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Abstract

Cilia are hair-like projections lining the respiratory tract that move microbes and debris out of the

airways. The coordinated beating of cilia provides the driving force for mucociliary clearance, which

is the primary defense mechanism of the lung. Cilia are also an important entry site for viral infection

including SARS-CoV-2, which is the causative agent of the COVID-19 pandemic. SARS-CoV-2 enters

host cells by interacting with angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease

2 (TMPRSS2) receptors, which are localized to respiratory cilia. The localization of ACE2 on these cilia

has important implications in SARS-CoV-2 transmission and the development of therapeutic strategies

to treat COVID-19. However, the specific localization of ACE2 in cilia and whether ACE2 plays a role

in ciliary function remain unknown. To investigate the localization of ACE2 in cilia, we performed

immunofluorescence staining and imaged with a super-resolution microscope using commercial ACE2

antibodies. We found that ACE2 localizes to the proximal region of cilia while TMPRSS2, an ACE2

sheddase, localizes to the distal region of cilia, which may in part explain the proximal distribution of the

ectodomain of ACE2 on respiratory cilia. To study ciliary function, we built a large-scale video dataset

of ciliary motion phenotypes under several categories (temperatures, drugs, and ACE2 manipulation).

This validation dataset consists of 872 videos and ground-truth masks labelling the ciliary area. We also



calculated the ciliary beat frequency as a benchmark metric. Cilia segmentation is important for ciliary

waveform analysis, which will help in the diagnosis of ciliopathies. We built a deep learning pipeline that

incorporated Gabor filters into a the U-Net model for automated cilia segmentation. Our framework

improved the performances of the baseline model in terms of Intersection over Union (IoU), accuracy,

F1, and precision scores. Our work is crucial to understanding the precise nature of ACE2, SARS-CoV-2

pathogenesis, and ciliary motility.

Index words: [Cilia, ACE2, TMPRSS2, image segmentation, cilia beat frequency, validation

dataset]
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Chapter 1

Introduction

1.1 Introduction

The coronavirus disease 19 (COVID-19), caused by SARS-CoV-2, has been responsible for a worldwide

pandemic causing over 768 million cumulative cases and 6.9 million deaths as of July 2023 1. COVID-19 is

a severe infectious disease first reported in December 2019 in Wuhan, China (2). SARS-CoV-2 enters host

cells by interacting with angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2

(TMPRSS2) receptors in host cells (3). ACE2 is a transmembrane protein found on the surface of many

cell types. ACE2 plays an important role in regulating blood pressure and renal function.

Recent studies have shown that ACE2 plays an important role in mediating the infection of SARS-

CoV and SARS-CoV-2 (4; 5; 3). There are four known isoforms of ACE2 and a soluble form of ACE2

lacking the transmembrane collectrin domain (6). ACE2 localizes to the respiratory cilia (7; 8). A recent

study reported a novel ACE2 isoform named short ACE2, which localizes mainly to the apical region of

cells (9). The specific expression and localization of ACE2 isoforms in cilia have not yet been investigated

in respiratory cilia. SARS-CoV-2 infection disrupts cilia function, impairing the lung from trapping and

clearing out the virus (10; 8; 11). However, whether ACE2 affects ciliary function and motility remains

unknown.
1https://covid19.who.int/
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Cilia are hair-like structures found on the surface of eukaryotic cells in vertebrates. Cilia participate

in many biological processes such as fluid movement and cell locomotion. The synchronized beating

of cilia is an important biological function in cells and vertebrates. In the airway, motile cilia beat in a

coordinated manner to propel the pathogens and debris out of the airway. The coordinated beating of cilia

plays a key role in maintaining effective mucociliary clearance (MCC), which is the primary innate defense

mechanism of the lung (12). Defects in cilia can cause disorders known as ciliopathies, characterized by

structural or functional abnormalities in cilia. Therefore, the effective analysis of ciliary function is critical

in the diagnosis of ciliopathies. The functional analyses of cilia, including ciliary beat frequency (CBF)

and ciliary beat pattern (CBP), are critical in biological studies and the diagnosis of ciliopathies. CBF can

be calculated using automated methods such as fast fourier transform (FFT) or optical flow (13; 14; 15).

However, the beat pattern of cilia is mainly analyzed manually, which is error-prone and time-consuming.

Also, CBF measurement protocols are not standard so that metric can also vary.

Currently, the assessments of ciliary function and characteristics remain challenging, and a fundamen-

tal part of overcoming this challenge is effective cilia segmentation. In recent years, the rapid development

of machine learning (ML) and deep learning (DL) algorithms has enabled great progress on automated

cilia detection and segmentation (16; 17; 18; 19). A large-scale dataset is important for researchers to build

model benchmarks and compare state-of-the-art methods. Currently, there is no open source dataset of

ciliary motion. In this work, we built a large-scale validation dataset of ciliary motion phenotypes under

different categories: temperatures, drugs, and ACE2 manipulation.

1.2 Overview of dissertation

In this dissertation, I investigate the localization of ACE2 in airway cilia and characterize ciliary motion

phenotypes. This dissertation is presented in 5 chapters.

The second chapter is a literature review of the present knowledge of ACE2 and computational studies

of cilia. I describe the structure and function of ACE2, and the current knowledge of the interaction of

ACE2 and cilia. In the second part of the literature review, I describe image segmentation techniques in-
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cluding traditional methods and deep-learning based methods. I also summarize computational methods

to quantify cilia characteristics.

In Chapter 3 of this dissertation, I investigate ACE2 localization on airway cilia. Current studies on

the specific localization of ACE2 on cilia and epithelial cells have reported conflicting results. Utilizing

super-resolution microscopy, we demonstrate that Ecto-ACE2 localizes to the proximal region of cilia

while Cyto-ACE2 localizes to cilia but is also enriched in the proximal region. In addition, we engineered

epitope-tagged forms of ACE2 for ACE2 isoform 1 and 2 and found similar localization pattern of Ecto-

and Cyto- ACE2. TMPRRS2, the sheddase of ACE2, localized to the distal region of cilia, which in part

explains the distribution of Ecto-ACE2 on the proximal compartment of cilia only, and Cyto-ACE2 on

whole cilia.

In Chapter 4, I describe construction of a large-scale validation dataset of ciliary motion phenotypes.

I treated cilia with different stimuli (drugs, temperatures, ACE2 manipulation) and recorded cilia motion

with a high-speed video microscope at 250 frames per second. I also generated ground-truth masks labelling

ciliary area. As a benchmark, we calculated the CBF and presented the work of the quantitative analysis

of cilia characteristics.

In Chapter 5, I propose a deep-learning framework of incorporating Gabor filter with the U-Net

model for cilia segmentation.

Lastly, I summarize the work completed in this dissertation and provide future directions.

3



Chapter 2

Literature Review

2.1 Angiotensin-Converting Enzyme 2 and Motile Cilia

The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has had an enormous impact

on public health worldwide. Severe acute respiratory syndrome virus 2 (SARS-CoV-2), the causative

agent of COVID-19, was shown to utilize the angiotensin converting enzyme-2 (ACE2) receptor for host

cell entry. ACE2 is a zinc metalloenzyme and carboxypeptidase found on the surface of many cell types

such as lung alveolar epithelial cells and enterocytes. Recent studies have shown that ACE2 is localized to

respiratory cilia (7; 8), which are an important site of the infection. In recent years, ACE2 has become a

promising target for the treatment and prevention of COVID-19. Numerous efforts have been made to

research ACE2 in order to tackle SARS-CoV-2 globally.

ACE2 is cleaved by transmembrane serine protease 2 (TMPRSS2) to relase the ectodomain of ACE2

(20). The spike (S) protein of SARS-CoV-2 uses TMPRSS2 for S protein priming (3). Both ACE2 and

TMPRSS2 are found localized to airway cilia (7; 21; 8). Respiratory cilia are important components of

MCC, which is the primary innate defense mechanism of the lung (12). In this review, I provide a summary

of the current knowledge of ACE2 localization respiratory cilia and its connection to SARS-CoV-2.

4



2.1.1 ACE2 structure and function

ACE2 is a type I membrane glycoprotein encoded by the ACE2 gene, which is located on the X chro-

mosome (Xp22.2). ACE2 is 110-120 kD, with an N-terminal catalytic domain (amino acids 1-740) on the

extracellular surface, a hydrophobic transmembrane region (amino acids 741-762), and a short C-terminal

domain (amino acids 763-805) (22). ACE2 functions in regulating the renin-angiotensin system (RAS).

ACE2 and ACE share 42% amino acid identity in the N-terminal extracellular catalytic domain (23). ACE2

converts angiotensin II (Ang II) to Ang 1-7, or generates Ang 1-9 from Ang I (24). As a negative regulator,

ACE2 inactivates RAS to maintain homeostasis (25; 26).

ACE2 is expressed on the surface of many cell types, but ACE2 can be shed from the membrane,

which releases soluble ACE2 (sACE2) in the circulation (27; 28). ACE2 shedding is induced by ADAM17,

a disintegrin and metallopeptidase domain 17 (ADAM17) between the residues 716 and 741. The soluble

form of ACE2 is 555 amino acids. TMPRSS2 also cleaves ACE2 by removing a C-terminal fragment of

ACE2 (20; 29).

ACE2 plays an important role in the cardiovascular system as a component of RAS, which regulates

cardiovascular function and can influence the development of cardiovascular disorders. The catalytic

activity of ACE2 can form Ang 1-7 by hydrolyzing Ang II, which acts on Ang II Type I Receptor (AT1R)

to cause increased blood pressure (30). In addition, upregulated Ang II is involved in the development

of hypertension and heart failure (31). In contrast, Ang 1-7 increases cardiac baroreflex sensitivity and

decreases blood pressure (32; 33). In ACE2-deficient mouse models, alterations in cardiovascular functions

are associated with the genetic background of the mice (34; 35). For example, ACE2-deficient mice on the

C57BL/6 background exhibited modestly elevated blood pressure. ACE2-deficient mice on the 129/SvEv

background showed normal blood pressure (34). With Ang II infusion, significantly higher blood pressure

was observed in ACE2 deficient mice. On the other hand, ACE2 overexpression in myocardial cells of

transgenic mice is correlated with ventricular tachycardia and fibrillation (36). Upregulated ACE2 has

been observed in failing human heart ventricles (37). ACE2 overexpression in the central nervous system
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blunted Ang II-induced hypertension via regulating AT1, AT2 and Mas receptor subtypes (38). Therefore,

ACE2 plays a protective role in the development of hypertension.

ACE2 also protects against renal disease progression, as experimental studies showed that ACE2 KO

mice are more susceptible to kidney injury in the type 1 diabetes model and develop glomerulosclerosis

(39; 40). Zhong et al. treated Ang II-infused wild-type mice with recombinant human ACE2 and found

normalized renal oxidative stress and Ang II levels (41).

2.1.2 ACE2 isoforms

There are four isoforms of ACE2, translated from 6 different transcript variants (transcript variant 1:

NM001371415.1, transcript variant 2: NM021804.3, transcript variant 3: NM001386259.1, transcript variant

4: NM001386260.1, transcript variant 5: NM001388452.1, transcript variant 6: NM001389402.1) (42). In

addition, there is a soluble form of ACE2. ACE2 isoform 1, also the full-length ACE2, contains 805 amino

acids. ACE2 isoform 2, composed of 786 amino acids, is the full length ACE2 with a truncation at the C-

terminal domain and lacking the collectrin homology domain. ACE2 isoform 3, consisting of 694 amino

acids, is 95 % identical with ACE2 isoform 1 and contains deletions in the transmembrane and collectrin

domain. ACE2 isoform 4, known as short ACE2 or dACE2, lacks the carboxypeptidase activity with the

SARS-CoV-2 binding site (Figure 2.1). ACE2 isoforms and the transcript variants are summarized in

Table 2.1.

Blume and colleagues utilized quantitative PCR (qPCR) to quantify the expression levels of ACE2

full-length and short isoforms (9). The expression level of full-length ACE2 is higher than short ACE2 in

most tissues except the kidneys. In another study, Manna and colleagues investigated two ACE2 isoforms:

Isoform 1 and Isoform 2. Both isoforms are detected during the differentiation of human nasal epithelial

cells, with ACE2 isoform 1 in higher abundance and ACE2 isoform 2 in lower abundance (43). The authors

also analyzed a predicted transcript variant (XM_011545551), but this variant record has been removed by

NCBI and thus is not discussed here. Interestingly, Manna et al. noticed the different localization patterns

of different isoforms in U2os cells recognized by an ACE2 N-term antibody (ProSci, 3227) and a C-term

6



Figure 2.1: ACE2 four isoforms. ACE2 isoform 1, also known as the full-length ACE2, contains 805
amino acids. The extracellular sequence contains the carboxypeptidase domain while the cytoplasmic
domain (762–805) contains the collectrin homology domain. ACE2 isoform 2 is the full length ACE2
with a truncation at the C-terminal domain and lacking the collectrin homology domain. ACE2 isoform 3
contains deletions in the transmembrane and collectrin domain. ACE2 isoform 4, known as short ACE2
or dACE2, lacks the carboxypeptidase activity with the SARS-CoV-2 binding site.

antibody (Invitrogen, MA5-32307). The different localization patterns of these isoforms might reflect

differences in trafficking and translational processes.

2.1.3 ACE2 distribution and localization

ACE2 is distributed throughout the human body, with the most abundant expression in the kidney, testis,

intestines, and heart (4; 44; 45). Harmer and colleagues used real-time PCR to show that transcribed

ACE2 is expressed in 72 human tissues (46). They also confirmed that ACE2 is highly expressed in renal,

cardiovascular, and gastrointestinal tissues. Hikmet et al. analyzed ACE2 expression profiling in over 150

cell types using multiple techniques and found that ACE2 was mainly expressed in enterocytes, renal

7



Table 2.1: ACE2 isoforms and transcript variants.

ACE2 isoforms Transcript variants

Length

(amino acids)

ACE2 Isoform 1 NM_001371415.1, NM_021804.3 805

ACE2 Isoform 2 NM_001386259.1 786

ACE2 Isoform 3 NM_001386260.1, NM_001389402.1 694

ACE2 Isoform 4 NM_001388452.1 459

tubules, and cardiomyocytes. In the lung, ACE2 expression is limited to a few subsets of cells (47). Ortiz

et al. examined ACE2 expression in the human respiratory tract using single-cell RNA sequencing and

showed that ACE2 is mostly detected in the sinonasal cavity and pulmonary aleveoli. In addition, they

found ACE2 localized to the apical surface of aleveolar type II cells (48).

Previous studies showed that ACE2 localizes to the apical membrane of polarized cells (49). ACE2

also localizes to respiratory cilia, the main site of SARS-CoV-2 infection (7; 8). However, the specific

localization of ACE2 on respiratory cilia has not been clarified. In the respiratory system, several studies

have reported low mRNA levels of ACE2. Wang et al. reported low levels of ACE2 via both mRNA

and protein measurements in the lung (50). However, Sungnak and colleagues found enriched ACE2

expression in epithelial cells across the airway (51). Different studies used different ACE2 antibodies to

investigate the specific localization of ACE2 on respiratory cilia and ciliated cells from different tissue

types. The specific localization of ACE2 on respiratory ciliated epithelia is summarized in Table 2.2.

2.1.4 ACE2 and SARS-CoV-2 infection

SARS-CoV-2 is the virus responsible for the COVID-19 pandemic. SARS-CoV-2 utilizes the ACE2

receptor on the cell surfaces to enter host cells. Specifically, the S protein of SARS-CoV-2 binds to the

catalytic component of ACE2, after that, the S protein of the virus is primed by TMPRSS2, and the S2

8



Table 2.2: Validation of ACE2 localization in airway using ACE2 antibodies
ACE2 Antibody Manufacturer Immuogen (a.a.) Localization Sample Type References
AF933 R&D 18-740 Motile cilia In vitro (9)

Epithelial cells In vitro (5)
ab15348 abcam 788-805 Motile cilia In vitro (8)

Motile cilia and epithelial cells In vivo (21)
Apical epithelial cells In vitro (9)
Apical epithelial cells In vivo (52)
Motile cilia In vivo (7; 8)
Microvilli In vitro (53)

HPA000288 Atlas 1-111 Microvilli In vitro (53)

subunit of S protein is released to fuse with the membrane (54). The binding of SARS-CoV and ACE2

leads to a down-regulation of ACE2, causing reduced conversion of Ang to Ang 1-7 and increased Ang II

(55). In the case of SARS-CoV-2, however, ACE2 expression is increased upon infection then is reduced

(56).

ACE2 functions in mediating SARS-CoV-2 infection (3; 57). SARS-CoV-2 infection induces ACE2

expression (58; 59). ACE2 is up-regulated in SARS-CoV-2 patients, as analysis of nasopharyngeal swab

specimens showed 3.6 fold higher ACE2 expression than those from healthy controls. Soluble ACE2 plays

a role in SARS-CoV-2 infection (60). In mouse models, wild-type mice are not susceptible to SARS-CoV-

2 infection due to structural differences between human and mouse ACE2 (61). Also, mouse ACE2 does

not bind efficiently to SARS-CoV-2, therefore, an ACE2-humanized mouse model is used for the studies

of SARS-CoV-2 infection.

SARS-CoV-2 infection affects cilia function. Studies have shown that SARS-CoV-2 causes loss of cilia,

trapped between the motile cilia, impeding ciliary motility functions (10; 62). SARS-CoV-2 infection is

associated with reduced expression of FOXJ1 in airway epithelia, which is an important regulator of cilia

motility and length (63; 10). The effective replication of the viruses requires motile cilia and cilia-generated

fluid flow (8).
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The SARS-CoV-2 receptor ACE2 can be upregulated by interferon (IFN) (58). After viral infection,

an early IFN response is essential for host antiviral defense. However, severe COVID-19 patients exhibited

impaired type I IFN activity (64). Scagnolari and colleagues reported that only the truncated ACE2

isoform was upregulated after IFN treatments in vitro, which might not facilitate SARS-CoV-2 infection

(65). IL-13, a cytokine of type 2 immunity, can inhibit SARS-CoV-2 infection of airway epithelial cells

(66). IL-13 can decrease the expression of ACE2 and increase the expression of TMPRSS2 (the sheddase

of ACE2) on ciliated cells (6; 67).

2.1.5 The role of ACE2 in motile cilia

Current studies have shown that ACE2 localizes to the motile cilia and apical surface of epithelial cells

(7; 8; 9). Also, SARS-CoV-2 viruses attach to motile cilia via ACE2 receptor and utilize motile cilia for

spreading (8). However, whether ACE2 affects motile cilia function and MCC remains unknown. ACE2

KO mice showed a significant increase in Ang II levels in the lungs after acute lung injury induced by acid

aspiration. Recombinant ACE2 protein can rescue lung function and edema formation after acid-treated

lung injury (68). Does ACE2 play a role in regulating ciliary function? Could the loss of ACE2 affect

ciliary beat frequency or MCC function? Further studies are needed to explore these questions.

2.1.6 ACE2 inhibitors

Since SARS-CoV-2 utilizes ACE2 receptor for cell entry, ACE2 becomes a promising therapeutic target

for controlling COVID-19. ACE2, unlike its homologue ACE, cannot be blocked by ACE inhibitors

(23). Huentelman and colleagues screened 140,000 small molecules and identified N-(2-aminoethyl)-1

aziridine-ethanamine (NAAE) as a novel ACE2 inhibitor (69). NAAE can modulate the catalytic activity

of ACE2 and inhibit SARS-CoV S-protein-mediated cell fusion. MLN-4760 is another small molecule

inhibitor of ACE2. Dales found that MLN-4760 at 100 nM did not affect S-protein-induced infection

(70). Berenyiova and colleagues reported beneficial effects of MLN-4760 administered at a low dose

in spontaneously hypertensive rats (SHRs) (71). Although MLN-4760 has a pro-obesogenic effect on
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small artery function and angiogenesis, chronic low-dose MLN-4760-treatment induced NO and H2S-

mediated beneficial cardiovascular mechanisms.

Antihypertensive medicines such as angiotensin converting enzyme inhibitors (ACEIs) or angiotensin

receptor blockers (ARBs) can regulate components of RAS. Several studies have reported that ACEI and

ARBs can increase the expression of ACE2 (72; 3). The mechanism under which ACE2 up-regulation

is correlated with ACEI and ARB treatment requires further investigation. Lee et al. found that the

expression of ACE2 localized on respiratory cilia is not increased in patients (7). Wysocki and colleagues

reported that captopril (an ACEI) and telmisartan (an ARB) do not increase ACE2 protein expression in

kidney and lung epithelia (73). GLP-1, a Type 2 diabetes medicine, stimulates ACE2 expression (74).

2.2 A Review of Assessing Ciliary Characteristics and Segmenta-

tion

Cilia are hairlike organelles found on the surface of most cell types. In the respiratory system, the motile

cilia on the respiratory epithelial cells beat in a rhythmic pattern, which propels pathogens and inhaled

particles out of the airways. The coordinated beating of cilia plays a key role in maintaining effective

MCC, which is the primary innate defense mechanism of the lung (12). Dysfunction of cilia causes severe

diseases known as ciliopathies, including primary ciliary dyskinesia (PCD) and polycystic kidney disease

(PKD), which lead to chronic lung infections and fluid-filled cysts, respectively (75; 76; 77).

There are several techniques for the diagnosis of cilia-related diseases: electron microscopy (EM), ge-

netic test, the nasal nitric oxide (NO) test, and the ciliary motility test. EM can be used to detect the

ultrastructural defects of the cilia. PCD patients with mutations in a heavy dynein chain gene can have

normal cilia ultrastructure, but an abnormal cilia beat pattern (CBP) and low nasal NO (78). Therefore,

the analysis of ciliary motility is essential for the diagnosis of ciliopathies. Recent technological advances

have improved the assessment and measurement of ciliary motion. High-speed video (HSV) imaging

has been applied for the analysis of ciliary beat frequency (CBF) and CBP (79; 80; 81). Optical coher-
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ence tomography (OCT) has been used as a non-invasive approach for measuring CBF and liquid layer

thicknesses in vivo (82). In this review, we provide an overview of ciliary characteristics and functions.

We then provide an up-to-date review of the traditional and deep learning-based methods used for cilia

segmentation and discuss the quantitative parameters for ciliary characteristics.

2.2.1 Cilia structure and function

The structure of a cilium is composed primarily of the axoneme and the basal body (83; 84). The axoneme

consists of nine pairs of microtubules, either surrounding a central pair of microtubules (‘9+2’ arrange-

ment) or without a central pair (‘9+0’ arrangement). Each outer doublet is composed of an A and B

tubule, forming the outer ring. These microtubules are held together by cross-linking proteins such as

inner sheath, nexin, and radial spokes (85). Axonemal dyneins, a family of cytoskeletal motor proteins,

move along microtubules to drive the beat of cilia. There are two primary dynein complexes: outer dynein

arms (ODAs) and inner dynein arms (IDAs). ODA drives beat frequency, while IDA regulates the wave-

form (86). The basal body participates in transporting proteins into the cilium (87). Figure 2.2 shows the

schematic structure of a cilium.

Cilia can be broadly divided into two types: motile and non-motile (also known as primary cilia)

(88). Historically, motile cilia are considered to have 9+2 microtubules, whereas primary cilia have a 9+0

arrangement. Recent studies report some exceptions and add two more types: 9+2 immotile and 9+0

motile (89; 87). In the embryonic ventral node, the 9+0 motile cilia, also known as nodal cilia, are essential

in the formation of the left-right asymmetry of the body by rotating in the clockwise direction to generate

a leftward fluid flow (90; 91). Non-motile cilia with 9+2 arrangement have been found on the cochlear hair

cells in the mammalian auditory system (92; 93). These specialized primary cilia are known as kinocilia,

which lack inner dynein arms and can passively swing in response to sound stimuli (92). Primary cilia have

sensory function and play an important role in signal transduction (94). Motile cilia are mostly found on

the apical surface of epithelial cells in the airways, brain, and oviduct (95; 96; 97). The coordinated beating

pattern of motile cilia sweeps off the luminal contents over the epithelial surface and generate fluid flow.
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Figure 2.2: Schematic structure of a cilium

In the human respiratory tract, a ciliated epithelium has 200-300 motile cilia with a surface density

around 5-8 cilia/µm2 (98; 99; 100). The ciliary beat cycle has two phases: the effective stroke and the

recovery stroke (Figure 2.3). During the forward stroke, cilia beat in a straight position to propel the fluid.

During the recovery stroke, cilia move back to the original position by bending the proximal axoneme.

The motile cilia beat in a coordinated manner to generate fluid flow for the transport of foreign particles

and pathogens (12). Motile cilia lining the epithelial cells, the protective mucus, and the airway surface

form MCC, which is the primary defence mechanism of the lung (101; 102). Normally, respiratory cilia

beat at a frequency between 12 and 15 Hz, yielding MCC rates of 4 to 20 mm/min (103). Defects in MCC

are associated with diseases such as cystic fibrosis (CF), chronic obstruction pulmonary disease (COPD),

and sinusitis (104; 105; 106).
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Figure 2.3: Normal ciliary beat cycle. A normal cycle consists of a beating stroke (black) followed by a
recovery stroke (gray) (107).

2.2.2 Cilia segmentation

1

Image segmentation has many practical applications, including biomedical imaging, autonomous

vehicles, facial recognition, and traffic control systems. There are two types of image segmentation: se-

mantic segmentation, which is to label each pixel in a image with a corresponding class, and instance

segmentation, which distinguishes between different instances of the same category. Semantic image

segmentation is important for image analysis in removing background noise, improving precision, and

area detection. It is also a challenging task in computer vision and digital image processing. Traditional

approaches, such as thresholding and watershed, compare pixel values in order to achieve the segment

map. With the development of deep learning and neural networks, there are many tools and architectures

developed for image segmentation (1; 109; 110).
1Content of this section is based in part on my master thesis (108)
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To characterize the morphology and function of cilia, the fundamental step is to identify cilia in

images. Cilia segmentation is to detect and divide an image into groups of cilia and non-cilia. It is critical

for further quantitative cilia analysis and characterizing motion patterns, which can help the identification

of ciliopathies. Previously, biologists and clinicians detected and classified cilia manually, which is time-

consuming and error-prone. In recent years, there have been attempts to segment cilia using traditional

and deep learning-based methods (16; 111; 17; 112; 18; 113).

Traditional image segmentation methods for segmenting cilia

Traditional image segmentation techniques are based on thresholding, edge, region, and clustering to

divide an image into areas of similar nature. Conventional methods produce fast and simple segmentation

masks. To detect features or characteristics in images, a large number of studies have reported numerous,

manually designed or handcrafted features with variations in scale and illumination. Handcrafted algo-

rithms such as Gabor (114), Histogram of Oriented Gradients (HOG) (115), and scale invariant feature

transform (SIFT) (116) are commonly used to extract features from images. The drawbacks of image

segmentation with traditional methods are that they are not flexible and exhibit low accuracy. Moreover,

they often require manual labor to fine-tune parameters for specific segmenting tasks.

For cilia segmentation, Zhang et al. utilizes two thresholding-based methods to segment fluorescent

signal-labelled cilia (117). Specifically, they used the Transflour module and MultiWavelength Scoring

(MWS) module within MetaXpress software. Both modules require the users to set parameters, such as

size, intensity, and area to threshold cilia signal from the fluorescent images. Automated cilia detection

in cells (ACDC) is a software for automated cilia detection in fluorescent images (111). To detect cilia,

the authors applied the Gaussian filter as an adaptive thresholding method to binarize the cilia image.

Then, the directional score parameter is applied as a threshold for optimizing cilia detection. This method

achieved a high F1 score of 0.96 on fluorescently-labeled cilia images. CiliaQ is an open source software for

automatic quantification of ciliary function in 2D and 3D images (16). The first step of CiliaQ workflow is

to segment images into cilia and background using classic algorithms such as Renyi Entropy or Canny3D.

However, this approach only provides a coarse segmentation and requires user input for manual correction.
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Therefore, the above-mentioned thresholding methods have very limited application for the study of cilia.

They can only be applied to fluorescent images where cilia are stained with a specialized antibody against

Arl13b or acetylated α-tubulin. Those labeled cilia signals are acquired in a channel different from the

rest of cells. For a live-cell setting such as differential interference contrast (DIC), thresholding methods

work poorly to segment cilia. In a study analyzing cilia video data, Quinn et al. designed a pruning

method to segment cilia and discard the noisy background (17). The prune algorithm is an intensity-based

thresholding method that calculates the standard deviation of the time-varying changes at each pixel and

sets an adaptive threshold to filter out background pixels. This method achieves a segmented map of cilia

quickly with decent accuracy. However, the threshold of the prune method is adaptive and specific to

each video set, therefore, it is not ideal for batch work.

Gabor filters (GFs), named after Dennis Gabor, are bandpass filters used in image processing. It is

essentially a Gaussian modulated by a sinusoidal plane with frequency and orientation (114). After being

convolved with GFs, patterns in images are highlighted at edges and points where the texture changes.

GFs are extensively used for pattern analysis and feature extraction due to its reliability in localizing spatial-

frequency domain properties. There are several advantages of GFs: first, the frequency and orientation

representations of GFs are similar to those of the human visual system; second, GF can achieve fast and

robust segmentation results by varying parameters according to the specific visual objects (118); third, GFs

specialize in detecting small, localized stretches or blobs.

Traditional methods are often combined with classifiers such as random forest and Support Vector Ma-

chine (SVM) for image segmentation to increase accuracy and flexibility. Nguyen-Thanh et al. proposed

to use an orientation adaptive GF to extract features and implement with k-nearest neighbor (k-NN),

SVM and neural network-based classifiers for mitochondria segmentation (119). Their proposed method

showed high accuracy in segmenting mitochondria. Since cilia can be viewed as a specialized hair-like

texture with certain frequency and orientation, we proposed the use of GF for cilia feature extraction.

Deep learning-based segmentation methods for cilia
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With the rapid advancements in deep learning, great efforts have been made in segmenting biological

images. For cell segmentation, several bio-image segmentation tools, including StarDist (120), PlantSeg

(121), Cellpose (110), and LABKIT(122), have achieved state-of-the-art segmentation performances. How-

ever, most of the state-of-the art segmentation methods require a large dataset with human-labelled

ground-truth data for training.

Fully Convolutional Network (FCN), first introduced by Long and colleagues (123), can train end-to-

end and use skip connections to enhance image segmentation. U-Net is a U-shaped architecture developed

for biomedical image segmentation (1). The architecture of standard U-Net contains encoder layers and

decoder layers (Figure 2.4). The encoder block reduces the spatial dimensions of the image, while the

decoder repairs the details in the spatial dimension of the image. However, the drawback of U-Net is that

it fails to separate objects when they are crowded or overlapped. The usage of skip connections would

need redundant information, causing training overhead. Ram and colleagues introduced convolutional

neural random forest classifier to classify the primary cilia in fluorescence images. Input images are fed in a

CNN model with the U-Net architecture, and then the learned features are passed to the random decision

forests classifier. Their approach achieved the Fβ - score of 0.9102, outperforming the k-means and multi-

layer perceptron (MLP) classifiers (124). Gupta et al. proposed to use a 2-D CNN model derived from

the LeNet architecture to detect cilia automatically in low resolution transmission electron microscopy

(TEM) images, which can significantly increase the AUC to 0.71 and reduce the false positive rate (125).

In the StarDist method, the cell nucleus is localized via star-convex polygons instead of bounding boxes,

then the U-Net-based framework is trained to predict cell instances as polygons (120). The advantage of

Stardist is that it can segment crowded cells with high accuracy. However, StarDist works for segmenting

roundish-shape targets, thus it cannot be used to segment rod- or hair-like structures. PlantSeg uses a 3D U-

Net to predict cell boundaries of dense plant tissues on images from confocal and light sheet settings (121).

It achieves high accuracy in segmenting plant and non-plant samples. Cellpose is a deep learning-based

pipeline utilizing a modified U-Net as a backbone for cell segmentation (110). The pre-trained models

provided by the Cellpose platform were trained on a broad set of images with cells of different shapes
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Figure 2.4: Schematic of a U-Net architecture (1). U-Net is a convolutional neural network with a U-
shaped architecture consisting of an encoder (the left part), which extracts relevant features from images,
and a decoder (the right part), which takes the extracted features and reconstructs a segmentation mask.

and types, and thus, cannot provide a generalized high quality cell segmentation. Cellpose 2.0 solves this

problem by providing a zoo of pretrained models and a human-in-the-loop pipeline (126). This approach

significantly reduced manual segmentation work to 100-200 regions of interest (ROIs) while achieving

near-maximal performance.

Motile cilia are highly overlapping hair-like structures with low convexity and, hence, extremely dif-

ficult to segment. Furthermore, cilia motility videos are usually recorded as DIC images, which often

achieves poor segmenting results due to low contrast. Quinn et al. developed a computational pipeline to

classify cilia motion (17). In this framework, ciliary motion is considered as a dynamic texture, which can
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be estimated by using an autoregressive (AR) model with the optical flow features. Lu et al. developed

an end-to-end pipeline utilizing a densely-connected convolutional network (DenseNet) with 74 layers

to automatically recognize cilia area (112). This proposed framework achieved an accuracy of 86.2% in

cilia segmentation. Zain et al. modified Lu’s model and built a fully Connected DenseNet with 103 layers.

This model achieved a IoU score of 33.06% and a accuracy of 88.3% (18). In their most recent work, Zain

and Miller combined zero-phase PCA sphering (ZCA) and Sparse Autoencoders (SEA), which served

as low-level feature extraction, with U-Net (113). This new model achieved a 10% improvement with an

IoU of 0.441 and an accuracy of 77% . Table 2.3 summarizes the above-mentioned cilia segmentation

techniques.

To improve the performances of deep learning models, several studies incorporate low-level feature

extraction to aid deep learning frameworks. Luan et al. proposed to incorporate Gabor filters into the deep

convolutional neural networks (DCNNs) (127). By manipulating GF parameters, the proposed Gabor

Convolutional Networks (GCN) framework effectively reduced the training complexity and improved

performances over several benchmarks. Reyes and colleagues proposed an approach combining GF with

U-Net for image segmentation (128). They applied the framework on two benchmark datasets, the ISLES

2018 dataset and the 2018 Atrial Segmentation Challenge dataset, and outperformed U-Net and other

state-of-the-art architectures in mIoU and Dice scores. However, this work is relatively computationally

expensive and inefficient, because the input contains the original dataset plus additional features extracted

by a whole set of GFs. Some of the filters extract meaningless feature information compared to the other

filters in the bank. An optimized GF bank with selected parameters is critical in the performance of the

GF-embedded U-Net architecture for specific segmentation tasks.

2.2.3 Current techniques

Recent technologies enable researchers to visualize and quantify ciliary motion both in vivo and ex vivo,

providing accurate assessment of ciliary characteristics. Confocal microscopy is commonly used for cilia

morphology studies. HSV microscopy and photomultiplier and photodiode techniques can be used to
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visualize cilia beat frequency and patterns. TEM analysis is used to detect ciliary ultrastructural defects.

The diagnosis of PCD often involves a combination of tests: nasal nitric oxide (nNO) measurement, TEM,

and HSV analysis (129; 130). In addition, optical coherence tomography (OCT) provides cross-sectional

images of tissue reflectance, thus, it is being used for the quantitative assessment of cilia movement and

mucus secretion (131). The application of current techniques are described below.

Confocal microscopy. Confocal microscopy is a specialized fluorescence microscopy technique with

increased effective spatial resolution. With an additional Z-axis actuator, the 3D architecture of cilia can

be acquired for morphological analysis and protein localization (16). Super-resolution microscopy is a

powerful tool to analyze large protein complexes such as the ciliary base and centrioles in the tens of

nanometers (132; 133; 134).

Transmission electron microscopy (TEM) is used to detect ultrastructural defects of cilia, which

is regarded as the gold standard for PCD diagnosis. Most of the defects are found to be dynein arms-

related (81.2%), while a small percentage are found to be associated with the central complex (CC) (18.8%)

(135). In addition to two-dimensional micrographs generated from TEM, three-dimensional models have

been developed. Burgoyne et al. (136) generated three-dimensional reconstruction of human respiratory

cilia ultrastructure using TEM and subtomographic averaging. In recent years, cryo-electron microscopy

(cryo-EM) has been used for the structural studies of motile cilia (137; 138). Cryo-electron tomography

(cryo-ET) can localize and visualize protein complexes and their conformational changes within the cilia

(139; 140; 141; 142). Although TEM is considered as a hallmark of PCD diagnosis by visualizing defects

in ciliary ultrastructure, over 30 % of PCD patients have normal ciliary ultrastructure (143). Therefore,

TEM is often combined with other tests in the diagnosis of PCD. TEM is also a time-consuming and

expensive technique.

High-speed video (HSV) microscopy. HSV is the most commonly used technique for visualizing

cilia motion and is applied as a diagnostic tool for ciliopathies such as PCD (81). Although HSV is not

included in the American Thoracic Society (ATS) guidelines, it is included in the diagnostic guidelines by

the European Respiratory Society (144). HSV enables the analysis of CBP and CBF, which are critical for
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the diagnosis of PCD (130; 144). To access CBF and CBP, nasal brush biopsies are collected and viewed

under a microscope and recorded with a high-speed camera at 120-500 frames/s. However, this diagnostic

technique requires a panel of professional experts with specialized expertise to perform. A limited number

of institutions are equipped with HSV, and the protocols for HSV testing and image processing vary from

different institutions. Subtle changes in temperature and medium during recording can alter the results.

Optical coherence tomography (OCT). Most studies on ciliary motility relying on bright field

microscopy are limited to investigating ciliary motion in vitro or ex vivo. OCT, however, utilizes interfer-

ometry to image the cross-sectional structures; therefore, it can be applied to ciliary motion detection and

quantification in vivo (145; 146; 147; 148). In addition, OCT can capture fine heterogeneities in MCC such

as the condition of the mucus and ciliary activity (131). Doppler OCT (D-OCT) can be used to quantify

transverse flow and visualize CBP in vivo (149; 150). Micro-OCT (µOCT), engineered for capturing mi-

croanatomy, enables the observation of intact MCC apparatus and is applied to investigate ciliary motion

and measure CBF (151; 82). In addition, µOCT can measure MCC parameters, such as airway surface

liquid (ASL) and periciliary fluid (PCL) depth, with ultra-high resolution of 1-3 µm in tissue (152). He et al.

(153) developed the phase resolved Doppler spectrally encoded interferometric microscopy (PRD-SEIM)

system to visualize ciliary beating. The PRD method can provide the spatial and temporal information

of cilia motion in the oviduct by analyzing the interferometric data. OCT with microscopic resolution

(mOCT) utilizes temporal tissue fluctuation as contrast to enable the study of cell morphological changes

and mucus transport (154). There are several drawbacks to OCT: first, it cannot avoid bulk motion and,

therefore, requires certain steps to minimize phase noise in the system. Second, low resolution makes it not

ideal for individual cilium detection. Third, the low-frame frequency due to limited laser scanning speeds

makes it easy to have phase wrapping. Overall, OCT has the potential for in vivo endoscopic application

in the clinics.
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2.2.4 Cilia parameters

The characteristics of cilia are important hallmarks in evaluating the structure and function of cilia. Ciliary

dysfunction causes diseases such as PCD and CF, which lead to chronic respiratory infection. Therefore,

the effective quantitative analysis of ciliary parameters is critical in the diagnosis of cilia-related diseases.

There have been numerous attempts to quantify cilia parameters such as CBF and length. Table 2.5

summarizes the automatic tools for analyzing cilia parameters. For primary cilia, the quantitative anal-

ysis is mostly fluorescence image-based, and parameters are related to morphology (such as length and

volume). Acetylated α-tubulin (ACTUB) and ADP Ribosylation Factor Like GTPase 13B (Arl13b) are

the most common cilia markers used for staining. For motile cilia, in addition to morphological evalu-

ation, the analysis of ciliary motion is critical in estimating the ciliary function and motility. A normal

ciliary beating cycle includes a strong beating stroke followed by a recovery stroke within the same plane,

resulting in a fluid flow in the direction of the forward stroke (155). The rhythmic beating of neighboring

cilia causes a velocity of the mucus layer around 1 mm per minute (99). Currently, the assessment of cilia

beat waveforms remains challenging. Oltean et al. manually traced each beat cycle in order to estimate

waveform parameters such as bend amplitude and stroke width (156). Bottier and colleagues analyzed cilia

waveform using a series of mechanical metrics including power, force, and torque (157). The commonly

used parameters in quantitatively describing ciliary motion and characteristics are discussed below and

summarized in Table 2.4.

Ciliary beat frequency (CBF). CBF is a key parameter in determining the efficiency of MCC. In

the human respiratory tract, human cilia beat in coordinated patterns at a frequency normally ranging

between 10-15 Hz (99). CBF is driven by ATP signaling, which opens the calcium-activatedK+ channels

and results in membrane depolarization (158; 159; 160). CBF can be counted manually by playing the

cilia movie in slow motion. It can also be measured using algorithms such as Fast Fourier Transform

(FFT) and video-kymography (161; 162; 163). CBF changes in response to temperature, infections, drugs,

inflammatory factors, and age (164).
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Kymograph requires the user to draw a line and analyze the gray level variations to estimate CBF.

Kymograph analysis requires the user’s input of regions of interest and calculates the frequency using

Fourier Transform analysis of pixel intensity (165; 166). This method is relatively easy and allows the

analysis of the whole beat pattern. Several studies measure CBF using optical flow (167; 17). Straßer and

colleagues developed CilOCT, an open-source software for semi-automatic segmentation and analysis of

ciliary muscle using OCT imaging data (168). CilOCT utilizes manual guiding selection for the automatic

calculation of biometric parameters such as ciliary muscle apex and scleral spur. Sampaio and colleagues

(169) developed a semi-automated software CiliarMove for CBF analysis. CiliarMove works on a user-

selected ROI and calculating the FFT for each pixel, CBF is calculated using the following equation:

CBF =
number of frames per second

average number of frames per beat

Kim et al. (15) combined optical flow, peak detection and FFT algorithms for signal frequency in

order to estimate CBF. However, this method is sensitive to noise. Meste et al. (170; 166) developed

a method consisting of a harmonic model and compressed spectrum for measuring CBF. Chen et al.

developed a method analyzing the images with an iPhone camera and manually selecting the regions

of interest (ROI) to analyze the CBF based on FFT (171). CiliaQ is a mostly automatic software for

the quantification of ciliary parameters in 2D and 3D images (16). CiliaQ is composed of a three-step

workflow: 1) CiliaQ Preparator, 2) CiliaQ Editor, and 3) CiliaQ. CiliaQ Preparator segments the images

into cilia and background. CiliaQ Editior is a manual tool for correcting the segmentation. The final step

CiliaQ is fully automatic for cilia reconstruction, quantification, and visualization. CiliaQ can be applied

to semi-automatic or automatic segmentation and quantification of ciliary parameters in fixed samples.

However, it cannot be applied to cilia motion analysis.

Ciliary beat pattern (CBP). The analysis of CBP is assessed by observing the ciliary beat cycle.

Respiratory cilia beat forwards and backwards within the same plane, without a sideways recovery sweep

(79). The 9+0 motile cilia (nodal cilia) move in a clockwise pattern, generating a leftward fluid flow for the

left-right asymmetry during embryonic development (172; 173). CBP abnormalities are associated with
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Table 2.4: Parameters for the quantitative assessment of cilia
Parameter Description Equation Reference

Amplitude Distance between the intersection
points distance(b-a) (180)

Accumulated bend The average of the absolute value
of curvature multiplied by length avg (C)*L (181)

Avg bend amplitude The average of bending amplitude,
SD of angles averaged over a cycle avg (SD(θ)) (156)

Velocity
Distance between subsequent
intersection points divided by the
time interval

distance(b−a)
time(c−d)

(180)

Curvature Derivative of the angle with respect
to arc length

∂θ
∂s

(180; 182)

Avg curvature Average curvature avg (C) (180; 181)
Force Ciliary force in x-direction Resistive Force Theory (180; 183)

Stroke width Max distance spanned by the
waveform in the x-direction max(x) – min(x) (181; 178)

Metachronal wavelength Metachronal wavelength on ciliated edges

PCD mutations. Quantitative analysis of CBP can provide a sensitive and precise result that can be used

for PCD diagnosis; however, there is no universal standard of parameters to quantify CBP. Chilvers and

colleagues developed a scoring system with several markers: Immotility Index (IMI), Dyskinesia Score

(DKS), and Percentage of dyskinetic edges (%DK) (174; 175; 176). Some studies used descriptive categories

to distinguish different CBPs such as normal, immotile, stiff, circular, and asynchronous (174; 107). Reula

and colleagues classified the beat pattern into three categories: normal, vibratile, and uncoordinated (177).

Papon et al. determined 12 quantitative parameters such as beating angle and swept area to characterize

CBP (178). Current studies involving CBP analysis still rely heavily on direct visualization and manual

analysis. There are very limited open-source tools/methods for researchers to automatically analyze CBP

(179; 156).

MCC rate. Normal mucociliary transport (MCT) produced by cilia beat in a rate of 4 to 20 mm/min

(103). Decreased MCC can be caused by abnormal mucus production or ciliary dysfunction. Inefficient

MCC has been observed in PCD, CF, pollutant exposure, and respiratory infection (184). PCD pa-
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tients with abnormal ciliary motility have slow MCC, resulting in recurrent respiratory infections. The

thickened or viscous mucus layer in asthma or CF patients can reduce the MCC rate (185; 102). The

most common method to measure the clearance rate in vivo is to measure the clearance of inhaled, non-

permeating, radiolabeled markers (104; 186). In experimental settings, MCC rate can be estimated by

adding fluorescent beads to the bathing medium of airway cell cultures or ex vivo trachea. MCC rate can

be measured by calculating the velocity of the fluorescent bead movement (187; 188).

Ciliary length. The length of cilia varies between 1-9 µm among different cell types (189; 190). Cilia

length is associated with unique functional implications, ciliary mobility, and waveforms. Bottier and

colleagues reported that short cilia under 2 µm did not beat periodically; cilia parameters (force, torque,

and power), except for CBF, increased in proportion to length growth (157). Ciliary length changes in

response to injury, diseases or pharmacological stimuli (191). Cilium length is regulated by multiple pro-

teins and mechanisms such as the intraflagellar transport (IFT) machinery (192). Verghese et al. found

that renal primary cilium length was increased dramatically after renal epithelial injury. Hypoxia and

hypoxia-inducible factor 1αmight regulate cilia length (193). Abnormalities in cilia length are associated

with cilia-related diseases.

To measure ciliary length, the simplest and most common way is based on maximum intensity projec-

tion (MIP), which assumes the cilia are flat and takes the projection distance as the length. Researchers

and biologists tend to use MIP to assess cilia length (194; 195; 16; 196; 197). The simple application of MIP

enables it to be used for high throughput. However, this method neglects the angle of cilia and thus might

underestimate the actual cilium length (189). The Pythagorean theorem (PyT) method overcomes this

drawback by utilizing the projected distance (r) and the z-distance required to move the object plane from

basal to distal to calculate the length (L):

L =
√
r2 + z2 (2.1)

However, this method assumes the cilia are straight and bending cilia might be underestimated. Due to

the fact that cilia have a 3D orientation, both methods can potentially underestimate the length of bent or
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angled cilia. For irregularly shaped cilia, 3D reconstruction is applied for measuring the length accurately

(198; 189). However, this approach is labor-intensive and time consuming.

Cilia density. Cilia density is the number of cilia per unit surface area, also referred to as ciliation

rate or ciliated cell density in some literature (199; 200). In the airways, each multiciliated cell is covered

with 200 to 300 cilia, with a density of 5-8 cilia/µm2 (201; 202; 100; 98). Decreased cilia density is an

indication of cilia loss. To estimate cilia density in a DIC setting, Bottier et al. calculated the percentage

of pixels in the ciliated edge that were darker than the background to estimate the density (163). However,

this method fails to consider the diameter of cilia and is only a rough estimate of cilia density. Loiseau

et al. calculated the cilia density by capturing the trajectories of the tips of cilia and then thresholding

the binarized image (203). Ferreira et al. measured cilia density in 3D by constructing a spherical Voronoi

diagram of cilia distribution (204). Minkeviciene et al. calculated cilia density as the cilia number divided

by the length of the ventricle edge (205). The density of multiciliated cells is considered as cilia density in a

number of studies (199; 200). For example, Pellicciotta et al. estimated the cilia density by calculating the

fraction of area covered by beating cilia (199). This method underestimate cilia density by overlooking the

unbeating cilia. To estimate the ciliation rate in fluorescent images, Yusifov et al. manually counted the

number of cilia and ciliated cells based on the corresponding markers (206). Multiciliated cell density is an

important parameter for cell maturation and cilia-generated flow. During cell differentiation, multiciliated

cell density is increasing.

2.2.5 Machine learning and deep learning for cilia motion analysis

In recent decades, artificial intelligence and machine learning have been applied extensively in biomedical

research and clinical diagnosis. Moreover, deep learning in computer vision has achieved great advance-

ments. Algorithms such as Convolutional Neural Networks (CNNs) and Long Short Term Memory

(LSTM) are used in cilia detection and classification (112; 19; 125; 124).

Chioccioli et al. (180; 212) developed a quantitative HSVM analysis system using machine learning

algorithms to build a quantitative ‘barcode’ to classify PCD variants. They set a criteria of parameters
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Table 2.5: Software tools for analyzing cilia parameters
Software Cilia parameters Applications Availability Reference

ACDC Cilia count, length Fluorescent
images Available upon request (111)

BeatCilia CBF Cilia movies In-house (207)

CiliaCoordination CBF, synchronization, segmentation,
wave direction and length Cilia movies Open-source (208)

CiliaFA CBF Cilia movies open-source (14)

CiliaQ Length, intensity, volume,
colocalization, bending index

Fluorescent
images open-source (16)

CiliarMove CBF Cilia movies Open-source (169)
Multi-DDM CBF, temporal coherence Cilia movies Open-source (209; 210)
SAVA CBF Cilia movies Commercial software (211)

including ciliary beating amplitude, curvature, velocity, force, and curvature. Trinh et al. investigated an

Artificial Neural Network (ANN) model and two other machine learning approaches for analyzing the

behavioral pattern of Stentor roeselii (213). Even though ANN achieved the highest F1 scores among all

three models, the best performance was only 59% accuracy.

In the model proposed by Quinn et al. (17), ciliary motion is considered as a dynamic texture, which

can be estimated by using an autoregressive (AR) model with the optical flow features. This work, though

largely automated, still depends on the user’s input of manually-selected ROI. Lu et al. (112) improved

this work by using deep learning approaches. They combined segmentation and classification to achieve a

higher accuracy with a few hundred training epochs. To track ciliary motion, Almakady et al. (214) use the

Gaussian Markov Random Fields (GMRF) model to generate the texture features, which are fed through

the block-matching search technique to track ciliary motion trajectory. The tracking results are largely

affected by the choice of neighborhood window size. The smaller window cannot be captured by the

GMRF model, while the big window involves irrelevant pixels.
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2.3 Conclusions

In this chapter, I reviewed current studies on ACE2 and characterizing cilia using traditional and state-

of-the-art methods. The significance of ACE2 and its localization on cilia are also discussed. ACE2

appears to be a promising therapeutic target for treating and preventing COVID-19. Still, a fundamental

understanding of ACE2 localization on cilia and its role in cilia function requires further research.

In the second section, I described the structure and function of cilia. A review of cilia parameters

for characterizing cilia motion waveforms is provided. I discussed traditional methods and machine

learning/deep learning-based methods for cilia segmentation. For characterizing cilia motion, there is a

need for an open-source validation dataset of cilia motion phenotypes.
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Chapter 3

The Localization of ACE2 in

Respiratory Cilia

3.1 Introduction

COVID-19, caused by a novel coronavirus termed as SARS-CoV-2, was first reported in December of 2019

in Wuhan, Hubei province of China. It was soon transmitted all over the world and was declared a pan-

demic by WHO on March 11, 2020. In the third year of the COVID-19 pandemic, over 690 million people

have been infected and over 6 million lives were lost globally (https://www.worldometers.info/

coronavirus/). As SARS-CoV-2 mutates over time, updated vaccine boosters need to be developed to

target the new variants and subvariants; thus, a strategy of fighting this virus at the level of host receptors

has drawn more and more attention. Angiotensin-converting enzyme 2 (ACE2), which can be found on

respiratory cilia, is the binding receptor of coronaviruses, including SARS-CoV and SARS-CoV-2, for cell

entry (7; 215; 216). The spike protein of SARS-CoV-2 is responsible for this binding to the ACE2 receptor

and allows SARS-CoV-2 to enter into host cells (217).

ACE2 is an inhibitor of the Renin-Angiotensin-Aldosterone System (RAAS), which plays an essential

role in regulating blood pressure and renal function. ACE2 cleaves angiotensin I (Ang I) to generate Ang

1-9 and degrades Ang II to the vasodilator Ang 1-7 (218). ACE2 is widely expressed in many tissues and
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organs including lung, intestine, kidney, and testis (219). In the respiratory system, ACE2 is abundantly

expressed on the apical surface of airway epithelial cells (5) and type II alveolar cells of the lungs (220).

ACE2 has an N-terminal catalytic domain on the extracellular surface and a short C-terminal cytoplasmic

domain. There are four distinct protein isoforms of ACE2, translated from six ACE2 messenger RNA

(mRNA) transcript variants (6; 42). ACE2 isoform 1 is the full-length ACE2, composed of 805 amino acids.

The full-length ACE2 consists of an ectodomain (Ecto), a single transmembrane helix, and a cytoplasmic

(Cyto) domain. ACE2 isoform 2 is a 786 amino acid protein with a distinct C-terminus. It is identical

to the full-length ACE2 except that it is truncated at the cytoplasmic domain and lacks the collectrin

homology domain (6). ACE2 isoform 3 consists of 694 amino acids, lacking the ADAM17 cleavage site.

ACE2 isoform 4, also known as truncated ACE2 or short ACE2, lacks the N-terminal signal peptide

and is unable to bind to SARS-CoV-2. Since the COVID-19 pandemic, numerous studies have analyzed

the protein expression of ACE2 in tissues using commercially available anti-ACE2 antibodies (9; 7; 43).

However, some of these studies did not distinguish between antibodies recognizing different epitopes,

leading to conflicting results.

In addition, ACE2 can also be cleaved by type II transmembrane serine protease (TMPRSS2), which

requires the arginine and lysine residues within ACE2 amino acids 697 to 716 for the cleavage to occur.

The ectodomain of ACE2 is shed via proteolytic cleavage, causing the release of the soluble form of ACE2

into airway surface liquid (22). Blume and colleagues reported that the antibodies against Cyto-ACE2

(Abcam, ab15348) and Ecto-ACE2 (RD, AF933) localized mainly to the apical regions of the cells and

motile cilia (9). Manna et al. showed that both the ACE2 N-term antibody (ProSci 3227) and ACE2

C-term antibody (ProteinTech 66699) displayed signals in the apical regions of ciliated cells. Their ACE2

C-term antibody showed plasma membrane signal on ciliated cells (43). Pinto and colleagues reported that

antibody against the intracellular ACE2 domain (Abcam, ab15348) stained the base of microvilli, whereas

an antibody against the extracellular ACE2 domain (Atlas, HPA000288) displayed signals that extended

throughout the microvilli. They drew the conclusion that ACE2 and TMPRSS2 are localized to microvilli

but are excluded from cilia, although the extracellular ACE2 domain antibody detected signals extending
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throughout the microvilli (53). Different studies on this subject have used a variety of ACE2 antibodies;

however, some of the commercial antibodies have uncertain specificity (221). Therefore, it is important

to study the specific localization of ACE2 isoforms using ACE2 commercial antibodies with confirmed

specificity and engineered ACE2 expression with epitope tags.

In this study, we utilized two commercial ACE2 antibodies to detect the specific localization of Ecto

ACE2 and Cyto ACE2 in airway cilia. In addition, we engineered lentiviral tools for expression of ACE2

with epitope tags to investigate the specific localization of ACE2 isoforms. We found that the C-terminal

domain of ACE2 isoform 1 localizes to the distal region of cilia, while the C-terminal domain of ACE2

isoform 2 localizes to the proximal compartment of cilia and apical regions of ciliated cells. We also showed

that the N-terminal ACE2 domain, labeled with an HA tag, presents as sparse signals on cilia and the

apical surface of cells. Finally, TMPRSS2, a protease that releases the Ecto-domain of ACE2, localizes to

the distal region of cilia.

3.2 Methods

3.2.1 Ferret and mouse sample preparation

Ferret samples were kindly provided by Dr. Fred Quinn. ACE2 knockout mice were purchased from

TACONIC (Model 18180). All procedures were performed in compliance with institutional guidelines

and were approved by the University of Georgia (UGA)’s Institutional Animal Care and Use Commit-

tee. All animals were housed under conventional conditions in the animal care facilities of UGA. All

experimental procedures were approved by the UGA Institutional Animal Care and Use Committees

(IACUC).

3.2.2 ACE2 lentivirus package

ACE2 plasmid (pLEX307-ACE2-blast, 158449) was purchased from addgene. We inserted an HA tag

at the N-terminus and a V5-tag at the C-terminus of the ACE2 gene. We also modified the C termi-
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nus of ACE2 to have an isoform 1 (full-length) ACE2 lentivirus and isoform 2 ACE2 lentivirus. We

replaced ACE2 with mNeon in the ACE2 plasmid as control. The modified ACE2 or control plas-

mids and lentivirus packaging vectors psPAX2 (https://www.addgene.org/12260/) and pMD2.G

(https://www.addgene.org/12259/) were transfected into 293T cells using Lipofectamine™3000

Transfection Reagent (Cat L3000015, ThermoFisher, USA). Forty-eight hours after transfection, the

supernatants were collected and filtered through 0.22 µm filters. Lentivirus medium was concentrated

using Lenti-X Concentrator (Clontech, PT4421-2).

For lentivirus infection, cells or trachea explants were treated with medium containing 8 µg/mL of

polybrene and 1 x 106 units of the viruses. After incubation for 48 hours, cells or explants were collected

for protein extraction or immunofluorescence staining.

3.2.3 Mouse tracheal epithelial cell culture

The protocol for mouse tracheal epithelial cell (MTEC) culture was adapted from previously published

methods (222; 223). Briefly, mouse tracheas were collected and placed in the dish of ice-cold Ham’s F12

medium with penicillin/streptomycin and amphotericin B. After removing the attached tissues, tracheas

were transferred into a 50 mL conical tube containing 0.15% pronase and digested overnight at 4◦C. The

next day, supernatant containing cells were collected and plated on Primaria plates to remove fibroblasts.

The cell pellet was seeded at 7.5 x 104 – 1.0 x105 cells per well on the transwell plate, and cultured with

MTEC proliferation media. After 10 days (or reaching confluency), cells were cultured at the air-liquid

interface with MTEC differentiation media.

3.2.4 Immunofluorescence staining and imaging

Cells were fixed with 4% paraformaldehyde in PBS for 15 min at room temperature and washed with PBS

three times. Tissue samples were fixed overnight at 4◦C. Samples for cryosections were embedded in OCT

compound medium, cut at 10 µm on a Leica cryostat, and mounted on Superfrost Plus microscope slides

(Fisher Scientific, Cat: 22-37-246). Then samples were permeabilized and blocked with 3% bovine serum
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albumin (BSA) in 0.1%Triton X-100 in PBS for 1 hour at room temperature. Then samples were incubated

with primary antibody solution overnight at 4◦C. The next day, cells were washed with PBS three times

and incubated with secondary antibody solution for 1 hour at room temperature. After washing 3 times

with PBS, samples were mounted with Invitrogen™ ProLong™ Gold Antifade Mountant (Invitrogen).

The primary antibodies and final titrations used were goat anti-ACE2 (1:25; RD Systems AF933), rabbit

anti-ACE2 (1:200; abcam ab15348), mouse anti-ACTUB (1:1500; Sigma-Aldrich T7451-25UL), mouse anti-

TMPRSS2 (1:100, Sigma MABF2158), rabbit anti-Arl13b (1:500; Invitrogen PA5-32035), rat anti-HA (1:50;

Roche 11867423001), and rabbit anti-V5(1:200; Genetex GTX117997). Secondary antibodies included

rhodamine red™-X (RRX) AffiniPure Donkey anti-goat IgG (H+L) (1:200; Jackson ImmunoResearch

706295147), donkey anti-rat IgG Alexa Fluor™ 568 (1:200; Invitrogen A-11077), donkey anti-rabbit IgG

(H+L) Alexa Fluor™ 568 (1:200; Invitrogen A10042), donkey anti-mouse 488(1:200, abcam ab96794),

goat anti-mouse 555 (1:200; Invitrogen A-21424), donkey anti-rabbit 488 (1:200, abcam ab96919), phal-

loidin 488 (1:200; Invitrogen A12379), and DAPI (1:500; Sigma-Aldrich D9542). Images were captured

using a Zeiss ELYRA S1 (SR-SIM) Super Resolution Microscope by Zen software. ImageJ/Fiji was used

for image analysis.

3.2.5 Western blotting

Samples were lysed in RIPA buffer containing a protease inhibitor cocktail. Protein concentration was

determined by BCA protein assay. Twenty µg/sample was loaded in Mini-PROTEAN TGX Precast

Protein Gels (Bio-Rad). Gels were transblotted on PVDF membrane. Membranes were blocked in 3%

BSA for 1 hour at room temperature and stained with primary antibody in 1% BSA in TBST overnight at

4◦C. Secondary antibodies were diluted 1:2000 in 1% BSA in TBST and incubated at room temperature

for 1 h with agitation. Immunoblots were developed with Clarity™ Western ECL Substrate (Bio-Rad,

1705061) and visualized on a ChemiDoc™MP Imaging System with exposure times automatically selected

to optimize band intensity relative to background.

34



3.2.6 Statistics

Statistical analyses were performed in Excel or with Python using Matplotlib and scipy. P values of less

than 0.05 were considered as significant. Two-sided t-tests were used. The number of replicate images per

independent experiment was ≥ 3.

3.3 Results

3.3.1 ACE2 is expressed in the airway cilia of ferret and mouse

To investigate the specific localization of ACE2 on cilia, we performed double immunofluorescence stain-

ing of ACE2 and a cilia marker acetylated α-tubulin (ACTUB) in ferret and mouse trachea. We used two

commercially available antibodies (R&D AF933 and abcam ab15348) that have shown robust confirmation

of ACE2 specificity (7; 221). AF933 antibody recognizes the immunogen from Gln18 to Ser740, which

is part of the extracellular domain (Ecto). Ab15348 antibody recognizes a peptide consisting of aa 750 to

the C-terminus, which is the cytoplasmic domain (Cyto). We found that staining using AF933 antibody

exhibited the proximal localization of Ecto-ACE2 in ferret airway cilia. Using the same antibody, we

found that Ecto-ACE2 also localized to the proximal compartment of mouse airway cilia (Figure 3.1A).

In the ferret, staining with ab15348 antibody showed that Cyto-ACE2 is expressed in the whole cilia and

enriched in the proximal region. We also stained mouse airway cilia for the Cyto-ACE2 and ACTUB by

immunofluorescence. The staining shows Cyto-ACE2 localized to the whole cilia and was enriched in

the proximal region (Figure 3.1B). We observed similar staining patterns in both ferret and mouse airway

cilia using antibodies against Ecto-ACE2 and Cyto-ACE2. Our results showed that Ecto-ACE2 localizes

to the proximal region of cilia, while Cyto-ACE2 localizes to the whole cilia (Figure 3.1C).

To validate the specificity of those two commercial ACE2 antibodies, we stained sections from the

trachea of ACE2 KO mice and wild type (WT) mice for the Ecto-ACE2 and Cyto-ACE2 by immunoflu-

orescence. The staining was done in combination with anti-ACTUB antibody to identify cilia. The
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antibody against Ecto-ACE2 stained intensely at the proximal region of cilia in the trachea of WT mouse

but showed no positive staining in the ACE2 KO mouse samples (Figure 3.2A). The antibody against

Cyto-ACE2 stained throughout the cilia in the trachea of WT mouse also but showed no positive staining

in ACE2 KO mouse samples (Figure 3.2B). We found a similar staining pattern as seen in the previous

figure using Ecto-ACE2 and Cyto-ACE2 antibodies in trachea tissues from WT mice, while both anti-

bodies stained negatively in trachea from ACE2 KO mice. This experiment supports the assertion that

the two commercial antibodies are specific for ACE2 without off target labeling.

3.3.2 ACE2 is expressed in the cilia of mouse tracheal epithelial cells (MTECs)

in vitro

We next chose to investigate whether the same staining pattern exists for in vitro cilia, so we cultured

primary MTECs and differentiated them into ciliated cells in an air-liquid interface. We co-stained for

ACTUB and phalloidin, which labels actin filaments, at different stages during the culture process (Figure

3.3A-B). To investigate the staining pattern of ACE2, we performed double immunofluorescence staining

of ACE2 and ACTUB in MTECs, finding that Ecto-ACE2 localized to the proximal region of cilia, while

Cyto-ACE2 was found in the whole cilia (Figure 3.3C-D). In summary, we found the staining pattern

of Ecto-ACE2 and Cyto-ACE2 in cilia of MTECs in vitro to be consistent with that of mouse trachea

samples.

3.3.3 Localization of epitope-tagged forms of ACE2 in airway cilia

The different staining pattern between the Ecto-ACE2 and Cyto-ACE2 antibodies could result from the

Cyto-ACE2 only detecting the full-length ACE2 or ACE2 isoform 1, while Ecto-ACE2 detected both

ACE2 isoforms 1 and 2. To answer the question, we examined whether epitope-tagged forms of ACE2

have similar staining pattern as commercial Ecto-ACE2 and Cyto-ACE2 antibodies. We packaged ACE2

isoforms 1 and 2 with an HA epitope tag at the N-terminus (downstream of the signal peptide) and a V5
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tag at the C-terminus, respectively. The efficiency of the ACE2 lentivirus was confirmed in 293T cells

through western blot analysis and immunofluorescence staining (Figure 3.4).

We next sought to examine the expression of epitope-tagged forms of ACE2 ex vivo, and transduced

mouse trachea explants with the epitope-tagged ACE2 lentivirus or mNeon control lentivirus. The V5-

tagged ACE2 isoform 1 localized to the distal compartment of cilia while V5-tagged ACE2 isoform 2 was

expressed less intensively on cilia from mouse tracheal explants (Figure 3.5A). We also co-stained for

the HA tag, which is inserted at the N-terminus downstream of the signal peptide. The expression of

HA-tagged ACE2 isoform 1 was very sparse on cilia, and the majority of the labeling by HA-tagged ACE2

isoform 1 was at the apical side of the epithelial cells from mouse tracheal explants (Figure 3.6A).

To investigate the expression of epitope-tagged forms of ACE2 in cilia in vitro, we transduced the

ciliated MTECs with ACE2 isoforms 1 and 2 or an mNeon control lentivirus respectively. Consistent with

the staining pattern in cilia ex vivo, the C-terminal domain of ACE2 isoform 1 (V5-tagged) localized to the

distal region of cilia, while the C-terminal domain of ACE2 isoform 2 was expressed less intensively on cilia

compared to Cyto-ACE2 isofrom 1 on ciliar from in vitro MTECs (Figure 3.5B). We also quantified the

V5 expression in cilia and found that the expression level of V5 was significantly higher in ex vivo cilia than

in vitro cilia, and the intensity of Ctyo-ACE2 isoform 1 is stronger than Cyto-ACE2 isoform 2 especially

in cilia from in vitro MTECs (Figure 3.5C). As before, we also co-stained for the HA-tag, the expression

of HA-tagged ACE2 isoform 1 was very sparse on cilia from in vitro MTECs. HA-tagged ACE2 isoform 2

can be spotted on cilia from MTECs, but the majority of the labeling by HA-tagged ACE2 isoform 2 was

at the apical side of the epithelial cells from MTECs in vitro (Figure 3.6B). The overall expression level

of HA is relative low compared to V5 expression, but HA expression in ex vivo cilia is significantly higher

than in vitro cilia for both ACE2 isoform 1 and isoform 2 (Figure 3.6C). On this basis, it is possible to

assume that ACE2 shedding is more efficient in in vitro cilia compared with ex vivo cilia.
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3.3.4 TMPRSS2 localizes to the distal region of cilia

The type II transmembrane serine protease (TMPRSS2) is an important host factor that contributes

to SARS-CoV-2 infection via cleaving and activating the spike (S) protein for membrane fusion (3). In

addition, TMPRSS2 can cleave ACE2 within amino acids 697 to 716, resulting in augmented SARS-S-

driven entry (20). Since TMPRSS2 is also found to be localized to motile cilia in the airway (224; 225),

we sought to identify the specific localization of TMPRSS2 within cilia. We co-stained for TMPRSS2

and Arl13b, a cilia marker, in cilia from samples in vivo, ex vivo and in vitro. We found that TMPRSS2 is

enriched in the distal region of cilia (Figure 3.7).

Microvilli are short membrane protrusions from the surface of epithelial cells. Previously, Pinto et

al. reported that both ACE2 and TMPRSS2 are localized to the microvilli but not cilia (53). To examine

if ACE2 and TMPRSS2 localize in microvilli, we co-stained with ACE2 and phalloidin (a marker for

microvilli). Figure 3.8 demonstrated that ACE2-positive staining extended throughout microvilli. TM-

PRSS2 did not localize to microvilli. Overall, our results affirm that ACE2 and TMPRSS2 are localized

to cilia, and ACE2 extended through microvilli.

3.4 Discussion

We report here that ACE2 has a specific localization pattern within airway cilia, Ecto- ACE2 localizes to the

proximal region of cilia, while Cyto ACE2 localizes to the whole cilia with proximal enrichment. We used

two commercial antibodies: anti-Ecto ACE2 antibody (AF933) and anti-Cyto ACE2 antibody (ab15348).

Studies have shown that ACE2 is expressed in various organs including lungs, brain, kidney, and intestinal

tract using immunohistochemical analysis and single-cell RNA-seq (scRNA-seq) (47; 226; 227; 228). Lee

and colleagues reported that ACE2 is expressed in the human respiratory cilia (7). Using anti-Ecto ACE2

antibody, we found that Ecto-ACE2 localizes to the proximal region of cilia. Using anti-Cyto ACE2

antibody, we found that Cyto ACE2 localizes to the whole cilia. Meanwhile, the anti-Ecto ACE2 antibody

recognizes the extracellular domain of ACE2 isoform 1 (full-length) and isoform 2. The anti-Cyto ACE2
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antibody recognizes the cytoplasmic domain of ACE2 isoform 1 and short ACE2. Due to the complexity

and uncertain specificity of ACE2 commercial antibodies, we engineered epitope-tagged forms of ACE2

lentiviruses. We found that Cyto-ACE2 isoform 1 localizes to the distal compartment of cilia, while Cyto-

ACE2 isoform 2 localizes to cilia and the apical surface of cells. The Ecto-ACE2 isoform 1 localizes to the

proximal region of cilia while the Ecto-ACE2 isoform 2 localizes mainly to the apical surface of cells. We

also found that TMPRSS2, sheddase of ACE2, localizes to the distal region of cilia (Figure 3.7). This may

in part explain the distribution of Ecto-ACE2 on the proximal compartment of cilia and Cyto-ACE2 on

the whole cilia. These results provide a mechanism that TMPRSS2, localized to the distal compartment of

cilia, cleaves Ecto-ACE2, causing Ecto-ACE2 to olcalize to the proximal region of cilia. We also compared

the fluorescence intensity of TMPRSS2, Ecto- and Cyto-ACE2 isoform 1 and 2 in samples ex vivo and in

vitro. This process is more efficient in vivo than in vitro. These results support a model that Ecto-ACE2

localizes to the proximal region of airway cilia, while Cyto-ACE2 localizes to the whole cilia but is enriched

in the proximal compartment of cilia. The distribution of Ecto-ACE2 in the proximal compartment could

be due the shedding effect of TMPRSS2, which localizes to the distal region of cilia (Figure 3.9). ACE2

shedding seems more efficient in vitro than in vivo.

There have been conflicting results on the specific localization of ACE2 on cilia. Lee et al. tested 6

ACE2 commercial antibodies and demonstrated that ACE2 localizes to the respiratory cilia by using the

Cyto ACE2 antibody (ab15348) (7). Ahn et al. reported that ACE2 and TMPRSS2 localize to the apical

side of nasal ciliated epithelial cells by immunofluorescence staining and single-cell RNA sequencing

(scRNA-Seq) (52). They found that both ACE2 and TMPRSS2 can be found on the apical side of ciliated

cells by using the cyto ACE2 antibody and two anti-TMPRSS2 antibodies (abcam EPR3861 and Santa

Cruz sc-515727). Manna and colleagues used antibodies against N-term ACE2 (ProSci 3227) and C-term

ACE2 (Invitrogen MA5–32,307) and found that only ACE2 C-term antibody displayed plasma membrane

signal on ciliated cells (43). More recently, Pinto et al. reported that both ACE2 and TMPRSS2 localized

to the plasma membrane of microvilli but not cilia (53). In this study, they used antibodies detecting ACE2

intracellular domain (ab15348) and ACE2 extracellular domain (HPA000288). While the intracellular
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ACE2 antibody stained intensely at the base of microvilli, the staining of extracellular ACE2 extended

throughout the entire microvilli. Most of the studies on ACE2 localization use confocal or fluorescent

microscope for imaging, which have limited resolution and magnification. Super resolution microscopy

encompasses multiple fluorescence imaging techniques that offer a significant improvement in resolution

and magnification. In this study, we acquired our images using Zeiss ELYRA S1 (SR-SIM) structured

illumination super resolution microscope. We found that Ecto-ACE2 antibody stained intensely on the

proximal region of cilia, while Cyto-ACE2 antibody stained the whole cilia.

To validate the specificity of the two commercial ACE2 antibodies in the current study, we performed

immunofluorescence staining of tracheal samples for ACE2 in WT and ACE2 KO mouse. Our results

exhibited positive ACE2 staining using the anti-Ecto ACE2 and anti-Cyto ACE2 antibodies in WT mouse

but not ACE2 KO mouse. Previously, Sherman et al. tested 13 ACE2 commercial antibodies and found

only 2 (AF933 and MAB9332 from RD) of them exhibited significant staining in an ACE2-overexpressing

cell line by flow cytometry (221). However, they did not test the specificity of the Cyto-ACE2 antibody

we used.

In addition, ACE2 has four protein isoforms translated by six ACE2 mRNA variants (6; 42). Ecto-

ACE2 antibodies can detect most large ACE2 isoforms, whereas Cyto-ACE2 antibodies can detect full

length ACE2 and short ACE2. Due to the complexity of ACE2 commercial antibodies and ACE2 iso-

forms, we engineered lentiviral tools expressing epitope-tagged forms of ACE2. By in vitro and ex vivo

experiments, we show that the C-terminal domain of ACE2 isoform 1 localizes to the distal compartment

of cilia, while the C-terminal domain of ACE2 isoform 2 localizes to the proximal region of cilia and the

apical surface of ciliated epithelial cells.

TMPRSS2, the sheddase of ACE2, also localizes to motile cilia of the human respiratory tract (224;

225; 58). TMPRSS2 removes a short C-terminal fragment from ACE2, releasing the Ecto ACE2 (20).

We found that TMPRSS2 localizes predominantly to the distal compartment of cilia, which can partly

explain the distribution of Ecto-ACE2 on the proximal region of cilia. Future work will be focused on

investigating the role of TMPRSS2 in regulating the localization of ACE2 in the compartments of cilia
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and whether inhibiting TMPRSS2 can alter the distribution of ACE2 on cilia. Although Cyto-ACE2

localizes to whole cilia, it is also enriched in the proximal region of cilia. Future studies should investigate

the mechanisms in which ACE2 is restricted to certain ciliary subcompartments and the trafficking of

ACE2 within the cilia.

41



Table 3.1: Antibodies and fluorophores used in these studies
Antibodies Manufacturer Catlog Dilution

Primary Antibodies

Rabbit anti-ACE2 Abcam ab15348 1:100

Goat anti-ACE2 R&D AF933 1:25

Mouse anti-TMPRSS2 Sigma MABF2158 1:100

Rat anti-HA Roche 11867423001 1:50

Rabbit anti-V5 Genetex GTX117997 1:200

Rabbit anti-Arl13b Invitrogen PA5-61840 1:500

Mouse anti-ACTUB Sigma T7451 1:1500

Secondary Antibodies
Rhodamine Red™-X (RRX) Donkey Anti-Goat

IgG (H+L)
Jackson

ImmunoResearch 705-295-147 1:200

Alexa Fluor™ 568 Donkey anti-Rabbit IgG (H+L) Invitrogen A10042 1:200

DyLight® 488 Donkey Anti-Mouse IgG H&L abcam ab98794 1:200

Alexa Fluor™ 555 Goat anti-Mouse IgG (H+L) Invitrogen A-21424 1:200

Alexa Fluor™ 568 Donkey anti-Rat IgG (H+L) Invitrogen A78946 1:200

DyLight® 488 Donkey Anti-Rabbit IgG H&L abcam ab96919 1:200

Alexa Fluor™ 488 Phalloidin Invitrogen A12379 1:200

DAPI Sigma-Aldrich D9542 1:500

3.5 Supplementary Information

3.5.1 Antibodies and fluorophores used in these studies

(Table 3.1)
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Table 3.2: Primers sequences for ACE2 lentivirus construction
Primer Forward Reverse
Guide gBlock 5’- CGT TGG CTA CCC GTG ATA TT -3’ 5’- GCC CAG TCA TAG CCG AAT AG -3’

Table 3.3: Primer sequences for ACE2 knockout mouse genotyping
Primer Forward Reverse

26784_Neo3A GCAGCGCATCGCCTTCTATC

26784_3 GATGTCCAGCTCCTCCTGG

26784_37 GCTCAATAACGACTTAGAACAT

1281_1 GTGGCACGGAACTTCTAGTC

1281_2 CTTGTCAAGTAGCAGGAAGA

3.5.2 Primers sequences for ACE2 lentivirus construction

(Table 3.2)

3.5.3 Primer sequences for ACE2 knockout mouse genotyping

(Table 3.3)

3.5.4 Ace-2. N-terminal fragment

TGTCACGTTGGCTACCCGTGATATTGGCTAGCATCGATTGATCAACAAGTTTGTAC

AAAAAAGCAGGCTACAAAATGTCAAGCTCTTCCTGGCTCCTTCTCAGCCTTGTTGC

TGTAACTGCTGCTCAGTACCCGTATGATGTTCCGGATTACGCTGGCTACCCATACG

ACGTCCCCGACTACGCTGGCTACCCTTACGACGTCCCAGACTACGCTTCCACCAT

TGAGGAACAGGCCAAGACATTTTTGGACAAGTTTAACCACGAAGCCGAAGACCTGT

TCTATCAAAGTTCACTTGCTTCTTGGAATTATAACACCAATATTACTGAAGAGAAT

GTCCAAAACATGAATAATGCTGGGGACAAATGGTCTGCCTTTTTAAAGGAACAGTC

CACACTTGCCCAAATGTATCCACTACAAGAAATTCAGAATCTCACAGTCAAGCTTC
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AGCTGCAGGCTCTTCAGCAAAATGGGTCTTCAGTGCTCTCAGAAGACAAGAGCAA

ACGGTTGAACACAATTCTAAATACAATGAGCACCATCTACAGTACTGGAAAAGTTT

GTAACCCAGATAATCCACAAGAATGCTTATTACTTGAACCAGGTTTGAATGAAATA

ATGGCAAACAGTTTAGACTACAATGAGAGGCTCTGGGCTTGGGAAAGCTGGAGAT

CTGAGGTCGGCAAGCAGCTGAGGCCATTATATGAAGAGTATGTGGTCTTGAAAAAT

GAGATGGCAAGAGCAAATCATTATGAGGACTATGGGGATTATTGGAGAGGAGACT

ATGAAGTAAATGGGGTAGATGGCTATGACTACAGCCGCGGCCAGTTGATTGAAGA

TGTGGAACATACCTTTGAAGAGATTAAACCATTATATGAACATCTTCATGCCTATG

TGAGGGCAAAGTTGATGAATGCCTATCCTTCCTATATCAGTCCAATTGGATGCCTC

CCTGCTCATTTGCTTGGTGATATGTGGGGTAGATTTTGGACAAATCTGTACTCTTT

GACAGTTCCCTTTGGACAGAAACCAAACATAGATGTTACTGATGCAATGGTGGACC

AGGCCTGGGATGCACAGAGAATATTCAAGGAGGCCGAGAAGTTCTTTGTATCTGTT

GGTCTTCCTAATATGACTCAAGGATTCTGGGAAAATTCCATGCTAACGGACCCAGG

AAATGTTCAGAAAGCAGTCTGCCATCCCACAGCTTGGGACCTGGGGAAGGGCGAC

TTCAGGATCCTCTATTCGGCTATGACTGGGCGG

3.5.5 Ace2. C-terminal fragment for isoform 1

CACGTTGGCTACCCGTGATATTGGATCCTTATGTGCACAAAGGTGACAATGGACGA

CTTCCTGACAGCTCATCATGAGATGGGGCATATCCAGTATGATATGGCATATGCTG

CACAACCTTTTCTGCTAAGAAATGGAGCTAATGAAGGATTCCATGAAGCTGTTGGG

GAAATCATGTCACTTTCTGCAGCCACACCTAAGCATTTAAAATCCATTGGTCTTCT

GTCACCCGATTTTCAAGAAGACAATGAAACAGAAATAAACTTCCTGCTCAAACAAG

CACTCACGATTGTTGGGACTCTGCCATTTACTTACATGTTAGAGAAGTGGAGGTGG

ATGGTCTTTAAAGGGGAAATTCCCAAAGACCAGTGGATGAAAAAGTGGTGGGAGA

TGAAGCGAGAGATAGTTGGGGTGGTGGAACCTGTGCCCCATGATGAAACATACTG

TGACCCCGCATCTCTGTTCCATGTTTCTAATGATTACTCATTCATTCGATATTACA
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CAAGGACCCTTTACCAATTCCAGTTTCAAGAAGCACTTTGTCAAGCAGCTAAACAT

GAAGGCCCTCTGCACAAATGTGACATCTCAAACTCTACAGAAGCTGGACAGAAACT

GTTCAATATGCTGAGGCTTGGAAAATCAGAACCCTGGACCCTAGCATTGGAAAATG

TTGTAGGAGCAAAGAACATGAATGTAAGGCCACTGCTCAACTACTTTGAGCCCTTA

TTTACCTGGCTGAAAGACCAGAACAAGAATTCTTTTGTGGGATGGAGTACCGACTG

GAGTCCATATGCAGACCAAAGCATCAAAGTGAGGATAAGCCTAAAATCAGCTCTTG

GAGATAAAGCATATGAATGGAACGACAATGAAATGTACCTGTTCCGATCATCTGTT

GCATATGCTATGAGGCAGTACTTTTTAAAAGTAAAAAATCAGATGATTCTTTTTGG

GGAGGAGGATGTGCGAGTGGCTAATTTGAAACCAAGAATCTCCTTTAATTTCTTTG

TCACTGCACCTAAAAATGTGTCTGATATCATTCCTAGAACTGAAGTTGAAAAGGCC

ATCAGGATGTCCCGGAGCCGTATCAATGATGCTTTCCGTCTGAATGACAACAGCCT

AGAGTTTCTGGGGATACAGCCAACACTTGGACCTCCTAACCAGCCCCCTGTTTCCA

TATGGCTGATTGTTTTTGGAGTTGTGATGGGAGTGATAGTGGTTGGCATTGTCATC

CTGATCTTCACTGGGATCAGAGATCGGAAGAAGAAAAATAAAGCAAGAAGTGGAG

AAAATCCTTATGCCTCCATCGATATTAGCAAAGGAGAAAATAATCCAGGATTCCAA

AACACTGATGATGTTCAGACCTCCTTTGGTAAGCCTATCCCTAACCCTCTCCTCGG

TCTCGATTCTACGTAGCAATCAACGCGTTCTATTCGGCTATGACTGGGCGG

3.5.6 Ace2. C-terminal fragment for isoform 2

CACGTTGGCTACCCGTGATATTAGGATCCTTATGTGCACAAAGGTGACAATGGAC

GACTTCCTGACAGCTCATCATGAGATGGGGCATATCCAGTATGATATGGCATATGC

TGCACAACCTTTTCTGCTAAGAAATGGAGCTAATGAAGGATTCCATGAAGCTGTTG

GGGAAATCATGTCACTTTCTGCAGCCACACCTAAGCATTTAAAATCCATTGGTCTT

CTGTCACCCGATTTTCAAGAAGACAATGAAACAGAAATAAACTTCCTGCTCAAACA

AGCACTCACGATTGTTGGGACTCTGCCATTTACTTACATGTTAGAGAAGTGGAGGT

GGATGGTCTTTAAAGGGGAAATTCCCAAAGACCAGTGGATGAAAAAGTGGTGGGA
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GATGAAGCGAGAGATAGTTGGGGTGGTGGAACCTGTGCCCCATGATGAAACATAC

TGTGACCCCGCATCTCTGTTCCATGTTTCTAATGATTACTCATTCATTCGATATTA

CACAAGGACCCTTTACCAATTCCAGTTTCAAGAAGCACTTTGTCAAGCAGCTAAAC

ATGAAGGCCCTCTGCACAAATGTGACATCTCAAACTCTACAGAAGCTGGACAGAAA

CTGTTCAATATGCTGAGGCTTGGAAAATCAGAACCCTGGACCCTAGCATTGGAAAA

TGTTGTAGGAGCAAAGAACATGAATGTAAGGCCACTGCTCAACTACTTTGAGCCCT

TATTTACCTGGCTGAAAGACCAGAACAAGAATTCTTTTGTGGGATGGAGTACCGAC

TGGAGTCCATATGCAGACCAAAGCATCAAAGTGAGGATAAGCCTAAAATCAGCTCT

TGGAGATAAAGCATATGAATGGAACGACAATGAAATGTACCTGTTCCGATCATCTG

TTGCATATGCTATGAGGCAGTACTTTTTAAAAGTAAAAAATCAGATGATTCTTTTT

GGGGAGGAGGATGTGCGAGTGGCTAATTTGAAACCAAGAATCTCCTTTAATTTCTT

TGTCACTGCACCTAAAAATGTGTCTGATATCATTCCTAGAACTGAAGTTGAAAAGG

CCATCAGGATGTCCCGGAGCCGTATCAATGATGCTTTCCGTCTGAATGACAACAG

CCTAGAGTTTCTGGGGATACAGCCAACACTTGGACCTCCTAACCAGCCCCCTGTTT

CCATATGGCTGATTGTTTTTGGAGTTGTGATGGGAGTGATAGTGGTTGGCATTGTC

ATCCTGATCTTCACTGGGATCAGAGATCGGAAGAAGCCAACTCCACTCTTGGGAAA

AAGTTGGCTGACAGCCATCTTGAAAGATGGTAAGCCTATCCCTAACCCTCTCCTCG

GTCTCGATTCTACGTGAATCAACGCGTTAACTATTCGGCTATGACTGGGCGG
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Figure 3.1: Representative immunofluorescence staining of ACE2 and cilia marker acetylated α-tubulin
(ACTUB) in ferret and mouse trachea. Panel (A) shows the location of extracellular domain (Ecto) of
ACE2 recognized by goat anti-ACE2 (RD, AF933) on ferret and mouse trachea. Panel (B) shows the
fluorescent staining of cytoplasmic domain (Cyto) of ACE2 recognized by rabbit anti-ACE2 antibody
(abcam, ab15348) on ferret and mouse trachea. Scale bars: 10 µm. (C) Schematic representation of anti-
ACE2 antibodies and their staining patterns.
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Figure 3.2: Immunofluorescence analysis of ACE2 in the trachea from WT and ACE2 KO mice. Panel A
shows the localization of ACE2 recognized by the Ecto-ACE2 antibody (AF933) in respiratory cilia from
WT and ACE2 KO mice. Staining for Ecto-ACE2 antibody is negative in ACE2 KO mouse. Panel B
shows the location of ACE2 recognized by the Cyto-ACE2 antibody (ab15348) in respiratory cilia from
WT and ACE2 KO mice. The IF staining for Cyto-ACE2 is negative in ACE2 KO mouse. Scale bars, 10
µm.

48



Figure 3.3: ACE2 localizes to cilia in mouse tracheal epithelial cells (MTECs) at an air-liquid interface
(ALI). A Schematic diagram showing the differentiation of MTECs cultured at the ALI. B Double
immunofluorescence staining using ACTUB as a cilia marker and phalloidin as an actin marker in MTECs
during the differentiation process. Arrows indicate cilia. C Immunofluorescence staining for Ecto-ACE2
(AF933) and ACTUB in differentiated MTECs. Ecto-ACE2 was found to be localized to the proximal
region of cilia and the cell surface of MTECs. D Immunofluorescence antibody labeling against Cyto-
ACE2 (ab15348) and ACTUB. Cyto-ACE2 was found to be localized to the whole cilia from MTECs.
Scale bars, 50 µm.
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Figure 3.4: Epitope-tagged forms of ACE2 lentivirus packing. A diagram of ACE2 isoform 1 with HA at
the N-terminus and V5 at the N-terminus. ACE2 isoform 2 with an HA tag at the N-terminus and V5 tag
at aa 786. B illustrates western blot analysis of epitope-tagged ACE2 in HEK 293T cells. C Immunofluo-
rescence staining of epitope-tagged forms of ACE2 on HEK293T cells. Scale bars, 10 µm.
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Figure 3.5: Immunofluorescence analysis of V5-tagged (C-terminus) forms of ACE2 on cilia. Panel A
shows the localization of V5-tagged ACE2 on cilia from mouse tracheal explants. Panel B shows the
representative IF images of V5 and ACTUB expression in cilia from MTECs. Scale bars, 10 µm. C,
quantification of V5 expression on cilia. Error bars represent mean ± SD. Student’s T-Test was used to
assess statistical significance. * P < 0.05, ** P < 0.01.
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Figure 3.6: Immunofluorescence analysis of HA-tagged forms of ACE2 on cilia from mouse epithelial
cells ex vivo and in vitro. A, representative double IF staining of HA (N-terminus tag) and ACTUB in
mouse tracheal explants ex vivo. B, representative double IF staining of HA (N-terminus tag) and ACTUB
in ALI-cultured MTECs. Scale bars, 10 µm. C, quantification of the expression of HA in cilia from ex
vivo and in vitro samples. Error bars represent mean ± SD. Student’s T-Test was used to assess statistical
significance. * P < 0.05, ** P < 0.01.
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Figure 3.7: TMPRSS2 localizes to the distal region of cilia. A Representative immunofluorescence stain-
ing of TMPRSS2 and Arl13b in cilia from in vivo, ex vivo, and in vitro samples. Scale bars, 10 µm. B
Quantification of the expression of TMPRSS2 in cilia. Error bars represent mean ± SD. Student’s T-Test
was used to assess statistical significance.
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Figure 3.8: ACE2 and TMPRSS2 localizes to cilia and extends through microvilli. Representative images
of Ecto-ACE2, Cyto-ACE2, TMPRSS2, ACTUB and phalloidin in mouse trachea. Scale bars, 10 µm.
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Figure 3.9: Model for ACE2 localization in cilia. A Model illustrates that Cyto-ACE2 localizes to distal
cilia, Ecto-ACE2 localizes to proximal cilia, while TMPRSS2 localizes to distal cilia. B illustrates Ecto-
ACE2 is cleaved off by TMPRSS2.
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Chapter 4

Constructing a Validation

Dataset of Ciliary Motion

Phenotypes

4.1 Introduction

Cilia are hair-like structure found on the surface of almost all mammalian cell types. Cilia beat in a

coordinated and synchronized manner to propel foreign objects out of the way. The motile cilia on the

surface of respiratory epithelia are one of the major components of mucociliary clearance (MCC), which

is the primary defense mechanism of the lung (12). The malfunction of cilia can cause diseases known as

ciliopathies, a group of genetic disorders associated with cilia (76; 229). Primary ciliary dyskinesia (PCD)

is an autosomal recessive genetic ciliopathy, characterized by impaired MCC and chronic respiratory

infections (230; 231). Currently, the diagnosis of PCD relies on a combination of tests including ciliary

ultrastructural analysis and genetic testing. However, 30% of PCD patients have normal or near-normal

ciliary ultrastructure but abnormal ciliary function (232; 233). For example, PCD patients with DNAH11

mutations showed reduced waveform amplitude in cilia and a hyperkinetic beating pattern (234; 235).
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Therefore, robust ciliary motion phenotype analysis is of great importance in diagnosing PCD. Currently,

there is no standard way to quantify cilia motion phenotypes; researchers have to analyze the ciliary motion

pattern manually by playing the video in slow motion back and forth, which is time-consuming and labor

intensive. The analysis of cilia motion waveforms is still heavily subjective (107). Precise quantification of

cilia motion waveform is a challenging task. Current computer vision algorithms for recognizing ciliary

area and analyzing ciliary motion are still under development and rely on a large-scale validation dataset

for model evaluation. Therefore, we propose to build this validation dataset of ciliary motion phenotypes

to address this.

The beating of respiratory cilia consists of a forward power stroke and a backward recovery stroke in

the same plane (107). The airway ciliary beat frequency (CBF) is estimated to vary from 3 to 16 Hz (14; 150).

CBF can be modulated by various stimuli such as temperature and drugs (236; 237; 164). To analyze

cilia motion, images are recorded at over 200 frames per second with a high-speed video microscope.

Many clinicians and researchers still analyze cilia motion by manual counting and visualization (238;

239). However, this is labor-intensive and time-consuming. In recent years, efforts have been invested

toward developing computational tools utilizing conventional or deep learning-based methods to help

analyse cilia motion in a semi- or fully automated way (211; 17; 111; 207; 16; 209). Quinn et al. built a

computational pipeline using computer vision and machine learning algorithms to classify cilia motion

into normal and abnormal with over 90% accuracy (17). This method was trained on an in-house dataset

consisting of 325 videos and relied on expert’s evaluation as ground truth regarding whether the sample is

normal or abnormal. In a follow-up study, Lu et al. generated manual masks and combined DenseNet

for segmentation and convolutional LSTM for cilia motion classification (112). This framework achieved

an accuracy of 86.2% in segmentation and over 90% accuracy in classification. For the segmentation task,

Zain et al. proposed deep learning pipelines utilizing Fully Convolutional DenseNet (FC-DenseNet),

U-Net with low-level feature extraction to analyze the same ciliary dataset (18; 113). The composite model

achieved an accuracy of 77% and an Interaction of Union (IoU) score of 44%. However, the segmentation

results are still not satisfactory. There’s an urgent need for a large-scale validation dataset of ciliary motion.
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To access the ciliary beat pattern, the first step is to segment cilia, which is to detect and separate

ciliary areas from images. Cilia segmentation depends on a large-scale video dataset for evaluating the

deep learning pipeline. Currently, there is no shared video dataset of cilia motion. Therefore, we propose

to address this need by building a dataset of cilia motion phenotypes under several categories including

temperature, drug and genetic manipulations. In addition, we will provide the mean CBF as a baseline

metric. By building this dataset, we hope to provide the clinicians and researchers a validation dataset of

various cilia motion phenotypes. Also, we aim to provide the computer science community with a video

dataset to help with model development and evaluation.

Ciliary activity is dependent on temperature. There is a linear correlation between CBF and tem-

perature (240; 241; 237; 242). Clary-Meinesz et al. studied CBF of human nasal and tracheal epithelial

cells at different temperatures from 5°C to 50°C and found that CBF increased with temperature from

9°C to 20°C but levelled between 20°C to 45°C (237). Nikolaizik and colleagues compared CBF of nasal

brushings from young adults at 25°C 32°C and 37°CṪhey found that CBF was significantly increased

when measured at a higher temperature (242).

Cilia motion is affected by many pharmacologic substances (164; 243; 244). In the current study, we

investigated cilia motion phenotypes affected by seven drugs: Adenosine 5-triphosphate (ATP), Ampho-

tericin B, azelastine, calcium inonphore A23187, N-acetylcysteine amide (NAC), terbutaline, and triflu-

operazine. ATP can increase CBF via inducing intracellular Ca2+ (245). Amphotericin B is an antifungal

medicine used for treating life-threatening fungal infections and leishmaniasis. Hofer et al. reported that

amphotericin B diluted in distilled water reduced CBF by 50%. However, amphotericin B diluted in saline

had no effect on CBF (246). Azelastine is a commonly used anti-allergy intranasal formulation, which is

introduced for topical intranasal therapy of perennial or seasonal allergic rhinitis (247). In an early study,

researchers found the azelastine had no effect on CBF neither in vitro or in vivo (248). However, Alberty

and colleagues reported that azelastine slightly reduced CBF (249). Calcium ionophore can stimulate CBF

in human respiratory epithelia in vitro through mediating a calmodulin-sensitive system (250). In an early

study, however, Satir observed ciliary arrest of freshwater mussel gills by perfusion with 10−5M calcium
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ionophore (251). The pharmacological effects of NAC on cilia is conflicting. Early studies reported that

NAC reduced CBF of human nasal samples in a dose- and time-dependent manner (252; 253). Gancer

and colleagues found that NAC stimulated ciliary function at 10 mg/ml concentration, and NAC can

cause a total cessation of cilia movement at 200 mg/ml (254). Terbutaline is a β2-adrenergic agonist that

can increase CBF and decrease the volume of ciliated cells. The cell shrinkeage induced by terbutaline

stimulated CBF by increasing cAMP (255). Trifluoperazine is an inhibitor of calcium-dependent protein

kinases that can decrease CBF (250). Previous studies on the effect of drugs on ciliary function were mostly

focused on CBF, while few studies reported the effects on ciliary waveform. Conflicting results are seen

in studies involving the same pharmacological drugs presumably due to different models, concentrations,

and lab environments. Therefore, we propose to investigate the effects of the above mentioned seven

drugs on ciliary motion and calculate the CBF as a baseline metric.

For genetic manipulation, we investigate the role of angiotensin-converting enzyme-2 (ACE2) on

cilia motility. ACE2 is the SARS-CoV-2 receptor localized on respiratory cilia (7). Motile cilia play an

important role in the replication of SARS-CoV-2 (8). Studies have reported that ACE2 KO mice exhibited

worsened respiratory function after infection (68; 256), however, whether ACE2 plays a role in regulating

cilia motility remains unknown. In the current study, we use several strategies, including ACE2 inhibitor

(MLN-4760) and shRNA, to manipulate ACE2.

Cilia motion is usually captured in vitro with a high-speed video microscope. Previously, cilia motion

was qualitatively measured as normal, abnormal, or stiff (257; 176). Chilvers et al. developed a ciliary

dyskinesia scoring system (0 to 3) based on symptoms, cellular changes, and ciliary beat pattern (258). For

quantitative measurement, Papon et al. described 12 quantitative parameters to characterize ciliary beat

pattern (178). Those parameters include the cilia length, angle of beating, global frequency and so on. To

estimate MCC, fluorescent microbeads are added to the media. MCC can be calculated by tracking the

movement of the beads. In this study, we provide the methodology to analyze cilia parameters including

CBF, ciliary beat amplitude, angle, and arclength.
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Table 4.1: Drug list
Name Catlog Manufacturer

Adenosine 5’-triphosphate (ATP) A26209-1G Sigma-Aldrich

Amphotericin B A2942 Sigma-Aldrich

Azelastine A7611-10MG Sigma-Aldrich

Calcium inonphore A23187 C7522-1MG Simga-Aldrich

MLN-4760 5306160001 Simga-Aldrich

N-acetylcysteine amide A0737-5MG Simga-Aldrich

Terbutaline PHR3246-250MG Sigma-Aldrich

Trifluoperazine T8516-5G Sigma-Aldrich

We present a large-scale video validation dataset of ciliary motion phenotypes. Our validation dataset

consists of 872 videos and their corresponding ground truth masks. This is the first open-source cilia video

set to enable cilia video analysis and characterization of ciliary function under different stimuli.

4.2 Methods

4.2.1 Solutions and Chemicals

Leibovitz’s L-15 medium (L-15) was purchased from Gibco (Cat: 11415064). L-15 was supplemented with

10% FBS and Penicillin-Streptomycin for trachea collection and imaging. ATP, Amphotericin B, azelas-

tine, calcium ionophore A23187, N-acetylcysteine, terbutaline, trifluoperazine were obtained from Sigma-

Aldrich (St Louis, MO). Dimethyl Sulfoxide (DMSO) was purchased from EMD Millipore Corp (Cat:

317275-500ML). Calcium ionophore, azelastine, terbutaline, trifluoperazine were dissolved in DMSO and

diluted in L15 to the final working concentrations. A detailed table of drug information is listed below

(Table 4.1).
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4.2.2 Sample Preparation

Mouse tracheal pieces were prepared according to the protocol described previously (187). Briefly, BALB/C

mice (6-10 week old) were euthanized with CO2, as approved by the Institutional Animal Care and Use

Committee (IACUC) of the University of Georgia. After euthanasia, mouse tracheas were collected. Tra-

cheal samples were cut into 3-4 ring segments and maintained in L-15 supplemented with antibiotics at 4

◦C. All the experiments were performed within 2 days of collection.

The samples were imaged at room temperature (22◦C) except for when under temperature treatment.

For temperature treatment, mouse tracheal samples were incubated at 18◦C, 22◦C, 24◦C, 26◦C and 29◦C.

In order to measure the CBF at different temperatures, we set the microscope room temperature control

system to the target temperature overnight prior to imaging.

4.2.3 Drug Application

Mouse tracheal samples were mounted on a coverslip. Then we drew a circle surrounding the sample

using Vaseline. A second coverslip was placed over the tissue to form the chamber. Drugs were added

manually to the chamber by micropipette. All samples were maintained at the room temperature (22◦C)

during the evaluation. Medium solutions supplemented with drugs contained a final concentration of

no more than 1 % of DMSO, a concentration known not to affect CBF (259).

After baseline videos, samples were perfused with L-15 medium containing drugs at different concen-

trations. Cilia videos were imaged after being incubated with the perfusion. After drug perfusion, the

perfusate was replaced with L-15 medium and cilia were imaged to determine whether the effects of drugs

are reversible. Table 4.2 summarizes the working concentrations and incubation time of each drug.

4.2.4 ACE2 Manipulation

Mouse ACE2 shRNA variants were purchased from VectorBuilder (Catalog #: VB010000-0001mty,

VB900138- 0657mqd, VB900138-0321tyd, VB900138-0320wfm). ACE2 shRNA or scramble lentiviruses
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Table 4.2: Working concentration and incubation time for drugs
Drug name Stock Concentration Working Concentration Incubation Time
ATP 500 mM 1µM, 10µM, 100µM, 1mM 10 min
Amphotericin B 250 µg/mL 0.25 µg/mL, 2.5 µg/mL, 25ug/mL 20 min
Azelastine 10 mM 1µM, 10µM, 100µM 5 min
Calcium inonphore A23187 10 mg/mL 0.1 µM, 1µM, 10µM, 100µM 10 min
N-acetylcysteine amide 20 mg/mL 0.5 mg/mL, 1mg/mL 5 min
Terbutaline 100mM 0.5 µM, 10µM 3 min
Trifluoperazine 100mM 5µM, 10µM, 100µM 30 min

were produced by transfection of HEK293T cells with target vectors, and packaging vectors psPAX2

(addgene, #12260) and pMD2.G (addgene, #12259) using Lipofectamine™3000 Transfection Reagent

(Cat: L3000015, ThermoFisher, USA). Lentivirus media were concentrated using Lenti-X Concentrator

(Clontech, PT4421-2). For lentivirus infection, ciliated mouse tracheal epithelial cells or tracheal explants

were treated with medium containing 8µg/mL of polybrene and 1x106 units of the viruses. We also treated

mouse tracheal explants with MLN-4760 (1 µM final), an ACE2 inhibitor, for 24 hours.

4.2.5 Imaging with High-Speed Video Microscopy

Tracheal samples were imaged with a TI2- U inverted microscope (Nikon) equipped with a 40x and an

additional 2.5x DIC objectives. Images (800 x 800 pixels) of ciliary motion were recorded at 250 frames per

second (fps) for 6 seconds using the Mikrotron high-speed camera and Core2 image acquisition software.

Each pixel is 0.07987 µm. For each sample, we recorded at least 3 videos of independent ciliated edges

from side view.

4.2.6 Ciliary Beating Analysis

Cilia beat frequency (CBF). CBF was estimated using Fast Fourier Transform (FFT) by calculating the

variation of the mean gray level of the pixel. The cilia videos were analyzed for CBF using an in-house

computational pipeline written in Python (17).

62



To characterize cilia beat pattern (CBP), a single cilium is manually tracked during a full beating

cycle using napari, which is a multi-Dimensional Image Viewer written in Python (260). The contour

of the positions before the active and the recovery strokes can be used to determine a series of ciliary

characteristics such as cilium length, distance traveled by the tip, and curvature (178). Figure 4.1 shows an

example of a manually labeled full cycle. P0 indicates the base of the cilium. P1 and P2 label the coordinates

of the tip of the cilium during the beginning and the end of the power stroke.

Figure 4.1: Example of tracking a full cycle of a cilium. Left shows a sample frame image of a cilia video.
Right shows manual tracking of the beginning and end of a power stroke from a cilium. P0 labels the
base of the cilium. P1 and P2 label the coordinates of the tip of the cilium during the beginning and the
end of the power stroke.

Several parameters can be determined using the acquired positions. The cilium length is estimated as

the maximum value among the forward stroke line and the recovery stroke line. The angle of beating (θ)

is calculated as following:

θ = arccos(

−−→
P0P1 ·

−−→
P0P2

|P0P1| · |P0P2|
)

In addition, the ciliary beating amplitude is determined by P1P2. Cilia density is estimated by

comparing the pixel intensity of the cilia area with the mean pixel intensity of the background (163). A

region of background and region of cilia are labeled using napari (Figure 4.2). We consider a homogeneous
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distribution of cilia and, therefore, cilia density (ρ) can be calculated as follows in a ciliated region:

ρ =
NumberofP ixels ≤MeanBackground

NumberofP ixels

Figure 4.2: Example of cilia density determination. (Left) Original frame image. (Right) The blue block
corresponds to the background. The brown block corresponds to the cilia area.

4.2.7 Manual Segmentation of Cilia

For each video, we used napari (261), an interactive image viewer for Python, for manual segmentation

of cilia. First, we created a new label layer and adjusted the opacity. Then, a paint brush was activated to

draw the contour of the cilia area. After filling the contour with the bucket, the label can be converted

into a segmentation image.

4.2.8 Statistical Analysis

CBFs are presented as means ± standard deviation. Statistical analysis was assessed by ANOVA. Compar-

ison of paired-data was done using a paired-samples t test. A value of P < 0.05 was considered statistically

significant.
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4.3 Results

4.3.1 Dataset Vocabulary

We built a validation dataset of 872 videos of cilia motion under four categories: drug, temperature, ACE2,

and control. We also generated ground-truth masks labelling cilia areas, which can be used for evaluating

segmentation performances. The truncated video dataset is available at: https://doi.org/10.5281/

zenodo.8135892. Figure 4.3 showed sample videos and their ground-truth masks with cilia area labelled.

Drug treatment accounts for the largest proportion (73.6%) of videos. Under drug category, we imaged

cilia motion with seven different drugs under different concentrations (Table 4.2). The number of videos

in each category is shown in the histograms (Figure 4.4).

Figure 4.3: Sample videos of cilia motion and their ground-truth masks. Top row shows sample frame
images of cilia videos. Bottom row shows their corresponding ground-truth masks with cilia area labelled.

4.3.2 Effects of Different Temperatures on Mouse Airway Ciliary Motility

Previous studies have shown that CBF can be affected by temperatures (211; 262; 237; 242). We recorded

cilia motion at several temperatures (18°C, 22°C, 24°C, 26°C, 29°C). The mean CBF at room temperature

(22°C) was 5.54Hz (SD 1.1). We found that at 4°C, cilia were almost immotile (data not shown). Figure
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Figure 4.4: Cilia dataset statistics. (Left) Distribution of the number of videos under each category.
(Right) Distribution of the number of videos that belong to each drug treatment under drug class.

4.5 shows the CBF at different temperatures. From 22°C to 29°C, CBF values increased with temperature,

from 5.54 ± 1.11 Hz at 22°C to 7.60 ± 0.82 Hz at 29°C (P < 0.001). The beat pattern of mouse airway cilia

showed normal forward and backward strokes within the same plane at different temperatures.

4.3.3 Effect of Drugs on CBF

Adenosine 5-triphosphate (ATP) is a purinergic agonist that stimulates CBF by increasing intracellular

calcium concentration ([Ca2+]i) (263). Before ATP infusion, CBF was measured as 5.28 ± 0.67 Hz. We

incubated the samples at different concentrations of ATP (1 µM, 10 µM, 100 µM, 1 mM) for 10 minutes

before imaging. After ATP infusion, we replaced the media with normal L-15 media and recorded cilia

motility. We found that ATP slightly increased the CBF values of mouse tracheal samples, although the

difference was not significant (Figure 4.6A).

Amphotericin B is an antifungal agent commonly used to treat allergic fungal rhinosinusitis. At

room temperature, the baseline of CBF before Amphotericin B perfusion was 6.97 ± 1.11 Hz. At 25

µg/mL, CBF was reduced to 5.44 ± 0.46 Hz (P < 0.0001). After re-perfusion with normal media, CBF
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Figure 4.5: CBF analysis at different temperatures. Data are shown as mean ± SD. CBF is increased when
measured at high temperatures. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

value was elevated to 5.98 ± 0.87 Hz but still lower than baseline CBF (P < 0.01) (Figure 4.6B). Overall,

Amphotericin B has an inhibitory effect on cilia motility.

Azelastine is an anti-allergy drug for intranasal use. Previous studies report inconsistent results on

whether azelastine has an effect on CBF (264; 249). In the current study, we found that azelastine reduced

CBF values at 10 µM (5.53 ± 0.5 Hz, P = 0.386) (Figure 4.6C). Calcium can regulate CBF by increasing

[Ca2+]i (250; 265). Di Benedetto and colleagues exposed human nasal epithelial cells with 4-bromo-

calcium ionophore A23187 (4-Br-A23187) and found that 4-Br-A23187 increased CBF in a time-dependent

manner (250). Sánchez-Cárdenas et al. treated spermatozoa with calcium ionophore A23187 and found

that sperm were immobilized after 10 min (266). In the current study, we treated mouse tracheal samples

with calcium ionophore A23187 and found that A23187 decreased CBF in a dose-dependent manner
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Table 4.3: Effects of drugs on CBF
Drug Name Effect

ATP No effect

Amphotericin B Decrease

Azelastine Decrease

Calcium inonphore Decrease

N-acetylcysteine Decrease

Terbutaline No effect

Trifluoperazine Decrease

(Figure 4.6D), consistent with Sánchez-Cárdenas’ results. Removing A23187 can partially restore the

CBF.

N-acetylcysteine amide (NAC) is widely used as a mucolytic agent. At low concentration (0.5 mg/mL),

NAC has no effect on CBF. At high concentration (1 mg/mL), NAC decreased CBF (P < 0.001). After its

removal, CBF was not restored (P < 0.01) (Figure 4.6E). Terbutaline is a β2-adrenergic agonist known to

increase CBF in a dose-dependent manner (255). We treated mouse tracheal samples with terbutaline at

0.5µM and 10µM. After terbutaline perfusion, CBF was only slightly increased compared to the baseline

CBF, but the difference was not statistically significant (P = 0.515) (Figure 4.6F). Trifluoperazine (TFP) is

an inhibitor of calmodulin-sensitive calcium-dependent protein kinases. TFP is known to decrease CBF

(250). We treated mouse tracheal samples with TFP and found that TFP reduced CBF in a dose dependent

manner (Figure 4.6G). The effects of these drugs on CBF is summarized in Table 4.3.

4.3.4 Effects of ACE2 manipulation on CBF

Under control conditions, the mean CBF of mouse tracheal explants was 5.54 ± 1.11 Hz (mean ± SD).

The mean CBF of mouse tracheal explants was 5.75 ± 0.48 Hz (mean ± SD). There was no significant

difference (p > 0.05) between control group and the ACE2 inhibitor group.
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Figure 4.6: Analysis of the effects of selected drugs on CBF relative to control. Mean CBF after exposure
to different concentrations of drugs at room temperature. The effects of ATP (A), Amphotericin B (B),
azelastine (C), calcium inonphore A23187 (D), NAC (E), terbutaline (F), trifluoperazine (G) at different
concentrations on CBF relative to control. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

For ACE2 genetic manipulation, we treated mouse tracheal explants with scramble lentivirus and

two ACE2 shRNA (Variant 1 and 3) variants. After 40 hours of incubation, the results of the mean CBF

values of the treatment groups are given in Figure 4.7. ACE2 shRNA lentivirus slightly increased CBF

compared to the control and scramble groups, but the difference was not statistically significant (P > 0.05).

4.4 Discussion

In the current study, we presented a large-scale validation dataset of ciliary motion phenotypes. Our dataset

is comprised of over 800 videos (more than 1,200,000 frames). The ground-truth masks for segmenting

ciliary area were provided using Napari, a Python library for image visualization and annotation (261).

Ciliary motion of mouse tracheal samples after treatment with various drugs, temperatures, and gene
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Figure 4.7: ACE2 shRNA effects on ciliary beat frequency. Mean CBF after exposure to scramble and
ACE2 shRNA lentiviruses was measured.

manipulation (ACE2) were recorded at 250 frames per second using a high-speed CCD video microscope.

The mean CBF ± SD was calculated using FFT as a baseline metric for characterizing ciliary function.

The CBF of airway epithelia in healthy individuals varies from 10 to 20 Hz (267; 268). In the present

study, the videos were obtained at room temperature (22°C) except in the case of temperature treatments.

The CBF values of our control samples are 5.3 ± 1.3 Hz, lower than those in in vivo condition. Jing et al.

measured the CBF at 25◦C as 5.1 Hz (150), consistent with our results. Christopher et al. reported that

cilia-generated flow velocity declined with the decrease of temperature (240). Nikolaizik et al. analyzed

nasal brushings from young adults and found no obvious changes in the beating pattern of cilia at the

different temperatures (242). Future studies can involve high temperatures to mimic in vivo conditions

such 32°C for nasal cilia and 37°C for tracheal cilia.

Many drugs and compounds have been found to affect cilia beat frequency (164). ATP stimulates CBF

in cultured ciliated cells and tracheal explants through increasing [Ca2+]i (269). Amphotericin B is often
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used as an antifungal treatment for diseases such as allergic fungal rhinosinusitis. Hofer et al. reported

that amphotericin B (0.1 mg/mL) in distilled water caused a reduction of CBF after a 20 min incubation

(246). Azelastine is a drug commonly used for treating allergic rhinitis. Previous studies have found that

azelastine can reduce CBF (249; 270). Previous literature showed controversial results regarding the effect

of azelastine on CBF (249; 264). We evaluated the effect of azelastine on mouse tracheal explants and found

that azlestine at 10 µM can reduce CBF. Calcium plays an important role in regulating ciliary activity

(271). We found that mouse airway cilia treated with the calcium ionophore A23187 exhibited reduced

CBF in a dose dependent manner. Di Benedetto and colleagues reported that 10 µM calcium ionophore

4-Br-A23187 increased the CBF values of human respiratory epithelial cells (250). However, A23187 can

immobilize spermatozoa while induce the acrosome reaction (272). Sánchez-Cárdenas et al. also found

that A23187 at 5–10 µM can elevate [Ca2+]i and immobilize spermatozoa. However, high concentrations

of A23187 can increase flagellar beat frequency (266). Future studies should involve higher concentrations

(>10 µM) of A23187 to examine the effects of calcium ionophores on ciliary function. NAC is extensively

used for the treatment of cystic fibrosis (CF). Orally administered NAC in CF patients can significantly

improve their lung function (273). We found that NAC reduced CBF, which is consistent with previous

studies (253; 252).

One limitation of the study is that we only provided CBF as baseline metrics for all the videos. CBF

can provide basic information of ciliary function, but it cannot provide the synchronicity and pattern of

beating cilia. Although we developed computational methods to analyze CBF metrics including length,

density, ciliary beating angle, and amplitude, this pipeline still requires user input to manually track the

beating cycle of a cilium. Studies analyzing the beating pattern of respiratory motile cilia rely heavily on

expert interpretation or manual tracking (178; 163; 156; 180; 274; 275). Currently, automated tracking of

flagella, in which individual particles (or cells) can be easily detected without overlapping, has achieved

great success (276; 277; 179). For future work, automated computational tools should be developed to

calculate the metrics that characterize ciliary beating waveforms.
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In conclusion, we present a large-scale video validation dataset of ciliary motion phenotypes under

several categories (drug, temperature, ACE2 manipulation). This dataset consists of 872 videos at 200

frames/sec obtained using a high-speed video microscope. The CBF values of each video are provided as

baseline metrics. This is the first open-source video dataset of ciliary motion that can serve as a resource for

the CS community and researchers to develop models for image segmentation and characterizing ciliary

motion.
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Chapter 5

Gabor Filter Incorporated U-Net

for Cilia Segmentation

1

5.1 Introduction

Cilia are hair-like structures found on the surface of nearly all eukaryotic cells in vertebrates and play an

important role in many biological processes such as fluid movement and cell locomotion. Motile cilia beat

in a coordinated manner to propel the pathogens and debris out of the airway. The coordinated beating

of cilia plays a key role in maintaining effective mucociliary clearance (MCC), which is the primary innate

defense mechanism of the lung (12). Dysfunction of cilia causes severe diseases known as ciliopathies,

including primary ciliary dyskinesia (PCD) and polycystic kidney disease (PKD), which lead to chronic

lung infections and fluid-filled cysts, respectively (77; 76). Therefore, the effective analysis of ciliary func-

tion is critical in the diagnosis of cilia-related diseases. Currently, the assessment of ciliary function and

characteristics remains challenging, and a fundamental part of overcoming this challenge is effective cilia

segmentation, which is to identify and label ciliary area from images.
1Content of this section is based in part on my master thesis (108)
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Image segmentation is a computer vision technique of splitting image data into multiple segments,

which reduces the data complexity and allows for further processing and analysis. Cilia segmentation can

help to reduce background information and filter useful information for future quantitative cilia analysis

or cilia motion phenotyping. Cilia are tiny structures compared to the other cellular compartments;

therefore, it is difficult to segment cilia from differential interference contrast (DIC) images. Figure 5.1

shows an example of an original frame image and its corresponding ground-truth mask. To detect cilia,

many approaches have been developed (e.g. ACDC (111), CiliaQ (16)); however, those tools either rely on

the user’s manual correction or fluorescent labels to identify cilia, and therefore, would not work on DIC

images for cilia segmentation. Previous studies have used traditional image processing and deep learning-

based methods for cilia segmentation of DIC images (17; 112; 18; 113). However, the model performances

are not quite satisfactory.

Figure 5.1: Example of a cilia image (left) and its ground-truth mask (right). Left, the cilia image is a
800x800 DIC image of mouse trachea. Right, the ground-truth mask generated with napari shows the
cilia area in white.

Gabor filter (GF) is a linear filter widely used for recognizing patterns with different orientations and

frequencies for texture analysis (278; 279; 280; 281); therefore, we proposed to use GF for highlighting

and extracting cilia features. Since the performances of current deep learning-based approaches for cilia

segmentation are not ideal, we proposed to combine GF with U-Net to improve model performances.

Although U-Net itself can perform feature extraction and localization, U-Net architecture capability is

74



limited in localizing objects with non-standard shape (282). Additionally, modifying the architecture or

layer is an intricate task.

To improve the performance of the U-Net model in cilia segmentation, we proposed to use GFs for

feature extraction and combine them with the U-Net framework for generating cilia segmentation maps.

We generated a set of GFs and used random forest to select GFs with high feature importance based on

permutation importance. Then, the Gabor filtered feature maps are concatenated to the original image as

an additional channel to train the U-Net model. The addition of features extracted by our selected GFs

improved the performances of the base model.

5.2 Related Work

5.2.1 Image Segmentation

There are two types of image segmentation: semantic segmentation, which detects multiple objects within

a category as one entity, and instance segmentation, which distinguishes between different instances of

the same category. Semantic image segmentation is important for image analysis in removing background

noises, improving precision, and area detection. It is also a difficult task in computer vision and digital im-

age processing. Traditional approaches, such as thresholding and watershed, compare pixel values in order

to achieve the segment map. With the development of deep learning and neural networks, there are many

tools and architectures developed for image segmentation (1; 283; 284; 285; 286). For cell segmentation, sev-

eral bio-image segmentation tools, including StarDist (120), PlantSeg (121), Cellpose (110), and LABKIT

(122), have achieved great performances. However, most state-of-the art segmentation methods require a

large dataset with human-labelled ground-truth data for training. Fully Convolutional network (FCN)

was first introduced by Long and colleagues (123). FCN can train end-to-end and use skip connections

to enhance image segmentation. U-Net (1) is a U-shape convolutional network architecture containing

encoder layers and decoder layers. The encoder block reduces the spatial dimensions of the image, while

the decoder repairs the details in the spatial dimension of the image. However, the drawback of U-Net
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is that it fails to separate objects when they are crowded or overlapped. The usage of skip connections

would need redundant information, causing training overhead.

For the cilia segmentation task, Quinn et al. developed a computational pipeline to classify cilia motion

(17). In this framework, the authors used intensity-based thresholding to segment cilia area from frame

images. The authors calculated the standard deviation of the time-varying intensity changes at each pixel

value and constructed a histogram. The distribution peak is set as the pruning threshold value to segment

cilia. This method achieves a simple and fast segmenting map; however, the threshold value is specific

to each experimental setting. Lu et al. developed an end-to-end pipeline utilizing a densely-connected

convolutional network (DenseNet) with 74 layers to automatically recognize cilia area (112). This proposed

framework achieved an accuracy of 86.2% in cilia segmentation. Zain et al. modified Lu’s model and built

a fully Connected DenseNet with 103 layers. This model achieved a IoU score of 33.06% and a accuracy

of 88.3% (18). In a most recent work, Zain and Miller combined zero-phase PCA sphering (ZCA) and

Sparse Autoencoders (SEA), which served as low-level feature extraction, with U-Net (113). This new

model achieved a 10% improvement with an IoU of 0.441 and an accuracy of 77%. However, parameter

selection and hypertuning for the composite models is computationally expensive and labor intensive.

5.2.2 Gabor Filter

Gabor filter (GF), named after Dennis Gabor, is a linear filter commonly used for feature extraction,

texture analysis, edge detection, etc. The Gabor wavelets are defined as follows:

g(x, y;λ, θ, ψ, σ, γ) = exp([−x
′2 + γ2y′2

2σ2
)exp[i(2π

x′

λ
+ ψ)]

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ
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where λ represents the wavelength of the sinusoidal component, θ represents the orientation from

normal to the parallel stripes of the Gabor function, ϕ represents the phase offset, σ is the standard

deviation of the Gaussian envelope, and γ is the spatial aspect ratio specifying the ellipticity of the support

of the Gabor function.

A response matrix can be obtained by convolving the original image I(x,y) with the GF as follows:

R(x, y;λ, θ, ψ, σ, γ) =
∑
x′

∑
y′

I(x− x′, y − y′)g(x′, y′;λ, θ, ψ, σ, γ)

By manipulating the parameters λ, θ, ψ, σ, and γ, a GF bank can be generated with a set of different GFs.

To improve the performances of deep learning models, several studies incorporate low-level feature

extraction to aid deep learning frameworks (127; 128; 113). Luan et al. proposed to incorporate Gabor

filters into the deep convolutional neural networks (DCNNs) (127). This framework effectively reduced

the training complexity and improved performances over several benchmarks. Reyes and colleagues pro-

posed an approach combining GF with U-Net for image segmentation (128). The proposed framework

outperformed U-Net and other state-of-the-art architectures in mIoU and Dice scores on two benchmark

datasets (the ISLES 2018 dataset and the 2018 Atrial Segmentation Challenge dataset). However, this work

is relatively computationally expensive and inefficient because the input contains the original dataset plus

additional features extracted by a whole set of GFs. Some of the filters extract meaningless feature informa-

tion compared to the other filters in the bank. Therefore, an optimized GF bank with selected parameters

is critical in the performance of the GF-embedded U-Net architecture for specific segmentation tasks.

5.3 Methodology

5.3.1 Cilia Dataset

The cilia dataset is from the previous study (Chapter 4). Briefly, we built a large-scale video dataset of

ciliary motions containing 872 videos and 872 ground truth masks of ciliary area. The cilia videos are

77



recorded at 250 frames per second (fps) for 6 seconds in Differential Interference Contrast (DIC) setting.

Each frame is 800 x 800 pixels. For the segmentation task, we took the first frame of each video as the

image data. For image preprocessing, we cropped the original images and their corresponding masks into

small patches of 128 x 128. After cropping, we removed the patches containing less than 5% cilia area.

Finally, the cilia dataset consists of 7221 image patches and 7221 mask patches. In addition, we split the

cilia dataset in a ratio of 8:2 for training and testing sets. During the training process, 20% of the data is

split for validation purpose. Table 5.1 shows the number of images and masks for training, validation, and

test.

Table 5.1: The number of images and masks for training, validation, and testing
Type Training (# of images) Validation (# of images) Test (# of images) Total (# of images)

Images 4620 1156 1445 7221

Masks 4620 1156 1445 7221

5.3.2 Gabor Filter Bank

In this study, we generated a GF bank consisting of 54 GFs with various parameters for cilia images so that

the outputs highlight cilia patterns and edges (Figure 5.2). This GF bank is achieved with the following

parameters: θ: {π/4, π/2, π*3/4}; σ: {1,3}; λ: {π/4, π/2, π*3/4}; γ: {0.05, 0.25, 0.5}; ϕ: {0}. The kernel size

is set as 9.

By applying the GF bank to a cilia image, we achieved a set of convoluted outputs. Figure 5.3 shows a

visual example of the GF bank applied to a sample cilia patch image. The output figures showed a variety

of highlighted patterns and edges based on the orientation of GFs. Some of the filtered images present

highlighted cilia textures. There are also meaningless filtered outputs with all 0-value pixels.

5.3.3 Random Forest

To select the Gabor filters with the highest importance, we use the Random Forest (RF) algorithm to

compute feature importance. We train the RF model with the 54 Gabor filtered vectors and the original
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Figure 5.2: Gabor filter bank. Different Gabor filters with different parameter values for θ, σ, λ, and γ
will change filter properties.

image vector for image classification (0 for non-cilia and 1 for cilia). After training and prediction, the

permutation-based importance is implemented using permutation_importance method with scikit-learn.

5.3.4 Experimental Setup

For the U-Net and composite models, we run the experiments for a total of 250 epochs with a batch size

of 16. We use Adam optimizer and binary cross-entropy (BCE) loss function. For learning rate, we use

learning rate monitor from PyTorch Lightning, which automatically monitors and logs learning rate for

learning rate schedulers with a log rate of 10 during training. We train our models on 2x NVIDIA TITAN

X GPU cards and NVIDIA Quadro RTX 5000.
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Figure 5.3: Illustration of GFs applied to a sample cilia patch. When an image patch is convolved with the
GF bank kernels, the resultant images show a variety of highlighted edges and patterns according to the
orientation and frequency of different GFs.

5.3.5 Evaluation Metrics

For image segmentation tasks, we use metrics including Intersection over union (IoU), accuracy, precision,

recall, and F1 to evaluate our model performances of cilia segmentation.

IoU, also referred to as Jaccard similarity, can evaluate how similar a predicted mask is to the ground-

truth mask. It measures the number of pixels common between the target and prediction masks divided

by the total number of pixels present across both masks. IoU score ranges between 0 to 1, where 0 means

no overlap and 1 indicates perfect overlap. IoU can be calculated as following:

IoU =
Area of Overlap
Area of Union

Pixel accuracy is simple to report and commonly used for semantic segmentation. It is a metric to

compare each pixel with the ground-truth mask. There are two drawbacks of accuracy for semantic
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segmentation. First, it can provide misleading results when there is a class imbalance. Second, pixel

accuracy is informative as a standalone metric.

Figure 5.4: Confusion matrix

We also use the confusion matrix to evaluate the accuracy of the model’s performance. A confusion

matrix is generated using scikit-learn and presents four numbers: true negative (TN), false negative (FN),

false positive (FP), and true positive (TP) (Figure 5.4). From the confusion matrix, we can calculate metrics

including precision, recall, and F1. Precision is a measure of quality, indicating how precise the model is.

Recall is a measure of quantity, indicating how many times the model returns truly relevant results. F1

score, or Dice similarity coefficient, is a harmonious mean of precision and recall. The accuracy, precision,

recall, and F1 scores are computed as follows:

Accuracy =
TP + TN

TP + FP + FN + TN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2 ∗ Precision ∗Recall
Precision+Recall
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5.4 Experiments

We extracted features through the bank of 54 GFs with various parameters, and then we trained RF with

the original image vector and 54 feature vectors. The most relevant features and their GFs that contributed

most to the segmentation accuracy were selected for training the U-Net model. Table 5.2 shows the list

of GFs and their parameters selected by RF.

Table 5.2: Selected Gabor filters
Gabor filter names θ σ λ γ ϕ

Gabor 4 π/4 1 π/2 0.05 0

Gabor 22 π/2 1 π/2 0.05 0

Gabor 24 π/2 1 π/2 0.5 0

Gabor 25 π/2 1 π*3/4 0.05 0

Gabor 26 π/2 1 π*3/4 0.25 0

Gabor 49 π*3/4 3 π/2 0.05 0

For cilia segmentation, we trained the U-Net model with the image patches as a baseline, then we

trained the U-Net model with the original image concatenated with an additional Gabor-filtered image.

Figure 5.5 illustrates sample images filtered by the selected six GFs. The models were trained for 250

epochs with a batch size of 16. All networks were imported in PyTorch, a Python library for building deep

learning models. We evaluated the models with five metrics: Intersection over Union (IoU), accuracy, F1

score, precision, and recall.

Table 5.3 provides a summary of experiments performed with selected GFs. The U-Net base model

trained with the original image as a single channel achieved an IoU of 0.4386, accuracy of 0.7667, F1 of

0.5622, precision of 0.5730, and recall of 0.6415. Gabor 22 composite model achieved the highest IoU

score (0.4450) and F1 score (0.5658). Several of our GF composite models (e.g, Gabor 22, 24, 25, 26, 49)

improved the model performance with a higher accuracy score. Gabor 25 composite model achieved the

highest precision (0.6190). The U-Net base model achieved the highest recall score of 0.6415. Overall, the
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Figure 5.5: The visual illustration of filtered outputs of cilia images. The original image patches are 128x128
DIC images of mouse trachea. After passing them through the selected Gabor filters, cilia patterns are
highlighted.

Gabor composite models improved the performances of the base model in terms of IoU, accuracy, F1, and

precision.

Figure 5.6 shows a qualitative comparison of cilia segmentation results. The U-Net base model pre-

dicted the cilia area that is indicated in the ground-truth masks. For sample 2 and 3, the U-Net-segmented

maps shrank the cilia area compared to the ground-truth masks. However, the outputs from Gabor 22

and Gabor 24 composite models retained or enlarged the cilia area, which is beneficial for further video

analysis. For sample 4 and 5, Gabor 49 composite models included false positives. Overall, the composite
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Table 5.3: Performances of Gabor U-Net models over the cilia dataset
Model Evaluation Metrics

IoU Accuracy F1 Precision Recall

U-Net 0.4386 0.7667 0.5622 0.5730 0.6415

Gabor 4+U-Net 0.4328 0.7639 0.5546 0.5744 0.6302

Gabor 22+U-Net 0.4450 0.7808 0.5658 0.6027 0.6248

Gabor 24+U-Net 0.4214 0.7774 0.5347 0.5814 0.5782

Gabor 25+U-Net 0.4202 0.7920 0.5331 0.6190 0.5438

Gabor 26+U-Net 0.4346 0.7760 0.5510 0.5937 0.6034

Gabor 49+U-Net 0.4356 0.7670 0.5573 0.5948 0.6151

models with the selected GFs tend to be more accurate in recognizing cilia with fewer false negative cilia

areas in comparison with the base U-Net model.

5.5 Discussion

In this study, we proposed to use GF to extract features and then train the U-Net model with the large-

scale cilia dataset for cilia segmentation. Overall, five out of six of the Gabor composite models achieved

better performances in terms of the pixel accuracy than the U-Net baseline model. Gabor 22 composite

achieved the highest IoU score (0.4450) and F1 score (0.5658). Some of the composite models with GF

extracted features predicted more accurate segmentation masks with fewer false negative cilia areas than

the U-Net base model. The Gabor composite models improved the performance of the base model by up

to 8% in terms of precision. Cilia segmentation is the fundamental step in the study of ciliogenesis and

ciliopathies. Cilia are small hair-like structures which only appear in a small percentage of the image. This

increases difficulties for both manual and generated masks. Successful segmentation can detect cilia from

background or cells. After segmentation, quantitative cilia analysis, such as cilia length, density and cilia

beat pattern, can be estimated.
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Figure 5.6: The visual comparison of cilia segmentation outputs. The original images are 128x128 DIC
images of mouse trachea. The ground-truth masks represent the manual segmentation of cilia area. The
output from the U-Net base model and Gabor composite models reveal the cilia segmentation results.

During the training process, overfitting can happen if the model learns the training dataset too well

and performs well on the training set, but it does not perform well on the data outside of the training set.

We trained for 250 epochs for all our models. To avoid overfitting, we used TensorBoard to monitor the

learning rate, training, and validation loss. Figure 5.7 shows the generated masks on the validation dataset

from the U-Net base model and Gabor 4 + U-Net after 20 epochs. The U-Net model did not produce

reliable masks until after 50 epochs, while the Gabor composites models generate masks that are close to

the ground-truth masks after 20 epochs.

Cilia constitute a small portion of the video images, which can cause an unbalanced data issue when

applied to machine learning. Cilia segmentation is used to classify video images into cilia class and non-

cilia class. To examine the balance of our data, we calculated the ratio between the two classes: cilia and

non-cilia areas. In the original cilia dataset, cilia only account for 7% while 93% of the pixels are non-cilia
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Figure 5.7: Segmentation results during the training process. A, representative segmentation output
during the training of the U-Net model. B, representative segmentation result during the training of the
Gabor 4 composite model.

background. After selecting image patches with more than 5% ciliary area, the new dataset consists of 30%

cilia and 70% non-cilia. Figure 5.8 shows the distribution of cilia and non-cilia of the datasets before and

after selection.

Random forest (RF) is a popular machine learning tool for regression and classification introduced

by Amit and Geman (287). RF consists of a multitude of decision trees that operate as an ensemble, thus

handling a variety of visual features. RF has high computational efficiency in training and classification,

and avoids overfitting. During the training process, each tree randomly picks the features, which provides

the opportunity to find the feature that influences the majority of trees. Therefore, we used RF to find

the features and their corresponding GFs with maximum importance. Due to high computational cost,

we did not apply all filtered images as input for the U-Net model. Instead, we used RF for classifying the

generated feature vectors and selecting the GFs that give us the distinguishing features of cilia at the spatial

location.
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Figure 5.8: Cilia and non-cilia distribution. In the original dataset, cilia only take 7%. After removing
image patches with less than 5% cilia area, cilia area is increased to 30%.

In this study, we generated a set of 54 GFs and used random forest to select meaningful GFs with

high importance. We picked six selected GFs for feature extraction to aid the U-Net model, instead of

embedding GFs into the U-Net encoder, because modifying the U-Net architecture is an intricate task.

For future work, we will explore the GF-embedded U-Net for cilia segmentation. We will also focus on

developing an optimized GF bank with automatic variation of GF parameters.

5.6 Supplementary Information

5.6.1 Gabor filter bank list

Gabor Filter No. θ σ λ γ ϕ

1 π/4 1 π/4 0.05 0
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2 π/4 1 π/4 0.25 0

3 π/4 1 π/4 0.5 0

4 π/4 1 π/2 0.05 0

5 π/4 1 π/2 0.25 0

6 π/4 1 π/2 0.5 0

7 π/2 1 π*3/4 0.05 0

8 π/2 1 π*3/4 0.25 0

9 π/2 1 π*3/4 0.5 0

10 π/4 3 π/4 0.05 0

11 π/4 3 π/4 0.25 0

12 π/4 3 π/4 0.5 0

13 π/4 3 π/2 0.05 0

14 π/4 3 π/2 0.25 0

15 π/4 3 π/2 0.5 0

16 π/4 3 π*3/4 0.05 0

17 π/4 3 π*3/4 0.25 0

18 π/4 3 π*3/4 0.5 0

19 π/2 1 π/4 0.05 0

20 π/2 1 π/4 0.25 0

21 π/2 1 π/4 0.5 0

22 π/2 1 π/2 0.05 0

23 π/2 1 π/2 0.25 0

24 π/2 1 π/2 0.5 0

25 π/2 1 π*3/4 0.05 0

26 π/2 1 π*3/4 0.25 0

88



27 π/2 1 π*3/4 0.5 0

28 π/2 3 π/4 0.05 0

29 π/2 3 π/4 0.25 0

30 π/2 3 π/4 0.5 0

31 π/2 3 π/2 0.05 0

32 π/2 3 π/2 0.25 0

33 π/2 3 π/2 0.5 0

34 π/2 3 π*3/4 0.05 0

35 π/2 3 π*3/4 0.25 0

36 π/2 3 π*3/4 0.5 0

37 π*3/4 1 π/4 0.05 0

38 π*3/4 1 π/4 0.25 0

39 π*3/4 1 π/4 0.5 0

40 π*3/4 1 π/2 0.05 0

41 π*3/4 1 π/2 0.25 0

42 π*3/4 1 π/2 0.5 0

43 π*3/4 1 π*3/4 0.05 0

44 π*3/4 1 π*3/4 0.25 0

45 π*3/4 1 π*3/4 0.5 0

46 π*3/4 3 π/4 0.05 0

47 π*3/4 3 π/4 0.25 0

48 π*3/4 3 π/4 0.5 0

49 π*3/4 3 π/2 0.05 0

50 π*3/4 3 π/2 0.25 0

51 π*3/4 3 π/2 0.5 0
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52 π*3/4 3 π*3/4 0.05 0

53 π*3/4 3 π*3/4 0.25 0

54 π*3/4 3 π*3/4 0.5 0
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Chapter 6

Conclusions

Respiratory cilia are hair-like structures that play an important role in mucociliary clearance, which is

the primary defense mechanism of the lung. SARS-CoV-2, the causative agent of COVID-19, utilizes

the ACE2 receptor localized on cilia to enter host cells and motile cilia for replication. We report here

that ACE2 has a specific localization pattern within airway cilia; Ecto ACE2 localizes to the proximal cilia,

while Cyto ACE2 localizes to the whole cilia with proximal enrichment. We also observed that TMPRSS2,

a sheddase of ACE2, localizes to the distal region of cilia, indicating that the Ecto ACE2 on the distal

compartment of cilia might be removed due to sheddase activity.

Secondly, we constructed a large-scale validation dataset of ciliary motion phenotypes for characteriz-

ing ciliary function. We provide benchmark metrics including ciliary beat frequency, length, and density.

We also generated ground truth masks labeling ciliary area for image segmentation. This validation dataset

can serve as a benchmark for the computer vision community to develop models for characterizing ciliary

motion.

Finally, we propose a deep learning pipeline for texture image segmentation using GFs and the U-

Net model. We generated a set of 54 GFs and used random forest to select meaningful GFs with high

feature importances. The Gabor filtered feature maps are concatenated to the original image input as an

additional channel to train the U-Net model with the large-scale cilia dataset. The addition of features

extracted by our selected GFs improved the performances of the base model.
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Future Directions

For the localization of ACE2 in respiratory cilia, we investigated the localization of the Ecto- and

Cyto-domain of ACE2 isoforms 1 and 2. Previous studies relied heavily on commercially-available ACE2

antibodies to study the localization pattern of ACE2 on cilia without identifying the specific ACE2

isoforms (7; 8; 52). Blume et al. examined the localization of full-length and short ACE2, and found

that ACE2 recognized with antibodies against different domains of ACE2 exhibited slightly different

localization but were mainly enriched in the cellular apical regions and motile cilia (9). The authors also

noticed the ratio difference of full-length and short ACE2 in different areas including whole and deciliated

cells, and cilia. For future directions, more extensive studies on the distribution of all ACE2 isoforms in

cilia and cells are needed. Also, the localization of the ecto- and cyto-domain of each ACE2 isoform on

ciliated cells should be investigated. Whether ACE2 plays a role in regulating the function of cilia remains

unclear. Additional experiments are required to manipulate ACE2 using genetic or pharmacological

strategies and analyze the cilia function changes.

We built a large-scale validation dataset of cilia motion phenotypes under different categories and gen-

erated ground-truth masks for image segmentation. In the future, an automated pipeline to characterize

cilia beat pattern would be very helpful for researchers and clinicians to estimate the function of motile

cilia. For cilia segmentation, the current deep learning architectures achieved an IoU score of 0.33-0.44

(112; 18; 113). Adding Gabor filters to the U-Net model can help improve the performances of the base

model. Future experiments should focus on embedding Gabor filters to the encoder of the U-Net model.
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