment ∥Y.∥4.

Theorem 3.3.1. Consider the setting described in 3.1.1. Let α ∈ (0, 1) and ∆̂ from 2. For any integers

0 < s < t and t− s ≥ ℓ, under Assumptions 7 and 8, choose the robustification parameter

τℓ,(jk) ≍ ω2
4(log(e− s+ 1− ℓ))−1

√
e− s+ 1− ℓ

log(dt
α
)

.

With the choice of threshold being

ξs,t = Ceω4

{√ log(dt
α
)

t− s+ 1− ℓ
+

√
log(ds

α
)

s− ℓ
}

under ∆ =∞,

P∞(∆̂ <∞) ≤ α. (3.3.4)
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Under Assumption 6,

P∆(∆̂ < ∆) ≤ α. (3.3.5)

If Assumptions 6 and 13 holds,

P∆(∆ < ∆̂ < ∆+ ϵ) ≥ 1− α, (3.3.6)

where

ϵ = ℓ+ Cϵκ
−2 log(

2d∆

α
).

The bound 3.3.4 guarantees that with the absence of change point, the detection procedure will

continue indefinitely with probability at lease 1− α. Under Assumtion 6, when the change point exists,

3.3.12 ensures that the false alarm probability of our procedure is no larger than α. As far as the detection

delay is concerned, 3.3.6 provides a high probability bound on the delay of orderκ−2 log(2d∆
α
). It suggests

that the delay shrinks with higher jump size κ and slowly increases with dimension d. Additionally, there

is a trade-off between the desired false alarm rate α and the delay (∆̂−∆)+.

Similarly, we show the results for D̂spec
s,t as follows.

Assumption 14 (Signal-to-noise ratio).

κspec
√
∆− ℓ = CSNR∥Σ0∥spec

√
log(

d∆

α
), (3.3.7)

In 3.3.7, the signal is characterized by the jump size in spectral norm κspec and the pre-change length

∆. On the other hand, the noise is captured by dimension d, the spectral norm of covariance matrix

∥Σ0∥spec.
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Theorem 3.3.2. Consider the setting described in 3.1.1. Let α ∈ (0, 1) and ∆̂ from 2. For any integers

0 < s < t and t− s > ℓ, under Assumptions 9- 12, we choose the robustification parameter

τℓ ≍ K2∥Σ0∥specγℓ(ρ)−
1
2

√
e− s− ℓ+ 1

m+ log(2d)
.

Then with the choice of threshold being

ξs,t = CEK
2∥Σ0∥spec

{√
γ∗l (ρ) +

√
K∗tr(Σ0)

K∥Σ0∥spec
}{√ log(dt

α
)

t− s+ 1− ℓ
+

√
log(ds

α
)

s− ℓ
}

under ∆ =∞,

P∞(∆̂ <∞) ≤ α. (3.3.8)

and under Assumption 6,

P∆(∆̂ < ∆) ≤ α. (3.3.9)

If Assumptions 6 and 14 holds,

P∆(∆ < ∆̂ < ∆+ ℓ+ ϵ) ≥ 1− α, (3.3.10)

where

ϵ = Cϵκ
−2
spec log(

2d∆

α
).
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In practice, as it is often the case in the applications, the threshold ξs,t needs to be calibrated from

observations obtained from the pre-change distribution. One major challenge here is the presence of

dependence. Regular resampling method such as bootstrap and permutation will not work. Hence, we

adopt the block-wise permutation to obtain the threshold from the calibration data set since it can preserve

the dependence of the data sequence.

Another practical issue is computational complexity. At each time t, one can store partial sums of

truncated outer products
{∑s

k=1+ℓ ψτℓ(Hk,ℓ)
}t
s=1

The computational cost of algorithm 1 isO(t2) as it

needs one more loop for all possible s.

In order to reduce the computational burden, we propose to compute D̂t−h,t only over a geometrically

increasing sequence of values for h, stated in Algorithm 3 below. It takes time in a linear order, and more

importantly, it can hold the same theoretical property as before.

Corollary 3.3.1. Consider the setting described in 3.1.1. Let α ∈ (0, 1) and ∆̂ from Algorithm 3. For any

integers 0 < s < t and t− s > ℓ, under Assumptions 7 and 8, choose the robustification parameter

τℓ,(jk) ≍ ω2
4(log(e− s+ 1− ℓ))−1

√
e− s+ 1− ℓ

log(dt
α
)

.

With the choice of threshold being

ξs,t = Ceω4

{√ log(dt
α
)

t− s+ 1− ℓ
+

√
log(ds

α
)

s− ℓ
}
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under ∆ =∞,

P∞(∆̂ <∞) ≤ α. (3.3.11)

Under Assumption 6,

P∆(∆̂ < ∆) ≤ α. (3.3.12)

If Assumptions 6 and 13 holds,

P∆(∆ < ∆̂ < ∆+ ϵ) ≥ 1− α, (3.3.13)

where

ϵ = ℓ+ C
′

ϵκ
−2ω4 log(

2d∆

α
)andC

′

ϵ ≥ Cϵ.

The major benefit of Algorithm 3 is ease of computation. It will reduce the computational cost to

O(t log t). Besides, this scheme yields the same nearly optimal guarantees of Theorem 3.3.1, as shown in

the corollary 3.3.1. Similarly, it can also be extended for statistic with spectrum-wise truncated estimator

and measured in matrix spectral norm.

Algorithm 3 CUSUM
1: Input: {Yk}k=1,2,..., ℓ, ξ
2: t← 1 + ℓ
3: while FLAG = 0 do
4: t← t+ 1;
5: J = ⌊log(t)/ log(2)⌋;
6: j = 0
7: while FLAG = 0 and j < J do
8: j = j + 1
9: s← t− 2j−1

10: FLAG = 1
{
D̂s,t > ξs,t

}
11: end while
12: end while
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3.4 Lower bound for the detection delay

In the proceeding section, we find a upper bound on the detection delay in Theorem 3.3.1 and 3.3.2 with

high probability. In this section, we derive the minimax lower bound on the expected detection delay.

The proof adapts arguments used for mean change in Proposition 7 of Y. Yu et al., 2020 and Theorem 2

of Lai, 1998.

Proposition 3.4.1. Assume that {Xi}i=1,2,... is a sequence of independent Gaussian random variables with

E(Xi) = 0 and V ar(Xi) = σ2. Denote the joint distribution of {Xi}i=1,2,... as Pκ,σ,∆. For α ∈ (0, 1),

under Assumption 6, consider the following estimators

DT = {T | T is a stopping time with respect to the natural filtration and satisfies P∞(T <∞) ≤ α}.

Define

Sα =
{
0 < α < 1 | 18 log( 1

α
)α ≤ α

1
4 and α + α

7
2 + α

1
4 <

1

2

}
and

Sκ,σ0 =
{
(κ, σ0) |

1

6
σ2
0 < κ <

1

4
σ2
0

}
.

Then, for sufficiently small α ∈ Sα, (κ, σ2
0) ∈ Sκ,σ2

0
, and any change point time ∆,

inf
∆̂∈D(α)

sup
Pκ,σ,∆

EP{(∆̂−∆)+} ≥
σ4
0

4κ2
log
( 1
α

)
.
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3.5 Simulation Study

In this section, we use simulated experiments to evaluate the performance of the two proposed robust

online change point detection methods based on CUSUM process and measured in spectral and max norm

respectively, denoted as CUSUM-spec-spec and CUSUM-ele-max. For comparison, replacing the robust

estimators by the sample autocovariance estimators, we get two competitors, denoted as CUSUM-sa-spec

and CUSUM-sa-max.

3.5.1 Experiment 1

In this experiment, we generate the Rd-valued time series {Yt}2Lt=1 composed of pre-change and post-

change segments with same length L. We consider an Rd-valued VAR(1) model

Yt = ρYt−1 +Zt, t = 1, . . . , 2L,

where ρ = 0.5, Zt = Σ1/2ϵt, and Σ =
(
σij
)
i∈[1,d];j∈[1,d] ∈ Rd×d is a symmetric and deterministic

matrix. Further, {ϵt}2Lt=1 is an i.i.d. random sequence with E(ϵt) = 0 and var(ϵt) = Id. We set the

length of calibration to be 2d and allow the variation of pre-change and post-change segments by choosing

L = 2d + Unif(0, 50). For 1 ≤ t ≤ L, we set σij = 0.5|i−j|. For the post-change segment, where

L < t ≤ 2L, we only change the first ⌊d/5⌋ diagonal entries to 2, i.e. we setσij = 2 if 1 ≤ i = j ≤ d/5,

and σij = 0.5|i−j| otherwise.

Denote ϵt,j the j-th entry of ϵt for t ∈ [1, 2L] and j ∈ [1, d]. We generate ϵt,j from one of the

following three standardized distributions.
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(1) (Normal). ϵt,j follows a standard Normal distribution.

(2) (Student’s t). ϵt,j follows a standardized Student’s t4 distribution, i.e. ϵt,j = 2−1/2Xt,j where

Xt,j ’s are i.i.d. from a t4 distribution.

(3) (Log-Normal). ϵt,j follows a standardized Log-normal distribution, i.e. ϵt,j = (e2−e)−1/2[exp(Xt,j)−

exp(1/2)] whereXt,j ’s are i.i.d. from a standard Normal distribution.

In the calibration process, we run blockwise permutationK = 200 times and compute the CUSUM

statistics {∥D̂(k)
s,t ∥}200k=1 to evaluate the unknown constant CE in the detection threshold. It is chosen

such that the proportion of {∥D̂(k)
s,t ∥}200k=1 cross ξs,t is capped at α. In addtion to the threshold, we use

the calibration data to obtain the robustification parameter τ by gap-block validation, which is the same

strategy of offline procedure in chapter 2.

To fairly evaluate the performance of online change point approach, we consider three metrics: pro-

portion of false alarm, power and average detection delay. The proportion of false alarm is given by

N−1

N∑
j=1

1{∆̂ ≤ L},

whereN = 200 is the number of replicates and ∆̂ is the estimated change point location (true location

∆ = L). Again in this experiment, the pre-change and post-change length equal to L, and we say the

dection scheme commits a type II error if it fails to discover a change point within the total run length

2L, i.e., ∆̂ ≥ 2L. Thus, the power is defined by

N−1

N∑
j=1

1{L < ∆̂ < 2L},
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and the average detection delay is given by

∑N
j=1 (∆̂− L)1{L < ∆̂ < 2L}∑N

j=1 1{L < ∆̂ < 2L}
.

Table 3.1: Proportion of false alarm over 200 replications Considered in Scenario 2 when p = 20.

normal t4 lognorm
CUSUM-sa-spec 0.02 0.05 0.02

CUSUM-spec-spec 0.03 0.05 0.04
CUSUM-sa-max 0.01 0.03 0.07

CUSUM-ele-max 0.00 0.03 0.04

Table 3.2: Average delay and power(in parentheses) over 200 replications when d = 20 in experiment 1.

normal t4 lognorm
CUSUM-sa-spec 7.99(0.97) 28.90(0.42) 27.48(0.59)

CUSUM-spec-spec 8.01(0.97) 24.26(0.69) 27.17 (0.61)
CUSUM-sa-max 1.95(1.00) 12.57(0.97) 10.91(0.92)

CUSUM-ele-max 2.64(1.00) 4.53(0.97) 4.30(0.95)

Table 3.3: Porpotion of false alarm over 200 replications when d = 50.

normal t4 lognorm
CUSUM-sa-spec 0.15 0.00 0.00

CUSUM-spec-spec 0.01 0.01 0.03
CUSUM-sa-max 0.05 0.00 0.02

CUSUM-ele-max 0.04 0.0 0.00
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Table 3.4: Average Delay and Power(in parentheses) over 200 replications Considered in Scenario 2 When
p = 50.

normal t4 lognorm
CUSUM-sa-spec 4.91(1.00) 38.64(0.53) 40.49(0.59)

CUSUM-spec-spec 2.92(1.00) 33.54(0.55) 34.45 (0.66)
CUSUM-sa-max 3.67(1.00) 16.24(0.97) 34.80(0.96)

CUSUM-ele-max 3.13(1.00) 10.73(0.98) 18.75(0.97)

3.5.2 Experiment 2: Autocovariance Change

In the second experiment, we want to restrict our attention to the autocovariance change only while

keeping the same covariance structure before and after the change point. This motivates us to consider

the following setup.

Yt =


√

1
1−ρ2

Σ1/2ϵt, if 0 < t < L

ρYt−1 +Σ1/2ϵt if L < t < 2L,

where Σ = Ip, L = Unif(50, 100), and ϵt still follows one of the three standardized distributions as

described in the previous experiment. Under this scenario, the covariance matrix Σ0 remains
√

1
1−ρ2Σ

along the series, but the lag-1 autocovariance matrix Σ1 alters from 0 to
√

ρ
1−ρ2Σ at change point L.

Compared to the previous experiment, the signal in this case is definitely weaker.
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Table 3.5: Porpotion of false alarm over 200 replications when p = 20 in experiment 2.

normal t4 lognorm
CUSUM-sa-spec 0.02 0.01 0.02

CUSUM-spec-spec 0.01 0.01 0.01
CUSUM-sa-max 0.04 0.00 0.03

CUSUM-ele-max 0.04 0.00 0.04

Table 3.6: Average Delay and Power(in parentheses) over 200 replications when p = 20 in experiment 2.

normal t4 lognorm
CUSUM-sa-spec 18.08(0.94) 47.90(0.05) 37.85(0.03)

CUSUM-spec-spec 12.75(0.96) 26.46(0.74) 20.51 (0.94)
CUSUM-sa-max 27.80(0.61) 50.67(0.05) 37.69(0.24)

CUSUM-ele-max 26.75(0.69) 31.59(0.32) 25.71(0.84)

Table 3.7: Porpotion of false alarm over 200 replications when p = 50 in experiment 2 .

normal t4 lognorm
CUSUM-sa-spec 0.15 0.00 0.00

CUSUM-spec-spec 0.01 0.01 0.03
CUSUM-sa-max 0.05 0.00 0.02

CUSUM-ele-max 0.04 0.00 0.00

Table 3.8: Average Delay and Power(in parentheses) over 200 replications when p = 50 in experiment 2.

normal t4 lognorm
CUSUM-sa-spec 4.91(1.00) 56.64(0.18) 59.61(0.19)

CUSUM-spec-spec 2.92(1.00) 9.94(1.00) 15.34 (1.00)
CUSUM-sa-max 21.49(1.00) 59.81(0.16) 51.80(0.39)

CUSUM-ele-max 21.79(1.00) 15.15(0.58) 14.75(0.76)

Table 3.9: Porpotion of false alarm over 200 replications when p = 100 in experiment 2.

normal t4 lognorm
CUSUM-sa-spec 0.00 0.00 0.01

CUSUM-spec-spec 0.00 0.04 0.06
CUSUM-sa-max 0.00 0.0 0.20

CUSUM-ele-max 0.04 0.00 0.00
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Table 3.10: Average Delay and Power(in parentheses) over 200 replications Considered in Scenario 2 When
p = 100.

normal t4 lognorm
CUSUM-sa-spec 5.32(1.00) 90.671(0.16) 95.48(0.48)

CUSUM-spec-spec 2.69(1.00) 6.43(1.00) 7.28 (1.00)
CUSUM-sa-max 32.39(1.00) 97.14(0.11) 63.54(0.96)

CUSUM-ele-max 23.83 (1.00) 12.22(0.50) 14.59(1.00)
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3.6 Proofs for chaper 3

3.6.1 Proof of Theorem 3.3.1

Lemma 3.6.1. Assume ∆ =∞. Define

A =
{
∀s, t ∈ N+, t > 2 + ℓ and t− s ≥ 1 + ℓ : ∥Σ̂[s:t]

ele,ℓ −Σℓ∥max ≤ as,t(δ)
}
,

where

as,t(δ) = Ce[ρ
−l∥X.∥4 + ω4 log(t− s+ 1− ℓ)]ω4

√
δ + 2 log d

t− s+ 1− ℓ
,

with 0 < α < 1,

δ = −2 log(α
t
).

Then, it holds that

P(A) ≥ 1− α.

Proof of lemma 3.6.1. ConsiderAc, the complement ofA.

P(Ac) =P{∃s, t ∈ N+, t ≥ 2 + ℓ and t− s ≥ 1 + ℓ : ∥Σ̂[s:t]
ele,ℓ −Σℓ∥max ≥ as,t(δ)}

≤
∞∑
j=1

P
{ ∏

2j≤t<2j+1

∏
0<s≤t−1−ℓ

1{∥Σ̂[s:t]
ele,ℓ −Σℓ∥max ≥ as,t(δ)} = 1

}
≤

∞∑
j=1

2j max
2j≤t<2j+1

P
{ ∏

0<s≤t−1−ℓ

1{∥Σ̂[s:t]
ele,ℓ −Σℓ∥max ≥ as,t(δ)} = 1

}
≤

∞∑
j=1

22j+1 max
2j≤t<2j+1

max
0<s≤t−1−ℓ

P
{
1{∥Σ̂[s:t]

ele,ℓ −Σℓ∥max ≥ as,t(δ)} = 1
}
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By the estimation error provided in Theorem 3.2.1, choose

δ̃ = −1

4
log
{ α log2(2)

2[log(t) + log(2)]2t2
}
.

Then

P(Ac) = ≤
∞∑
j=1

22j+1 max
2j≤t<2j+1

max
0<s≤t−1

P
{
∥Σ̂[s:t]

ele,ℓ −Σℓ∥max ≥ as,t(δ̃)
}

≤
∞∑
j=1

22j+1 max
2j≤t<2j+1

max
0<s≤t−1

α log2(2)

2[log(t) + log(2)]2t2

≤
∞∑
j=1

22j+1 α

2(j + 1)222j

≤ α
∞∑
j=1

1

(1 + j)2
≤ α

∞∑
j=1

1

(1 + j)j
= α

Because

−1

4
log
{ α log2 2

2[log(t) + log(2)]2t2
}
≤ −1

4
log
{ α log2 2

8 log(t)2t2
}

≤ −2 log(α
t
),

for simplicity, we take

δ = −2 log(α
t
).

Proof of Theorem 3.3.1. Recall

A =
{
∀s, t ∈ N+, t > 2, t > s : ∥Σ̂[s:t]

ℓ −Σℓ∥ ≤ as,t(δ)
}
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with

as,t(δ) = Ce[ρ
−l∥X.∥4 + ω4 log(t− s+ 1− ℓ)]ω4

√
δ + 2 log d

t− s+ 1− ℓ
,

and

δ = −2 log(α
t
).

as,t = Ce[ ρ
−l∥X.∥4 + ω4 log(t− s+ 1− ℓ) ] ω4

√
δ + 2 log d

t− s+ 1ℓ

≤ C
′

e[ ρ
−l∥X.∥4 + dω4 ] ω4

√
log(dt

α
)

t− s+ 1− ℓ
(C

′

e =
√
2Ce, log(t) < d )

= CE

√
log(dt

α
)

t− s+ 1− ℓ

For any t ≤ ∆,

∥Σ̂[s:t]
ℓ − Σ̂

[1:s]
ℓ ∥max ≤ ∥Σ̂[1:s]

ℓ −Σ∆
ℓ ∥max + ∥Σ̂[s:t]

ℓ −Σ∆
ℓ ∥max

= CE

{√ log(dt
α
)

t− s+ 1− ℓ
+

√
log(ds

α
)

s− ℓ
}
= ξs,t

Consequently, we have ∆̂ > ∆.

For t > ∆, we are seeking an upper bound for ∆̂ or ∆̂−∆, and it will immediately yield 3.3.12. Let

∆̃ = min
{
t > ∆ : ∥Σ̂[∆:t]

ℓ − Σ̂
[1:∆]
ℓ ∥ ≥ ξ∆,t

}
and ϵ = ∆̃−∆. Then ∆̂−∆ ≤ ϵ. Hence, it suffices

to find an upper bound for ϵ.
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By the definition of ∆̃, we have

∥Σ̂[∆:∆̃]
ℓ − Σ̂

[1:∆]
ℓ ∥max = ∥Σ̂[∆:∆̃]

ℓ −Σ∆+1
ℓ +Σ∆+1

ℓ −Σ∆
ℓ +Σ∆

ℓ − Σ̂
[1:∆]
ℓ ∥max

≥ ∥Σ∆+1
ℓ −Σ∆

ℓ ∥max −
(
∥Σ̂[∆:∆̃]

ℓ −Σ∆+1
ℓ ∥max + ∥Σ∆

ℓ − Σ̂
[1:∆]
ℓ ∥max

)
≥ κ− ξ∆,∆̃

Thus, a proper upper bound of ϵ can be obtained if κ− ξ∆,∆̃ ≥ ξ∆,∆̃.

It now suffices to show that with the choice of

√
ϵ− ℓ = κ−1 Cϵ

√
log(

2d∆

α
),

it holds that κ− ξ∆,∆+ϵ ≥ ξ∆,∆+ϵ, i.e. κ ≥ 2ξ∆,∆+ϵ.

Due to the signal ratio in 13,

κ
√
∆− ℓ = CSNR (ρ−l∥X.∥4ω4 + dω2

4)

√
log(

d∆

α
),
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then

2ξ∆,∆+ϵ = 2CE

{√ log(d(∆+ϵ)
α

)

ϵ+ 1− ℓ
+

√
log(d∆

α
)

∆− ℓ
}

≤ 2CE

{√ log(2d∆
α
)

ϵ+ 1− ℓ
+

√
log(d∆

α
)

∆− ℓ
}
red(ϵ+ 1 ≤ ∆)

≤ 2CE

√
log(

2d∆

α
)

√
1

ϵ+ 1− ℓ
+ κ

2C
′
e

CSNR

≤ κ
2CE

Cϵ

+ κ
2C

′
e

CSNR

≤ κ,

wheremax( C
′
e

CSNR
, CE

Cϵ
) ≤ 1

4
.

3.6.2 Proof of Theorem 3.3.2

Lemma 3.6.2. Assume ∆ =∞. Define

A =
{
∀s, t ∈ N+, t ≥ 2 + ℓ and t− s ≥ 1 + ℓ : ∥Σ̂[s:t]

spec,ℓ −Σℓ∥ ≤ as,t(δ)
}
,

where

as,t(δ) = CeK
2∥Σ0∥

{√
γℓ(ρ) +

√
tr(Σ0)K∗

∥Σ0∥K
}√δ + log(2d)

e− s+ 1

}
,

with 0 < α < 1,

δ = −4 log(α
t
).
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Then, it holds that

P(A) ≥ 1− α.

Proof of lemma 3.6.2. ConsiderAc, the complement ofA.

P(Ac) =P{∃s, t ∈ N+, t ≥ 2 + ℓ and t− s ≥ 1 + ℓ : ∥Σ̂[s:t]
ℓ −Σℓ∥ ≥ as,t(δ)}

≤
∞∑
j=1

P
{ ∏

2j≤t<2j+1

∏
0<s≤t−1

1{∥Σ̂[s:t]
spec,ℓ −Σℓ∥ ≥ as,t(δ)} = 1

}
≤

∞∑
j=1

2j max
2j≤t<2j+1

P
{ ∏

0<s≤t−1

1{∥Σ̂[s:t]
spec,ℓ −Σℓ∥ ≥ as,t(δ)} = 1

}
≤

∞∑
j=1

22j+1 max
2j≤t<2j+1

max
0<s≤t−1

P
{
1{∥Σ̂[s:t]

spec,ℓ −Σℓ∥ ≥ as,t(δ)} = 1
}

By the estimation error provided in Theorem 3.2.2, choose

δ̃ = −1

2
log
{ α log2(2)

2[log(t) + log(2)]2t2
}
.

Then

P(Ac) = ≤
∞∑
j=1

22j+1 max
2j≤t<2j+1

max
0<s≤t−1

P
{
∥Σ̂[s:t]

ℓ −Σℓ∥ ≥ as,t(δ̃)
}

≤
∞∑
j=1

22j+1 max
2j≤t<2j+1

max
0<s≤t−1

α log2(2)

2[log(t) + log(2)]2t2

≤
∞∑
j=1

22j+1 α

2(j + 1)222j

≤ α

∞∑
j=1

1

(1 + j)2
≤ α

∞∑
j=1

1

(1 + j)j
= α
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Because

−1

2
log
{ α log2 2

2[log(t) + log(2)]2t2
}
≤ −1

2
log
{ α log2 2

8 log(t)2t2
}

≤ −4 log(α
t
)

for simplicity, we take

δ = −4 log(α
t
)

Proof of Theorem 3.3.2. Recall

A =
{
∀s, t ∈ N+, t ≥ 2 + ℓ and t− s ≥ 1 + ℓ : ∥Σ̂[s:t]

spec,ℓ −Σℓ∥ ≤ as,t
}

with

as,t = CeK
2∥Σ0∥

{√
γl(ρ) +

√
tr(Σ0)K∗

∥Σ0∥K
}√−4 log(α

t
) + log(2d)

t− s− l + 1
.

DenoteA = K2∥Σ0∥, andB = (K
∗

K
)1/2
√

tr(Σ0)

∥Σ0∥1/2
.
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as,t = CeA
{√

γl(ρ) +B
}√ log(2d)− 4 log(α

t
)

t− s− l + 1

≤ CEA
{√

γl(ρ) +B
}√ log(dt

α
)

t− s− l + 1
red(CE = 2

√
2Ce)

≤ CEA
{√

γ∗l (ρ) +B
}√ log(dt

α
)

t− s− l + 1
red(log(t) < d)

≤ C
′

E

√
log(dt

α
)

t− s− l + 1
,

where γ∗l (ρ) = d
log 2

max(1, 8log(dηℓ)+48d
logρ−1 ) andCE = C

′
eA
{√

γ∗l (ρ) +B
}
.

For any t ≤ ∆,

∥Σ̂[s:t]
spec,ℓ − Σ̂

[1:s]
spec,ℓ∥ ≤ ∥Σ̂

[1:s]
spec,ℓ −Σ∆

ℓ ∥+ ∥Σ̂
[s:t]
spec,ℓ −Σ∆

ℓ ∥

= CE

{√ log(dt
α
)

t− s− l + 1
+

√
log(ds

α
)

s− ℓ
}
= ξs,t.

Consequently, we have ∆̂ > ∆.

For t > ∆, we are seeking an upper bound for ∆̂ or ∆̂ − ∆, and it will immediately yield ??. Let

∆̃ = min
{
t > ∆ : ∥Σ̂[∆:t]

spec,ℓ − Σ̂
[1:∆]
spec,ℓ∥ ≥ ξ∆,t

}
and ϵ = ∆̃−∆.Then ∆̂−∆ ≤ ϵ. Hence, it suffices

to find an upper bound for ϵ.

By the definition of ∆̃, we have

∥Σ̂[∆:∆̃]
spec,ℓ − Σ̂

[1:∆]
spec,ℓ∥ = ∥Σ̂

[∆:∆̃]
spec,ℓ −Σ∆+1

ℓ +Σ∆+1
ℓ −Σ∆

ℓ +Σ∆
ℓ − Σ̂

[1:∆]
spec,ℓ∥

≥ ∥Σ∆+1
ℓ −Σ∆

ℓ ∥ −
(
∥Σ̂[∆:∆̃]

spec,ℓ −Σ∆+1
ℓ ∥+ ∥Σ∆

ℓ − Σ̂
[1:∆]
spec,ℓ∥

)
≥ κ− ξ∆,∆̃
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Thus, a proper upper bound of ϵ can be obtained if κ− ξ∆,∆̃ ≥ ξ∆,∆̃.

It now suffices to show that with the choice of

√
ϵ− ℓ = κ−1 Cϵ

√
log(

2d∆

α
),

it holds that κ− ξ∆,∆+ϵ ≥ ξ∆,∆+ϵ, i.e. κ ≥ 2ξ∆,∆+ϵ.

Due to the signal ratio in 14,

2ξ∆,∆+ϵ = 2CE

{√ log(d(∆+ϵ)
α

)

ϵ+ 1− ℓ
+

√
log(d∆

α
)

∆− ℓ

}
≤ 2CE

{√ log(d(2∆)
α

)

ϵ+ 1− ℓ
+

√
log(d∆

α
)

∆− ℓ

}
≤ 2CE

√
log(

2d∆

α
)

√
1

ϵ+ 1− ℓ
+ κ

2CE

CSNR

≤ κ
2CE

Cϵ

+ κ
2CE

CSNR

≤ κ,

wheremax( CE

CSNR
, CE

Cϵ
) < 1

4
.

3.6.3 Proof of Corollary 3.3.1

Step 1. For any t > 2 + ℓ, we define

S(t) = {t− 20 − ℓ, t− 21 − ℓ, . . . , t− 2⌊log(t)/ log 2⌋ − ℓ}.
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Assume ∆ =∞. Define

B =
{
∀s, t ∈ N+, t > 2 + ℓ and s ∈ S(t) : ∥Σ̂[s:t]

ele,ℓ −Σℓ∥max ≤ ξs,t
}
,

where ξs,t = CE

{√
log( dt

α
)

t−s+1−ℓ
+

√
log( ds

α
)

s−ℓ

}
. From lemma 3.6.1 and theorem 3.3.1, it follows that P(B) ≥

1− α.

Step 2. We define ∆̃∗ = min
{
t > ∆ : ∥Σ̂[∆:t]

spec,ℓ − Σ̂
[1:∆]
spec,ℓ∥ ≥ ξ∆,t

}
. It is not hard to see that

∆̃∗ ≥ ∆̃ from the previous cases. With the choice of

√
ϵ− ℓ = κ−1 C

′

ϵ

√
log(

2d∆

α
),

whereC ′
ϵϵ, it holds that κ− ξ∆,∆+ϵ ≥ ξ∆,∆+ϵ, i.e. κ ≥ 2ξ∆,∆+ϵ.

3.6.4 Proof of Proposition 3.4.1

Step 1. LetFn be the σ-field generated by the observations Y1, Y2, . . . , Yn, and let Pn be the restriction

of a distribution P n toFn. For any ν ≥ 1 and n ≥ ν,

dP n
κ,σ0,ν

dP n
κ,σ0,∞

= exp

(
n∑

i=ν+1

Zi

)
, (3.6.1)

where P n
κ,σ0,∞ is the joint distribution under which there is no change point and

Zi =
1

2
log

(
σ0
σ1

)
+
σ2
1 − σ2

0

2σ2
0

(
Y 2
i

σ2
1

)
.
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We assume that κ = σ2
1 − σ2

0 > 0, and for any ν > 1, define the event

Cν =

{
ν < T < ν +

σ4
0

2κ2
log

(
1

α

)
,

T∑
i=ν+1

Zi <
5

2
log

(
1

α

)}
.

By 3.6.1, we have

Pκ,σ0,ν(Cν) =
∫
Cν
dP n

κ,σ0,ν
=

∫
Cν
exp

(
n∑

i=ν+1

Zi

)
dP n

κ,σ0,∞ ≤ exp{(5/2) log(1/α))}Pκ,σ0,∞(Cν)

≤ exp{(5/2) log(1/α))} Pκ,σ0,∞

{
ν < T < ν +

σ4
0

κ2
log

(
1

α

)}
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where the second inequality holds due to log(
σ2
0

σ2
1
) < 0, the third one is given by the union bound ar-

gument, the fourth inequality holds for κ > 1
6
σ2
0 , the fifth one is by the Berinstain’s inequality for

sub-exponential variables (Theorem 2.8.1 in Vershynin, 2018), the seventh inequality holds provided that

κ < 1
4
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0 , and the last inequality is met for sufficiently small α.

Because the upper bound is independent of ν, then we have

sup
ν≥1

Pκ,σ0,ν

{
ν < T < ν +

σ4
0

2κ2
log

(
1

α

)
,

T∑
i=ν+1

Zi ≥ (5/2) log(1/α)

}
≤ α

1
4 . (3.6.3)

Then, combining 3.6.2 and 3.6.3, we have

Pκ,σ0,ν

{
ν < T < ν +

σ4
0

2κ2
log

(
1

α

)}
≤ α

7
2 + α

1
4 . (3.6.4)

76



Step 3. For any change point ∆,
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Chapter 4

Applications to pandemic time

series data

Since early 2020, the Covid-19 pandemic has spread rapidly across the globe and brought significant impact

on human’s lives, leading to widespread illness, death, and economic disruption. The mortality data over

the two years contain valuable information for us to understand the evolution of varus, progression of

the pandemic and the influence of key public health policies. In the first part, we conduct a retrospective

change point analysis on the U.S. state-level mortality data by implementing MACD, the offline procedure

in chapter 2. In the second part, we assume the online setting and attempt to put online detection in a

broader picture. We incorporate the change points into time series modeling to facilitate the forecasting.

Results show that with the assistance of change points, the accuracy and efficiency of prediction can be

greatly improved.
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4.1 Retrospective change point analysis

The data set is collected from the New York Times Github repository, containing the state-level daily death

data from 3/18/2020 to 8/16/2022 in the 48 adjoining U.S. states and the District of Columbia. Instead

of using the original scale of the data, we use 7-day log return to adjust for the weekly seasonality. To be

specific, denote Xt as the daily death counts observed at time t. We define Yt = log(Xt)− log(Xt−7)

as the 7-day log return of Xt. In addition, we choose window size W = 180 and consider three different

lags 0, 1, and 7 to analyze this data set. Note that, if W =180, we assume the minimum distance between

two consecutive change points is at least 180 days.

Before implementing the method, it is necessary to check if the data present the heavy-tailedness by

their kurtosis. Figure 4.1 displays the presence of heavy-tailedness in most of the states and minimum

kurtosis value across states is around 6.8. Hence, it is appropriate to apply the robust autocovariance

change point algorithm on this data set.

Figure 4.1: Histogram of Kurtosis of 49 states in logarithm scale
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Table 4.1: Offline second-order change points in U.S. state level COVID-19 mortality data

Lag Date (YYYY-MM-DD)
ℓ = 0 2020-09-20, 2021-05-17, 2021-12-13
ℓ = 1 2021-01-29
ℓ = 7 2021-01-07

Figure 4.2: Seven-days log returns of five states with change points indicated

Fig. 4.2 displays the 7-days log returns of five representative states and the segmentation by detected

change points. It contains information about the diagonal of autocovariance or covariance matrix while
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the association between states cannot be visualized by this graph. As we can see, those change points

discovered by MACD can capture the the variation of second-order structure well.

The first change-point on 2020-9-20 under ℓ = 0 is likely to result from the resurgence of COVID-19

cases and deaths due to increased travel and large gathering for events related to the U.S. presidential

election. FDA issues emergency use authorizations for Pfizer-BioNTech and Moderna Covid-19 vaccines

in December and vaccine doses begin to be administered. Nevertheless, in the early 2021, the Alpha variant

starts to become the predominant variant in US, which is more contagious and deadlier than the original

virus. Consequently, it is reasonable to see a change point around January, as suggested by the results

for ℓ = 1 and ℓ = 7. The change point 2021-05-17 discovered under ℓ = 0 could be explained by the

widespread vaccination by which more than 200 million COVID-19 vaccine doses have been administered

in the U.S, leading to steady decline of mortality rate. On the other hand, the arrival of Delta variant

rapidly reverse that trend which is more transmissible than Alpha and can cause more severe disease to

unvaccinated people. In the midst of a Delta variant spike, CDC recommends taking the booster shot and

wearing mask indoors, which mitigate the situation. However, as Omicron arrives in October, the case

number in U.S. skyrocket again. This can explain why we find the last change point on 2021-12-13. The

retrospective analysis above provides some hypotheses that policy changes and significant events in the

COVID-19 timeline may lead to fundamental second-order structure changes in state-level mortality data.

The findings may motivate a line of public health research to validate the causal relationship between

policies and temporal patterns of mortality data during the pandemic.

The main purpose of offline CPD is to facilitate the retrospective study. While in the online streaming

setting, new observation arrive steadily and people can take actions once a change point is identified in

the system. In the next section, we attempt to put online change point detection in a broader picture
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by combining it with time series modeling. Roughly speaking, we want to update the forecasting model

once a change point is found instead of ignoring it.

4.2 Change point assisted online forecasting

The importance of structural stability cannot be overlooked in statistical modeling of time series. In

particular, if the underlying process undergoes unexpected changes, it can cause a loss of accuracy in the

forecasts. In this study, we adopt the online approach in chapter 3 to sequentially detect change points in

the second order. Those change points serve as break times when the forecasting model will restart to train

with the new observations. This is an ongoing project while preliminary results have shown that with the

assistance of change points, the accuracy of forecasting is improved in terms of sMAPE and efficiency of

training and prediction process is greatly boosted.

The data set is collected from ’Our World In Data’ (Ritchie et al., n.d.), aggregated from multiple

sources. The data ranges from 2020-07-24 to 2022-08-14 and contains the national level daily death data

and other important information about cases, hospitalizations, ICU patients, etc. Here we focus on the

daily death count for monitoring change points, some of the other variables may be of interest in building

prediction models. Again, the kurtosis of the data series is around 4.1, indicating that heavy-tailedness is

present.

We adopt the online second-order change point detection approach in chapter 3. We chooseα = 0.01

and take 100 data points as calibration set to obtain the threshold. To dealing with multiple change points,

every time we encounter a change point, the threshold is re-calibrated. Table 4.2 displays the sequentially

detected change points. Note that the results here differs from the previous offline results. Moreover,
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2021-02-17, 2021-06-08 and 2021-11-26 found in this table are close to 2021-01-29, 2021-05-17 and 2021-12-13

respectively in table 4.1 whereas other dates differs a lot. It could be caused by multiple reasons. First,

in the offline detection we set window size equal to 180, which, indicated by our binary segmentation

algorithm that the minimum space between two consecutive change points is assumed to be at least 180.

But this is not the case here for the sequential detection. The second reason is that, online procedure

would be more sensitive to the abrupt changes because it make decisions based on the historical values

instead of the whole sequence that is available in the offline setting. As a result, it is not surprising to see

more and different change points discovered here in table 4.2.

Table 4.2: Online second-order change points in U.S. national level COVID-19 mortality data

Lag Date (YYYY-MM-DD)
ℓ = 0 2021-06-08, 2021-09-13, 2021-11-26, 2022-04-24, 2022-06-25
ℓ = 1 2021-02-17, 2021-07-13, 2021-11-26, 2022-05-04, 2022-07-03
ℓ = 7 2021-06-10, 2022-04-17, 2022-06-22

Unstable underlying structure of the time series poses challenges on forecasting. We consider a hybrid

modeling process that can adapt to change points. The idea is simple, every time when we encounter a

shift, we refit the model with new observations after that. In table 4.3, we compare in terms of sMAPE

the CP model using CPs at ℓ = 0 with baseline model which ignore the existence of CPs. The choices of

forecasting approaches has been rapidly grown in recent years. Here we choose eight predictors coming of

three major types: traditional statistical model (AR and AR(L1)), tree-based model (RF,XGB) and neural

network model (TCN, LSTM, GRU and TRF). Results show that after introducing CPs, the accuracy

of forecasting is improved. Additionally, the time spent for each method is dramatically reduced.
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Table 4.3: Comparison of baseline model and change point assisted model on Covid-19 mortality data by
sMAPE and time spent
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