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ABSTRACT

This dissertation contains two parts: the first chapter is concerned with identifying the highs and lows
of prices for stock trading. The underlying asset prices fluctuate in a mean reversion fashion. The purpose
is to maximize the overall profit in the long run. Ideally, we want to sell high and buy low. However, it is
extremely difficult to identify when is low and when is high in practice. Under the mean reversion model,
we follow a dynamic programming approach and determine these key thresholds to optimize our profit. In
the second chapter, we discuss an optimal pairs trading rule. A pairs position consists of a long position in
one stock and a short position in the other. The problem is to find stopping times to open and then close
the pairs position to maximize expected reward functions. We consider the optimal pairs trading rule with
one round trip. The underlying stock prices follow a general geometric Brownian motion with regime
switching. The optimal policy is characterized by threshold curves obtained by solving the associated
H]JB equations (quasi-variational inequalities). Moreover, numerical examples are provided to illustrate
optimal policies.
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CHAPTER I

MEAN-REVERTING MODEL WITH
CUT LOSS

1.1 Introduction

This chapter is concerned with identifying the highs and lows with a cut loss line when trading an asset
that is subject to random fluctuation in its price. Trading is concerned with buy and sell. The purpose is
to maximize the profit in the long run. Ideally, we want to sell high and buy low. However, it is extremely
difficult to identify when is low and when is high in practice. In this chapter, we consider the case in a
mean reversion model, follow a dynamic programming approach to determine these key thresholds to
optimize our profit.

Economists would call a market as a "place” where buyers and sellers meet to exchange products. A
financial market is where "money" is traded. The spot price is affected by the supply and demand relation-
ship in a free-market economy. The geometric Brownian motion model is often used to capture the price
fluctuation. Mean-reversion models are often used in financial markets to capture price movements that
have the tendency to move toward an “equilibrium” level.In addition to stock markets, mean-reversion

models are used for stochastic interest rates also in energy markets.

Mathematical trading rules have been studied for many years. For example, [Q. Zhang, 2001] consid-
ered a selling rule determined by two threshold levels, a target price and a stop-loss limit. In [Q. Zhang,
2001, such optimal threshold levels are obtained by solving a set of two-point boundary value problems.
[Guo and Zhang, 2005| studied the optimal selling rule under a model with switching Geometric Brown-
ian motion. Using a smooth-fit technique, they obtained the optimal threshold levels by solving a set of
algebraic equations. These papers are concerned with the selling side of trading in which the underlying
price models are of GBM type.[Dai, 2010|] developed a trend following rule based on a conditional proba-
bility indicator. They showed that the optimal trading rule can be determined by two threshold curves



which can be obtained by solving the associated Hamilton-Jacobi-Bellman (H]B) equations.

In [Q. Zhang, 2001] paper, they studied the problem using the dynamic programming approach
and establish the associated H]B equations (quasi-variational inequalities) for the value functions. The
smooth-fit technique is applied to derive algebraic equations for the threshold levels in the corresponding
optimal stopping times problem. They also provided sufficient conditions that guarantee the optimality
of the corresponding optimal stopping times in the form of a verification theorem. In this chapter we will
continue their study with a cut loss line. A percentage transaction is imposed on each transaction. We
show that the corresponding optimal stopping times can be determined by three threshold levels x¢, 1,
and 5. These key levels can be obtained by solving a set of algebraic like equations similar in [Q. Zhang,
2001). We show that the optimal pairs trading rule can be given in terms of two intervals: I} = [z, 71]
and I, = (M, ). Here M is the given stop-loss level and M < 2y < z1 < x5. The idea to initiate a
trade whenever the state process X; enters I; and hold the position till X} exits /5.

This chapter is organized as follows. In §1.2, the problem is formulated. In §1.3, we study properties
of the value functions. In §1.4 and §1.5, the associated HJB equations are established and their solutions
are obtained. In §1.6, we provide a set of sufficient conditions that guarantee the optimality of our trading

rule. §1.7, we state some numerical examples.

1.2 Problem Formulation
Let X; € R,t > 0, denote a mean-reversion process governed by
dXt = a(b—Xt)dt+Udm,Xo =T

where a > 0 is the rate of reversion, b is the equilibrium level, o > 0 is the volatility, and W is a standard
Brownian motion. The asset price at time ¢ is given by S; = exp (X;).

Leti = 0,1 denote the initial net position. If initially the net position is long (¢ = 1), then one
should sell the stock before acquiring any shares. The corresponding sequence of stopping times is de-
noted by Ay = (75,78, 75,72, .. .). Likewise, if initially the net position is flat (i = 0), then one should
first buy a stock before selling any shares. The corresponding sequence of stopping times is denoted by
Ao = (b, 75,78, 75,...).

To detect the threshold of cut loss, we define 73;:

™ =inf {t:z, ¢ (M,00)}
OST{’ﬁTfSTé’ST;g---<TM.



Then our reward function is :

p

E¢> > [e—prLST;L(l - K)-— e—pTrbLSTg(l + K)} }[Tkgwa if =0,

JZ(ZL’,AZ) = E €7pTlsS7—f(1 — K)

+ 2212 |:e_priST72<1 — K) — e_pﬂbLSTT’{(l + K):| }[TZSTJVI7 if 72=1.
\

For simplicity, the term E') "~ | &, for random variables &, is interpreted as

limsup £ Z &n.

N—o0

Let V;(z) denote the value functions with the initial net positions ¢ = 0, 1 and initial state Xy = x. That
is

Vi(z) = sup J; (z, A;) .
A

1.3 Properties of Value Functions

First, note that the sequence Ag = (70,77, 7%, 75, . ..) can be regarded as a combination of buying in

at 77 then followed by the sequence of stopping times Ay = (75, 75, 75, 7%, . . .). By definition of value

functions:

Vo(z) >Jo (, Ao)

:E{ PﬁS —|—i[e anS —K)—e ™ STb( —|—K)} }[Tg<7-1\/[

n=2

"
— Be™"S, 1+ K)ILber,
iy (XAt ) — Be Sy (14 B) Lye,,
Setting 77 = 0 (recall that S; = exp (X;)), and taking supremum over all A, we get
Vo(z) > Vi(z) —e*(1 + K).

Similarly,
Vi(z) > Jy (z, Ay)

=Jo (XvaAO) + Ee_prSTf (1= K) Ly<ry,.



By setting 77 = 0, and taking supremum over all A, we get
Vi(z) = Vo(z) 4 €*(1 — K).
There exist constants Ky, K1, K>, and K3 such that
0<Vi(z) <Ky, and 0<Vi(z) < Kie®+ K.

Proof: It is clear that they are nonnegative. It remains to establish their upper bounds.
In view of the definition of J;(x):

Ji(x) =F {f: [@—075575(1 - K)— e_pT’bLSTg(l + K)] } Locry,.

n=1

Using Ito’s formula, we have

2

d (e "S;) = e S, <—p +a(b—X;)+ %) dt + e~ S,0dW.

Integrate both sides from 7;; to r};, focusing on ' SyodW,, we have:

S S
Tn

E [/ n Oe_ptstthITmef} - E/ oe S = E [/ Oe_ptstthITfi:TZ:TM =0.
b Th T,

b

n n

It follows from Dynkin’s formula, that:

Ts

EeprTSiSTfL - EeipTTliSTg — E/ " eipteXt (A — G,Xt) dt

s

Note that the function e”(A— ax) is bounded above on R. Let C' be an upper bound. It follows that



B[(ese 75 14

s

Tn
— E |:/ est(A_axt)dt)]T’g<T]V[i|
&

s

<CFE |:/ eptdt‘rﬁ@—zw}
b /

s

<CFE / " ertar

b
n

Therefore,

Vo(z )—supJo z,N\g) < ZCE/ e ptdt<C/ e Pldt =

™
This implies that V(z) < K. Similarly, we have that

Ji (z,A) < Ko+ Ee " S5(1 — K).

we can show that by taking 79 = 0 that

Ee P’ — et <

=1

This implies that

C
Vi(z) < Ko+ (1 - K) (em + ;) = Kye” + K.

Therefore, 0 < Vi (z) < Kje® + K. This completes the proof.

1.4 HJB equation
The generator A of X is given by

d o? d?

Formally, the associated H]B equations should have the form

{ min {pvo(z) — Avg(x), vo(z) — v1(x) + (1 + K)} = 0,
min {pvy(x) — Avy (), v1(x) — vo(z) — e*(1 — K)} = 0.

= K.



pvo—AUOZO Vo=V1—2 —-K pvo—.Av():O

M Zo I

M pv1 — Avy =0 T2 v1 =vot+x—K

Figure 1.1: Continuous Region

forx € (M, 00), with the boundary conditions vo(M) = Oand vy (M) = e B,. If i = 0, then one
should only buy when the price is low, then the continuation region should include (M, o) U (21, 00)
for when x enters [x¢, 1] one should buy where we have Vj(z) = Vi (z) — e*(1 + K). In addition, one
should not establish any new position if X is close to the stop-loss level M.

If ¢ = 1, then one should only sell when the price is high (greater than or equal to 2o > z; ), which
implies v1 (z) = vo(2)+2(1— K') and the continuation region (given by pv; (z) — Av; (z) = 0) should
be (M, x5).

Furthermore, on the boundary, we have  vo(M) = 0, v (M) = eMB, where f, = 1 + K
and J; = 1 — K. On the other hand, v;(x) has to satisfy the following conditions to qualify for being
solutions to the HJB equations

vo(z) > vi(x) —e*(1+ K) on (M, xy) U (21,00),
vi(z) > vo(x) +e"(1 — K) on (M, x,),
(p— A)vg(z) >0 on (zo,71),
(p—Avi(x) >0 on (xg,00).

15 Solving HJB

In this section, we will obtain the threshold levels (g, 21, 22) by solving the HJB equation. We first solve
the equations pv;(z) — Av;(x) = 0 with i = 0, 1. Let

{ ¢1($) _ fooon(t)e—n(b—z)tdt’
¢2($) _ fooon(t)eﬁ(b_z)tdt,

where k = v/2a/0,\ = p/a,and n(t) = t* L exp (—12/2). Then the general solution of pv;(z) —
Av;(x) = 0is given by a linear combination of these functions.



First, consider the interval (27, 00) and suppose the solution is given by A;¢1(x) + Aaga(x), for
some A and Ajs. Recall the upper bound for Vi () , vy(00) should be bounded above. This implies that
Ay = 0and vy(z) = Aspe(z) on (21, 00).

On theinterval (M, zy), suppose vg(x) = By¢1(x)+ Bago(z), for some By and By. On the interval
(M, x4), suppose v1(x) = C1¢1(x) + Cago(z), for some Cy and Cs,.

Itis easy to see that these functions are twice continuously differentiable on their continuation regions.
We follow the smooth-fit method which requires the solutions to be continuously differentiable. In

particular, it requires v, to be continuously differentiable at x. Therefore, at z¢:

{ Byp1 (x0) + Bawa (z0) = Crr (z0) + Copa (z0) — €™ Sy, (12)
B¢} (z0) + Bagh (20) = C10) (w0) + Cogh (z0) — €™ By '
atrq:
{ Cr1 () + Cogpa (12) = Az (x2) + €72 s, (13)
C1¢) (12) + Calhy (12) = Aoy (12) + €™, '
at To:
{ Crpr (22) + Capa (12) = Asipa (12) + €723, (1.4)
Cip (2) + Cohy (12) = Ay (22) + €™ 5. '
at M :
{ Bip1(M) + Byps(M) = 0, (15)
Crp1(M) 4 Copa(M) = eM ;. '
Let

o= (50 5 )

Writing (1.2)-(1.5) in term of matrix notations:

v () =reo () - (1)
v (g )= (G0 ) rea (1)
e (o) =G )+ (0)



wmmwwm(
)

Note that : %211;’(%) + a(b — x)vi(z) — pv;(z) = 0. Recall that solution of pv;(z) — Av;(z) = 0
is given by a linear combination of ¢; () and ¢ (), form their Wronskian:

. ¢1(96’) ¢2(33) . —2az | a2
Wiono =t 0 G0 ) = o

which is non-zero for all .

Therefore, ® () is invertible for all x. Also, let

R(z) = () < zgg ) . P) =0 () ( 1 )

After rearrangement we have :

(©) -ty P te, .
(9 ) - hhe s s e ’

(00200 (1) =0, ®
(00,200 () =¥ (110



It follows from (1.9) and (1.10), and the definition of P(x), we have
( g: ) = < g; ) —eMBP (). ()

Therefore,multiplying both sides with (1 (M), @2 (M)):

B,

By ) = (p1(M), 22(M)) ( ' ) — "By (p1(M), p2(M)) P (x0) -

(o1(M), 02 (M) (

we have

€™ By (1(M), p2(M)) P (z) = eV ;.

It follows that
€M — X9

B

(£ (M), 2(M)) P (0) = (112)

This equation could be used to solve z.

To solve for z; and x5, also note that:

< g: ) = AR (1) + €™ P (x1) , (r.13)

( gl ) = AR (2) + €™ 5P (x2) . (r14)
2

Combining (1.12) and (1.13):

AZR (l’l) + e“ﬁbP (113'1) = AQR (ZL‘Q) + GxQﬁSP (,CL’Q) .

Also notice that, multiplying both sides with (1 (M), o (M)) :

(100, 2200) (6 ) = Aa (a0, a0 R () + 8. (1M, ) Pl),

This leads to
A2 =

eM By — e B, (p1(M), o (M)) P (22)
(p1(M), p2(M)) R (x2) '



Combine the above to obtain:

eM By — e™By01(M), 902(]\/[)] P (x2)
(p1(M), p2(M)) R (z2)

[R (1) = R ()] = €0 P (23) — € By P (1) .

(15)

Solving this will give us the thresholds 21 and .
We need additional conditions for 21 and 5. Note that v;(x) has to satisfy the following inequalities
for being solutions to the HJB equations :

(r.16)

forall z > M. Next, we examine each of these inequalities on intervals (M, x¢) , (zo, 21) , (1, Z2),
and (23, 00).

First, on (M, x¢), the top two inequalities in (1.16) the conditions v1(x) — Avi(x) = 0 become
equalities. We only need the last two inequalities to hold. Therefore, we have

e’(1—K) <wv(zx) —vo(r) <e’(1+K) on (M, xg).
Then,
|v; — vy — ¥ < K.

By the definition of vy:
| ((C1 = B1) p1(w) + (Cy — Ba) pa(x) — " |[< K.

On (z, 21 ), note that vy(z) = v1(x) — €*(1 4+ K) implies vy (z) > vo(z) + (1 — K). We only
need pvg(z) — Avg(x) > 0. Again, using vo(z) = v1(z) — e” — K and pv;(z) — Av; (z) = 0 on this
interval, we have

pvo — Avg = p(v1 — €*B) — A(v1 — €"Bp)
— (pvr — Awy) — By (pe® — Ae?)
= — [y (pe” — Ae”)

= —Be” |:p— <a(b—a:) + %2)] > 0.

10



In view of this, pvg(x) — Awvg(z) > 0 on (xg, 1) is equivalent to

1 o?
rn<—|ab+——p).
a 2

On (21, z2), we need to satisfy the first two inequalities in (1.16), |v; (z) — vo(z) — €*| < " K, we
will have :

|C1¢1(x) + (Co — Ag) go(x) — "] < e”K.

On (22, 00), we need to satisfy the first and last inequalities in (1.16), the first inequality is satisfied
automatically because v1(z) = vo(x) + €*(1 — K). Using (p — A)vo(z) = 0, the last inequality

1( o? )
9> —|ab+——p
a 2

1.6 Verification Theorem

becomes:

In this section, we give a verification theorem to show that the solution v;(x), ¢ = 0, 1, of (r.1) is equal
to the value functions V;(x), i = 0,1, respectively, and sequences of optimal stopping times can be
constructed from the triple (g, z1, x2).

Let (zo, 1, Z2) be a solution to (r.15) and (1.12) satisfy

1
xlﬁ—(ab+02/2—p) and 1o > (ab+02/2— )
a a
Let Ag, By, By, Cy, and C be constants given in the eariler part satisfying the inequalities. Let

(

B1¢1(l’) + Bg(bg(x) ifx € [M, :L’O) ,
vo(z) =< Cio1(x) + Caga(x) — e*(1 + K)  ifx € [xg,21),
Asa() ifr € [x1,00),

() = { C191(z) + Cogo(z)  ifx € [M,x5),

\ Asgo(z) + (1 — K) ifx € [25,00).

Let

vi(z) = Vi(x),i=0,1
Ifinitiallyi = O,let Af = (71, 0f, 75, 05, . . .), where the stopping times 7{ = inf {t > 0 : X, € [z, z1]}A
™)
op =1inf {t > 7 : Xy = o)A, and 7 = inf {t > o} + X, € [zg, 21]} ATas forn > 1. Similarly,
ifinitially i = 1,let A} = (07,75, 03,74, . . .), where the stopping times 07 = inf {t > 0: X} > 9} A

II



v, 7 = inf {t >or X € [xo,wl]} ATysand o = inf {t > 75 : Xy = 29} Ay forn > 2.

n

Then Aj and A7 are optimal.
Proof: We divide the proof into two steps. In the first step, we show that v;(x) > J; (x, A;) for all

A;. Then in the second step, we prove that v;(z) = J; (z, A}), which implies v;(z) = Vj(x) and A} is

optimal.
Using Dynkin’s formula, and Fatou’s lemma, we have, for any stopping times 0 < v < vp < 73y,

B (e (X,)) 2 B (70 (X,,).

E (6_”7% (X)) I{vl<w}) > F (e_mvi (X5) ]{71<TM}> :

It follows, for the position ¢ = 0, that

ety (Xop) 2 B (0 (Xp) = 5204 ) ey
> Ee_pTlsvl (er) ]TTbLST]bI B Ee_pr <S7'f(1 + K)) ]TgﬁTM

> Ee " (vg (Xpg) + Srs(1 = K)) ITg<TM—Ee‘”1b (S b(1+K))I b
>~ Ty ™ STM

b
> EeipTQ’U (X ) [ s
- 0 Tg Tg§7M+E |:5pr1 (Srf(l_K)) e Fm1 (S b(1+K)):|Iq—b<-rM.

Again with F/ (e_’mvi (X5) I{’Yl<7'M}) >F (6_’”’2111- (X5,) [{71<TM}), we have:
Ee~u, (XT§> > Ee"Suy (Xps) + B [6_%5 (Sps(1 = K)) — e (ST§(1 + K))} .

After iterations, we have shown:

UO(x) > E (Z [eprﬁ’ (STﬁ(l - K)) o efp'rf; (573(1 + K))i| I{T,Z<7']\4}> '

n=1

Sending N' — 00 to obtain vg(x) > Jy (x, Ag) for all Ag. Therefore, vo(x) > Vo(z).

Similarly, when ¢ = 1, we can show :

’Ul(SC) > EeiPTls (S‘rf(l — K)) + F (Z [eff”'fz (575(1 — K)) — 67:073 (ST,E(l + K))] [{T£<TM}> .

n=2

Then we have finished proving v;(z) > J; (z, A;).

Now we proceed to equalities. It again is equivalent to

’UO(SC) —F (efpffv*vo (XT;;‘,*)) + B (Z [e*prﬁ* (ng*(l _ K)) _ e*pfﬁ* (STE*(l + K))} [{T3*<TM}> .

n=1

12



Define 7% = inf {t > 0 : X; € [z¢, 1]} A Tas. We observe that :

vo(z) =vi(z) —e*(1+ K) on [z, x1],

and when i = 0 then X; € (M, xo] U [z, 00) forallt € [0, 71|, which implies (p — A)vy (X;) =0
forallt € [0, 7{]. Therefore,

0 (X ) Tprcry = (0 (X ) = (S04 50) ) Ty
Then,
vo(z) =Fe "y, (er*)

=B (e (X ) I )
=B (e (o (X ) = (S 0+ 5))) gy
=F (e‘PTf*Ul (er*) I{T{)*Q_M}) —F (e_PTf* (Sle*(l + K)) ]{T{,*<TM}> .

Again, since (p—A) v (X;) = Oforallt € [0}, 73], wehave that Ee 7Ty (Xo: ) = Ee vy (Xry).

1
If we keep iterating this process, we have :

N *
vo(x) =F (e_’”fsv*vo (XT]*V*)) +F (Z {e_mn (STS*(I — K))
n=1
_e_prﬁ* (STS*<1 + K))] [{T$*<TM}> .
Recall that P (137 < 00) = 1. This implies limy_o 78* = Tas, Recall also that vg(M) = 0. It

follows that £/ (67’”5* o (X st )) — 0. This completes the proof.

1.7 Numerical Example

In this section, we consider a numerical example with the following specifications:
a=1,b=0,06=05p=0.5K=0001,M=—0.8.

The threshold (¢, 1, z2) is (—0.779661, —0.427661, —0.345661). Next, we vary one of the parame-
ters at a time and examine the dependence of the triple (2, 21, 22) on these parameters.

3
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Figure 1.2: Value functions
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a 0.8 0.9 1 1.1 1.2

xo | —0.778498 | —0.778888 | —0.779661 | —0.780367 | —0.781021
x1 | —0.536498 | —0.496887 | —0.427661 | —0.388367 | —0.359021
29 | —0.424498 | —0.354887 | —0.345661 | —0.316367 | —0.287021

A larger a implies larger pulling rate back to the equilibrium level b = 2. It can be seen that the lower
buying level 2y decreases and the higher buying level x; increases as a increases. This leads to a larger
buying interval [x¢, 1] resulting greater buying opportunities. The selling level 5 increases but the the
interval [21, 23] decreases which suggests one should take profit sooner as a gets bigger.

p 0.3 0.4 0.5 0.6 0.7

xo | —0.778270 | —0.779197 | —0.779661 | —0.780588 | —0.781052
x1 | —0.246270 | —0.3471963 | —0.427661 | —0.538588 | —0.649052
x9 | —0.114270 | —0.215196 | —0.345661 | —0.436588 | —0.527052

Next, we vary the discount rate p. Larger p means quicker profits. It shows that larger p leads to a
smaller zq, smaller z1, and x5.

o 0.3 0.4 0.5 0.6 0.7

xo | —0.788177 | —0.784169 | —0.779661 | —0.775513 | —0.771276
x7 | —0.526177 | —0.472169 | —0.427661 | —0.403512 | —0.349276
x9 | —0.404177 | —0.390169 | —0.345661 | —0.251512 | —0.177276

Next, we vary the volatility 0. The volatility is the source forcing the price to go away from its equi-
librium. The larger the o, the further the price fluctuates. As a result, 21 increases and the pair (¢, 22)

decreases in o resulting in a smaller buying interval [z, 21] and a higher profit target 5.

K 0.3 0.4 0.5 0.6 0.7

xo | —0.788177 | —0.784169 | —0.779661 | —0.775513 | —0.771276
x1 | —0.526177 | —0.472169 | —0.427661 | —0.403512 | —0.349276
x9 | —0.404177 | —0.390169 | —0.345661 | —0.251512 | —0.177276

Larger K transaction cast somehow led threshold level to increase.

b -0.2 —0.1 0 0.1 0.2

xo | —0.777903 | —0.778975 | —0.779661 | —0.780535 | —0.781446
x1 | —0.645903 | —0.526975 | —0.427661 | —0.348534 | —0.259446
g | —0.52390 | —0.444975 | —0.345661 | —0.216534 | —0.107446

In the end we compute the threshold levels (g, 21, z2) associated with varying b. Bigger equilibrium
level would bigger threshold levels. It can be seen that the pair (21, z2) is monotonically increasing in b.
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CHAPTER 2

PAIRS TRADING UNDER
GEOMETRIC BROWNIAN MOTIONS
WITH REGIME SWITCHING

2.1 Introduction

This chapter is concerned with pairs trading of stocks. The idea behind pairs trading is to track the price
movements of a pairs of stocks over time and compare their relative price strengths. A pairs position
consists of a short position in the stronger stock and a long position in the weaker one. A pairs trade is
about buying and then selling such pairs positions. The strategy bets on the reversal of their price strength.
What makes the strategy attractive is its ‘market neutral’ nature in the sense that it can be profitable under
any market conditions. Pairs trading was initially introduced by Bamberger and followed by Tartaglia’s
quantitative group at Morgan Stanley in the 1980s; see Gatev et al. [E. Gatev and Rouwenhorst., 2006]
for related history and background details. There are many in-depth discussions in connection with the
cause of the divergence and subsequent convergence; see the book by Vidyamurthy [Vidyamurthy, 2018]
and references therein.

Mathematical trading rules have been studied for many years. For example, Zhang [Q. Zhang, 2001]
considered a selling rule determined by two threshold levels, a target price and a stop-loss limit. In [Q.
Zhang, |2001], such optimal threshold levels are obtained by solving a set of two-point boundary value
problems. Guo and Zhang [Guo and Zhang, 2005] studied the optimal selling rule under a model with
switching geometric Brownian motion. Using a smooth-fit technique, they obtained the optimal thresh-
old levels by solving a set of algebraic equations. These papers are concerned with the selling side of trading
in which the underlying price models are of GBM type. Dai et al. [Dai, [2010|] developed a trend following
rule based on a conditional probability indicator. They showed that the optimal trading rule can be deter-
mined by two threshold curves which can be obtained by solving the associated Hamilton-Jacobi-Bellman
(HJB) equations. A similar idea was developed following a confidence interval approach by Iwarere and
Barmish [Iwarere and Barmish, 2010]. Besides, Merhi and Zervos [Merhi and Zervos, 2007 studied an
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investment capacity expansion/reduction problem following a dynamic programming approach under
a geometric Brownian motion market model. In connection with mean reversion trading, Zhang and
Zhang [H. Zhang and Zhang, 2008] obtained a buy-low and sell-high policy by characterizing the ‘low’
and ‘high’ levels in terms of the mean reversion parameters. Song and Zhang [Song and Zhang, 2013]
studied pairs trading under a mean reversion model. It is shown that the optimal trading rule can be deter-
mined by threshold levels that can be obtained by solving a set of algebraic equations. A set of sufficient
conditions are also provided to establish the desired optimality. Deshpande and Barmish [Deshpande
and Barmish, 2016] introduced a control-theoretic approach. In particular, they were able to relax the
requirement for spread functions and showed that their trading algorithm produces positive expected
returns. Other related pairs technologies can be found in Elliott et al. [R.]. Elliott and Malcolm, 2005
and Whistler [Whistler, 2004]. Recently, Tie et al.[Tie and Zhang, 2020 studied an optimal pairs trading
rule under geometric Brownian motions.. The objective is to initiate and close the positions of the pair
sequentially to maximize a discounted payoff function. Using a dynamic programming approach, they
studied the problem under a geometric Brownian motion model and proved that the buying and selling
can be determined by two threshold curves in closed form. They also demonstrate the optimality of their
trading strategy.

Market models with regime switching are important in market analysis. In this chapter, we consider
a geometric Brownian motion with regime switching. The market mode is represented by a two-state
Markov chain. In a recent paper, Tie and Zhang [Tie and Zhang, |2018] treated the selling part of pairs
trading that generalizes the results of Hu and Oksendal [Hu and ksendal, 1998|] by incorporating models
with regime switching. They showed that the optimal selling rule can be determined by two threshold
curves and established a set of sufficient conditions that guarantee the optimality of the policy. To complete
the circle of pairs trading, one has to come up with the buying part of the trading rule to determine
how much divergence is needed that triggers the entry of the position. It is the focus of this chapter.
In particular, we study pairs trading under geometric Brownian motions with regime switching. The
objective is to buy and then sell a pairs position to maximize the expected return. Using a smooth-fit
method, we characterize the trading policies in terms of threshold curves which can be determined by a
set of algebraic equations, We also provide a set of sufficient conditions for the optimality of the trading
policy. Finally, we present numerical examples to illustrate the results.

This chapter is organized as follows. In §2.2 and §2.3, we formulate the pairs trading problem under
consideration and the property of value function. In §2.4, we study the associated HJB equations and

their solutions, and key steps for pairs selling rules are given. In §2.5, we provide a set of sufficient
conditions that guarantee the optimality of our trading rule. Numerical examples are given in §2.6. Some

concluding remarks are given in §2..7.
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2.2 Problem Formulation

Our pairs trading strategy involves two stocks S' and S?. Let { X}, ¢ > 0} denote the prices of stock S*
and { X2, > 0} that of stock S?. They satisfy the following stochastic differential equation:

()= (% e ) [Cten e (oo oo )o(ont )] e

where oy € M = {1, 2} is a two-state Markov chain and (W}', W?) a two-dimensional standard
Brownian motion. Here, for & = 1,2, pi;(c), 7 = 1, 2, are the return rates and 0;;(), ¢, j = 1,2, the
volatility constants.
AN

Let () be the generator of o given by () = ( \ )
2 —A2

>, with Ay > 0and Ay > 0. We assume
oy and (W}, W?) are independent.

In this chapter, we assume, for simplicity, a pairs position consists of one-share long position in stock
S! and one-share short position in stock S?. Let Z denote the corresponding pairs position. One share
in Z represents the combination of one share long position in S' and one share short position in S2.

We consider one round trip pairs trading. The net position at any time can be either long (with one
share of Z ) or flat (no stock position of either S' or S ). Let i = 0, 1 denote the initial net position and
let 79, 71, T2 denote stopping times with 77 < 7.. If initially the net position is flat (i = 0), then one
should start to buy a share of Z. That s, to first buy at 77 and then sell at 75. The decision is denoted by
Ao = {71, 72}. If initially the net position is long (¢ = 1), then one should sell Z. The corresponding
decision is denoted by Ay = {7y }. Let K denote the fixed percentage of transaction costs associated with
buying or selling of stocks S*, 7 = 1, 2. For example, the cost to establish the pairs position Z at t = t; is
(1+K)X/} —(1—K)X? and the proceeds to closeitata later time t = tis (1 — K) X, — (1+K)XZ.
For ease of notation, let B, = 1+ Kand 5, =1 — K.

Given the initial state (21, 2, o), the initial net position ¢ = 0, 1, and the decision variables Ay and
Ay, the corresponding reward functions

JO (:L‘h T2, &, AO) =k { [e_pT2 (6SX7%2 - BbXé) I{T2<OO} —e (ﬁinl - Bstl) I{T1<oo}} }

Ji (w1, 29,0, A1) = F {efmo (5SX710 - ﬁbeo) I{To<oo}} ’
(2.2)

where p > 0 is a given discount factor and I is the indicator function of an event A. Let F; =
o {(X}, X2, a,) : v < t}. The problem is to find {F;} stopping times 7y, 71, and 72, to maximize J;.
Fori = 0, 1,letV; (1, 2, ) denote the value functions with the initial state (X3, X2, ap) = (21, T2, @)
and initial net positions ¢ = 0, 1. Thatis, V; (z1, 72, o) = supy, J; (w1, 22, o, A) ;i = 0,1
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Remark 1.. We would like to point out that our ‘one-share’ pair position is not as restrictive as it
appears. For example, one can consider any pairs with n; shares of long position in S* and ns shares of
short position in S2. To treat this case, one only has to make change of the state variables
(X}, X?) — (n1X}, naX?). Due to the nature of GBMs, the corresponding system equation in (2.1)
will remain the same. The modification only affects the reward function in (2.2) implicitly.

We make the following assumptions in this chapter: (A1) p > p;(a), fora = 1,2and j = 1,2.
Under these conditions, we can establish the lower and upper bounds for the value functions as follows.

2.3 Properties of Value Functions

Lemma 1. For some constant C, the inequalities hold

0 < Vp(x1,22,a) < Cus. (2:3)

In addition, we have
Bsx1 — Pore < Vi (21, 22, ) < fsy. (2.4)

Proof. We first consider the inequalities in (2.3). Clearly, Vi > 0. To see Vy < C'xg, note that

Jo (w1, 22,0, 80) < E{[e77™ (X7, = X)) Lmpeoy = 7 (Xp, = X2) [ricoqy] }

T2

= B e X o) = €M X Iincony] = B[ X Iincoy = €72 T <oy -

Following from the proof of Lemma 3.1 of Tie et al. [14], we can show the first term above is less than or
equal to 0. To find an upper bound for the second term, it suffices to show

T2
E/ e X2 (p— s (ay)) dt < Cs.
To this end, let fiyin = min {us(1), 12(2)} and fimax = max {p2(1), 2(2)}. Then, we have
T2 o0
B[ en X (o= () dt < (p— ) | eV EXL

Note that ; t
BX? =03 B [ X0 (0 ds <t [ EXs,
0 0
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Use Gronwall’s inequality to obtain EX? < poetmaxt Tt follows that

/ e P EXAdt = — 2
0 P — Hmax

Therefore, we have

E/ e P X2 (p— g () dt < (P = timin) T3 =: Cxs.
T P - ,umax

Similarly, the inequalities in (2.4) can be obtained.

2.4 HJB equations

In this chapter, we follow the dynamic programming approach and focus on the associated H]B equations.
Fori = 1,2, let

1 L g 02 ‘ 0? N g O N N,
A== all(z)ﬁa—ﬁ + 2a12(1)x1 20 971072 + agg(z)xga—x% + (1)1 = + p2(i)ro=— (2.5)

2 8331 8.T2
where an(z’) = U%I(Z.)—I—O'%(’L.), a,lg(i) = Ull(i)ggl (i)+012(i)0‘22(i), al’ldagg(’i) = U%I(l)+032(l)

Formally, the associated H.JB equations have the form:

min{(p — A1) vo (1,22, 1) — Ay (vo (21, 22,2) — vg (21, T2, 1))
vo (21,9, 1) — vy (21,22, 1) + Byz1 — Bewa} = 0,
min {(p — As) vo (21, 22,2) — A2 (vo (21, 22, 1) — v (1, T2, 2))
Vo (w1, T2,2) — vy (21, T2, 2) + Bpr1 — Bswa} = 0,

{ min {(p — A1) v1 (21, 22,1) — Ay (v1 (21, 22,2) — vy (21,22, 1)) 01 (21, 22, 1) — Bewy + Bpwa} =0,
min {(p — Az) v1 (21, 22,2) — Ao (v1 (21, 22, 1) — v1 (21,22, 2)) , 01 (21, 22,2) — Bsx1 + Prza} = 0.

For ease of notation, let u1 = vg (21, 22,1) ,us = wvg (x1,22,2),u3 = vy (21,29,1), and uy =
U1 (1’1, 9, 2)

To solve the above HJ B equations, we first convert them into single variable equations. Lety = x2 /14
and u; (21, x2) = xyw; (x2/ 1), for some function w;(y) and i = 1,2, 3, 4. Then we have by direct
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calculation that

3ui ’ aul oy

e w;(y) — ywi(y), T w;(y),

Pui _ yPwi(y) Pui _ wi(y) d 0%uy yw; (y)
= a = —_——

0r? Ty 0} ry 01101 T

Write A;u; in terms of w; to obtain
Aju; = 1 {oyw! (y) + [re(5) — ()] ywi(y) + p(Hwi(y) }

where O'j = (CLH(]> — 2(112( ) + (IQQ( )) /2
Then, the HJB equations can be given in terms of i and w; as follows:

min {(p + A — L1) wi(y) — Mwa(y), wi(y) — ws(y) + By — By} = 0,
min {(p + A2 — L2) wa(y) — Aowi(y), wa(y) — waly) + B — Bsy} =0, (27)
min{(p + A\ — £1) wz(y) — Mwa(y), ws(y) + Boy — Bs} =0,
min {(p + A2 — L2) wa(y) — Aaws(y), waly) + Boy — Bs} =0
where
L [wi(y)] = a59%w; (y) + [12(5) — ()] ywi(y) + m(5)wi(y). (2.8)

In this chapter, we only consider the when o; # 0,7 = 1, 2. If either 0y = 0 and/or o3 = 0, the
problem reduces to a (partial) first order case and can be treated in a similar and simpler way. Next, we
consider the joint equations (p + A\; — £1) wy = Mjwe  and  (p+ Ay — L) wy = Ayw;. Combine
them to obtain

(p+M —L1)(p+XA—Ly)ws = MAswgand (p+ Aa — L) (p+ A1 — L) w1 = Adawy
Both w and wy must satisty

[(p+)\1 —£1) (p—|—)\2 —£2> — )\1)\2]?1) = 0.

Note that the operators £; and L, are the Euler type and the solutions to the above equation are of the
form w; = y°. Thus, § must satisfy the equation

P() = [p+ M — A (8)] [p+ Ao — As(8)] — Mo = 0, (2.9)

where
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Aj(6) = ;60— 1)+ [(2(j) — 1 ()] 6 + p1(j) = 056° — [0 + pa(§) — p2(5)] 6 + 1 (j) (2.10)

Note that p + A\; — A1(¢) = 0and p + Ay — As(v) = 0 have roots, respectively,

Q:%+JQQ%%£QL+¢<%+NNQ£fﬂn)2+p+A;:mux
=3+ %‘MU . \/ G L u1(1)2;1u2(1))2 RS ol (1)
and

V2:%+M_\/(l+m(2)—uz(2)> Lot m()

209 2 209 02

Note also that (; > landv; > 1,and ( < Oand v, < 0. Itis elementary to show that the equation
P(6) = 0 has four distinct roots §;,1 < j < 4dwithdy < 03 <0 <1 < dy < d;. The d;, (; and v,

should have relation
0y <min{Ce, 0}, 0> 03> max{(,e},0<dy <min{¢,r}, and & > max{(,u}.
The general solutions of the equations
(p+ M — L) wy = Mwy and  (p+ Ay — L) wy = Aawy
can be given as

4 4
Z 5; Z 5;
wp = 1Y 7, and Wy = C2;Y7,
=1 j=1

for constants ¢;;. Substituting them into the original equations leads to

4 4 4 4
Z Clj (p + )\1 — A1 (5j)) yaj = )\1 Z ngy(Sj and Z ng (p =+ )\2 — A2 (5j)) yaj = )\2 Z Cljy6j.
j=1

j=1 j=1 j=1
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(p+ A —1)wi = AMws

(p+ A1 —1)wi = Aw2
|

w1(y) = w3(y) — +y

0 w3 = Bs — Byy

(p+ X2 — 2)w2 = Xowy

T
ks P+ A —1)ws=Aws

(p+ X2 —2)wz = Xowy
|

(p+ A1 —1)ws = Awy

wa(y) = wa(y) — +y

0 wg = Bs — By

T

(p+ X2 —2)ws = Aows

k4 (P + Ao — 2)11)4 = Aows ko

Figure 2.1: Equalities of HJB equations

Hence, we have

Cl,j (p + )\1 — Al <5J)) = )\102]‘ and ng (p + /\2 — AQ ((5])) = Agclj.

Letn; = (p+ A1 — A1 (6;)) /A1. Then, we have

n:p+)\1—A1(5]): )\2
’ A p+ A2 — Az (55)

Necessarily, c; = n;¢1;. Hence,

4 4

O &

wy, = E C15Y J and Wy = E n;iC1;Y 7,
j=1

j=1

Similarly we can show the general solutions of (p + Ay — £1) w3 = Mjwgand (p + Ao— Lo) wy =
Apws are given by

4
and Wy = Z ’f]jdljyaj,

j=1

4

5a

w3 = E dljy]
Jj=1

for constants d;;. By direct computation, we can show

{y>0:w —ws+ By — Bsy =0} N{y > 0wy + By — fs =0} =0,
{y>0:we—wy+ Py —Psy=0}N{y >0:wy+ By — s =0} = 0.

Intuitively, if X} is small and X7 is large, then one should buy S* and sell (short) S?, i.e., to open a
pairs position Z. On the other hand, if Xlis large and X? is small, then one should close the position Z
by selling S'and buying back S2.
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Figure 2.2: Switching Regions & = 1 (left) and av = 2 (right)

In view of this, if & = 1, we divide the first quadrant into three regions { (1, x3) > 0 : xo < k3z1}
(close position region), { (1, x2) > 0 : ksz1 < x5 < ky21}, (holdregion)and { (21, z2) > 0 : x5 > ky21}
(open position region), for some positive constants k; and k3. If o = 2, we can do so similarly with re-
gions {(x1, ) > 0: xy < kyx1} (close position region), {(z1,x2) > 0: kyzy < x5 < kox1} (hold
region), and {(z1,22) > 0 : 29 > kox1 } (open position region), for some positive k3 and k4. Note here
ks < kyand ky < ko. As a result, recall the change of variables ( y = x2/x1), the equations in (2.7) can
be specified as follows:

p
w3 = fs — Bpyand (p+ A — L1) w1 = Mwe
(p+ /\1 - ,Cl) wy, = )\111)2 and (p + /\1 - ,Cl) W3 = )\111}4
(w1 = w3 + By — Brand (p+ A\ — L1) ws = Ay

when y < ks,
when ks < y < ky,
when y > ki,

,
wy = Bs — By and (p + Ao — La) wy = Aowy

(p + )\2 — Eg) Wy = )\le and (p + )\2 — EQ) wy = )\211)3

Wy = wy + Bsy — Byand (p+ Ao — L) wy = Agws

when y < ky,
when k4 < y < kQ,

| wheny > k.

Each of these intervals and the corresponding equalities are given in Figure 1. We have four threshold
parameters k1, ko, k3 and k4 to be determined. There are a number of ways to order them. Recall that
ks < ki and ky < ko. The largest is either £y or ko and the smallest is either k3 or k4. If k3 is the smallest,
then we can place k; at three different places. So this will lead to the following three cases.

ks <k <ky<ky, ky<ky<kH <ky ky<ky<ky<Ek.
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Similarly if k4 is the smallest, then we can place ks at three different places. Hence the next three possibili-
ties:
by < kg <ks<ky, ki<ks<hky<hky, ky<hks<k <k.

On the region (0, k1 A k2| with k1 A ky = min {k, k2 }, we have
(p+ A — L) w; = Mwyand (p+ Ay — Lo) wo = Aawy,

this implies
4 4
w = ZC . 5j nd Wo = Z . . 5j
1 15Y a 2 niC1;Y .
Jj=1 Jj=1

in this region. Recall Lemmatand d3 < 0, d; < 0. It follows that the coefficients for y° and y°* have to

be zero. Thus, we have
wy = C1y’ + Coy® and wy = Cypy® + Conay™.
Similarly, in the region [k3 V kyq, 00) with k3 V ky = max {ks, k4},
(p+ M — L) ws = Mwy and (p+ Ag — Lo) wy = Aaws,
the linear growth conditions (recall 41, 95 > 1) yield
w3 = Cay® + Cyy’* and wy = C3nsy® + Cymay™.

To solve the HJB equations, we first note that ws and wy are not coupled with w; and w; and can be
found separately. This is treated as a pure selling problem in Tie and Zhang [Tie and Zhang, 2018]. In
this chapter, we first consider the case (k3 < k4) and provide key steps for this case in Appendix for the
sake of completeness then (k3 > ky).

Solving for w; and w,. In this section, we solve for w; and w; using the solution w3 and w,. Recall
that w; and wy satisfy the HJB equations

1(y) —ws(y) + B — Bsy} =0,
2(y) — wa(y) + By — By} = 0.

min {(p + A1 — L1) wi(y) — Mwa(y),
min {(p + A2 — L2) wa(y) — Aows(y),

g

S

To find threshold type solutions, we are to determine k1 and ko so thaton (0, k1) @ (p + A\i— £1) wi(y)—
Mwa(y) = 0and wi(y) — ws(y) + By — Bsy > 05 0n [k1,00) : (p+ At — L1) wi(y)— Awa(y) >
0 and wi(y) — ws(y) + By — Bsy = 0;0n (0,k2) : (p+ Ao — L2) wa(y) — A2wi(y) = o and
wa(y) — wa(y) + By — Bsy > 0; and on [k, 00) : (p+ A2 — L2) wa(y) — Aowy(y) > o and
wa(y) — waly) + Bo — Bsy = 0.
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Recall that k4 < ko and k3 < kq. Recall also the condition k4 < k3, k4 < ko and k3 < k1, we need
to further consider the three cases:

k‘4<k’2<k’3</€1, k?4<]<?3<k32</{51, and k4<k’3<k’1</{52

2.4.1 CASEI ]{33 <k < ky <ksy

First, we consider the case when k3 < k; < ky < ko. For0 < y < ki, we have (p + A\ — L) wy(y) —
Mwz(y) =0 and  (p+ Ay — L3) wa(y) — Aaws(y) = 0. Their general solutions have the form:

wi(y) = Cry® + Coy® and  wy(y) = Crmy™ + Conay®™.

Forky <y < ko, wehavew;(y) = w3(y) — Bp+ By and  (p+ Ag — L2) wa(y) — Aowi(y) = 0.
Forky <y < oo, wehave wi(y) = w3(y) — B + By and  wa(y) = wa(y) — By + Bsy. Recall
that the solution w3 (y) and wy(y) in 2.4.7. This leads to, on [k1, k4], wi(y) = ws(y) — By + Bsy =
Byt + By +ar — By + (Bs — a2) y and wy(y) satisfies

(p+ A2 — L2)wa(y) = Aawi(y) = Ao [E1y® + Eoy® + a1 — By + (Bs — a2) y] -

Then the solution ws(y) = B1y™ + Boy™ +wa,, (y), where B1y** + Boy*? is the general solution
of the homogeneous differential equation (p + Ay — L) wo(y) = 0 with v and v given in (2.12). A

particular solution of

(P4 X2 — L2) wa(y) = Aowi(y) = Ao [E1y™ + Epy® + a1 — By + (Bs — a2) y]
can be given by

Ao Fy

= )\2E2 G2 )\2 (al B ﬁb) >\2 (ﬂs - a2)
p+ A — A (G

p+ Ay — Az (G2) P+ A2 — p1(2) Pt — (@)

w27p1 (y) ) yCI +
Next, on the interval [ky, ko] , w1 (y) = ws(y) — By + Bsy = Cay® + Cyy® — By + Bsy and wo(y)
satisfies the inhomogenous equation (p + A2 — L2) wa(y) = Aawi(y) = As (C’gy53 + Cyy¥* — B+
Bsy ). Similarly, a general solution wo(y) = D1y** + Day*? + wa p, (), where ws p, () is the particular
solution given by

W (y) _ A2C3 y53 n AoCly y64 - A3, i A2 sy
i P+ Ay — Ay (d3) P+ Ay — Ay (d4) p+Aa—(2)  pt Ay — pa(2)

Recall that N3 = /\2/ (p + /\2 — AQ (53)) and Ny = /\2/ (p + /\2 — A2 (54)) It follows that

A2 n A5y
ptAe—p(2)  ptA—pa(2)

W p, (Y) = 03773y63 + C47]4y54 -
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Finally, on the interval [ko, 00) , w1 (y) = ws(y) — By + Bsy = Csy® + Cay® — By + Bsy and
wa(y) = waly) — Bo+ Bsy = Csnsy® + Cynay® — By + Bsy. These computations can be summarized
as follows:

On (0, k1) :  wi(y) = Cry’ + Cay®,
wa(y) = Crmy®™ + Conay™,

On [k, ka) : wi(y) = ws(y) — By + By = Ery® + Exy®™ + ay — By + (B — aa) v,
wa(y) = Biy” + Boy™ + wap, (),

On [ku, ko] wily) = wa(y) — By + By = Coy™ + Cay® — By + By, e
wa(y) = D1y™ + Day™ + wap, (y),

On (ko,00) 1 wi(y) = ws(y) — By + By = C3y™ + Cuy® — By + Bsy,
wa(y) = wa(y) — B + By = Canzy™ + Canuy®™ — By + Bsy,

where
Ao Ey Ao Fy Ao (a1 — By A2 (Bs — as

w2 (y) = p+ A2 — A (<1>y<1 " p+ A2 — Ay (Cz)y@ p+ §\2 - Mﬁl()Q) p+ g\f — M2(>2) ’

A2 n A28y
p+Aa—m(2)  pA A —pa(2)

Wy p, (i) = Canzy®™ + Cynay™ —

We follow the smooth-fit method to determine parameters C'y, Cs, By, B, D1, Do, ki and ky. The con-
tinuity of wy (y), we(y), w} (y) and wh(y) at ky yields

Ciky + Coki? = ws (k1) + k1 — By,
CLo k1 4 ookt = why (k) + s,
Cym kS + Coynak®® = BikY' + Bok!? + Wa p, (k1) ,
Cimo1k] ™" + Comadak® ™ = Bin k™" + Bowoh{* ™' + wh , (k1)

The continuity of wo(y) and w)(y) at k4 yields

Bik{ + Boky? + wap, (ks) = D1k + Doky? + way, (Ks)
BlVll{JZlil + BQI/Qk'ZQil + w/27p1 (l{}4> = DlVlkzlil + DQVQkJZQil + wém (l{?4) .

The continuity of wo(y) and w(y) at ks yields

Diky" + Daky? 4 ws p, (ko) =
Dk ™" + Dowsks® ™ + why, (ko) =

Let

m 0
A= dod (¢t
CRRTI

RS
Vo)
HP&
+ F
&
V2]
N+
g
(V)
~__
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Then, we have

So — 81 —s51t7%2 t52

1 tsn g,
(I)_l (t, S1, 82) = ( 52 )

Using these matrices, we can write the first four equations at k as

D (ky, 81, 05) < g; ) = ( w?}gflﬁjk?)ﬁ g]ﬁb ) ’

Ch > ( By ) ( wap, (k1) )
® (y., 5. 65) A — B (ky. 1y, + : .
(v, 61, 69) ( o i) (1 o )

It follows, by solving for C'y, Cy, By and By, that

(&)= wna (G )

< B ) =o' (k1,v1,12) [(I) (K1, 01, 02) Ao~ (K1, 01,02) (

(o )

In addition, simple calculation yields

ws (k1) + Bsk1 — By )
ki [wy (k1) + B4

1 5y — 6 -
» B M102 — 1201 2 =
® (K1, 01,02) AO™ (K1, 01,02) = 0y — 01 ( 0102 (M — 1m2) 1202 — M0 ) .

Note that this matrix is independent of k;. Moreover, we can write (from the continuity of w; and
wh at ky)

_ ( Wa,p, (K1) — Wap, (Ka) )
By—Dy )\ kg [wlgm (k) — wé,pl (k4)} '

B —D
(I’(k’47’/1>V2)( ! ! )

This yields
B, — D, ) 1 ( Wa,p (k) — wayp, (ka) )
_ q) k 7]/ ,V P2 ,P1 )
(5o Fav 22k [, (k) — ()]

Finally, follow from the continuity of wy and wy at ky, we write

Dy \ _ [ walke) —wayp, (ka) — By + Bska
O (ka, vy, 19) ( Dy ) = ( sy [wg (ks) _wé,m (k) +ﬂs] ) .

This gives

D\ wy (ky) — wap, (k2) — By + Bsks )
(or) =0t (2 0 L6 )
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Eliminate (B, Ba) to obtain the following equations for k; and k5 :

1 1 ws (k1) + Bskr — By Wap, (K1)
07 o) [ 8 A0 ) (RO RS ) ( fawh, (k) )

_ -1 Wa,p, (k1) — wap, (Ka) )
=& (kg, v, 10) ( kot [wé,m (ka) — ), (k4)]
1 wy (k2) — wap, (k2) — By + Bsko >
+ &7 (ko, 1y, 112) ( ey [wg (ko) — wé,m (ks) + Bs} )
(2.14)

This yields two equations of k1 and ky. The existence of k1 and ks can proved.. Once we find k; and
ko and note that the constants By, By, C, Cy, D1, and D5 can be written as functions of k1 and k5. So
are functions wq (y) and ws(y). In view of this, k1 and k2 have to be determined so that the following
variational inequalities are satisfied:

On (07 kl) : wl(y) - 'lU3(y) + 5b - 5Sy > 07
wa(y) — wa(y) + By — Bsy > 0,
On [kl, /{?2] . (p + )\1 — ,Cl) U}l(’y> — )\111)2(3/) Z O,

wy(y) — wa(y) + By — By > 0, (2.15)

On (kg,00) 1 (p+ A1 — L) wi(y) — Awa(y) >0,
(p+ A2 = Lo) wa(y) — Aawi(y) = 0.

To facilitate numerical computations, we provide equivalent inequalities for those involving the dif-
ferential operators £;. First, we consider the two inequalities on the interval [k2, 00)

(p+ A — L) wi(y) — Mwa(y) >0 and  (p+ A2 — La) wa(y) — Aawi(y) > 0.

Recall that wy (y) = ws(y) — By + Bsy and wo(y) = wa(y) — By + Bsy, and we apply L4 to wy (y)
and £, to ws(y) to get

(p+ A= L) wi(y)
(p+ A2 — L) wa(y)

1wa(y) + (p+ A — p2(1)) By — (p+ A — pa (1)) B,

A
Aws(y) + (p+ A2 — p12(2)) Bsy — (p+ A2 — pua(2)) Bo.

Then (23) is equivalent to

(p+ A —p2(1) Bsy — (p+ A — pa(1)) By > M (Bsy — Bo)
(p+ A2 — 12(2)) Bsy — (p+ A2 — 111(2)) By = X2 (Bsy — o) -
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Simplify to obtain
(0= p2(1) By = (p = (1)) B = 0 and  (p — p12(2)) By — (p — 2 (2)) By > 0.
These inequalities hold as long as

(p—11(4)) Bv

%2 2 () .

forj =1,2.

Next, we consider the inequality involving L4, ie, (p + A1 — L1) wi(y) — Awa(y) > 0 on [k, ko).
Recall that wy = w3 — By + Psy and wy satisfies (p + Aoy — Lo) wa(y) = Aow;(y) on this interval.
Applying (p + A — L) to wy yield

(p+M—Li)wi = (p+ M —Li)ws+ (p+ M — p2(1)) Bsy — (p+ M — pa(1)) Bo.
Recall that k3 < k1 < ky < kgand (p + A1 — £1) ws = Ajwy. It follows that
(p+ M —L1)w = ws+ (p+ A — pa(1)) By — (p+ A — (1)) Bo.

Recall also that wy = f5 — [y on the interval [0, k4]. Hence on interval [k, ky] C [0, k4,
(p+ M1 — L1) wi(y) — Mwa(y) > 0is equivalent to

M (Bs = Boy) + (p+ A — p2(1)) By — (p+ A1 — (1)) By > Aws.

Since wo(y) = B1y"* + Bay"? + wap, (y) on the interval [k, k4], the above inequality is equivalent to

Blyyl + BZ@/V2 + W2,p, (y) < |:p M2( )55 + Bs 5b:| Y= |:p Ml( )5b + Bb o BS:| )

Similarly on theinterval [ky, ko] , wo(y) = D1y"* 4+ Day*> +ws 4, (y), and the inequality is equivalent
to

Dly”1+D2y”2+wz,p2<y>s{” Py g _ ﬂb}y—[’) p=mg g 55].

2.4.2 CASE1I: k3 < ks < k1 < ko.

Next, we treat the case (k3 < k4 < k1 < k2). Note that, for0 < y < ky,wehave (p + Ay — L1) wy(y)—
Mwa(y) =0 and  (p+ Ay — L3) wa(y) — Aaws(y) = 0. Their general solutions are of the forms

wy(y) = 013161 + CzZJJQ and  wq(y) = Clﬁ1y51 + 027723/62-
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Fork; <y < ko, wehavew;(y) = ws(y) — B+ By and  (p+ A2 — Lo) wa(y) — Agws(y) = 0.
Forky < y < oo, we have w;(y) = w3(y) — fp + Bsy  and  wa(y) = wa(y) — By + Psy. Recall
also the solutions w3 (y) and wy(y) in (39) (Appendix): It follows that, on the interval [k, k2| , w1 (y) =
ws(y) — Bp + By = By + Eyy®? + a1 — By + (Bs — a2) y; and wo(y) satisfies the equation
(p+ Ao — Lo)wa(y) = dawi(y) = Ao [Ely41 + Eyy®? + ay — By + (B — as) y}. Then the general
solution wy(y) = By + Bay"? + ws ,(y) where the particular solution

A Fy a A2 Es o, Melar—By) A (Bs — as)
Y+ + Y.
p+ X — Ay (1) p+ Ao — Ay (G) p+Ao—p(2)  p+ Ay — p(2)

w2 p (y) =

In this chapter, the use of parameters A;, B;, C;, etc is limited to the particular section. They may be
different across sections if no confusion arises.

Finally, on the interval (k2, 00), we have

=ws(y) — B + By = Csy63 + C4?/54 — By + Bsy,
wy(y ) — By + Bsy = Csm3y® + Canay®™ — By + Bsy-
On (O, kl) W

(2.16)

(
(
(
(
On [ky, ko] w1 (y) = ws(y ) — B + ﬂs = E1y<1 + Boy® 4+ a1 — By + (Bs — a2) v,
(
On (kg,00) :wi(y) = ws(y) — By + By = Csy‘s“ + Cyy™ — By + By,
(y) = wa(y) — Bo + By = Cansy™ + Camay® — By + By.

Next, we use the smooth-fit conditions to determine the parameters C, Cs, By, Bo, ki and ks. First,
the continuity of wy (), w2 (y), w} (y) and wh(y) at &y yields

CLE + Cok?? = wy (k1) + Bsk1 — Bo,
C10 kS ™ + Cudok2 ™ = wly (ky) + Bs,
Cim k' + Conak®® = BiEY" + Bok? + wa,, (ky)
Cymé1ky ™ + Compbok® ™" = Bivik{* ™ + Bowok(® ™ + w), (k1) .

Similarly, the continuity of ws(y) and wj(y) at k, yields

Byk3' 4+ Boky? 4+ way (ko) =
Blylklélil + B2V2k5271 + wg’p (]{32) =

4 (k2) — Bp + Bske,
21 (k2> + Bs-
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We can write them in matrix form:

(&)= wna (G )

Bi\ .1 1 ws (k1) + Bek1 — Py
< B2 ) = (kl,l/hl/g) {(I) (k1,51752) A(I) <k1,51,52) < kl [wé (]{Jl) —Q—BS] >
wap (k1)
- ( kyws , (k1) )

The continuity of wy and w} at ks leads to the equations

v () = (bl w0 )

It follows that

By o wy (ko) — wayp (ko) — By + Bsk
() =0 (" b (ko) + ) )

Eliminate B and Bs to obtain the equations for ky and ks :

_ _ ws (k1) + Bk — By wap (K1)
ot [p ot s (SR ) = () )
I wy (ko) — wayp (k) — By + Bsko
= O (ko, 11, 10) ( ks [wﬁl (ks) i wé,p (k) +Bs} ) .
(2.17)

Recall that the constants By, By, C1, and C; can be represented as functions of k1 and ks. So are

functions wy (y) and w(y). Therefore, £ and k2 need to be determined so that the following variational
inequalities are satisfied:

On (0,k1) 0 wi(y) —ws(y) + B — By > 0,
wa(y) — wa(y) + B — Bsy > 0,

On [k, ko] : (p+ A1 — L) wi(y) — Mwa(y) >0,
wa(y) — wa(y) + By — By > 0,

On (ky,00): (p+ M — L1) wi(y) — Mws(y) > 0,

(p+ A2 — L2) wa(y) — Aowi(y) > 0.

(2.18)
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Next, we consider equivalent inequalities for those involving the differential operators £;. First, on
the interval [k, 00), the variational inequalities are equivalent to

(p+ M — (1) Bsy — (p+ A — 1 (1)) By > M (Bsy — Bo)
(p+ A2 — 12(2)) Bsy — (p+ A2 — 111(2)) By = X2 (Bsy — o) -

as in Case I. The equivalent conditions for these inequalities to hold are

(p— 11(5)) Bo
(p — 12(4)) Bs

Move on to the interval [ky, ko] and recall w; = w3 — By, + Bsy. Apply (p+ A1 — L£1) to w; to

ko > forj=1,2

obtain
(p+ A —L)wr=(p+ M —Li)ws+ (p+ A — (1) By — (0 + A — pa(1)) Bo.
In addition, recall that k3 < k4 < k1 < kg and (p + A1 — £1) ws = Ajwy. It follows that
(p+ M — L) wr = Mws+ (p+ M — p2(1)) By — (p+ M — pa(1)) Bo.

Recall also that wy = Csmzy® + Cymay® fory > ky and wy(y) = Bry”* + Bay? + wa ,(y). Hence
the inequality (p + A1 — £1) wi(y) — Aqw2(y) > 0is equivalent to

, , - (1 -l
Biy" + Bay™ + wap(y) < Cangy™ + Canay™ + [p 1 = ol )} By — [p L i )1 By

)\1 /\1

2.4.3 CASE III: ]{?3 < k?4 < k?g < ]{?1

Next, we consider the last case (k3 < k4 < kg < ky). For 0 < y < k, we have the equations
(p+ A = Li)wi(y) — hwz(y) =0 and  (p+ A — Lo) wa(y) — Aawi(y) = 0.
Their general solutions can be given by
wi(y) = Ciy™ + Coy™  and  wa(y) = Cimy™ + Comoy™.
For ky < y < ks, we have
wi(y) =ws(y) = Bp+ Bsy  and  (p+ A2 — La) wa(y) — Aowr(y) = 0.
For ky < y < 00, we have

wi(y) = ws(y) — Bp + Bsy  and  wa(y) = waly) — By + Bey-
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Recall the solutions w3 and wy given in (39) (Appendix). It follows that, on the interval [k2, k1]

wy(y) = wa(y) — By + By = Canzy™ + Canay®™ — By + Bey.

and wy (y) satisfies
(p+ A — L) wi(y) = Mwa(y) = M [Canzy® + Camay™ — By + Boy] -

Then the general solution w; (y) = B1y** + Bay** + wy ,(y) where the particular solution

M Csns 53 A1naCy 64 A1 4 A1 s

w = - '
1’p<y) p"—)\l —Al (53)3/ p+)\1 _Al (54)3/ p+/\1 _Nl(l) P+)\1 _M2(1>y

Note that )\1/ (p + )\1 — Al ((53)) = 1/773 and )\1/ (,0 + )\1 — A1 ((54)) = 1/7]4 These 1mply

A1y M Bsy A1Bb n A Bsy

w = Cy4+Cyy® — + v
1p(y) = Cay™ +Cay p+A— (1) p+ N — pa(l) )

Finally, on the interval [k;, 00), we have

wi(y) = ws(y) — Po + Bsy = ng53 + C4y64 — By + Bsy,
2(y) = By + By = Csnzy® + Cumay™ — By + Bay-

On (0, kq) :wn(y) = Chy®t + Coy®?,
wy(y) = Crmy® + Canoy™,
On [k, k1] w1 (y) = Biy®' + Boy® + wi,(Y),
wa(y) = wy(y) — Bo + By = Cansy™ + Canay™ — By + Bey, (220)
On (ky,00) cwi(y) = ws(y) — By + Bsy = C3y™ + Cay® — By + By,
wa(y) = waly) — B + By = Cymzy™ + Canay® — By + Bey.

Next, we apply the smooth-fit method to determine the parameters C', Cs, By, By, k1 and ks. First,
the continuity of wy (), w2 (y), w}(y) and wh(y) at ks, yields

ChEST 4 Cok? = Bik§' + Boks? + wy (ka)
C10 kS ™ + Codokd? ™! = BiGikS' ™ + Boloks* ™' + wy, (ka)
Cimkst + Compky? = wy (k2) + Bska — By,
Crm kS ™1 + Comadakd?™ = w) (ky) + B
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The continuity of w; (y) and w} (y) at k; yields

Blkg1 + B2k?§2 +wy, (k) =
Bk ™ + Bolokt ™ +wi, (k) =

Solve for C1, Cy, By and B to obtain

Ol A —lg—1 w4(k2>+ﬁsk2_ﬁb
(@)‘A ® (’“2’5“52)( b [ (k) + B4 )

( Bl ) = ®_1 (k27§la<2) |:q) (k2’61752) A—l(I)_l (k2’51’52) (

By
) ( kww( @) )

The continuity of w; and w] at k; yields the system

wy (ko) + Bska — By )
kQ [wil (kQ) + /65]

v (5 )= (R st 50 )

By \ - ws (k1) — wip (k1) — By + Bska
(Bz)“b (’“1’@’@< ko [ (k) — ), (k) + ] )

Eliminate B; and B to obtain the following equations for k1 and ks :

_ 1 wy (kg) + Bika — By w1 (k2)
07 06 B0 00 470 s (M R ) = () )

ws (k1) — wiyp (k1) — By + Bska )
k1 [wé (kl) o wll,p (k1> + ﬁs]

This gives

=0 (ky, (1, ) (

(2.21)

Again, note that the constants By, By, (1, and Cy can be given as functions of k; and ks. So are
functions w; (y) and ws(y). Therefore, k1 and k2 need to be determined so that the following variational
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inequalities are satisfied:

On (0, kg) 2wy (y) — ws(y) + B — Psy > 0,
wa(y) — wa(y) + By — Bsy = 0,
On [k, k1] : wi(y) —ws(y) + By — By > 0, (2.22)
(p+ A2 = La) wa(y) — Aawi(y) = 0,
On (k1,00) : (p+ A — L1) wi(y) — Mwa(y) > 0,
(p+ A2 = L2) wa(y) — Aawi(y) = 0

Finally, to see equivalent conditions for the above inequalities involving £;, we first note that, on the

interval (K1, 00), the variational inequalities are equivalent to (as in Case II by switching the roles of k;

and ko, (and w; and ws),
(p — p1(5)) Bo forj = 1,2.

(p— 12(4)) Bs
Next, on the interval [ko, k1], to relate (p + Ao — L2) wo(y)

ki >
— Xowi(y) > 0, recall that wy (y) =

Biy® + Bay® + wi,(y) and wa(y) = wa(y) — By + By on [ko, k1] . Apply (p+ A2 — L2) towy
to obtain
(p+ A= L) wa(y) = Aaws — (p+ Ao — 111(2)) B + (p + A2 — 112(2)) By
Hence, (p + A2 — L3) wo(y) — Aaws(y) > 0is equivalent to
+ Xy — 11(2 + g — 19(2
Biy™ + Byy®® + wy,(y) < Csy™ + Cay™ — {p 2)\ al )] By + {p 2)\ pal )] Bsy.
2 2

Finally, to see equivalent conditions for the above inequalities involving £;, we first note that, on the

interval (K1, 00), the variational inequalities are equivalent to (as in Case II by switching the roles of k;

and ko, (and wq and wy),
ky > w forj =1,2.
(p = 12(7)) Bs

Next, on the interval [ko, k1], to relate (p + Aoy — Lo) wa(y)
— By + Bsy on [k, k1] . Apply (p+ Az

— Xow1 (y) > 0, recall that wy(y) =

Biy®t + Bay®® + wi ,(y) and wa(y) = wa(y) — L) towy

to obtain

(p+ A2 — L) wa(y) = Xows — (p+ A2 — 111(2)) By + (p + A2 — p2(2)) Bsy-
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Hence, (p + Aa — L2) wa(y) — w1 (y) > 0is equivalent to

+ Ay — (2 + Xy — pa(2
Blyﬁ +BzyC2 +w1,p(y) < ng53 +C4y54 _ {p 2 Nl( )] By + {P 2 M2( )
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2.4.4 CASEIV: ky < ko < kg < ky

In the subsectoin §2.4.7, we calculated w3 and wy:

Oa k3] . w3 = Bs - 6by7
ks, 00) : wz = Cay® + Cyys,

[
[
[0,ka] : ws = Bs — Byy, (2.23)
kg, ka] © wy = Diy™ + Doy 4 by — byy,

[k3,00) 1wy = Canay® + Cynay®™.

Similarly to the previous computation, we have on the interval 0 <y < ks :
wi(y) = Cry’ + Coy®  and  wi(y) = Cimy™ + Canay™.
On the interval ks < y < kq, we have
wo(y) =wa(y) — Pp+ By  and  (p+ A1 — Ly) wi(y) — Mwa(y) = 0.
On the interval k; < y < 0o, we have

wi(y) = ws(y) — Bp + Bsy  and  wa(y) = waly) — Bo + Bey-

Then combine with w3 and w,, we can find ws first:

ko, k] © wy = wa — By + Bsy = Diy™* + Doy + (b1 — Bp) — (b2 — Bs) v,
k3, 00) : we = wy — By + Bsy = Csnzy® + Canay®™ — By + Bsy.

Next we shall find w;. On the interval [kg, k3]:
wa(y) = D1y + Doy + (b1 — o) — (b2 — Bs)y  and  (p+ Ar — L1) wi(y) — Awa(y) = 0.

implies the solution wy (y) = E1y™ + Eyy™ + w p, (y) where E1y™ + Eoy™ is the general solution
of the homogeneous differential equation (p + Ay — £1) w1 (y) = 0 and the particular solution

_ Dy o A D, Vo A1 (by — Bp) AL (Bs — by) y
p+ A — A () p+ A — A () p+A—p(l)  p+ A —pe(l)”

W1,py (y)
On the interval [ks, k1]

wy(y) = Cansy®™ + Canay™ — By + Bsy  and  (p+ A — L1) wi(y) — Mwa(y) = 0.
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implies the solution wy (y) = Fiy' + Fay® + w1 p, (y) where Fiy' + Fy? is the general solution
of the homogeneous differential equation (p + Ay — £1) w1 (y) = 0 and the particular solution

A3 83 AnaCy 5 A1 A1 Bs
w = + ‘- +
172 (0) pt+ A — A (53)y pt+ A — A (53)y p+ A — (1) P+/\1—M2(1)y
A15b A1
_.I_
ptr—m(l)  p+ A —pe(l

= C3y™ + Cyy™ —

Y.
)
Finally, on the interval [k;, 00), we have

wi(y) = w3(y) — By + By = Cay® + Cuy™ — By + By

We summarize the computation about wy () and wa(y) :

[0,ko] :  wi(y

)

)
(b2, ks] © wi(y) = Eyy™ + Esy™ + w1y, (Y),

) = wa(y) — By + By = Dy + Doy + (by — By) — (b2 — B) v, (2.24)
[k37 kl] Powr y) = FlyTl + F2y72 + W1,p, (y)v .

) = wa(y) = By + By = Canzy™ + Camay® — By + By,

) = ws(y) — B + By = Csy™ + Cyy® — By + By,

)=w

1(y) — Bo + Bsy = Canzy® + Canay®™ — By + Bsy.

Here

B A1 Dy ” A1 Dy Vo A1 (b1 — Bp) A (Bs — by)

Tt h—A)) TN — A ()’ +P+)\1—M1(1)+P+/\1—M2(1)
APy N A Bs y

ptA— (1) p+ A —pa(l)”

w17p1 (y)

)

W1 p, (y) = Cay® + Cay® —

We next use the continuity of w; , w, and their derivatives at k2, k3 and £ to get

01]{731 -+ 02k32 = Elk; + Egk; -+ W1,p, (]{72) s
C101k3" + Coboky? = Erk + Exk + wh, (ko) ko,
CimkSt + Comakd? = wy (ko) — By + Bka,
Cimidiky' + Comadaks? = w)y (ko) + Bsko.

The continuity of w; and its derivative at k3 yields

Elk'gl + Engg + W1,p, (kg) = Flkgl + ng? + W1 ,py (k?g) s
Elkgl + Egk:? + ]{Zg’wll,pl (kg) = Flkgl + ng? + k3w17p2 (k?g) .
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The continuity of w; and its derivative at k; yields

Fik' + Fok? 4 w1y, (k1) = ws (k1) — By + Bk,
Bk + ok +wyy, (k) = kywg (k) + Bekr.

We write the matrix form of the above eight equations as follows

(&) -sonn(£)-(35i5.)

P
mCh wy (k2) — Bp + Bsko )
® (ko; 01, 02)
( 2,01, 02 (77202) ( kQ +Bsk2 )
w1 ks — Wy (/f3) )
O (ks;m, T b2 P
(Fsi 71, 72) ( ) ( wi,, (ks) —wi,, (ks)] ks

i Fi\ [ ws (kl) wl p2 (K1) — By + Bska
® (i) ( £y > - ( [wh (k) — ), (k1) + Bs] b ) '

We can solve the above system backward and get

(1) ()

() =o tomom (s e, )

[ 1P2
—1.. ws (kl) w1p2 (k1) — Bp + Bk
+ ot (/f1,7'1,7'2) ( [w w1p2 (/{;1) +5s] ky ) )

Cr\ _ nil 0 1 w4(l€2)—5b+5sk2)
(cz)‘(o _>¢ (“’51’52)( kol (k) + 58] )

We can use the formula for C, Cs, Ey and E and the first system to get

) il 0 1. . wy (k2) — By + Bsks w1 p, (k2)
owsns(§ 3 o osns (URISTE) - (nd)

=0 teamm) 17! e (" ) 29

1 w3 (k‘l) wlpz (k1) — By + Bk
+ & 1(/€1,7’1,7'2)< [w w1p2 (k1)+ﬁs} ky )
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This yields two equations of k1 and ko. The existence of k1 and k3 can proved by following the method
in Lemma 4.2 of [12]. Once we find k7 and k5 and note that the constants By, By, C, Cs, D1, and D,
can be written as functions of k1 and k3. So are functions wy (y) and ws(y). In view of this, k1 and ko
have to be determined so that the following variational inequalities are satisfied:

On (0,k2) 1 wi(y) —ws(y) + By — By = 0,
wa(y) — wa(y) + B — Bsy > 0,

On [ko, k1] 2 (p+ A2 — L) wa(y) — Aawr(y) >0,
wa(y) — wa(y) + By — Bsy > 0,

On (ky,00): (p+ A — L) wi(y) — Mwa(y) >0,
(p+ A2 — La) wa(y) — Aowi(y) > 0.

(2.26)

On (ko, k1), because wy and ws are defined differently on (ks, k3) and (ks, k1), the differential oper-

ators L. First, we consider the two inequalities on the interval [k3, 00) :
(p+ A = L) wi(y) — Mwa(y) 20 and  (p+ Ay — La) wa(y) — Agwi(y) = 0.

Recall that wy (y) = w3(y) — By + Bsy and wa(y) = wa(y) — B + sy, and we apply L to wy (y) and
L to wa(y) to get

(p+ A — L) wi(y)
(p+ A2 — L) wa(y)

1wa(y) + (p+ A — p2(1)) By — (p+ A — pa (1)) B,

A
Aws(y) + (p+ A2 — p12(2)) Bsy — (p+ A2 — pua(2)) Bo.

Then (23) is equivalent to

(p+ A —p2(1) Bsy — (p+ A — (1)) By > M (Bsy — Bo)
(p+ A2 — 12(2)) Bsy — (p+ A2 — 111(2)) By > X2 (Bsy — o) -

Simplify to obtain
(p—p2(1) Bsy — (p— (1)) By > 0 and  (p — p2(2)) Bsy — (p — p11(2)) By > 0.

These inequalities hold as long as

(P— Nl(j))ﬁb
5 2 T G B

Next, we consider the inequality involving Lo, i, (p + Ao — L2) wa(y) — Aowi(y) > 0 on [ko, k1.
Recall that wy = wy — By + Bsy and wy satisfies (p + Ay — L£1) wi(y) = Ajwa(y) on this interval.

forj=1,2
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Applying (p + Ao — L2) to wy yield
(p+ X2 = Lo)wa = (p+ Aa — L) wy + (p+ Aa — p12(2)) Bsy — (p + A2 — 111(2)) Bo-
Recall that ky < ko < k3 < kyand(p + Ao — L2) wy = Agws. It follows that

(p+ A2 = L) wr = Aowz + (p+ A2 — p12(2)) By — (p + A2 — 111(2)) Bo.

Recall also that ws = s — fpy on the interval [0, k3).
Hence on interval [ko, k3] C [0, k3],

(p+ A2 — Lo) wa(y) — Agwi(y) >0
is equivalent to

Dy
p+A—A (Vl)y

V1

A2 (Bs = Boy) + (p+ A2 — p2(2)) By — (p + A2 — 111(2)) Bo = Xa(Ery™ + Eoy™ +

A Dy vy A1 (b — Br) A1 (Bs — ba)
+ Y+
p+ A — Ap () p+A—p(l)  p+ A — pa(l)

y).

(2.27)

On (k3, k1) wy is defined differently as ws = C3y%+Cyy® ,then (p + Ay — L2) wa(y)— w1 (y) >
0 is equivalent to

A2 (033/63 + 043/54) + (p+ A2 — 12(2)) Bsy — (p+ A2 — 11(2)) By > Aowy. (2.28)
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2.4.5 CASEYV:

]€4<l€3<l€2<l€1

In the subsectoin §1.4.7, we calculated w3 and wy:

[0, k3] w
[k, 00) 1w
[0, ky] w
[k, kes] 2w
[k, 00) 1w

= /88 - ﬁbyv
= Cyy™ + Cuy™,
= 68 - ﬂbya

= Diy™ + Daoy™ + by — by,
= Cyn3y™ + Camay®.

This case is relatively simpler than the previous case. Similarly on the interval [0, k3], we have

wy(y) = Cry’* + Coy™

2(y) = wa(y)

On the interval [ky, k1], w

— By + By = Canzy® + Camay®

and  wsy(y) = Cﬁh?ﬁ + 02772962-

- Bb + ﬁsy and

(p+ A — L1) wi(y) —Mwse(y) = 0imply thatw, (y) = Fiy™ + Fyy™ 4wy »(y) where Fiy™ + Foy™
is the general solution of the homogeneous differential equation (p + Ay — £1) w1 (y) = 0 and the par-

ticular solution

An3Cs e
14 + )\1 — A1 (53)

= C3y™ + Cyy™ —

wyp(y) =

A1naCy 54 A1 i A1Bs

prh A ()) (D) ot A (D)’

)\1/88

p+ A

Finally, on the interval [£;, 00), we have

Let’s summarize :

[07 k?2] : w1 Yy
Yy

Yy
[k1,00) : wi(y

w2y

— By + By = Canzy® + Cymay®™
— By + Bsy = C3y” + Cuy® — By, + Bsy,
4( ) —

—n)  pa—

— By + Bsy = Csy® + Cuy™ — By + Bsy,
— By + By = Canzy®™ 4+ Camay® — By + Bsy.

(y) = Ciy® + Cay®,

(y) = Cimy® + Canay®,
ko kil = wi(y) = Flyﬁ + Foy™ + w1 p(y),

(v)

(v)

(v)

— By + Bsy, (x29)

By + Bsy = Cansy® + Canay® — By + Buy.
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The continuity of w; and ws, and their derivatives at ks yield

C1k3 + Cokb? = Fik5' + Foky? +wi, (ks),
C161k3" + Coboky? = Fik3' + FokT + kow! , (ko)
Oﬂhkgl + 0277214332 = wy (k) — By + Bsk,

0177151@1 + 0277252/fg2 = [w) (k2) + B4] ka.

The continuity of w; and its derivative at k; imply

FykT + Fok® 4wy (k) = w3 (k1) — By + Bk,
Flk? + ng? + klwip (1{71> = kl [wé (k’l) + ﬁs] .

We can find that

FrN w3 (kl)—ﬁb‘f‘ﬂskl—wl,p(kl))
<F2 ) -° (’“)( b [ ) —wly, (k) + ] )

Cl — Wil 0 - . Wy (k2)_,8b+ﬁsk’2
(CQ ) a ( 0 77% )@ 1(k2751,52)( ko [, (k) + 8] )

Then we can get two equations of k1 and k3 in matrix form:
L0 wy (k2) — By + Gsk
D (ko3 60,0,) [ ™ O (kg3 01,0 AT b TS
( 2y U1, 2)( 0 77_12 > ( 2y U1, 2)( k2 [wil (k’g)—f-ﬁs]

B _ - . ws (k1) — By + Bskr — w1y (k1) wyp (k2)
=P (k2,7'177'2) ot <k177—1’7—2) ( kq [wé (kl) — w,Lp (/ﬁ) + 54 ) * ( k2w,1,p (k2) > .

(2:30)

Recall that the constants By, By, (', and (5 can be represented as functions of k; and ks. So are

functions wy (y) and w(y). Therefore, £ and k2 need to be determined so that the following variational
inequalities are satisfied:

On (0,k2) 1 wi(y) —ws(y) + By — Bsy > 0,
w(y) — waly) + By — Bsy > 0,

On [ko, k1] = (p+ A — L2) wa(y) — Awi(y) > 0,
wi(y) —ws(y) + By — Bsy > 0,

On (ky,00): (p+ A — L) wi(y) — Mwa(y) >0,
(p+ A2 — La) wa(y) — Aawi(y) > 0.
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Next, we consider equivalent inequalities for those involving the differential operators £;. First, on
the interval [k, 00), the variational inequalities are equivalent to

(p+ M — (1) Bsy — (p+ A — 1 (1)) By > M (Bsy — Bo)
(p+ A2 — 12(2)) Bsy — (p+ A2 — 111(2)) By = X2 (Bsy — o) -

as in Case IV. The equivalent conditions for these inequalities to hold are

(p — 11 (7)) Bo
(p = p2(7)) Bs

Move on to the interval [k, k1] and recall wy = wy — By + Ssy. Apply (p+ A2 — L2) to ws to
obtain

ko > forj =1,2.

(p+ A2 = La)wr = (p+ A2 — La) wa+ (p+ A2 — p12(2)) Bsy — (p+ A2 — p11(2)) Bo-
In addition, recall that k4 < k3 < ko < kyand (p + Ao — L3) wy = Agws. It follows that
(p+ A2 — L) wy = Awz + (p+ A2 — p2(2)) By — (p+ A2 — 11 (2)) Bo.

Recall also that w3 = Csy® + Cyy® fory > k. Hence the inequality (p + Ay — L£2) wa(y) —
Aown (y) > 01is equivalent to

+ A= 1 + A — 1
wy < ng53+C4y54—|— {P 1 MZ( )1 By — {P 1 Ml( )

- 5,

45



2.4.6 CASE VI: ky < ks < k1 < ko
On the interval [0, k1],
wy(y) = Ciy’ + Coy™  and wy(y) = Cimy®™ + Conay®.

On the interval [k, ko],

wy(y) = ws(y) — P + Bsy = Csy® + Cuy® — By + Bsy and (p+ A2 —2) wa(y) = Aaw(y).

This will yield
wo(y) = D1y™ + Doy + wo,(y).
with
. Bb)\Q + ﬁs)\Q y
p+Aa—(2)  pA+ Ay —pa(2)”

wa,(y) = wa(y)

Finally, on the interval [k;, 00), we have

wy(y) = w3 (y) — By + By = Csy® + Cuy®™ — By + By,
wy(y) — By + Bt = Canzy® + Camay™ — By + By

The continuity of wy and ws, and their derivatives at k; yield

C1kY + Cok? = w3 (k1) — By + Bk,
C101kS* + Codaky? = [wh (k1) + B ki,
Cim k' + Conakf® = DikY" + Dok 4wy, (k1)
Cim 01k + Conndakl® = Dy kY + Dok + kywh , (ki) .

The continuity of wy and its derivative at kg imply

Diky' + Doky? + wayp (k2) = wa (k2) — B + Bska,
Dll/lkgl -+ Dggkgz + kgw;m (kg) = kz [’LUﬁl (k‘g) —+ BS] .

We can find that

( Dy ) 0 (ks ) ( w;;(@zkf;f jzf(;;ipgj?) ) |

(&)= wsns (i)
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Then we can get two equations of k; and k3 in matrix form:
m 0 -1 ws (k1) — Py + Bska
D (k01,0 O (ky;01,0
( 1,91, 2) ( 0 - ) ( 1, Y1, 2) ( kfl [U}é (l{?l)—i—ﬁs]

. _ - ) wy (k2) — Py + Bska — wayp (k2) Wap (K1)
=0 (ki 00) 77 (hyi i, 72) ( ky [w) (ky) —wh, (ko) + B4 ) " ( kywy , (k1) ) '

(231)

Recall that the constants By, By, C1, and C5 can be represented as functions of k; and ks. So are

functions wy (y) and wy(y). Therefore, k and k2 need to be determined so that the following variational
inequalities are satisfied:

On (0,k1) : wi(y) —ws(y) + B — Bsy > 0,
wa(y) — wa(y) + By — Bsy > 0,
On [ki, ko] 1 (p+ M — L1) wi(y) — Mwa(y) >0, (232)
wi(y) — ws(y) + Bo — By > 0, K
On (kg,00): (p+ A — L) wi(y) — Mwa(y) > 0,
(p+ A2 — L) wa(y) — Agwi(y) > 0.
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Finally, to see equivalent conditions for the above inequalities involving £, we first note that, on the
interval (k2, 00), the variational inequalities are equivalent to (as in Case II by switching the roles of k;
and ko, ( and w and ws),

fey > (p— (])) Br
(p — p2(3)) Bs

Move on to the interval [k, ko] and recall wy = w3 — By + Bsy. Apply (p+ A1 — L£1) to w; to

obtain

forj =1,2.

(p+ M —L)wr = (p+ A& — L) ws+ (p+ A — p2(1)) Bsy — (p+ A1 — p11(1)) Bo.
In addition, recall that ky < k3 < ky < kyand (p + Ay — £1) w3z = Ajwy. It follows that
(P4 A = L) wr = ws + (p+ A — p2(1)) By — (p + A — (1)) By

Recall also that wy = Csnsy® + Cynay® fory > ky. Hence the inequality (p + Ay — L) w1 (y) —
Awa(y) > 0is equivalent to

wo(y) < O3y + Camay® + [

p+ A — pa(l) p+ A — (1)
)\1 :| Bsy - [ /\1 } ﬁb'

2.4.7 the solution w3 and w,

ks < ky  (for CASES I, II, IIL):
We sketch the key steps in derivation of solutions w3 and w,. Recall the corresponding HJB equations:

min {(p + A1 — L1) w3(y) — Mwa(y), ws(y) + Boy — B} =0,
min {(p + Ao — L2) wa(y) — Aows(y), wa(y) + Boy — Bs} = 0.

First, we divide the interval (0, 00) into three subintervals:
Ty = (0,ks), To=(ks,ki), and Ty = [ks,00).
Note thatws = wy = B — Bpy on [’y
ws = Csy™ + Cyy™  and  wy = 13C3y" +mCay®  on T,

andwy = fs — By and (p+ A1 — L£1) w3(y) = Mw4(y) on I'y. To solve the non-homogeneous linear
equation of Euler type:

(p+ M — L) ws(y) = Mwa(y) = M (Bs — Boy)
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let
A1 Bs Ay

T o+ A — (1) B ES YN

Then a particular solution can be given as w3 ,(y) = a1 — a2y. The general solution is given by

and  as

a

wy = By + Eyy® + a; — agy,

where (; and ¢, are given by (12). Next we apply smooth-fit conditions to find the parameters C'y, Cs, E, Fa, k3
and k4. First the continuity of wy and its derivative at k4 yield

Bs — Boka = n3C3kS® + naCukst,
—By = 7735303]?2371 + 7745404/?2471-

The continuity of w3 and its derivative at k3 and ky yield

Bs — Boks = Erk§' + Exk§? + ay — aghs,
—By = E1Qiks ! + BaGok§ T — as,
Bk + Bok§ + ar — asky = O3k + Cuk?,
EiGES T+ BoGok ™ — ap = 8305k 1 + 640k

(I)(ta31>32) = ( tts1 ttsz ) and A = ( 81 ) )
S1 S2 2

Then the above system can be rewritten as

Cs \ ([ Bs— Bk Er\ _( (Bs—a1) = (B —a2) ks
(3 ) (P ot (B ) (- 0hmb )

D (ky, C1, () < g; > + ( a1_;2a]€24k4 ) = ® (ky; 03, 64) < gj ) :

Eliminate the parameters C'y, Cy, 1, and E) to obtain the equations for k3 and ky :

(ﬁs—al)—(/@b—a2)k3>+<al—a2k4)

Let

P (k47 Cla CQ) q)il (k?n Cla CQ) (

(Bb a2) k?’ a2k4
i (2.33)
= (k4,53,54) At (k4,53,(54) ( ® 51)]?4 4 ) .
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Letr = kq/ks. Some simple calculations yield

1 ( G = (or ré — e )
G =G\ GG (TC2 - TCI) Grét — Gre

B _ 1 7]1(53 — ?72(54 e — 1 )
D (ky, 03,04) A D7 (Ky, 03, 6 :—( '
(K4, 03, 04) (K1, 03, 04) M (03 — 64) \ 0304 (1 — 12) 1203 — M0y

@ (ky, G1yC2) @7 (s, C1, G2) =

We can rewrite these (2.33) as follows

(e ek ma e a@ )@k ) ()
G—CG\G(G—1)(By—as) ks —CG(Bs—a1)] GG (Bs—ar)+ (1 —¢) (B — ag) ks) e

_ 1 ( 7]153—7]254 e — M ></3s—5bk4)_(a1—a2k4)
mn2 (03 — 64) \ 0304 (1 — 1m2) 1203 — 104 —Boka —agky

Let

= (C2 - 1) (ﬁb - a2) ks — Co (5s - al) and  ap = (C2 - 1) (Bb - az) ks — o (ﬁs - a1)-

The matrix on the lefthand side is

1 o o —&L L
( ! 2 ) with inverse e )
Cl C2 Cl aq C2042 o T

This yields
(TCl) _ _i_zl o { 1 ( Moz — 1201 M2 — M ) (ﬁs - 5bk’4> _ (CL1 - azh)]
re? 5—12 —o ) Lm0\ 5304 (m — 1m2) 1203 — M — Bk —agky

Simplify them to obtain

[G(Bs — a1) + (1 — G)(By — az)ks]rst + Gay + (1 — (a)asky
—04Ps 4— 4 035 53 k4
ORI (G — )+ RO (G — 0),

[=G(Bs — 1) + (G = 1)(By — a2)ks]r®® + (G — D)asks — G
_ —5463 +(34—1)Bpks (05— 1) + 0385 +(1—03)Byka (6 — C1).

n3(d3—04) 14(d3—34)
Let
—848s(C2—0. 038s(C2—04) o1—1 1) 1-6 —0 .
o -+
__ —04Ps\03—(1 3Ps 4 1 4— 3 1 b 3 b 4 1 _
A2 = 55 T (s, TG, By = my oy — (G —Day
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Then we can rewrite the above system as

[C2(ﬁs - al) + (1 - Cz)(ﬁb - a2)k3]7”C1 = Ay + Biky,
[—C(Bs — a1) + (¢ — 1)(By — az)ks]r®® = Ay + Baky.

Since k4 = rks, we can obtain

fon — — G(Bs — ar)r _ Ay + G (Bs — ar)r® (234)
’ (1 - <2)(Bb - Cl2)7'41 — Byr (Cl - 1)(51) - CLQ)TQ — Bor’ 4
and
b= e = AT =GB @) Ao 4GB, — a)r&H (239)
! ’ (1 - Cz)(ﬁb - Cl2)7”41 — Byr (C1 - 1)(5&; - CL2)7‘CZ — Bor’ 3
To solve for r:
— G(Bs — ar)re A+ G(Bs —ay)re

(1= G2) (B — ag)rsr — By N (Gt — 1)(By — ag)rs2 — Byr’ (2.36)

Since we assume that k3 < k4, we need to show that the above equation has a unique solution r > 1.

Once we find r, we can find k3 and k4 from k3 and k4. Then C1, Cy, Ey and F; can be given as follows:

Oy = —04Bs+ (64— 1)3bk4 Oy = d38s+(1— 53)5bk4

n3(03—04)k z; na(d3— 54)k4 ’
B, = —(2(Bs—a1)—(1— C2)(5b az)ks By = _ ¢Gi(Bs—a1)— (Cl 1)(517 a2)k3‘

(C1—Ca)kSE ’ (C1—Co)kS2

Y

We summarize the solutions ws and w;y as follows:

(0,k3) : w3 = B — By,

ks, k] © ws = EyySt + Eyy® + a1 — asy,
(ky,00) : ws = C3y® + Cyy™,

0,k4] = wy = Bs — Bry,

(kg,00) : wy = Canzy® + Camay™,
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where a; and ay are given by a1az, C', Cs, E and F are given by CE; and 1), and 7 are given by etas. In
addition, we assume the inequalities to hold:

(0,k3) : (p+ A1 — Li)ws(y) — Aiwa(y) >0,

ks, ka] © wy = E1yS + Esy® 4+ a1 — asy > Bs — Byy,

ky,00) 1wy = C3y® + Cuy® > By — Byy, (237)
(0,kq) = (p+ A2 — Lo)wy(y) — Aaws(y) > 0,

kg, 00) : wy = Cansy® + Cany® > Bs — By
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ks > ks (for CASES IV, V, VI):

In this case, we divide the region (0, 00) into three parts:
Ty = [0,ki], Ts=[ksks], and D= [ks,o00).
In the region I'y = [0, k4], w3 = wy = Bs — Bpy; and in the region I's = [k3, 00),
ws = Cay™ + Cyy®™  and  wy = n3sCsy™ + naCay®™.

In the region I'y = [k, k3], w3 = Bs — Byy and (p + Ae — 2)wa(y) = Aaws(y). We need to solve the

non—homogeneous equation

(p+ A2 — 2wa(y) = Mws(y) = A2(Bs — Boy).

We shall find the particular solution first. By the method of undetermined coeflicients, we let one particular
solution of wy is of the form

Wy = b1 — bgy
Then
(p+ A2 —2)ws = (p+ A2 — p11(2))b1 — (p + A2 — p12(2))bay.
This implies
bi(p+ Ao — 111(2)) = Aofs and  ba(p + Ao — 112(2)) = Xaof3s.
This yields
a3, Ao /3y
b, = and by = .
o e —w(2) 2T P+ — p2(2)
Summarize the computation, we have one particular solution
A2 s A2 By

wy = - :
T m® - w2’

Then the general solution of the non-homogeneous equation is the above particular solution plus
the solution of the homogeneous equation (p + Ay — 2)ws = 0. The general form of wy is w4inR2
wy = D1y”* + Doy + A2fs A2 (2)yWewillfmdtheparameters(jg, Cy, D1, Do, ks

ptre—p1(2)  pFAz—pe
and k4 by the method of smooth-fitting.

The continuity of w3 and its derivative at k3 yields

Bs — Boks = Cskl® + C4kS,
—By = 8305k + 5,04k "
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The continuity of wy and its derivative at k3 and ky yield

Bs — Boks = D1ky* 4+ Doky* 4+ by — boky,
—ﬁb = Dll/lkzlil -+ DQI/QkZQil — b2,
legl + nggz + bl - bgkg = 77303]€§3 + 774C4k‘g4,
Dyvik ™ + Dawok? ™" — by = 1363C5k5> " + nadaCuk ™.

We will solve C3 and Cy in term k3, D1 and D5 in term of k4 from the first four equations to get

Cy = —04Bs+(0a— 1)ﬁbk3 Cy = 038s+(1— 63),8bk3
(53—0a)k33 (53—da)k3%
D, = VZ(Bs*bl)+(1 va2)(Bp— b2)k4 D, — —v1(Bs—b1)+(r1—1)(By—b2)ka
(2—1)ky?t 2 (2—1)ky>

We can get a system of equations of k3 and k4 by inserting C's, C'y, D1 and D5 into the last two equations:

va(Bs=b1)+(1=va) (Bo=balka ((ks)" | —1a(Be=b)+(a—1)(B—bo)ks (k_3>u2 + by — boks

(v2—r1) ka (2—1) k4
—384Bs+(64—1)Bpk 83 8s+(1=683)Bpk
= (335—464))& “13 + = (5(3 (sf))ﬁlb 14, 2
v2(Bs—b1)+(1-v2)(By—b2)ks k —v1(Bs—b1)+(r1—1)(By—b2)ks k3 v _
(v2—11) 1 ki + (va—11) Vo (ﬁ) boks

—048s+(64—1)Bpk: 038s+(1—46 k
43 (6; 464) )8y 377 55 -+ 38 -&(3_55))51) 377454.

We first simplify the system to

[V2(Bs — b1) + (1 — 1) (B — ba)ka] (:—i) 1 + voby — (Vo — 1)boks

:—5453 + (04 — 1) Byks 030s + (1 — 93) Bpks
(63 — d4) (05 — 04)

n3(va — d3) +

N4 (va — d4),

[—11(Bs — b1) + (v1 — 1)(Bp — bo) k4] (:—i) 2 + (11 — 1)boks — 11by
:_5468 53(%(3_4)1)&]{4773(53 —vy) + %5Ps téil__éj;))ﬁbkll na(dg — 117).

Next one can introduce a new parameter 7 = ky/ k3. This will reduce the above system to a linear
system of k3 and k4. We can solve k3 and k4 in term of 7 and finally r = k, / k3 will yields an equation of
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7. If we can show the existence of r, we can find k3 and k4. We shall first simplify the system as

. {ng,(@l — D0 —0)8  m(1 = 03)B(ve — ) (1- ,,Z)bQ] ks

(63 — 04) (63 — 04)
G = [ BT

[773(54 —1)(d3 — 1) By N Na(1 — 63) By (04 — 11)
(03 — 04) (03 — 04)

- Vlel

— (v — 1)@} k5.

We introduce some new parameters to simplify the notations:

1 —1304Bs(v2—03) | m4d38s(v2—0a)
R A e S
A/l : —n354(ﬁ(sf(75§9V1) —;5355(54(16—3;34) b_< e
B nswié—gl—)%i—m); nf?f—(s?s,))ﬁb(éj—f) ”

b= = + =) — (11 — 1)bs.

Then we can rewrite the above system as

(o (Bs — b1) + (1 — 10)(By — bo)ka]r™ = A} + Biks,
[—11(Bs — b1) + (1 — 1)(By — ba)ka]r™" = A} + Biks.

Since k4 = rks, we can obtain

ks = AL —wa(Bs —by)r™ Ay + (B — b (2.38)
PTGt b B (- DByt b - By |

and
A/17" — 1/2(65 — b1)’l“1_yl A/QT + 1 (ﬁs — bl)rl_”2
k?4 = 7"]{73 = 1 ;= 1 7 (2'39)
(I =w2)(By +bo)rt=t = By (v1 = 1)(By + bo)r!~2 — By
The second equality will yield an equation about r:
Al = va(Bs — by)r™ Ay + 11 (Bs — by)r
= (2.40)

(1 =) (By = ba)ri= = By~ (1 = 1)(By — bo)r'=2 — BY’

Once we find r, we can obtain k3 and k4, and other parameters.
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We will need w3 and w4 to derive w; and w,y, we summerize what we have find for w3 and w, here:

0,ks] : w3 = Bs — By,

k3, 00) 1 w3 = C3y® + Cyy™,

0,k4] : wy = Bs — Byy, (2.41)
[ka, ks] o wg = Diy™ + Doy + b1 — bay,

k3, 00) : wy = Cynzy® + Camay®.

[0,k3] 2 (p+ At — Li)ws(y) — Mwa(y) >0,

k3, 00) : wy = Cay® + Cuy®™ > Bs — Boy,

0,ks] : (p+ Ao — Lo)wy(y) — Mws(y) > 0, (2.42)
(ka k3] = wy = Dyy™” 4 Doy + by — by > B — By,

k3, 00) : wy = Cynzy® + Camay® > Bs — Byy.

2.5 Verification Theorems

Theorem 1. (Selling Rule k3 < ky). Assume (Ar). Let k3 and k4 be given in (2.34) and (2.35), resp. Let
w3 (y) and wy(y) be given as in (2.36) such that the variational inequalities in (2.37) are satisfied. Then,
vy (21,29, 1) = myws (va/21) = Vi (21, 22,1) and vy (21, x9,2) = 1wy (x2/21) = Vi (21, 22, 2).
Let Dg = {(z1, 72, 1) : g > ks JU{ (w1, 22,2) : g > kyx1}. Lettd = inf {t : (X}, X7, o) ¢ Ds}.
Then 7 is optimal.

Theorem 2. (Buying Rule k3 < k4). Assume (Ar). Let k; and k3 be given by (2.14) in Case I (by
(2.17) in Case IT and (2.20) in Case I, resp.). Let also wq (y) and w2 (y) be given by (2.13) in Case I (by
(2.16) in Case II and (2.19) in Case III, resp.) Suppose the variational inequalities in (2.15) hold (Case I)
(in(2.18) (CaseII) and (2.21) (Case III), resp.). Then, vy (21, 2, 1) = z1wy (z2/21) = Vo (21, 22, 1) and
vo (71, 9, 2) = mqws (x2/21) = Vo (21, 22,2). Let Dg = { (1, 22, 1) : my < kyaq JU{(21, 22,2) : 29 < kox1}.
Define 77 = inf{t : (X!, X? o4) ¢ Dg}and 75 = inf {t > 77 : (X}, X? ;) ¢ Ds}. Then
Ao = (71, 75) is optimal.

Theorem 3. (Selling Rule k4 < k3). Assume (A1). Let k3 and k4 be given in (2.38) and (2.39), resp.
Let w3 (y) and wy(y) be given as in (2.41) such that the variational inequalities in (2.42) are satisfied. Then,
vy (z1, 29, 1) = zyws (x2/21) = Vi (21,22, 1) and vy (21, 2,2) = 21wy (2/x1) = Vi (21, 2, 2).
Let Dg = {(z1, 72, 1) : ®a > kszi JU{(21, T,2) : 3 > kg1 }. Letry = inf {t : (X}, X2, oy) ¢ Ds}.
Then 7§ is optimal.

Theorem 4. (Buying Rule k4 < k3). Assume (A1). Let k; and ks be given by (2.25) in Case 4
(by (2.30) in Case 5 and (2.31) in Case 6, resp.). Let also w;(y) and wo(y) be given by (2.24) in Case 4
(by (2.29) in Case s, resp.) Suppose the variational inequalities in (2.26) hold (Case 4) (in (2.26) (Case
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5), since case 4 and s share the same inequalities, and (2.32) (Case 6), resp.). Then, vy (1, 22,1) =
xiwy (xa/z1) = Vo (21,22,1) and vg (21, 29,2) = xywy (x2/21) = Vo (21,22,2). Let D =
{(w1,29,1) : w3 < kw1 } U {(21,%9,2) : 29 < kox1}. Define 77 = inf{t : (X}, X? ay) ¢ D}
and 75 = inf {t > 77 : (X}, X2, a¢) ¢ Ds}. Then Ay = (71, 75) is optimal.

Proof. We sketch key steps for the sake of completeness. First, we show v; (21, z2, o) > J; (1, T2, o, A;).
To this end, note that, in view of the variational inequalities in the HJB equations, for any stopping times
0<6; <0y as,

FE (e—p91w (X9117 X921a 0191) I{@1<OO}) Z E (e_pQQUi (Xelz’ng 0492) 1{92<00}) ) fori = 0’ L.

Given Ay = (11, T2), it follows that

vo (z1, T2, 0) > F (e Py (Xil,Xﬁ,aﬁ) I{T1<oo})
> B (e (o (X2, X5 an) = B X0, + BX2) Tri<ocy)
=B (o (XX 0n) femy — €77 (X — X2 T )
> E (e "™ (X;Z, X2, an) Iimpeooy — €7 (B XL — BsX2) I <oo})
> B (e (BX7, = BuX7,) Iimoo) — €™ (B X7, — BXD) I <o)
= Jo (21, 29,0, \y) .

Next, we establish the equality v; (1, 22) = J; (21, 22, A}). Recallthat i = inf{t > 0: (X}, X?, o) € Dy}
and 75 = inf {t > 77 : (X}, X?, o4) € Ds}. Using Dynkin’s formula over the intervals (0, 77) and

(15, 75) to obtain

vo (1,9, 0) = E [e*Pn*UO <X XT ,ozT1> I{Tl<oo}}
o —pT1 1 1 1 2
—E [e i (m (XTl*,XTl*, an) — BuXh + ,@SXT;) I{Tf@o}] .
We have also

E (e Py, X1 X2 an ) 1 = F (e 2y, XL X2 ay )1
o Ot ) Hrp<oo} 30975 ) Hrg<oo}
=B (e (Bin; — BXE) Iy )

Combine these two equalities to obtain vy (21, 22, @) = Jy (21, T2, o, Af).

2.6 Numerical examples

CASE™: (kg < ]{31 < k?4 < ]{?2):
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Let’s look at one numerical example:

pi(1) =030,  p2(1) =027, p(2) =—-043, p2(2) =—0.66,
o (1) =044, 015(1) =027, 0x(1) =0.31, 09
011(2) = 0.19,  015(2) = 0.65, 021(2) =0.28, 09y
A =60, X =100, K=0.001, p=0.50.

First, we solve k3 and k, , then ki and ky. We obtain k&1 = 0.597020, ks = 0.690976, ks =
0.578407,and k4 = 0.601707. Using these to calculate the rest parameters to get B; = —1082.994378, By =
0.002139, C7 = 6.721641, Cy = —0.043221,C5 = 0.189389, C, = —0.000004, D; = —0.078520, Dy =
—0.0007050, F; = 1.377957, and E> = 4.440166.
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VO(x1,x2,1)

V1(x1,x2,1)

Figure 2.3: Value Functions Vj (1, 22, 1), Vo(21, 22, 2), Vi(21, 22, 1), and V3 (21, 22, 2)
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CASE2: (k3 < ky < ki < k3): For this case:

pi(l) = —0.26, po(l) = —0.56, p1(2) = —0.4, pz(2) =0.22
o11(1) = 0.37, 012(1) = 046, 091(1) = 0.59, 09(1) = 0.59
011(2) = 047,  015(2) = 0.31,  091(2) = 0.28, 095(2) = 0.68
AL = 6.0, A2 = 10.0, K =0.001, p=0.50.

Similarly as in Example 1, we solve obtain k1 = 0.929500, ko = 0.962000, k3 = 0.678861, and
ks = 0.810852. Then, we calculate and get B; = 0.295000, By, = 0.021266, C; = 0.078164, Cy =
0.048996, C5 = 0.097388, Cy = —0.000156, E; = 0.225207, and £ = 0.000199. Plugging these
numbers to obtain the corresponding value functions. We verify that all the variational inequalities are

satisfied. Finally, the graphs of these value functions are given :
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]{33<k4<k2</€1:

(1) =020, (1) = 0.25, p1(2) = —0.30, s(2) = —0.35,
on(1) = 0.30, o15(1) = 0.10, 021(1) = 0.10, 092(1) = 0.35
011(2) = 0.40, 012(2) =0.20, 02:(2) =0.20, 022(2) =0.45
A = 6.0, Ay = 10.0, K =0.001, p = 0.50.

Similarly as in previous examples, we solve to obtain k£ =1.379000, by = 1.212000, k3 = 0.723277,
and k4 = 0.737941. Plugging these numbers to obtain the corresponding value functions. We verify
that all the variational inequalities are satisfied. Finally, the graphs of these value functions are given :
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Figure 2.5: Value Functions Vj(z1, x2, 1), Vo (21, 22, 2), Vi (21, 22, 1), and Vi (21, 22, 2)
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CASE4: ]6‘4 < k‘g < kg < k?lt

Let’s look at a numerical example:

(1) = 0.839, s
o11(1) =0.31, o9
011(2) = 0.19, 012(2
A = 3.0, Ao

—_
~—

1 (2) = —0.7, pa(2) = —0.5,
_027 21(1) = 0.31, omﬂ)—060
= 0.65, 021(2) =0.28, 025(2) = 0.25,
00, K=0001, p=0.50.

—~
—_

||/-\
va

We obtain k1 = 0.813146556050517 ,ky = 0.607323219314284, k3 = 0.187445927589516,k, =
0.0515053606625219 Using these to calculate the rest parameters to get B = —1082.994378, By =
0.002139, C7 = 6.721641, Cy = —0.043221, C3 = 0.189389, C, = —0.000004, D; = —0.078520,
Dy = —0.0007050, Ey = 1.377957, and Fy = 4.440166. Plugging these numbers to obtain the corre-

sponding value functions. We verify that all the variational inequalities are satisfied. Finally, the graphs of
these value functions are given :
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CASES ky < k’3 < ko < kq:
Let’s look at a numerical example:

pn(1) =055, pa(1) =044, p1(2) = —0.35, pa(2) = —0.65,
o11(1) = 0.40, o15(1) = 0.22, 091(1) = 0.30, 029(1) = 0.90,
011(2) = 0.65, 012(2) = 0.05, 021(2) = 0.28, 02(2) = 0.5,
A= 3.0, A = 9.0, K =0001,  p=0.50.

=~~~
—_
-

We obtain k; = 0.810634931470992, ky = 0.492463166582152, k3 = 0.0440799199487903,
k4 = 0.0387559973146809 Plugging these numbers to obtain the corresponding value functions. We
verify that all the variational inequalities are satisfied. Finally, the graphs of these value functions are given
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CASE6: ]{?4 < k?g < k’l < ]{32:

pi(1) =0.—0.26, pa(1) = —0.56, pi(2) =04, py(2)=0.22,
o (1) = 0.37, o12(1) = 0.46, 091(1) = 0.59, 09(1) = 0.59,
011(2) = 0.47, 012(2) = 0.31,  091(2) = 0.28, 09,(2) = 0.68,
A = 6.0, A2 = 10.0, K =0.001, p=0.50.

We obtain k1 = 0.105684239991422, ko = 0.258372296578252, ks = 0.0888776438049554,
ks = 0.0516269777215502. Plugging these numbers to obtain the corresponding value functions. We
verify that all the variational inequalities are satisfied. Finally, the graphs of these value functions are given
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