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Abstract

This dissertation contains two parts: the first chapter is concerned with identifying the highs and lows
of prices for stock trading. The underlying asset prices fluctuate in a mean reversion fashion. The purpose
is to maximize the overall profit in the long run. Ideally, we want to sell high and buy low. However, it is
extremely difficult to identify when is low and when is high in practice. Under the mean reversion model,
we follow a dynamic programming approach and determine these key thresholds to optimize our profit. In
the second chapter, we discuss an optimal pairs trading rule. A pairs position consists of a long position in
one stock and a short position in the other. The problem is to find stopping times to open and then close
the pairs position to maximize expected reward functions. We consider the optimal pairs trading rule with
one round trip. The underlying stock prices follow a general geometric Brownian motion with regime
switching. The optimal policy is characterized by threshold curves obtained by solving the associated
HJB equations (quasi-variational inequalities). Moreover, numerical examples are provided to illustrate
optimal policies.
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Chapter 1

MEAN-REVERTING MODEL WITH
CUT LOSS

1.1 Introduction
This chapter is concerned with identifying the highs and lows with a cut loss line when trading an asset
that is subject to random fluctuation in its price. Trading is concerned with buy and sell. The purpose is
to maximize the profit in the long run. Ideally, we want to sell high and buy low. However, it is extremely
difficult to identify when is low and when is high in practice. In this chapter, we consider the case in a
mean reversion model, follow a dynamic programming approach to determine these key thresholds to
optimize our profit.

Economists would call a market as a "place" where buyers and sellers meet to exchange products. A
financial market is where "money" is traded. The spot price is affected by the supply and demand relation-
ship in a free-market economy. The geometric Brownian motion model is often used to capture the price
fluctuation. Mean-reversion models are often used in financial markets to capture price movements that
have the tendency to move toward an “equilibrium” level.In addition to stock markets, mean-reversion
models are used for stochastic interest rates also in energy markets.

Mathematical trading rules have been studied for many years. For example, [Q. Zhang, 2001] consid-
ered a selling rule determined by two threshold levels, a target price and a stop-loss limit. In [Q. Zhang,
2001], such optimal threshold levels are obtained by solving a set of two-point boundary value problems.
[Guo and Zhang, 2005] studied the optimal selling rule under a model with switching Geometric Brown-
ian motion. Using a smooth-fit technique, they obtained the optimal threshold levels by solving a set of
algebraic equations. These papers are concerned with the selling side of trading in which the underlying
price models are of GBM type.[Dai, 2010] developed a trend following rule based on a conditional proba-
bility indicator. They showed that the optimal trading rule can be determined by two threshold curves
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which can be obtained by solving the associated Hamilton–Jacobi–Bellman (HJB) equations.

In [Q. Zhang, 2001] paper, they studied the problem using the dynamic programming approach
and establish the associated HJB equations (quasi-variational inequalities) for the value functions. The
smooth-fit technique is applied to derive algebraic equations for the threshold levels in the corresponding
optimal stopping times problem. They also provided sufficient conditions that guarantee the optimality
of the corresponding optimal stopping times in the form of a verification theorem. In this chapter we will
continue their study with a cut loss line. A percentage transaction is imposed on each transaction. We
show that the corresponding optimal stopping times can be determined by three threshold levels x0, x1,
and x2. These key levels can be obtained by solving a set of algebraic like equations similar in [Q. Zhang,
2001]. We show that the optimal pairs trading rule can be given in terms of two intervals: I1 = [x0, x1]

and I2 = (M,x2). Here M is the given stop-loss level and M < x0 < x1 < x2. The idea to initiate a
trade whenever the state process Xt enters I1 and hold the position till Xt exits I2.

This chapter is organized as follows. In §1.2, the problem is formulated. In §1.3, we study properties
of the value functions. In §1.4 and §1.5, the associated HJB equations are established and their solutions
are obtained. In §1.6, we provide a set of sufficient conditions that guarantee the optimality of our trading
rule. §1.7, we state some numerical examples.

1.2 Problem Formulation
Let Xt ∈ R, t ≥ 0, denote a mean-reversion process governed by

dXt = a (b−Xt) dt+ σdWt, X0 = x

where a > 0 is the rate of reversion, b is the equilibrium level, σ > 0 is the volatility, and Wt is a standard
Brownian motion. The asset price at time t is given by St = exp (Xt).

Let i = 0, 1 denote the initial net position. If initially the net position is long (i = 1), then one
should sell the stock before acquiring any shares. The corresponding sequence of stopping times is de-
noted by Λ1 = (τ s1 , τ

b
2 , τ

s
2 , τ

b
3 , . . .). Likewise, if initially the net position is flat (i = 0), then one should

first buy a stock before selling any shares. The corresponding sequence of stopping times is denoted by
Λ0 = (τ b1 , τ

s
1 , τ

b
2 , τ

s
2 , . . .).

To detect the threshold of cut loss, we define τM :

τM = inf {t : xt /∈ (M,∞)}
0 ≤ τ b1 ≤ τ s1 ≤ τ b2 ≤ τ s2 ≤ · · · ≤ τM .
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Then our reward function is :

Ji(x,Λi) =



E

{∑∞
n=1

[
e−ρτsnSτsn(1−K)− e−ρτbnSτbn

(1 +K)
]}

Iτbn≤τM , if i = 0,

E

{
e−ρτs1Sτs1

(1−K)

+
∑∞

n=2

[
e−ρτsnSτsn(1−K)− e−ρτbnSτbn

(1 +K)
]}

Iτbn≤τM , if i = 1.

For simplicity, the term E
∑∞

n=1 ξn for random variables ξn is interpreted as

lim sup
N→∞

E
N∑

n=1

ξn.

Let Vi(x) denote the value functions with the initial net positions i = 0, 1 and initial state X0 = x. That
is

Vi(x) = sup
Λi

Ji (x,Λi) .

1.3 Properties of Value Functions

First, note that the sequence Λ0 = (τ b1 , τ
s
1 , τ

b
2 , τ

s
1 , . . .) can be regarded as a combination of buying in

at τ b1 then followed by the sequence of stopping times Λ1 = (τ s1 , τ
b
2 , τ

s
2 , τ

b
3 , . . .). By definition of value

functions:

V0(x) ≥J0 (x,Λ0)

=E

{
e−ρτs1Sτs1

(1−K) +
∞∑
n=2

[
e−ρτsnSτsn(1−K)− e−ρτbnSτbn

(1 +K)
]}

Iτbn≤τM

− Ee−ρτb1Sτb1
(1 +K) Iτbn≤τM

=J1

(
Xτb1

,Λ1

)
− Ee−ρτb1Sτb1

(1 +K) Iτbn≤τM .

Setting τ b1 = 0 (recall that St = exp (Xt)), and taking supremum over all Λ1, we get

V0(x) ≥ V1(x)− ex(1 +K).

Similarly,
V1(x) ≥ J1 (x,Λ1)

= J0
(
Xτs1

,Λ0

)
+ Ee−ρτs1Sτs1

(1−K) Iτbn≤τM .
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By setting τ s1 = 0, and taking supremum over all Λ0, we get

V1(x) ≥ V0(x) + ex(1−K).

There exist constants K0, K1, K2, and K3 such that

0 ≤ V0(x) ≤ K0, and 0 ≤ V1(x) ≤ K1e
x +K2.

Proof: It is clear that they are nonnegative. It remains to establish their upper bounds.
In view of the definition of Ji(x):

Ji(x) = E

{
∞∑
n=1

[
e−ρτsnSτsn(1−K)− e−ρτbnSτbn

(1 +K)
]}

Iτbn≤τM .

Using Ito’s formula, we have

d
(
e−ρtSt

)
= e−ρtSt

(
−ρ+ a (b−Xt) +

σ2

2

)
dt+ e−ρtStσdWt.

.
Integrate both sides from τ sn to τ bn, focusing on e−ρtStσdWt, we have:

E

[∫ τsn

τbn

σe−ρtStdWtIτbn<τM

]
= E

∫ τsn

τbn

σe−ρtStdWt − E

[∫ τsn

τbn

σe−ρtStdWtIτsn=τbn=τM

]
= 0.

It follows from Dynkin’s formula, that:

Ee−ρτsnSτsn − Ee−ρτbnSτbn
= E

∫ τsn

τbn

e−ρteXt (A− aXt) dt.

Note that the function ex(A− ax) is bounded above on R. LetC be an upper bound. It follows that
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E
[(

e−ρτsnSτsn − e−pτbnSτM

)
Iτbn<τM

]
= E

[∫ τsn

τbn

e
st(A−axt)dt)Iτbn<τM

]

≤ CE

[∫ τsn

τbn

e−ρtdtτbn<τM

]
≤ CE

∫ τsn

τbn

e−ρtdt.

Therefore,

V0(x) = sup
Λ0

J0 (x,Λ0) ≤
∞∑
n=1

CE

∫ τsn

τbn

e−ρtdt ≤ C

∫ ∞

0

e−ρtdt =
N

ρ
:= K0.

This implies that V0(x) ≤ K0. Similarly, we have that

J1 (x,Λ1) ≤ K0 + Ee−ρτs1Sτs1
(1−K).

we can show that by taking τ0 = 0 that

Ee−ρτs1 e
Xτs1 − ex ≤ C

ρ
.

This implies that

V1(x) ≤ K0 + (1−K)

(
ex +

C

ρ

)
:= K1e

x +K2.

Therefore, 0 ≤ V1(x) ≤ K1e
x +K2. This completes the proof.

1.4 HJB equation
The generator A of Xt is given by

A = a(b− x)
d

dx
+

σ2

2

d2

dx2
.

Formally, the associated HJB equations should have the form{
min {ρv0(x)−Av0(x), v0(x)− v1(x) + ex(1 +K)} = 0,

min {ρv1(x)−Av1(x), v1(x)− v0(x)− ex(1−K)} = 0.
(1.1)
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Figure 1.1: Continuous Region

for x ∈ (M,∞), with the boundary conditions v0(M) = 0 and v1(M) = eMβs. If i = 0, then one
should only buy when the price is low, then the continuation region should include (M,x0) ∪ (x1,∞)

for when x enters [x0, x1] one should buy where we have V0(x) = V1(x)− ex(1+K). In addition, one
should not establish any new position if Xt is close to the stop-loss level M .

If i = 1, then one should only sell when the price is high (greater than or equal to x2 > x1 ), which
implies v1(x) = v0(x)+x(1−K) and the continuation region (given by ρv1(x)−Av1(x) = 0) should
be (M,x2).

Furthermore, on the boundary, we have v0(M) = 0, v1(M) = eMβs where βb = 1 + K

and βs = 1−K . On the other hand, vi(x) has to satisfy the following conditions to qualify for being
solutions to the HJB equations

v0(x) ≥ v1(x)− ex(1 +K) on (M,x0) ∪ (x1,∞) ,

v1(x) ≥ v0(x) + ex(1−K) on (M,x2) ,

(ρ−A)v0(x) ≥ 0 on (x0, x1) ,

(ρ−A)v1(x) ≥ 0 on (x2,∞) .

1.5 Solving HJB

In this section, we will obtain the threshold levels (x0, x1, x2) by solving the HJB equation. We first solve
the equations ρvi(x)−Avi(x) = 0 with i = 0, 1. Let{

ϕ1(x) =
∫∞
0

η(t)e−κ(b−x)tdt,

ϕ2(x) =
∫∞
0

η(t)eκ(b−x)tdt,

where κ =
√
2a/σ, λ = ρ/a, and η(t) = tλ−1 exp (−t2/2). Then the general solution of ρvi(x) −

Avi(x) = 0 is given by a linear combination of these functions.
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First, consider the interval (x1,∞) and suppose the solution is given by A1ϕ1(x) + A2ϕ2(x), for
some A1 and A2. Recall the upper bound for V0(x) , v0(∞) should be bounded above. This implies that
A1 = 0 and v0(x) = A2ϕ2(x) on (x1,∞).

On the interval (M,x0), suppose v0(x) = B1ϕ1(x)+B2ϕ2(x), for someB1 andB2. On the interval
(M,x2), suppose v1(x) = C1ϕ1(x) + C2ϕ2(x), for some C1 and C2.

It is easy to see that these functions are twice continuously differentiable on their continuation regions.
We follow the smooth-fit method which requires the solutions to be continuously differentiable. In
particular, it requires v0 to be continuously differentiable at x0. Therefore, at x0:{

B1φ1 (x0) +B2φ2 (x0) = C1φ1 (x0) + C2φ2 (x0)− ex0βb,

B1φ
′
i (x0) +B2φ

′
2 (x0) = C1φ

′
1 (x0) + C2φ

′
2 (x0)− ex0βb.

(1.2)

at x1: {
C1φ1 (x2) + C2φ2 (x2) = A2φ2 (x2) + ex2βs,

C1φ
′
1 (x2) + C2φ

′
2 (x2) = A2φ

′
2 (x2) + ex2βs.

(1.3)

at x2: {
C1φ1 (x2) + C2φ2 (x2) = A2φ2 (x2) + ex2βs,

Ciφ
′
1 (x2) + C2φ

′
2 (x2) = A2φ

′
2 (x2) + ex2βs.

(1.4)

at M : {
B1φ1(M) +B2φ2(M) = 0,

C1φ1(M) + C2φ2(M) = eMβs.
(1.5)

Let

Φ(x) =

(
ϕ1(x) ϕ2(x)

ϕ′
1(x) ϕ′

2(x)

)
.

Writing (1.2)-(1.5) in term of matrix notations:

Φ (x0)

(
B1

B2

)
= Φ(x0)

(
C1

C2

)
− ex0βb

(
1

1

)
,

Φ (x1)

(
C1

C2

)
= A2

(
φ2 (x1)

φ′
2 (x1)

)
+ ex1βb

(
1

1

)
,

ρ (x2)

(
C1

C2

)
= A2

(
φ2 (x2)

φ′
2 (x2)

)
+ ex2β

(
1

1

)
,
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(φ1(M), φ2(M))

(
B1

B2

)
= 0,

(φ1(M), φ2(M))

(
C1

C2

)
= eMβs.

Note that : σ2

2
v′′i (x) + a(b− x)v′i(x)− ρvi(x) = 0. Recall that solution of ρvi(x)−Avi(x) = 0

is given by a linear combination of ϕ1(x) and ϕ2(x), form their Wronskian:

W (ϕ1, ϕ2) = det

(
ϕ1(x) ϕ2(x)

ϕ′
1(x) ϕ′

2(x)

)
= Ce−

2ax
σ2 + a

σ2 x
2

.

which is non-zero for all x.

Therefore, Φ(x) is invertible for all x. Also, let

R(x) = Φ−1(x)

(
ϕ2(x)

ϕ′
2(x)

)
, P (x) = Φ−1(x)

(
1

1

)
.

After rearrangement we have :(
B1

B2

)
=

(
C1

C2

)
− ex0βbP (x0) , (1.6)

(
C1

C2

)
= A2R (x1) + ex1βbP (x1) , (1.7)

(
C1

C2

)
= A2R (x2) + ex2βsP (x2) , (1.8)

(φ1(M), φ2(M))

(
B1

B2

)
= 0, (1.9)

(φ1(M), φ2(M))

(
C1

C2

)
= eMβs. (1.10)

8



It follows from (1.9) and (1.10), and the definition of P (x), we have(
B1

B2

)
=

(
C1

C2

)
− eMβsP (x0) . (1.11)

Therefore,multiplying both sides with (φ1(M), φ2 (M)):

(φ1(M), φ2 (M))

(
B1

B2

)
= (φ1(M), φ2(M))

(
C1

C2

)
− ex0βb (φ1(M), φ2(M))P (x0) .

we have
ex0βb (φ1(M), φ2(M))P (x0) = eMβs.

It follows that
(φ1(M), φ2(M))P (x0) =

eM − x0

β
. (1.12)

This equation could be used to solve x0.
To solve for x1 and x2, also note that:(

C1

C2

)
= A2R (x1) + ex1βbP (x1) , (1.13)

(
C1

C2

)
= A2R (x2) + ex2βbP (x2) . (1.14)

Combining (1.12) and (1.13):

A2R (x1) + ex1βbP (x1) = A2R (x2) + ex2βsP (x2) .

Also notice that, multiplying both sides with (φ1(M), φ2 (M)) :

(φ1(M), φ2(M))

(
C1

C2

)
= A2 (φ1(M), φ2(M))R (x2) + ex2βs (φ1(M), φ2(M))P (x2).

This leads to
A2 =

eMβs − ex2βs (φ1(M), φ2 (M))P (x2)

(φ1(M), φ2(M))R (x2)
.

9



Combine the above to obtain:

[R (x1)−R (x2)]

[
eMβs − ex2βsφ1(M), φ2(M)

]
P (x2)

(φ1(M), φ2(M))R (x2)

]
= ex2βsP (x2)− ex1βbP (x1) .

(1.15)

Solving this will give us the thresholds x1 and x2.
We need additional conditions for x1 and x2. Note that vi(x) has to satisfy the following inequalities

for being solutions to the HJB equations :
ρv0(x)−Av0(x) ≥ 0,

ρv1(x)−Av1(x) ≥ 0,

v0(x) ≥ v1(x)− exβb,

v1(x) ≥ v0(x) + exβs,

(1.16)

for all x ≥ M . Next, we examine each of these inequalities on intervals (M,x0) , (x0, x1) , (x1, x2),
and (x2,∞).

First, on (M,x0), the top two inequalities in (1.16) the conditions v1(x) − Av1(x) = 0 become
equalities. We only need the last two inequalities to hold. Therefore, we have

ex(1−K) ≤ v1(x)− v0(x) ≤ ex(1 +K) on (M,x0) .

Then,
|v1 − v0 − ex| ≤ exK.

By the definition of v0:

| ((C1 −B1)φ1(x) + (C2 −B2)φ2(x)− ex |≤ exK.

On (x0, x1), note that v0(x) = v1(x)− ex(1 +K) implies v1(x) ≥ v0(x) + ex(1−K). We only
need ρv0(x)−Av0(x) ≥ 0. Again, using v0(x) = v1(x)− ex −K and ρv1(x)−Av1(x) = 0 on this
interval, we have

ρv0 − Av0 = ρ (v1 − exβb)− A (v1 − exβb)

= (ρv1 − Av1)− βb (ρe
x − Aex)

= −βb (ρe
x − Aex)

= −βbe
x

[
ρ−

(
a(b− x) +

σ2

2

)]
≥ 0.

10



In view of this, ρv0(x)−Av0(x) ≥ 0 on (x0, x1) is equivalent to

x1 ≤
1

a

(
ab+

σ2

2
− ρ

)
.

On (x1, x2), we need to satisfy the first two inequalities in (1.16), |v1(x)− v0(x)− ex| ≤ exK , we
will have :

|C1ϕ1(x) + (C2 − A2)ϕ2(x)− ex| ≤ exK.

On (x2,∞), we need to satisfy the first and last inequalities in (1.16), the first inequality is satisfied
automatically because v1(x) = v0(x) + ex(1 − K). Using (ρ − A)v0(x) = 0 , the last inequality
becomes:

x2 ≥
1

a

(
ab+

σ2

2
− ρ

)
.

1.6 Verification Theorem

In this section, we give a verification theorem to show that the solution vi(x), i = 0, 1, of (1.1) is equal
to the value functions Vi(x), i = 0, 1, respectively, and sequences of optimal stopping times can be
constructed from the triple (x0, x1, x2).

Let (x0, x1, x2) be a solution to (1.15) and (1.12) satisfy

x1 ≤
1

a

(
ab+ σ2/2− ρ

)
and x2 ≥

1

a

(
ab+ σ2/2− ρ

)
.

Let A2, B1, B2, C1, and C2 be constants given in the eariler part satisfying the inequalities. Let
v0(x) =


B1ϕ1(x) +B2ϕ2(x) if x ∈ [M,x0) ,

C1ϕ1(x) + C2ϕ2(x)− ex(1 +K) if x ∈ [x0, x1) ,

A2ϕ2(x) if x ∈ [x1,∞) ,

v1(x) =

{
C1ϕ1(x) + C2ϕ2(x) if x ∈ [M,x2) ,

A2ϕ2(x) + ex(1−K) if x ∈ [x2,∞) .

Let
vi(x) = Vi(x), i = 0, 1

If initially i = 0,letΛ∗
0 = (τ ∗1 , σ

∗
1, τ

∗
2 , σ

∗
2, . . .), where the stopping times τ ∗1 = inf {t ≥ 0 : Xt ∈ [x0, x1]}∧

τM ,
σ∗
n = inf {t ≥ τ ∗n : Xt = x2}∧τM , andτ ∗n+1 = inf {t > σ∗

n : Xt ∈ [x0, x1]}∧τM forn ≥ 1. Similarly,
if initially i = 1, letΛ∗

1 = (σ∗
1, τ

∗
2 , σ

∗
2, τ

∗
3 , . . .), where the stopping times σ∗

1 = inf {t ≥ 0 : Xt ≥ x2}∧

11



τM , τ ∗n = inf
{
t > σ∗

n−1 : Xt ∈ [x0, x1]
}
∧ τM , and σ∗

n = inf {t ≥ τ ∗n : Xt = x2} ∧ τM for n ≥ 2.

Then Λ∗
0 and Λ∗

1 are optimal.
Proof: We divide the proof into two steps. In the first step, we show that vi(x) ≥ Ji (x,Λi) for all

Λi. Then in the second step, we prove that vi(x) = Ji (x,Λ
∗
i ), which implies vi(x) = Vi(x) and Λ∗

i is
optimal.

Using Dynkin’s formula, and Fatou’s lemma, we have, for any stopping times 0 ≤ γ1 ≤ γ2 ≤ τM ,

E
(
e−ργ1vi (Xγ1)

)
≥ E

(
e−ργ2vi (Xγ2)

)
,

E
(
e−ργ1vi (Xγ1) I{γ1<τM}

)
≥ E

(
e−ργ2vi (Xγ2) I{γ1<τM}

)
.

It follows, for the position i = 0, that

Ee−ρτb1v0

(
Xτb1

)
≥ Ee−ρτb1

(
v1

(
Xτb1

)
− Sτb1

(1 +K)
)
Iτbn≤τM

≥ Ee−ρτs1 v1
(
Xτs1

)
Iτbn≤τM − Ee−ρτb1

(
Sτb1

(1 +K)
)
Iτbn≤τM

≥ Ee−ρτs1
(
v0
(
Xτs1

)
+ Sτs1

(1−K)
)
I
τbn≤τM−Ee−ρτb1

(
S
τb1

(1+K)

)
I
τbn≤τM

≥ Ee−ρτb2v0

(
Xτb2

)
I
τbn≤τM+E

[
e−ρτs1

(
Sτs1

(1−K)
)
−e−ρτb1

(
S
τb1

(1+K)

)]
I
τbn≤τM .

Again with E
(
e−ργ1vi (Xγ1) I{γ1<τM}

)
≥ E

(
e−ργ2vi (Xγ2) I{γ1<τM}

)
, we have:

Ee−ρτb2v0

(
Xτb2

)
≥ Ee−ρτs2 v0

(
Xτs2

)
+ E

[
e−ρτs2

(
Sτs2

(1−K)
)
− e−ρτb2

(
Sτb2

(1 +K)
)]

.

After iterations, we have shown:

v0(x) ≥ E

(
N∑

n=1

[
e−ρτsn

(
Sτsn(1−K)

)
− e−ρτbn

(
Sτbn

(1 +K)
)]

I{τbn<τM}

)
.

Sending N → ∞ to obtain v0(x) ≥ J0 (x,Λ0) for all Λ0. Therefore, v0(x) ≥ V0(x).
Similarly, when i = 1, we can show :

v1(x) ≥ Ee−ρτs1
(
Sτs1

(1−K)
)
+ E

(
N∑

n=2

[
e−ρτsn

(
Sτsn(1−K)

)
− e−ρτbn

(
Sτbn

(1 +K)
)]

I{τbn<τM}

)
.

Then we have finished proving vi(x) ≥ Ji (x,Λi).
Now we proceed to equalities. It again is equivalent to

v0(x) =E
(
e−ρτs∗N v0

(
Xτs∗N

))
+ E

(
N∑

n=1

[
e−ρτs∗n

(
Sτs∗n (1−K)

)
− e−ρτb∗n

(
Sτb∗n

(1 +K)
)]

I{τb∗n <τM}

)
.
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Define τ b∗1 = inf {t ≥ 0 : Xt ∈ [x0, x1]} ∧ τM . We observe that :

v0(x) = v1(x)− ex(1 +K) on [x0, x1] ,

and when i = 0 then Xt ∈ (M,x0]∪ [x1,∞) for all t ∈ [0, τ ∗1 ], which implies (ρ−A)v0 (Xt) = 0

for all t ∈ [0, τ ∗1 ]. Therefore,

v0

(
Xτb∗1

)
I{τb∗1 <τM} =

(
v1

(
Xτb∗1

)
−
(
Sτb∗1

(1 +K)
))

I{τb∗1 <τM}.

Then,

v0(x) =Ee−ρτb∗1 v0

(
Xτb∗1

)
=E

(
e−ρτb∗1 v0

(
Xτb∗1

)
I{τb∗1 <τM}

)
=E

(
e−ρτb∗1

(
v1

(
Xτb∗1

)
−
(
Sτb∗1

(1 +K)
))

I{τb∗1 <τM}
)

=E
(
e−ρτb∗1 v1

(
Xτb∗1

)
I{τb∗1 <τM}

)
− E

(
e−ρτb∗1

(
Sτb∗1

(1 +K)
)
I{τb∗1 <τM}

)
.

Again, since (ρ−A)v0 (Xt) = 0 for all t ∈ [σ∗
1, τ

∗
2 ], we have thatEe−ρσ∗

1v0
(
Xσ∗

1

)
= Ee−ρτ∗2 v0

(
Xτ∗2

)
.

If we keep iterating this process, we have :

v0(x) =E
(
e−ρτs∗N v0

(
Xτ∗∗N

))
+ E

(
N∑

n=1

[
e−ρτ

τ∗n
n
(
Sτs∗n (1−K)

)
−e−ρτb∗n

(
Sτb∗n

(1 +K)
)]

I{τb∗n <τM}
)
.

Recall that P (τM < ∞) = 1. This implies limN→∞ τS∗N = τM , Recall also that v0(M) = 0. It
follows that E

(
e−ρτs∗n v0

(
Xτs∗n

))
→ 0. This completes the proof.

1.7 Numerical Example
In this section, we consider a numerical example with the following specifications:

a = 1, b = 0, σ = 0.5, ρ = 0.5, K = 0.001,M = −0.8.

The threshold (x0, x1, x2) is (−0.779661,−0.427661,−0.345661). Next, we vary one of the parame-
ters at a time and examine the dependence of the triple (x0, x1, x2) on these parameters.

13



Figure 1.2: Value functions
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a 0.8 0.9 1 1.1 1.2

x0 −0.778498 −0.778888 −0.779661 −0.780367 −0.781021

x1 −0.536498 −0.496887 −0.427661 −0.388367 −0.359021

x2 −0.424498 −0.354887 −0.345661 −0.316367 −0.287021

A larger a implies larger pulling rate back to the equilibrium level b = 2. It can be seen that the lower
buying level x0 decreases and the higher buying level x1 increases as a increases. This leads to a larger
buying interval [x0, x1] resulting greater buying opportunities. The selling level x2 increases but the the
interval [x1, x2] decreases which suggests one should take profit sooner as a gets bigger.

ρ 0.3 0.4 0.5 0.6 0.7

x0 −0.778270 −0.779197 −0.779661 −0.780588 −0.781052

x1 −0.246270 −0.3471963 −0.427661 −0.538588 −0.649052

x2 −0.114270 −0.215196 −0.345661 −0.436588 −0.527052

Next, we vary the discount rate ρ. Larger ρ means quicker profits. It shows that larger ρ leads to a
smaller x0, smaller x1, and x2.

σ 0.3 0.4 0.5 0.6 0.7

x0 −0.788177 −0.784169 −0.779661 −0.775513 −0.771276

x1 −0.526177 −0.472169 −0.427661 −0.403512 −0.349276

x2 −0.404177 −0.390169 −0.345661 −0.251512 −0.177276

Next, we vary the volatility σ. The volatility is the source forcing the price to go away from its equi-
librium. The larger the σ, the further the price fluctuates. As a result, x1 increases and the pair (x0, x2)

decreases in σ resulting in a smaller buying interval [x0, x1] and a higher profit target x2.

K 0.3 0.4 0.5 0.6 0.7

x0 −0.788177 −0.784169 −0.779661 −0.775513 −0.771276

x1 −0.526177 −0.472169 −0.427661 −0.403512 −0.349276

x2 −0.404177 −0.390169 −0.345661 −0.251512 −0.177276

Larger K transaction cast somehow led threshold level to increase.

b −0.2 −0.1 0 0.1 0.2

x0 −0.777903 −0.778975 −0.779661 −0.780535 −0.781446

x1 −0.645903 −0.526975 −0.427661 −0.348534 −0.259446

x2 −0.52390 −0.444975 −0.345661 −0.216534 −0.107446

In the end we compute the threshold levels (x0, x1, x2) associated with varying b. Bigger equilibrium
level would bigger threshold levels. It can be seen that the pair (x1, x2) is monotonically increasing in b.
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Chapter 2

PAIRS TRADING UNDER
GEOMETRIC BROWNIAN MOTIONS

WITH REGIME SWITCHING

2.1 Introduction
This chapter is concerned with pairs trading of stocks. The idea behind pairs trading is to track the price
movements of a pairs of stocks over time and compare their relative price strengths. A pairs position
consists of a short position in the stronger stock and a long position in the weaker one. A pairs trade is
about buying and then selling such pairs positions. The strategy bets on the reversal of their price strength.
What makes the strategy attractive is its ‘market neutral’ nature in the sense that it can be profitable under
any market conditions. Pairs trading was initially introduced by Bamberger and followed by Tartaglia’s
quantitative group at Morgan Stanley in the 1980s; see Gatev et al. [E. Gatev and Rouwenhorst., 2006]
for related history and background details. There are many in-depth discussions in connection with the
cause of the divergence and subsequent convergence; see the book by Vidyamurthy [Vidyamurthy, 2018]
and references therein.

Mathematical trading rules have been studied for many years. For example, Zhang [Q. Zhang, 2001]
considered a selling rule determined by two threshold levels, a target price and a stop-loss limit. In [Q.
Zhang, 2001], such optimal threshold levels are obtained by solving a set of two-point boundary value
problems. Guo and Zhang [Guo and Zhang, 2005] studied the optimal selling rule under a model with
switching geometric Brownian motion. Using a smooth-fit technique, they obtained the optimal thresh-
old levels by solving a set of algebraic equations. These papers are concerned with the selling side of trading
in which the underlying price models are of GBM type. Dai et al. [Dai, 2010] developed a trend following
rule based on a conditional probability indicator. They showed that the optimal trading rule can be deter-
mined by two threshold curves which can be obtained by solving the associated Hamilton-Jacobi-Bellman
(HJB) equations. A similar idea was developed following a confidence interval approach by Iwarere and
Barmish [Iwarere and Barmish, 2010]. Besides, Merhi and Zervos [Merhi and Zervos, 2007] studied an

16



investment capacity expansion/reduction problem following a dynamic programming approach under
a geometric Brownian motion market model. In connection with mean reversion trading, Zhang and
Zhang [H. Zhang and Zhang, 2008] obtained a buy-low and sell-high policy by characterizing the ‘low’
and ‘high’ levels in terms of the mean reversion parameters. Song and Zhang [Song and Zhang, 2013]
studied pairs trading under a mean reversion model. It is shown that the optimal trading rule can be deter-
mined by threshold levels that can be obtained by solving a set of algebraic equations. A set of sufficient
conditions are also provided to establish the desired optimality. Deshpande and Barmish [Deshpande
and Barmish, 2016] introduced a control-theoretic approach. In particular, they were able to relax the
requirement for spread functions and showed that their trading algorithm produces positive expected
returns. Other related pairs technologies can be found in Elliott et al. [R.J. Elliott and Malcolm, 2005]
and Whistler [Whistler, 2004]. Recently, Tie et al.[Tie and Zhang, 2020] studied an optimal pairs trading
rule under geometric Brownian motions.. The objective is to initiate and close the positions of the pair
sequentially to maximize a discounted payoff function. Using a dynamic programming approach, they
studied the problem under a geometric Brownian motion model and proved that the buying and selling
can be determined by two threshold curves in closed form. They also demonstrate the optimality of their
trading strategy.

Market models with regime switching are important in market analysis. In this chapter, we consider
a geometric Brownian motion with regime switching. The market mode is represented by a two-state
Markov chain. In a recent paper, Tie and Zhang [Tie and Zhang, 2018] treated the selling part of pairs
trading that generalizes the results of Hu and Oksendal [Hu and ksendal, 1998] by incorporating models
with regime switching. They showed that the optimal selling rule can be determined by two threshold
curves and established a set of sufficient conditions that guarantee the optimality of the policy. To complete
the circle of pairs trading, one has to come up with the buying part of the trading rule to determine
how much divergence is needed that triggers the entry of the position. It is the focus of this chapter.
In particular, we study pairs trading under geometric Brownian motions with regime switching. The
objective is to buy and then sell a pairs position to maximize the expected return. Using a smooth-fit
method, we characterize the trading policies in terms of threshold curves which can be determined by a
set of algebraic equations, We also provide a set of sufficient conditions for the optimality of the trading
policy. Finally, we present numerical examples to illustrate the results.

This chapter is organized as follows. In §2.2 and §2.3, we formulate the pairs trading problem under
consideration and the property of value function. In §2.4, we study the associated HJB equations and

their solutions, and key steps for pairs selling rules are given. In §2.5, we provide a set of sufficient
conditions that guarantee the optimality of our trading rule. Numerical examples are given in §2.6. Some
concluding remarks are given in §2.7.
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2.2 Problem Formulation

Our pairs trading strategy involves two stocks S1 and S2. Let {X1
t , t ≥ 0} denote the prices of stock S1

and {X2
t , t ≥ 0} that of stock S2. They satisfy the following stochastic differential equation:

d

(
X1

t

X2
t

)
=

(
X1

t

X2
t

)[(
µ1 (αt)

µ2 (αt)

)
dt+

(
σ11 (αt) σ12 (αt)

σ21 (αt) σ22 (αt)

)
d

(
W 1

t

W 2
t

)]
, (2.1)

where αt ∈ M = {1, 2} is a two-state Markov chain and (W 1
t ,W

2
t ) a two-dimensional standard

Brownian motion. Here, for α = 1, 2, µi(α), i = 1, 2, are the return rates and σij(α), i, j = 1, 2, the
volatility constants.

Let Q be the generator of αt given by Q =

(
−λ1 λ1

λ2 −λ2

)
, with λ1 > 0 and λ2 > 0. We assume

αt and (W 1
t ,W

2
t ) are independent.

In this chapter, we assume, for simplicity, a pairs position consists of one-share long position in stock
S1 and one-share short position in stock S2. Let Z denote the corresponding pairs position. One share
in Z represents the combination of one share long position in S1 and one share short position in S2.

We consider one round trip pairs trading. The net position at any time can be either long (with one
share of Z ) or flat (no stock position of either S1 or S2 ). Let i = 0, 1 denote the initial net position and
let τ0, τ1, τ2 denote stopping times with τ1 ≤ τ2.. If initially the net position is flat (i = 0), then one
should start to buy a share of Z. That is, to first buy at τ1 and then sell at τ2. The decision is denoted by
Λ0 = {τ1, τ2}. If initially the net position is long (i = 1), then one should sell Z. The corresponding
decision is denoted by Λ1 = {τ0}. Let K denote the fixed percentage of transaction costs associated with
buying or selling of stocks Si, i = 1, 2. For example, the cost to establish the pairs position Z at t = t1 is
(1+K)X1

t1
− (1−K)X2

t2
and the proceeds to close it at a later time t = t2 is (1−K)X1

t2
− (1+K)X2

t2
.

For ease of notation, let βb = 1 +K and βs = 1−K .
Given the initial state (x1, x2, α), the initial net position i = 0, 1, and the decision variables Λ0 and

Λ1, the corresponding reward functions

J0 (x1, x2, α,Λ0) = E
{[

e−ρτ2
(
βsX

1
τ2
− βbX

2
τ2

)
I{τ2<∞} − e−ρτ1

(
βbX

1
τ1
− βsX

2
τ1

)
I{τ1<∞}

]}
J1 (x1, x2, α,Λ1) = E

{
e−ρτ0

(
βsX

1
τ0
− βbX

2
τ0

)
I{τ0<∞}

}
,

(2.2)

where ρ > 0 is a given discount factor and IA is the indicator function of an event A. Let Ft =

σ {(X1
r , X

2
r , αr) : r ≤ t}. The problem is to find {Ft} stopping times τ0, τ1, and τ2, to maximize Ji.

For i = 0, 1, letVi (x1, x2, α)denote the value functions with the initial state (X1
0 , X

2
0 , α0) = (x1, x2, α)

and initial net positions i = 0, 1. That is, Vi (x1, x2, α) = supΛi
Ji (x1, x2, α,Λi) , i = 0, 1
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Remark 1.. We would like to point out that our ’one-share’ pair position is not as restrictive as it
appears. For example, one can consider any pairs with n1 shares of long position in S1 and n2 shares of
short position in S2. To treat this case, one only has to make change of the state variables
(X1

t , X
2
t ) → (n1X

1
t , n2X

2
t ). Due to the nature of GBMs, the corresponding system equation in (2.1)

will remain the same. The modification only affects the reward function in (2.2) implicitly.
We make the following assumptions in this chapter: (A1) ρ > µj(α), for α = 1, 2 and j = 1, 2.

Under these conditions, we can establish the lower and upper bounds for the value functions as follows.

2.3 Properties of Value Functions
Lemma 1. For some constant C , the inequalities hold

0 ≤ V0 (x1, x2, α) ≤ Cx2. (2.3)

In addition, we have
βsx1 − βbx2 ≤ V1 (x1, x2, α) ≤ βsx1. (2.4)

Proof. We first consider the inequalities in (2.3). Clearly, V0 ≥ 0. To see V0 ≤ Cx2, note that

J0 (x1, x2, α,Λ0) ≤ E
{[

e−ρτ2
(
X1

τ2
−X2

τ2

)
I{τ2<∞} − e−ρτ1

(
X1

τ1
−X2

τ1

)
I{τ1<∞}

]}
= E

[
e−ρτ2X1

τ2
I{τ2<∞} − e−ρτ1X1

τ1
I{τ1<∞}

]
− E

[
e−ρτ2X2

τ2
I{τ2<∞} − e−ρτ1X2

τ1
I{τ1<∞}

]
.

Following from the proof of Lemma 3.1 of Tie et al. [14], we can show the first term above is less than or
equal to 0. To find an upper bound for the second term, it suffices to show

E

∫ τ2

τ1

e−ρtX2
t (ρ− µ2 (αt)) dt ≤ Cx2.

To this end, let µmin = min {µ2(1), µ2(2)} and µmax = max {µ2(1), µ2(2)}. Then, we have

E

∫ τ2

τ1

e−ρtX2
t (ρ− µ2 (αt)) dt ≤ (ρ− µmin)

∫ ∞

0

e−ρtEX2
t dt.

Note that
EX2

t = x2 + E

∫ t

0

X2
sµ2 (αs) ds ≤ x2 + µmax

∫ t

0

EX2
sds.
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Use Gronwall’s inequality to obtain EX2
t ≤ x2e

µmaxt. It follows that∫ ∞

0

e−ρtEX2
t dt =

x2

ρ− µmax

.

Therefore, we have

E

∫ τ2

τ1

e−ρtX2
t (ρ− µ2 (αt)) dt ≤

(ρ− µmin)x2

ρ− µmax

=: Cx2.

Similarly, the inequalities in (2.4) can be obtained.

2.4 HJB equations
In this chapter, we follow the dynamic programming approach and focus on the associated HJB equations.
For i = 1, 2, let

Ai =
1

2

[
a11(i)x

2
1

∂2

∂x2
1

+ 2a12(i)x1x2
∂2

∂x1∂x2

+ a22(i)x
2
2

∂2

∂x2
2

]
+µ1(i)x1

∂

∂x1

+µ2(i)x2
∂

∂x2

(2.5)

wherea11(i) = σ2
11(i)+σ2

12(i), a12(i) = σ11(i)σ21(i)+σ12(i)σ22(i), anda22(i) = σ2
21(i)+σ2

22(i).

Formally, the associated H.JB equations have the form:
min {(ρ−A1) v0 (x1, x2, 1)− λ1 (v0 (x1, x2, 2)− v0 (x1, x2, 1))

v0 (x1, x2, 1)− v1 (x1, x2, 1) + βbx1 − βsx2} = 0,

min {(ρ−A2) v0 (x1, x2, 2)− λ2 (v0 (x1, x2, 1)− v0 (x1, x2, 2))

v0 (x1, x2, 2)− v1 (x1, x2, 2) + βbx1 − βsx2} = 0,

(2.6)

{
min {(ρ−A1) v1 (x1, x2, 1)− λ1 (v1 (x1, x2, 2)− v1 (x1, x2, 1)) , v1 (x1, x2, 1)− βsx1 + βbx2} = 0,

min {(ρ−A2) v1 (x1, x2, 2)− λ2 (v1 (x1, x2, 1)− v1 (x1, x2, 2)) , v1 (x1, x2, 2)− βsx1 + βbx2} = 0.

For ease of notation, let u1 = v0 (x1, x2, 1) , u2 = v0 (x1, x2, 2) , u3 = v1 (x1, x2, 1), and u4 =

v1 (x1, x2, 2).
To solve the above HJB equations, we first convert them into single variable equations. Let y = x2/x1

and ui (x1, x2) = x1wi (x2/x1), for some function wi(y) and i = 1, 2, 3, 4. Then we have by direct
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calculation that

∂ui

∂x1

= wi(y)− yw′
i(y),

∂ui

∂x2

= w′
i(y),

∂2ui

∂x2
1

=
y2w′′

i (y)

x1

,
∂2ui

∂x2
2

=
w′′

i (y)

x1

, and
∂2u1

∂x1∂x2

= −yw′′
i (y)

x1

.

Write Ajui in terms of wi to obtain

Ajui = x1

{
σjy

2w′′
i (y) + [µ2(j)− µ1(j)] yw

′
i(y) + µ1(j)wi(y)

}
,

where σj = (a11(j)− 2a12(j) + a22(j)) /2.
Then, the HJB equations can be given in terms of y and wi as follows:

min {(ρ+ λ1 − L1)w1(y)− λ1w2(y), w1(y)− w3(y) + βb − βsy} = 0,

min {(ρ+ λ2 − L2)w2(y)− λ2w1(y), w2(y)− w4(y) + βb − βsy} = 0,

min {(ρ+ λ1 − L1)w3(y)− λ1w4(y), w3(y) + βby − βs} = 0,

min {(ρ+ λ2 − L2)w4(y)− λ2w3(y), w4(y) + βby − βs} = 0,

(2.7)

where
Lj [wi(y)] = σjy

2w′′
i (y) + [µ2(j)− µ1(j)] yw

′
i(y) + µ1(j)wi(y). (2.8)

In this chapter, we only consider the when σj ̸= 0, j = 1, 2. If either σ1 = 0 and/or σ2 = 0, the
problem reduces to a (partial) first order case and can be treated in a similar and simpler way. Next, we
consider the joint equations (ρ+ λ1 − L1)w1 = λ1w2 and (ρ+ λ2 − L2)w2 = λ2w1. Combine
them to obtain

(ρ+ λ1 − L1) (ρ+ λ2 − L2)w2 = λ1λ2w2 and (ρ+ λ2 − L2) (ρ+ λ1 − L1)w1 = λ1λ2w1

Both w1 and w2 must satisfy

[(ρ+ λ1 − L1) (ρ+ λ2 − L2)− λ1λ2]w = 0.

Note that the operators L1 and L2 are the Euler type and the solutions to the above equation are of the
form wi = yδ. Thus, δ must satisfy the equation

P (δ) := [ρ+ λ1 − A1(δ)] [ρ+ λ2 − A2(δ)]− λ1λ2 = 0, (2.9)

,

where
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Aj(δ) = σjδ(δ−1)+
[
(µ2(j)− µ1(j)] δ + µ1(j) = σjδ

2 − [σj + µ1(j)− µ2(j)] δ + µ1(j) (2.10)

.

Note that ρ+ λ1 − A1(ζ) = 0 and ρ+ λ2 − A2(ν) = 0 have roots, respectively,

ζ1 =
1

2
+

µ1(1)− µ2(1)

2σ1

+

√(
1

2
+

µ1(1)− µ2(1)

2σ1

)2

+
ρ+ λ1 − µ1(1)

σ1

,

ζ2 =
1

2
+

µ1(1)− µ2(1)

2σ1

−

√(
1

2
+

µ1(1)− µ2(1)

2σ1

)2

+
ρ+ λ1 − µ1(1)

σ1

,

(2.11)

and

ν1 =
1

2
+

µ1(2)− µ2(2)

2σ2

+

√(
1

2
+

µ1(2)− µ2(2)

2σ2

)2

+
ρ+ λ2 − µ1(1)

σ2

,

ν2 =
1

2
+

µ1(2)− µ2(2)

2σ2

−

√(
1

2
+

µ1(2)− µ2(2)

2σ2

)2

+
ρ+ λ2 − µ1(1)

σ2

.

(2.12)

Note also that ζ1 > 1 and ν1 > 1, and ζ2 < 0 and ν2 < 0. It is elementary to show that the equation
P (δ) = 0 has four distinct roots δj, 1 ≤ j ≤ 4 with δ4 < δ3 < 0 < 1 < δ2 < δ1. The δj, ζj and νj
should have relation

δ4 < min {ζ2, ν2} , 0 > δ3 > max {ζ2, ν2} , 0 < δ2 < min {ζ1, ν1} , and δ1 > max {ζ1, ν1} .

The general solutions of the equations

(ρ+ λ1 − L1)w1 = λ1w2 and (ρ+ λ2 − L2)w2 = λ2w1

can be given as

w1 =
4∑

j=1

c1jy
δj , and w2 =

4∑
j=1

c2jy
δj ,

for constants cij . Substituting them into the original equations leads to

4∑
j=1

c1j (ρ+ λ1 − A1 (δj)) y
δj = λ1

4∑
j=1

c2jy
δj and

4∑
j=1

c2j (ρ+ λ2 − A2 (δj)) y
δj = λ2

4∑
j=1

c1jy
δj .
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-α = 1

0 k3 k1

(ρ+ λ1 − 1)w1 = λ1w2 (ρ+ λ1 − 1)w1 = λ1w2 w1(y) = w3(y)−+y

w3 = βs − βby (ρ+ λ1 − 1)w3 = λ1w4 (ρ+ λ1 − 1)w3 = λ1w4

-

0

α = 2

k4 k2

(ρ+ λ2 − 2)w2 = λ2w1 (ρ+ λ2 − 2)w2 = λ2w1 w2(y) = w4(y)−+y

w4 = βs − βby (ρ+ λ2 − 2)w4 = λ2w3 (ρ+ λ2 − 2)w4 = λ2w3

Figure 2.1: Equalities of HJB equations

Hence, we have

c1,j (ρ+ λ1 − A1 (δj)) = λ1c2j and c2j (ρ+ λ2 − A2 (δj)) = λ2c1j.

Let ηj = (ρ+ λ1 − A1 (δj)) /λ1. Then, we have

ηj =
ρ+ λ1 − A1 (δj)

λ1

=
λ2

ρ+ λ2 − A2 (δj)
,

Necessarily, c2j = ηjc1j . Hence,

w1 =
4∑

j=1

c1jy
δj and w2 =

4∑
j=1

ηjc1jy
δj .

Similarly we can show the general solutions of (ρ+ λ1 − L1)w3 = λ1w4 and (ρ+ λ2− L2)w4 =

λ2w3 are given by

w3 =
4∑

j=1

d1jy
δj and w4 =

4∑
j=1

ηjd1jy
δj ,

for constants dij . By direct computation, we can show

{y > 0 : w1 − w3 + βb − βsy = 0} ∩ {y > 0 : w3 + βby − βs = 0} = ∅,
{y > 0 : w2 − w4 + βb − βsy = 0} ∩ {y > 0 : w4 + βby − βs = 0} = ∅.

Intuitively, if X1
t is small and X2

t is large, then one should buy S1 and sell (short) S2, i.e., to open a
pairs position Z. On the other hand, if X1

t is large and X2
t is small, then one should close the position Z

by selling S1 and buying back S2.
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Figure 2.2: Switching Regions α = 1 (left) and α = 2 (right)

In view of this, if α = 1, we divide the first quadrant into three regions {(x1, x2) > 0 : x2 ≤ k3x1}
(close position region),{(x1, x2) > 0 : k3x1 < x2 < k1x1}, (hold region) and{(x1, x2) > 0 : x2 ≥ k1x1}
(open position region), for some positive constants k1 and k3. If α = 2, we can do so similarly with re-
gions {(x1, x2) > 0 : x2 ≤ k4x1} (close position region), {(x1, x2) > 0 : k4x1 < x2 < k2x1} (hold
region), and {(x1, x2) > 0 : x2 ≥ k2x1} (open position region), for some positive k2 and k4. Note here
k3 < k1 and k4 < k2. As a result, recall the change of variables ( y = x2/x1), the equations in (2.7) can
be specified as follows:

w3 = βs − βby and (ρ+ λ1 − L1)w1 = λ1w2 when y < k3,

(ρ+ λ1 − L1)w1 = λ1w2 and (ρ+ λ1 − L1)w3 = λ1w4 when k3 < y < k1,

w1 = w3 + βsy − βb and (ρ+ λ1 − L1)w3 = λ1w4 when y > k1,
w4 = βs − βby and (ρ+ λ2 − L2)w2 = λ2w1 when y < k4,

(ρ+ λ2 − L2)w2 = λ2w1 and (ρ+ λ2 − L2)w4 = λ2w3 when k4 < y < k2,

w2 = w4 + βsy − βb and (ρ+ λ2 − L2)w4 = λ2w3 when y > k2.

Each of these intervals and the corresponding equalities are given in Figure 1. We have four threshold
parameters k1, k2, k3 and k4 to be determined. There are a number of ways to order them. Recall that
k3 < k1 and k4 < k2. The largest is either k1 or k2 and the smallest is either k3 or k4. If k3 is the smallest,
then we can place k1 at three different places. So this will lead to the following three cases.

k3 ≤ k1 ≤ k4 ≤ k2, k3 ≤ k4 ≤ k1 ≤ k2, k3 ≤ k4 ≤ k2 ≤ k1.
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Similarly if k4 is the smallest, then we can place k2 at three different places. Hence the next three possibili-
ties:

k4 ≤ k2 ≤ k3 ≤ k1, k4 ≤ k3 ≤ k2 ≤ k1, k4 ≤ k3 ≤ k1 ≤ k2.

On the region (0, k1 ∧ k2] with k1 ∧ k2 = min {k1, k2}, we have

(ρ+ λ1 − L1)w1 = λ1w2 and (ρ+ λ2 − L2)w2 = λ2w1,

this implies

w1 =
4∑

j=1

c1jy
δj and w2 =

4∑
j=1

ηjc1jy
δj .

in this region. Recall Lemma 1 and δ3 < 0, δ4 < 0. It follows that the coefficients for yδ3 and yδ4 have to
be zero. Thus, we have

w1 = C1y
δ1 + C2y

δ2 and w2 = C1η1y
δ1 + C2η2y

δ2 .

Similarly, in the region [k3 ∨ k4,∞) with k3 ∨ k4 = max {k3, k4},

(ρ+ λ1 − L1)w3 = λ1w4 and (ρ+ λ2 − L2)w4 = λ2w3,

the linear growth conditions (recall δ1, δ2 > 1 ) yield

w3 = C3y
δ3 + C4y

δ4 and w4 = C3η3y
δ3 + C4η4y

δ4 .

To solve the HJB equations, we first note that w3 and w4 are not coupled with w1 and w2 and can be
found separately. This is treated as a pure selling problem in Tie and Zhang [Tie and Zhang, 2018]. In
this chapter, we first consider the case (k3 < k4) and provide key steps for this case in Appendix for the
sake of completeness then (k3 > k4).

Solving for w1 and w2. In this section, we solve for w1 and w2 using the solution w3 and w4. Recall
that w1 and w2 satisfy the HJB equations

min {(ρ+ λ1 − L1)w1(y)− λ1w2(y), w1(y)− w3(y) + βb − βsy} = 0,

min {(ρ+ λ2 − L2)w2(y)− λ2w1(y), w2(y)− w4(y) + βb − βsy} = 0.

To find threshold type solutions, we are to determinek1 andk2 so that on (0, k1) : (ρ+ λ1− L1)w1(y)−
λ1w2(y) = 0 and w1(y) − w3(y) + βb − βsy ≥ 0; on [k1,∞) : (ρ+ λ1 − L1)w1(y)− λ1w2(y) ≥
0 and w1(y) − w3(y) + βb − βsy = 0; on (0, k2) : (ρ+ λ2 − L2)w2(y) − λ2w1(y) = 0 and
w2(y) − w4(y) + βb − βsy ≥ 0; and on [k2,∞) : (ρ+ λ2 − L2)w2(y) − λ2w1(y) ≥ 0 and
w2(y)− w4(y) + βb − βsy = 0.
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Recall that k4 < k2 and k3 < k1. Recall also the condition k4 < k3, k4 < k2 and k3 < k1, we need
to further consider the three cases:

k4 < k2 < k3 < k1, k4 < k3 < k2 < k1, and k4 < k3 < k1 < k2

2.4.1 CASE I: k3 < k1 < k4 < k2

First, we consider the case when k3 < k1 < k4 < k2. For 0 < y < k1, we have (ρ+ λ1 − L1)w1(y)−
λ1w2(y) = 0 and (ρ+ λ2 − L2)w2(y)− λ2w1(y) = 0. Their general solutions have the form:

w1(y) = C1y
δ1 + C2y

δ2 and w2(y) = C1η1y
δ1 + C2η2y

δ2 .

For k1 ≤ y ≤ k2, we have w1(y) = w3(y)− βb + βsy and (ρ+ λ2 − L2)w2(y)− λ2w1(y) = 0.
For k2 ≤ y < ∞, we have w1(y) = w3(y) − βb + βsy and w2(y) = w4(y) − βb + βsy. Recall
that the solution w3(y) and w4(y) in 2.4.7. This leads to, on [k1, k4], w1(y) = w3(y) − βb + βsy =

E1y
ζ1 + E2y

ζ2 + a1 − βb + (βs − a2) y and w2(y) satisfies

(ρ+ λ2 − L2)w2(y) = λ2w1(y) = λ2

[
E1y

ζ1 + E2y
ζ2 + a1 − βb + (βs − a2) y

]
.

Then the solutionw2(y) = B1y
ν1 +B2y

ν2 +w2,p1(y), whereB1y
ν1 +B2y

ν2 is the general solution
of the homogeneous differential equation (ρ+ λ2 − L2)w2(y) = 0 with ν1 and ν2 given in (2.12). A
particular solution of

(ρ+ λ2 − L2)w2(y) = λ2w1(y) = λ2

[
E1y

ζ1 + E2y
ζ2 + a1 − βb + (βs − a2) y

]
,

can be given by

w2,p1(y) =
λ2E1

ρ+ λ2 − A2 (ζ1)
yζ1 +

λ2E2

ρ+ λ2 − A2 (ζ2)
yζ2 +

λ2 (a1 − βb)

ρ+ λ2 − µ1(2)
+

λ2 (βs − a2)

ρ+ λ2 − µ2(2)
y.

Next, on the interval [k4, k2] , w1(y) = w3(y) − βb + βsy = C3y
δ3 + C4y

δ4 − βb + βsy and w2(y)

satisfies the inhomogenous equation (ρ+ λ2 − L2)w2(y) = λ2w1(y) = λ2

(
C3y

δ3 + C4y
δ4 − βb+

βsy ). Similarly, a general solution w2(y) = D1y
ν1 +D2y

ν2 +w2,p2(y), where w2,p2(y) is the particular
solution given by

w2,p2(y) =
λ2C3

ρ+ λ2 − A2 (δ3)
yδ3 +

λ2C4

ρ+ λ2 − A2 (δ4)
yδ4 − λ2βb

ρ+ λ2 − µ1(2)
+

λ2βsy

ρ+ λ2 − µ2(2)
.

Recall that η3 = λ2/ (ρ+ λ2 − A2 (δ3)) and η4 = λ2/ (ρ+ λ2 − A2 (δ4)). It follows that

w2,p2(y) = C3η3y
δ3 + C4η4y

δ4 − λ2βb

ρ+ λ2 − µ1(2)
+

λ2βsy

ρ+ λ2 − µ2(2)
.
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Finally, on the interval [k2,∞) , w1(y) = w3(y) − βb + βsy = C3y
δ3 + C4y

δ4 − βb + βsy and
w2(y) = w4(y)−βb+βsy = C3η3y

δ3 +C4η4y
δ4 −βb+βsy. These computations can be summarized

as follows:

On (0, k1) : w1(y) = C1y
δ1 + C2y

δ2 ,

w2(y) = C1η1y
δ1 + C2η2y

δ2 ,

On [k1, k4) : w1(y) = w3(y)− βb + βsy = E1y
ζ1 + E2y

ζ2 + a1 − βb + (βs − a2) y,

w2(y) = B1y
ν1 +B2y

ν2 + w2,p1(y),

On [k4, k2] : w1(y) = w3(y)− βb + βsy = C3y
δ3 + C4y

δ4 − βb + βsy,

w2(y) = D1y
ν1 +D2y

ν2 + w2,p2(y),

On (k2,∞) : w1(y) = w3(y)− βb + βsy = C3y
δ3 + C4y

δ4 − βb + βsy,

w2(y) = w4(y)− βb + βsy = C3η3y
δ3 + C4η4y

δ4 − βb + βsy,

(2.13)

where

w2,p1(y) =
λ2E1

ρ+ λ2 − A2 (ζ1)
yζ1 +

λ2E2

ρ+ λ2 − A2 (ζ2)
yζ2 +

λ2 (a1 − βb)

ρ+ λ2 − µ1(2)
+

λ2 (βs − a2)

ρ+ λ2 − µ2(2)
y,

w2,p2(y) = C3η3y
δ3 + C4η4y

δ4 − λ2βb

ρ+ λ2 − µ1(2)
+

λ2βsy

ρ+ λ2 − µ2(2)
.

We follow the smooth-fit method to determine parameters C1, C2, B1, B2, D1, D2, k1 and k2. The con-
tinuity of w1(y), w2(y), w

′
1(y) and w′

2(y) at k1 yields

C1k
δ1
1 + C2k

δ2
1 = w3 (k1) + βsk1 − βb,

C1δ1k
δ1−1
1 + C2δ2k

δ2−1
1 = w′

3 (k1) + βs,

C1η1k
δ1
1 + C2η2k

δ2
1 = B1k

ν1
1 +B2k

ν2
1 + w2,p1 (k1) ,

C1η1δ1k
δ1−1
1 + C2η2δ2k

δ2−1
1 = B1ν1k

ν1−1
1 +B2ν2k

ν2−1
1 + w′

2,p1
(k1) .

The continuity of w2(y) and w′
2(y) at k4 yields

B1k
ν1
4 +B2k

ν2
4 + w2,p1 (k4) = D1k

ν1
4 +D2k

ν2
4 + w2,p2 (k4) ,

B1ν1k
ν1−1
4 +B2ν2k

ν2−1
4 + w′

2,p1
(k4) = D1ν1k

ν1−1
4 +D2ν2k

ν2−1
4 + w′

2,p2
(k4) .

The continuity of w2(y) and w′
2(y) at k2 yields

D1k
ν1
2 +D2k

ν2
2 + w2,p2 (k2) = w4 (k2)− βb + βsk2,

D1ν1k
ν1−1
2 +D2ν2k

ν2−1
2 + w′

2,p2
(k2) = w′

4 (k2) + βs.

Let

Λ =

(
η1 0

0 η2

)
and Φ (t, s1, s2) =

(
ts1 ts2

s1t
s1 s2t

s2

)
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Then, we have

Φ−1 (t, s1, s2) =
1

s2 − s1

(
s2t

−s1 −t−s1 .

−s1t
−s2 t−s2

)
Using these matrices, we can write the first four equations at k1 as

Φ (k1, δ1, δ2)

(
C1

C2

)
=

(
w3 (k1) + βsk1 − βb

k1 [w
′
3 (k1) + βs]

)
,

Φ (k1, δ1, δ2) Λ

(
C1

C2

)
= Φ(k1, ν1, ν2)

(
B1

B2

)
+

(
w2,p1 (k1)

k1w
′
2,p1

(k1)

)
.

It follows, by solving for C1, C2, B1 and B2, that(
C1

C2

)
= Φ−1 (k1, δ1, δ2)

(
w3 (k1) + βsk1 − βb

k1 [w
′
3 (k1) + βs]

)
,(

B1

B2

)
= Φ−1 (k1, ν1, ν2)

[
Φ (k1, δ1, δ2) ΛΦ

−1 (k1, δ1, δ2)

(
w3 (k1) + βsk1 − βb

k1 [w
′
3 (k1) + βs]

)
−
(

w2,p1 (k1)

k1w
′
2,p1

(k1)

)
.

In addition, simple calculation yields

Φ (k1, δ1, δ2) ΛΦ
−1 (k1, δ1, δ2) =

1

δ2 − δ1

(
η1δ2 − η2δ1 η2 − η1
δ1δ2 (η1 − η2) η2δ2 − η1δ1

)
.

Note that this matrix is independent of k1. Moreover, we can write (from the continuity of w2 and
w′

2 at k4)

Φ (k4, ν1, ν2)

(
B1 −D1

B2 −D2

)
=

(
w2,p2 (k4)− w2,p1 (k4)

k4
[
w′

2,p2
(k4)− w′

2,p1
(k4)

] ) .

This yields (
B1 −D1

B2 −D2

)
= Φ−1 (k4, ν1, ν2)

(
w2,p2 (k4)− w2,p1 (k4)

k4
[
w′

2,p2
(k4)− w′

2,p1
(k4)

] ) .

Finally, follow from the continuity of w2 and w′
2 at k2, we write

Φ (k2, ν1, ν2)

(
D1

D2

)
=

(
w4 (k2)− w2,p2 (k2)− βb + βsk2
k2
[
w′

4 (k2)− w′
2,p2

(k2) + βs

] )
.

This gives (
D1

D2

)
= Φ−1 (k2, ν1, ν2)

(
w4 (k2)− w2,p2 (k2)− βb + βsk2
k2
[
w′

4 (k2)− w′
2,p2

(k2) + βs

] )
.
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Eliminate (B1, B@) to obtain the following equations for k1 and k2 :

Φ−1 (k1, ν1, ν2)

[
Φ (k1, δ1, δ2) ΛΦ

−1 (k1, δ1, δ2)

(
w3 (k1) + βsk1 − βb

k1w
′
3 (k1) + βsk1

)
−
(

w2,p1 (k1)

k1w
′
2,p1

(k1)

)]
= Φ−1 (k4, ν1, ν2)

(
w2,p2 (k4)− w2,p1 (k4)

k4
[
w′

2,p2
(k4)− w′

2,p1
(k4)

] )
+ Φ−1 (k2, ν1, ν2)

(
w4 (k2)− w2,p2 (k2)− βb + βsk2
k2
[
w′

4 (k2)− w′
2,p2

(k2) + βs

] )
.

(2.14)

This yields two equations of k1 and k2. The existence of k1 and k2 can proved.. Once we find k1 and
k2 and note that the constants B1, B2, C1, C2, D1, and D2 can be written as functions of k1 and k2. So
are functions w1(y) and w2(y). In view of this, k1 and k2 have to be determined so that the following
variational inequalities are satisfied:

On (0, k1) : w1(y)− w3(y) + βb − βsy ≥ 0,

w2(y)− w4(y) + βb − βsy ≥ 0,

On [k1, k2] : (ρ+ λ1 − L1)w1(y)− λ1w2(y) ≥ 0,

w2(y)− w4(y) + βb − βsy ≥ 0,

On (k2,∞) : (ρ+ λ1 − L1)w1(y)− λ1w2(y) ≥ 0,

(ρ+ λ2 − L2)w2(y)− λ2w1(y) ≥ 0.

(2.15)

To facilitate numerical computations, we provide equivalent inequalities for those involving the dif-
ferential operators Lj . First, we consider the two inequalities on the interval [k2,∞) :

(ρ+ λ1 − L1)w1(y)− λ1w2(y) ≥ 0 and (ρ+ λ2 − L2)w2(y)− λ2w1(y) ≥ 0.

Recall that w1(y) = w3(y)− βb + βsy and w2(y) = w4(y)− βb + βsy, and we apply L1 to w1(y)

and L2 to w2(y) to get

(ρ+ λ1 − L1)w1(y) = λ1w4(y) + (ρ+ λ1 − µ2(1)) βsy − (ρ+ λ1 − µ1(1)) βb,

(ρ+ λ2 − L2)w2(y) = λ2w3(y) + (ρ+ λ2 − µ2(2)) βsy − (ρ+ λ2 − µ1(2)) βb.

Then (23) is equivalent to

(ρ+ λ1 − µ2(1)) βsy − (ρ+ λ1 − µ1(1)) βb ≥ λ1 (βsy − βb) ,

(ρ+ λ2 − µ2(2)) βsy − (ρ+ λ2 − µ1(2)) βb ≥ λ2 (βsy − βb) .
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Simplify to obtain

(ρ− µ2(1)) βsy − (ρ− µ1(1)) βb ≥ 0 and (ρ− µ2(2)) βsy − (ρ− µ1(2)) βb ≥ 0.

These inequalities hold as long as

k2 ≥
(ρ− µ1(j)) βb

(ρ− µ2(j)) βs

for j = 1, 2.

Next, we consider the inequality involving L1, i.e, (ρ+ λ1 − L1)w1(y) − λ1w2(y) ≥ 0 on [k1, k2].
Recall that w1 = w3 − βb + βsy and w2 satisfies (ρ+ λ2 − L2)w2(y) = λ2w1(y) on this interval.
Applying (ρ+ λ1 − L1) to w1 yield

(ρ+ λ1 − L1)w1 = (ρ+ λ1 − L1)w3 + (ρ+ λ1 − µ2(1)) βsy − (ρ+ λ1 − µ1(1)) βb.

Recall that k3 < k1 < k4 < k2 and (ρ+ λ1 − L1)w3 = λ1w4. It follows that

(ρ+ λ1 − L1)w1 = λ1w4 + (ρ+ λ1 − µ2(1)) βsy − (ρ+ λ1 − µ1(1)) βb.

Recall also that w4 = βs − βby on the interval [0, k4]. Hence on interval [k1, k4] ⊂ [0, k4],
(ρ+ λ1 − L1)w1(y)− λ1w2(y) ≥ 0 is equivalent to

λ1 (βs − βby) + (ρ+ λ1 − µ2(1)) βsy − (ρ+ λ1 − µ1(1)) βb ≥ λ1w2.

Since w2(y) = B1y
ν1 +B2y

ν2 + w2,p1(y) on the interval [k1, k4], the above inequality is equivalent to

B1y
ν1 +B2y

ν2 + w2,p1(y) ≤
[
ρ− µ2(1)

λ1

βs + βs − βb

]
y −

[
ρ− µ1(1)

λ1

βb + βb − βs

]
.

Similarly on the interval [k4, k2] , w2(y) = D1y
ν1+D2y

ν2+w2,p2(y), and the inequality is equivalent
to

D1y
ν1 +D2y

ν2 + w2,p2(y) ≤
[
ρ− µ2(1)

λ1

βs + βs − βb

]
y −

[
ρ− µ1(1)

λ1

βb + βb − βs

]
.

2.4.2 CASE II: k3 < k4 < k1 < k2.
Next, we treat the case (k3 < k4 < k1 < k2). Note that, for0 < y < k1, we have (ρ+ λ1 − L1)w1(y)−
λ1w2(y) = 0 and (ρ+ λ2 − L2)w2(y)− λ2w1(y) = 0. Their general solutions are of the forms

w1(y) = C1y
δ1 + C2y

δ2 and w2(y) = C1η1y
δ1 + C2η2y

δ2 .
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For k1 ≤ y ≤ k2, we have w1(y) = w3(y)− βb + βsy and (ρ+ λ2 − L2)w2(y)− λ2w1(y) = 0.
For k2 < y < ∞, we have w1(y) = w3(y) − βb + βsy and w2(y) = w4(y) − βb + βsy. Recall
also the solutions w3(y) and w4(y) in (39) (Appendix): It follows that, on the interval [k1, k2] , w1(y) =

w3(y) − βb + βsy = E1y
ζ1 + E2y

ζ2 + a1 − βb + (βs − a2) y; and w2(y) satisfies the equation
(ρ+ λ2 − L2)w2(y) = λ2w1(y) = λ2

[
E1y

ζ1 + E2y
ζ2 + a1 − βb + (βs − a2) y

]
. Then the general

solution w2(y) = B1y
ν1 +B2y

ν2 + w2,p(y) where the particular solution

w2,p(y) =
λ2E1

ρ+ λ2 − A2 (ζ1)
yζ1 +

λ2E2

ρ+ λ2 − A2 (ζ2)
yζ2 +

λ2 (a1 − βb)

ρ+ λ2 − µ1(2)
+

λ2 (βs − a2)

ρ+ λ2 − µ2(2)
y.

In this chapter, the use of parameters Ai, Bi, Ci, etc is limited to the particular section. They may be
different across sections if no confusion arises.

Finally, on the interval (k2,∞), we have

w1(y) = w3(y)− βb + βsy = C3y
δ3 + C4y

δ4 − βb + βsy,

w2(y) = w4(y)− βb + βsy = C3η3y
δ3 + C4η4y

δ4 − βb + βsy.

On (0, k1) :w1(y) = C1y
δ1 + C2y

δ2 ,

w2(y) = C1η1y
δ1 + C2η2y

δ2 ,

On [k1, k2] :w1(y) = w3(y)− βb + βsy = E1y
ζ1 + E2y

ζ2 + a1 − βb + (βs − a2) y,

w2(y) = B1y
ν1 +B2y

ν2 + w2,p(y),

On (k2,∞) :w1(y) = w3(y)− βb + βsy = C3y
δ3 + C4y

δ4 − βb + βsy,

w2(y) = w4(y)− βb + βsy = C3η3y
δ3 + C4η4y

δ4 − βb + βsy.

(2.16)

Next, we use the smooth-fit conditions to determine the parameters C1, C2, B1, B2, k1 and k2. First,
the continuity of w1(y), w2(y), w

′
1(y) and w′

2(y) at k1 yields

C1k
δ1
1 + C2k

δ2
1 = w3 (k1) + βsk1 − βb,

C1δ1k
δ1−1
1 + C2δ2k

δ2−1
1 = w′

3 (k1) + βs,

C1η1k
δ1
1 + C2η2k

δ2
1 = B1k

ν1
1 +B2k

ν2
1 + w2,p (k1) ,

C1η1δ1k
δ1−1
1 + C2η2δ2k

δ2−1
1 = B1ν1k

ν1−1
1 +B2ν2k

ν2−1
1 + w′

2,p (k1) .

Similarly, the continuity of w2(y) and w′
2(y) at k2 yields

B1k
ν1
2 +B2k

ν2
2 + w2,p (k2) = w4 (k2)− βb + βsk2,

B1ν1k
ν1−1
2 +B2ν2k

ν2−1
2 + w′

2,p (k2) = w′
4 (k2) + βs.
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We can write them in matrix form:(
C1

C2

)
= Φ−1 (k1, δ1, δ2)

(
w3 (k1) + βsk1 − βb

k1 [w
′
3 (k1) + βs]

)
,(

B1

B2

)
= Φ−1 (k1, ν1, ν2)

[
Φ (k1, δ1, δ2) ΛΦ

−1 (k1, δ1, δ2)

(
w3 (k1) + βsk1 − βb

k1 [w
′
3 (k1) + βs]

)
−
(

w2,p (k1)

k1w
′
2,p (k1)

)
.

The continuity of w2 and w′
2 at k2 leads to the equations

Φ (k2, ν1, ν2)

(
B1

B2

)
=

(
w4 (k2)− w2,p (k2)− βb + βsk2
k2
[
w′

4 (k2)− w′
2,p (k2) + βs

] )
.

It follows that(
B1

B2

)
= Φ−1 (k2, ν1, ν2)

(
w4 (k2)− w2,p (k2)− βb + βsk2
k2
[
w′

4 (k2)− w′
2,p (k2) + βs

] )
.

Eliminate B1 and B2 to obtain the equations for k1 and k2 :

Φ−1 (k1, ν1, ν2)

[
Φ (k1, δ1, δ2) ΛΦ

−1 (k1, δ1, δ2)

(
w3 (k1) + βsk1 − βb

k1 [w
′
3 (k1) + βs]

)
−
(

w2,p (k1)

k1w
′
2,p (k1)

)]
= Φ−1 (k2, ν1, ν2)

(
w4 (k2)− w2,p (k2)− βb + βsk2
k2
[
w′

4 (k2)− w′
2,p (k2) + βs

] )
.

(2.17)

Recall that the constants B1, B2, C1, and C2 can be represented as functions of k1 and k2. So are
functions w1(y) and w2(y). Therefore, k1 and k2 need to be determined so that the following variational
inequalities are satisfied:

On (0, k1) : w1(y)− w3(y) + βb − βsy ≥ 0,

w2(y)− w4(y) + βb − βsy ≥ 0,

On [k1, k2] : (ρ+ λ1 − L1)w1(y)− λ1w2(y) ≥ 0,

w2(y)− w4(y) + βb − βsy ≥ 0,

On (k2,∞) : (ρ+ λ1 − L1)w1(y)− λ1w2(y) ≥ 0,

(ρ+ λ2 − L2)w2(y)− λ2w1(y) ≥ 0.

(2.18)
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Next, we consider equivalent inequalities for those involving the differential operators Lj . First, on
the interval [k2,∞), the variational inequalities are equivalent to

(ρ+ λ1 − µ2(1)) βsy − (ρ+ λ1 − µ1(1)) βb ≥ λ1 (βsy − βb) ,

(ρ+ λ2 − µ2(2)) βsy − (ρ+ λ2 − µ1(2)) βb ≥ λ2 (βsy − βb) .

as in Case I. The equivalent conditions for these inequalities to hold are

k2 ≥
(ρ− µ1(j)) βb

(ρ− µ2(j)) βs

for j = 1, 2

Move on to the interval [k1, k2] and recall w1 = w3 − βb + βsy. Apply (ρ+ λ1 − L1) to w1 to
obtain

(ρ+ λ1 − L1)w1 = (ρ+ λ1 − L1)w3 + (ρ+ λ1 − µ2(1)) βsy − (ρ+ λ1 − µ1(1)) βb.

In addition, recall that k3 < k4 < k1 < k2 and (ρ+ λ1 − L1)w3 = λ1w4. It follows that

(ρ+ λ1 − L1)w1 = λ1w4 + (ρ+ λ1 − µ2(1)) βsy − (ρ+ λ1 − µ1(1)) βb.

Recall also that w4 = C3η3y
δ3 + C4η4y

δ4 for y ≥ k4 and w2(y) = B1y
ν1 + B2y

ν2 + w2,p(y). Hence
the inequality (ρ+ λ1 − L1)w1(y)− λ1w2(y) ≥ 0 is equivalent to

B1y
ν1 +B2y

ν2 + w2,p(y) ≤ C3η3y
δ3 + C4η4y

δ4 +

[
ρ+ λ1 − µ2(1)

λ1

]
βsy −

[
ρ+ λ1 − µ1(1)

λ1

]
βb.

2.4.3 CASE III: k3 < k4 < k2 < k1

Next, we consider the last case (k3 < k4 < k2 < k1). For 0 < y < k2, we have the equations

(ρ+ λ1 − L1)w1(y)− λ1w2(y) = 0 and (ρ+ λ2 − L2)w2(y)− λ2w1(y) = 0.

Their general solutions can be given by

w1(y) = C1y
δ1 + C2y

δ2 and w2(y) = C1η1y
δ1 + C2η2y

δ2 .

For k1 ≤ y ≤ k2, we have

w1(y) = w3(y)− βb + βsy and (ρ+ λ2 − L2)w2(y)− λ2w1(y) = 0.

For k2 < y < ∞, we have

w1(y) = w3(y)− βb + βsy and w2(y) = w4(y)− βb + βsy.
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Recall the solutions w3 and w4 given in (39) (Appendix). It follows that, on the interval [k2, k1]

w2(y) = w4(y)− βb + βsy = C3η3y
δ3 + C4η4y

δ4 − βb + βsy.

and w1(y) satisfies

(ρ+ λ1 − L1)w1(y) = λ1w2(y) = λ1

[
C3η3y

δ3 + C4η4y
δ4 − βb + βsy

]
.

Then the general solution w1(y) = B1y
ζ1 +B2y

ζ2 + w1,p(y) where the particular solution

w1,p(y) =
λ1C3η3

ρ+ λ1 − A1 (δ3)
yδ3 +

λ1η4C4

ρ+ λ1 − A1 (δ4)
yδ4 − λ1βb

ρ+ λ1 − µ1(1)
+

λ1βs

ρ+ λ1 − µ2(1)
y.

Note that λ1/ (ρ+ λ1 − A1 (δ3)) = 1/η3 and λ1/ (ρ+ λ1 − A1 (δ4)) = 1/η4. These imply

w1,p(y) = C3y
δ3+C4y

δ4− λ1βb

ρ+ λ1 − µ1(1)
+

λ1βsy

ρ+ λ1 − µ2(1)
= w3(y)−

λ1βb

ρ+ λ1 − µ1(1)
+

λ1βsy

ρ+ λ1 − µ2(1)
.

Finally, on the interval [k1,∞), we have

w1(y) = w3(y)− βb + βsy = C3y
δ3 + C4y

δ4 − βb + βsy,

w2(y) = w4(y)− βb + βsy = C3η3y
δ3 + C4η4y

δ4 − βb + βsy.

On (0, k2) :w1(y) = C1y
δ1 + C2y

δ2 ,

w2(y) = C1η1y
δ1 + C2η2y

δ2 ,

On [k2, k1] :w1(y) = B1y
ζ1 +B2y

ζ2 + w1,p(y),

w2(y) = w4(y)− βb + βsy = C3η3y
δ3 + C4η4y

δ4 − βb + βsy,

On (k1,∞) :w1(y) = w3(y)− βb + βsy = C3y
δ3 + C4y

δ4 − βb + βsy,

w2(y) = w4(y)− βb + βsy = C3η3y
δ3 + C4η4y

δ4 − βb + βsy.

(2.20)

Next, we apply the smooth-fit method to determine the parameters C1, C2, B1, B2, k1 and k2. First,
the continuity of w1(y), w2(y), w

′
1(y) and w′

2(y) at k2 yields

C1k
δ1
2 + C2k

δ2
2 = B1k

ζ1
2 +B2k

ζ2
2 + w1,p (k2) ,

C1δ1k
δ1−1
2 + C2δ2k

δ2−1
2 = B1ζ1k

ζ1−1
2 +B2ζ2k

ζ2−1
2 + w′

1,p (k2) ,

C1η1k
δ1
2 + C2η2k

δ2
2 = w4 (k2) + βsk2 − βb,

C1η1δ1k
δ1−1
2 + C2η2δ2k

δ2−1
2 = w′

4 (k2) + βs.
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The continuity of w1(y) and w′
1(y) at k1 yields

B1k
ζ1
1 +B2k

ζ2
1 + w1,p (k1) = w3 (k1)− βb + βsk1,

B1ζ1k
ζ1−1
1 +B2ζ2k

ζ2−1
1 + w′

1,p (k1) = w′
3 (k1) + βs.

Solve for C1, C2, B1 and B2 to obtain(
C1

C2

)
= Λ−1Φ−1 (k2, δ1, δ2)

(
w4 (k2) + βsk2 − βb

k2 [w
′
4 (k2) + βs]

)
,(

B1

B2

)
= Φ−1 (k2, ζ1, ζ2)

[
Φ (k2, δ1, δ2) Λ

−1Φ−1 (k2, δ1, δ2)

(
w4 (k2) + βsk2 − βb

k2 [w
′
4 (k2) + βs]

)
−
(

w1,p (k2)

k2w
′
1,p (k2)

)
.

The continuity of w1 and w′
1 at k1 yields the system

Φ (k1, ζ1, ζ2)

(
B1

B2

)
=

(
w3 (k1)− w1,p (k1)− βb + βsk1
k1
[
w′

3 (k1)− w′
1,p (k1) + βs

] )
.

This gives (
B1

B2

)
= Φ−1 (k1, ζ1, ζ2)

(
w3 (k1)− w1,p (k1)− βb + βsk1
k1
[
w′

3 (k1)− w′
1,p (k1) + βs

] )
.

Eliminate B1 and B2 to obtain the following equations for k1 and k2 :

Φ−1 (k2, ζ1, ζ2)

[
Φ (k2, δ1, δ2) Λ

−1Φ−1 (k2, δ1, δ2)

(
w4 (k2) + βsk2 − βb

k2 [w
′
4 (k2) + βs]

)
−
(

w1,p (k2)

k2w
′
1,p (k2)

)]
= Φ−1 (k1, ζ1, ζ2)

(
w3 (k1)− w1,p (k1)− βb + βsk1
k1
[
w′

3 (k1)− w′
1,p (k1) + βs

] )
.

(2.21)

Again, note that the constants B1, B2, C1, and C2 can be given as functions of k1 and k2. So are
functions w1(y) and w2(y). Therefore, k1 and k2 need to be determined so that the following variational
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inequalities are satisfied:

On (0, k2) :w1(y)− w3(y) + βb − βsy ≥ 0,

w2(y)− w4(y) + βb − βsy ≥ 0,

On [k2, k1] : w1(y)− w3(y) + βb − βsy ≥ 0,

(ρ+ λ2 − L2)w2(y)− λ2w1(y) ≥ 0,

On (k1,∞) : (ρ+ λ1 − L1)w1(y)− λ1w2(y) ≥ 0,

(ρ+ λ2 − L2)w2(y)− λ2w1(y) ≥ 0.

(2.22)

Finally, to see equivalent conditions for the above inequalities involving Lj , we first note that, on the
interval (k1,∞), the variational inequalities are equivalent to (as in Case II by switching the roles of k1
and k2, (and w1 and w2),

k1 ≥
(ρ− µ1(j)) βb

(ρ− µ2(j)) βs

for j = 1, 2.

Next, on the interval [k2, k1], to relate (ρ+ λ2 − L2)w2(y)− λ2w1(y) ≥ 0, recall that w1(y) =

B1y
ζ1 +B2y

ζ2 + w1,p(y) and w2(y) = w4(y)− βb + βsy on [k2, k1] . Apply (ρ+ λ2 − L2) to w2

to obtain

(ρ+ λ2 − L2)w2(y) = λ2w3 − (ρ+ λ2 − µ1(2)) βb + (ρ+ λ2 − µ2(2)) βsy.

Hence, (ρ+ λ2 − L2)w2(y)− λ2w1(y) ≥ 0 is equivalent to

B1y
ζ1 +B2y

ζ2 + w1,p(y) ≤ C3y
δ3 + C4y

δ4 −
[
ρ+ λ2 − µ1(2)

λ2

]
βb +

[
ρ+ λ2 − µ2(2)

λ2

]
βsy.

Finally, to see equivalent conditions for the above inequalities involving Lj , we first note that, on the
interval (k1,∞), the variational inequalities are equivalent to (as in Case II by switching the roles of k1
and k2, (and w1 and w2),

k1 ≥
(ρ− µ1(j)) βb

(ρ− µ2(j)) βs

for j = 1, 2.

Next, on the interval [k2, k1], to relate (ρ+ λ2 − L2)w2(y)− λ2w1(y) ≥ 0, recall that w1(y) =

B1y
ζ1 +B2y

ζ2 + w1,p(y) and w2(y) = w4(y)− βb + βsy on [k2, k1] . Apply (ρ+ λ2 − L2) to w2

to obtain

(ρ+ λ2 − L2)w2(y) = λ2w3 − (ρ+ λ2 − µ1(2)) βb + (ρ+ λ2 − µ2(2)) βsy.
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Hence, (ρ+ λ2 − L2)w2(y)− λ2w1(y) ≥ 0 is equivalent to

B1y
ζ1 +B2y

ζ2 + w1,p(y) ≤ C3y
δ3 + C4y

δ4 −
[
ρ+ λ2 − µ1(2)

λ2

]
βb +

[
ρ+ λ2 − µ2(2)

λ2

]
βsy.
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2.4.4 CASE IV: k4 < k2 < k3 < k1

In the subsectoin §2.4.7, we calculated w3 and w4:

[0, k3] : w3 = βs − βby,

[k3,∞) : w3 = C3y
δ3 + C4y

δ4 ,

[0, k4] : w4 = βs − βby,

[k4, k3] : w4 = D1y
ν1 +D2y

ν2 + b1 − b2y,

[k3,∞) : w4 = C3η3y
δ3 + C4η4y

δ4 .

(2.23)

Similarly to the previous computation, we have on the interval 0 ≤ y ≤ k2 :

w1(y) = C1y
δ1 + C2y

δ2 and w1(y) = C1η1y
δ1 + C2η2y

δ2 .

On the interval k2 ≤ y ≤ k1, we have

w2(y) = w4(y)− βb + βsy and (ρ+ λ1 − L1)w1(y)− λ1w2(y) = 0.

On the interval k1 ≤ y < ∞, we have

w1(y) = w3(y)− βb + βsy and w2(y) = w4(y)− βb + βsy.

Then combine with w3 and w4, we can find w2 first:

[k2, k3] : w2 = w4 − βb + βsy = D1y
ν1 +D2y

ν2 + (b1 − βb)− (b2 − βs) y,

[k3,∞) : w2 = w4 − βb + βsy = C3η3y
δ3 + C4η4y

δ4 − βb + βsy.

Next we shall find w1. On the interval [k2, k3]:

w2(y) = D1y
ν1+D2y

ν2+(b1 − βb)−(b2 − βs) y and (ρ+ λ1 − L1)w1(y)−λ1w2(y) = 0.

implies the solution w1(y) = E1y
τ1 + E2y

τ2 + w1,p1(y) where E1y
τ1 + E2y

τ2 is the general solution
of the homogeneous differential equation (ρ+ λ1 − L1)w1(y) = 0 and the particular solution

w1,p1(y) =
λ1D1

ρ+ λ1 − A1 (ν1)
yν1 +

λ1D2

ρ+ λ1 − A1 (ν2)
yν2 +

λ1 (b1 − βb)

ρ+ λ1 − µ1(1)
+

λ1 (βs − b2)

ρ+ λ1 − µ2(1)
y.

On the interval [k3, k1]

w2(y) = C3η3y
δ3 + C4η4y

δ4 − βb + βsy and (ρ+ λ1 − L1)w1(y)− λ1w2(y) = 0.
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implies the solution w1(y) = F1y
1 + F2y

2 + w1,p2(y) where F1y
1 + F2y

2 is the general solution
of the homogeneous differential equation (ρ+ λ1 − L1)w1(y) = 0 and the particular solution

w1,p2(y) =
λ1η3C3

ρ+ λ1 − A1 (δ3)
yδ3 +

λ1η4C4

ρ+ λ1 − A1 (δ3)
yδ4 − λ1βb

ρ+ λ1 − µ1(1)
+

λ1βs

ρ+ λ1 − µ2(1)
y

= C3y
δ3 + C4y

δ4 − λ1βb

ρ+ λ1 − µ1(1)
+

λ1

ρ+ λ1 − µ2(1)
y.

Finally, on the interval [k1,∞), we have

w1(y) = w3(y)− βb + βsy = C3y
δ3 + C4y

δ4 − βb + βsy.

We summarize the computation about w1(y) and w2(y) :

[0, k2] : w1(y) = C1y
δ1 + C2y

δ2 ,

w2(y) = C1η1y
δ1 + C2η2y

δ2 ,

[k2, k3] : w1(y) = E1y
τ1 + E2y

τ2 + w1,p1(y),

w2(y) = w4(y)− βb + βsy = D1y
ν1 +D2y

ν2 + (b1 − βb)− (b2 − βs) y,

[k3, k1] : w1(y) = F1y
τ1 + F2y

τ2 + w1,p2(y),

w2(y) = w4(y)− βb + βsy = C3η3y
δ3 + C4η4y

δ4 − βb + βsy,

[k1,∞) : w1(y) = w3(y)− βb + βsy = C3y
δ3 + C4y

δ4 − βb + βsy,

w2(y) = w4(y)− βb + βsy = C3η3y
δ3 + C4η4y

δ4 − βb + βsy.

(2.24)

Here

w1,p1(y) =
λ1D1

ρ+ λ1 − A1 (ν1)
yν1 +

λ1D2

ρ+ λ1 − A1 (ν2)
yν2 +

λ1 (b1 − βb)

ρ+ λ1 − µ1(1)
+

λ1 (βs − b2)

ρ+ λ1 − µ2(1)
y,

w1,p2(y) = C3y
δ3 + C4y

δ4 − λ1βb

ρ+ λ1 − µ1(1)
+

λ1βs

ρ+ λ1 − µ2(1)
y.

We next use the continuity of w1, w2 and their derivatives at k2, k3 and k1 to get

C1k
δ1
2 + C2k

δ2
2 = E1k

τ1
2 + E2k

τ2
2 + w1,p1 (k2) ,

C1δ1k
δ1
2 + C2δ2k

δ2
2 = E1k

τ1
2 + E2k

τ2
2 + w′

1,p1
(k2) k2,

C1η1k
δ1
2 + C2η2k

δ2
2 = w4 (k2)− βb + βsk2,

C1η1δ1k
δ1
2 + C2η2δ2k

δ2
2 = w′

4 (k2) + βsk2.

The continuity of w1 and its derivative at k3 yields

E1k
τ1
3 + E2k

τ2
3 + w1,p1 (k3) = F1k

τ1
3 + F2k

τ2
3 + w1,p2 (k3) ,

E1k
τ1
3 + E2k

τ2
3 + k3w

′
1,p1

(k3) = F1k
τ1
3 + F2k

τ2
3 + k3w

′
1,p2

(k3) .
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The continuity of w1 and its derivative at k1 yields

F1k
τ1
1 + F2k

τ2
1 + w1,p2 (k1) = w3 (k1)− βb + βsk1,

F1k
τ1
1 + F2k

τ2
1 + w′

1,p2
(k1) = k1w

′
3 (k1) + βsk1.

We write the matrix form of the above eight equations as follows

Φ (k2; δ1, δ2)

(
C1

C2

)
= Φ(k2; 1, 2)

(
E1

E2

)
+

(
w1,p1 (k2)

w′
1,p1

(k2) k2

)
,

Φ (k2; δ1, δ2)

(
η1C1

η2C2

)
=

(
w4 (k2)− βb + βsk2

w′
4 (k2) + βsk2

)
,

Φ (k3; τ1, τ2)

(
E1 − F1

E2 − F2

)
=

(
w1,p2 (k3)− w1,p1 (k3)[

w′
1,p2

(k3)− w′
1,p1

(k3)
]
k3

)
,

Φ (k1; τ1, τ2)

(
F1

F2

)
=

(
w3 (k1)− w1,p2 (k1)− βb + βsk1[

w′
3 (k1)− w′

1,p2
(k1) + βs

]
k1

)
.

We can solve the above system backward and get(
F1

F2

)
= Φ−1 (k1; τ1, τ2)

(
w3 (k1)− w1,p2 (k1)− βb + βsk1[

w′
3 (k1)− w′

1,p2
(k1) + βs

]
k1

)
,(

E1

E2

)
= Φ−1 (k3; τ1, τ2)

(
w1,p2 (k3)− w1,p1 (k3)[

w′
1,p2

(k3)− w′
1,p1

(k3)
]
k3

)
,

+ Φ−1 (k1; τ1, τ2)

(
w3 (k1)− w1,p2 (k1)− βb + βsk1[

w′
3 (k1)− w′

1,p2
(k1) + βs

]
k1

)
,(

C1

C2

)
=

(
1
η1

0

0 1
η2

)
Φ−1 (k2; δ1, δ2)

(
w4 (k2)− βb + βsk2
k2 [w

′
4 (k2) + βs]

)
.

We can use the formula for C1, C2, E1 and E2 and the first system to get

Φ (k2; δ1, δ2)

(
1
η1

0

0 1
η2

)
Φ−1 (k2; δ1, δ2)

(
w4 (k2)− βb + βsk2
k2 [w

′
4 (k2) + βs]

)
−
(

w1,p1 (k2)

w′
1,p1

(k2) k2

)
= Φ(k2; τ1, τ2)

[
Φ−1 (k3; τ1, τ2)

(
w1,p2 (k3)− w1,p1 (k3)[

w′
1,p2

(k3)− w′
1,p1

(k3)
]
k3

)
+ Φ−1 (k1; τ1, τ2)

(
w3 (k1)− w1,p2 (k1)− βb + βsk1[

w′
3 (k1)− w′

1,p2
(k1) + βs

]
k1

)
.

(2.25)
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This yields two equations ofk1 andk2. The existence ofk1 andk2 can proved by following the method
in Lemma 4.2 of [12]. Once we find k1 and k2 and note that the constants B1, B2, C1, C2, D1, and D2

can be written as functions of k1 and k2. So are functions w1(y) and w2(y). In view of this, k1 and k2
have to be determined so that the following variational inequalities are satisfied:

On (0, k2) : w1(y)− w3(y) + βb − βsy ≥ 0,

w2(y)− w4(y) + βb − βsy ≥ 0,

On [k2, k1] : (ρ+ λ2 − L2)w2(y)− λ2w1(y) ≥ 0,

w2(y)− w4(y) + βb − βsy ≥ 0,

On (k1,∞) : (ρ+ λ1 − L1)w1(y)− λ1w2(y) ≥ 0,

(ρ+ λ2 − L2)w2(y)− λ2w1(y) ≥ 0.

(2.26)

On (k2, k1), because w1 and w2 are defined differently on (k2, k3) and (k3, k1), the differential oper-
ators Lj . First, we consider the two inequalities on the interval [k2,∞) :

(ρ+ λ1 − L1)w1(y)− λ1w2(y) ≥ 0 and (ρ+ λ2 − L2)w2(y)− λ2w1(y) ≥ 0.

Recall that w1(y) = w3(y)− βb + βsy and w2(y) = w4(y)− βb + βsy, and we apply L1 to w1(y) and
L2 to w2(y) to get

(ρ+ λ1 − L1)w1(y) = λ1w4(y) + (ρ+ λ1 − µ2(1)) βsy − (ρ+ λ1 − µ1(1)) βb,

(ρ+ λ2 − L2)w2(y) = λ2w3(y) + (ρ+ λ2 − µ2(2)) βsy − (ρ+ λ2 − µ1(2)) βb.

Then (23) is equivalent to

(ρ+ λ1 − µ2(1)) βsy − (ρ+ λ1 − µ1(1)) βb ≥ λ1 (βsy − βb) ,

(ρ+ λ2 − µ2(2)) βsy − (ρ+ λ2 − µ1(2)) βb ≥ λ2 (βsy − βb) .

Simplify to obtain

(ρ− µ2(1)) βsy − (ρ− µ1(1)) βb ≥ 0 and (ρ− µ2(2)) βsy − (ρ− µ1(2)) βb ≥ 0.

These inequalities hold as long as

k2 ≥
(ρ− µ1(j)) βb

(ρ− µ2(j)) βs

for j = 1, 2

Next, we consider the inequality involving L2, i.e, (ρ+ λ2 − L2)w2(y) − λ2w1(y) ≥ 0 on [k2, k1].
Recall that w2 = w4 − βb + βsy and w2 satisfies (ρ+ λ1 − L1)w1(y) = λ1w2(y) on this interval.
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Applying (ρ+ λ2 − L2) to w2 yield

(ρ+ λ2 − L2)w2 = (ρ+ λ2 − L2)w4 + (ρ+ λ2 − µ2(2)) βsy − (ρ+ λ2 − µ1(2)) βb.

Recall that k4 < k2 < k3 < k1 and(ρ+ λ2 − L2)w4 = λ2w3. It follows that

(ρ+ λ2 − L2)w2 = λ2w3 + (ρ+ λ2 − µ2(2)) βsy − (ρ+ λ2 − µ1(2)) βb.

Recall also that w3 = βs − βby on the interval [0, k3].
Hence on interval [k2, k3] ⊂ [0, k3],

(ρ+ λ2 − L2)w2(y)− λ2w1(y) ≥ 0

is equivalent to

λ2 (βs − βby) + (ρ+ λ2 − µ2(2)) βsy − (ρ+ λ2 − µ1(2)) βb ≥ λ2(E1y
τ1 + E2y

τ2 +
λ1D1

ρ+ λ1 − A1 (ν1)
yν1

+
λ1D2

ρ+ λ1 − A1 (ν2)
yν2 +

λ1 (b1 − βb)

ρ+ λ1 − µ1(1)
+

λ1 (βs − b2)

ρ+ λ1 − µ2(1)
y).

(2.27)

On (k3, k1)w3 is defined differently asw3 = C3y
δ3+C4y

δ4 , then (ρ+ λ2 − L2)w2(y)−λ2w1(y) ≥
0 is equivalent to

λ2

(
C3y

δ3 + C4y
δ4
)
+ (ρ+ λ2 − µ2(2)) βsy − (ρ+ λ2 − µ1(2)) βb ≥ λ2w1. (2.28)
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2.4.5 CASE V: k4 < k3 < k2 < k1

In the subsectoin §1.4.7, we calculated w3 and w4:

[0, k3] :w3 = βs − βby,

[k3,∞) :w3 = C3y
δ3 + C4y

δ4 ,

[0, k4] :w4 = βs − βby,

[k4, k3] :w4 = D1y
ν1 +D2y

ν2 + b1 − b2y,

[k3,∞) :w4 = C3η3y
δ3 + C4η4y

δ4 .

This case is relatively simpler than the previous case. Similarly on the interval [0, k2], we have

w1(y) = C1y
δ1 + C2y

δ2 and w2(y) = C1η1y
δ1 + C2η2y

δ2 .

On the interval [k2, k1], w2(y) = w4(y) − βb + βsy = C3η3y
δ3 + C4η4y

δ4 − βb + βsy and
(ρ+ λ1 − L1)w1(y)−λ1w2(y) = 0 imply thatw1(y) = F1y

τ1+F2y
τ2+w1,p(y)whereF1y

τ1+F2y
τ2

is the general solution of the homogeneous differential equation (ρ+ λ1 − L1)w1(y) = 0 and the par-
ticular solution

w1,p(y) =
λ1η3C3

ρ+ λ1 − A1 (δ3)
yδ3 +

λ1η4C4

ρ+ λ1 − A1 (δ3)
yδ4 − λ1βb

ρ+ λ1 − µ1(1)
+

λ1βs

ρ+ λ1 − µ2(1)
y

= C3y
δ3 + C4y

δ4 − λ1βb

ρ+ λ1 − µ1(1)
+

λ1βs

ρ+ λ1 − µ2(1)
y.

Finally, on the interval [k1,∞), we have

w1(y) = w3(y)− βb + βsy = C3y
δ3 + C4y

δ4 − βb + βsy,

w2(y) = w4(y)− βb + βsy = C3η3y
δ3 + C4η4y

δ4 − βb + βsy.

Let’s summarize :

[0, k2] : w1(y) = C1y
δ1 + C2y

δ2 ,

w2(y) = C1η1y
δ1 + C2η2y

δ2 ,

[k2, k1] : w1(y) = F1y
τ1 + F2y

τ2 + w1,p(y),

w2(y) = w4(y)− βb + βsy = C3η3y
δ3 + C4η4y

δ4 − βb + βsy,

[k1,∞) : w1(y) = w3(y)− βb + βsy = C3y
δ3 + C4y

δ4 − βb + βsy,

w2(y) = w4(y)− βb + βsy = C3η3y
δ3 + C4η4y

δ4 − βb + βsy.

(2.29)
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The continuity of w1 and w2, and their derivatives at k2 yield

C1k
δ1
2 + C2k

δ2
2 = F1k

τ1
2 + F2k

τ2
2 + w1,p (k2) ,

C1δ1k
δ1
2 + C2δ2k

δ2
2 = F1k

τ1
2 + F2k

τ2
2 + k2w

′
1,p (k2) ,

C1η1k
δ1
2 + C2η2k

δ2
2 = w4 (k2)− βb + βsk2,

C1η1δ1k
δ1
2 + C2η2δ2k

δ2
2 = [w′

4 (k2) + βs] k2.

The continuity of w1 and its derivative at k1 imply

F1k
τ1
1 + F2k

τ2
1 + w1,p (k1) = w3 (k1)− βb + βsk1,

F1k
τ1
1 + F2k

τ1
1 + k1w

′
1,p (k1) = k1 [w

′
3 (k1) + βs] .

We can find that(
F1

F2

)
= Φ−1 (k1; τ1, τ2)

(
w3 (k1)− βb + βsk1 − w1,p (k1)

k1
[
w′

3 (k1)− w′
1,p (k1) + βs

] )
,(

C1

C2

)
=

(
1
η1

0

0 1
η2

)
Φ−1 (k2; δ1, δ2)

(
w4 (k2)− βb + βsk2
k2 [w

′
4 (k2) + βs]

)
.

Then we can get two equations of k1 and k2 in matrix form:

Φ (k2; δ1, δ2)

(
1
η1

0

0 1
η2

)
Φ−1 (k2; δ1, δ2)

(
w4 (k2)− βb + βsk2
k2 [w

′
4 (k2) + βs]

)
=Φ(k2; τ1, τ2) Φ

−1 (k1; τ1, τ2)

(
w3 (k1)− βb + βsk1 − w1,p (k1)

k1
[
w′

3 (k1)− w′
1,p (k1) + βs

] )
+

(
w1,p (k2)

k2w
′
1,p (k2)

)
.

(2.30)

Recall that the constants B1, B2, C1, and C2 can be represented as functions of k1 and k2. So are
functions w1(y) and w2(y). Therefore, k1 and k2 need to be determined so that the following variational
inequalities are satisfied:

On (0, k2) : w1(y)− w3(y) + βb − βsy ≥ 0,

w2(y)− w4(y) + βb − βsy ≥ 0,

On [k2, k1] : (ρ+ λ1 − L2)w2(y)− λ2w1(y) ≥ 0,

w1(y)− w3(y) + βb − βsy ≥ 0,

On (k1,∞) : (ρ+ λ1 − L1)w1(y)− λ1w2(y) ≥ 0,

(ρ+ λ2 − L2)w2(y)− λ2w1(y) ≥ 0.
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Next, we consider equivalent inequalities for those involving the differential operators Lj . First, on
the interval [k2,∞), the variational inequalities are equivalent to

(ρ+ λ1 − µ2(1)) βsy − (ρ+ λ1 − µ1(1)) βb ≥ λ1 (βsy − βb) ,

(ρ+ λ2 − µ2(2)) βsy − (ρ+ λ2 − µ1(2)) βb ≥ λ2 (βsy − βb) .

as in Case IV. The equivalent conditions for these inequalities to hold are

k2 ≥
(ρ− µ1(j)) βb

(ρ− µ2(j)) βs

for j = 1, 2.

Move on to the interval [k2, k1] and recall w2 = w4 − βb + βsy. Apply (ρ+ λ2 − L2) to w2 to
obtain

(ρ+ λ2 − L2)w2 = (ρ+ λ2 − L2)w4 + (ρ+ λ2 − µ2(2)) βsy − (ρ+ λ2 − µ1(2)) βb.

In addition, recall that k4 < k3 < k2 < k1 and (ρ+ λ2 − L2)w4 = λ2w3. It follows that

(ρ+ λ2 − L2)w2 = λ2w3 + (ρ+ λ2 − µ2(2)) βsy − (ρ+ λ2 − µ1(2)) βb.

Recall also that w3 = C3y
δ3 + C4y

δ4 for y ≥ k3. Hence the inequality (ρ+ λ2 − L2)w2(y) −
λ2w1(y) ≥ 0 is equivalent to

w1 ≤ C3y
δ3 + C4y

δ4 +

[
ρ+ λ1 − µ2(1)

λ2

]
βsy −

[
ρ+ λ1 − µ1(1)

λ2

]
βb.
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2.4.6 CASE VI: k4 < k3 < k1 < k2

On the interval [0, k1],

w1(y) = C1y
δ1 + C2y

δ2 and w1(y) = C1η1y
δ1 + C2η2y

δ2 .

On the interval [k1, k2],

w1(y) = w3(y)− βb + βsy = C3y
δ3 + C4y

δ4 − βb + βsy and (ρ+ λ2 − 2)w2(y) = λ2w1(y).

This will yield
w2(y) = D1y

ν1 +D2y
ν2 + w2,p(y).

with
w2,p(y) = w4(y)−

βbλ2

ρ+ λ2 − µ1(2)
+

βsλ2

ρ+ λ2 − µ2(2)
y.

Finally, on the interval [k1,∞), we have

w1(y) = w3(y)− βb + βsy = C3y
δ3 + C4y

δ4 − βb + βsy,

w2(y) = w4(y)− βb + βst = C3η3y
δ3 + C4η4y

δ4 − βb + βsy.

The continuity of w1 and w2, and their derivatives at k1 yield

C1k
δ1
1 + C2k

δ2
1 = w3 (k1)− βb + βsk1,

C1δ1k
δ1
1 + C2δ2k

δ2
1 = [w′

3 (k1) + βs] k1,

C1η1k
δ1
1 + C2η2k

δ2
1 = D1k

ν1
1 +D2k

ν2
1 + w2,p (k1) ,

C1η1δ1k
δ1
1 + C2η2δ2k

δ2
1 = D1ν1k

ν1
1 +D2ν2k

ν2
1 + k1w

′
2,p (k1) .

The continuity of w2 and its derivative at k2 imply

D1k
ν1
2 +D2k

ν2
2 + w2,p (k2) = w4 (k2)− βb + βsk2,

D1ν1k
ν1
2 +D22k

ν2
2 + k2w

′
2,p (k2) = k2 [w

′
4 (k2) + βs] .

We can find that(
D1

D2

)
= Φ−1 (k2; ν1, ν2)

(
w4 (k2)− βb + βsk2 − w2,p (k2)

k2
[
w′

4 (k2)− w′
2,p (k2) + βs

] )
,(

C1

C2

)
= Φ−1 (k1; δ1, δ2)

(
w3 (k1) + βsk1 − βb

k1 [w
′
3 (k1) + βs]

)
.
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Then we can get two equations of k1 and k2 in matrix form:

Φ (k1; δ1, δ2)

(
η1 0

0 η2

)
Φ−1 (k1; δ1, δ2)

(
w3 (k1)− βb + βsk1
k1 [w

′
3 (k1) + βs]

)
=Φ(k1; ν1, ν2) Φ

−1 (k2; τ1, τ2)

(
w4 (k2)− βb + βsk2 − w2,p (k2)

k2
[
w′

4 (k1)− w′
2,p (k2) + βs

] )
+

(
w2,p (k1)

k1w
′
2,p (k1)

)
.

(2.31)

Recall that the constants B1, B2, C1, and C2 can be represented as functions of k1 and k2. So are
functions w1(y) and w2(y). Therefore, k1 and k2 need to be determined so that the following variational
inequalities are satisfied:

On (0, k1) : w1(y)− w3(y) + βb − βsy ≥ 0,

w2(y)− w4(y) + βb − βsy ≥ 0,

On [k1, k2] : (ρ+ λ1 − L1)w1(y)− λ1w2(y) ≥ 0,

w1(y)− w3(y) + βb − βsy ≥ 0,

On (k2,∞) : (ρ+ λ1 − L1)w1(y)− λ1w2(y) ≥ 0,

(ρ+ λ2 − L2)w2(y)− λ2w1(y) ≥ 0.

(2.32)
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Finally, to see equivalent conditions for the above inequalities involving Lj , we first note that, on the
interval (k2,∞), the variational inequalities are equivalent to (as in Case II by switching the roles of k1
and k2, ( and w1 and w2),

k1 ≥
(ρ− µ1(j)) βb

(ρ− µ2(j)) βs

for j = 1, 2.

Move on to the interval [k1, k2] and recall w1 = w3 − βb + βsy. Apply (ρ+ λ1 − L1) to w1 to
obtain

(ρ+ λ1 − L1)w1 = (ρ+ λ1 − L1)w3 + (ρ+ λ1 − µ2(1)) βsy − (ρ+ λ1 − µ1(1)) βb.

In addition, recall that k4 < k3 < k1 < k2 and (ρ+ λ1 − L1)w3 = λ1w4. It follows that

(ρ+ λ1 − L1)w1 = λ1w4 + (ρ+ λ1 − µ2(1)) βsy − (ρ+ λ1 − µ1(1)) βb.

Recall also that w4 = C3η3y
δ3 + C4η4y

δ4 for y ≥ k4. Hence the inequality (ρ+ λ1 − L1)w1(y) −
λ1w2(y) ≥ 0 is equivalent to

w2(y) ≤ C3η3y
δ3 + C4η4y

δ4 +

[
ρ+ λ1 − µ2(1)

λ1

]
βsy −

[
ρ+ λ1 − µ1(1)

λ1

]
βb.

2.4.7 the solution w3 and w4

k3 < k4 (for CASES I, II, III):
We sketch the key steps in derivation of solutions w3 and w4. Recall the corresponding HJB equations:

min {(ρ+ λ1 − L1)w3(y)− λ1w4(y), w3(y) + βby − βs} = 0,

min {(ρ+ λ2 − L2)w4(y)− λ2w3(y), w4(y) + βby − βs} = 0.

First, we divide the interval (0,∞) into three subintervals:

Γ1 = (0, k3) , Γ2 = (k3, k4) , and Γ3 = [k4,∞) .

Note that w3 = w4 = βs − βby on Γ1

w3 = C3y
δ3 + C4y

δ4 and w4 = η3C3y
δ3 + η4C4y

δ4 on Γ3,

and w4 = βs − βby and (ρ+ λ1 − L1)w3(y) = λ1w4(y) on Γ2. To solve the non-homogeneous linear
equation of Euler type:

(ρ+ λ1 − L1)w3(y) = λ1w4(y) = λ1 (βs − βby) ,
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let
a1 =

λ1βs

ρ+ λ1 − µ1(1)
and a2 =

λ1βb

ρ+ λ1 − µ2(1)
.

Then a particular solution can be given as w3,p(y) = a1 − a2y. The general solution is given by

w3 = E1y
ζ1 + E2y

ζ2 + a1 − a2y,

where ζ1 andζ2 are given by (12). Next we apply smooth-fit conditions to find the parametersC1, C2, E1, E2, k3
and k4. First the continuity of w4 and its derivative at k4 yield

βs − βbk4 = η3C3k
δ3
4 + η4C4k

δ4
4 ,

−βb = η3δ3C3k
δ3−1
4 + η4δ4C4k

δ4−1
4 .

The continuity of w3 and its derivative at k3 and k4 yield

βs − βbk3 = E1k
ζ1
3 + E2k

ζ2
3 + a1 − a2k3,

−βb = E1ζ1k
ζ1−1
3 + E2ζ2k

ζ2−1
3 − a2,

E1k
ζ1
4 + E2k

ζ2
4 + a1 − a2k4 = C3k

δ3
4 + C4k

δ4
4 ,

E1ζ1k
ζ1−1
4 + E2ζ2k

ζ2−1
4 − a2 = δ3C3k

δ3−1
4 + δ4C4k

δ4−1
4 .

Let

Φ (t, s1, s2) =

(
ts1 ts2

s1t
s1 s2t

s2

)
and Λ =

(
η1 0

0 η2

)
.

Then the above system can be rewritten as

Φ (k4, δ3, δ4) Λ

(
C3

C4

)
=

(
βs − βbk4
−βbk4

)
,Φ (k3, ζ1, ζ2)

(
E1

E2

)
=

(
(βs − a1)− (βb − a2) k3

− (βb − a2) k3

)
,

Φ (k4, ζ1, ζ2)

(
E1

E2

)
+

(
a1 − a2k4
−a2k4

)
= Φ(k4; δ3, δ4)

(
C3

C4

)
.

Eliminate the parameters C1, C2, E1, and E2 to obtain the equations for k3 and k4 :

Φ (k4, ζ1, ζ2) Φ
−1 (k3, ζ1, ζ2)

(
(βs − a1)− (βb − a2) k3

− (βb − a2) k3

)
+

(
a1 − a2k4
−a2k4

)
= Φ(k4, δ3, δ4) Λ

−1Φ−1 (k4, δ3, δ4)

(
βs − βbk4
−βbk4

)
.

(2.33)
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Let r = k4/k3. Some simple calculations yield

Φ (k4, ζ1, ζ2) Φ
−1 (k3, ζ1, ζ2) =

1

ζ1 − ζ2

(
ζ1r

ζ2 − ζ2r
ζ1 rζ1 − rζ2

ζ1ζ2
(
rζ2 − rζ1

)
ζ1r

ζ1 − ζ2r
ζ2

)
,

Φ (k4, δ3, δ4) Λ
−1Φ−1 (k4, δ3, δ4) =

1

η1η2 (δ3 − δ4)

(
η1δ3 − η2δ4 η2 − η1
δ3δ4 (η1 − η2) η2δ3 − η1δ4

)
.

We can rewrite these (2.33) as follows

1

ζ1 − ζ2

(
(ζ2 − 1) (βb − a2) k3 − ζ2 (βs − a1) ζ1 (βs − a1) + (1− ζ1) (βb − a2) k3

ζ1 [(ζ2 − 1) (βb − a2) k3 − ζ2 (βs − a1)] ζ2 [ζ1 (βs − a1) + (1− ζ1) (βb − a2) k3]

)(
rζ1

rζ2

)
=

1

η1η2 (δ3 − δ4)

(
η1δ3 − η2δ4 η2 − η1
δ3δ4 (η1 − η2) η2δ3 − η1δ4

)(
βs − βbk4
−βbk4

)
−
(

a1 − a2k4
−a2k4

)
.

Let

α1 = (ζ2 − 1) (βb − a2) k3 − ζ2 (βs − a1) and α2 = (ζ2 − 1) (βb − a2) k3 − ζ2 (βs − a1) .

The matrix on the lefthand side is

1

ζ1 − ζ2

(
α1 α2

ζ1α1 ζ2α2

)
with inverse

(
− ζ2

α1

1
α1

ζ1
α2

− 1
α2

)
.

This yields(
rζ1

rζ2

)
=

(
− ζ2

α1

1
α1

ζ1
α2

− 1
α2

)[
1

η1η2(δ3−δ4)

(
η1δ3 − η2δ4 η2 − η1
δ3δ4(η1 − η2) η2δ3 − η1δ4

)(
βs − βbk4
−βbk4

)
−
(
a1 − a2k4
−a2k4

)]
.

Simplify them to obtain

[ζ2(βs − a1) + (1− ζ2)(βb − a2)k3]r
ζ1 + ζ2a1 + (1− ζ2)a2k4

= −δ4βs+(δ4−1)βbk4
η3(δ3−δ4)

(ζ2 − δ3) +
δ3βs+(1−δ3)βbk4

η4(δ3−δ4)
(ζ2 − δ4),

[−ζ1(βs − a1) + (ζ1 − 1)(βb − a2)k3]r
ζ2 + (ζ1 − 1)a2k4 − ζ1a1

= −δ4βs+(δ4−1)βbk4
η3(δ3−δ4)

(δ3 − ζ1) +
δ3βs+(1−δ3)βbk4

η4(δ3−δ4)
(δ4 − ζ1).

Let

A1 =
−δ4βs(ζ2−δ3)
η3(δ3−δ4)

+ δ3βs(ζ2−δ4)
η4(δ3−δ4)

− ζ2a1, B1 =
(δ4−1)(ζ2−δ3)βb

η3(δ3−δ4)
+ (1−δ3)βb(ζ2−δ4)

η4(δ3−δ4)
− (1− ζ2)a2;

A2 =
−δ4βs(δ3−ζ1)
η3(δ3−δ4)

+ δ3βs(δ4−ζ1)
η4(δ3−δ4)

+ ζ1a1, B2 =
(δ4−1)(δ3−ζ1)βb

η3(δ3−δ4)
+ (1−δ3)βb(δ4−ζ1)

η4(δ3−δ4)
− (ζ1 − 1)a2.
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Then we can rewrite the above system as

[ζ2(βs − a1) + (1− ζ2)(βb − a2)k3]r
ζ1 = A1 +B1k4,

[−ζ1(βs − a1) + (ζ1 − 1)(βb − a2)k3]r
ζ2 = A2 +B2k4.

Since k4 = rk3, we can obtain

k3 =
A1 − ζ2(βs − a1)r

ζ1

(1− ζ2)(βb − a2)rζ1 −B1r
=

A2 + ζ1(βs − a1)r
ζ2

(ζ1 − 1)(βb − a2)rζ2 −B2r
, (2.34)

and

k4 = rk3 =
A1r − ζ2(βs − a1)r

ζ1+1

(1− ζ2)(βb − a2)rζ1 −B1r
=

A2r + ζ1(βs − a1)r
ζ2+1

(ζ1 − 1)(βb − a2)rζ2 −B2r
. (2.35)

To solve for r:

A1 − ζ2(βs − a1)r
ζ1

(1− ζ2)(βb − a2)rζ1 −B1r
=

A2 + ζ1(βs − a1)r
ζ2

(ζ1 − 1)(βb − a2)rζ2 −B2r
. (2.36)

Since we assume that k3 < k4, we need to show that the above equation has a unique solution r > 1.
Once we find r, we can find k3 and k4 from k3 and k4. Then C1, C2, E1 and E2 can be given as follows:

C3 =
−δ4βs+(δ4−1)βbk4

η3(δ3−δ4)k
δ3
4

, C4 =
δ3βs+(1−δ3)βbk4

η4(δ3−δ4)k
δ4
4

,

E1 =
−ζ2(βs−a1)−(1−ζ2)(βb−a2)k3

(ζ1−ζ2)k
ζ1
3

, E2 =
ζ1(βs−a1)−(ζ1−1)(βb−a2)k3

(ζ1−ζ2)k
ζ2
3

.

We summarize the solutions w3 and w4 as follows:

(0, k3) : w3 = βs − βby,

[k3, k4] : w3 = E1y
ζ1 + E2y

ζ2 + a1 − a2y,

(k4,∞) : w3 = C3y
δ3 + C4y

δ4 ,

[0, k4] : w4 = βs − βby,

(k4,∞) : w4 = C3η3y
δ3 + C4η4y

δ4 ,
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where a1 and a2 are given by a1a2, C1, C2, E1 and E2 are given by CE; and η1 and η2 are given by etas. In
addition, we assume the inequalities to hold:

(0, k3) : (ρ+ λ1 − L1)w3(y)− λ1w4(y) ≥ 0,

[k3, k4] : w3 = E1y
ζ1 + E2y

ζ2 + a1 − a2y ≥ βs − βby,

[k4,∞) : w3 = C3y
δ3 + C4y

δ4 ≥ βs − βby,

(0, k4) : (ρ+ λ2 − L2)w4(y)− λ2w3(y) ≥ 0,

[k4,∞) : w4 = C3η3y
δ3 + C4η4y

δ4 ≥ βs − βby.

(2.37)
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k3 > k4 (for CASES IV, V, VI):

In this case, we divide the region (0,∞) into three parts:

Γ1 = [0, k4], Γ2 = [k4, k3], and Γ3 = [k3,∞).

In the region Γ1 = [0, k4], w3 = w4 = βs − βby; and in the region Γ3 = [k3,∞),

w3 = C3y
δ3 + C4y

δ4 and w4 = η3C3y
δ3 + η4C4y

δ4 .

In the region Γ2 = [k4, k3], w3 = βs − βby and (ρ + λ2 − 2)w4(y) = λ2w3(y). We need to solve the
non-homogeneous equation

(ρ+ λ2 − 2)w4(y) = λ2w3(y) = λ2(βs − βby).

We shall find the particular solution first. By the method of undetermined coefficients, we let one particular
solution of w4 is of the form

w4 = b1 − b2y.

Then
(ρ+ λ2 − 2)w4 = (ρ+ λ2 − µ1(2))b1 − (ρ+ λ2 − µ2(2))b2y.

This implies
b1(ρ+ λ2 − µ1(2)) = λ2βs and b2(ρ+ λ2 − µ2(2)) = λ2βb.

This yields

b1 =
λ2βs

ρ+ λ2 − µ1(2)
and b2 =

λ2βb

ρ+ λ2 − µ2(2)
.

Summarize the computation, we have one particular solution

w4 =
λ2βs

ρ+ λ2 − µ1(2)
− λ2βb

ρ+ λ2 − µ2(2)
y.

Then the general solution of the non-homogeneous equation is the above particular solution plus
the solution of the homogeneous equation (ρ + λ2 − 2)w4 = 0. The general form of w4 is w4inR2
w4 = D1y

ν1 + D2y
ν2 + λ2βs

ρ+λ2−µ1(2)
− λ2βb

ρ+λ2−µ2(2)
yWewillfindtheparametersC3, C4, D1, D2, k3

and k4 by the method of smooth-fitting.
The continuity of w3 and its derivative at k3 yields

βs − βbk3 = C3k
δ3
3 + C4k

δ4
3 ,

−βb = δ3C3k
δ3−1
3 + δ4C4k

δ4−1
3 .
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The continuity of w4 and its derivative at k3 and k4 yield

βs − βbk4 = D1k
ν1
4 +D2k

ν2
4 + b1 − b2k4,

−βb = D1ν1k
ν1−1
4 +D2ν2k

ν2−1
4 − b2,

D1k
ν1
3 +D2k

ν2
3 + b1 − b2k3 = η3C3k

δ3
3 + η4C4k

δ4
3 ,

D1ν1k
ν1−1
3 +D2ν2k

ν2−1
3 − b2 = η3δ3C3k

δ3−1
3 + η4δ4C4k

δ4−1
3 .

We will solve C3 and C4 in term k3, D1 and D2 in term of k4 from the first four equations to get

C3 =
−δ4βs+(δ4−1)βbk3

(δ3−δ4)k
δ3
3

, C4 =
δ3βs+(1−δ3)βbk3

(δ3−δ4)k
δ4
3

,

D1 =
ν2(βs−b1)+(1−ν2)(βb−b2)k4

(2−1)k
ν1
4

, D2 =
−ν1(βs−b1)+(ν1−1)(βb−b2)k4

(2−1)k
ν2
4

.

We can get a system of equations of k3 and k4 by inserting C3, C4, D1 and D2 into the last two equations:

ν2(βs−b1)+(1−ν2)(βb−b2)k4
(ν2−ν1)

(
k3
k4

)ν1
+ −ν1(βs−b1)+(ν1−1)(βb−b2)k4

(2−1)

(
k3
k4

)ν2
+ b1 − b2k3

= −δ4βs+(δ4−1)βbk3
(δ3−δ4)

η3 +
δ3βs+(1−δ3)βbk3

(δ3−δ4)
η4,

ν2(βs−b1)+(1−ν2)(βb−b2)k4
(ν2−ν1)

ν1

(
k3
k4

)ν1
+ −ν1(βs−b1)+(ν1−1)(βb−b2)k4

(ν2−ν1)
ν2

(
k3
k4

)ν2
− b2k3

= −δ4βs+(δ4−1)βbk3
(δ3−δ4)

η3δ3 +
δ3βs+(1−δ3)βbk3

(δ3−δ4)
η4δ4.

We first simplify the system to

[ν2(βs − b1) + (1− ν2)(βb − b2)k4]

(
k3
k4

)ν1

+ ν2b1 − (ν2 − 1)b2k3

=
−δ4βs + (δ4 − 1)βbk3

(δ3 − δ4)
η3(ν2 − δ3) +

δ3βs + (1− δ3)βbk3
(δ3 − δ4)

η4(ν2 − δ4),

[−ν1(βs − b1) + (ν1 − 1)(βb − b2)k4]

(
k3
k4

)ν2

+ (ν1 − 1)b2k3 − ν1b1

=
−δ4βs + (δ4 − 1)βbk4

(δ3 − δ4)
η3(δ3 − ν1) +

δ3βs + (1− δ3)βbk4
(δ3 − δ4)

η4(δ4 − ν1).

Next one can introduce a new parameter r = k4/k3. This will reduce the above system to a linear
system of k3 and k4. We can solve k3 and k4 in term of r and finally r = k4/k3 will yields an equation of
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r. If we can show the existence of r, we can find k3 and k4. We shall first simplify the system as

[ν2(βs − b1) + (1− ν2)(βb − b2)k4]r
−ν1 =

[
−η3δ4βs(ν2 − δ3)

(δ3 − δ4)
+

η4δ3βs(ν2 − δ4)

(δ3 − δ4)
− ν2b1

]
+

[
η3(δ4 − 1)(ν2 − δ3)βb

(δ3 − δ4)
+

η4(1− δ3)βb(ν2 − δ4)

(δ3 − δ4)
− (1− ν2)b2

]
k3

[−ν1(βs − b1) + (ν1 − 1)(βb − b2)k4]r
−ν2 =

[
−η3δ4βs(δ3 − ν1)

(δ3 − δ4)
+

η4δ3βs(δ4 − ν1)

(δ3 − δ4)
+ ν1b1

]
+

[
η3(δ4 − 1)(δ3 − ν1)βb

(δ3 − δ4)
+

η4(1− δ3)βb(δ4 − ν1)

(δ3 − δ4)
− (ν1 − 1)b2

]
k3.

We introduce some new parameters to simplify the notations:

A′
1 =

−η3δ4βs(ν2−δ3)
(δ3−δ4)

+ η4δ3βs(ν2−δ4)
(δ3−δ4)

− ν2b1,

B′
1 =

η3(δ4−1)(ν2−δ3)βb

(δ3−δ4)
+ η4(1−δ3)βb(ν2−δ4)

(δ3−δ4)
− (1− ν2)b2;

A′
2 =

−η3δ4βs(δ3−ν1)
(δ3−δ4)

+ η4δ3βs(δ4−ν1)
(δ3−δ4)

+ ν1b1,

B′
2 =

η3(δ4−1)(δ3−ν1)βb

(δ3−δ4)
+ η4(1−δ3)βb(δ4−ν1)

(δ3−δ4)
− (ν1 − 1)b2.

Then we can rewrite the above system as

[ν2(βs − b1) + (1− ν2)(βb − b2)k4]r
−ν1 = A′

1 +B′
1k3,

[−ν1(βs − b1) + (ν1 − 1)(βb − b2)k4]r
−ν2 = A′

2 +B′
2k3.

Since k4 = rk3, we can obtain

k3 =
A′

1 − ν2(βs − b1)r
−ν1

(1− ν2)(βb + b2)r1−ν1 −B′
1

=
A′

2 + ν1(βs − b1)r
−ν2

(ν1 − 1)(βb + b2)r1−ν2 −B′
2

, (2.38)

and
k4 = rk3 =

A′
1r − ν2(βs − b1)r

1−ν1

(1− ν2)(βb + b2)r1−ν1 −B′
1

=
A′

2r + ν1(βs − b1)r
1−ν2

(ν1 − 1)(βb + b2)r1−ν2 −B′
2

. (2.39)

The second equality will yield an equation about r:

A′
1 − ν2(βs − b1)r

−ν1

(1− ν2)(βb − b2)r1−ν1 −B′
1

=
A′

2 + ν1(βs − b1)r
−ν2

(ν1 − 1)(βb − b2)r1−ν2 −B′
2

. (2.40)

Once we find r, we can obtain k3 and k4, and other parameters.
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We will need w3 and w4 to derive w1 and w2, we summerize what we have find for w3 and w4 here:

[0, k3] : w3 = βs − βby,

[k3,∞) : w3 = C3y
δ3 + C4y

δ4 ,

[0, k4] : w4 = βs − βby,

[k4, k3] : w4 = D1y
ν1 +D2y

ν2 + b1 − b2y,

[k3,∞) : w4 = C3η3y
δ3 + C4η4y

δ4 .

(2.41)

We assume the following inequalities to hold :

[0, k3] : (ρ+ λ1 − L1)w3(y)− λ1w4(y) ≥ 0,

[k3,∞) : w3 = C3y
δ3 + C4y

δ4 ≥ βs − βby,

[0, k4] : (ρ+ λ2 − L2)w4(y)− λ1w3(y) ≥ 0,

[k4, k3] : w4 = D1y
ν1 +D2y

ν2 + b1 − b2 ≥ βs − βby,

[k3,∞) : w4 = C3η3y
δ3 + C4η4y

δ4 ≥ βs − βby.

(2.42)

2.5 Verification Theorems

Theorem 1. (Selling Rule k3 < k4). Assume (A1). Let k3 and k4 be given in (2.34) and (2.35), resp. Let
w3(y) and w4(y) be given as in (2.36) such that the variational inequalities in (2.37) are satisfied. Then,
v1 (x1, x2, 1) = x1w3 (x2/x1) = V1 (x1, x2, 1) and v1 (x1, x2, 2) = x1w4 (x2/x1) = V1 (x1, x2, 2).
LetDS = {(x1, x2, 1) : x2 > k3x1}∪{(x1, x2, 2) : x2 > k4x1}. Letτ ∗0 = inf {t : (X1

t , X
2
t , αt) /∈ DS}.

Then τ ∗0 is optimal.
Theorem 2. (Buying Rule k3 < k4). Assume (A1). Let k1 and k2 be given by (2.14) in Case I (by

(2.17) in Case II and (2.20) in Case III, resp.). Let also w1(y) and w2(y) be given by (2.13) in Case I (by
(2.16) in Case II and (2.19) in Case III, resp.) Suppose the variational inequalities in (2.15) hold (Case I)
(in (2.18) (Case II) and (2.21) (Case III), resp.). Then, v0 (x1, x2, 1) = x1w1 (x2/x1) = V0 (x1, x2, 1) and
v0 (x1, x2, 2) = x1w2 (x2/x1) = V0 (x1, x2, 2). LetDB = {(x1, x2, 1) : x2 < k1x1}∪{(x1, x2, 2) : x2 < k2x1}.
Define τ ∗1 = inf{t : (X1

t , X
2
t , αt) /∈ DB} and τ ∗2 = inf {t ≥ τ ∗1 : (X1

t , X
2
t , αt) /∈ DS}. Then

Λ0 = (τ ∗1 , τ
∗
2 ) is optimal.

Theorem 3. (Selling Rule k4 < k3). Assume (A1). Let k3 and k4 be given in (2.38) and (2.39), resp.
Letw3(y) andw4(y) be given as in (2.41) such that the variational inequalities in (2.42) are satisfied. Then,
v1 (x1, x2, 1) = x1w3 (x2/x1) = V1 (x1, x2, 1) and v1 (x1, x2, 2) = x1w4 (x2/x1) = V1 (x1, x2, 2).
LetDS = {(x1, x2, 1) : x2 > k3x1}∪{(x1, x2, 2) : x2 > k4x1}. Letτ ∗0 = inf {t : (X1

t , X
2
t , αt) /∈ DS}.

Then τ ∗0 is optimal.
Theorem 4. (Buying Rule k4 < k3). Assume (A1). Let k1 and k2 be given by (2.25) in Case 4

(by (2.30) in Case 5 and (2.31) in Case 6, resp.). Let also w1(y) and w2(y) be given by (2.24) in Case 4
(by (2.29) in Case 5, resp.) Suppose the variational inequalities in (2.26) hold (Case 4) (in (2.26) (Case
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5), since case 4 and 5 share the same inequalities, and (2.32) (Case 6), resp.). Then, v0 (x1, x2, 1) =

x1w1 (x2/x1) = V0 (x1, x2, 1) and v0 (x1, x2, 2) = x1w2 (x2/x1) = V0 (x1, x2, 2). Let DB =

{(x1, x2, 1) : x2 < k1x1} ∪ {(x1, x2, 2) : x2 < k2x1}. Define τ ∗1 = inf{t : (X1
t , X

2
t , αt) /∈ DB}

and τ ∗2 = inf {t ≥ τ ∗1 : (X1
t , X

2
t , αt) /∈ DS}. Then Λ0 = (τ ∗1 , τ

∗
2 ) is optimal.

Proof. We sketch key steps for the sake of completeness. First, we showvi (x1, x2, α) ≥ Ji (x1, x2, α,Λi).
To this end, note that, in view of the variational inequalities in the HJB equations, for any stopping times
0 ≤ θ1 ≤ θ2, a.s.,

E
(
e−ρθ1vi

(
X1

θ1
, X2

θ1
, αθ1

)
I{θ1<∞}

)
≥ E

(
e−ρθ2vi

(
X1

θ2
, X2

θ2
, αθ2

)
I{θ2<∞}

)
, for i = 0, 1.

Given Λ0 = (τ1, τ2), it follows that

v0 (x1, x2, α) ≥ E
(
e−ρτ1v0

(
X1

τ1
, X2

τ1
, ατ1

)
I{τ1<∞}

)
≥ E

(
e−ρτ1

(
v1
(
X1

τ1
, X2

τ1
, ατ1

)
− βbX

1
τ1
+ βsX

2
τ1

)
I{τ1<∞}

)
= E

(
e−ρτ1v1

(
X1

τ1
, X2

τ1
, ατ1

)
I{τ1<∞} − e−ρτ1

(
βbX

1
τ1
− βsX

2
τ1

)
I{τ1<∞}

)
≥ E

(
e−ρτ2v1

(
X1

τ2
, X2

τ2
, ατ2

)
I{τ2<∞} − e−ρτ1

(
βbX

1
τ1
− βsX

2
τ1

)
I{τ1<∞}

)
≥ E

(
e−ρτ2

(
βsX

1
τ2
− βbX

2
τ2

)
I{τ2<∞} − e−ρτ1

(
βbX

1
τ1
− βsX

2
τ1

)
I{τ1<∞}

)
= J0 (x1, x2, α,Λ0) .

Next, we establish the equalityvi (x1, x2) = Ji (x1, x2,Λ
∗
i ). Recall thatτ ∗1 = inf{t ≥ 0 : (X1

t , X
2
t , αt) ∈ DB}

and τ ∗2 = inf {t ≥ τ ∗1 : (X1
t , X

2
t , αt) ∈ DS}. Using Dynkin’s formula over the intervals (0, τ ∗1 ) and

(τ ∗1 , τ
∗
2 ) to obtain

v0 (x1, x2, α) = E
[
e−ρτ∗1 v0

(
X1

τ∗1
, X1

τ∗1
, ατ∗1

)
I{τ∗1<∞}

]
= E

[
e−ρτ∗1

(
v1

(
X1

τ∗1
, X1

τ∗1
, ατ∗1

)
− βbX

1
τ∗1

+ βsX
2
τ∗2

)
I{τ∗1<∞}

]
.

We have also

E
(
e−ρτ∗1 v1

(
X1

τ∗1
, X2

τ∗1
, ατ∗1

)
I{τ∗1<∞}

)
= E

(
e−ρτ∗2 v1

(
X1

τ∗2
, X2

τ∗2
, ατ∗2

)
I{τ∗2<∞}

)
= E

(
e−ρτ∗2

(
βsX

1
τ∗2

− βbX
2
τ∗2

)
I{τ∗2<∞}

)
.

Combine these two equalities to obtain v0 (x1, x2, α) = J0 (x1, x2, α,Λ
∗
0).

2.6 Numerical examples

CASE1: (k3 < k1 < k4 < k2):
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Let’s look at one numerical example:

µ1(1) = 0.30, µ2(1) = 0.27, µ1(2) = −0.43, µ2(2) = −0.66,
σ11(1) = 0.44, σ12(1) = 0.27, σ21(1) = 0.31, σ22(1) = 0.60,

σ11(2) = 0.19, σ12(2) = 0.65, σ21(2) = 0.28, σ22(2) = 0.15,

λ1 = 6.0, λ2 = 10.0, K = 0.001, ρ = 0.50.

First, we solve k3 and k4 , then k1 and k2. We obtain k1 = 0.597020, k2 = 0.690976, k3 =

0.578407, andk4 = 0.601707. Using these to calculate the rest parameters to getB1 = −1082.994378, B2 =

0.002139, C1 = 6.721641, C2 = −0.043221,C3 = 0.189389, C4 = −0.000004, D1 = −0.078520, D2 =

−0.0007050, E1 = 1.377957, and E2 = 4.440166.
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Figure 2.3: Value Functions V0(x1, x2, 1), V0(x1, x2, 2), V1(x1, x2, 1), and V1(x1, x2, 2)
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CASE2: (k3 < k4 < k1 < k2): For this case:

µ1(1) = −0.26, µ2(1) = −0.56, µ1(2) = −0.4, µ2(2) = 0.22

σ11(1) = 0.37, σ12(1) = 0.46, σ21(1) = 0.59, σ22(1) = 0.59

σ11(2) = 0.47, σ12(2) = 0.31, σ21(2) = 0.28, σ22(2) = 0.68

λ1 = 6.0, λ2 = 10.0, K = 0.001, ρ = 0.50.

Similarly as in Example 1, we solve obtain k1 = 0.929500, k2 = 0.962000, k3 = 0.678861, and
k4 = 0.810852. Then, we calculate and get B1 = 0.295000, B2 = 0.021266, C1 = 0.078164, C2 =

0.048996, C3 = 0.097388, C4 = −0.000156, E1 = 0.225207, and E2 = 0.000199. Plugging these
numbers to obtain the corresponding value functions. We verify that all the variational inequalities are
satisfied. Finally, the graphs of these value functions are given :
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Figure 2.4: Value Functions V0(x1, x2, 1), V0(x1, x2, 2), V1(x1, x2, 1), and V1(x1, x2, 2)
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CASE3: k3 < k4 < k2 < k1:

µ1(1) = 0.20, µ2(1) = 0.25, µ1(2) = −0.30, µ2(2) = −0.35,

σ11(1) = 0.30, σ12(1) = 0.10, σ21(1) = 0.10, σ22(1) = 0.35

σ11(2) = 0.40, σ12(2) = 0.20, σ21(2) = 0.20, σ22(2) = 0.45

λ1 = 6.0, λ2 = 10.0, K = 0.001, ρ = 0.50.

Similarly as in previous examples, we solve to obtaink1 =1.379000, k2 = 1.212000, k3 = 0.723277,
and k4 = 0.737941. Plugging these numbers to obtain the corresponding value functions. We verify
that all the variational inequalities are satisfied. Finally, the graphs of these value functions are given :

62



0
1

2
3

4
5

0
1

2
3

4
5

0

1

2

3

4

x1
x2

V
0(

x1
,x

2,
1)

0
1

2
3

4
5

0
1

2
3

4
5

0

1

2

3

4

x1
x2

V
0(

x1
,x

2,
2)

0
1

2
3

4
5

0
1

2
3

4
5

0

1

2

3

4

x1x2

V
1(

x1
,x

2,
1)

0
1

2
3

4
5

0
1

2
3

4
5

0

1

2

3

4

x1x2

V
1(

x1
,x

2,
2)

Figure 2.5: Value Functions V0(x1, x2, 1), V0(x1, x2, 2), V1(x1, x2, 1), and V1(x1, x2, 2)
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CASE4: k4 < k2 < k3 < k1:
Let’s look at a numerical example:

µ1(1) = 0.839, µ2(1) = 0.61, µ1(2) = −0.7, µ2(2) = −0.5,

σ11(1) = 0.31, σ12(1) = 0.27, σ21(1) = 0.31, σ22(1) = 0.60,

σ11(2) = 0.19, σ12(2) = 0.65, σ21(2) = 0.28, σ22(2) = 0.25,

λ1 = 3.0, λ2 = 10.0, K = 0.001, ρ = 0.50.

We obtain k1 = 0.813146556050517 ,k2 = 0.607323219314284, k3 = 0.187445927589516,k4 =

0.0515053606625219 Using these to calculate the rest parameters to get B1 = −1082.994378, B2 =

0.002139, C1 = 6.721641, C2 = −0.043221, C3 = 0.189389, C4 = −0.000004, D1 = −0.078520,
D2 = −0.0007050, E1 = 1.377957, and E2 = 4.440166. Plugging these numbers to obtain the corre-
sponding value functions. We verify that all the variational inequalities are satisfied. Finally, the graphs of
these value functions are given :
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Figure 2.6: Value Functions V0(x1, x2, 1), V0(x1, x2, 2), V1(x1, x2, 1), and V1(x1, x2, 2)
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CASE5: k4 < k3 < k2 < k1:
Let’s look at a numerical example:

µ1(1) = 0.55, µ2(1) = 0.44, µ1(2) = −0.35, µ2(2) = −0.65,

σ11(1) = 0.40, σ12(1) = 0.22, σ21(1) = 0.30, σ22(1) = 0.90,

σ11(2) = 0.65, σ12(2) = 0.05, σ21(2) = 0.28, σ22(2) = 0.5,

λ1 = 3.0, λ2 = 9.0, K = 0.001, ρ = 0.50.

We obtain k1 = 0.810634931470992, k2 = 0.492463166582152, k3 = 0.0440799199487903,
k4 = 0.0387559973146809 Plugging these numbers to obtain the corresponding value functions. We
verify that all the variational inequalities are satisfied. Finally, the graphs of these value functions are given
:
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Figure 2.7: Value Functions V0(x1, x2, 1), V0(x1, x2, 2), V1(x1, x2, 1), and V1(x1, x2, 2)
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CASE6: k4 < k3 < k1 < k2:

µ1(1) = 0.− 0.26, µ2(1) = −0.56, µ1(2) = −0.4, µ2(2) = 0.22,

σ11(1) = 0.37, σ12(1) = 0.46, σ21(1) = 0.59, σ22(1) = 0.59,

σ11(2) = 0.47, σ12(2) = 0.31, σ21(2) = 0.28, σ22(2) = 0.68,

λ1 = 6.0, λ2 = 10.0, K = 0.001, ρ = 0.50.

We obtain k1 = 0.105684239991422, k2 = 0.258372296578252, k3 = 0.0888776438049554,
k4 = 0.0516269777215502. Plugging these numbers to obtain the corresponding value functions. We
verify that all the variational inequalities are satisfied. Finally, the graphs of these value functions are given
:
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Figure 2.8: Value Functions V0(x1, x2, 1), V0(x1, x2, 2), V1(x1, x2, 1), and V1(x1, x2, 2)
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