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We introduce an online localization algorithm that enhances accuracy and
efficiency by combining wireless sensor nodes (WSN) and mobile robots, lever-
aging Radio Signal Strength Indicator (RSSI). A relative localization technique
is proposed to enhance this algorithm, effectively working in scenarios lacking
infrastructure information. It combines graph optimization and Gaussian pro-
cess regression, surpassing traditional model-based methods. A mechanism is
designed to provide resilience to robotic systems, making localization solutions
failure-tolerant, thus ensuring high positional accuracy in real-world applica-
tions.

Additionally, we develop a learning-based framework for simultaneous lo-
calization and adaptive exploration by generating virtual maps for efficient ex-
ploration in dynamic environments. This methodology is founded on Bayesian
inference over the Gaussian probability distribution of wireless signals. A strat-
egy is presented for coordinated map exploration that integrates Q-learning
for efficient path planning. We devise a feature-matching map-merger strat-
egy to create a consistent map from sparse maps collected from collaborating
robots. An enhanced reinforcement learning technique is deployed for maze
exploration, providing superior efficiency in challenging environments by in-
creasing coverage and reducing overlap. We also investigate an integrated frame-
work for simultaneous exploration and localization, which is crucial for robotic
operations in dynamic environments.



The research comprehensively addresses the critical issues facing current
CMRS by introducing novel algorithms for improved localization and explo-
ration. These strategies demonstrate significant improvements in scalability,
communication, resilience to node failure, and adaptability to dynamic envi-
ronments. The solutions have proven effective in both theoretical models and
real-world applications, strengthening their viability. By setting new standards
in autonomous robotic collaboration, this dissertation provides a strong foun-
dation for future research in the field.
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Chapter 1

Introduction

The advent of robotics has revolutionized numerous sectors, ranging from
healthcare and agriculture to logistics and defense, significantly changing how
we operate in these domains (Burgard et al., 2005). As robotics technology con-
tinues to mature, systems that include multiple robots, known as Multi-robot
systems (MRS), are becoming more prevalent. MRS offers unique advantages
over single-robot systems, especially in tasks that require extensive area cover-
age, task parallelization, and resilience to individual robot failures (Grisetti et
al., 2007). Such systems are thus well-suited for complex applications, such
as search and rescue operations, environmental monitoring, and surveillance
missions (Burgard et al., 2005; Queralta et al., 2020).

1.1 Multi-Robot Systems
In recent decades, there has been a significant surge in the usage of autonomous
robotic systems across various applications, from industrial automation and lo-
gistics to surveillance, environmental monitoring, search and rescue, and even
space exploration (Queralta et al., 2020). These applications often call for the
deployment of not just a single robot. Still, a team of robots, or a multi-robot
system (MRS), can handle tasks beyond the scope of a single agent, be it due
to the size of the environment, time constraints, or the complexity of the task
itself. An MRS promises enhanced performance, improved robustness through
redundancy, and the ability to handle large-scale or complex tasks through dis-
tributed cooperation (Schmuck & Chli, 2019).
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1.1.1 Challenges
Despite their numerous advantages, implementing MRS comes with unique
challenges. These primarily revolve around communication, coordination, task
allocation, and navigation (Olcay et al., 2020). Among the myriad challenges
of deploying MRS, two that stand out are exploration and localization. Explo-
ration refers to acquiring knowledge about an unknown environment (Burgard
et al., 2005), typically in the form of a map. Localization, on the other hand,
involves determining the position and orientation of each robot within the en-
vironment, given the map (He et al., 2020). These complex, interdependent
tasks constitute the bedrock upon which other higher-level tasks, such as plan-
ning and navigation, are built. Among these, this dissertation primarily focuses
on the challenges associated with navigation – specifically, the twin tasks of
exploration and localization.

1.1.2 Significance
In any autonomous system, understanding and navigating the environment
is fundamental. This involves two interconnected components: exploration,
which deals with the identification and mapping of unknown environments,
and localization, which focuses on the robot’s ability to position itself within
that environment. The performance of a multi-robot system in real-world appli-
cations largely depends on the efficiency and accuracy of these two tasks (Arshad
& Kim, 2021).

Unique Considerations

The complexity of exploration and localization tasks increases when it comes
to MRS. It becomes necessary for the robots to coordinate their actions to effi-
ciently explore the environment, avoid collisions, and achieve the overarching
task objective. Further, each robot has to maintain an estimate of its position
and that of the other robots, given the observed data and the actions performed
by the entire team (Q. Li et al., 2020). These considerations introduce unique
challenges in decision-making, information sharing, and data fusion, especially
when communication bandwidth is limited or the environment is dynamic or
hostile (Masaba & Li, 2021).

1.1.3 Objectives
The overall objective of my research is to design infrastructure-less multi-robot
algorithms. Specific research objectives are mentioned following:
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Localization: Global and relative localization solutions aim to estimate
robot positioning information in an environment with negligible outsourcing
of computation and communication.

Exploration: Coordination of multiple robot explorations aims to maxi-
mize expected information gain (map knowledge) across time. Even though the
optimal solution is computationally intractable, I have created a method that
is both affordable and effective.

Simultaneous Exploration and Localization (SEAL) The objective of
SLAE is to build a framework to fill the gap between localization and adaptive
exploration by exploiting both gains.

1.2 Localization in MRS
Meanwhile, localization is equally crucial. For a robot to operate autonomously,
it must accurately know its position within the environment at all times. This
becomes particularly challenging in unknown or dynamic environments, where
traditional positioning systems like GPS might not be reliable or available. This
problem is further exacerbated in MRS, where each robot needs to localize itself
and keep track of its peers’ positions to maintain coordination. Common local-
ization methods rely on sensor measurements or communication with known
landmarks, but these can be prone to errors due to sensor noise or environmen-
tal factors. Therefore, a growing interest is in developing robust and accurate
localization algorithms that can handle the complexities of real-world environ-
ments (Schmuck & Chli, 2019).

1.2.1 Relative Localization
Another major contribution of our work lies in the realm of relative localiza-
tion. Instead of relying on global position information or features in the envi-
ronment, we propose a relative localization strategy using inter-robot commu-
nication data (S. Wang et al., 2023). Our strategies employ graph optimization
and Gaussian process modeling frameworks for fusing the data from different
robots, thereby facilitating the computation of their relative positions. These
methods are robust to sensor noise and uncertainties, making them well-suited
for real-world applications where GPS data may be unavailable or unreliable
(C. Wang, Luo, et al., 2021).
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1.3 Exploration in MRS
In the context of exploration, each robot in the MRS needs to traverse the un-
known environment and gather as much information as possible to construct
a detailed map. The challenge lies in coordinating the robots’ movements to
ensure efficient coverage of the entire environment. The robots should ideally
spread out to cover different areas but also need to share information about
their discoveries to build a coherent global map. Traditional exploration meth-
ods, which rely on deterministic rules or random movements, fall short when
dealing with complex and dynamic environments. Therefore, there is a need
for intelligent exploration strategies that allow robots to learn from their expe-
riences and adapt their behaviors accordingly. This has led to the application
of machine learning techniques, particularly reinforcement learning, in robot
exploration (Shrestha et al., 2019).

1.3.1 The Need for Efficient Communication and Compu-
tation

In multi-robot systems, maintaining consistent estimates of the environment
and the state of the robots is a key challenge. Given that each robot has a lim-
ited perception of the environment, it becomes necessary for the robots to share
information to maintain a global perspective. This calls for efficient commu-
nication strategies that can handle the exchange of large volumes of data in
real-time in the face of limited communication bandwidth and potential losses
or delays in transmission (Gielis et al., 2022). Further, fusing the data collected
by the robots into a consistent global estimate is computation-intensive, requir-
ing efficient algorithms that can handle the uncertainty and noise inherent in
sensor data (Ghazal, 2022).

1.3.2 Distributed Exploration
Autonomous robots must use advanced decision-making mechanisms to nav-
igate and explore unknown environments efficiently. Our work introduces a
novel strategy that leverages the power of distributed linearized convex hull op-
timization to guide robots in choosing their next-best points for exploration.
This strategy capitalizes on the ability of the convex hull approach to ensure the
maximum coverage of the unknown region by considering all possible move-
ments of the robots (Pham et al., 2009).

Unlike traditional methods that minimize the map’s uncertainty, our ap-
proach also considers the robots’ movements to provide a more comprehensive
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and efficient exploration strategy. Doing so enables faster and more complete
exploration of the environment, thereby contributing to enhanced system per-
formance and resource efficiency.

1.4 The Interplay of Exploration and Localiza-
tion

The issues of exploration and localization are inherently intertwined in the con-
text of autonomous robotic systems, especially multi-robot systems. While
exploring an environment, a robot makes decisions based on its current under-
standing of the surroundings and its location within it. Inaccuracies in local-
ization, thus, lead to suboptimal exploration strategies. Conversely, a robust
exploration strategy provides more information about the environment, sub-
sequently improving the performance of localization algorithms (Qin et al.,
2019). As such, the tasks of exploration and localization are cyclical, with im-
provements in one aspect potentially leading to enhancements in the other.

Moreover, the complexity of these tasks escalates in the context of multi-
robot systems. The existence of multiple, independently operating robots in-
troduces the need for efficient communication and data-sharing protocols to
coordinate exploration activities and to maintain a consistent understanding of
each robot’s location. In the absence of global localization information, such as
GPS signals, the challenge is to develop strategies for relative localization, where
robots rely on inter-robot interactions and sensor data to infer their positions (S.
Wang et al., 2023). Fig. 1.1 has shown the interplay of localization and mapping
for multi-robotic integrated exploration.

The unique challenges and opportunities presented by the intertwined na-
ture of exploration and localization in multi-robot systems have sparked con-
siderable research interest. As we will discuss next, various approaches, ranging
from deterministic rules to sophisticated machine learning techniques, have
been proposed to tackle these issues.

1.5 Existing Approaches and Their Limitations
Several exploration strategies have been proposed for multi-robot systems, each
with its unique strengths and weaknesses. Information-based methods, such
as those based on Shannon entropy, aim to minimize the uncertainty of the
environmental map by guiding the robots to regions with the highest expected
information gain (Botteghi et al., 2020). Other techniques, like frontier-based
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Figure 1.1: Interplay of navigation, exploration, and localization overview.

methods, direct the robots to the boundaries between known and unknown
map regions (Dai et al., 2020).

Despite their merits, these traditional methods often fall short in dynamic
and complex environments. They do not account for the evolving nature of the
environment and cannot adapt their strategies in response to new information.
To overcome these limitations, learning-based exploration methods, particu-
larly those based on reinforcement learning, have gained popularity (Z. Zhang,
Wang, et al., 2022). By incorporating learning mechanisms, these methods en-
able the robots to continuously improve their exploration strategies based on
the outcomes of their past actions.

On the localization front, a popular approach is a Simultaneous Localiza-
tion and Mapping (SLAM), where each robot constructs a map of the environ-
ment while concurrently estimating its position within it (J. Liu et al., 2022).
However, SLAM methods require significant computational resources and of-
ten struggle in environments with limited features or without global position in-
formation (Zhao et al., 2021). As such, there is a pressing need for more efficient
and robust localization strategies that can operate under various constraints.

The literature has presented numerous exploration techniques, including
reinforcement learning (RL) approaches like Q-learning. Our research delves
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into this area, offering a novel distributed Q-learning technique, CQLite, to
minimize data communication overhead between robots while ensuring rapid
convergence and thorough coverage in multi-robot exploration (Shrestha et
al., 2019). CQLite uses ad hoc map merging, and selectively shares updated
Q-values at recently identified frontiers, substantially reducing communication
costs. A detailed discussion of this method forms a central part of this disserta-
tion.

As we have considered in our studies, frontier-based exploration methods
involve robots deciding their following path by searching frontier points on
the border of accessible and unknown areas. These methods often produce ap-
proximate solutions due to optimization constraints but are effective in various
exploration scenarios (Dai et al., 2020). We combine these approaches with
RL paradigms, enabling robots to improve their competence continuously and
adapt to their natural surroundings’ dynamics (Z. Zhang, Wang, et al., 2022).

1.6 Proposed Solutions
This dissertation proposes a series of solutions to overcome the limitations
of existing solutions for localization and exploration and integration frame-
work for efficient exploration without global localization in a communication-
restricted environment. The dissertation starts with a single robot localization
solution that exploits wireless sensor network collaboration and particle filter-
ing to accurately estimate the robot’s position in the sensing range of the wire-
less sensor network. Using the Bayesian information fusion technique, we ex-
tend the solution to multi-robot synergistic localization. Further, we aim to
overcome the lack of infrastructure or global referencing challenge and pro-
pose a relative localization based on graph optimization. While considering
the computational complexity of graph optimization, we move our strategy
toward Gaussian process regression-based relative localization. Until now, we
have a robust solution for relative localization and moved forward to the ex-
ploration domain as it is a critical operation MRS. We begin our exploration
by designing a communication-efficient solution for SWARM navigation and
then extend it to a coverage-biased Q-learning-based solution for efficient ex-
ploration in a communication-restricted environment. Lastly, we integrate rela-
tive localization with exploration and devise a solution for efficient exploration
without global localization. Building upon the challenges and opportunities
in exploration and localization in MRS, we propose the simultaneous explo-
ration and localization (SEAL) approach. SEAL integrates exploration and
localization tasks using Gaussian Processes (GP)-based information fusion for
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maximum exploration while performing communication graph optimization
for relative localization (Y. Xu et al., 2021). The method leverages the Rao-
Blackwellization technique to handle cross-dependent objectives to achieve op-
timal performance.

1.7 List of Publications
The following are the publications that led to this thesis:

• Paper 1: Published my work on individual robot localization with the
title of “Instantaneous Localization of Resource-Constrained Robots Us-
ing Wi-Fi Direction Estimation Through Collaborative Wireless Sensor
Nodes" (Latif & Parasuraman, 2023b) in the IEEE Internet of Things
Journal (IoTJ, 2023).

• Paper 2: Published my work on multi-robotic synergistic localization
with the title of “Multi-Robot Synergistic Localization in Dynamic En-
vironments" (Latif & Parasuraman, 2022b) in the International Sympo-
sium of Robotics (ISR Europe, 2022).

• Paper 3: Published my work on relative localization with the title of
“DGORL: Distributed Graph Optimization based Relative Localization of
Multi-Robot Systems" (Latif & Parasuraman, 2022a) at the International
Symposium on Distributed Autonomous Robotic Systems (DARS, 2022).

• Paper 4: Submitted my work with the title of “GPRL: Multi-Robot
Relative Localization Using Hierarchical Gaussian Processes Inferencing
on RSSI Map of the Wireless Access Point" to a journal.

• Paper 5: Published my work on maze exploration with the title of “Com-
munication - Efficient Reinforcement Learning in Swarm Robotic Net-
works for Maze Exploration" (Latif et al., 2023) at the 16th International
Workshop on Wireless Sensing and Actuating Robotic Networks (IEEE
INFOCOM Workshops, 2023).

• Paper 6: Submitted my work with the title of “CQLite: Coverage-biased
Q-Learning Lite for Efficient Multi-Robot Exploration" to a journal. A
preprint of this work is available at (Latif & Parasuraman, 2023a).

• Paper 7: Published my work on simultaneous exploration and localiza-
tion with the title of “SEAL: Simultaneous Exploration and Localiza-
tion for Multi-Robot Systems" (Latif & Parasuraman, 2023c) at The 2023
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IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS, 2023).

In addition, I also published the below papers related to Multi-Robot Sys-
tems that are not included in this thesis.

Paper 8: Published a work titled “Energy-aware multi-robot task allocation
in persistent tasks" in the 6th International Symposium on Swarm Behavior
and Bio-Inspired Robotics (SWARMS) conference 2022 (Latif et al., 2022).

Paper 9: Published a work titled “Message Expiration-Based Distributed
Multi-Robot Task Management" in the 6th International Symposium on Swarm
Behavior and Bio-Inspired Robotics (SWARMS) conference 2022 (Gui et al.,
2022).

1.8 Contributions
The significant contributions of this dissertation are summarized as follows:

• In Chapter 1, we propose a novel Collaborative Direction of Arrival
(CDOA) estimation algorithm using IoT or wireless nodes integrated
with Bayesian frameworks for high-accuracy localization of mobile robotic
nodes. The algorithm stands out by utilizing a CDOA metric obtained
through cooperative communication instead of relying directly on the
RSSI metric. The CDOA metric is then integrated with Expectation
Maximization (EM) and Particle Filter (PF) Bayesian frameworks for
robot node localization. This proposed localization solution was pub-
lished as Paper 1.

• Chapter 2 presents a new Multi-Robot Synergistic Localization (MRSL)
algorithm for decentralized synergistic localization in a dense and dy-
namic environment. The MRSL utilizes Bayesian rule-based integration
for information fusion among robots, improving localization accuracy
and computational efficiency. This multi-robot localization solution was
published as Paper 2.

• In Chapter 3, we introduce a distributed method to solve the Multi-
Robot Localization (MRL) problem as a graph optimization problem.
The DGORL approach utilizes an open-source graph-based framework,
g2o, to efficiently achieve high localization accuracy. This graph opti-
mization solution was published as Paper 3.
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• Chapter 4 presents a unique learning method, GP-Loc, for accurate rel-
ative localization utilizing Received Signal Strength Indication (RSSI)
data. This method combines Gaussian Process Regression (GPR) and
hierarchical inferencing to accurately predict the location of the Wi-Fi
source while being computationally efficient. This GP-based relative lo-
calization solution was submitted as a Paper 4.

• In Chapter 5, we explore the application of reinforcement learning (RL)
for efficient maze exploration by swarm robotics. Our RL algorithm
improves coverage efficiency and minimization of overlapping regions
compared to existing approaches. This maze exploration solution was
published as a Paper 5.

• Chapter 6 designs a combined learning and cooperation solution, CQLite,
for efficient map exploration. CQLite leverages a distributed Q-learning
methodology with a coverage-biased reward function, thus achieving fast
convergence, high coverage performance, and reduced communication
and update costs. This exploration solution was submitted as Paper 6.

• Finally, Chapter 7 introduces SEAL, a novel approach for efficient and
accurate robotic localization and exploration designed for multi-robot
systems. SEAL combines information-based exploration techniques, lin-
earized convex hull optimization, and Gaussian process modeling to im-
prove the efficiency and accuracy of robotic localization and exploration.
The final integration solution was published as Paper 7.

1.9 Dissertation Overview
The remaining parts of this dissertation are organized as follows. Chapter 2
provides the background for our strategies in the dissertation. Chapter 3 and 4
provides a single and multi-robot localization solution, respectively. Chapters
5 and 6 discuss relative location with different strategies. Chapter 7 delves into
the details of the exploration strategy, beginning with SWARM exploration,
Chapter 8 provides details about the communication-efficient solution for MRS
exploration, and Chapter 9 illustrates the integration strategy for simultaneous
exploration and localization by providing a comprehensive explanation of the
linearized convex hull optimization method and its implementation. The final
chapter, Chapter 10, summarizes the findings, highlights the contributions, and
discusses future work.
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Figure 1.2: Overview of collaborative algorithms proposed in dissertation

As seen in Figure 1.2, this dissertation aims to create a cohesive solution
of collaborative algorithms for localization and exploration in multi-robot net-
works. By pushing the boundaries of simultaneous exploration and localization,
we hope to contribute to the body of knowledge in the field and open up new
possibilities for multi-robot system applications.

This introduction has presented the motivation and challenges behind our
work, outlined the key concepts, and set the stage for in-depth discussions in the
ensuing chapters. Our journey begins here, at the intersection of exploration
and localization in multi-robot systems, and we invite you to join us on this
exciting voyage of discovery.
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1.10 Open Science Contribution
The dissertation also contributed to the open science community with the fol-
lowing open-source GitHub repositories associated with the paper mentioned
in section 1.7:

1. The source code associate with paper 1 https://github.com/herolab-uga/
cdoa-localization.git.

2. The source code associate with paper 3 https://github.com/herolab-uga/
DGORL.git.

3. The source code associate with paper 4 https://github.com/herolab-uga/
gp-multi-robot-localization.

4. The source code associate with paper 5 https://github.com/herolab-uga/
MazeCommRL.git.

5. The source code associate with paper 6 https://github.com/herolab-uga/
cqlite.git.

6. The source code associate with paper 7 https://github.com/herolab-uga/
ROS-SEAL.git.
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Chapter 2

Background

This chapter will elaborate on the terms and technologies discussed in the dis-
sertation. We will begin with Multi-robotic systems, then localization and all
the basic concepts in our proposed solution. The later part will cover the explo-
ration, simultaneous localization and mapping, and relevant concepts.

2.1 Multi-Robot System (MRS)
An MRS refers to a group of robots that work collaboratively to achieve com-
mon goals or tasks. It involves multiple robots, each with its own set of capabil-
ities and sensors, operating in a coordinated manner.

Mathematically, a multi-robotic system can be represented as follows:
Robot representation: Let N denote the total number of robots in the

system. Each robot i can be represented by its state vector si, which includes
information about its position, orientation, and other relevant attributes. In a
2D environment, the state vector of robot i can be defined as si = [xi,yi,θi].

Communication: Multi-robot systems often require communication be-
tween robots to exchange information and coordinate their actions. This com-
munication can be represented by a communication graph, where each robot is
represented as a node, and communication links between robots are represented
as edges. The communication graph can be denoted as G = (V,E), where V
represents the set of robot nodes and E represents the set of communication
links.

Coordination: Multi-robot systems require coordination mechanisms to
synchronize the actions of individual robots and achieve desired collective be-
haviors. This coordination can be achieved through various approaches, such
as centralized or decentralized control algorithms, consensus algorithms, or
behavior-based approaches. The coordination mechanism can be represented
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Figure 2.1: Multi-Robot System: robot, locally connected MRS, group of MRS
connected through the network

by a control law or coordination function that considers the current states of
the robots and the desired collective behavior.

Localization and mapping: Localization and mapping are crucial for
multi-robot systems to maintain an accurate knowledge of the environment
and avoid collisions or conflicts between robots. Each robot needs to estimate
its pose and build a map of the environment. The localization and mapping pro-
cess can be represented by localization algorithms similar to the ones described
in the previous explanation.

Task allocation: In multi-robotic systems, tasks or subtasks need to be
assigned to individual robots for efficient execution. This task allocation pro-
cess can be represented by a function f : V → T , where V is the set of robot
nodes and T is the set of tasks. The function f assigns each robot to a specific
task based on various criteria, such as robot capabilities, task requirements, or
optimization objectives. Fig. 2.1 delineates the pictorial view of multi-robotic
systems where robots are connected through a common network.

By considering the representation of individual robots, communication
between them, task allocation, coordination mechanisms, and localization and
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mapping, multi-robotic systems can achieve efficient collaboration and perform
complex tasks that may be challenging for a single robot.

2.2 Localization
Localization in robotics refers to the process of determining the position and
orientation (pose) of a robot in its environment. It involves estimating the
robot’s coordinates (x,y) and its orientation θ relative to a known reference
frame.

Mathematically, localization can be represented as follows:
Environment representation: The robot’s environment can be repre-

sented as a coordinate system, typically a 2D or 3D Cartesian coordinate system.
The robot’s position in this coordinate system is denoted by (x,y), where x
represents the robot’s horizontal position and y represents the vertical position.

Pose estimation: The robot’s orientation, or heading, is represented by
θ . This is often expressed as an angle relative to a fixed reference, such as the
positive x-axis. Common representations include radians or degrees.

State estimation: The robot’s state can be represented as a vector, often
denoted by s, which combines both position and orientation information. In
a 2D environment, the state vector can be defined as s = [x,y,θ ].

Sensor measurements: Localization algorithms utilize sensor data, such
as range finders, GPS, or cameras, to gather information about the robot’s sur-
roundings. These measurements are denoted by z.

Motion model: The robot’s motion model describes how its state evolves.
It incorporates the robot’s control inputs, such as wheel velocities or motor
commands. The motion model is often represented as a function that predicts
the robot’s next state based on its current state and control inputs. It can be
denoted as s′ = f (s,u), where s is the current state, u is the control input, and
s′ represents the predicted next state.

Localization algorithm: Localization algorithms utilize the sensor mea-
surements and the motion model to estimate the robot’s pose. Popular algo-
rithms include the Kalman filter, particle filter, or graph-based methods.

Uncertainty estimation: Localization algorithms also estimate the uncer-
tainty associated with the robot’s pose estimation. This is often represented
by a covariance matrix, denoted by P, which describes the uncertainty in each
element of the state vector. The diagonal elements of P represent the variances
of the respective state variables, while the off-diagonal elements represent the
covariances between different state variables.
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Figure 2.2: Robot localizing in a global workspace using wireless sensor nodes.

By combining sensor measurements with a motion model and applying
localization algorithms, a robot can determine its position and orientation rel-
ative to a known reference frame, enabling it to navigate and interact with its
environment effectively. Fig. 2.2 has shown the robot navigating in a global
workspace and connected to a wireless sensor network to attempt to localize
and predict the trajectory using localization algorithms.

2.2.1 Wireless Sensor Network
Wireless Sensor Networks (WSNs) are a collection of spatially distributed sen-
sor nodes N that collaborate to monitor and collect data from the environment
wirelessly. Each sensor node i can be represented by its state vector si, con-
sisting of attributes such as its location pi = (xi,yi) and sensor measurements
mi. These sensor nodes communicate with each other through wireless con-
nections, forming a communication graph G = (V,E), where V represents the
set of sensor nodes and E represents the set of communication links.

In WSNs, sensor nodes are equipped with sensors to gather data from the
environment. The collected data mi from multiple nodes can be aggregated
to form a global view. To transmit this data efficiently, routing protocols are
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employed. A routing function or algorithm f : V →V determines the next hop
or forwarding node for each sensor node, ensuring the data reaches a designated
sink or base station for further processing. Fig. 2.2 has shown the wireless sensor
network to facilitate the robot for localization.

By leveraging network representation, communication graphs, sensing and
data collection, routing and data dissemination, and energy management tech-
niques, wireless sensor networks enable distributed monitoring and data collec-
tion from the environment. They find applications in diverse domains such as
environmental monitoring, surveillance, and industrial automation.

2.2.2 Direction of Arrival
The direction of Arrival (DoA) in robotic localization refers to determining
the direction from which a signal or sound arrives at a robot’s sensor array.
Mathematically, the DoA can be estimated by analyzing the signal’s gradient
at different sensors in the array. Let S = [s1,s2, . . . ,sN ] represent the vector
of signal strengths at N sensors. The DoA can be estimated using mathemati-
cal equations by exploiting the RSSI gradient formulation. For example, in an
RSSI array, the DoA estimation can be based on the slope of the gradient of
the signals approach. This can be represented by DOA = arctan(gy

gx
), where gy

denotes the gradient in the y-axis and gx represents the gradient in the x-axis.
The estimated DoA provides valuable information about the angle or bearing
of the source concerning a reference direction, enabling robots to localize and
track sound sources accurately.

2.2.3 Particle Filter
The particle filter approach is a widely used method for localization in robotics,
particularly in scenarios where the environment is uncertain and the robot’s
motion and sensor models are non-linear. Mathematically, the particle filter
represents the robot’s belief about its state using a set of particles. Each par-
ticle x[i]t represents a possible state hypothesis at time step t, and is associated
with a weight w[i]

t indicating the likelihood of that particle being the true state.
The particles are propagated through time by incorporating the robot’s con-
trol inputs ut and the motion model p(xt|xt−1,ut), while considering the
uncertainties associated with the motion.

The particle filter’s localization process involves two main steps: prediction
and update. In the prediction step, each particle is updated using the motion
model to generate a new hypothesis for the robot’s state. This can be repre-
sented by x[i]t ∼ p(xt|xt−1[i],ut), where∼ indicates sampling from the mo-
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tion model distribution. In the update step, the particles are re-weighted based
on the sensor measurements zt and the observation model p(zt |xt [i]). The parti-
cle weights are computed using Bayes’ rule as w[i]

t ∝ wt−1[i] · p(zt |xt [i]), where
wt−1[i] is the previous weight. Finally, the particles are resampled according
to their weights to create a new set of particles that better represents the pos-
terior distribution of the robot’s state. This process allows the particle filter
to approximate the robot’s state estimate and provide an effective localization
solution even in complex and non-linear environments. Fig. 2.3 delineated the
process of particle filters.

2.2.4 Expectation Maximization
The expectation-maximization (EM) approach is a widely used method for lo-
calization in robotics, particularly in scenarios where the robot has access to
partial or noisy measurements of its environment. Mathematically, the EM
algorithm aims to estimate the robot’s state by iteratively maximizing the like-
lihood of the observed data. It consists of two steps: the expectation (E) step
and the maximization (M) step.

In the E step, the algorithm computes the posterior distribution of the
robot’s state given the measurements and the current estimate of the state. Let
x represent the robot’s state, z denote the measurements, and θ represent the pa-
rameters of the model. The posterior distribution is calculated using Bayes’ rule
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as p(x|z,θ (k)), where θ
(k) denotes the current estimate of the parameters at it-

eration k. This step involves computing the expected value of the log-likelihood
function with respect to the posterior distribution.

In the M step, the algorithm updates the estimate of the state by maximizing
the expected log-likelihood obtained in the E step. This involves finding the
new parameter estimate θ

(k+1) that maximizes the expected log-likelihood. The
maximization step can be formulated as:

θ
(k+1) = argmax

θ

E
[
log p(z,x|θ)|z,θ (k)

]
(2.1)

This process is iterated until convergence, refining the estimate of the robot’s
state and the model’s parameters. Fig. 2.4 delineated the process of particle
filters.

The EM approach is powerful for localization problems as it handles uncer-
tainty and noise effectively, allowing the robot to estimate its state accurately
even in challenging environments. It is widely applied in various localization
techniques, such as simultaneous localization and mapping (SLAM), where it
aids in estimating the robot’s pose and building a map of the environment.
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2.2.5 Baysian Information Fusion
The Bayesian probability model is a fundamental framework for information
fusion in robotics, enabling the integration of multiple sources of information
to make informed decisions. Mathematically, it utilizes Bayes’ theorem to up-
date the probability distribution over a hypothesis given new evidence. Let H
denote the hypothesis and E represent the evidence obtained from different
sources. The Bayesian probability model calculates the posterior probability
P(H|E) using the prior probability P(H) and the likelihood P(E|H), as given
by Bayes’ theorem:

P(H | E) = P(H)P(E | H)

P(E)
(2.2)

Here, P(H) represents the prior probability, which represents the belief
about the hypothesis before considering the evidence. The likelihood P(E|H)

quantifies the probability of obtaining the evidence given the hypothesis. The
denominator P(E) is the normalizing constant, ensuring that the posterior
probabilities sum up to one. The Bayesian probability model allows for the
incorporation of prior knowledge, updating beliefs based on new evidence, and
iterative refinement of hypotheses as additional information becomes available.

By applying the Bayesian probability model, robotic systems can effectively
fuse information from different sensors, algorithms, or data sources to make
more accurate and reliable decisions. The model provides a principled frame-
work for information fusion, allowing robots to reason under uncertainty and
incorporate diverse sources of information into a coherent and consistent rep-
resentation of the environment.

2.2.6 Graph Optimization
Graph optimization is a powerful technique used in robotics for solving prob-
lems such as localization, mapping, and trajectory optimization. It involves for-
mulating the problem as a graph, where nodes represent variables and edges rep-
resent constraints or relationships between variables. Mathematically, a graph
optimization problem can be represented as minimizing or maximizing an objec-
tive function F (x) subject to constraints. Let x represent the vector of variables
associated with the nodes in the graph. The objective function quantifies the
optimization goal, which can be expressed as F (x) = ∑i fi(xi), where fi(xi)

represents a cost or objective associated with node i. Constraints are typically
modeled as penalty terms or equality/inequality constraints that enforce rela-
tionships between variables, such as g(x) = 0 or h(x)≤ 0.
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Graph optimization problems are solved using optimization algorithms like
the Gauss-Newton method or the Levenberg-Marquardt algorithm. These algo-
rithms iteratively update the variables x to minimize or maximize the objective
function while satisfying the constraints. The solution to the graph optimiza-
tion problem provides the optimal values of the variables, yielding an optimized
solution that satisfies the given constraints and minimizes the objective func-
tion.

By leveraging the graph optimization framework, robotic systems can solve
complex problems by formulating them as graphs and optimizing the variables
based on objective functions and constraints. This approach allows robots
to efficiently solve localization problems, perform simultaneous localization
and mapping (SLAM), optimize trajectories, or solve other optimization tasks,
enabling them to operate effectively in dynamic and uncertain environments.

2.2.7 Gaussian process Model Regression
Gaussian Process Model Regression (GPR) is a powerful probabilistic regres-
sion method used in machine learning and robotics to model and predict func-
tions based on observed data. It is based on the assumption that the underlying
function follows a Gaussian process, which is a collection of random variables
where any finite subset follows a joint Gaussian distribution. Mathematically,
GPR models the function as a Gaussian process prior and then conditions it
on the observed data to obtain a posterior distribution over functions.

Let X represent the input data matrix and y denote the corresponding out-
put or target values. GPR aims to estimate the underlying function f (X) by
learning the mean function µ(X) and the covariance function k(X,X′). The
mean function represents the expected value of the function at each input point,
while the covariance function captures the similarity or correlation between dif-
ferent input pairs. The GPR model assumes that the observed data y is related
to the function values through a noise term ε , following a Gaussian distribution
with zero mean and covariance σ2

n I.
The GPR posterior distribution can be computed using Bayes’ rule, re-

sulting in a predictive distribution that provides a probabilistic estimate of the
function values for new input points. The predictive distribution is a Gaussian
distribution with a mean vector and a covariance matrix, given by m(Xnew)

and K(Xnew,Xnew), respectively. The mean vector represents the predicted
mean values for the new inputs, and the covariance matrix captures the un-
certainty or confidence in the predictions. The GPR framework allows for
efficient and flexible regression, providing both point estimates and uncertainty
quantification, which is valuable for decision-making and robotic applications.
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By leveraging the Gaussian Process Model Regression, robots can effectively
model and predict functions based on observed data, allowing them to make
informed decisions and adapt to changing environments. GPR finds applica-
tions in various tasks, such as trajectory planning, object tracking, and sensor
fusion, where accurate and uncertainty-aware predictions are crucial for robotic
systems.

2.3 Exploration
Exploration in multi-robotic systems refers to the coordinated exploration of an
unknown environment by a group of robots. It involves the efficient allocation
of robots to unexplored regions to gather information and create a comprehen-
sive map of the environment. Mathematically, the exploration problem can
be formulated as an optimization task, where the objective is to maximize the
coverage of the environment while minimizing the time and energy expended.
Let N denote the total number of robots in the system, and si represent the
state vector of robot i, which includes its position and orientation. The explo-
ration process aims to determine the next best action for each robot, such as
moving to a specific location or exploring a particular area, denoted as ai. This
action selection is typically based on a utility function, which quantifies the
value or information gain associated with different exploration options. The ex-
ploration problem can be represented as finding the optimal action assignment
A = a1,a2, . . . ,aN that maximizes the overall utility or coverage.

The exploration in multi-robotic systems requires coordination mecha-
nisms to ensure efficient coverage and avoid redundant exploration. This coor-
dination can be achieved through communication and task allocation strategies.
Communication enables robots to share their exploration progress and coordi-
nate their actions. Task allocation algorithms allocate different regions or tasks
to individual robots based on their capabilities and exploration objectives. Let
T represent the set of tasks or regions to be explored, and f : V → T denote
the task allocation function that assigns each robot to a specific task. The task
allocation process optimizes the assignment based on various criteria, such as
minimizing the total exploration time or maximizing the coverage efficiency.
Fig. 2.5 has shown the exploration sequence to explore unknown space with
multi-robotic coorporation

By leveraging exploration strategies in multi-robotic systems, robots can
efficiently and collaboratively explore unknown environments, enabling ap-
plications such as search and rescue missions, environmental monitoring, or
mapping of hazardous areas. The mathematical formulation and coordination
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Figure 2.5: Simulated world with explored map and exploration sequence

mechanisms provide a framework for optimizing the exploration process, ensur-
ing effective coverage and utilization of resources in multi-robotic exploration
scenarios.

2.3.1 Reinforcement Learning
Reinforcement learning (RL) is a machine learning approach that focuses on
learning optimal decision-making policies through interactions with an envi-
ronment. It is typically modeled as a Markov Decision Process (MDP), defined
by a tuple ⟨S ,A ,R,P,γ⟩, where S represents the set of states, A denotes
the set of actions, R is the reward function, P represents the transition proba-
bility function, and γ is the discount factor. RL aims to learn an optimal policy
π(s) that maximizes the expected cumulative reward over time. The policy is a
mapping from states to actions, and the goal is to find pi(s) that solves the RL
problem.

The RL learning process involves an agent interacting with the environ-
ment over discrete time steps. At each time step t, the agent observes the cur-
rent state st , selects an action at according to its policy π(st), and receives a

23



reward signal rt and the next state st +1. The agent’s objective is to update
its policy based on this experience to maximize the expected future cumulative
reward. This is typically done using value-based or policy-based RL algorithms.
In value-based methods, the agent estimates the value function V π(s) or the
action-value function Qπ(s,a) to evaluate the goodness of states or state-action
pairs, respectively. In policy-based methods, the agent directly parameterizes
the policy π(a|s;θ) and updates the policy parameters θ using gradient ascent
to maximize the expected reward.

By leveraging reinforcement learning, robots can learn optimal decision-
making policies in dynamic and uncertain environments, enabling them to
autonomously adapt and improve their behavior over time. The mathematical
framework and algorithms of RL provide a principled approach to tackling se-
quential decision-making problems, making it a valuable tool for various robotic
applications, including navigation, manipulation, and task execution.

Q-Learning

Q-learning is a popular reinforcement learning algorithm that enables agents to
learn optimal action-selection policies in Markov Decision Processes (MDPs).
It is based on the principle of iteratively updating the Q-value function, which
estimates the expected cumulative reward for taking a particular action in a
given state. Mathematically, the Q-value for a state-action pair (s,a) is denoted
as Q(s,a), and it represents the expected cumulative reward when following
a particular policy from that stage onwards. Q-learning updates the Q-values
using the Bellman equation, given by:

Q(s,a)← Q(s,a)+α

(
r+ γ max

a′
Q(s′,a′)−Q(s,a)

)
(2.3)

where α is the learning rate, r represents the immediate reward received upon
taking action a in-state s, γ is the discount factor that balances immediate and
future rewards, s′ is the resulting state after taking action a, and maxa′Q(s′,a′)
represents the maximum Q-value for the next state.

The Q-learning algorithm iteratively updates the Q-values for state-action
pairs based on interactions with the environment. It explores the environment
by selecting actions based on an exploration-exploitation trade-off, gradually
converging into an optimal policy that maximizes the expected cumulative re-
ward. Through exploration and exploitation, Q-learning enables agents to
learn effective action-selection strategies in MDPs, allowing them to solve com-
plex decision-making problems. Its simplicity and effectiveness have made Q-
learning widely used in various domains, including robotics, where agents can
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autonomously learn and adapt their behavior in dynamic and uncertain envi-
ronments.

2.3.2 Convex Hull
The convex hull is a fundamental concept in computational geometry repre-
senting the smallest convex polygon enclosing a given set of points. Mathemat-
ically, let P be a set of N points in a two-dimensional space, represented as
P = p1,p2, . . . ,pN. The convex hull, denoted as conv(P), is the smallest
convex polygon that contains all the points in P . It can be defined as the inter-
section of all convex sets containing P or as the set of all convex combinations
of points in P . Mathematically:

conv(P) =
{
∑ i = 1N

λipi
∣∣∑ i = 1N

λi = 1,λi ≥ 0 ∀i
}

(2.4)

herein λi represents the weights or coefficients of the convex combination.
The convex hull has several properties, such as being convex and having its

vertices defined by a subset of the original points. Efficient algorithms, such
as Graham’s scan or Jarvis march, exist to compute the convex hull of a set of
topics in computational geometry. The convex hull finds applications in various
fields, including computer graphics, computational biology, and robotics. For
instance, in robotics, the convex hull can be used for collision detection, path
planning, or determining the reachable workspace of a robot. By representing
the boundary of the set of points, the convex hull provides valuable geometric
information that aids in solving a wide range of geometric and computational
problems.

2.4 Simultaeous Localization and Mapping
Simultaneous Localization and Mapping (SLAM) in multi-robotic systems
refers to the joint problem of building a map of an unknown environment
while simultaneously estimating the poses of multiple robots within that en-
vironment. It involves integrating sensor measurements and control inputs to
iteratively refine the robots’ positions and construct a consistent map. Mathe-
matically, SLAM can be represented as a recursive Bayesian filtering problem,
where the robots’ poses are denoted by xt [i], and the map of the environment is
represented by mt. The SLAM problem can be expressed as estimating the pos-
terior distribution p(xt [1:N],mt|z1 : t,u1 : t), given the sensor measurements
z1 : t and control inputs u1 : t up to time step t. This estimation is typically
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done using recursive techniques such as Extended Kalman Filter (EKF) or Par-
ticle Filter (PF) methods.

The SLAM problem in multi-robotic systems involves coordinating and
fusing information from multiple robots to create a consistent and accurate
map. Communication and information sharing is crucial in multi-robot SLAM,
enabling the robots to exchange their local maps or pose estimates, reducing un-
certainty, and improving overall mapping and localization accuracy. The critical
challenge in multi-robot SLAM lies in the efficient coordination of robots, data
association, and mapping merging. By leveraging multiple robots’ collective ob-
servations and knowledge, multi-robot SLAM enhances mapping capabilities,
accelerates exploration, and enables collaborative localization in complex and
large-scale environments.

SLAM’s mathematical formulation and algorithms in multi-robotic sys-
tems provide a framework for robots to create maps and localize themselves in
unknown environments autonomously. This capability finds applications in
various fields, including search and rescue operations, environmental monitor-
ing, and cooperative manipulation tasks, where accurate mapping and localiza-
tion are crucial for effective and coordinated robot behavior.

2.4.1 Extended Kalman Filtering
Extended Kalman Filtering (EKF) is a popular recursive estimation technique
used in SLAM to estimate the poses of robots and construct maps of unknown
environments. It combines the principles of Kalman filtering with non-linear
system models by linearizing them through a first-order Taylor expansion. Math-
ematically, EKF for SLAM involves maintaining the belief of the robot’s state
and the map as a joint Gaussian distribution. Let x[i]t represent the state vector of
robot i at time step t and mt denote the map of the environment. The SLAM es-
timation can be represented by the belief distribution p(xt [1:N],mt|z1 : t,u1 : t).
The EKF for SLAM iteratively applies prediction and update steps. The predic-
tion step incorporates the motion model p(xt [i]|xt−1[i],u[i]

t ) to propagate the
robot’s state estimate. In contrast, the update step integrates the sensor mea-
surements z[i]t and the observation model p(z[i]t |x

[i]
t ,mt) to refine the estimates

based on new information. The linearization of non-linear models in the EKF
enables recursive estimation of the state and map, providing a computationally
efficient approach for SLAM in a wide range of robotic applications.

The EKF approach in SLAM enables robots to estimate their poses and
construct maps in real-time by effectively combining motion and sensor mea-
surements. Its mathematical formulation and recursive nature make it a widely
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adopted technique for SLAM tasks, allowing robots to operate in unknown
environments, localize themselves, and create accurate maps of their surround-
ings.

The above-discussed concepts enable you to understand the terminologies
and techniques used in the dissertation.
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Chapter 3

Instantaneous Wireless
Robotic Node

Localization Using
Collaborative Direction

of Arrival

3.1 Introduction
In this chapter, we will discuss a single robot localization solution using a col-
laboration of wireless sensor nodes and direction of arrival. A set of sensors, ac-
tuators, and mobile devices are connected to form an Internet of Things (IoT)
system. Here, location information is critical for such operations, especially for
wireless and mobile robotic nodes. Node localization has been a challenging
problem, especially in indoor environments. As such, Indoor localization has
emerged as one of the most critical components in robotics, automation, and
wireless systems. Here, one fundamental requirement is to provide an accurate
and efficient localization system in a real-time (online) manner. Furthermore,
GPS-denied or dynamically changing environments pose additional challenges
for mobile robot indoor localization (Zafari et al., 2019a).

Sensors such as cameras, LIDAR, inertial measurement units (IMU), and
their fusion have been exploited for obtaining accurate indoor localization of
mobile devices (Canedo-Rodriguez et al., 2016). However, these technologies
are expensive, non-applicable to resource-constrained devices and robots, and
also suffer from various limitations, such as the requirement of proper lighting
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Figure 3.1: Overview of the proposed real-time CDOA-based localization of a
robotic node following a trajectory with limited IoT/Wireless Nodes.

conditions in vision-based localization and structured non-dynamic surfaces
for LIDAR-based perception.

On the other hand, wireless technologies such as Wi-Fi and Bluetooth are
the most extensively utilized for indoor WLANs. The ubiquitous availability of
Received Signal Strength Indicator (RSSI) measurements from Access Points
(AP) or Wireless Sensor Nodes (WSNs) can be used for various objectives, in-
cluding localization (Latif & Parasuraman, 2022a; Motroni et al., 2021; Rizzo
et al., 2021), multi-robot control (S. Luo et al., 2019; Parasuraman & Min, 2019),
and communication optimization (Parasuraman et al., 2018). These advances
provide opportunities to exploit the RSSI information from WSNs in aiding
mobile robot localization.

Extant RSSI-based indoor positioning systems frameworks require an of-
fline site survey to generate fingerprints and match the current real-time RSSI
data to this database for positioning with a supervised machine learning algo-
rithm (e.g., (Sadowski et al., 2020)). However, the fingerprinting approaches
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require a dedicated offline phase, in addition to the limitation of generalization,
where they can be employed only for the specific environment where they are
fingerprinted (Tao & Zhao, 2018). However, for mobile robot deployments,
these limitations are not practical.

To address these gaps, we propose a novel algorithm for estimating the Col-
laborative Direction of Arrival (CDOA) estimated with the RSSI values ob-
tained through collaboration among WSNs. The CDOA estimation is then
integrated with two Bayesian framework variants for robust node localization:
Expectation Maximization (EM) and Particle Filter (PF). See Fig. 3.1 for an
overview of the proposed WSN collaboration-based wireless robotic node lo-
calization method.

The main contributions of this chapter are outlined below.

1. We propose a novel collaboration-aided mechanism for a mobile robot to
collect RSSI data from the WSNs and estimate Wireless signal CDOA.

2. We integrate the CDOA with a Bayesian framework for robot node lo-
calization. We propose two variants (Expectation Maximization and Par-
ticle Filter) to exploit the statistical EM method’s accuracy and efficiency
advantage the sampling-based PF method offers.

3. We theoretically analyze the properties of the proposed CDOA localiza-
tion method in terms of localization consistency, accuracy, area coverage,
scalability, and computational complexity.

4. Through extensive experimental analysis in diverse setups enabled by nu-
merical simulations, publicly available real-world datasets, and in-house
robot hardware demonstrations, we evaluate the localization accuracy
and efficiency of the proposed variants of CDOA-aided node localiza-
tion.

5. We validate our approach by comparing with relevant non-fingerprinting
methods from the recent literature such as the trilateration (B. Yang et
al., 2020a), weighted centroid localization (Z.-M. Wang & Zheng, 2014),
differential RSSI (Podevijn et al., 2018), improved RSSI-based localiza-
tion (W. Xue et al., 2017), and the smooth Particle Filter with Extended
Kalman Filter (Zafari et al., 2018) approaches.

6. We open source all our codes and datasets (native Python implemen-
tations for the IoT and wireless sensor network community, as well as
a ROS (Quigley et al., 2009) package for the robotics community) at
https://github.com/herolab-uga/cdoa-localization. We believe this will
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enable the reproducibility and extension of our approach by the research
community.

The core novelty of our approach lies in that we employ a CDOA metric ob-
tained through cooperative communication between the WSNs and the mobile
robot instead of relying on the RSSI metric directly (as used in relevant meth-
ods in the literature). Further, we integrate and extensively evaluate the CDOA
metric with Bayesian frameworks for robot node localization. Our proposed
methods achieve superior accuracy, efficiency, and robust localization perfor-
mance through these novelties while enabling real-time efficiency compared to
several state-of-the-art solutions.

3.2 Related Work
According to a recent survey on Wi-Fi-based indoor positioning, (F. Liu et
al., 2020a), there are two categories of wireless localization solutions: Model-
based and Survey-based. Model-based approaches include trilateration using
RSSI, triangulation using DOA, and Weighted Centroid using distance. Recent
works include variants thereof, such as the filtered trilateration (B. Yang et al.,
2020a), differential RSSI-based least squares estimation (Podevijn et al., 2018),
and Expectation Maximization (Pajovic et al., 2015b). While the survey-based
approaches provide high accuracy based on the precise fingerprints collected
from the same environment through a dedicated offline process, they also come
with high computation costs of prediction algorithms like the K-Nearest Neigh-
bors (Subedi & Pyun, 2020). Accordingly, we focus on model-based solutions.

In model-based approaches, multilateration and triangulation are the fun-
damental methods to predict the position of a wireless device (e.g., a mobile
robot) using RSSI captured from multiple anchors/APs (Passafiume et al., 2016).
However, these methods suffer from co-linearity, ambiguous positioning, non-
intersecting circles, etc. A recent survey (Zafari et al., 2019b) on model-based
techniques confirms that the balance of accuracy and computing complexity
is absent in the literature. Also, different variants of trilateration/triangulation
can have different localization accuracy, resulting in inconsistency in its appli-
cation. The weighted centroid method is less accurate for non-line-of-sight
conditions, limiting its applicability. Further, some methods convert the raw
RSSI measurements into distance estimates to use in multilateration algorithms,
which suffer from the dependency on wireless channel parameters of the envi-
ronment for RSSI to distance conversion.

A novel trilateration algorithm is put forth by Yang et al. (B. Yang et al.,
2020b) for RSSI-based indoor localization. This technique determines the lo-
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cation of a target by using the geometric relationships between transmitters
and receivers. The precision of localization can be considerably impacted by
environmental changes, such as obstructions and multipath propagation, be-
cause trilateration is sensitive to these. This approach also needs considerable
calibration and exact distance estimation, which might be difficult in dynamic
situations. A Gaussian Filtered RSSI-based Indoor Localization method utiliz-
ing Bootstrap filtering is presented by Wang et al. (J. Wang et al., 2021). This
technique uses particle filtering to determine a target’s location within a WLAN.
Despite being more resistant to environmental noise, this method still relies on
RSSI measurements, which are prone to interference, multipath propagation,
and signal attenuation.

Pinto et al. (Pinto et al., 2021) use K-means clustering and Bayesian estima-
tion to create a reliable RSSI-based indoor positioning system. This method
seeks to increase localization accuracy by integrating unsupervised learning with
probabilistic estimates. It is nonetheless susceptible to the drawbacks of RSSI
measurements, such as susceptibility to environmental changes and the require-
ment for significant calibration. Bayesian filtering method also presented by
Mackey et al.(Mackey et al., 2020) for enhancing BLE beacon proximity esti-
mation accuracy. This technique improves the performance of BLE beacons,
but it is still vulnerable to interference from other wireless devices and may have
decreased accuracy in NLOS scenarios and dynamic surroundings. Another
method for estimating the path-loss exponent using Bayesian filtering is pre-
sented by Wojcicki et al. (Wojcicki et al., 2021). This method is intended to
describe signal propagation in various contexts, increasing the precision of lo-
calization. The quality of the RSSI measurements, which the surroundings and
signal attenuation can impact, is crucial to the path-loss exponent estimation’s
accuracy.

Combining data from many sources and utilizing probabilistic techniques,
CDOA, particle filtering (PF), and expectation maximization (EM) for wire-
less sensor networks minimize the drawbacks of the aforementioned methods.
While CDOA-EM uses locations as samples to fill a grid and determine robot
location using Gaussian probability, CDOA-PF increases robustness in com-
plicated situations by repeatedly updating particles representing potential posi-
tions. Both strategies overcome the shortcomings of conventional RSSI-based
techniques and offer more precise and dependable localization in the presence
of NLOS, multipath propagation, and environmental changes.

As an alternative to the RSSI metric, researchers have proposed the use
of the Channel State Information (CSI) metric for robot localization systems
(Jadhav et al., 2021; Song et al., 2017; X. Wang et al., 2016). However, most CSI-
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based techniques involve extensive offline fingerprinting processes to improve
accuracy. Moreover, as with RSSI-based metrics, the CSI metric is limited to
very few radios and cannot be exploited for ubiquitous applications. DOA (or
Angle of Arrival) based methods achieve higher localization accuracy than RSSI-
based solutions. For instance, in research (Arbula & Ljubic, 2020), the authors
used a sensor node equipped with Infrared light arrays to estimate the DOA
of a mobile robot, which was used to achieve indoor localization with meter-
level accuracy. Cooperatively localizing target nodes using multiple reference
nodes with known locations has been explored. For instance, the authors in
(Hassani et al., 2015) provided a distributed method for cooperatively estimating
the DOA of an acoustic sensor network. In contrast, the authors in (J. Xu et
al., 2015) used cooperative DOA from Ultra Wideband (UWB) radios to locate
target nodes using many reference nodes.

UWB-based indoor localization systems, while highly promising, still face
several limitations. The presence of multipath propagation and non-line-of-
sight (NLOS) conditions can significantly affect the positioning accuracy (Alar-
ifi et al., 2016). Yang et al. (B. Yang et al., 2022) proposed a UWB-based indoor
localization with fewer nodes and utilized deep neural networking to avoid the
effect of non-line-of-site; however, this solution requires offline data training
and sampling overhead, which makes the system restricted to the trained en-
vironment. Additionally, deploying UWB anchors can be challenging in real-
world environments due to their need for precise installation (Ridolfi et al.,
2021). Further, the power consumption of UWB devices and their suscepti-
bility to interference from other wireless systems can negatively impact their
performance and scalability (Zafari et al., 2019b). Integration of UWB-based
systems with other sensing modalities can be difficult, as the fusion of data from
different sources may be subject to noise and uncertainty (C. Wang, Xu, et al.,
2021).

A wireless sensor network with a few WSNs can overcome the limitations of
UWB-based indoor localization by leveraging cooperative sensor modalities to
provide robust and accurate localization in complex environments. By fusing
data from diverse sensing sources, WSNs can mitigate the effects of multipath
propagation, NLOS conditions, and interference, enhancing the overall system
performance (Celaya-Echarri et al., 2020). Furthermore, commercial UWB-
based localization solutions provide accuracy of up to 10cm and connection
stability at the cost of high computation power and expensive anchor node
solution, which makes it impractical for swarm robots (Starks et al., 2023) with
limited computational power and can only possess wireless connectivity. The
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proposed solution provides highly scalable, computationally efficient, and high
localization accuracy for small to large-scale multi-robot systems.

Estimating a mobile node’s position using only a few reference nodes with
high accuracy and efficiency is achievable in wireless sensor networks. Wang et
al. (H. Wang et al., 2019) proposed sparse Bayesian learning for robust DOA esti-
mation with only a few base station nodes. But, their implementation assumed
multiple antennas at each base station, realizing an EM-based DOA estima-
tion and eventual vehicle localization using the DOA triangulation. Wang’s
proposed solution is computationally expensive and requires high-end base sta-
tions, which makes it impractical for small robots operating indoor environ-
ment. On the contrary, in our work, we assume typical Wi-Fi sensors without
having access to multi-antenna data, allowing ubiquitous integration with exist-
ing wireless sensor networks/IoT systems and computationally efficient online
CDOA-based indoor localization.

Therefore, we propose a CDOA estimation using IoT or wireless nodes
and fuse it with Bayesian approaches for high-accuracy localization of mobile
robotic nodes. We depart from the literature in two different ways: 1) we
use a collaborative mechanism between the WSNs to obtain the CDOA
of wireless signals; 2) we estimate Gaussian probability on the CDOA
estimates, adopting EM and PF Bayesian frameworks. The localization
system can be applied independently of the robot’s motion model or combined
with the robot’s odometry, if available, to improve accuracy. Moreover, our
approach uses only a few reference nodes and works on resource-constrained
robotic nodes in real time. Our proposed approach is advantageous by reduc-
ing computational complexity without embedding external hardware and us-
ing bearing-only information (aided by the cooperative RSSI measurements).
It achieves high accuracy even in the presence of signal noise. This way, our
method balances the efficiency and accuracy of quick online operation with-
out fingerprinting dependence. While localization of static Access Points has
been demonstrated using DOA (Parashar & Parasuraman, 2020), this is the first
work that uses CDOA for robotic node localization demonstrated in real-world
implementations.

3.3 Problem Statement
We look at the problem of a robot node localizing itself against its surroundings.
Here, a limited (smaller) number of WSNs or IoT nodes are distributed in
the environment, and the mobile robot is mounted with an AP, which nearby
WSNs can sense. The robot can operate within the sensing range of WSNs,
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which is assumed to be 40m; the robot is not restricted to be in the boundary of
WSNs but confined to be within the range (e.g., it could be outside the convex
of boundary).

WSNs are assumed to be static, and their exact position is known to the
robot for gradient calculation in the global frame. Furthermore, the robot is
restricted to moving within the sensing range of connected WSNs. The WSNs
measure the RSSI values coming from the AP and communicate this informa-
tion to the robot cooperatively (assuming the measurements and shared data
are reasonably time-synchronized using NTP-like protocols). Robot will use
RSSI values to calculate the gradient and convert it into the CDOA with respect
to the position of WSNs. The robot R keeps track of the trajectory along with
the CDOA measurements as the tuple: ml = {xl,yl,CDOAl}, where (xl,yl)

is the location of the robot at location l.
The objective is to find the best estimate of the robot’s location (x∗l ,y

∗
l ),

which maximizes the probability of observing the measurement tuples when
the robot is at the estimated location P(xl,yl | ml,ml−1, ...,ml−M), where ml

is the sample for position l and M is the number of previous samples considered
along the completed trajectory so far, given that we employ an arbitrary method
to estimate the CDOA. Table 3.1 lists the key symbols and notations used in
the chapter.

3.4 Proposed CDOA Approach
Cooperative localization can be accomplished with a network of wireless nodes,
where each node can sense the signal strength of the other node in the network.
Our approach consists of two units: 1) we propose a CDOA estimation scheme
from RSSI measurements with an assumption of the geometric model of the
AP/WSN distribution in the environment, which is typical in the literature;
2) our solution deploys EM and PF-based localization of a mobile robot node
using the CDOA.

In principle, we need at least three WSNs that form at least two noncollinear
segments between them to measure a valid gradient inside the boundary created
by the WSNs ((Twigg et al., 2012)). Having a higher number of WSNs will
increase the robustness of the solution. It is possible to extend this setup where a
mesh network is available with several known and unknown wireless nodes, but
we limit our scope and experiments in this chapter with four WSNs deployed
at the corners of a robotic node workspace boundary (see Fig. 3.1).

The proposed method has a basis in WSNs collaboration to measure RSSI
collaboratively and calculate CDOA. Alg. 1 provides an algorithmic pseudo-
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Table 3.1: Notations and their descriptions
Notation Description
Si Measured RSSI at a wireless node Ni
g⃗ = [gx,gy] Gradient of the RSSI’s signal strength
(xc,yc) Centroid position of a rectangular workspace
∆X , ∆Y Distance between the WSNs along the x and y axes
CDOAl CDOA of the signal at a position along the robot’s path l
Pr, Rr Initial and re-sampled list of particles in PF
ω Weights associated with each sample
xt State at time t
Er List of grid positions in the EM algorithm
wEr(xt) Gaussian Probability for each grid position in Er at time t
M Number of previous samples considered
σ Standard deviation of error for all previous samples
errk

l CDOA error for sample k
wi Weight of each particle
w∗i (qi) Normalized weight of each particle

code of the CDOA estimation of the mobile robot using the surrounding
WSNs. The first part of the Alg. 1 lays out the wireless network collaboration
for determining CDOA at the robot. All these computations are performed by
the moving AP-mounted robot, which runs a centralized service and receives
the RSSI information from all connected nodes that sense wireless signals inde-
pendently in a synchronized manner.

For collaborative measurement of RSSI on WSNs connected to an access
point installed on a robot, time synchronization is essential. These nodes can
synchronize their clocks within the time window using the Network Time Pro-
tocol (NTP), ensuring precise and consistent RSSI readings throughout the
whole network (Ranganathan & Nygard, 2010). Using the time window idea,
sensor nodes can send and receive RSSI data at predetermined intervals, effec-
tively controlling communication and minimizing the possibility of collisions
while enabling the system to coherently process and evaluate the obtained data
(W. Fang et al., 2021).

For the algorithm to work, we need at least three spatially-distributed WSNs
in the network, and the robot needs to be within the polygonal boundary of
the WSNs.
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RSSI can be modeled as a vector with two components, and the gradient
concerning the center of the robot can be represented as g⃗ = [gx,gy]. One of
the primary advantages of the central finite difference method is that it provides
gradient estimation based on the received signal strength from geometrically
oriented wireless nodes. After an appropriate gradient estimation, a receiver
node (moving robot) can estimate the direction of arrival of signals based on
the reference position for position estimation using EM and PF contrivance.

In our current implementation, the CDOA of the mobile robot within the
network is obtained from the geometric rule described in the central finite dif-
ference method (Parasuraman, Fabry, et al., 2013). For a rectangular configured
networked infrastructure with centroid position (xc,yc), refer to Fig. 3.1 where
the RSSI value of Node 1 is S1 and so on, the RSSI gradient is calculated as:

gx =
S3−S2

2∆X
+

S4−S1

2∆X
; gy =

S2−S1

2∆Y
+

S3−S4

2∆Y
(3.1)

Here, ∆X is the distance between the wireless sensor’s antennas along the x-axis,
and ∆Y is the distance between the wireless sensor’s antennas along the y-axis.
We then calculate the CDOA from the gradients calculated using Eq. (3.1).

CDOAl = arctan(
gy

gx
) (3.2)

The formula provides the CDOA of the wireless signal at a position along the
path l using the RSS gradient. We can then suppress the noise of the calculated
CDOA by using the exponentially weighted moving average.

We employ a Gaussian probability model on the wireless signal CDOA
estimates to calculate the weights of each random particle in the PF. Similar to
the work in (X. Li et al., 2015) that uses acoustic signals, this probabilistic model
will weigh the quality of signals sensed by each node from N and ultimately
produce an accurate robot location estimate through the PF.

The absolute error between Actual CDOA for all wireless sensors at a po-
tential candidate position l of mobile robot with coordinates (xc,yc) to the per-
ceived CDOA values for each sensor calculated for each particle. Later, we use
the Gaussian probability formula (similar to (Parashar & Parasuraman, 2020))
on this error to calculate the probability of the ith candidate location of the
particle qi = (xi,yi,wi), i ∈ (1, ..n), where n is the number of samples in the
PF spread in the bounded region with the resolution of ℜ and wi is the weight
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of each particle calculated over a set of previous path samples as:

Pl(qi) =
M−1

∏
k=0

[
1

σ
√

2π
e−

(errk
l )

2

2σ2

]
, (3.3)

where Pl(qi) is the probability density function for the position l of candidate
particle i in PF, M is the number of the previous samples considered, σ is the
standard deviation of error for all previous samples, and (errk

l )
2 is the CDOA

error for sample k. Eq. (3.3) provide the probability for particle qi considering
M−1 previous samples.

There is an intrinsic angular inaccuracy in each CDOA degree that is ana-
lyzed. σ represents the fluctuation (deviation) of this error, which is anticipated
to be known because we know the correctness of the technique used to assess
the CDOA. We use the product of the Gauss likelihood of CDOA error over
M−1 prior robot positions (imitating geographically scattered samples) so that
the sifted CDOA from earlier path locations can be used similarly as readings
from many sensors.

Next, we discuss how the CDOA estimation is integrated with a probabilis-
tic framework to achieve localization using the DOA information.

3.4.1 CDOA-PF
The CDOA probability from Eq. 3.3 is used to calculate the weights of the
particles in the PF, which is then employed in the resampling procedure in the
next PF step (iteration).

wi ∝ Pl(qi) (3.4)

The EM and PF provide initial hypotheses with a uniform sampling of probable
robot locations across the environment using a constraint around the present
robot location. The Gaussian probability is determined for each particle, the
signal source. The particles are subsequently given weights that are proportional
to their likelihood, and the weights wi are normalized as w∗i (qi) =

wi(qi)

∑
n−1
i=0 wi(qi)

.
This normalized weight determines the likelihood of regenerating a particle

in the next iteration. The particle with the highest weight (softmax) best gauges
the robot’s location. This process is repeated, and the particles eventually con-
verge on the location estimates. It is worth noting that the PF is iterated for
each new estimation tuple. Alg. 2 depicts a pseudo-code of particle filtering to
estimate the location from the CDOA efficiently. The CDOA-PF algorithm
combines a Particle Filter technique with a Cross Difference of Arrival. The
algorithm incorporates transition models and CDOA computations and iter-
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atively updates particles that reflect the robot’s potential positions. The algo-
rithm calculates the robot’s position by resampling particles according to their
associated probabilities and doing so until the end of the robot’s trajectory.

3.4.2 CDOA-EM
Expectation Maximization (EM) is a grid-based localization that uses an ex-
plicit, discrete representation for the probability of all positions in the state
space. We represent the environment by finite discrete state spaces (Grids). The
algorithm updates the probability of each state of the entire space at each itera-
tion. Use a fixed decomposition grid by discretizing each CDOA: (x,y,θ). For
each location xi = [x,y,θ ] in the configuration space: determine probability
P(xi) of the robot being in that state. Then, it chooses the state with the highest
probability. This approach resembles the EM method in (Pajovic et al., 2015a).
Alg. 3 depicts the procedure of the EM approach that can be used to estimate the
location from the CDOA efficiently. The CDOA-EM algorithm employs Ex-
pectation Maximization and Cross Difference of Arrival. It iteratively updates
the robot’s position using transition models and CDOA calculations, populat-
ing a grid with positions as samples. The program determines the maximum
probability grid position by converting CDOA into Gaussian probability and
predicting the robot’s location until the end of the trajectory.

3.4.3 Summary of the system architecture
Fig. 3.2 delineates the system architecture of proposed CDOA-based indoor
localization in which WSNs collaboration is shown in CDOA block where all
nodes share RSSI and perform gradient calculation using Eq. (3.1), which was
further converted into CDOA using Eq. (3.2) as mentioned in Alg. 1. CDOA
with robots’ position estimation is used for PF resampling as discussed in Alg. 2,
and similarly, for estimation maximization as mentioned in Alg. 3. These esti-
mates will further be used for state estimation of the robot as the robot moves
along a trajectory.

3.5 Theoretical Analysis
Assumption 1 Given the locations of static wireless nodes N, their range R in
the wireless sensor network, and the position of the robot node x; the following
observation can be made about the CDOA estimation probability: CDOA is
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Figure 3.2: System architecture of the CDOA-based robotic node localization
approach using particle filter and estimation maximization.

independent of the previous observations, i.e.,

P(CDOAt |CDOAt−1,N,R,x) = P(CDOAt |N,R,x) (3.5)

Assumption 2 Given X as a set of samples in PF and ℜ as the resolution
of spread. We assume that samples spread randomly in the space with the given
resolution spread, greater than the centroid of converged samples in PF. i.e.,

∑
n−1
i=0 (Xi)

n
≤ℜ (3.6)

Lemma 1. The error in the location estimation depends upon the cumulative
noise percentage N % of RSSI from each wireless sensor node in wireless sensor
network.

Proof. First, We prove the relation between the error in CDOA estimation of
a robot at a candidate position l with cumulative noise N % in RSSI from
WSNs.

Let ηx = ηx,1,ηx,2, ...,ηx, j, and ηy = η1,y,η2,y, ...,ηk,y, are noise values
of nodes in the horizontal and vertical axis in wireless sensor network respec-
tively. Based on Eq. (3.1), the uncertainty values for gx and gy are ∑

j
i=1(ηx,i)

and, ∑
k
i=1(ηi,y) respectively. Hence, calculated CDOA at position l has a cu-

mulative percentage error of gx and gy. Next, we note that location estimation
is the soft-max of weights of n samples in PF; hence the error in location estima-
tion depends upon the cumulative percentage error of maximum weight in PF,
which is further dependent upon the error of CDOA estimation using RSSI in
wireless sensor network.
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Algorithm 1: CDOA: WSN Collaboration-aided DOA Estimation
at the Mobile Robot
1 At every wireless sensor node;
2 Si← [], list for all RSSI values for node i;
3 sample RSSI→ Si;
4 Initialize the time window to T ;
5 while time window is open do
6 Si→ average all RSSI received;
7 end
8 Publish Si to the ROS network;
9 At the robot node;

10 for every wireless node i ∈ N = 1,2, ..,4 in WSNs do
11 Receive RSSI (Si) locally;
12 end
13 Calculate RSSI gradients in Eq. (3.1) using Si ∈ N ;
14 Calculate CDOA at the robot using Eq. (3.2);

Moreover, as shown in (Penna & Cabric, 2011), the location estimation
error variance estimated using the DOA metric can scale linearly with the DOA
estimation variance and quadratically with the target distance (see Lemma 3).

Theorem 1. (Convergence) The CDOA-based localization output will converge
to the actual robot position in finite iterations. Let xi = τxi−1 + ε , where i is the
current iteration, τ ∈ X and ε ≈ℜ (resolution). We can claim that the infinite
sequence, xi

∞
i=1 has an approximate solution in a finite number of iterations.

Proof. Let x1,x2, ...,xn be the converged particles in the PF solution, and let c
be the centroid of these particles. The particle filter algorithm iteratively updates
the particles according to the likelihood function and the prior distribution.
After a finite number of iterations, the particles converge to a stable solution
that approximates the true position.

We can represent the particle filter algorithm as an iterative process, where
the k-th iteration is represented by the function gk(xk−1) = xk. We can prove
that the sequence of iterates xk converges to a fixed point x∗ of the function
g(x) = limk→∞ gk(x)

Now, let x be any candidate particle with the minimum difference from
each of the converged particles x1,x2, ...,xn. By the definition of the centroid,
we know that ∑

n
i=1 |xi− c| is minimized. Therefore, |x− c| is also minimized,
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Algorithm 2: CDOA-PF: Particle Filter Over CDOA for Mobile
Robot Localization
1 Pr = [] % Initial list of particles in the PF ;
2 while end of trajectory do
3 draw sample xt from transition model P(Xt |xt−1,zt−1);
4 CDOA calculation using Algorithm 1;
5 ω = [] % weights;
6 for xt in Pr do
7 add P(zt |xt) to ω ;
8 end
9 Rr = [] % re-sampling;

10 for i=1 to n (number of particles) do
11 Choose p = Pr[i] of probability wi(xi) ∈ ω ;
12 add p to Rr;
13 x∗l = xi ∈ wi(xi) is max(wi);
14 end
15 Pr = Rr;
16 end

which means that x is closest to c Hence, we can say that position estimation can
be obtained with uncertainty N % using Lemma 1, and the proposed algorithm
converges over time and results in accurate location estimation.

A similar proof can be derived to guarantee the convergence of the CDOA-
EM localization output.

Lemma 2. The accuracy of location estimation depends upon the resolution spread
ℜ, i.e.,

n−1
argmin

i=0
|x−Xi| ≤ℜ (3.7)

Proof. According to Theorem 1, we have proven that the PF/EM solution con-
verges to the actual position after finite iterations. Let X = X0,X1, . . . ,Xn−1 be
a set of n known locations and let x be an unknown location that we wish to
estimate. We are given that the location estimation accuracy depends upon the
resolution spread≤ℜ based on Assumption 2. To prove this lemma, we will
show that for any x, the distance between x and its closest known location Xi is
less than or equal to ℜ.

We have demonstrated that Theorem 1’s statement is true and that the state
estimation converges to the actual position after a finite number of iterations.
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Algorithm 3: CDOA-EM: Expectation Maximization Over CDOA
for Mobile Robot Localization
1 Grid dimensions and resolution is given;
2 Er = [] % Populate full-resolution grid positions as samples for EM;
3 while end of trajectory do
4 draw sample xt from transition model P(Xt |xt−1,zt−1);
5 CDOA at xt calculation using Algorithm 1;
6 ω = [] % weights;
7 for each grid position in ER do
8 Convert CDOA into wEr(xt) ∈ ω Gaussian Probability using

(Eq. (3.3) for Er[t];
9 x∗l = xt ∈ wEr(xt) is max(wER);

10 end
11 end

Now, define X as a collection of n known locations, where X =X0,X1, . . . ,Xn−1

is the set, and define x as an unknown location that we want to estimate. By
Assumption 2, we are informed that the resolution spread≤ℜ determines how
accurately we can estimate the position. To demonstrate this lemma, we shall
demonstrate that for any x, x’s distance from its nearest known position Xi is
less than or equal to Re.

First, we note that for any i ∈ 0,1, . . . ,n−1, the distance between x and Xi

is given by |x−Xi|. Therefore, the closest known location X j to x is the one that
minimizes this distance, i.e., argminn−1

i=0 |x−Xi| = X j. We want to show that
|x−X j| ≤ℜ. To do this, we use the definition of argmini = 0n−1(x−Xi)≤ℜ.
We know that argmini = 0n−1(x−Xi)≤ℜ means that for any i ̸= j, we have
|x−X j| ≤ |x−Xi| ≤ℜ. It follows that |x−X j| ≤ℜ proves the lemma.

Lemma 3. (Coverage)With a minimum of 4 WSNs or IoT nodes in the network
available for collaboration with a sensing range of r each, the CDOA localization
method’s maximum coverage area is r2

2 , as long as the robot node to be localized
is within the boundary of the collaborating wireless nodes.

Proof. Assume that the four WSNs or IoT nodes A, B, C, and D are situated
at the four corners of a square region (see Fig. 3.1 and 3.3). Assume each side of
the square is s in length. The maximum distance between the robot i and any
of these nodes must be less than or equal to the diagonal of the square, which
is
√

(2)s, because A, B, C, and D are situated at the corners of the square. As a
result, the sensing range r must be at least a distance of

√
(2)s to connect the
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Figure 3.3: Depiction of coverage area for CDOA localization.

robot node with other supporting nodes in the network (i.e., r≥
√

2s, meaning
s≤ r√

2
). The square region, which forms the outer boundary workspace of the

robot node, has an area of s2. Therefore, the reliable area of the region that the
CDOA approach can cover for localization with nodes having a sensing range
of r is≥ r2

2 as long as the robot is inside the boundaries of the four cooperating
nodes. Moreover, expressing the coverage area A(r) as a function of r, we can
take its derivative as

∂A(r)
∂ r

=
∂ ( r2

2 )

∂ r
= 1 (3.8)

We can see that this derivative is always positive and indicates the linearity of
the coverage area concerning the number of nodes and the sensing range.

Remark 1 Minimum of three nodes (instead of 4 nodes) can be sufficient as
per the forward or backward finite difference equation for node collaboration
to estimate DOA (see (Parasuraman, Fabry, et al., 2013), as long as all the nodes
encompass the convex hull of the area boundary.

Remark 2 If more nodes are available to collaborate than the minimum
number of nodes, this allows exploiting redundancy in the CDOA estimation,
providing robustness and accuracy advantages.

Lemma 4. (Coverage Generalization) The minimum area coverage men-
tioned in Lemma 3 can be generalized to a rectangular region with an area of
r2. k

k2+1 , where k is the width factor of the length and width of the new rectangular
area, and r is the sensing range. The maximum coverage is achieved when the
length is equal to the width (square region).

Proof. Trivial. Given are the dimensions of a rectangle: length l, width w, and
aspect ratio k (the width factor that makes w = kl). The sensing range r must
be greater or equal to the largest diagonal of the rectangle. That is, r ≥

√
(l2 +

w2) ≥ l2(1+ k2). Therefore, the coverage area is expressed as l2 ≤ r2. k
1+k2 .

Moreover, it is trivial to observe that the width and length must be identical in
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order to cover the most area, i.e., when k = 1. This relates to a square region.

Remark 3 The CDOA estimation and coverage area can be generalized to
an arbitrary polygonal shape of the boundary of the localization workspace as
long as the convex hull of the boundary nodes can be defined. For instance, the
CDOA can be estimated using gradient estimation algorithms as proposed in
(D. Han et al., 2009; Verma et al., 2018) when the WSNs are distributed in the
workspace without a specific geometric pattern.

Lemma 5. Number of Collaborating Nodes A minimum of 2n+2 number
of nodes are required to cover an area of n r2

2 , for wireless nodes with sensing range
r.

Proof. Let A be the unit area of the square that can be covered by 4 WSNs (using
the result of Lemma 3. To extend this coverage beyond this unit area with a
scaling factor of n, we would need 2n more nodes, which require replicating
the square region n number of times as shown in Fig. 3.3. With 2n+2 nodes,
the maximum area of coverage then becomes nA = n r2

2 . For example, for a unit
area A and n = 1, we need four nodes (nodes A-D); with double the coverage
area, we need a minimum of 6 nodes (nodes A-F). Therefore, the number of
nodes required for CDOA scales linearly with the coverage requirement. A
single node’s coverage region is indicated by r2. Let n be the bare minimum of
nodes needed to cover area A. We’ll now demonstrate that n nodes are required
to cover area A completely and that any number of nodes below n falls short of
this requirement. The area bounded by n nodes can be expressed as nr2. We
have nr2 ≥ A because area A must be covered by n nodes. Now, let k be the
number of nodes such that k < n. We can express the area covered by k nodes
as kr2. Since k < n, we have kr2 < A. Therefore, we have nr2 ≥ A > kr2. This
means that n nodes are sufficient to cover area A and that any number of nodes
less than n is insufficient to cover area A. Now, we can use this to find an upper
bound for n:

A = nr2 =⇒ n =
A
r2 (3.9)

We know that n is a positive integer. Therefore, the smallest possible value for
n is

⌈
A
r2

⌉
. Where ⌈x⌉ is the smallest integer greater than or equal to x. We can

now use this to find an upper bound for n:

n≤
⌈

A
r2

⌉
≤ A

r2 +1 (3.10)
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We can substitute this into the lemma’s statement to get the desired result:

n≤ A
r2 +1≤ 2n+2 (3.11)

Hence, A minimum of n number of nodes are required to cover an area of
2n+2 per r2 of area to be covered.

Figure 3.4: The test sample locations in the simulation experiments are shown
here. The plots show the robot’s actual trajectory (where the signal sample was
taken) in solid lines and the predicted locations in scattered dots.

Theorem 2. (CDOA Scalability) Combining the results of Lemmas 4 and
5, the approximate linear relationship between the number of nodes n and the
coverage area A for localization using the CDOA approach can be expressed as
A≈ cn+d, where c and d are constants.

Proof. We will prove this theorem using the mathematical induction principle.
Considering Eq. (3.1), which uses four wireless nodes (n = 4) and proposed
approach able to find position estimation in the bounded region, given by al-
gorithm Alg.1, also, in this case, the coverage area is A4 = 4c+d where c and d
both are constants, which satisfies the theorem (see Lemma 4). Next, we will
assume that the theorem holds for some arbitrary value of n = k where k > 4.
In other words, we assume that Ak ≈ ck+d. Now, we need to prove that the
theorem also holds for n = k + 1. The coverage area for n = k + 1 nodes is
given by Ak+1 = Ak +∆A, where ∆A is the increase in coverage area due to the
addition of one more node. Since the CDOA approach is based on the DOA
of RSSI, it can be assumed that the increase in coverage area due to adding one
more node is approximately proportional to the existing coverage area. This
means that ∆A≈ αAk, where α is a constant (see Lemma 5). Substituting the
value of Ak from the induction hypothesis, we get ∆A≈α(ck+d). This means
that the total coverage area for n = k+1 nodes is given by:

Ak+1 ≈ ck+d +α(ck+d) = (c+α)k+(d +αd). (3.12)
A1 = d; Ak+1 ≈ (c+α)k+(d +αd); An ≈ cn+d (3.13)
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Figure 3.5: Locations of the RSSI sample points from the real-world datasets 1
(Left) and 2 (Right) discussed in Sec. 3.6.3.

Thus, we have proved that the theorem holds for n = k+1. Since we have
established the base case and have shown that the theorem holds for all n= k+1
if it holds for some arbitrary value of n = k, we can conclude that the theorem
holds for all n≥ 4.

Computational Complexity Let n be the number of samples (or particles)
in the EM (or PF), and N be the number of cooperative nodes in the wireless
sensor network. At each step, the robot needs to find pose estimation based
on our proposed WSN cooperative localization algorithm, which involves the
following steps:

• EM and PF initialization with random particles: O(n).

• Weight transfer to new PF for each sample in O(n).

• Robot-WSN collaboration in an open time window of α for sharing and
receiving wireless signals from N nodes in O(αN) time.

• Sample weight calculation based on CDOA in O(n).

• Finding the soft max from particle weight distribution as the best pose
estimate in O(n/2).

Therefore, one iteration is O(n×α(N)) where α and N are constant values
and have a low impact on overall computation complexity; hence, overall time
consumed by the proposed algorithm would be O(n).
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Figure 3.6: Hardware experiment setup and samples of the output robot’s trajec-
tories (diagonal, inside, boundary) in the real robot experiments (See Sec. 3.7.3).

Table 3.2: Experiment Configurations
Simulation Parameters Experiment Basis

Simulations Dataset1 Dataset2 Hardware
Space Dimensions 6×6 4×4 10×10 2.34×1.75
Resolution of CDOA-EM (ppi) 0.05 0.05 0.1 0.05
Resolution of CDOA-PF (ppi) 0.08 0.1 0.5 0.08

3.6 Experimental Validation
We implemented our approach and compared the performance with relevant
recent methods from the literature (see Sec. 3.6.1. We performed extensive exper-
iments through simulations (Sec. 3.6.2), real-world datasets (Sec. 3.6.3), and real
robot in-house experiments (Sec. 3.6.4) to verify and validate the performance
of the proposed localization in terms of accuracy measured through the Root
Mean Squared Error (RMSE) and efficiency measured through the Time Per
Iteration (TPI) metrics. In each experiment, we made 100 trials and averaged
the localization error over all trials as the distance between the predicted and the
actual positions (ground truth). The experiment settings shown in Table 3.2
show diverse settings under which we evaluate the proposed method.

3.6.1 Comparison with the State-of-the-Art (SOTA)
To validate the results of our proposed approach, we implemented the five
model-based solutions from the recent literature:

1. Trilateration (B. Yang et al., 2020a)

2. WCL: Weighted centroid localization (Z.-M. Wang & Zheng, 2014)

3. D-RSSI: differential RSSI-based localization (Podevijn et al., 2018)

4. I-RSSI: Improved RSSI based localization (W. Xue et al., 2017)
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5. PF-EKF: Particle filter - Extended Kalman Filter (Zafari et al., 2018)

6. SBL-DOA: Sparse Bayesian Learning applied over the Direction
of Arrival (H. Wang et al., 2019)

Our CDOA-PF approach applies the Gaussian probability over CDOA for
a fixed number of sampled particles, and in our CDOA-EM, the solution is
extensively searched through each and every grid of the workspace with a fixed
resolution (the EM implementation is similar to the method in (Pajovic et al.,
2015a)). More details on each of these methods are included in Appendix.A.

3.6.2 Numerical Analysis with Simulations
We simulated four WSNs distributed on the corners of the simulation workspace,
with the robot’s initial position being their center (Fig. 3.1). We simulated three
different trajectories for robot motion: Boundary (left), Cross Coverage (cen-
ter), Diagonal (right), and the scale of the workspace is 6m x 6m, as shown
in Fig. 3.4. Through these paths, we cover all potential positions within the
bounded region.

We measure the RSS value of each WSN for all positions along the robot’s
path. The estimated RSS based on the log-normal radio signal fading model is
computed as:

RSSI = A−10×η× log10(d), (3.14)

where η denotes the path loss exponent, which varies between 2 (free space)
and 6 (complex indoor environment), d denotes the distance from Robot R to
the node N, and A denotes received signal strength at a reference distance of one
meter. We used this setup to perform experiments and validate the accuracy of
localization techniques for different noise conditions on the measurements sim-
ulated through a zero-mean Gaussian noise varying from 1 to 4 dBm variance.
The path loss exponent η is set to 3 in our simulations to present a reasonable
indoor environmental channel in our simulations. The simulation effectively
mimics noise in RSSI by incorporating factors like distance, signal frequency,
and environmental conditions. Moreover, with varied noise levels, it aptly rep-
resents diverse real-world scenarios, substantiating its representativeness in our
experiments.

3.6.3 Real-world Datasets
We used two different publicly available real-world RSSI datasets on indoor
localization. See Fig. 3.5 for the illustration of the workspace of the datasets
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1 https://github.com/
pspachos/ RSSI-Dataset-
for-Indoor- Localization-
Fingerprinting

2 https://ieee-dataport.org/
documents/multi-channel-
ble-rssi- measurements-
indoor-localization

3 https://wiki.ros.org/

along with the positions of the WSNs and locations where the RSSI samples
are measured.

Dataset 11 Provides RSSI values for three wireless technologies; BLE, Zig-
bee, and Wi-Fi in a 4m x 4m room. We have used the data for Scenario 1 of
this dataset as it relates to our approach to the geometric positioning of anchor
nodes. In this scenario, a room of 6.0 x 5.5 m was used as the experimental
testbed. All transmitting devices were removed from the surroundings to estab-
lish a transparent testing medium where all devices could communicate without
interference. The transmitters were spaced 4 meters apart in the shape of a trian-
gle. The fingerprint and test points were obtained with a 0.5 m distance between
the transmitters in the center. The database would be made up of 49 finger-
prints due to this. Ten test points were chosen at random for testing. We have
arranged the fingerprinting dataset in such a way that it makes a trajectory in
the region.

Dataset 22 Provides RSSI values for the three regions of varying ranges in
the bounded area: diagonal, boundary, and inside in a 10m x 10m room. Four
anchors took RSSI measurements while receiving messages from a single mobile
node, delivering advertisement and extended advertisement messages in all BLE
channels (both primary and secondary advertisement channels). Four anchors
were placed in the corners of a 10 x 10 m office area (no considerable impedi-
ments). We have compared the results for different communication channels
under different regions in the bounded area.

3.6.4 Real Robot Hardware Experiments
To validate the practicality of the algorithm for real-world scenarios, we per-
formed hardware experiments on a testbed of dimensions 2.34m×1.75m, with
the ceiling-mounted camera for visual localization as ground truth; we have
mounted a wireless access point of power 20dBm with a 2.4Ghz frequency over
the top of a Turtlebot3 mobile robot.

Fig. 3.6 shows the experimentation test-bed and sample trajectories with
the Turtlebot3 robot at the center of the WSNs on the four corners. In each
trial, we drove the robot remotely and recorded RSSI and ground truth position
with an overhead camera-based fiducial marker (AprilTag (J. Wang & Olson,
2016)) tracking). Robot Operating System3 (ROS (Quigley et al., 2009)) has
been employed for inter-node communication, as ROS is the de-facto software
framework used in the robotics literature. The ROS master runs a service on
the experimental robot to receive perceived signal strength from all connected
nodes through a synchronization service. The WSN nodes operate at a 10Hz
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rate to calculate the RSSI and publish these values to the ROS topics. Five trials
have been conducted for each of the three different trajectories.

3.7 Results
Table. 3.3 comprehensively presents the overall DOA-only localization perfor-
mance, time complexity, and efficiency results of the proposed approach com-
pared to the SOTA approaches in simulation, real-world datasets, and real robot
hardware experiments. For time complexity, the variables n, S, and r represent
the number of particles in PF, the size of the grid in EM, and the resolution
of grids, respectively. Looking at the TPI (efficiency) metric, the model-based
approaches such as Trilateration and WCL are the fastest because of the low
computational requirement they need for every new sample. However, the
CDOA-PF is comparable to the model-based methods in terms of real-time
computational tractability, allowing the possibility for instantaneous localiza-
tion. In general, the CDOA methods performed significantly better than the
baselines in terms of higher accuracy and reasonable efficiency. More details on
the results are discussed below.

Table 3.3: Overall performance results with statistics of various experiments
from simulations, datasets, and hardware trials.

Algorithm Complexity Average
TPI (ms)

Localization Error RMSE (m)

Simulations Dataset1 Dataset2 Hardware
Trilateration O(1) 82±18 1.22±0.56 2.70±1.78 3.73±2.27 1.63±0.85
WCL O(1) 83±27 2.47±0.84 3.94±0.95 4.93±3.26 2.54±1.21
D-RSSI O(1) 86±18 0.55±0.13 2.18±1.26 2.92±1.52 1.53±0.72
I-RSSI O(1) 94±21 0.42±0.09 1.98±0.86 2.43±1.21 1.11±0.57
PF-EKF O(n) 111±34 0.91±0.18 2.34±1.64 3.12±1.78 1.74±0.91
SBL-DOA O(n) 127±42 0.16±0.06 1.81±0.69 1.72±0.48 0.54±0.21
CDOA-EM (Ours) O(S∗ r) 270±99 0.13±0.04 1.58±0.53 1.66±0.73 0.34±0.08
CDOA-PF (Ours) O(n) 102±25 0.15±0.05 1.17±0.48 1.67±0.83 0.12±0.16

3.7.1 Simulation Results
Fig. 3.7 summarizes the results of the simulation experiments. The proposed
CDOA approaches outperformed all SOTA methods and have been shown to
localize a mobile device using an existing WSN or AP infrastructure with up to 8
cm accuracy achieved in our simulation environment of 6x6 m, even in high sig-
nal noise of 4dBm. The CDOA-EM method provided the best accuracy among
all methods, while the I-RSSI approach had high localization accuracy among
the SOTA algorithms. Furthermore, in comparison to efficiency, CDOA-PF
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Figure 3.7: Comparative localization performance in the simulation environ-
ment.

is 40% more efficient than CDOA-EM in simulations, as expected. SBL-DOA
demonstrate comparable localization accuracy than proposed approach but is
10% less efficient than CDOA-PF. It can be seen that the weighted centroid has
the least accuracy of 84%, and the proposed approach has the highest accuracy
of 92% compared to the ground truth location. Also, as expected, the insider
and diagonal trajectories provide better accuracies than the boundary cases for
all the compared methods. The RSSI and DOA-based location estimates can
be ambiguous on the boundary regions, resulting in higher localization errors.

The PF-EKF approach used the same number of particle filters and applied
an EKF to predict and update the robot’s state while using raw RSSI values
(which are inconsistent and unreliable (Dong & Dargie, 2012a)) as an observa-
tion, resulting in 30% reduced position estimation accuracy than our approach.
In addition, the EKF update and prediction step in PF-EKF added overhead in
the computation and made it complex, while the proposed CDOA-PF has no
such computationally expensive operation; hence time per iteration of CDOA-
PF is 60% less than that of PF-EKF. Overall, the proposed CDOA-PF achieved
a balance of high localization accuracy and efficiency over all other SOTA algo-
rithms.

Ablation Analysis

In the proposed approach, certain factors, such as the number of particles and
noise level in RSSI measurements, can impact localization accuracy.
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Figure 3.8: Localization performance under different RSSI noise levels. The
embedded plot represents the RSSI variation at different noise levels to visualize
the representativeness of the simulated RSSI with real-world data.

We analyze the localization accuracy (RMSE) for different simulated noise
levels in the measured RSSI values. It can be seen in Fig. 3.8 that the proposed
approaches have lower RMSE (high accuracy) among all techniques, even un-
der high noise levels. The accuracy improvement is more pronounced when
the noise level is increased. The trilateration approach performed better than
the Weighted Centroid method. However, both have 3x lower accuracy than
the proposed EM and PF-based methods for most experiments. CDOA-EM
performed slightly better than CDOA-PF in terms of accuracy and robustness.
However, the CDOA-EM approach is computationally complex as it calculates
the Gaussian probability in all the grid areas with a full resolution instead of
sparsely and randomly distributed particles in the CDOA-PF.

Next, we present an ablation analysis of the number of particles in the pro-
posed CDOA-PF method since it is a sampling-based method depending heavily
on the number of particles. Fig. 3.9 presents the results of the RMSE variations
under different numbers of particles in the proposed CDOA-PF approach. The
accuracy has improved by increasing the number of particles, but not so much
beyond a certain optimum value. Also, more particles increased the compu-
tational complexity. Implementing the motion model over PF significantly
improved the accuracy at a small expense in the computation time. The results
demonstrate the potential of integrating the mobile robot’s motion model (or
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Figure 3.9: Impact on the localization accuracy of CDOA-PF by the number
of particles and inclusion of robot motion model (odometry).

IMU sensor), when possible, to improve the CDOA-based localization solu-
tion.

3.7.2 Real-world Public Datasets
In general, our method outperformed other methods in both datasets, as can
be seen in Table 3.3. Further analysis of individual technologies and channels is
provided below.

Dataset 1: Wireless technology comparison Dataset 1 captures RSSI
observations from three technologies (Wi-Fi, BLE, and Zigbee). The findings
from these experiments (Fig. 3.10) delineate the suitability of using Wi-Fi as a
communication channel and the proposed approach for indoor localization, as
it has the least RMSE than other technologies, with 1.07m RMSE in a 4m x
4m of bounded region. As expected, there is no significant difference in com-
putational complexity among different technologies because the methods take
the same time to run the algorithm, irrespective of where the signals are com-
ing from. However, CDOA-EM requires high time per iteration for position
prediction than any other method. The proposed CDOA approach also has
0.4 m better accuracy than the KNN as presented in (Sadowski et al., 2020)
scenario 1 of Dataset 1. SBL-DOA has utilized a similar direction of arrival tech-
nique and can achieve relatively higher localization accuracy than other SOTA
approaches but slightly less than the proposed CDOA-EM/PF. The CDOA-PF
provided higher accuracy than the CDOA-EM, contrary to the expectation that
EM provides better PF accuracy. We believe this is because the softmax-based
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Figure 3.10: Comparative localization performance on the real-world dataset 1.

convergence of a small number of particles in PF after several iterations resulted
in the closest position estimate rather than a more significant number of grids
converging in the EM. This is especially the case for certain positions where
the bounding centroid of grids is very close to the actual location, which yields
lower RMSE in CDOA-PF for longer trajectories, as in this dataset.

Dataset 2: Regional and Channel-wise comparison Dataset 2 has RSSI
captured in three regions (inside, diagonal, and boundary) in a bounded size
10 x 10 m. All the localization methods work well for the positions inside the
AP/WSN perimeter, compared to diagonal or boundary points, similar to the
results found in the simulations. However, the robot node would generally be
inside the infrastructure boundaries, exploiting the full advantages of the pro-
posed CDOA-based localization methods. Accordingly, the CDOA methods
provided the best accuracy compared to other methods.

Dataset 2 also has RSSI observations for 40 different channels under three
regions in the bounded dimension 10 x 10 m. We show the results for the com-
bined RMSE for channels 0-39. It can be seen from Table. 3.3 that the proposed
approach consistently provided the best performance in most of the scenarios
with reasonable computational efficiency. We also analyzed the individual chan-
nel performance and found that the comparative results did not differ signifi-
cantly compared to the averaged channel estimates. However, some channels
were found to have higher noise and, therefore, poorer performance on all the
compared methods. SBL-DOA approach over different channels performed
more or less the same as the approach relied on DOA and Bayesian learning to
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Figure 3.11: Comparative localization performance on the real-world dataset 2.

4 Also available at https:
//hero.uga.edu/research/
localization/

mitigate the effect of channel variations; hence it achieved close localization ac-
curacy than the proposed method at the cost of high computational cost which
makes it less practical in the robotic domain.

3.7.3 Real Robot Hardware Experiments
Fig. 3.12 provides the averaged results of the real robot experiments in different
regions. The results delineate high average localization accuracy of 95%, with
an absolute RMSE of 0.12 m (in a bounded region of 4m2) for CDOA meth-
ods in our hardware experiments. A sample of the hardware experiments and
demonstration is shown in the attached video4. As compared to other SOTA;
SBL-DOA performed better and has shown 90% localization accuracy but 5%
less accurate than proposed CDOA method.

Table 3.3 also provides comparative numerical values of localization error
and time per iteration for other SOTA approaches, which validate the signif-
icant performance improvement achieved by the proposed CDOA methods
in all trajectories. CDOA-EM has relatively better localization than different
approaches but with a high computational cost. The CDOA-PF has more than
93% localization compared to other model-based approaches, confirming the
simulation experiments. Interestingly, the CDOA-PF is 35% more accurate than
CDOA-EM, similar to the observation in dataset 1.

Furthermore, the hardware experiments also validated the practicality of the
proposed CDOA approach by providing evidence of high localization accuracy,
similar to simulation and dataset results. Finally, we have made a hardware exper-

56

https://hero.uga.edu/research/localization/
https://hero.uga.edu/research/localization/
https://hero.uga.edu/research/localization/


Figure 3.12: Comparative localization performance on the real robot experi-
ments.

iments dataset, and the software source codes of the implementations, available
for the research community to reproduce the results and build on the work to
improve DOA-based localization approaches further. The proposed CDOA-
PF and CDOA-EM approaches, given their impressive localization accuracy in
both simulated and real-world environments, should operate effectively even in
non-line-of-sight (NLOS) scenarios. These methods, especially the CDOA-PF,
combine robustness to variations in signal environment with computational
efficiency, making them likely to handle NLOS conditions where signals may
be blocked or distorted. Moreover, as these methods have shown superior per-
formance in high signal noise scenarios, they should be robust to the increased
noise and multipath effects commonly found in NLOS situations.

Limitations: Similar to any wireless node collaboration-based approach (H.
Wang et al., 2019), the proposed approach only works for more than three fixed
nodes placed at geometrically-aligned positions of a regular polygon bounded re-
gion to obtain accurate CDOA. While it is robust for most scenarios, it depends
on the quality of the RSSI and the obstacles or non-line of sight conditions,
which need to be studied further.

3.8 Summary
Indoor localization of mobile robotic nodes in GPS-denied environments presents
a significant challenge due to the dynamic nature and unstructured layout of
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such environments. Conventional technologies, including cameras and LIDAR-
based sensors, often fail in these circumstances. Wireless signal-based localiza-
tion has been an area of considerable focus in the literature, primarily empha-
sizing fingerprinting and feature-matching paradigms. However, these require
dedicated, environment-specific offline data collection, limiting their usability
in various scenarios.

This chapter proposes a novel, online robot localization algorithm that lever-
ages collaborative wireless sensor nodes to address these issues. The central in-
novation of the approach lies in determining the Collaborative Direction of
Arrival (CDOA) of wireless signals. The CDOA is obtained by utilizing geo-
metric features and collaboration between wireless nodes. This information
is then processed with the Expectation Maximization (EM) and Particle Filter
(PF) algorithms to calculate the Gaussian probability of the node’s location
with high efficiency and accuracy. Notably, the algorithm uses Received Signal
Strength Indicator (RSSI) data, making it applicable to resource-constrained
devices.

We thoroughly analyze the proposed approach’s consistency, accuracy, and
computational efficiency. This analysis includes extensive validation through
simulations, real-world public datasets, and real robot demonstrations. The
proposed method demonstrates impressive real-time computational capability
and delivers substantial centimeter-level localization accuracy. The results reveal
a significant improvement in accuracy and efficiency compared to state-of-the-
art localization approaches.

The primary contributions of the chapter include the proposal of a new
collaboration-aided mechanism for collecting RSSI data from wireless sensor
nodes and estimating the CDOA, integration of this CDOA with a Bayesian
framework for robust node localization, and extensive experimental analysis.
We further offer a thorough theoretical analysis of the proposed CDOA local-
ization method, considering factors such as localization consistency, accuracy,
area coverage, scalability, and computational complexity. Lastly, all codes and
datasets used in the research are made open-source, allowing the wider research
community to reproduce and extend the study’s findings.

Our method revealed at least a 50% improvement in localization accuracy
than other non-sampling-based methods such as trilateration, weighted cen-
troid, etc., using RSSI-only data, and 20% better than sampling-based tech-
niques. Furthermore, despite CDOA being a sample-based technique, due to
the less computational cost of CDOA and less frequent resampling, it is more
efficient than other sampling and non-sampling-based methods. The experi-
ments proved the practicality of the approach for cooperative robot localization
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to achieve high accuracy with low computational costs. In the next chapter,
we will discuss a synergistic localization approach to combine the proposed
approach in this chapter and the Bayesian information technique to improve
localization accuracy.

59



Chapter 4

Multi-Robot Synergistic
Localization in Dynamic

Environments

4.1 Introduction
This chapter extends the proposed idea of CDOA localization discussed in the
previous chapter to multi-robotic systems. For a robot to navigate in any area,
it must be familiar with the aspects of that environment and its position con-
cerning those features. For autonomous mobile robot systems, localization is
a critical issue. In static contexts where the map does not change, current solu-
tions to the so-called simultaneous localization and mapping (SLAM) problem
(Grisetti et al., 2007) can be applied by creating a map that is then used for the
rest of the localization. However, while standard localization techniques work
well in static environments, they may not work well in highly dynamic and com-
plicated environments like warehouses, logistics centers, and production halls.
The difficulty with these situations is that vast and quick changes infrequently
happen, changing the map for a longer length of time. People relocating storage
boxes or rearranging shelving are examples of such modifications.

Localization is an estimation of robot pose using the data collected from
sensors and previously built maps. The data collected by the sensors is used
by the robot to calculate its current position while in motion and to create a
map of the environment. The cognition component is crucial in assessing the
surroundings and determining the robot’s response. A method of navigating
in an already mapped or unmapped environment can be defined as the motion
control of a robot. Motion control will be used to determine the robot’s trajec-
tory in various exploring tactics (Kshirsagar et al., 2018). However, determining
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Figure 4.1: System architecture showing input and output for robot i. External
robot position estimates and RSSI are shown in circles out of the gray box as
robot j: (x j,y j,w j) and RSSI j are the best-fit pose estimates, and RSSI of robot
j from its particle filter, (xi,yi,wi) indicates the state estimate of robot i based
only on received measurements from connected n robots in the MRSL.

accurate position estimation is a challenge for a system containing multiple
collaborating robots in an indoor environment with dynamic surroundings.

Collaborative Multi-Robot Localization (CMRL) (Fox et al., 1999), which
can give a drift-free map-relative position estimate for robotic robots, is one
way of solving the GNSS-denied localization difficulty. CMRL compares envi-
ronmental observations to a known map to determine the robot’s most likely
position in map coordinates.

CMRL can provide localization precision on par with map resolution in
most cases. The CMRL solution’s performance, on the other hand, is strongly
reliant on the data available in the local topography near the robot. As a result,
localization convergence may be poor or unattainable for robots crossing fea-
tureless terrain. One possible approach is for robots to work together in groups.
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A multi-robot strategy allows robots to share information, allowing all agents
to converge even if certain people would not be able to do so otherwise.

The well-known issue of noise correlation amongst robots (Mokhtarzadeh
& Gebre-Egziabher, 2014; Prorok & Martinoli, 2011) must be addressed by mul-
tiagent teams sharing information. The underlying assumption of most com-
monly used estimators, such as Extended Kalman Filters (EKF) (Parasuraman
et al., 2018) and particle filters (PF) (Parashar & Parasuraman, 2020), is that
noise on new observations is uncorrelated with all past measurements. When
this assumption is broken, the filter fails to capture the genuine robot state
uncertainty and incorrectly converges to an inaccurate position, resulting in
inconsistent estimators.

In some cases, combining data from many robots functioning in concert
can reduce some problems associated with GNSS-denied navigation. For exam-
ple, when faced with flat, altered, or unfamiliar terrain, a team of robots may
assign several agents to stay in recognized informative zones to assist others ven-
turing into the featureless ground. When cars navigate without external input
and are vulnerable to inertial drift, combining readings from a group of robots
effectively increases the total number of sensors available to each agent, reduc-
ing mistakes. In some situations, a robot may even be able to stay within GNSS
signal range and communicate high-accuracy localization data with the rest of
the team.

This paper proposes a decentralized synergistic localization for multi-robotic
systems in a dense and dynamic environment. We propose a new Multi-Robot
Synergistic Localization (MRSL) algorithm. Every robot can localize itself inde-
pendently and update its position estimation using pose and sensor data from
connected robots. A robot will update its position estimation whenever new
information is obtained from its neighbors. When the system senses the pres-
ence of other robots in the region, it exchanges position estimates and merges
the received data to improve its localization accuracy.

For individual robot localization, we have extended the algorithm for parti-
cle filter localization (Parashar & Parasuraman, 2020) of an access point in a cer-
tain way that robots localize themselves using RSSI as a source to calculate bear-
ing as the direction of arrival (DOA). While many multi-robot collaboration
algorithms from the literature use a Covariance Intersection (CI) based infor-
mation integration, our approach uses Bayesian rule-based integration, which
has shown to be computationally efficient and applicable to asynchronous com-
munication. See Fig. 4.1 for an overview of the MRSL.

The main contributions of this paper are outlined below.
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1. We propose a multi-robot synergistic localization algorithm using a par-
ticle filter updated based on the DOA and shared pose estimates with
Received RSSI sensed between the robots (each robot having an AP).

2. We verify the efficacy of the proposed MRSL algorithm through extensive
numerical simulations and analyze the methods from the perspective of
impacts sharing RSSI and distance information.

3. We validate the accuracy and efficiency of the MRSL compared to au-
tonomous robot localization (ARL) (Parashar & Parasuraman, 2020),
which works without collaboration between robots, and the recent TRN-
based collaborative multi-robot localization (Wiktor & Rock, 2020), which
used covariance intersection to address the temporal correlation between
received signals.

The core novelty of MRSL lies in that we employ a Bayesian rule
to fuse shared information among robots in a connected network to
achieve high localization accuracy, instead of Co-variance Intersection (CI)
for information merging to reduce one source of measurement correlation while
appropriately incorporating others have used (as used in relevant methods in the
literature). Our method achieves superior localization accuracy through these
novelties while enabling real-time efficiency compared to several state-of-the-art
solutions.

4.2 Related Work
There has been substantial research on cooperative localization by other re-
searchers. For example, Roumeliotis (Roumeliotis & Bekey, 2002) developed
communal localization through a decentralized Kalman filter onboard each
robot in a seminal study based on the distributed heterogeneous multi-robot
localization (Madhavan et al., 2002) exploited extended Kalman filter. This
filter calculates robot poses while simultaneously tracking the cross-correlation
terms introduced by inter-robot data sharing, which further expanded to het-
erogeneous robot teams and outdoor contexts, as well as close range, bearing,
and orientation measurements (Martinelli et al., 2005). However, these ap-
proaches are based on the Kalman filter and assume that a unimodal Gaussian
may represent the posture estimate (Hamer & D’Andrea, 2018; Ullah et al.,
2020). These methods also need each robot’s filter to estimate the condition of
all other robots, which does not scale well when there are many robots.

Research work (Mokhtarzadeh & Gebre-Egziabher, 2014) presented a method
for calculating only the robot’s state utilizing inter-robot measurements to avoid
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assessing the status of the other robots. Through the use of Covariance Inter-
section (CI), the method directly addresses correlation issues. When applied
to measures that are, in fact, uncorrelated, CI properly fuses measurements
with an unknown amount of correlation, but it is conservative and lowers con-
vergence. According to the authors, signals from a well-localized agent can be
transferred to a robot with a poor localization estimate. This approach, however,
can only be used with an unimodal Gaussian mean and co-variance-variance rep-
resentation. The Gaussian distribution utilized in a Kalman or CI filter fails to
approximate position estimations in natural terrain because they are inherently
multi-modal.

Recent research has expanded on the strategies to take into account cross-
correlation. To lessen its influence, (Prorok et al., 2012) changed the particle
resampling algorithm. However, this study used a pre-determined sampling
proportion to avoid measurement correlation. Because natural terrain intro-
duces such a wide range of correlations, relying on a pre-set heuristic does not
guarantee that the filter will remain consistent. In the related subject of target
tracking, (Sun et al., 2016a) employs a distributed particle filter and uses chan-
nel filters to account for cross-correlation explicitly. This strategy, however, has
not been applied to the problem of localization, and channel filters are not well
adapted to the intermittent communication of underwater environments since
they must be reinitialized every time the network changes.

To the best of our knowledge, no previous work has met all the require-
ments for a robust collaborative localization technique for robots using CMRL.
Therefore, we propose a particle filter-based implementation that can accommo-
date multi-modal CMRL estimates, explicitly accounting for cross-correlation
to avoid over-convergence, with minimal computation and communication
requirements which is related to the improved particle filter approach multi-
sensor fusion approach (Khan et al., 2011). These advances allow practical imple-
mentation of the CMRL on mobile robots with robustness to network changes
and communication loss.

For indoor robot localization, existing techniques can achieve high localiza-
tion accuracy for wireless sensor networks (WSN) and utilizing Radio Signal
Strength Indicator (RSSI) as a source to calculate bearing information (F. Liu
et al., 2020b; Morales & Kassas, 2018; Owen-Hill et al., 2013). A performance
comparison study (Alfurati & Rashid, 2018) also backs the application of wire-
less sensor for localization. In collaborative multi-robot localization (CMRL),
previous research used probabilistic approaches in a centralized or decentralized
manner through map merging algorithms. Those techniques work well in static
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Figure 4.2: Overview of the proposed multi-robot synergistic localization,
robots localizing themselves using local information as well as shared informa-
tion.

environments, but not in highly dynamic and complicated environments like
production halls (Sun et al., 2016b).

Approaches to addressing the localization problem in dynamic environ-
ments have a high trade-off between performance and efficiency. A recent at-
tempt at CMRL incorporates filter architecture that allows multiple robots to
collaboratively localize using Terrain Relative Navigation (TRN) (Wiktor &
Rock, 2020). For shared information fusion to refine the localization estima-
tion, an estimator structure that uses CI to reduce one source of measurement
correlation while appropriately incorporating others has been used in contrast
to current explicit modeling approaches. We aim to localize agents with high
accuracy and efficiency in such an environment.

4.3 Proposed Approach
We look at the problem of a robot (or a wireless device) localization (self-localization)
against its surroundings. We propose a combined approach for individual and
synergistic localization (see Fig. 4.2). In the individual pose estimation, several
WSNs are distributed in the environment, and the mobile robot is mounted
with an AP, which nearby WSNs can sense. The WSNs measure the RSSI values
coming from the AP and communicate this information to the robot (assuming
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the measurements and shared data are reasonably time-synchronized). Further-
more, each robot also receives pose estimation and RSSI as shared information
among the network from connected robots to improve localization accuracy.
We apply the Bayesian rule to incorporate local and shared pose estimation.

Although the robot dynamics and sensors may differ, each robot’s surround-
ings are the same, and all agents are assumed to have a synchronized clock.
It is also assumed that the robots have a sensor capable of making a (poten-
tially noisy) measurement of the position of other agents and that the robots
can transmit data to other agents. This work also assumes that the agents can
uniquely identify other robots and perform the associated inter-robot measure-
ment, which is demonstrated in (Bahr et al., 2009; S. Luo et al., 2019). The
robots can operate asynchronously, and communication links can be estab-
lished or lost at any time.

4.3.1 Individual Localization
Suppose that we have a wireless AP mounted on a mobile robot (whose location
is to be estimated) and that four fixed WSNs N = {N1,N2,N3,N4} are placed
at the corners of the bounded region (see Fig. 4.2 for location reference). The
WSNs measure the robot’s AP’s radio signal strength (RSS). Using these signal
values, we can estimate the DOA of the robot’s vector concerning the WSN’s
center. The robot R records its path along with the DOA measurements as the
tuple: ml = {xl,yl,DOAl}, where (xl,yl) is the location of the robot at location
l. The problem is to find the best estimate of the robot’s location (x∗R,y

∗
R)∈R2

which maximizes the probability of observing the measurement tuples when
the robot is at the estimated location P(xR,yR | ml,ml−1, ...,ml−M), where
and M is the number of previous samples considered along the completed path
trajectory so far, given that we employ an arbitrary method to estimate the
DOA.

Our solution uses a particle filter-based localization of a mobile AP for in-
dividual localization. There are two main parts of individual localization: 1)
cooperative DOA estimation; 2) DOA-based localization.

Cooperative Estimation of DOA

Cooperative localization can be accomplished with a network of three (or more)
wireless nodes, where each node can sense the signal strength of the other node
in the network. In our current implementation, the DOA of the mobile robot
within the network is obtained from the geometric rule described in the central
finite difference method (Parasuraman, Fabry, et al., 2013). The Alg. 4 gives an
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overview of wireless network collaboration for determining DOA. All these
computations are being performed by the moving node, which runs a central-
ized service and receives the RSSI information from all connected nodes that
sense wireless signals independently in a synchronized manner.

RSSI can be modeled as a vector with two components, and the gradient
with respect to the center of the robot can be represented as g⃗= [gx,gy]. One of
the primary advantages of the central finite difference method is that it provides
gradient estimation based on the received signal strength from geometrically
oriented wireless nodes. It means that, after an appropriate gradient estimation,
a receiver node (moving robot) can estimate the direction of arrival of signals
based on the reference position, Which then further be used for position es-
timation using particle filtering. Using the central finite difference method
(Caccamo et al., 2015; Parasuraman, Fabry, et al., 2013), the RSSI gradient can
be calculated as follows:

gx =
SN3−SN2

2∆X
+

SN4−SN1

2∆X
(4.1)

gy =
SN3−SN4

2∆Y
+

SN2−SN1

2∆Y
(4.2)

Here, ∆X is the distance between the wireless sensor’s antennas along the
x-axis, ∆Y is the distance between the wireless sensor’s antennas along the y-axis,
and SN1,SN2,SN3 , and SN4 are the RSS values at nodes N = {N1,N2, ...N4},
respectively on the mobile robot, measured at the current path location.

DOAl = arctan(
gy

gx
) (4.3)

The formula provides the DOA of the wireless signal at a position along the
path l using the RSS gradient. We can then suppress the noise of the calculated
DOA by using the exponentially weighted moving normally. We consider a
fixed window k of the previous positions of the robot along its path. In this
way, the sampled D̃OAl at a path area l with K−1 past positions included in
the window can be composed using moving average.

DOA-based Localization

Similar to (X. Li et al., 2015) for acoustic signals, we employ a Gaussian probabil-
ity model on the wireless signal DOA estimates to calculate the weights of each
random particle in the PF. This probabilistic model will weigh the quality of
signals sensed by each node from N and ultimately produce an accurate robot
location estimate through the PF.
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Algorithm 4: Wireless sensor network (WSN) based cooperation for
determination of DOA on a mobile robot.
1 for every time node Ni ∈ N WSNs do
2 Each node Ni ∈ N measures RSSI (SNi) locally at time t;
3 publish SNi and t to the topic ri through a publish-subscribe

mechanism by all WSNs;
4 end
5 % At robot node;
6 Initialize time window to T ;
7 while time window is open do
8 for every RSSI topic ri ∈ R do
9 extract SNi and t from ri;

10 if t in time window then
11 add SNi to Si;
12 end
13 end
14 Average out all SNi in Si;
15 end
16 Calculate RSSI gradients: Eq. (4.1) and (4.2);
17 Calculated DOA of the robot within the WSN: Eq. (4.3).

The error between actual DOA (ADOA) for all wireless sensors at a po-
tential candidate position l of mobile robot with coordinates (xc,yc) to the
perceived D̃OA values for each sensor, can be calculated as follows:

errws
l =

N

∑
j=1

(ADOA j
l − D̃OA

j
l ). (4.4)

Now, we use the Gaussian probability formula (similar to (X. Li et al., 2015;
Parashar & Parasuraman, 2020)) on this error to calculate the probability of the
ith candidate location of the particle qi = (xi,yi,wi), i ∈ (1, ..N), where N is
the number of particles in the PF and wi is the weight of each particle calculated
over a set of previous path samples as:

wi ∝ Pl(qi) =
M−1

∏
k=0

[
1

σ
√

2π
e−

(errt−k
l )2

2σ2

]
(4.5)

There is an intrinsic angular inaccuracy in each DOA degree that is ana-
lyzed. σ represents this error’s fluctuation (deviation), which is anticipated to
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be known because we know the correctness of the technique used to assess the
DOA. We use the product of the Gauss likelihood of DOA error over M−1
prior robot positions (imitating geographically scattered samples) so that the
sifted DOA from earlier path locations can be used in the same way as readings
from many sensors.

This component of the DOA probability is used to calculate the weights
of the particles in the PF, which is then employed in the resampling procedure
in the next PF step (iteration). The particle filter provides initial hypotheses
with a uniform sampling of probable robot locations across the environment
using constraints around the present robot location. The Gaussian probability
is determined for each particle, that is, the signal source.

Algorithm 5: Multi Robot Synergistic Localization of a mobile robot
using DOA from WSNs
1 Pr = [] % Initial List of Particles in the PF ;
2 while end of trajectory stream do
3 for r in R do
4 sample xrt from transition model P(Xrt+1|xrt);
5 Xrt+1 = Xrt % motion model for AP embedded robot;
6 W = [] % weights;
7 for xrt+1 in Pr do
8 add P(ert+1|xrt+1) to W;
9 end

10 Rr = [] % re-sampled particle filter;
11 for n=2 to N do
12 for j=1 to n do
13 Find combined probability of Pl(qi) and P(r j) as

(Eq. (4.8));
14 update wi(xi) as (Eq. (4.9));
15 add P to Rr;
16 end
17 end
18 Pr = Rr;
19 x∗l = xi ∈ wi(xi) is max(wi);
20 end
21 end
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4.3.2 Synergistic Localization
Suppose we have n number of mobile robots, say R = R1,R2, ...,Rn collaborat-
ing in the same environment. All of them are connected to each through the
wireless channel as the individual robot is equipped with a wireless transmitter
and receiver.

Share information among robots I contains estimated position and proba-
bility calculated in the individual robot location process. Here, we extend the
probability calculation process using Bayes’s probability model by incorporat-
ing the shared information described below.

First, each robot calculates error for received and measured RSSI from neigh-
boring robot j:

errRSSI
j = RSSIm−RSSIr (4.6)

where RSSIm is the measured RSSI and RSSIr is the received RSSI, we can
calculate the RSSIm using path loss model.

RSSIm = A−10×n× log10(distance(Ri,R j)) (4.7)

Here, n denotes the signal propagation exponent, which varies between 2 (free
space) and 6 (complex indoor environment), d denotes the distance between
Robot Ri to the Robot R j, and A denotes received signal strength at a reference
distance of one meter.

To get the weight for the probability based on the shared information from
all neighboring robots, we can use the Gaussian probability formula same as
(Eq. (4.5)) with RSSI as an error.

We can further incorporate this probability P(ri) for robot ri, to update
the weight in Algorithm 5 while calculating the probability as:

wi = Pl(qi)×
n

∏
j=1

(
P(r j|x j)×P(x j)

)
. (4.8)

Using a constraint around the present robot location, the particle filter pro-
vides initial hypotheses with a uniform sampling of probable robot locations
across the environment. For each unique particle, that is, the signal source,
the Gaussian probability is determined. The particles are subsequently given
weights that are proportional to their likelihood, and the weights wi are normal-
ized as:

w∗i (qi) =
wi(qi)

∑
N−1
i=0 wi(qi)

. (4.9)
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Figure 4.3: The simulation setup for three robots in a 6m x 6m workspace is
shown here. It also depicts the two virtual walls in the simulation workspace to
create non-line-of-sight conditions. Each wall will attenuate 10 dBm of RSSI
signal power.

This normalized weight determines the likelihood of regenerating a set of par-
ticles in the next iteration. The particle with the highest weight (softmax) is
the mobile robot’s most recent best pose estimate. This process repeats until
either one unique particle remains or no modern tests are available. The PF
iterates for each new estimation tuple. Algorithm. 5 provides an overview of
the MRSL.

The MRSL has an upper bound of complexity as O(nc) for c particle filters
and n number of connected robots. Since c is a constant, the algorithm runs
linearly and scales linearly with the number of robots.

4.4 Experimentation and Results
We have performed extensive simulation experiments in a 6 x 6 meters bounded
region under different scenarios to analyze the algorithm. We assumed that the
infrastructure information (position of the WSN nodes) was available to all
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robots. The communication between connected nodes is asynchronous, i.e.,
the robot only updates its position estimation when it receives pose estimates
from other robots. The temporal correlation among received information man-
ages through union covariance and Bayesian rule incorporation. In all the ex-
periments, the robots start at a random location in the workspace and move
with a random walk trajectory.

Several studies have shown a range of 40 m is optimum to receive a good
RSSI signal with high link quality (Dong & Dargie, 2012b; Parasuraman, Ker-
shaw, et al., 2013). Therefore, we estimate that in our wireless sensor networks
testbed, the nodes can be spaced with a diagonal range of up to 40 m for op-
timum performance in ideal conditions. This means, for a four-corner node
setup as in our simulation setup in Fig. 4.3, the algorithm can handle an area
of 800 m2. The nodes can be static or mobile, depending on the application
requirements. We can increase the number of WSN nodes accordingly for a
larger area. In reality, this range can be further limited due to non-line-of-sight
conditions and packet drops.

We have compared our approach with the following benchmarks from the
literature: 1) individual non-collaborative autonomous robot localization (ARL)
with bearing (DOA) sensors (Parashar & Parasuraman, 2020) that use the WSN
nodes (without inter-robot collaboration) 2) Collaborative Terrain Relative
Navigation (CTRN) from (Wiktor & Rock, 2020). We implemented the pro-
posed MRSL algorithm with the distance and RSSI sensor variants.

We have designed three sets of experiments to validate the scalability, robust-
ness, and fault-tolerance of MRSL:

1. Number of robots varying from 1 to 100;

2. Non-line-of-site environment with (virtual) walls generated in simula-
tions;

3. Communication challenges simulated through a fixed Packet Drop Ratio
(PDR).

Finally, we have measured the accuracy in terms of the root mean squared
error (RMSE) compared to the ground truth location data from our simula-
tions. We obtained results by performing 100 trials for each experiment set. The
results shown are averaged over all these trials.

4.4.1 Scalability and Dense Cooperation
First, we obtain the level of improvement the proposed MRSL algorithm pro-
vides when the number of robots varies from one to three in the multi-robot
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Figure 4.4: Localization performance of different algorithms regarding Root
Mean Squared Error (RMSE) compared to the ground truth location in the 6m
x 6m simulation experiments.

team, with four fixed wireless sensor network anchor stations. Fig. 4.4 shows the
results of this experiment. It shows the superior performance of the proposed
MRSL variants compared to the benchmark. Also, we can see improvement
in localization accuracy with more robots in the system. This shows the effec-
tiveness of the synergy achieved by the multi-robot team using the proposed
collaborative scheme.

In Fig. 4.5, we can see the performance of the localization in detail by com-
paring the trajectory generated by different multi-robot localization algorithms.

Next, we obtain more information regarding the algorithm’s scalability
and performance with many agents deployed with high density in a small en-
vironment. In this case, we evaluate the scalability of MRSL by increasing the
number of robots from 1 to 100 with an increment of 2. Experimentation was
performed on the same bounded region, which uses four WSNs distributed on
the corners of the simulation workspace, with the initial position of the robots
to be known with some uncertainty (Fig. 4.2 provides the simulation workspace
setup).
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Figure 4.5: Trajectory of three cooperative robots in the 6m x 6m simulation
experiments are shown here. The outputs of localization algorithms are plotted
to comparatively observe their performance against the ground truth.

Figure 4.6: Localization accuracy comparison for varying number of robots
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Figure 4.7: Localization accuracy comparison for non-line-of-site scenario

Figure 4.8: Localization accuracy comparison for communication challenge:
70% Packet Drops
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Figure 4.9: Localization performance of different algorithms regarding Root
Mean Squared Error with three robots in the 60m x 60m simulation workspace.

With an increasing number of robots from 1 to 10, We have observed 35%
reduction in pose estimation error, and afterward, the error curve turned into
a plateau. ARL has shown an exponential increase in error by increasing the
number of robots; however, CTRN has shown similar behaviors but less accu-
racy than MRSL, which can be seen in Fig. 4.6. This plateau behavior depicts
the convergence for localization accuracy in multi-robotic systems and scalabil-
ity with meter-level accuracy. Results also provide evidence for the sufficiency
of four wireless nodes accessible to each node for multi-robot localization in a
large region containing many collaborating robots.

In addition, we performed experiments with a larger simulation workspace
area to test the practicality of MRSL in larger environments and compare its lo-
calization accuracy with other approaches. A testbed of 60 m× 60 m has been
set up for simulation with three connected moving robots with varying linear
and angular velocities while considering standard dynamics and physical prop-
erties. We performed ten trials with the same simulation settings and recorded
the RMSE in meters to analyze the localization accuracy. Results in Fig. 4.9
have validated the claim about the practicality of MRSL for larger spaces, with
a 40% and 21% high localization accuracy than ARL and TRN, respectively.
A standalone view of the localization of MRSL is also promising, with the ab-
solute 1.8 meters of localization error for a 3600m2 region, which adds more
evidence for the practicality of MRSL for real-world systems.
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4.4.2 Dynamic Environments and Non-Line-Of-Site Con-
ditions

To simulate dynamic and non-line-of-sight (NLOS) environmental conditions,
we added two objects in the environment: fixed (virtual) walls in the simulated
region (shown in Fig. 4.3); and dynamic non-cooperative robots acting as ran-
dom obstacles. Here, three non-cooperating robots executing random walks
were deployed on the testbed to simulate the dynamic objects. We used three
cooperating robots (N = 3) in these experiments. The wall or robot obstacle
will attenuate the RSSI a further 10 dBm if the objects come in between two
cooperating robots’ direct line of sight or the WSN nodes during communica-
tion.

Fig. 4.7 shows the results in the NLOS conditions. We can observe con-
sistent meter-level accuracy even in the reduced line of sight environment for
MRSL; however, ARL and CTRN 50% higher pose estimation error. Hence,
the proposed MRSL algorithm delineates the robustness of localization in a
dynamic environment.

4.4.3 Robustness to Communication Challenges
Communication difficulty is simulated through randomly dropping packets
with 70% probability, i.e., a Packet Drop Ratio (PDR) of 70%. When pack-
ets are dropped, the robots cannot receive information from all robots in the
environment. Five robots (N = 5) were simulated for these experiments and
randomly dropped shared information packets with a fixed PDR to examine
the fault tolerance of MRSL.

Fig. 4.8 presents the results with minor fluctuation in RMSE for MRSL.
Nevertheless, MRSL is reliable while keeping the RMSE in a range. ARL was in-
different to the communication challenge, as there was no coordination among
robots. However, CTRN has shown more reduction in localization accuracy
than MRSL.

4.5 Summary
This chapter discusses a novel method for robot localization in dynamic and
dense environments, focusing on multi-robot systems (MRS). It acknowledges
the challenges of existing solutions such as SLAM and GNSS-denied local-
ization, particularly in highly dynamic environments like warehouses and lo-
gistics centers. The proposed solution, Multi-Robot Synergistic Localization
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(MRSL), is a decentralized system where robots update their position estima-
tion based on shared local information from neighboring robots. The system
uses a Bayesian rule for shared information integration, proving to be compu-
tationally efficient and well-suited to asynchronous robotics communication.
Each robot in the MRS can independently localize itself, updating its position
estimation whenever new information is received from its connected neighbors.
This MRSL approach extends the particle filter localization algorithm, enabling
robots to utilize the Radio Signal Strength Indicator (RSSI) as a source for bear-
ing calculations.

The MRSL algorithm has been tested through extensive numerical simula-
tions, with results showing a significant increase in localization accuracy com-
pared to other methods, outperforming autonomous robot localization (ARL)
and other collaborative multi-robot localization algorithms. The simulations
also highlighted the need for real-world experiments. The work discussed in
this chapter relied on the infrastructure information for global localization; to
overcome this limitation, we exploited the graph optimization for relative local-
ization, discussed in the next chapter.
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Chapter 5

DGORL: Distributed
Graph Optimization based
Relative Localization of

Multi-Robot Systems

5.1 Introduction
This chapter discusses a graph optimization-based strategy to overcome the limi-
tation of infrastructure information of the global localization solution discussed
in the previous section. The estimation of a relative pose, including position
and orientation, (Islam et al., 2021), for multi-robot systems (MRS) (Xianjia
et al., 2021) is the foundation for higher-level tasks like collision avoidance, co-
operative transportation, and object manipulation. Motion capture systems
(Najafi et al., 2019), ultra-wideband (UWB) systems with anchors, and RTK-
GPS systems are a few examples of established multi-robot relative positioning
solutions that currently rely on the deployment of physical anchor or base sta-
tions in the application. These plans, however, are not suitable for large areas or
interior settings where it is difficult to convert the infrastructure, which limits
the overall performance and application possibilities of multi-robot systems and
makes their use more difficult and expensive. Furthermore, extraction of range
and bearing measurements from cameras and visual makers, while another prac-
tical approach, has the drawbacks of having a small field of vision, a short-range,
obscured by nearby objects, and maybe requiring much computational power.
The use of distance measurements from sensors like radars, Lidars, and UWB
to achieve relative localization, on the other hand, has recently attracted more
significant interest.
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Figure 5.1: Overview of configuration space of a multi-robot system, sharing
their pose (xi) and relative range (R j

i ) measurements in our DGORL solution.

The multi-robot relative localization (MRL) problem, which refers to de-
tecting and locating the relative configurations of mobile agents (typically with
fewer sensor data such as relative range or bearing) concerning other agents
or landmarks, is critical in MRS because it is required for robot teaming and
swarming (Fink et al., 2012; Guo et al., 2017). As a result, many applications are
frequently confronted with the relative localization problem, including forma-
tion control, cooperative transportation, perimeter surveillance, area coverage,
and situational awareness. Relative localization and mapping (aka multi-robot
SLAM) is an extension of the MRL problem. While several researchers have
proposed novel solutions to the multi-robot map merging problem using pose
graph matching and optimization techniques, they rely on extensive sensor data
inputs (such as point clouds or Lidar scans) (Dube et al., 2017; Mangelson et
al., 2018; Tian et al., 2022). Therefore, solving the MRL problem with relative
range or bearing in a distributed manner is desirable and scalable in MRS (Latif
& Parasuraman, 2022b).

Distributed optimization is the problem of minimizing a joint objective
function that is the sum of many local objective functions, each correspond-
ing to a computer node. We can model many fundamental activities in this
area as distributed optimization problems, which have significant implications
for multi-robot systems. Examples include cooperative estimation (Shorinwa
et al., 2020), multiagent learning (Wai et al., 2018), and collaborative motion
planning. The distributed optimization formulation provides a versatile and
effective paradigm for creating algorithms for numerous multi-robot problems.

Each of these problems can be represented by a graph. Each node in the
graph represents a state variable that needs to be optimized, whereas each edge
linking two variables is a paired observation of the two nodes it connects. In
the literature, various tactics have been proposed to address this set of prob-
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lems. A straightforward implementation using well-known methods like Gauss-
Newton, Levenberg-Marquardt (LM), Gauss-Seidel relaxation, or different iter-
ations of gradient descent typically produces satisfactory results for most appli-
cations. However, extensive effort and subject-matter knowledge are required
to achieve the highest outcome.

In consumer electronics, Wi-Fi is one of the most extensively utilized wire-
less technology for indoor wireless networks. The ubiquitous availability of
Received Signal Strength Indicator (RSSI) measurement on such inexpensive
commercial devices is the RSSI measured from an Access Point (AP) or a Wire-
less Sensor Robot (WSN). The RSSI value can be used in various applications,
including relative localization (Latif & Parasuraman, 2023b; Parashar & Para-
suraman, 2020; W. Wang et al., 2019), cooperative control (S. Luo et al., 2019;
Parasuraman & Min, 2019), and communication optimization (Parasuraman
et al., 2018).

In this paper, we formulate the MRL problem as a graph optimization prob-
lem and solve it in a distributed manner using a polynomial-time optimizer
called the General Graph Optimization (g2o (Kummerle et al., 2011)). g2o is an
open-source graph-based framework to handle the nonlinear error problems
and is used to optimize global measurement pose using the initial global mea-
surement poses and local relative pose constraints.

Our solution, termed DGORL, aims to achieve high localization accuracy
efficiently in a distributed fashion. DGORL forms relative position-weighted
connectivity graphs using RSSI as local sensor data then expands graphs based
on possible positions at an instant and further optimizes to fetch relative po-
sition estimates for all connected robots. See Fig. 5.1 for an overview of the
configuration space of DGORL.

The main contributions of this paper are listed below.

1. A novel distributed, efficient, and precise relative localization system
based on shared inertial measurements and RSSI inputs from connected
robots.

2. Position-weighted connectivity graph construction and optimization strat-
egy tailored specifically for obtaining reliable relative pose estimates.

3. Theoretical and numerical analysis to evaluate the performance of the
algorithm.

4. Validation of accuracy and efficiency of the DGORL compared to the
recent collaborative multi-robot localization algorithm (Wiktor & Rock,
2020), which used covariance intersection technique to address the tem-
poral correlation between received signals.
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5 http://github.com/
herolab-uga/DGORL

5. Open-sourcing of the codes5 for use and improvement by the research
community.

5.2 Related Work
Most recent solutions to the simultaneous localization and mapping (SLAM)
and MRL problem are based on graph optimization (i.e., all robot poses and
landmark positions compose the graph’s nodes, while each edge encodes a mea-
surement constraint) (Kummerle et al., 2011). A conventional graph formula-
tion, on the other hand, may suffer from unbounded processing and memory
complexity, which might constantly expand over time. This is because new
robot poses (and new landmarks in the case of feature-based SLAM) are con-
stantly being added to the graph, resulting in an increase in the number of nodes
over time; additionally, if frequent loop-closing events occur in SLAM, loop-
closure constraints (edges) can significantly increase the graph density (Huang
et al., 2013). For example, this could be the case if a service robot works for an
extended time inside an office building.

Particularly, graph optimization and factoring have been recently proposed
in the literature to solve different variants of the MRL problem (Hao et al., 2022;
Sahawneh & Brink, 2017; Zheng et al., 2022). Even though the issue of reducing
the complexity of graph optimization has recently been addressed (Carlevaris-
Bianco & Eustice, 2013; Johannsson et al., 2013), to the best of our knowledge,
little work has yet explicitly taken into account estimation consistency (i.e., un-
biased estimates and an estimated covariance more significant than or equal to
the actual covariance (Bar-Shalom et al., 2004)) in the design of graph reduc-
tion (sparsification) schemes. This is a critical flaw because if an estimator is
inconsistent, the accuracy of the derived state estimations is unclear, making
it untrustworthy (Indelman et al., 2014). Moreover, the performance and effi-
ciency of approaches to the localization problem in dynamic environments are
significantly traded off.

Most cooperative localization methods entail robot communication and
observation, which makes any step prone to inaccuracy. In a recent attempt
at multi-robot localization, many robots can locate themselves jointly using
Terrain Relative Navigation (TRN) (Wiktor & Rock, 2020). The localization
estimation utilizing shared information fusion has been improved by using an
estimator structure that takes advantage of covariance intersection (CI) to re-
duce one source of measurement correlation while properly including others.
Similarly, a work (Chang et al., 2021) developed a CI-based localization method
with an explicit communication update and guaranteed estimation consistency
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simultaneously would increase the robustness of multi-robot cooperative local-
ization methods in a dispersed setting. However, robots keep a system-wide
estimate in their algorithm, which relative observations can instantly update.
Consequently, it increases the computational complexity at a centralized server
and over-burdened the robot to keep track of dynamics for global position-
ing accurately. Unlike the explicit CI modeling methods, our objective is to
localize the robot relative to other robots in a distributed fashion by utilizing
the polynomial-time graph optimization technique with high accuracy and ef-
ficiency.

Therefore, this paper proposes a graph-based optimization algorithm to
address the gaps mentioned above. To form a graph using shared RSSI informa-
tion among robots, we employ a Relative Pose Measurement Graph (RPMG)
using observability analysis (Hao et al., 2022). Once we have created a con-
nected, reliable graph, we exploit particle filtering over the motion model to ex-
pand the graph based on mobility constraints. Finally, we construct a k-possible
combination of graphs for each robot which needs to be optimized. We use the
polynomial-time graph optimizer (g2o (Kummerle et al., 2011)) for graph opti-
mization with a distributed constraint optimization.

5.3 Problem Formulation and the Proposed DGORL
Solution

An overview of the typical MRS components is given in this section, along
with a thorough explanation of the suggested distributed graph optimization
formulation.

Multi-Robot System Robotic members of an MRS are divided into dis-
joint (isolated/disconnected from others) and connected (operating collabora-
tively) robots, which can be either ground-based or aerial. The robot that enters
the measuring range of the monitoring robot at any given moment is referred
to as the observed robot. A robot that takes measurements of a random robot,
among other robots, is the observation robot. The following qualities are pre-
sumptive for the considered MRS’s robotic members:

• Wireless communication is used to share information across the MRS.

• The watching robot can extract the neighboring robot’s relative range
(e.g., through RSSI measurements) and can uniquely identify each robot
in its field of view.

83



• While the observed robots have limited sensory and computational capa-
bilities, the observing robot may use high-precision sensors to carry out
its self-localization.

• We restrict the movement of the robots within a two-dimensional planar
space.

Assume at a given time t, a team of robots contains n∈N connected robots
can form a weighted undirected graph, denoted by G = (V,E,A), of order n
consists of a vertex set V = {v1, ...,vn}, an undirected edge set E ∈ V ×V
is a range between connected robots and an adjacency matrix A = {ai j}n×n

with non-negative element ai j > 0, if (vi,v j) ∈ E and ai j = 0 otherwise. An
undirected edge ei j in the graph G is denoted by the unordered pair of robots
(vi,v j), which means that robots vi and v j can exchange information with each
other.

Here, we only consider the undirected graphs, indicating that the robots’
communications are all bidirectional. Then, the connection weight between
robots vi and v j in graph G satisfies ai j = a ji > 0 if they are connected; oth-
erwise, ai j = a ji = 0. Without loss of generality, it is noted that aii = 0 indi-
cates no self-connection in the graph. The degree of robot vi is defined by
d(vi) = ∑

n
j=1 ai j where j ̸= i and i = 1,2, ...,n. The Laplacian matrix of

the graph G is defined as Ln = D− A, where D is the diagonal with D =

diag{d(v1),d(v2), ...,d(vn)}. If the graph G is undirected, Ln is symmetric
and positive semi-definite. A path between robots vi and v j in a graph G is a se-
quence of edges (vi,vi1),(vi1,vi2), ...,(vik,v j) in the graph with distinct robots
vil ∈V . An undirected graph G is connected if a path exists between any pair
of distinct robots vi and v j where (i, j = 1, ...,n).

In this paper, we formulated a multi-robot system as a graph problem to
find the optimized solution for relative localization based on inequality con-
straints with a time-varying domain. Furthermore, we have segmented the solu-
tion into three different components, which can be solved simultaneously for
every iteration over distributed constraints: 1) graph formation, 2) expansion
through transition, and 3) optimization. See Fig. 5.2 for sequential procedure
of DGORL.

5.3.1 Graph Formation
An undirected graph G = (V,E), where (i, j) ∈ E if and only if (i, j) and ( j, i)
both are in E , is called the underlying undirected graph of G. G is connected
if its underlying undirected graph is connected. An isolated and connected
subgraph of G is called a component. Suppose that an undirected graph G has
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Figure 5.2: The Distributed Graph Optimization for Relative Localization of
Multi-Robot Systems (DGORL) system architecture shows input (Received
connected robot’s motion information and RSSI) and output (relative pose
estimation) for robot i. The robot generates and expends graphs based on ob-
servability for optimization along with the constraints set up through local and
received inertial measurement, which further fed into the optimization func-
tion. The optimized graph yields relative pose estimates for all connected robots.

n nodes and m edges. The incidence matrix of G, denoted by A(G), is an m×n
matrix whose m rows and n columns correspond to the m edges and n nodes of
G, respectively. Each element ai j of A(G) is defined as:

ai j =

{
1 if node v j is the tail/head of edge ei,

0 otherwise

The following lemma describes the relation between the rank of A(G) and
the connectivity of G.
Lemma 1. Let G be an undirected graph with n nodes and A(G)be its incidence
matrix. If G is composed of λ components, the rank of A(G) satisfies

rank(A(G)) = n−λ ≤ n−1

The overall algorithm is mainly composed of two steps, as depicted in Algo-
rithms 6 and 7, respectively. The first step is to generate the Estimated Relative
Position Measurement Graph (ERPMG); GE = (VE ,EE ,AE) based on the
Relative Position Estimation Graph (RPMG); G = (V,E,A), which can be
built-up using received range information from connected robots of an n-robot
system, which describes the relative position measurements among robots. In
this step, the node-set VE of the ERPMG = GE is initialized to be the same as
that of the RPMG = G, and the edge set EE of the ERPMG = GE is initialized
to be empty. Then, add all relative position measurement edges of E into the
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edge set EE if edge ei j satisfy the motion constraint; JFjVB j ̸= 0. A concise
description of this step is illustrated in Algorithm 6.

Algorithm 6: ERPMG Formation
1 Input: State x, input u, RPMG G = (V, E, A);
2 Output: ERPMG GE ;
3 Initialize ERPMG GE = (VE ,EE) with VE =V , EE = φ ;
4 for each node vi ∈V d do
5 for each edge ei j ∈ E do
6 if JFjVB j ̸= 0 then
7 add edge ei j to EE ;
8 end
9 end

10 end

The second step (See Alg. 7) is to examine the observability of the n-robot
system according to the ERPMG = GE generated by Alg. 6. We initialize the
incidence matrix A(GE) and the diagonal matrix Ln to be zero matrices, with
their dimensions determined by the number of nodes and edges in GE . Then
construct the incidence matrix A(GE) and the diagonal matrix Ln. The inci-
dence matrix A(GE) describes which nodes are connected by which edges and
is constructed based on the topology of GE . The diagonal matrix Ln describes
the weight of the edges in GE with the weight vector of each edge. The edges
in A(GE) and Ln take the same order. Then, we can obtain the spectral matrix
C(GE) based on A(GE) and Ln. The observability of the n-robot system can
be determined by evaluating the rank of C(GE).

5.3.2 Expansion through Transition
Initial position and velocity constraints are known to each robot; hence locally
constructed ERPMG tends to change based on relative motion in the network.
We have limited the number of possible positions of an individual robot to k by
exploiting the concept of particle filtering. The motion process is carried out
in the 2-D state-space Xn,t includes position (xn,t ,yn,t) and orientation φn, t.
The robot model f (∗) can be written as:

xn,t+1 = xn,t + vn,t∆tcos(φn, t)

yn,t+1 = yn,t + vn,t∆tsin(φn, t)

φn,t+1 = φn,t +ωn,t∆t

(5.1)
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Algorithm 7: Observability Checking
1 Input: n = |VE |, m = |EE | ;
2 Initialize the incidence matrix: A(GE) = m×n;
3 Initialize the diagonal matrix: Ln = n×n ;
4 k = 0;
5 for each node vi ∈VE do
6 for each edge (i, j) ∈ EE do
7 k = k+1;
8 A(GE)[k, i] = 1;
9 W [3k−2 : 3k,3k−2 : 3k] = diag(Ln((i, j)));

10 end
11 end
12 if rank (C(GE)) is equal to 4(n−1) then
13 return True;
14 end
15 else
16 return False;
17 end

In the Eq. 5.1, vn,t and ωn,t are the velocity and angular velocity of the robot
n at time, t respectively. δ t represents the time interval between two control
inputs. Based on the robot model f (∗) , the control input of the robot n at
time t is defined as:

un,t = [vn,t ,ωn,t ] (5.2)

It is worth mentioning that Eq. 5.2 is the ideal kinematic model of the robot.
Under pure rolling conditions, the robot’s motion follows this equation. How-
ever, imperfections are unavoidable in real devices. Complex wheel-ground in-
teractions and system noises cause disturbances to the robots. Moreover, these
disturbances are modeled as Gaussian random variables, characterized by their
mean and covariance matrices. Thus, the model of a given robot n at time t is
defined as:

xn,t+1 = f (xn,t ,un,t)+Nnoisen,t (5.3)

Here, xn,t ∈ Rnx and un,t ∈ Rnu are the state and control input of the robot
n at the time, t respectively. Nnoise ∈ Rnx is an unknown disturbance with
Gaussian probability distribution. Considering the disturbance level in the real
environment, Nn,t noise in simulations is set to diag(0.1 m, 0.1 m, 0.5 deg).
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As each robot also receives RSSI from other robots, we can find the inter-
secting region as an area of interest to map the estimated relative position for
each robot using the model and find k soft max out of them. Once we have
k possible positions of each robot, we can generate < nk solvable graphs for
optimization.

5.3.3 Optimization

Constraints

We are interested in solving the constrained convex optimization problem over
a multi-robot network in a distributed fashion. More specifically, we consider a
network with n robots, labeled by V = {1,2, ...,n} and k possible connections
to other robots. Every robot i has a local convex objective function and a global
constraint set. The network cost function is given by:

minimize f (x) =
N
∑

i=1
fi(x) subject to x ∈D =

{
x ∈ Rk : c(x)≤ 0

}
(5.4)

Here, x ∈ Rk is a global decision vector; fi : Rk → R is the convex objective
function of robot i known only by robot i; D is a bounded convex domain,
which is (without loss of generality) characterized by an inequality constraint,
i.e., c(x)≤ 0, where c : Rk→ R is a convex constraint function. All the robots
know it. We assume that D is contained in a Euclidean ball of radius R, that is:

D ⊆B =
{

x ∈ Rk : ∥x∥2 ≤ R
}
. (5.5)

We also assume that there exists a point x̂ such that the inequality constraint is
strictly feasible, i.e., c(x̂)< 0. We introduce a regularized Lagrangian function
to deal with the inequality constraint c(x).

L(x,λ ) =
N

∑
i=1

fi(x)+λNc(x)− γ

2
Nλ

2 =
N

∑
i=1

[
fi(x)+λc(x)− γ

2
λ

2
]

=
N

∑
i=1

Li(x,λ ), (5.6)

where, we have replaced the inequality constraint c(x) ≤ 0 with Nc(x) ≤ 0 ,
and γ > 0 is some parameter. It is noted that Li(x,λ ) is known only by robot i.
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Model

We consider a time-varying network model that has been widely considered
in the literature (Huang et al., 2013; Jiang et al., 2022; Kummerle et al., 2011).
The robots’ connectivity at time t can be represented by an undirected graph
G(t) = (V,E(t),A(t)) , where E(t) is the set of activated edges at time t , i.e.,
edge (i, j) ∈ E(t) if and only if robot i can receive data from robot j , and we
assign a weight [A(t)]i j > 0 to the data on edge (i, j) at time k . Note that
the set E(t) includes self-edges (i, i) for all i. We make the following standard
assumption on the graph G(t).

Assumptions: The graph G(t) = (V,E(t),A(t)) satisfies the following.

1. For all t ≥ 0 , the weight matrix A(t) is doubly stochastic.

2. There exists a positive scalar ξ such that [A(t)]ii ≥ ξ for all i and t ≥ 0 ,
and [A(t)]i j ≥ ξ if [A(t)]i j > 0.

3. There exists an integer T ≥ 1 such that the graph (V,E(sT )∪ ...∪E((s+
1)T −1)) is strongly connected for all s≥ 0.

Once the robot i model the network and constraints, g2o (Kummerle et
al., 2011) optimize the provided k-ERPMG to find the best possible position
estimations for connected n robots in the form of an optimized graph Go =

(Vo,Eo,Ao). Vo are the possible node positions concerning i, Eo contains the
possible distance range to other nodes in terms of weighted edges, and Ao is an
optimized adjacency matrix from i to every other node. Algorithm 8 describes
the entire localization strategy for a given MRS, with a graph-based optimizer
denoting the algorithm’s three main iterative steps.

5.4 Theoretical Analysis
Graph optimization-based relative pose localization has three submodules; For-
mation, Expansion, and Optimization. The formation depends on the number
of robots n, which causes the generation of ERPMG G = (V,E,A) and expan-
sion relies on the number of possible position instances, k, which produces nk

potential graphs to be optimized. As both initial steps can be serially done in
polynomial time, one can deduce that the algorithm is polynomial and scalable
with the number of robots. However, the optimization of nk possible graphs
using the g2o optimizer needs to be analyzed for its NP-hardness.

NP-hardness: We will show that the problem of finding optimizers is NP-
hard in general. An example shows that L1-optimality is NP-hard for non-
submodular energies.
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Algorithm 8: Relative Localization Based on Graph Optimization
1 At given time interval t, for robot i;
2 Observe connected robots n;
3 Receive motion and observability information from connected robots;
4 Generate ERPMG from RPMG using Alg. 6;
5 Check observability of n-robot systems using Alg. 7;
6 for every sampling instance tk, k = 0,1,2,.. do
7 for each connected robot R j, j ̸= i and j = 1,2,...,n do
8 Get previous odometry information;
9 Get previous relative positioning information;

10 Generate nk possible graph over estimation horizon;
11 end
12 end
13 Set constraints as Eq. 5.4;
14 Generate a time-varying network model for n connected robots;
15 Solve the graph optimization problem using distributed solver

(Kummerle et al., 2011) over a predicted horizon;
16 for each connected robot R j, j ̸= i and j = 1,2,...,n do
17 Extract position estimation from optimized graph:

X j,t+1 = (x j,t+1,y j,t+1,φ j,t+1);
18 end

Remember that if no two vertices of a graph G = (V,E,A) are connected
by an edge, the set U of vertices is independent. The problem of finding the
maximal independent set of vertices of an arbitrary graph is known to be NP-
hard (Cormen et al., 2022). Consider the following local costs as an example:

• Give each vertex v of label l the cost li.

• For each edge with both vertices of label l, let the cost be N = |V |+ l.

• Connect the cost of 0 to any other edge.

It is worth noting that if and only if the set U = l1(1) is independent, the max-
imum cost of any labeling l is N. All labeling l associated with an independent
U have a maximum cost of 1. Furthermore, the labeling l is a strict minimizer
when the number of cost 1 atom for U , which is |V | − |U |, is minimal, i.e.,
when the size of U is maximal. To put it another way, if we use the previously
mentioned local cost assignments for a graph G, then l is a strict minimizer if
and only if U := l1(1) is a maximal independent set of vertices. As a result,
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Figure 5.3: Trajectories and the Optimized Graph. Left: Simulation with the
ground truth (green) trajectory along with the colored predicted trajectory of a
robot; Right: Robots as colored vertices and colored edges between connected
robots with the respective color for optimized graphs.

our problem, like the problem of finding the most extensive independent set of
vertices, is NP-hard. Thus, the optimization problem is proved to be NP-hard,
and we also know that such graph problems can be verified in polynomial time
(Cormen et al., 2022) hence the problem is NP-complete.

Convergence: In order to control convergence, the g2o method adds a
damping factor and backup operations to Gauss-Newton, for which g2o solves
a damped version of the optimization function. A damping factor λ is present
here; the more significant it is, the smaller the λ is. In the case of nonlinear
surfaces, this helps control the step size. The g2o algorithm’s goal is to regulate
the damping factor dynamically. The error of the new setup is tracked through-
out each iteration. The following iteration is reduced if the new error is smaller
than the prior one. If not, lambda is raised, and the solution is reversed. We
refer to (Kummerle et al., 2011) for a more thorough discussion of how the g2o
algorithm guarantees convergence.

5.5 Simulation Experiments and Results
We performed extensive simulation experiments in a 60 x 60 meters bounded
region under certain conditions to analyze the algorithm. We have set up the
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Figure 5.4: DGORL performance of five robots in terms of Root Mean Squared
Error (RMSE) in the 60m x 60m simulation workspace (Top). Comparison
with Collaborative Terrain Relative Navigation (TRN) based on Covariance
Intersection (Bottom).

MRS as discussed in Sec. 5.3, where each robot shares inertial measurement
and RSSI with connected robots. Each robot in the MRS performs relative
localization based on its frame of reference. we can calculate weights of edges
ei j in G = (V,E) as a range d the between Ri and R j using path loss model
using perceived RSSI:

d = 10
A−RSSI

10n (5.7)

Here, n denotes the signal propagation exponent, which varies between 2 (free
space) and 6 (complex indoor environment), d denotes the distance between
robots i and j, and A denotes received signal strength at a reference distance of
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one meter. On every iteration, ri generates ERPMG based on its observation
and performs observability analysis (at least four nodes connected, based on the
observability Checking in Alg. 7). Later, it will expand ERPMG and generate
input for the g2o optimizer.

The initial global measuring posture, the local relative pose limitations, and
its information matrix make up g2o’s input. Once obtained an optimized graph,
ri estimated relative positions from vertex poses. Although in MRS, each robot
performs localization distributedly. To measure error, we have captured initial
positions on a global scale and compared predicted trajectories with ground
truth as RMSE in meters. We used range sensors to compare our strategy to
Terrain Relative Navigation (TRN) from (Wiktor & Rock, 2020).

Localization Accuracy We performed experiments with five robots driv-
ing them on a random walk for 100 iterations, and obtained consistent results
through 10 repetitive trials under identical conditions. Fig. 5.3 visualizes the pre-
dicted trajectories and connected graphs for experimentation. Results in Fig. 5.4
have validated the claim about the accuracy of DGORL in a larger space, with
8% localization error.

Furthermore, experimentation was carried out in the same simulated workspace
area to evaluate the localization accuracy of DGORL in contrast to TRN and
to confirm its applicability in more significant scenarios. We performed ten at-
tempts using identical simulation conditions and obtained the RMSE in meters
to assess the localization accuracy. Results in Fig. 5.4, which demonstrate a 23%
percent improvement in localization accuracy over TRN, have supported the
assertion that DGORL is viable in larger contexts. Furthermore, the absolute lo-
calization error of 4.2 meters for a 3600m2 zone with five robots in a standalone
view of the localization of DGORL is highly encouraging. Still, it needs further
analysis to understand the limitations and sufficient conditions. Nevertheless,
the results showcase the viability of DGORL for MRS applications.

Computational Demand The mean optimization time (referring to the
time taken by the solver) and the mean CPU usage of the whole process are
10.2±2.7ms and 143±49%, respectively. The results are evaluated for five
robots from 10 runs over 100 iterations. The computational complexity of
covariance intersection-based TRN is close to DGORL, which further high-
lights the efficiency of DGORL. It is worth noticing that the performance of
DGORL provides evidence for its practical use in small resource-constrained
robots (i.e., equipped with tiny computers, e.g., Raspberry Pi zero with Quad
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Core running at 1 GHz). Hence, DGORL can be used as an efficient relative
localization algorithm for most multi-robot systems, including swarm robotics.

5.6 Summary
This chapter presents a novel graph-theoretic approach to solving the multi-
robot relative localization problem, which is pivotal for collision avoidance,
cooperative transportation, and object manipulation in multi-robot systems
(MRS). The researchers seek to address limitations in current MRS solutions,
which are unsuitable for large or indoor areas due to reliance on physical an-
chors or base stations, as well as limitations of the camera and sensor-based
approaches. The solution, Distributed Graph Optimization for Relative Local-
ization (DGORL), uses received signal strength indicator (RSSI) measurements,
commonly found in Wi-Fi-enabled devices, as local sensor data to form relative
position-weighted connectivity graphs. The process involves three main steps:
formation of the connectivity graph, graph expansion through applying a mo-
tion model, and optimization of the graph to extract relative position estimates
for connected robots.

The method is theoretically and numerically analyzed, with results indicat-
ing that the proposed DGORL algorithm demonstrates practicality and supe-
riority in accuracy over a recent state-of-the-art collaborative localization algo-
rithm while also maintaining comparable optimization time. Moreover, the
approach can be applied in a distributed manner, making it scalable for multi-
robot systems. The authors also open-source their codes for further use and
development by the research community. Future work will focus on conduct-
ing hardware experimentation to confirm the real-world applicability of the
proposed graph optimization approach. The computational complexity is still
a concern for small robots. It can be improved using the Gaussian process re-
gression model and vector transformation for relative localization, discussed in
the next chapter.
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Chapter 6

GPRL: Multi-Robot
Relative Localization
Using Hierarchical
Gaussian Processes

Inferencing on RSSI Map
of the Wireless Access

Point

6.1 Introduction
Multi-robot systems (MRS) have recently drawn significant attention for vari-
ous use cases, including logistics, surveillance, and search and rescue. In GPS-
denied environments or applications where the privacy of absolute (global) lo-
cation must be protected, using the robot’s relative position to other robots or
environment markers is essential as the robots need to cooperate, share data, and
complete jobs effectively based on their relative localization. While the progress
in simultaneous localization and mapping (SLAM) techniques has reached a
significant research maturity (Cadena et al., 2016; Tian et al., 2022), they rely on
computationally-expensive sensors such as RGB-D cameras and LIDARs The
research challenges are even more prominent for resource-constrained robots,
which have limited computation and sensing capabilities. In fact, relative local-
ization without the need for intensive SLAM-based mapping can be sufficient
to perform major cooperative multi-robot tasks like rendezvous, formation con-
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Figure 6.1: An overview of GPRL with hierarchical inferencing with three levels
and relative localization with vector transformation using source position. α,β
and γ are resolution parameters for N×N grid space, ipAP and jpAP are position
vectors from the robot’s position to the predicted AP position, and ip j is a
relative position vector from robot i to j.

trol, etc. (S. Chen et al., 2022; Parasuraman & Min, 2019). Therefore, we focus
on alternative sensor modalities such as UWB and Wi-Fi for multi-robot rela-
tive localization without environmental mapping (Latif & Parasuraman, 2022a;
Tardioli et al., 2010; Wiktor & Rock, 2020).

Due to their accessibility and ubiquity, Wi-Fi signals present a promising
data supply for relative localization tasks. The distance between the robot
and the Wi-Fi Access Point (AP) can be estimated using the Received Signal
Strength Indicator (RSSI) of Wi-Fi signals (Parasuraman & Min, 2019). How-
ever, variables, including multipath fading, shadowing, and background noise,
frequently impact RSSI-based localization. This drives the need for reliable and
effective learning algorithms that can accurately obtain relative localization by
utilizing the given RSSI data in the face of these difficulties.
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6 https://www.robotarium.
gatech.edu/

7 https://github.
com/herolab-uga/
gp-multi-robot-localization

In this paper, we propose a novel distributed algorithm that overcomes the
drawbacks of existing approaches to relative localization. Our approach uses hi-
erarchical inferencing on the Gaussian Processes regression (GPR (Quinonero-
Candela & Rasmussen, 2005)) map of RSSI to accurately forecast the location
of the Wi-Fi AP in its local frame of reference with high computational and
real-time efficiency. Then, we apply an AP-oriented vector transformation pro-
cess that allows robots to accurately localize against each other by transforming
other robots’ coordinates into their own reference frame. Fig. 6.1 delineates the
high-level overview of the proposed GP-based Relative Localization (GPRL),
illustrating the process behind the hierarchical inferencing for accurate source
position prediction and using it for estimating the relative locations of robots.

The main contributions of GPRL are as follows:

• We propose hierarchical inferencing over GPR for efficient and accurate
source position prediction.

• We propose a novel vector transformation mechanism to localize con-
nected robots in a simplified learning fashion relatively.

• We theoretically analyze the approach to evaluate the efficiency and ac-
curacy of GPRL.

• We extensively validate the accuracy and efficiency of our GPRL approach’s
performance of active learning for relative localization in simulated Rob-
otarium6 world and compared against state-of-the-art localization ap-
proaches: state-of-the-art Terrain Relative Navigation (TRN) (Wiktor &
Rock, 2020), Distributed Graph Optimization for Relative Localization
(DGORL) (Latif & Parasuraman, 2022a), and Modified Error Gaussian
Process Regression (MEGPR) (M. Xue et al., 2019).

• To further analyze the practicality of localization using real robots work-
ing on ROS.

• We open source7 our method as a ROS package for use and further de-
velopment by the robotics community.

The attached video also demonstrates the proposed approach in real robots
in a rendezvous application.

6.2 Related Work
In the literature, relative localization has received substantial study, and several
multi-robot system concepts have been put forth. Relative localization and its
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significance in collaborative robotic systems were thoroughly covered by Wanas-
inghe et al. (Wanasinghe et al., 2015) and Rone and Ben-Tzvi (Rone & Ben-Tzvi,
2013). These methods, however, frequently lacked the flexibility to adapt to
changing settings. A Jacobian-free strategy for multi-robot relative localization
was introduced by Wanasinghe et al. (Wanasinghe et al., 2014b), which increased
processing efficiency but still had difficulties adjusting to changing settings. A
low-cost embedded system for relative localization in robotic swarms was pro-
posed by Faigl et al. (Faigl et al., 2013) to lower hardware costs. Still, the localiza-
tion performance remained sensitive to environmental changes. Wanasinghe et
al. (Wanasinghe et al., 2014a) investigated distributed collaborative localization,
and Latif and Parasuraman (Latif & Parasuraman, 2022a) proposed DGORL,
which concentrated on distributed graph optimization for multi-robot systems,
addressing some scalability issues but still encountering difficulties in dynamic
environments and high computational complexity. Wiktor and Rock (Wiktor
& Rock, 2020) presented a Bayesian optimization based approach for collabo-
rative multi-robot localization in natural terrain, but the method comes with a
high complexity of information fusion and computational costs.

Add (N. Xu et al., 2014) - GP-Localize paper.
Approaches based on learning have been suggested to address relative local-

ization issues and adapt to changing settings. Hsieh et al. (Hsieh et al., 2019)
used deep learning for indoor localization using received signal intensity and
channel state information to provide an adaptable solution. Abbas et al. (Abbas
et al., 2019) introduced WiDeep, a WiFi-based indoor localization system using
deep learning. Hoang et al. (Hoang et al., 2019) employed recurrent neural
networks for accurate RSSI indoor localization, and Li et al. (S. Li et al., 2022)
proposed self-supervised monocular multi-robot relative localization using ef-
ficient deep neural networks. Deep learning techniques, however, frequently
need huge volumes of labeled data and may experience overfitting or general-
ization problems in situations with little data. Surveys on relative localization
using machine learning techniques (S. Chen et al., 2022) for indoor positioning
highlighted the potential of machine learning for localization and the need for
more effective and reliable algorithms.

This paper proposes a novel relative localization strategy (GPRL) that ad-
dresses the limitations of optimization, learning, and GPR-based approaches by
avoiding optimization and offline fingerprinting overhead. GPRL offers online
learning relative localization for multi-robot systems by efficiently predicting
the location of the Wi-Fi source while precisely combining GPR and hierar-
chical inferencing. In addition, we present a vector transformation method
to convert the local positions of other robots into the robot’s local frame of
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Figure 6.2: A distributed system architecture of GPRL for robot i to perform
relative localization using GPR and hierarchical GP inferencing.

reference, enabling precise relative localization. GPRL provides a reliable and
efficient learning-based solution for relative localization using sensory data, de-
parting from the limitations of existing state-of-the-art approaches.

6.3 Problem Formulation
Given a set of N robots observing a single Wi-Fi source, the goal is to develop a
Gaussian Process (GP) based learning method to perform relative localization
among the robots. Each robot i receives a set of measurements, including the
Received Signal Strength Indicator (RSSI) from the Wi-Fi source, its known
initial orientation iθ , and the shared predicted access point (AP) position ipAP

along with its position ip in its local frame. The robot aims to predict the Wi-Fi
source position ip∗AP and transform other robots’ positions ip j into its local
frame using vector transformation for relative localization.

Assumptions:

• All robots share the predicted AP position and their positions in the local
frame.

• The Wi-Fi source position is stationary during the experiment.
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• All robots are observing the same Wi-Fi source at any instance.

Fig. 6.2 delineates the system architecture of the proposed GPRL system
concerning robot i. The system contains three major components; GPR to train
and optimize the GP model, source prediction using hierarchical inferencing
using the GP model, and vector transformation for relative localization.

6.4 Source Positioning using Hierarchical Infer-
encing over GPR

We first present our hierarchical inferencing over GPR for accurate source po-
sition prediction.

6.4.1 RSSI-based GP regression
In the proposed approach, we use Received Signal Strength Indicator (RSSI)
readings along with GPR to forecast the location of the Wi-Fi source. Due
to their accessibility and simplicity, RSSI-based localization techniques have
been widely used in indoor and outdoor applications. However, environmen-
tal changes, multipath propagation, and signal fading can all impact how well
these techniques perform. To address the difficulties posed by RSSI-based lo-
calization, GPR offers a versatile and reliable method for modeling intricate
interactions between inputs and outputs (Yiu et al., 2017). Wi-Fi RSSI readings
have been used to apply GPR to radio mapping and localization applications
successfully (Elgui et al., 2020; Fink & Kumar, 2010). The technique has proven
successful in figuring out the spatial distribution of RSSI values and estimating
the user’s location based on measured data. Using a single Wi-Fi source, we
extend the application of GPR to the challenge of relative localization among
multiple robots in our system.

RSSI-based GPR

Let X = x1, . . . ,xN represent the N random positions within the environment,
and let Y = y1, . . . ,yN correspond to the RSSI measurements acquired at these
positions. Our goal is to train the GP model M utilizing the dataset D =

(xq,yq),q = 1...N and predict the Wi-Fi source position by leveraging the learned
associations between the positions and their respective RSSI values.

The mean function m(x) of a Gaussian Process captures the expected value
of the function at a given input x. In our case, we can choose a simple constant
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mean function to represent the expected RSSI value at any position:

m(x) = µ, (6.1)

where µ is a constant representing the average RSSI value in the environment.
The kernel functions k(x,x′) of a Gaussian Process defines the covariance

between the function values at different input points x and x′. In our case,
we can use the popular squared exponential (SE) kernel, also known as the
Radial Basis Function (RBF) kernel, which measures the similarity between the
positions based on their Euclidean distance:

k(x,x′) = σ
2
f exp

(
−||x−x′||2

2l2

)
, (6.2)

where σ2
f is the signal variance, l is the length scale parameter, and ||x−x′||2 is

the squared Euclidean distance between x and x′. This kernel function encodes
the assumption that the RSSI values at nearby positions are more correlated
than those at distant positions.

Source Position Prediction

Using the trained GP model M with the mean function m(x) and the kernel
function k(x,x′), we can predict the Wi-Fi source position ip∗AP in the frame
of robot i by finding the position that maximizes the posterior distribution of
the source position given the data D :

ip∗AP = argmaxp.p(p |D ,m(x),k(x,x′)), (6.3)

Where p(p |D ,m(x),k(x,x′)) represents the posterior distribution of the
source position conditioned on the data D , the mean function m(x), and the
kernel function k(x,x′). ip∗AP considered as initial source position estimation,
which can be improved will be improved hierarchical inferencing.

In our proposed solution, the GP model is trained by taking RSSI samples
at random points and then optimizing the model for better inferencing. The
GP model learns the link by incorporating the mean function, kernel function,
and the collected data.
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6.4.2 Hierarchical inferencing for source position predic-
tion

Over the GP regression model, we use a hierarchical inferencing strategy to pre-
dict the Wi-Fi Access Point (AP) position precisely. A multi-resolution search
technique, hierarchical inferencing, refines the search for the ideal AP position
from coarse to fine (Yin et al., 2019). We can quickly determine the position that
maximizes the posterior distribution of the AP position while taking advantage
of the structure and smoothness of the GP model by combining hierarchical
inferencing with GP regression.

In the GP regression model, we aim to determine the position ip∗AP that
maximizes the posterior distribution of the AP position. The process begins
with the coarsest level of inference, which we’ll denote as x1.

At level 1, we have x1 = (ix1,i y1). This pair of coordinates gives us the
coarsest estimate of the AP position. We insert these values into our Gaussian
Process (GP) regression model, which in mathematical terms, gives us p(p |
D ,m(x1),k(x1,x1

′)). This posterior distribution represents the likelihood of
our AP position given our first-level data.

For level 2, we refine the resolution and have x2 = (ix2 + res,i y2 + res).
The term ’res’ indicates our resolution refinement at this stage. This yields the
following posterior distribution: p(p | D ,m(x2),k(x2,x2

′)). This is a more
refined likelihood of our AP position based on the second-level data.

At level 3, we further refine the resolution and have x3 =(ix1+i x2+res,i y1+i

y2+res). This provides the posterior distribution as p(p |D ,m(x3),k(x3,x3
′)),

which is an even finer likelihood of our AP position.
In the end, the final data is obtained by summing the data from all levels:

x = (ix1 +i x2 +i x3,i y1 +i y2 +i x3). Plugging this data into the GP model
gives us the final posterior distribution p(p | x,m(x),k(x,x′)).

Finally, we can state that the AP position that maximizes this final posterior
distribution is our desired ip∗AP, which will be used in Eqn.6.3.

In essence, the hierarchical inferencing strategy refines the position estimate
at each level. It ultimately yields a position that maximizes the posterior distri-
bution, ensuring high precision in predicting the Wi-Fi AP position.

We may efficiently use the smoothness and structure of the GP model by
using hierarchical inferencing over GP regression, which enables the precise pre-
diction of the Wi-Fi source position. Due to the approach’s excellent comput-
ing efficiency and resistance to local optima, the robots can localize themselves
with great accuracy.
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Algorithm 9: Distributed Implementation of GP-based Relative Lo-
calization (GPRL) on Every Roboti
1 Input: K initial training samples (e.g., from random walk) with a GP

training dataset D = (xk,rssik), where xk = 1...K are robot
positions in local frames, and rssik are respective the RSSI values.

2 Output: ipAP and ip j, the position of AP and all neighbor robots j in
the local frame of robot i.

3 begin
4 Train/Re-train GP model M using RSSI-based regression with

training samples D , mean function m(·), and kernel function
k(·, ·);

5 Perform hierarchical inferencing over the GP model M to predict
the Wi-Fi source position ipAP in the local frame of robot i;

6 Communicate ipAP and robot odomtery positions i pi in local
frames with other robots;

7 foreach neighbot robot j do
8 Compute the position of robot j in the local frame of robot i

using AP-oriented vector transformation in Eq. (6.4);
9 end

10 end

6.4.3 Relative localization
In relative localization, we assume that every robot monitors the same Wi-Fi
Access Point (AP) and can send robot i information about its local AP predic-
tions and location. With this configuration, we can use vector transformation
to determine where robot j is about robot i.

Let ipAP represent the position of the Wi-Fi AP as predicted by robot j
in the frame of reference of robot i, and let jpAP denote the position of the
Wi-Fi AP as predicted by robot j in its frame of reference. We assume that
(ipi− ipAP) =i R j( jp j − jpAP) (as they are both observing the same Wi-Fi
source). In the given system, robot j shares jpAP to robot i along with its current
position jp. Furthermore, let ipAP represent the position of the Wi-Fi AP as
predicted by robot i in its frame of reference.

Let iR j denote the rotation matrix that transforms a vector from robot j’s
frame of reference to robot i’s frame of reference, so we can then define the
transformation matrix in 2-D space as iT j = iR j:
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Using this transformation matrix, we can transform the position of robot
j from its frame of reference into the frame of reference of robot i using the
following equation:

ip j =i pAP +i T j(ip j− j pAP), (6.4)

Thanks to this transformation, robots i and j can execute relative localiza-
tion about one another, which enables robot i to pinpoint robot j’s location in
its local frame of reference. All robots in the system may effectively acquire rela-
tive localization by using this vector transformation method, which is necessary
for cooperative activities and swarm behaviors.

6.4.4 Overview
The Alg. 9 summarizes the proposed GP-based relative localization learning
method. It starts with training the GP model using RSSI-based regression, fol-
lowed by hierarchical inferencing to predict the Wi-Fi source position. The
robots then communicate their local AP predictions and positions in local
frames. Using the transformation matrix computed from initial robot orienta-
tions and robot positions, the position of robot j in the local frame of robot i
is computed using vector transformation.

6.4.5 Theoretical Analysis
We can show that the hierarchical inferencing approach converges to the same
results as the GPR with full resolution while achieving high computational
efficiency, ensuring that the source position prediction is accurate and efficient.
We derive the following lemma.

Lemma 6. Given a dense resolution GPR model as defined in Section 6.4.1, hi-
erarchical inferencing across GPR yields source position predictions with an ap-
proximation within a prediction threshold ε for sufficiently large t. Hierarchical
inferencing allows for significantly improved computational efficiency.

Proof. We first denote p f ull as the true source position predicted using full
resolution GPR and phier as the source position predicted using hierarchical
inferencing. Our goal is to show that for an infinitesimally small threshold ε > 0;
there exists T > 0 such that for all t > T , we have ||phier(t)−p f ull(t)|| <
ε , where t denotes the number of iterations of hierarchical inferencing. This
implies that as we perform more iterations, the predictions of the hierarchical
inferencing approach get arbitrarily close to the full-resolution GPR model
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predictions. We note that the precision of this approximation is a function of
the number of levels in the hierarchy and the resolution at each level.

The full resolution GPR model is defined in Section 6.4.1, where we express
f (x)∼ GP(0,k(x,x′)) and y = f (x)+ ε , where ε ∼ N(0,σ2).

Now, given n observations in a dataset D = (xq,yq)
n
q=1, the joint distribu-

tion of the observed output values y = (y1, ...,yn) and the function values f at
new points X under a Gaussian process prior is:(

y
f

)
∼ N

(
0,
(

K(X ,X)+σ2I K(X ,X )

K(X ,X) K(X ,X )

))
(6.5)

Herein K(X,X) is the covariance matrix computed using the covariance func-
tion k on our observations, K(X,X) is the covariance between our observations
and the new points, and K(X,X) is the covariance of the new points. After ob-
serving y, we calculate the posterior predictive distribution for f at new points
X, which provides the expected function values and the uncertainty of those
predictions.

The computational complexity of calculating the posterior predictive dis-
tribution for all grid points in the full-resolution GPR model is O(n3), due to
the need to invert an n×n matrix, K +σ2I.

The hierarchical inferencing method begins with a coarse grid and refines
iteratively, focusing on areas with higher posterior probability. This process
reduces the number of grid points required at each level. Therefore, the compu-
tational complexity of the hierarchical inferencing method is O(mk3), where m
is the number of grid points at each level of the hierarchy and k is the number of
levels. Since m << n and k are often much smaller than n, the hierarchical infer-
encing method offers higher computational efficiency than the full-resolution
GPR model.

Now we derive the main theoretical results of this paper.

Theorem 3. Given two robots i and j with known rotation matrix, and their
respective local Wi-Fi AP predictions ipAP and jpAP, as well as the shared Wi-Fi
AP prediction, the vector transformation using the transformation matrix iT j

correctly computes the position of robot j in the frame of reference of robot i, denoted
by ip j.

Proof. Trivial, followed by Lemma 6 and relative position transformations in
Eq. (6.4).
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Table 6.1: Resolution (m) of the GPR prediction map in Robotarium simula-
tions. Note the environment size is 3mx2m.

MEGPR/GPR GPRL
Sparse Dense Hierarchical (up to 4 Levels)

0.1 0.0125 [0.1, 0.05, 0.025, 0.0125]

6.4.6 Time Complexity
GPR, hierarchical inferencing, and vector transformation for relative localiza-
tion are the three main computational elements that can be used to examine
the temporal complexity of the proposed relative localization system. Assum-
ing that the GP model is pre-trained, the complexity of GP regression, given
N training points of the RSSI map, is O(αN2) and α ∈ (0,1] is reduced res-
olution factor. For inferencing, We reduced the N to λN, where λ ∈ (0,1]
is the resolution reduction factor for each hierarchy, hence overall inferencing
time for l-levels of hierarchy is ∑

l
i=1 O(λN2). Given n robots, vector transfor-

mation has a O(n) time complexity. As a result, the suggested system’s overall
time complexity is O(∑l

i=1(λN2)+ n). Even though the GP regression and
hierarchical inferencing components are the most difficult, the system can be
efficiently run by limiting the number of training points and grid points and
evenly dividing the computational burden among the robots.

6.5 Experimental Setup
This paper presents an experimental setup for testing a proposed technique
using a single integrator controller in the Robotarium. The experiments are
conducted for 300 iterations and ten trials. In the experiments, the robots move
randomly around the simulated area while forecasting the source location from
the GPR model.

6.5.1 Robotarium Setup
In our experiments, a 3.2×2 meter rectangle is simulated using the Robotar-
ium platform to test the suggested GPR model-based localization technique. A
predetermined number of robots populate the simulation environment, and
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Figure 6.3: Source Prediction performance evaluation comparison plots of
SOTA approaches per iteration; MEGPR (M. Xue et al., 2019) (sparse and
dense AP subset) and the proposed approach (GP-based source inferencing
with hierarchical inferencing and without hierarchical inferencing) along with
the effect of hierarchy.

each robot’s initial position is randomly chosen. The robots may randomly
stroll in the predetermined area because they are set up to use a single integra-
tor controller. To maintain a controlled experimental setup, virtual limits are
added to the simulation environment to prevent robots from straying outside
the designated area.

The Robotarium’s server communicates with the robots during the tests,
enabling the exchange of data necessary for localization and the suggested learn-
ing process. The platform gathers and records information about the positions
of the robots as well as source location forecasts derived from the GPR model.
The performance of the suggested localization approach is assessed through the
processing and analysis of this data. The Robotarium’s remote accessibility
enables a reliable and regulated setting for carrying out our tests, fostering the
repeatability and confirmation of the findings made in this study.

6.5.2 GPR Model
Based on the available information from the robots’ positions and their related
source location measurements, the GPR model is used to forecast the source
location. A non-parametric probabilistic generalized projection rule (GPR)
model can capture complicated relationships between input and output data,
offering predictions and estimating the uncertainty involved. GPR models are
ideally suited for jobs involving erratic data or noisy observations because of
this property, which is why they successfully predicted the source position in
our trials. The GPR model is then updated using this information by adjusting
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its hyperparameters and adding new data. The experimental and hierarchical
configurations can be seen in Table. 6.1.

In our trials, the GPR model is initially trained on ten random samples,
each measuring the source location and robot position. After each iteration,
the model is updated, improving its predictive power by incorporating the most
recent data collected from the robots.

6.6 Results and Discussion
Based on the experimental setup discussed in Sec. 6.5, we have performed exper-
iments and analyzed the performance in this section.

6.6.1 AP Source Prediction Results
Compared to the SOTA approaches, the suggested GPRL strategy with hier-
archy performs admirably, outperforming them in terms of accuracy and effi-
ciency, as shown in Fig. 6.3. The findings show that in terms of source ALE
(Average Localization Error), training time, and inference time, GPRL with
hierarchy outperforms its competitors.

The ALE of source (AP) localization is improved by GPRL with hierarchy,
with an error roughly 36% lower than MEGPR-Sparse and roughly 8% lower
than MEGPR-Dense. This indicates our method’s increased accuracy, which
is necessary for relative localization jobs. The training time for our suggested
strategy is reasonable. It takes about 40% less time to train than MEGPR-Dense
while matching the GPRL training time without hierarchy. This demonstrates
the effectiveness of our strategy because it can deliver quick and precise instruc-
tion without sacrificing accuracy.

Additionally, GPRL with hierarchy performs better than other approaches
in inference time. Our method is around 22% quicker than the MEGPR-Dense
approach. The higher accuracy in source ALE justifies this minor increase in
inference time, even if GPRL with hierarchy takes a little longer than GPRL
without hierarchy. Furthermore, the effect of hierarchy is linear with the num-
ber of levels and provides evidence for its effectiveness with improved source
prediction accuracy. These findings demonstrate the dominance of the GPRL
with hierarchy and the possibility of our technique in real-world settings where
accuracy and efficiency are key considerations.
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Figure 6.4: Results of various performance metrics. From left to right, we show
the localization accuracy (RMSE) under different simulated RSSI noise levels
(the embedded plot represents the respective RSSI variations), the communi-
cation payload, the computation overhead, and the run time performance of
various relative localization approaches. It can be seen that the GPRL consis-
tently outperforms other approaches in all the metrics.

6.6.2 Relative Localization Experiments
For relative localization experimentation, we compare the performance of our
proposed approach with state-of-the-art Terrain Relative Navigation (TRN)
(Wiktor & Rock, 2020) and Distributed Graph Optimization for Relative Lo-
calization (DGORL) (Latif & Parasuraman, 2022a) to validate the accuracy
and robustness. We employ the Root Mean Square Error (RMSE) assessment
metric to assess how well the proposed approach performs. The average localiza-
tion error is quantified by RMSE, which also captures differences between the
robots’ anticipated relative positions and their actual positions in the simulated
environment. Insights into the convergence rate and robustness of the learning
approach are shown by analyzing RMSE values throughout the experiments.
This reveals how well the learning method works to improve the GPR model
and adapt to new data under various initial conditions and random walks. We
can confirm the efficacy and dependability of the suggested localization strategy
in the Robotarium trials thanks to this thorough study using RMSE. We also
have computed computation complexity in terms of CPU percentage utiliza-
tion and processing time (ms) per iteration for each approach to validate the
efficiency of the proposed approach.

Accuracy

Our analysis of the RMSE values for various approaches highlights the greater
accuracy of our GPRL strategy (with hierarchy) in predicting robots’ relative
placements. Compared to alternative techniques, GPRL with Hierarchy ex-
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Figure 6.5: Gaussian process inferencing for global and local frames along with
ground truth and predicted robot trajectories.

hibits a considerable improvement in the average RMSE. It is more accurate
than TRN by roughly 41.73 percent, or a ratio of about 1.72. GPRL with Hi-
erarchy is roughly 30.84% more accurate than DGORL, which translates to a
ratio of about 1.45. Its accuracy is roughly 34.01% more than the Sparse version
of GPRL without Hierarchy or a ratio of about 1.52. The Hierarchy version of
GPRL has a little higher average RMSE than the Dense version of the algorithm
without Hierarchy, though. As shown in Fig. 6.4, the reduced RMSE values
obtained by GPRL with hierarchy prove its advantage in various settings and
starting conditions. Fig. 6.5 shows the Gaussian prediction for global and local
frames along with the ground truth and predicted trajectories.

In addition to having better accuracy than previous approaches, the GPRL
with hierarchy technique also shows less fluctuation in RMSE values among
the three robots. The reliability of this consistency for localization tasks is high-
lighted. The GPRL, with hierarchy, establishes itself as a good contender for
practical robot localization tasks by offering higher accuracy and consistency.

Efficiency

Our proposed GPRL with the hierarchy method greatly outperforms others
when comparing the processing times and CPU use in various ways. The GPRL
with Hierarchy uses 43.62% of the CPU, which is significantly less than other
methods. It uses 45.05 % less CPU than TRN (97.36%), making it around 2.23
times more efficient. The GPRL with Hierarchy shows a reduction of 64.67%
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compared to DGORL’s CPU consumption of 123.56%, making it nearly three
times (2.83 times) as effective. The Hierarchy version of GPRL, however, uses
23.18% more CPU power than the Sparse version of the same algorithm with-
out Hierarchy. However, it outperforms the Dense version of GPRL without
Hierarchy in terms of efficiency, requiring 51.13% less CPU and being nearly
2.05 times as efficient. As shown in Fig. 6.4, the reduced CPU utilization and
processing time values obtained by GPRL with hierarchy prove its efficiency in
a practical environment.

GPRL with Hierarchy completes the task in 33.35 milliseconds of processing
time. GPRL with Hierarchy is more time-effective due to this processing time
being 23.59% faster than TRN’s processing time of 43.65 msec. The hierarchy
model also surpasses DGORL, which processes in 64.34 msec and is nearly
twice as efficient (≈ 1.93 times), outperforming it by≈ 48. 20%. In contrast,
the Sparse version of GPRL without Hierarchy exhibits a 55.69% increase in
processing time when compared to the GPRL with Hierarchy, showing that
the Sparse version is more effective in this regard. However, the processing time
efficiency of the GPRL with Hierarchy is 48.91% greater than that of the Dense
version of the GPRL without Hierarchy, or almost 1.96 times.

Impact of the RSSI noise levels

As we rely on the RSSI measurements to build the GPR map, the noise level in
the RSSI measurements can affect the accuracy of the localization. To analyze
the localization accuracy (RMSE) for different simulated noise levels in the mea-
sured RSSI values. The overlay plot in Fig. 6.4 shows that the simulated RSSI
at noise level 4dBm represents real-world RSSI observations. Furthermore, the
results have shown that the proposed approaches have lower RMSE (high ac-
curacy) among all techniques, even under high noise levels. The improvement
in accuracy is more pronounced when the noise level is increased. DGORL
performed better than the TRN; however, both have 2x lower accuracy than
the proposed GPRL for all trails.

6.6.3 Real-world Demonstration
To validate the practicality and generalizability, we have applied the GPRL ap-
proach to perform a multi-robot rendezvous task using three Tutlebot2e robots
in a large 10m x 13m multi-room lab environment. All robots are configured as
fully connected to the same WiFi AP. The robots are initially located in differ-
ent rooms (without visibility to each other and the AP). Robots operate in a
distributed way to find the direction to pursue using perceived relative locations
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Figure 6.6: Example trial from the multi-robot rendezvous experiment: Initial
(top) and final (bottom) state of the robots and their trajectories using GPRL.

of other robots in their local frame of reference using iṗ = 1
N ∑ j∈Ni(ip j− ipi),

where Ni is the set of neighbor robots of the robot i. This direction is then
given to the robot’s mapping and autonomous motion planner for low-level
path planning and obstacle avoidance (we used ROS gmapping + move_base
packages for this implementation).

We performed five trials and successfully achieved rendezvous of all robots
within a small threshold. A sample of the initial and rendezvous positions and
their trajectories can be seen in Fig. 6.6. The robots were able to locate the AP
within 0.573±0.12 m accuracy, and the relative trajectory error (between the
odometry and predicted trajectory of other robots) was within 0.426±0.098
m on average. The attached video shows the performance of GRPL in real time.
The experiment validated the practicality of the approach in handling real-world
scenarios with noisy RSSI values with occluded non-line-of-sight conditions. It
also demonstrates the applicability of GPRL to most multi-robot operations,
such as exploration and formation control.

112



6.6.4 Discussion
Our experiments’ outcomes show that the proposed GPRL approach performs
better than the TRN and DGORL methods regarding accuracy and effective-
ness. The GPRL method’s increased accuracy can be attributed to its capacity
to understand the intricate connections between the positions of the robots
and the sources utilizing the GPR model. The proposed method’s improved
efficiency results from its effective model updating and consensus-based local-
ization strategy. For practical application in robot localization tasks, the GPRL
approach is a strong contender thanks to these benefits, especially in situations
where real-time performance and computing effectiveness are essential. More-
over, the proposed GPRL is a scalable approach regarding the number of robots
as there is no global GPR search involved, and space dimensions are constrained
to the range of wireless signal transmitters, as the hierarchical approach is adap-
tive to the dimensions and will have no significant impact on the overall perfor-
mance of the system.

Although the proposed GPRL approach produced some encouraging re-
sults, some issues still need to be resolved. The approach depends on Wi-Fi
source measurements, which are susceptible to interference, multipath propa-
gation, and signal deterioration, potentially reducing the precision of the local-
ization predictions. The method also assumes that the robot orientations are
known, which may not be true in some real-world situations where the robot’s
orientation data is incorrect or missing. Furthermore, the suggested method
does not explicitly consider non-line-of-sight circumstances, which can affect
the predicted source locations and, as a result, the estimated relative positions.
The accuracy of the Wi-Fi source measurements, for instance, can be increased
by utilizing reliable signal processing techniques, such as synergistic informa-
tion fusion (Latif & Parasuraman, 2022b). Methods like Angle of Arrival (AoA)
(Jadhav et al., 2022) can be coupled with the GPR model to produce more reli-
able localization predictions in environments with barriers or signal blockages,
addressing the issue of known robot orientation and non-line-of-sight and im-
proving estimates of the robots’ poses. The proposed GPRL strategy can be
made even better by combining these methods, increasing its practical usability
and performance in real-world situations.

6.7 Summary
This chapter delves into the development and testing of a novel learning-based
method for relative localization in multi-robot systems using WiFi signals’ Re-
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ceived Signal Strength Indicator (RSSI) data, known as GP-Loc. The necessity
for efficient and accurate relative localization methods stems from the rising uti-
lization of autonomous mobile robots in various applications such as logistics,
surveillance, and search and rescue. Despite the existence of several methods
leveraging reinforcement learning, Bayesian optimization, and deep learning,
these often require large quantities of data and may experience overfitting or
generalization problems.

GP-Loc circumvents these limitations through a unique combination of hi-
erarchical inferencing and Gaussian Process Regression (GPR), alongside a vec-
tor transformation method, enabling accurate relative localization even when
robots aren’t in direct line of sight or have different initial orientations. The ef-
ficiency and accuracy of GP-Loc are validated through extensive experiments in
a simulated Robotarium world and with real robots, showing superior perfor-
mance to state-of-the-art methods such as Terrain Relative Navigation (TRN)
and Distributed Graph Optimization for Relative Localization (DGORL).

Despite the promising results, the GP-Loc approach does face challenges,
including its reliance on WiFi source measurements that are susceptible to in-
terference and the assumption of known robot orientations. Future improve-
ments will address these constraints by incorporating signal processing tech-
niques, Angle of Arrival (AoA) methods, and synergistic information fusion,
enhancing the overall practicality and performance of GP-Loc in real-world
scenarios. This chapter discussed the final version of relative localization using
the Gaussian process and proposed an efficient solution that will further be
integrated with exploration strategies discussed in the coming chapters.
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Chapter 7

Communication-Efficient
Reinforcement Learning

in Swarm Robotic
Networks for Maze

Exploration

7.1 Introduction
From this chapter, we redirect the dissertation to the exploration strategies,
this chapter in particular explores the use of reinforcement learning for maze
exploration in an efficient way. Maze coverage and exploration-related chal-
lenges have always piqued the interest of humans. Path planning algorithms
are typically used to regulate how robots move through mazes if the structure
of the labyrinth (including its walls and paths) is already known. If the maze
structure is unknown, the robots must first use sensors to find a portion of the
maze nearby before planning their next move based on the knowledge they have
gained. Exploring an unknown maze in pursuit of stationary targets is thus a
challenge associated with coverage, search, and path-finding issues (Alamri et al.,
2021). Typical maze coverage solutions such as A* (Tjiharjadi et al., 2017), and
Depth First Search (Y.-H. Chen & Wu, 2020) apply to a single robot system and
require constant updates and optimization. However, most current research
focuses on coordinated multi-robot and swarm robotic networks (Youssefi &
Rouhani, 2021).

Numerous research has solved the issue of coordinating and controlling
several robots for mapping and exploration. However, most strategies rely on
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Figure 7.1: Overview of the Communication-Efficient Reinforcement Learn-
ing.

centralized control to guide each robot in a swarm because centralized coordina-
tion enables almost optimal behaviors in surroundings that are well understood.
However, in the novel, unknown contexts, a distributed approach for swarm
coordination is necessary, as was put forth by Bono et al. (Bono et al., 2021),
where it produced a reliable result even if one or more of the robots were lost.
Specifically, sharing locally observed maze information among the connected
robots is a crucial component of distributed approaches so that each agent can
carry out its plan without interference from the others. However, a reliable
information fusion technique needs to be integrated with such approaches for
communication efficiency and a reliable system for information fusion (Kali-
nowska et al., 2022).

Reinforcement learning (RL) is a machine learning technique that trains
agents to take action in an environment to maximize a reward signal. In swarm
robotic networks, the robots can be trained to explore the maze effectively by
learning from their interactions with the environment. This problem is chal-
lenging because the robots may have different capabilities, and the maze is un-
known.

Multi-robot maze coverage using RL has been recently explored for solving
the problem of coordinating a team of robots to explore and map a maze (Gu
& Mao, 2021). However, recent RL algorithms fail to scale up quickly for a
swarm system and do not work efficiently in communication-constrained envi-
ronments where the packet loss rates are high, and the communication range
may be limited. Therefore, to remedy this issue, we contribute a new efficient
novelty search through deep reinforcement learning (DRL) (L. Shi et al., 2020)

116



to coordinate a group of robots and solve the maze exploration problem dis-
tributedly; an overview of the proposed approach can be seen in Fig. 7.1.

One approach to solving the swarm robotic maze exploration using RL is
to define the problem as a Markov Decision Process (MDP), where the states
represent the positions of the robots and the walls of the maze, the actions
represent the movements of the robots, and the rewards represent the progress
made towards exploring the maze. The robots can then use an RL algorithm,
such as Q-learning, to learn a policy that maps states to actions and maximizes
the rewards in a distributed manner.

We theoretically analyze our approach with other methods from the lit-
erature. We extensively evaluated the proposed algorithm using CORE net-
work simulations in different maze worlds. This paper focuses on the efficiency
of the proposed approach for micromouse maze coverage under standard net-
working conditions; hence we are not discussing networking aspects of the
work. Comparing the results from a graph-based Depth First Search (DFS)
(Y.-H. Chen & Wu, 2020) and the recent memory-greedy reinforcement learn-
ing (Yu et al., 2021) approaches, the proposed RL algorithm outperforms in
terms of coverage efficiency and minimizing overlapping regions, especially in
communication-degraded environments. We open-source the codes in GitHub
at https://github.com/herolab-uga/MazeCommRL for use and further devel-
opment by the robotics community. The algorithm can be generalized to other
application domains where communication efficiency is crucial for better swarm
coordination.

7.2 Related Work
In scenarios where both the world (map of the maze) is unknown and multiple
robots need to coordinate effectively to explore the full map, the robots must
search the uncharted maze to locate a target. Many algorithms have been pro-
posed in the literature. For instance, a search-based method to locate a path out
of the maze may not always provide the shortest path (Tjiharjadi et al., 2022). It
is also becoming increasingly important to plan how to address the multi-robot
pathfinding that more effectively bypasses cost estimations during preparation
(Luis et al., 2020). In (W. Shi et al., 2019), an optimization-based UAV trajec-
tory planning method is proposed to enable a drone-assisted open radio access
network. In (L. Wang & Guo, 2019), a language-based explicit communica-
tion is introduced for swarm robots to coordinate and plan their tasks with low
communication costs.
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However, most of them assume a centralized control or coordination sys-
tem. The robots do not work together effectively, making it impossible for a
swarm robotic network to perform well without significant memory and com-
munication overload.

Reinforcement learning provides a superior way to tackle communication-
efficient swarm coordination challenges. This is because robots’ actions impact
other robots’ actions and vice versa, which encourages robots to collaborate
by utilizing other robots’ information through communication (Pozza et al.,
2021; Q. Yang & Parasuraman, 2021). Such information benefits the robots’
cooperation, but they cannot ensure they will communicate all the information
they need to exchange to collaborate.

In the maze problem, the robot will receive a positive reward when it arrives
at its destination, meaning that the reward it just received will allow it to return
to the original region numerous times. These prizes, however, only show up one
time in the maze. This circumstance, known as a "reward loop," significantly ex-
tends the time needed to navigate the maze. A Q-learning method with multiple
Q tables is suggested in a study (Kantasewi et al., 2019). This approach reduces
map area overlap between robots by creating a Q table each time the robot ex-
plores a new region, allowing the robot to navigate to the target optimally. The
Q-learning is expanded in (Uwano & Takadama, 2017), and an RL for multi-
robot cooperative tasks is proposed. The standard reward is transformed into
an "internal reward" when robots in the maze cannot communicate with one
another. This allows the robots to learn following this "internal reward" type
and achieve task collaboration under such challenging circumstances.

A unique RL maze navigation technique is proposed in (Yu et al., 2019) to
address the labyrinth navigation problem for robotic vehicles. First, the picture
data of the random maze is collected using a drone’s bottom-mounted camera.
Then the virtual maze is created in the simulation environment using an image
processing technique. An enhanced Q-learning algorithm is suggested to ad-
dress the issue that the original greedy strategy repeatedly forces the robot to
linger in the past state. However, it cannot tolerate significant communication
degradation. Alternatively, our proposed approach considerably differs from
the literature by considering an efficient information transfer mechanism com-
bined with Q-learning for multi-robot cooperation to solve maze exploration
tasks.
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7.3 Proposed Approach
Let us assume multiple robots of different types are tasked with exploring and
mapping a maze. Each robot has unique capabilities and strengths, such as
different speeds and sensor ranges. Using reinforcement learning, the robots
learn to cooperatively navigate the maze and cover as much as possible. The
robots communicate and coordinate with each other to efficiently cover the
maze and avoid collisions. We assume the robots can localize in a global frame of
reference (e.g., GPS); however, recent relative localization techniques like (Latif
& Parasuraman, 2022a) can be employed if global positioning is unavailable.

As the robots explore the maze, they receive rewards for discovering new
areas and penalties for collisions. Over time, the robots learn the optimal strate-
gies for exploring the maze and maximize their coverage. Each robot decides its
action plan based on the below approach.

7.3.1 Reinforcement Learning
Popular machine learning algorithms like reinforcement learning use interac-
tions with the environment to teach robots new skills. Markov decision pro-
cesses are frequently used to model it. The robot’s state is one of them and is
denoted by the letter s. A state transition from state st to state st+1 occurs due
to the reinforcement learning robot selecting and carrying out an action based
on its state at time t. The robot will receive a reward for each action. The robot
will have learned the course of action to take in each condition and will be able
to maximize the reward of the entire process through repetitive trial and error.
Fig. 7.1 depicts the fundamental idea of RL, and the symbols and concepts used
in RL are as follows:

• S = {s1,s2,s3, ...,sn} is a discrete set of n states, where st ∈ S describes
the state of the robot in the environment at a time t.

• A = {a1,a2,a3, ...,an} is a discrete set of n actions, where at ∈ A de-
scribes the action which the robot chooses at a time t.

• T : S×A×S→ [0,1] is a stochastic state transition function, where the
state of the robot is transitioned to state s∗ with a probability p ∈ [0,1]
when choosing action a in state s. We use s∗← T (s,a) to represent the
above process.

• R : S×A×S→R is the reward function. It represents the robot’s reward
in its state transition to s∗ after executing action a in state s.
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• γ ∈ [0,1) is the discount factor is the relative importance of future and
present rewards.

Kantasewi et al., (Kantasewi et al., 2019) suggest a Q-learning with a multi-
table approach. It is a technique that can be continuously updated in light of
prior knowledge to ultimately arrive at the most likely accurate choice. The
Q table is the Q learning’s secret. All possible states and actions are created
using the Q table, which then updates each value through iterative learning.
The robot then chooses the best course of action for each state based on the
values in the table. This approach is frequently utilized in path planning, chess,
card games, and other activities. The objective of the proposed approach is
to perform maximum coverage in less time and avoid overlapping exploration,
which can be numerically defined as:

max
π
{Pπ

a (t)−λEt(a|π)}, (7.1)

where Pπ
a (t) is the probability of covering the region for action a using policy π

at time t, Et(a|π) is an average number of steps to cover associated with action
an a at time t in policy π and λ is the cost associated with each step.

The algorithm updates the Q value by the following formula:

Qt+1 (st ,at) = (1−α)Qt (st ,at)+α [rt + γ maxQt (st+1,at)] , (1)

where st and st+1 are the current states and the next state, respectively, it is the
action executed, α ∈ (0,1] controls the balance between the coverage and delay,
and γ is the discount factor. At each discrete time step t, the agent acquires an
observation st from the environment, selects a corresponding action at , then
receives feedback from the environment in the form of a reward rt = R(st ,at)

as:

Rt =
N

∑
i=1

[
αi ·

(
1

di,t
− 1

di,t−1

)
+βi ·

(
1− 1

di,t

)]
, (7.2)

where N is the number of robots, di,t is the distance of a robot i from the goal
at time t, αi and βi are constants that represent the reward for each robot.

The updated state information st+1. The goal of the RL agent is to select
policy π to maximize the discounted sum of future rewards, i.e., Qπ(s1) =

∑
t=1
τ γ tR(st ,at), which according to the Bellman optimality principle satisfies.

This reward function produces a negative reward whenever the agent has
looped back and no reward otherwise. Alg. 10 presents the pseudocode descrip-
tion of the approach using reinforcement learning.

120



Algorithm 10: Communication-Efficient RL for Exploration
1 Initialize the maze environment and the agent’s state s0;
2 Initialize the reward functions R1,R2, . . . ,Rn;
3 foreach episode do
4 Initialize the episode’s total reward R = 0;
5 for each step in the episode do
6 Take action a according to the agent’s policy π ;
7 Observe the reward r from the environment;
8 Update the total reward R = R+ r;
9 Update the agent’s state st+1 = f (st ,a);

10 end
11 foreach reward function Ri do
12 Calculate the reward ri = Ri(s0,sT );
13 Update the total reward R = R+ ri;
14 end
15 Update agent’s policy π using gradient ascent on R;
16 end

7.3.2 Swarm robot cooperation
The next issue we have addressed is the communication amongst individual
exploration-capable robots in our multi-robot system. Our proposed RL-based
exploration system is designed for a single robot, allowing each robot to make
independent decisions based on local information and with little interaction
from other robots. We introduce efficient communication amongst nearby
robots to encourage cooperation. We develop a discovery approach based on
the distance between simulated robots to replicate the network range in which
we only share the current position of a roboti, its Q-Value for each direction, and
mark the current situation as explored to avoid repetitive exploration. When
another robot receives the information, it will update the received Q value in
its Q table and update the local map.

Table 7.1: Comparative complexity analysis of maze exploration.
Algorithm Category Complexity Coverage Update Cost Abbreviations

Ant colony optimization (Viseras et al., 2016) Centralized O(2n×m) partial low b-obstacles, m-robots, n-cells
Cooperative Random Walk (Ozdemir et al., 2019) Decentralized O(n3) partial low n - number of cells

Improved SAT (Surynek et al., 2016) Centralized O(µ×n×m) full high µ - makespan factor
Efficient DRL (L. Shi et al., 2020) Decentralized O(ε×n) full high ε - depth factor

Memory-Greedy RL (Yu et al., 2021) Decentralized O(ε2×n) full high ε2 - greedy degree
Proposed RL Approach Decentralized O(k) full moderate k - number of sub-mazes
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7.3.3 Procedure
Based on the RL and cooperation strategy discussed above, our approach in-
corporates cooperation into Q learning. A multi-robot cooperation strategy
learning method based on RL has been suggested to solve the issue that the state
action space is too large due to the complex maze environment when using tra-
ditional Q-learning to solve maze problems, resulting in too many iterations
and too long in the entire learning process. These are the precise stages:

• Given the target maze M, it is divided into multiple sub-mazes. We regard
these sub mazes as a set m, where m = m1,m2,m3, ...,mn.

• Multiple robots use Q-learning to explore these sub-mazes at the same
time. Because the sub-maze is much simpler than the target maze, it only
needs a few iterations to complete the learning.

• Each robot updates its Q table at every iteration based on Q-value update
Eq. 1. After learning, we can get a set of Q tables, where Q= {Q1,Q2,Q3, ...,Qn}.

• Combine these Q tables as the initialized Q table of the target maze, called
Qcop.

• Finally, based on Qcop, the robot completes the exploration of the target
maze M.

7.3.4 Theoretical Analysis
We have compared our proposed approach with state-of-the-art algorithms from
four major categories for maze exploration: Ant colony optimization (Viseras
et al., 2016) (search-based); cooperative random walk (Ozdemir et al., 2019)
(randomized); Efficient SAT (Surynek et al., 2016) (reduction-based); and Effi-
cient DRL (L. Shi et al., 2020) (machine learning). Ant colony optimization
is a centralized algorithm that provides partial coverage with a complexity of
O(2n×m) for n robots in a maze of m cells. Cooperative random walk operates
purely randomly and cannot guarantee full maze coverage with a high time com-
plexity of (n3) for worst-case scenarios. Improved SAT using a lower bound
on the sum of costs and an upper bound on the makespan provides complete
coverage of the maze with high update cost. Efficient DRL is the most compar-
ative approach and has ε depth factor for exploration and shares the whole Q
table in every iteration but can operate efficiently to cover the entire map in less
time with full cooperation. Our proposed approach works in a decentralized
fashion; each robot calculates the Q value for its current cell, shares only the
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Figure 7.2: Core Simulator (Right) with exploration map (Left).
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Figure 7.3: Time taken by maze coverage strategies for three levels of coverage
(one-third, two-third, and full).

8 http://coreemu.github.io/
core/

current value, and updates the Q table accordingly; hence, our approach has
low communication/update cost and only traverses a single time through each
cell to provide full maze coverage. Table 7.1 depicts that the proposed approach
provides full maze coverage with reasonable computational efficiency and low
update cost.

7.4 Experimental Evaluation

We have performed simulation experiments using CORE8 Networking emula-
tor. All experiments were performed under standard CORE wireless network
configurations other than the parameters mentioned below. In our experiments,
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Figure 7.4: Coverage percentage performance metric: Average results over all
mazes (Left), after 100 iterations (Center); after 400 iterations (Right).
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Figure 7.5: Map overlap percentage metric: Average results over all mazes (Left),
after 100 iterations (Center); after 400 iterations (Right).

9 http://www.tcp4me.com/
mmr/mazes/

we set up four robots on four corners of the maze (see Fig. 7.2). Initial positions,
motion constraints, communication channels, and maze dimensions are known
for experimentation.

• Range: 1500 pixel distance between nodes

• Delay: 0.2 µsec

• Bandwidth: 54 Mbps

We validated the performance of the proposed approach in comparison with
DFS (Y.-H. Chen & Wu, 2020), and the memory-greedy RL (Yu et al., 2021)
approaches. In the implemented approaches, the robots maintain synchronous
communication and share only the current state and observed region with other
robots in the maze. DFS does not incorporate received information other than
updating the current exploration map, which increases the overlapping of ex-
ploration over iterations. We have performed experiments for 17 mazes available
online9, each with a 16×16 grid size.

7.4.1 Results
Coverage: We look at the time efficiency to complete the maze with one-third
(33%), two-thirds (66%), and full coverage (99%); results can be seen in Fig. 7.3.
DFS outperformed other approaches for one-third coverage as its processing
and propagation does not involve robot cooperation and explore the maze
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Figure 7.6: Impact of the communication range parameter; number of itera-
tions (Left), average coverage percentage (Center), average overlap percentage
(Right).
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Figure 7.7: Impact of the packet loss parameter; number of iterations (Left),
average coverage percentage (Center), average overlap percentage (Right).

rapidly. However, DFS and our approach have comparable completion times
for two-thirds coverage. The trend changes towards the end of coverage comple-
tion due to a lack of cooperation; DFS takes approx. 100 and 25 more iterations
than the proposed and memory-greedy RL approaches. We also have recorded
performance microscopically over every iteration. Standalone DFS works bet-
ter for a few initial iterations for coverage, as its processing does not involve
decision-making. However, after half of the maze coverage, the proposed ap-
proach can cover the region more rapidly than DFS. Overall, both approaches
can cover 99% of the explorable region within 400 iterations for all mazes.

We have analyzed the performance of all approaches for one maze for com-
plete coverage and observed performance for 100 and 400 iterations for all the
experiment mazes. Results in Fig. 7.4 have shown that DFS and memory-greedy
RL approaches have better coverage percentages than the proposed approach
initially at 100 iterations; however, at 400 iterations, the proposed method is
approximately 10% better in coverage.

Overlap: We have analyzed the performance based on the inter-robot over-
lapping coverage space. Results (see Fig. 7.5) have shown that DFS has a higher
overlap than the proposed approach at both iteration cycles, which is 3% and
20% for 100 and 400 iterations, respectively. Interestingly, the memory-greedy
RL approach balanced the charts by providing a faster coverage rate but at a
loss of map overlap ratio.
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7.4.2 Ablation studies on communication efficiency
Communication Range: We have varied the communication range from 1500
to 500-pixel units between nodes in the simulator to evaluate the performance
of maze coverage strategies over completion time, percentage coverage, and per-
centage overlap. Fig. 7.6 shows that our approach has the most negligible impact
of weak communication for coverage time due to preplanned policy utilization
and strong cooperation among robots. Conversely, reduced range drastically
affects the memory-greedy RL approach, and DFS moderately affects weak com-
munication on maze coverage time. The coverage percentage reduces with the
reduction in range for all approaches differently. DFS can only cover 82% of
the overall maze with the 500 range, and memory-greedy RL covers a slightly
larger area of 87% maze than DFS. The proposed approach has shown the most
negligible impact of content on the coverage and can cover the maximum re-
gion even with a range of 500 units. Regarding overlap percentage, robots in
the proposed strategy intentionally avoid already explored areas due to the opti-
mized reward function, resulting in less overlap than other strategies. DFS has
high overlap during overall coverage and almost re-explored three-quarters of
the whole maze in the slightest communication range.

Packet Loss: To evaluate the effectiveness of maze coverage strategies across
completion time, percentage coverage, and percentage overlap, we increased the
packet loss percentage in the CORE simulator from 1 to 10%. According to the
data, the proposed strategy has the most negligible influence on packet loss for
coverage time (see Fig. 7.7) since it uses a preplanned policy and has excellent
robot collaboration. On the other hand, a higher packet loss of 10% signifi-
cantly impacts the DFS technique and requires 300 more iterations to cover the
labyrinth space. The memory-greedy RL had a minor impact on packet loss
on the maze coverage time, but it could still cover the entire area in 753 itera-
tions. Additionally, each technique’s average coverage percentage decreases as
the packet loss percentage rises. With a 10% packet loss, memory-greedy RL
covers 83% of the entire maze, whereas DFS covers a slightly larger area. The
proposed method can cover the maximum region (92%) even with a 10 percent
packet loss and has the most negligible noticeable impact of range on coverage
percentage. Due to the optimized reward function, robots in the proposed
method purposefully avoid already investigated locations, resulting in less over-
lap than other strategies.
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7.5 Summary
This chapter introduces a new decentralized reinforcement learning algorithm
to facilitate efficient coordination among swarm robots. This novel approach hi-
erarchically uses local information exchanges, making the entire process highly
efficient. The method is applied to a maze-solving task conducted by a group of
robots to minimize the time, and cost, avoid inter-robot collisions, and prevent
path overlaps during the exploration process.

The chapter provides a comprehensive theoretical algorithm analysis and
evaluates it against state-of-the-art solutions using CORE network simulations.
The results show that the proposed algorithm offers significantly higher cov-
erage accuracy and efficiency even in communication-degraded environments,
marked by high packet loss and low communication range. However, this algo-
rithm’s application isn’t restricted to maze-solving tasks. It can be generalized
to other domains where communication efficiency is pivotal in swarm coordi-
nation. The algorithm outperforms existing solutions like graph-based Depth
First Search (DFS) and memory-greedy reinforcement learning regarding cover-
age efficiency and minimizing overlapping regions, particularly in environments
with compromised communication conditions.

The chapter concludes by suggesting that the promising results open new
avenues for further research and extensions of the proposed algorithm to a
broader spectrum of swarm robotic network applications. The source code
of the proposed algorithm is made available for use and further development
by the robotics community. This chapter discussed the exploration strategy
for the case study of the maze and validated the efficiency of reinforcement
learning-based exploration techniques. The next chapter will explore reinforce-
ment learning with an advanced reward function and efficient map exploration
technique for multi-robot systems.
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Chapter 8

CQLite:
Communication-Efficient
Multi-Robot Exploration
Using Coverage-biased
Distributed Q-Learning

8.1 Introduction
This chapter further explores the utilization of reinforcement learning with
advanced coverage biased reward function for maximum exploration. Map-
based coverage and exploration is a significant problem of interest in the robotics
and multi-robot systems (MRS) community (Burgard et al., 2005). In this
problem, robots continuously explore to obtain the full environmental map
in a new bounded environment without prior information. It can be helpful
in various applications, including search and rescue, domestic service, survey
and operations, field robotics, etc. Autonomous exploration and surveillance
solutions can also demonstrate the adaptability of the MRS since robots can
carry out these missions in different and uncharted areas.

Recent works have been influential in realizing an efficient exploration ob-
jective. For example, information-based methods (e.g., (B. Fang et al., 2019))
typically use the Shannon entropy to describe the uncertainty of the environ-
mental map and construct the optimization problems such that the robot’s con-
trol variable (e.g., velocity) is continuously optimized during the exploration
process. On the other hand, frontier-based methods (e.g., (Dai et al., 2020)) in-
volve deciding the robot’s next move (or path) by searching the frontier points
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Figure 8.1: Overview of the distributed CQLite method for efficient multi-robot
exploration, shown with an illustrative simulation.

on the border of free and unknown points. Often, these methods only produce
approximate solutions due to optimization.

Integrating learning with planning solutions is promising, especially for
robot exploration (Shrestha et al., 2019). In the reinforcement learning (RL)
paradigm, robots can continuously improve competence and adapt to the dy-
namics of natural surroundings by observing the results of navigational choices
made in the actual world (Z. Zhang, Wang, et al., 2022). On the other hand, co-
operation among robots in an MRS can help achieve a complex mission through
simple distributed approaches (Tolstaya et al., 2021).

This paper explores the intersection between learning and cooperation, de-
signs a combined solution to achieve efficient map exploration, and provides
theoretical support for fast convergence and time complexity. We leverage the
benefits of learning-based paradigms for joint exploration. We aim to create a
distributed algorithm that gains knowledge through robot-robot information
sharing while minimizing communication and computing overheads. Specifi-
cally, we utilize a distributed Q-learning methodology with a coverage-biased
reward function with a light communication and information fusion strategy.
In our approach, we reduce communication complexity by sharing only the
current state information, i.e., Q-value, instead of the complete Q-table as done
in (Sadhu & Konar, 2018) and explored frontier. Fig. 8.1 provides an overview
of the proposed method implemented in the Robot Operating System (ROS)
framework. The main contributions of this paper are summarized below.

• We propose a novel distributed coverage-biased Q-learning approach
(CQLite) for efficient multi-robot map exploration with limited data ex-
changes.
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10 https://github.com/
herolab-uga/cqlite.git

11 Video of simulation
experiments and real-world
demonstrations are also
available at https://hero.uga.
edu/research/cqlite/

• We substantiate the potential of our method with theoretical guaran-
tees and extensive simulation experiments. We evaluate the performance
of our approach against two state-of-the-art (SOTA) multi-robot explo-
ration methods: Rapidly-exploring Random Trees (RRT) for Optimized
Exploration (L. Zhang et al., 2020) and Deep Reinforcement Learning
(DRL) for Voronoi-based Exploration (Hu et al., 2020).

• We open source10 the CQLite as a ROS package for use and further de-
velopment by the robotics community.

The key idea behind the CQLite uses a coverage-biased reward function
to perform efficient exploration by sharing limited information among robots
in a distributed fashion. Our method achieves fast convergence with the best
coverage performance, reduced communication, and update costs compared to
the baselines 11.

8.2 Related Work
Map exploration problems focus on frontier-based and learning-based coverage
planning approaches. A robot can be greedily pushed in an occupancy grip-
map to the closest boundaries (W. Gao et al., 2018) or to the most uncertain
(or informative) regions (Bouman et al., 2020). In frontier-based strategies, the
robots will look to expand coverage into the unexplored regions by choosing
the next waypoints based on the frontier of the explored map boundaries. For
instance, in (L. Zhang et al., 2020), the multi-robot map exploration objective
is integrated into an optimization framework incorporating Rapidly-exploring
Random Trees (RRTs) to increase the effectiveness and efficiency of multi-robot
map exploration. However, the constraints of such frontier-based approaches
are the computing expense of the optimization methods and the possibility of
non-optimal outcomes resulting from RRTs’ stochastic characteristics.

In the collaborative map exploration problem, the robot will receive a posi-
tive reward when it finds the "treasure," meaning that the reward it just received
will allow it to return to the original region numerous times. These prizes,
however, only show up one time on the map. This circumstance, known as
a "reward loop," significantly extends the time needed to navigate the map. A
multi-Q-table Q-learning method is suggested in study (Kantasewi et al., 2019)
as a solution to this issue. This approach eliminates recurrent investigation of
the area by creating a Q table each time the robot receives a good reward. It also
allows the robot to find the "treasure."
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Most learning-based autonomous navigation approaches rely mainly on
supervised training data. Examples include learning route planners, obstacle
detectors, reactive controllers over a map-based planner (Richter & Roy, 2017),
and driving affordances (D. Wang et al., 2019). However, many approaches are
based on human supervision, which is fundamentally bound by the amount
of human data available. The capabilities of intense and expressive models like
deep neural networks are frequently constrained significantly by the data avail-
able.

Researchers exploited self-supervised learning with generalized graph com-
putation to achieve autonomous map exploration. Gregory et al.(Kahn et
al., 2018) provided a generalized computation graph that includes value-based
and model-based techniques, with specific instantiations interpolating between
model-free and model-based, to address the need to learn complicated policies
with few samples. They then created an instance of this network to create a
sample-efficient navigation model that can be taught from unprocessed pho-
tos. However, in the case of a complex environment, graph computation can
become a complicated problem to solve and is not feasible for real-time explo-
ration with resource-constrained robots.

In a recent study, Jinyoung et al. (Choi et al., 2019) examined the potential
for depth cameras to take the place of pricey sensor devices. They discussed the
impact of the DRL agents’ restricted field of view and suggested a local-map
Critic designed to teach effective navigation in a challenging environment.

A recent study (H. Li et al., 2019) looked at the issue of automatic explo-
ration in an unfamiliar setting, which is crucial when using a robotic system to
perform specific social duties. By breaking down the exploration process into
the decision, planning, and mapping modules, research created a general explo-
ration framework that increases the adaptability of the robotic system. They
proposed a DRL-based decision algorithm based on that framework, which uses
a deep neural network to learn an exploration strategy from a partial map. Simi-
larly, for exploration region selection in the decision-making process, a study (D.
Zhu et al., 2018) used DRL. The agent can forecast a long-term visitation order
for unknown subregions thanks to the presentation of exploration knowledge
over office designs. Based on this method, they suggest an exploration architec-
ture that, to enhance exploration performance further, combines a DRL model,
a next-best-view selection strategy, and a structural integrity measurement.

A target-driven indoor visual navigation approach (Y. Zhu et al., 2017) also
utilized DRL to address generality and slow convergence. They suggested an
actor-critic model handles the generalization problem, whose policy is a func-
tion of the aim and the current state and allows for improved generalization.
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Finally, they suggested using a third-party framework, which offers a setting
with top-notch 3D scenes and a physics engine for quick convergence.

Researchers also presented communication-efficient solutions for explo-
ration in multi-robot systems. For instance, Zhang et al. (Z. Zhang, Yu, et
al., 2022) introduced the MR-TopoMap based on a topological map, which can
independently explore the robot’s surroundings while sporadically exchanging
topological maps when communication is possible. But, path planning through
topological mapping can lead to a sub-optimal path and, specifically in the case
where robots start exploring from the same position, exploring the same map,
making it difficult to divide the map into topologies. Corah et al. (Corah et
al., 2019) use information-based distributed planning considering communi-
cation restrictions. However, the planner’s finite-horizon nature could lead
to suboptimal exploration paths because it doesn’t consider long-term plan-
ning beyond the given horizon making it more difficult for the system to make
decisions based on knowledge in the future. This might prevent robots from
efficiently exploring or discovering key regions of interest. More recently, Gao et
al. (Y. Gao et al., 2022) reduced inter-robot communication costs by utilizing a
mission-based protocol and centralized planning, where the former can actively
disconnect robots to proceed with distributed (independent exploration) and
the latter will help them achieve rendezvous to reconnect and share information.
However, computing the super-frontier information is computationally expen-
sive, and the active disconnection strategy may limit the robots from sharing
other critical data during the mission.

A body of research concentrates on Reinforcement Learning (RL) and Q-
learning for multi-robot tasks, modifying the learning mechanism in low com-
munication scenarios for better navigation and exploration (Latif et al., 2023;
Serra-Gomez et al., 2020) and utilizing deep reinforcement learning to achieve
optimality in robotic exploration (R. Han et al., 2020). However, this method
calls for frequent map merging, which raises the cost of updates. A Deep RL
(DRL) approach for cooperative multi-robot exploration using Voronoi cells
was proposed in (Hu et al., 2020). Despite its intriguing concept, it was con-
strained by training difficulties and sub-optimal solution tendencies. Further,
DRL has shown promise in some problem spaces, but they frequently offer
less-than-ideal solutions outside those contexts. They cannot guarantee conver-
gence in infinite horizons.

In research (Uwano & Takadama, 2017), Q-learning is expanded, and an
RL for multi-robot cooperative tasks is proposed. The standard reward is trans-
formed into an "internal reward" when robots on the map cannot communicate
with one another. This allows the robots to learn following this "internal re-

132



ward" type and achieve task collaboration under such challenging circumstances.
Another study (Pozza et al., 2021) suggests that robots can use the knowledge
acquired through learning more effectively by mixing RL with traditional deep
neural networks. Compared to classical RL, the algorithm can help the robot
find the best way to get out of the map more quickly but requires merging maps
on every time step, which increases the update cost.

A unique RL map navigation technique is proposed in research (Yu et
al., 2019) to address the unknown map navigation problem for autonomous
ground vehicles. First, the picture data of the random map is collected using
the quadrotor’s bottom-mounted camera. Then the virtual map is created in
the simulation environment using an image processing technique. Finally, an
enhanced Q-learning algorithm is suggested to address the issue that the original
greedy strategy repeatedly forces the robot to linger in the past state.

Though the DRL and Q-learning approaches are popular and solve specific
research questions, they provide sub-optimal solutions outside the task space (or
domain). They cannot offer convergence in cases of an infinite horizon. DRL
approaches address traditional map exploration issues but provide solutions
with high computation, communication, and update costs. When it comes
to RL, to solve the problems of slow learning speed and non-convergence of
traditional Q-learning, many scholars have improved RL in different aspects.
In (Hu et al., 2020), a Voronoi-based approach is proposed that uses DRL
for cooperative multi-robot exploration. By splitting the environment into
Voronoi cells and allocating a robot to each cell for investigation, the authors
hope to increase exploration efficiency. However, due to the complexity of the
environment and the unknowable mapping of the environment, this strategy
is limited by the difficulty of training deep RL models and the possibility of
finding less-than-ideal answers. Although some methods cannot accelerate the
convergence speed of Q-learning, they provide us with exciting ideas.

Another related topic to the cooperative exploration problems is the coop-
erative Simultaneous Localization and Navigation (SLAM) approaches. We
briefly comment on this literature from the perspective of communication ef-
ficiency. For example, Liu et al. (J. Liu et al., 2022) proposed a multi-agent
SLAM approach that uses efficient communication to reduce bandwidth con-
sumption but lags in computational efficiency. In contrast, the authors in (Zhao
et al., 2021) proposed a lifelong localization and mapping framework that adapts
to changing environments but cannot optimize the communication and com-
putational cost for mapping. Bernreiter et al. (Aurangzeb et al., 2013) used
spectral graph analysis to enable robots to collaborate on mapping tasks but
didn’t discuss the computational cost of graph formation and optimization, a

133



key challenge in real-world applications. On the other hand, the cooperative
RL approach proposed in (Jia et al., 2021) faces limitations in terms of compu-
tational complexity, as it may become increasingly complex as the number of
state spaces increases. Training the RL agents to collaborate in the SLAM tasks
may be challenging. These limitations regarding communication have been
carefully considered in our proposed CQLite to ensure its practicality in real-
world applications and prove computational and communication efficiency by
sharing limited data ad-hoc and employing efficient Q-learning to determine
optimal exploration strategy.

To address these gaps in the literature, CQLite considers an efficient in-
formation transfer mechanism combined with distributed Q-learning with a
coverage-biased reward function for achieving communication and computa-
tionally efficient multi-robot cooperation to solve map exploration tasks. CQLite
departs from RRT (frontier-based) and DRL (learning-based) regarding explo-
ration strategy by reducing recurrent frontier exploration to avoid mapping
overlap and Q-learning update strategy for communication efficiency by only
sharing and utilizing recently calculated Q-value to the robots, respectively. Ad-
ditionally, in both RRT and DRL, robots share locally explored maps on every
iteration and apply map merging, which gives rise to computational complex-
ity consequently. We reduced this overhead by only sharing and applying map
merging in an ad-hoc manner. By incorporating these novelties, our proposed
CQLite method addresses the limitations of the above approaches, even in cases
of limited multi-robot connectivity.

Another line of research focuses on cooperative simultaneous localization
and mapping (SLAM) techniques, which emphasize communication effective-
ness. Although computational efficiency is still a problem, Liu et al. (J. Liu
et al., 2022) presented a multi-agent SLAM technique that lowers bandwidth
use. Others use spectral graph analysis for cooperative mapping but overlook
the computational costs of graph formation and optimization (Bernreiter et al.,
2022). In contrast, others concentrate on lifelong localization and mapping but
fail to optimize the communication and computational cost (Zhao et al., 2021).
Cooperative RL techniques, as those in (Jia et al., 2021), have difficulty keep-
ing up with the rising computational complexity of growing state spaces. By
delivering computational and communication efficiency through selective data
sharing and utilizing effective Q-learning for determining the best exploration
strategy, our proposed CQLite method addresses these limitations.

It is worth noting that the objectives of SLAM and exploration approaches
are fundamentally different. The SLAM problem focuses on accurately build-
ing and merging the map, while the exploration problem focuses on using the
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12 https://wiki.ros.org/
multirobot_map_merge

available map to determine waypoints to maximize coverage area. In our work,
we use an existing map merging method12 from the literature to perform multi-
robot SLAM. At the same time, our proposed CQLite is designed to maximize
exploration with low communication and computation costs.

Section III.A mentioned, coverage biased reward function for Q-learning
tends to avoid re-exploration and ensure maximum coverage, which only con-
siders contemporary observations reducing the overall computational cost of
policy determination. Section III.B discussed lite cooperation among robots
that ensures communication efficiency by only sharing limited data among
robots on demand. Generating accurate maps by only sharing and merging
maps in case of overlap to avoid re-exploration without frequent feature-based
map merging makes CQLite a more efficient mapping approach than state-of-
the-art cooperative SLAM approaches, which is also theoretically and experi-
mentally proved in the paper.
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Figure 8.2: System architecture of CQLite distributed across several robots. It
shows the Robot i’s process showing the mapping, frontier detection, and Q-
learning operations along with the communication of local map and updated
Q-value information to n connected robots.

8.3 Proposed Approach
The problem formulation employed here deploys many robots at random start-
ing locations in an unknown environment. The robots must navigate towards
the frontier position detected by local sensing information as a standard map
exploration strategy. To accomplish this efficiently, a robot must decide which
frontier to navigate after leaving its current explored region. In doing so, it is
hoped to reduce the number of steps to take and the size of data exchanges with
connected robots while considerably enhancing the effectiveness of each robot’s
random exploration. Robots only share updated Q-value and the newly ex-
plored frontier with other robots. Each robot keeps track of its local and shared
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frontiers to avoid re-exploration. Robots continue to generate local maps and
share the newly developed map only when asked by other robots in case of the
already explored frontier. Robots who cannot find new frontiers merge their
local map with a map received from peers to build a global map using the feature
similarity-based map merging technique (Mangelson et al., 2018). The robot’s
decisions regarding an action plan are based on the shared information and
Q-learning computation.

8.3.1 Q-learning
Markov’s decision processes frequently model the robot’s interaction with the
environment. A robot’s state is (x,y,θ ,active/inactive) in a global frame.
Robots are localized and initialized in a global frame, and positions are known
concerning virtually defined bounded regions which can be expanded based
on exploration requirements. We consider the frontier’s position as states for
exploration by applying efficient frontier detection (Keidar & Kaminka, 2014).
A robot can transition from state st ∈ S to state st+1 due to acting at ∈ A based
on its state at time t. Robot action at to reach st+1 from st can be determined
using discrete-time Hopfield function (Uykan, 2019) as:

at =
N

∑
j=1

(st, j−1− st, j)
2 +2

N

∑
j=1

(θt, j (8.1)

where st,0 = st , st, j are the intermediate states to reach st+1, θ is the orientation
of state st+1 from the state st , and N is the number of intermediate states which
are extracted by applying the shortest path algorithm (J. Li, 2020). The transi-
tion probability is defined as T : S×A×S→ [0,1]. The robot will receive a
reward for each action using a reward function R : S×A×S→ R specific to
the task. The robot will have learned the course of action to take in each state
and will be able to maximize the reward of the entire interaction process.

In Q-learning, all possible states and actions are created using the Q ta-
ble, which then updates each value through iterative learning. The robot then
chooses the best course of action for each state based on the values in the table.
This approach is frequently utilized in path planning, chess, card games, and
other activities.

Concepts used in Q-learning are as follows:

• S = {s1,s2,s3, ...,sn} is a discrete set of n states, where st ∈ S describes
the state of the robot in the environment at a time t.
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• A = {a1,a2,a3, ...,an} is a discrete set of n actions, where at ∈ A de-
scribes the action which the robot chooses at a time t.

• T : S×A×S→ [0,1] is a stochastic state transition function, where the
state of the robot is transitioned to state s∗ with a probability p ∈ [0,1]
when choosing action a in state s. We use s∗← T (s,a) to represent the
above process.

• R : S×A×S→ R is the reward function. It represents the reward the
robot obtains in its state transition to s∗ after the robot executes action
a in state s.

• γ ∈ [0,1) is the discount factor is the relative importance of future and
present rewards.

Assumptions: For simplicity, we assume a flat ground terrain environment
for exploration.

• The environment is both globally closed and locally opened, preventing
the robot from escaping the overall amount of space available to it and
from becoming stuck in a particular area like a room.

• To exchange data, the robots are constantly in full wireless communica-
tion with a centralized computer.

• The robot has an RGB-D camera to detect other robots and a range finder
sensor to detect its surroundings.

• Other robots can recognize the robot by looking for the fiducial tags
printed on its body.

• Although the initial placements of the robots are uncertain, they must
be dispersed first so they do not immediately run into one another.

• The robots have an omnidirectional sensory system that can detect the
boundary of an obstruction within the maximum sensing range rs and
provides a description of the open space around the robot.

• Each robot has a communication range rc >> rs that it can use to broad-
cast the data stored in its memory. The robot can constantly receive
information about its relative position from a neighbor robot inside the
rc communication range.

137



• Robots are connected through the wireless communication channel and
assumed to form a connected graph throughout exploration, which is
practical to achieve in a multi-robot application. Nevertheless, the pro-
posed solution is distributed and ensures maximum coverage even in
partial disconnectivity with the trade-off in time of exploration and re-
exploration.

• The sensing range rs is smaller than the communication range rc.

Here, we introduce CQLite as a distributed method for robot i, which
is now at state st at time t and selects the following state as st+1 to explore
independently. Finding the action a that maximizes the Q-value for a specific
state s is the goal of the maximum optimization function for Q-learning, i.e.,

a∗ = argmax
a

Qi(s,a),

= argmax
a

[
(1−α)Qi(s,a)+α

[
ri,t + γ max

a′
Qi(s′,a′)]

]]
where a∗ is the optimal action for a given state s.

The Q-learning algorithm updates the Q value as

Qi,t+1 (st ,at) = (1−α)Qi,t (st ,at)+α [ri,t + γQi,t (st+1,a∗)] , (8.2)

where ri,t is the reward received for taking action a in state st . The α ∈ (0,1]
controls the balance between the coverage and delay, and γ is the discount factor
to prioritize present vs. future rewards. This optimization function is used in
the action selection step of the Q-learning, where the agent selects the action
that maximizes its expected future reward.

The objective of the CQLite is to perform maximum coverage in less time
and avoid overlapping exploration, which can be numerically defined as

maxπ{Pπ
a (t)−λiEt(a|π)}, (8.3)

where Pπ
a (t) is the probability to cover the unexplored region using for action a

using policy π at time t, Et(a|π) is estimated time to reach the state st by taking
action a at time t in policy π and λi is the cost associated with each step taken
by robot i. We have a vector path extracted by containing position waypoints
connecting st to st+1 associated with a (J. Li, 2020). For each dimension of
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path at each control instant t = t j, we first compute the velocity command as:

vt j = Kp · .et j +KI

t j

∑
t=t0

(et j), (8.4)

where et j = st, j− st, j−1 represents the instantaneous error between the inter-
mediate states associated with action a (i.e., the feedback) at time t = ti. Further,
Kp and KI are the so-called proportional and integral gains of the motor con-
troller that regulate the contributions of the corrections induced by the actual
error and the error accumulated over time, respectively. These constant values
determination is based on the motion constraints of our differential drive robots
as discussed by Li et al. (J. Li, 2020). They can be different based on the robot’s
physical and motion characteristics. In our case, we predetermined values of
KP and KI as 2 and 0.5, respectively. Now we apply simple kinematic to find
the estimate Et(a|π) as:

Et(a|π) =
N

∑
j=1

(et j)
2

vt j

(8.5)

To avoid the exploration of already explored region for state st , we determine
P(st ∩ESt) as:

P(st ∩ESt) =
m

∑
j=1

P(st ∩ es j)

m
(8.6)

Where es j ∈ ESt , and m is number of explored state in ESt and overlap proba-
bility of each explored state in ESt can be determined as:

P(st ∩ es j) =

{
1 dist(st ,es j)≤ ri,s

0 dist(st ,es j)> ri,s
(8.7)

At each discrete time step t, the robot i acquires an observation st from the
environment, selects a corresponding action at , then receives feedback from the
environment in the form of a reward rit = R(st ,at) as shown below:

rit =

{
−λi st ∈ ESt

λi−Qi,t +ρ(1−P(st ∩ESt))+σri,c st /∈ ESt
(8.8)

Where P(st ∩ESt) is the probability of overlap between the current state
st , and the already explored states ESt by roboti and other robots, ρ is a scaling
factor that controls the importance of minimizing the overlap, rc is the com-
munication range, and σ is the scaling factor that determines the importance

139



of maximizing the communication range. σ depends upon the robot’s sensing
capabilities and makes the reward function modular for heterogeneous robots
with different sensing capabilities. Then the state information is updated st+1.
The goal of the RL is to select policy π that maximizes the discounted sum of fu-
ture rewards, i.e., Qπ(s1) = ∑

t=1
τ γ tR(st ,at), which according to the Bellman

optimality principle satisfies.
The reward function in Eq. (8.8) produces a negative reward whenever the

agent has looped back, and the calculated reward is based on the step-cost, Q-
value, probability of overlap, and scaling factor otherwise.

Multi-Robot Lite Cooperation: We reduce the communication overhead
amongst individual exploration-capable robots through a distributed approach,
allowing each robot to make independent decisions based on local information
and with little interaction from other robots. In our lite version of Q-learning,
only the current state and Q-value are communicated amongst nearby robots
to encourage cooperation. When another robot receives the information, it will
update the received Q value in its Q table and update the local map. We develop a
discovery approach based on the distance between simulated robots to replicate
the network range in which we only share the current position of a robot i, its
Q-Value for each direction, and mark the current situation as explored to avoid
repetitive exploration.

8.3.2 Exploration Strategy
Robots create a global Q table for each cell and action after searching the map
and experiencing several experiences. The Q table is then turned into a weighted
graph G= (S ,E ,C ), where S = {s1,s2, ...,sn} denotes the set of states, and
E ∈ |S |×|S | signifies the set of edges whose elements indicate whether or not
a path exists between the center points of each pair of states. It is assumed that
robots do not exchange nodes during exploration, and Voronoi boundaries are
fixed. Furthermore, C is the weight matrix indicating the edge metric cost. The
primary goal of discovering this study’s reduced graph and significant states is to
optimally disperse robots over the coverage region by minimizing the relevant
cost function. Because robots move at varying speeds, we formulate the cost

as a function of the defined traveling time as t(spi ,sq) =
d(spi ,sq)

vi
, where vi is the

ith robot’s speed, and d(spi ,sq) ∈ C is the Euclidean distance between the ith

robot’s current state pi and state q. Furthermore, knowing the optimal path
from state pi to state s, each robot’s overall optimal traveling time is the sum of
the trip times (costs) from state pi to state s. This study’s shortest path between
each pair of states is computed using the A* algorithm. Then the total time τ is
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calculated by knowing path P = {p1, p2, ..., pn} as

τ(Sp,Sq) = t(sp,sp1)
+ t(sp1 ,sp2)

+ ...+ t(spn ,sq). (8.9)

After determining the shortest time between each pair of states, the field
is partitioned into M Voronoi subgraphs gri for i ∈ {1,2, ...,M} to distribute
work proportionally among M robots. To that aim, the ideal Voronoi diagram
gri for ith robot, according to Lloyd’s algorithm, is a split of the area determined
as:

gri = {sq ∈ S|τ(spi ,sq) ≤ τ(sp j ,sq),∀i ̸= j}. (8.10)

Where j is the other connected robot. The ith robot is responsible for covering
the state s (associated robot) in its sub-graph gri using the Voronoi partitioning
result. The entire cost is then calculated as

λi,(p,gr) =
m

∑
j=1

∑
q∈gri

τ(sp j ,sq)φq, (8.11)

where φq is the priority value associated with state sq. As the map turns into
a graph, higher priority values are assigned to target states, while lower prior-
ity values are assigned to states far and already explored from the current state.
The entire travel time (cost) will therefore be minimized, and an optimal solu-
tion will be obtained only when the current distance between the robot i and
the target state sq, d(spi ,sq) converges to zero. Algorithm 11 provides the pseu-
docode description of CQLite for efficient map exploration implemented in a
distributed manner on each robot i.
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Algorithm 11: Distributed CQLite Exploration
1 Data: Reward matrix R, learning rate α , discount factor γ , step cost λi;
2 Number of iterations: t = 0;
3 Initialize empty Q-table as Qi for robot i; Initialize empty explored

frontier list EFt ;
4 Generate a local map using range sensor;
5 Initialize Explored Frontier Detected fd as 0;
6 while (t ≤ tmax) and fd<2 do
7 St → Sstart , step = 1;
8 Find new frontiers at new ESt and update Ft using locally

explored map;
9 Qi,t = list(0);

10 for each frontier f in Ft do
11 if f not in EFt then
12 calculate Q-value as q f for actions a f to reach frontier f

using Eq. (8.2);
13 Append Qi,t(s = f ,a f ) with q f for action a f ;
14 else
15 request for explored Maps from connected robots;
16 merge maps into local maps;
17 fd = fd + 1;
18 end
19 end
20 if fd < 2 then
21 set updated Q-value qupdate as maxa(Qi,t(s,a));
22 Update Qi with qupdate;
23 Take action at associated with Qi;
24 Share qupdate with connected robots;
25 Receive Q-value for ESt from connected robots;
26 Receive explored frontiers e f1:n−1 from connected robots and

update EFt with ft and e f1:n−1;
27 set new state associated with at as St ;
28 Reset fd as 0;
29 end
30 end
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8.3.3 Convergence Analysis
We analyze the convergence of the target Q value update function Eq. (8.2). We
denote the error ratio δt =

MSE(Qt)
Et(a|π) , where MSE(Qt) is the calculated mean

square error for Q-table at time t and Et(a|π) is the average number of steps to
cover the region by taking action a at time t for policy π .

Theorem 1 (Convergence of Q-values): Using Eq. (8.2) for Q-value up-
dates, then if 0≤ δt ≤ 1, with probability 1−e, we have the estimated time to
reach a given state as:

Et(a|π)≤ ωE1(a|π)+

√
ln(1/e)∑

t−1
i=0 ψ2

i (δt−i:t)

2
(8.12)

Here, ψi(δt−1:t) =
∏

t−1
j=t−i( j+γδ j)

∏
t
j=t−i j , αt =

∏
t−1
j=1( j+γδ j)

∏
t
j=2 j and γ = 0.95.

Proof. our analysis is derived based on the subsequent synchronous Q-learning.
In contrast to the conventional synchronous Q-learning, we swap out the cur-
rent Qt for the independent Q-function Q′(s,a) for the target Qt(st ,at).

Qt (st ,at)

=

(
t−1

t

)
Qt−1(s,a)+

1
t

(
rt + γmaxa′Q

′
t−1(s

′,a′)
)

Note that if Q′t(s,a) = Q∗source, we know that 0≤ δt ≤ 1.
First, we break down the update role into:

Qt (st ,at)

=

(
t−1

t

)
Qt−1(s,a)+

1
t

(
rt + γmaxa′Q

′
t−1(s

′,a′)
)

=

(
t−1

t

)
Qt−1(s,a)+

1
t

(
rt + γmaxa′Q

′
t−1(s

′,a′)

+ γmaxa′Q
∗
t−1(s

′,a′)− γmaxa′Q
∗
t−1(s

′,a′)
)

Let εt(s,a) = Qt(s,a)−Q∗(s,a) and
ξ (s′) = γ×maxa′

(
Q∗t−1(s

′,a′)
)

then recall the definition of δt , we will have
εt(s,a)

≤ t−1
t

εt−1(s,a)+
1
t

(
ξ (s′)−Es′ξ (s

′)
)
+

1
t

γδtεt−1(s′,a′)

≤ t−1
t

εt−1(s,a)+
1
t

(
ξ (s′)−Es′ξ (s

′)
)
+

1
t

γδtEt−1
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As we know εt(s,a) ≤ Et , by applying maximization and recursion of E , we
will have:

Et ≤
t−1+ γδt

t
Et−1 +

1
t

(
ξ (s′)−Es′ξ (s

′)
)

≤
∏

t−1
j=1( j+ γδ j)

∏
t
j=2 j

E1 +
t−1

∑
i=1

∏
t−1
j=t−i( j+ γδ j)

∏
t
j=t−i j

×
(
ξ (s′)−Es′ξ (s

′)
)

= αtE1 +
t−1

∑
i=1

ψi(δ )
(
ξ (s′)−Es′ξ (s

′)
)

According to weighted Hoeffding inequality (Duda et al., 2014), with prob-
ability 1− e, we can prove Eq (8.12) for Theorem 1.

This convergence result demonstrates the influence of the error ratio on the
convergence rate. In other words, learning will go more quickly for our chosen
Q value update function. Even though CQLite shares only updated Q-value,
it still achieves the required convergence and provides an optimal strategy for
robots to explore the map efficiently.

Proposition 1 (Efficiency of CQlite): The CQLite Exploration method
enhances efficiency in terms of computation and communication, as well as
mapping. It does this by adopting a selective Q-table updating strategy that
reduces communication and computation cost to 1

n of the cost of the state-
of-the-art (SOTA) approaches and a probabilistic map sharing and merging
strategy that significantly reduces the frequency of mapping operations.

Proof. or computational and communication efficiency, CQLite uses a strategy
where only updated Q-values and newly discovered frontiers are shared and
appended to the local Q-table. This leads to a decrease in communication and
computation costs by a factor of 1

n , where n is the size of the Q-table or the total
number of possible states. Hence, the cost relation is given by:

Ci,CQLite =
1
n

Ci,SOTA,

herein, Ci,SOTA is the cost of updating and sharing the whole Q-table in SOTA
exploration methods, and Ci,CQLite is the corresponding cost in the CQLite
Exploration method.

The cost of sending the entire Q-table Q over a network in SOTA methods
is given by:

Ci,SOTA = κ ·
n

∑
j=1
|Qi, j|,
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In CQLite, only updated Q-values and newly found frontiers, represented
by a matrix Q′, are shared, leading to the cost:

Ci,CQLite = κ ·
n

∑
j=1
|Q′i, j|,

Since Q′ is a subset of Q, we can conclude:

Ci,CQLite ≤
1
n

Ci,SOTA,

For mapping efficiency, the frequency of map merging operations in CQLite,
fCQLite, is given by:

fCQLite = P(st ∩ESt) · iterations,

where P(st ∩ESt) is the probability of overlap between the current state
st and the already explored states ESt . Using Bayes’ theorem, we can express
P(st ∩ESt) as:

P(st ∩ESt) = P(ESt | st) ·P(st),

Assuming the exploration process to be a random walk, we can represent
P(st) as a uniform distribution over the state space:

P(st) =
1
n
.

The conditional probability P(ESt |st) can be estimated as the frequency
of occurrence of the current state st in the already explored states ESt , denoted
as fst :

P(ESt | st) =
fst

ne
,

where ne is the total number of states in ESt , substituting the expressions
for P(ESt | st) and P(st) into P(st ∩ESt), we get:

P(st ∩ESt) =
fst

ne
· 1

n
=

fst

nne
.

Because fst < nne and nne is equal to the total number of iterations if each
state is visited in each iteration, the frequency of updates in CQLite is less than
the total number of iterations. Hence, it can be concluded that:

fCQLite =
fst

nne
<< iterations.
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This shows that the frequency of map merging in the CQLite exploration
method is significantly less than in state-of-the-art exploration methods, which
confirms that the CQLite exploration method is more efficient in computation,
communication, and mapping operations.

Proposition 1 (Q-table Update Efficiency): The CQLite Exploration
method reduces the communication and computation cost for exploration by
sharing and appending only updated Q-values and newly discovered frontiers
to the local Q-table, which reduces communication and computation cost by 1

n
than the cost of the SOTA approaches. Where n is the total number of possible
states (size of Q-table).

Proof. First, we prove the efficiency of CQLite by updating and sharing only
one value in the Q-table. The shared Q-value for a given state-action combi-
nation (i, j) in the Q-table will be Qi, j. The CQLite Exploration approach
reduces the size of the table and the amount of data that needs to be transmit-
ted between robots by sharing and appending only the updated Q-values and
recently found frontiers to the Q-table.

CQLite only updates Q-value once during the whole exploration, in con-
trast to SOTA as it updates each value in every iteration. Compared to sharing
and updating the whole Q-table, the communication and computing costs are
decreased by 1

n . The update cost of CQLite for Q-table with size n is n, but the
update cost of SOTA is n2 ; hence the cost reduction relation case be written
as:

Ci,CQLite =
1
n

Ci,SOTA,

where Ci,SOTA is the communication and calculation cost of updating and shar-
ing the whole Q-table in SOTA exploration techniques, and Ci,CQLite is the
communication and computation cost of the CQLite Exploration method.

To further determine the effectiveness of the Q-table update in CQLite, the
cost of sending the matrix Q over a network can be used to indicate the cost of
sharing and updating the whole Q-table and can be stated as follows:

Ci,SOTA = κ ·
n

∑
j=1
|Qi, j|,

where |Qi,n| is the absolute value of the Q-value of state j for robot i, and α is
a constant that denotes the cost of sending one unit of data across the network.
SOTA requires all Q-values for policy determination; hence all Q-values are
shared to update Q-table in every iteration.
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The CQLite Exploration approach reduces the size of the matrix and the
quantity of data that needs to be transferred by sharing and appending only the
updated Q-values and newly found frontiers. Let Q′ be the updated matrix that
only includes the new frontiers and updated Q-values. This modified matrix’s
transmission cost can be expressed as follows:

Ci,CQLite = κ ·
n

∑
j=1
|Q′i, j|

Since Q′ is a subset of Q, it can be concluded that
l
∑
j=1
|Q′i, j| ≤

l
∑
j=1
|Qi, j|,

and therefore:

Ci,CQLite ≤
1
n

Ci,SOTA

The above derivation proves that the CQLite exploration approach is more
efficient regarding Q-table updating than the SOTA exploration methods like
RRT and DRL.

Proposition 2 (Mapping Efficiency): CQLite performs map sharing and
merging with the probability P(st ∩ESt), which requires << iterations com-
pared to relevant SOTA exploration approaches (e.g., RRT and DRL) for max-
imum exploration. Here, P(st ∩ESt) is the probability of overlap between the
current state st , and the already explored states ESt by roboti and other robots
iterations is the total number of iterations carried out by the algorithm.

Proof. The probability of overlap P(st ∩ESt) between the current state st of
robot i and the previously explored states ESt by other robots is used to deter-
mine if map sharing and merging will take place in the CQLite Exploration
technique. This map merging and sharing aims to reduce the number of itera-
tions and steps the algorithm must perform.

As part of the CQLite Exploration approach, the algorithm updates the
map by combining shared maps regularly as follows:

fCQLite = P(st ∩ESt) · iterations

Where fCQLite is the frequency of map merging carried out by the algorithm
in the CQLite Exploration method, and iterations is the mapping frequency
of SOTA exploration methods like RRT and DRL.

The probability P(st ∩ESt) can be derived using Bayes’ theorem as follows:

P(st ∩ESt) = P(ESt | st) ·P(st)
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Given the previously explored states ESt , P(ESt | st) is the conditional
probability of the current state st , and P(st) is the probability of the current
state st .

P(st) can be represented as a uniform distribution over the state space, as-
suming that the exploration process is a random walk, with:

P(st) =
1
n

where the state space’s overall state count is n.
The frequency of occurrence of the current state st in the previously investi-

gated states ESt can be used to estimate the conditional probability P(ESt |st).
If the frequency with which the present state st occurs in the previously studied
states ESt is fst , then:

P(ESt | st) =
fst

ne
,

where ne is the total number of states in the already explored states ESt . Substi-
tuting the above expressions into the equation for P(st ∩ESt) gives:

P(st ∩ESt) =
fst

ne
· 1

n
=

fst

nne
<< iterations

For the total number of iterations CQLite only updates the map for fst
nne

times and fst < nne and nne is equal to the iterations in case of visiting each
state at each iteration. Hence the above derivation proved that the CQLite
method is more efficient as CQLite’s update frequency is<< iterations in map
sharing and merging than SOTA exploration methods like RRT and DRL.

8.3.4 Time Complexity
The primary distinction between the various map coverage algorithms is the
method to determine the best policy. A robot educated using the Q-learning
algorithm can choose the optimum policy by consulting the trained Q-value ta-
ble—the method of selecting the optimum policy in a self-centered way. Most
solve the best approach for the conventional Q-learning-based map coverage
algorithm following the current coverage state. The solution procedure for pol-
icy determination mainly determines the computational difficulty of such an
algorithm, and the computational complexity of the control model can be disre-
garded. Assume that the grid factor is kg (resolution of the grid map on which
the grid is divided) and that the target sub-map is k× l in size. The grid map’s
size is kgk×kgl, and the total number of points is k2

gkl. The operations to find
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Q-values must be carried out cyclically k2
gkl times. kl can calculate and repre-

sent the CQLite’s state space size; however CQLite doesn’t perform a merging
and searching strategy at every iteration; hence the length of the Q-value table
is significantly less than (kl) through selecting the training process, and the
computing complexity of the algorithm is considerably less than O(kl). Mi is
used in the computation as a history of the agents’ positions, and the size of
the information map and the number of agents determine the state’s capacity.
After all the states have been trained, the best policy can be found by choosing
the action space with the highest Q-value. This is done by querying a list of
length (kl) to determine the Q-value of the current state. As a result, searching
a list and locating the highest Q-value in the action space constitute the compu-
tational complexity of the Q-Traversal algorithm. In actuality, both full search
and list query comprises various comparison processes. The list length and the
comparison data’s nature influence how many comparisons are made.
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13 https://openslam-org.
github.io/gmapping.html

Figure 8.3: A depiction of the outcome in a sample trial. It shows the map
generated by three robots in the house world (left column) and three and six
robots in the bookstore world (canter and right column, respectively) created
by the three compared approaches; RRT (top), DRL (center), and CQLite
(bottom), with robots moving in a simulated House and Bookstore worlds
along with the following trajectories, start and end locations.

8.4 Experimental Validation
Turtlebot3 robots are used to carry out the exploration plan, implemented us-
ing the ROS framework. The Kobuki base of the Turtlebot offers odometer
readings, cliff detection sensors, bumpers, and battery voltage readings. The
open-source openslam-gmapping13 technique of the ROS gmapping package is
used to create 2D maps. It uses odometer data and a particle filter method as
its foundation. The local maps created by each robot are combined to create
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14 http://wiki.ros.org/
multirobot_map_merge

15 https://github.com/
ros-planning/navigation

the global map. Feature-based map merging14 is employed to merge maps when
required. Frame conversion between the local map frames is necessary for map
merger. The coordinate transformation correlation between the robots must be
calibrated before combining local maps. In the current work, the global frame
is one robot’s frame, and the relative positions and orientations of the robots
are initialized to a known state. The ROS movebase15 package allows the robot
to move toward the goal point while securely avoiding barriers between robots.
The Dijkstra algorithm for global path planning and the Dynamic Window Ap-
proach (DWA) for local dynamic obstacle avoidance are both implemented in
this package. In this study, the units of time and distance are in seconds and
meters, respectively.
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Figure 8.4: Computation (Left), Communication (Center) cost, and Explo-
ration over time (Right) comparison plot of CQLite with RRT and DRL ap-
proach in three Gazebo simulated world. Row-wise: Top 3 robots in house
world, Middle 3 robots in bookstore world, and Bottom 6 robots in bookstore
world.
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Figure 8.5: Exploration map of house world before, during, and after map shar-
ing and merging corresponds to points (A, B, and C from Fig. 8.4) in Com-
putation and Communication plots. Peaks demonstrate the request for map
merging in CQLite for Computation and communication plots; RRT runs
longer with persistent high communication and computational overhead but
explores fewer regions than DRL and CQLite.
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Table 8.1: Performance Results of RRT, DRL, and the proposed CQLite. ∗
indicates the best performer.

Evaluation parameters Three robots in house world Three robots in bookstore world Six robots in bookstore world
RRT (L. Zhang et al., 2020) DRL (Hu et al., 2020) CQLite (ours) RRT (L. Zhang et al., 2020) DRL (Hu et al., 2020) CQLite (ours) RRT (L. Zhang et al., 2020) DRL (Hu et al., 2020) CQLite (ours)

Mapping Time (s) 1208±52 924∗±67 1029±59 347±32 324±21 317∗±19 212±18 267±29 197∗±13
Path Length (m) 592±11 604±19 543∗±9 278±26 235±29 147∗±21 223±12 196±17 121∗±11

Exploration Percentage (%) 87±4 91±3 95∗±3 90±5 93±2 97∗±2 93±4 94±5 98∗±2
Overlap Percentage (%) 51±5 46±6 28∗±2 57±8 51±9 31∗±6 47±7 39±8 21∗±6

MAP SSIM 0.73±0.12 0.89±0.08 0.91∗±0.06 0.68±0.21 0.71±0.13 0.89∗±0.08 0.71±0.17 0.73±0.15 0.93∗±0.10
CPU Utilization (%) 112±22 79±18 42∗±8 97±18 65±15 34∗±9 68±21 47±16 26∗±9

RAM (MB) 824±19 1264±41 665∗±24 624±16 819±33 432∗±21 452±19 724±38 319∗±18
COM Payload (MB) 2.2±0.08 2.4±0.06 0.6∗±0.02 1.3±0.06 1.8±0.04 0.4∗±0.01 1.1±0.04 1.3±0.05 0.2∗±0.01

Time Complexity Per Robot
O(n× log(n))
n-size of map,

O(n)
n-size of map,

O(kl)∗

k-width of sub-map
l-height of sub-map

O(n× log(n))
n-size of map,

O(n)
n-size of map,

O(kl)∗

k-width of sub-map
l-height of sub-map

O(n× log(n))
n-size of map,

O(n)
n-size of map,

O(kl)∗

k-width of sub-map
l-height of sub-map

Simulation Setup: A closed simulation environment based on the ROS Gazebo
simulator with two indoor template environments is used: the Gazebo’s house
world (≈ 250m2 area) and the Amazon AWS bookstore world (≈ 100m2 area).
The robots may quickly finish the map exploration in a closed environment.
Each robot has a laser scanner to gather data about its surroundings. The robot’s
trajectory is determined based on the fusion of wheel odometry and laser scan
information. The following parameters are used in the experiments in the sim-
ulated environment. The laser scanner’s range and ri,s are set to 15m and 1m,
respectively. Additionally, the robot’s maximum linear and angular speeds in
the simulation are set to 0.5ms−1 and π

4 rads−1, respectively. The global de-
tector’s growth factor η and the local detector’s growth factor η1 in the RRT
detector are set to 5m and 3m, respectively. The weight parameters, α = 0.6,
γ = 0.95 and λi = 2 for 1m distant step. Each experiment was run for ten trials,
with average observations reported. We evaluate the performance in the follow-
ing three scenarios to validate the robustness and scalability of the proposed
solution: 1) 3 robots in the house world, 2) 3 robots in the bookstore world,
and 3) 6 robots in the bookstore world.

8.4.1 Evaluation Metrics
The proposed CQLite and the methods put forward by RRT (L. Zhang et al.,
2020) and DRL (Hu et al., 2020) are compared in our experiments. We use the
below metrics for a comprehensive evaluation:

1. Mapping Time: The amount of time spent mapping is a gauge of how
effectively a multi-robot map is explored;

2. Path Length: This term refers to the length of the robot’s trajectory as
a whole, which is necessary for a multi-robot system to explore the entire
map. The entire trajectory length gives an idea of the robot’s energy usage
while subtly describing its investigation’s effectiveness;

3. Exploration Percentage: The percentage of the generated map with
time elapsed;
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4. Overlap Percentage: The percentage of the overlap of the explored map
with time elapsed;

5. Map SSIM: Structural similarity index measure of generated maps com-
pared with ground truth map to measure map correctness;

6. CPU Utilization: The maximum percentage consumption of the pro-
cessor of a robot throughout the trajectory;

7. Memory Consumption (RAM): The maximum occupied memory by
the robot throughout the trajectory;

8. COM payload: The size of the data communicated by a robot averaged
over iterations.

9. Time Complexity: Empirical notation of algorithmic computational
complexity.

8.4.2 Results and Discussion
We have reported each approach’s average performance after ten trials in each
condition to reduce the measurement noise and analyze the statistical details. A
sample of the mapping outcomes of the compared approaches with the trajecto-
ries followed by three robots in the simulated environment is shown in Fig. 8.3
and generated maps also delineate the map correctness. The outcome should be
stated considering the average mapping time, distance traveled, and mapping
efficiency. Mapping efficiency is determined by comparing with the original
map, and reported percentages are normalized with gazebo world dimensions.

Table 8.1 provides a comparative analysis of different methods on all the
performance metrics and the statistical data from the results. It also lists the
theoretical (algorithmic) computational complexity. Figs. 8.4 shows the com-
parison of the approaches in the three key performance metrics: computation,
communication, and exploration.

The proposed CQLite reliably outperforms other strategies on the key per-
formance metrics. CQLite covers a larger area in less time, improving mapping
efficiency by 10% while traveling 22 fewer meters than RRT in the experiment.
In three-robot scenarios, CQLite was more effective than DRL and RRT, with
9% and 8% shorter mapping times, respectively. Its path length was also less
than DRL’s by about 38%. The advantages became even more apparent when
the trial involved six robots. While the mapping time was around 26% faster
than DRL and 7% faster than RRT, the path length was about 38% shorter than
with DRL.
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CQLite had an exploration percentage that was 4% greater than DRL in
the three-robot scenario. This advantage persisted in the six-robot case, where
CQLite’s exploration percentage was almost 4% higher than DRL’s while main-
taining the lowest overlap percentage. The stability and effectiveness of CQLite
in multi-robot exploration tasks are highlighted by these results from various
experiments.

Communication-wise, CQLite’s strategy is more effective. Contrary to
RRT and DRL, which exchange locally explored maps continually. CQLite
showed a significant reduction of more than 80% in the communication payload
(average data size) shared between the robots. Notably, CQLite continues to
explore at a constant rate even after reaching 60% coverage, in contrast to RRT,
which slows down. This dominance carries over into a real-life three-robot book-
shop scenario, where it outperformed DRL and RRT regarding reduced map-
ping time and shorter journey distances. Results have validated the practicality
of CQLite by surpassing DRL and RRT in terms of most of the performance
matrices in all scenarios. Further, demonstrating its efficacy and applicability on
resource-constrained robots, CQLite maintained decreased RAM, CPU, and
communication payload usage. CQLite demonstrates its power in managing a
range of multi-robot exploration scenarios by offering improved map quality, as
higher MAP SSIM ratings indicate. It is particularly appropriate in situations
when there are significant communication and resource constraints.

The proposed CQLite can cover the largest possible area in less time than
RRT and is comparable to DRL. Specifically, CQLite can achieve 10% higher
mapping efficiency by traveling 22 m less than RRT. It is clear that CQLite
consumes approximately half of the memory and has less than half the commu-
nication payload size as DQL. However, the memory consumption of CQLite
is still comparable with RRT, as the RRT approach applies pruning techniques
to reduce memory consumption. We also compared the communication and
computation overhead of CQLite with RRT and DRL throughout the explo-
ration. CQLite has a few spikes of high CPU utilization for map merging when
other maps are received ad-hoc in the contract; RRT has shown continuous
high CPU utilization as it keeps applying map merging and randomly explor-
ing trees for exploration. Similarly, DRL keeps optimizing policy and merging
maps during exploration.

Regarding communication, RRT and DRL keep sharing locally explored
maps. However, CQLite only shared a map when requested and depicted a
few peaks in the communication cost plot of Fig. 8.4. Furthermore, our result
also demonstrates the exploration percentage of CQLite, which is comparable
with DRL and significantly better than RRT. CQLite achieved 8% and 4%
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better exploration percentages than RRT and DRL, respectively. After 60%
exploration, RRT becomes slow; however, DRL and CQLite explore at the
same rate, ending at 91% and 95% exploration for DRL and CQLite, respectively.
Overall, the proposed CQLite shows significant potential to outperform the
state-of-the-art techniques and creates promising avenues to research further.
It applies well to resource-limited and communication-limited applications.

The proposed CQLite algorithm consistently beats the RRT and DRL
techniques in various evaluation parameters in the scenario of three robots in
a bookshop world. CQLite has speedier exploration capabilities, as evidenced
by its mapping time being roughly 9% and 8% less than DRL and RRT, re-
spectively. Additionally, CQLite travels a path length about 38% shorter than
DRL, indicating higher robot movement efficiency. While the overlap percent-
age achieved by CQLite is about 40% less than RRT, the exploration percentage
is about 4% higher than DRL, indicating a more thorough exploration with
fewer overlapped areas. Additionally, CQLite shows superior performance in
MAP SSIM, with a 25% improvement over RRT, and exhibits better efficiency
in computational resources, with approximately 48% and 33% less CPU and
RAM utilization, respectively, compared to DRL. Compared to DRL, the
communication payload is decreased by around 78%.

CQLite continues outperforming the other two approaches while evaluat-
ing the performance of six robots in a bookshop environment. The reduced
mapping time, which is roughly 26% faster than DRL and 7% faster than RRT,
demonstrates the scalability of the suggested solution in a multi-robot scenario.
The path length traveled is also reduced, about 38% less than DRL, which
points to an improved exploration strategy. With a decrease of about 46% when
compared to RRT, CQLite’s exploration percentage is around 4% higher than
DRL’s while keeping the lowest overlap percentage. Better map quality is indi-
cated by CQLite’s higher MAP SSIM score, which is an improvement of about
27% over RRT. With reductions of about 45%, 56%, and 85%, respectively, com-
pared to DRL, the CPU utilization, RAM usage, and communication payload
remain the lowest among the examined approaches, further supporting the ef-
fectiveness and scalability of CQLite in the context of multi-robot exploration.

A strong proof of CQLite’s robustness, efficiency, and applicability comes
from the performance results of CQLite in the three and six-robot bookstore
world scenarios. CQLite is resilient in managing a variety of multi-robot explo-
ration scenarios, as evidenced by its ability to surpass RRT and DRL in terms
of mapping time regularly, path length traveled, exploration percentage, and
overlap percentage. The effectiveness of CQLite is further demonstrated by the
large reductions in CPU use, RAM consumption, and communication pay-
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load compared to competing approaches, making it a more computationally
and communication-friendly solution for practical applications. CQLite’s ca-
pacity to scale to handle scenarios with three and six robots demonstrates its
usefulness for tackling exploration jobs with various team sizes.

The experimental results demonstrate the generalizability and practicality
of CQLite for real-world applications. While displaying a performance similar
to DRL, CQLite surpasses RRT regarding mapping effectiveness, area cover-
age, and journey time. In addition, CQLite uses less memory and has a smaller
communication payload than DQL. Although CQLite uses the same amount
of RAM as RRT, it is more efficient overall because of lower communication
and processing overhead. Further supporting its efficacy, CQLite’s exploration
percentage is noticeably higher than RRT’s and marginally superior to DRL’s.
These experimental findings and comparisons of the three main performance in-
dicators—computation, communication, and exploration—justify the CQLite
technique for practical applications, particularly when communication and re-
source availability are constrained. The positive results of CQLite present fresh
directions for further study.

One of the limitations of the proposed CQLite is that it relies on wireless
communication, which can be intermittent or harsh in specific real-world sit-
uations. In such scenarios, a communication-aware strategy can be integrated
with our approach to tolerate changes in communication channels.

8.5 Summary
This dissertation proposes a novel, distributed Q-learning-based approach coined
as "CQLite" for cooperative multi-robot exploration. The conventional explo-
ration methods necessitate robots to maintain an internal global map of the
environment, subsequently using localization and planning techniques for nav-
igation. However, these methods overlook the high communication and update
costs associated with map merging. CQLite employs a coverage-weighted re-
ward function to address these challenges and minimizes communication over-
head for quicker convergence and complete environment coverage. The robots
only share the updated Q-value at newly explored frontiers via wireless commu-
nication and perform map merging ad-hoc, thereby reducing communication
costs.

Theoretical analysis is performed to understand the convergence and ef-
ficiency of CQLite. The method is validated through simulated indoor map
explorations using multiple robots. The results indicated that CQLite signifi-
cantly outperformed state-of-the-art multi-robot exploration techniques such
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as Rapidly-exploring Random Trees (RRT) and Deep Reinforcement Learning
(DRL) regarding mapping performance with more than a twofold reduction
in computation and communication. However, the limitation of CQLite lies
in its reliance on wireless communication, which can be intermittent or harsh
in specific real-world scenarios. Therefore, future work would explore integrat-
ing a communication-aware strategy with communication-efficient CQLite to
mitigate changes in communication channels.

The chapter concludes that CQLite provides efficient exploration, quick
convergence, and minimal computational cost. It is a viable solution for prac-
tical applications, particularly in situations with constrained communication
and resource availability. Future work will also investigate the general applica-
bility of the reward function for heterogeneous teams of multi-robot systems.
This chapter sets the ground for using reinforcement learning for efficient map
exploration under global localization; however, the ultimate objective of this
dissertation is to provide a standalone solution for exploration and localization,
which is discussed in the next chapter. Stay tuned and ready for the surprise!
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Chapter 9

SEAL: Simultaneous
Exploration and
Localization in

Multi-Robot Systems

9.1 Introduction
This chapter discusses the integration strategy for simultaneous exploration and
localization, which is the last algorithmic solution of this dissertation. The grow-
ing use of autonomous robots in various applications, including environmental
monitoring, search and rescue, and mapping, has made multi-robot robotic ex-
ploration a major study field in recent years. In these scenarios, the robot must
explore uncharted territory while concurrently maintaining other criteria like
map accuracy, cost of travel, journey time, and energy savings. Information-
based exploration methods have drawn particular attention because of their ca-
pacity to facilitate speedier exploration and efficiently expand to 3D scenes. Nu-
merous studies have examined various methods for achieving these objectives.
To build a reward function and choose the best control strategies that reduce
the uncertainty for 2D and 3D maps, these techniques employ information-
theoretic metrics like mutual information (MI) (Y. Xu et al., 2021).

Entropy (Botteghi et al., 2020), mutual information (Jadidi et al., 2015),
and Bayesian optimization (Bai et al., 2016) based multi-robotic exploration
techniques are only a few of the many information-based exploration tech-
niques proposed in the literature. To reduce map uncertainty when exploring
new areas, these techniques improve the exploration process based on several
information-theoretic measures. Specifically, reducing pose uncertainty can
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Figure 9.1: Overview of the proposed simultaneous exploration and localization
in the multi-robot system, shown with the ROS Gazebo simulation, configu-
ration for relative localization same as DGORL (Latif & Parasuraman, 2022a),
and the exploration process with the convex hull

significantly reduce map uncertainty, and an information-based controller tak-
ing pose uncertainty reduction into account can direct the robot to a location
where it is more likely to find a loop closure, significantly improving the overall
trajectory accuracy and the resulting map (Valencia et al., 2018).

Accurate positional data is required for multi-robot exploration, which is
one of the challenges posed in GPS-denied environments. Conventionally, the
robot employs sensors to measure the surroundings and updates its position
according to the sensors’ data. This strategy can fail if the sensor is faulty or
does not provide enough information. In these circumstances, simultaneous
localization and mapping (SLAM) methods can be applied (Schmuck & Chli,
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2019), where the robot estimates its position in the environment and simulta-
neously creates a map of the surrounding area. While SLAM approaches in
the literature can handle dynamic scenes very well, they might not work well in
contexts with few map features or without prior global position information.
Furthermore, SLAM requires feature-based map merging, which is a compu-
tationally expensive procedure and causes failure while expansion of the global
map. However, we aim to overcome this limitation by only applying efficient
GP fusion in parallel to the relative localization, which makes the overall sys-
tem computationally efficient and provides accurate positioning and mapping
information.

This paper proposes a SEAL approach incorporating information-based ex-
ploration techniques to enhance the efficiency and accuracy of robotic localiza-
tion and exploration designed for multi-robot systems. To choose the next-best
viewpoint for exploration, we use linearized convex hull optimization, which
ensures maximum coverage of the unknown region. Our proposed method uses
a Gaussian process (GP) modeling based on the fusion of multiple GPs received
from connected robots and relative position estimation, further improving the
posterior belief of exploration and localization. Furthermore, our method is
appropriate for dynamic settings with limited features or when there is no prior
knowledge and does not rely on external sensors. Fig. 9.1 provides an overview
of the proposed method implemented in the Robot Operating System (ROS)
framework.

The main contributions of SEAL are as follows:

• We propose a new distributed exploration strategy for multi-robot sys-
tems using Gaussian process (GP) modeling over relative localization
with inter-robot communication data. Here, we integrate the Rao - Black-
wellization technique to improve the posterior beliefs of both exploration
and localization.

• We focus on maximizing the coverage (exploration) of an unknown envi-
ronment with multiple robots using the linearized convex hull optimiza-
tion method.

• We extensively evaluate our SEAL approach’s exploration performance in
realistic ROS Gazebo simulations compared against two state-of-the-art
exploration approaches: Rapidly exploring Random Tree (RRT)-based
exploration (L. Zhang et al., 2020) and Deep Reinforcement Learning
(DRL)-based exploration (Hu et al., 2020).

• To further analyze the performance of localization, we compare with typ-
ical Gmapping-based SLAM (used in RRT Exploration (L. Zhang et al.,

161



16 https://github.com/
herolab-uga/ROS-SEAL

2020)) and a relative localization method, DGORL (Latif & Parasura-
man, 2022a), which is based on our prior work.

• We open source16 our method as a ROS package for use and further de-
velopment by the robotics community.

The SEAL’s motivation is utilizing data sharing through inter-robot com-
munication to simultaneously localize and explore the environment. It continu-
ally improves the beliefs of exploration and localization using Rao-Blackwellization
for environments where global position information is unknown. Further-
more, ensuring maximum exploration inspired by convex hull optimization
(Pham et al., 2009) and its linearization addresses the problem of coverage in
unknown and constrained environments. Our method does not rely on global
information for localization and boundary information for exploration. SEAL
achieved high localization, exploration accuracy, and efficiency by employing
parallel computation of localization and exploration powered by relative local-
ization (Latif & Parasuraman, 2022a), Rao-Blackwellization (Rao, 2008), and
linearized convex hull optimization to ensure maximum area coverage.

9.2 Related Work
Occupancy grid maps are extensively used in 2D and 3D settings because they
can be swiftly queried and updated (Hornung et al., 2013). Additionally, there
are several applications where the data in OGMs can be used for navigation
and collision-free path planning. By utilizing these benefits, OGMs offer a new
way to quantify map uncertainty in light of newly observed data (Z. Zhang
et al., 2020). Collaborative simultaneous localization and mapping (CSLAM),
which is possible with a centralized system, is an alternative strategy to maxi-
mize the effectiveness of exploration. Shi et al. (Y. Shi et al., 2020) presented
an adaptive informative sampling strategy that divides the environment into
various sections. This strategy, however, necessitates a substantial amount of
communication and computational resources. Placed and Castellanos (Placed
& Castellanos, 2021) suggested a quick autonomous robotic exploration strat-
egy using an underlying graph structure. Their approach makes it possible to
explore new settings quickly and effectively. All of these approaches use OGMs
as a source of mapping and exploration.

Frontier detection algorithms are built for fast navigation using rapidly ex-
panding random trees known as RRTs. For instance, to improve the effective-
ness and efficiency of multi-robot map exploration, the aim is integrated into
an optimization framework that uses RRTs in (L. Zhang et al., 2020). However,
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this strategy’s limitations are the cost of computing the optimization algorithms
and the potential for non-optimal results due to the stochastic nature of RRTs.

OGMs are not the only mapping method; continuous occupancy map-
ping is one (COM). For instance, given the observed observations (training
set) comprising free and occupied space, Gaussian processes-based occupancy
maps (Swiler et al., 2020) employ kernel inference methods to learn distribu-
tions across continuous occupancy. GP maps may query map points at any
resolution and record the spatial correlations between sample points. They are
particularly useful for extrapolating the occupancy and uncertainty of unseen
places.

Jadidi et al. (Jadidi et al., 2014) presented a GP-based mapping and explo-
ration technique (GPMI) to identify frontiers defined by mean occupancy from
the GP map to realize COM-based information-theoretic exploration. In the
extended work by Jadidi et al., (Ghaffari Jadidi et al., 2018), a high-dimensional
logistic regression classifier used to produce a probabilistic frontier representa-
tion based on the uncertainty implied by GP is also noteworthy. The forward
sensor model (FSM) and combined predictive distribution over the entire map
are used to numerically design and compute the GPMI surfaces in the present
perception field.

Another method that is gaining popularity in solving exploration and map-
ping difficulties is reinforcement learning (RL). A deep RL technique for au-
tonomous graph exploration with fallible sensing capabilities was presented by
Chen et al. (F. Chen et al., 2020). Their technique performed well but can only
be used in relatively narrow surroundings. Chen et al. (F. Chen et al., 2021) also
proposed a zero-shot RL technique on graphs for autonomous exploration in
uncertain scenarios. Although their method drastically reduced training time, it
hasn’t been tested in real-world situations environmental changes may hamper
robotic exploration in outdoor settings. Moreover, a Voronoi-based strategy
that uses DRL for cooperative multi-robot exploration is suggested in (Hu et
al., 2020). The study aims to improve exploration efficiency by dividing the
environment into Voronoi cells and assigning a robot to each cell for study.
However, this approach is constrained by the difficulty of training deep RL
models and the potential for less-than-ideal results because of the complexity
of the environment and the unknown mapping of the environment.

This approach is compared to frontier detection-based RRT (L. Zhang et
al., 2020) and DRL-based (Hu et al., 2020) exploration strategies. Both ap-
proaches are assumed to have accurate position information to be fully func-
tional; robots merge locally examined maps and share them between iterations,
increasing computing complexity. Our proposed SEAL overcomes limitations
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of existing solutions of explorations that require accurate global positioning
information and works on feature matching map merging techniques by pro-
viding an optimal solution.

9.3 Problem Formulation
Problem Statement: Given that n robots operating in an uncharted region
are wirelessly connected, using shared exploration grids and relative location
information, robots should efficiently and accurately perform simultaneous
exploration and localization.

Notations: Let ri be the concerning robot, n be the total number of robots
deployed in the unknown environment, and Xi be the robot’s position. We only
consider x,y coordinates of robots from the frame of reference of ri, which is
sufficient to update the exploration grid. Let zi, j be the scanned observation
between robots i and j and gi be the exploration grid for robot i. Additionally,
wi is the robot’s weight at ith exploration grid gi, si

j is the observed Radio Signal
Strength Indicator (RSSI) for connected robot j, and Ci is the convex hull of
the robot’s postures.

The difficulty lies in figuring out the robots’ positions while minimizing the
sensing gap between them and building an accurate grid map of the bounding
box. The problem is best described as follows:

min
X1:n

n

∑
i=1

∑
j∈Ni

dist(Xi,X j) (9.1)

Each robot ri forms a 2-D Pose Estimation Graph (PEG) Gi = (Vi,Ei) using
the Received Signal Strength Indicator (RSSI) from connected robots. X̃i is the
position estimation of the objective function:

min
˜X1:n

n

∑
i=1

∑
j∈Ni

(X̃i−X j− zi, j)
2 (9.2)

Robot ri forms an exploration grid considering uniform distributions over the
workspace and receives observations zi, j from the connected robots at each po-
sition and updates its global grid as gglobal = ∑

n
i=1 wigi. Further, X̃i is updated

using Rao-Blackwellization (Robert & Roberts, 2021) for the updated belief
state:

p(X̃i,gi|zi, j) = p(X̃i|zi, j)p(gi|X̃i) (9.3)
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Figure 9.2: System architecture of SEAL distributed across several robots. It
shows Robot 1’s process of exploring, convex hull optimization, and relative
localization operations using shared information from n connected robots.

Lastly, the convex hull Ci is updated using linearized convex hull optimization
for the following objective :

min
x1:n

n

∑
i=1

∑
j∈Ni

dist(X̃i, X̃ j) (9.4)

As the above convex hull objective function is non-linear, it can be linearized
as:

minimize f (X̃i) subject to X̃i ∈ X , (9.5)

Where f (X̃i) is the global objective function, X̃i is the robots’ positions in
the region of low wireless vicinity, and X is the set of feasible positions.

f (X̃i)≈ f (X̃i)+∇ f (X̃i)
T (X̃− X̃i) (9.6)

∇ f (X̃i) is the gradient of the objective function evaluated at X̃i.
To maximize the coverage, the linearized objective function can be mini-

mized to estimate the following position to navigate for ri. Robots then position
themselves to cover the closed region in the bounded area efficiently. Standard
barrier certificates and navigation stacks are utilized for safe autonomous nav-
igation. The system architecture of SEAL for the mentioned problem can be
visualized in Fig. 9.2.
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Algorithm 12: Distributed SEAL
1 Required: previous position Xt−1, local GP g, received GPs, RSSI

from connected robots S, number of connected robots n;
2 do in parallel
3 g = Local predicted GP grid;
4 for g j ∈ GPs from connected robots do
5 Merge received g j into local g;
6 bg

j = update exploration belief of g as Eq. 9.8;
7 end
8 for j ∈ connected robots do
9 Apply relative localization using DGORL (Latif &

Parasuraman, 2022a);
10 bel j(X̃) = update position belief;
11 end
12 end
13 Apply Rao-Blackwellization to update exploration as well as position

belief;
14 Update position belief using GP belief as Eq. 9.12;
15 Update GP belief by incorporating Entropy H(bel()) from Eq. 9.14;
16 Build occupancy grid map based on updated belief from GP;
17 C = received linearized convex hull using Alg. 13;
18 Navigate the robot to the unexplored region based on C for max

exploration.

9.4 Approach and Algorithms
SEAL is composed of four major parts:

1. Global Exploration over Distributed Gaussian Process (GP) Modeling
(W. Luo & Sycara, 2018).

2. Probabilistic Extension of Relative localization using DGORL (Latif &
Parasuraman, 2022a).

3. Integration of relative localization with exploration to update belief state
using modified Rao-Blackwellization.

4. Multi-robot distribution for full coverage using linearized convex hull
optimization.
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The method proposed in this work leverages the strengths of non-parametric
generalization of GP for individual robot exploration, polynomial time graph
optimization for relative localization, probabilistic efficiency of Rao-Blackwellization
to update belief state, and linearized convex hull optimization for complete
coverage without performing Voronoi partitioning. Our proposed SEAL is a
merger of relative location with exploration, along with the linearized extension
of the convex hull algorithm that can leverage multi-robot teams to cover the
bounded region efficiently and comprehensively.

Furthermore, SEAL relies only on shared data between robots for position
estimation and exploration, without considering any centralized information
sources. Alg. 12 elaborates the distributed approach of SEA utilizing GPs and
relative localization belief information to generate a map and determine the
unexplored region for robot to navigate to using linearized convex hull opti-
mization.

9.4.1 Gaussian Process for Exploration
GP regression is a method that is frequently used to model spatial phenom-
ena. Simulating the hidden mapping from training data to the target phe-
nomenon is possible while considering the uncertainty provided by the nat-
ural non-parametric generalization of linear regression. Assume that the target
phenomenon, a wireless source, satisfies a multivariate joint Gaussian distri-
bution in this case. The Gaussian probability distribution of the phenomena
ω(g) as given by the mean function µ(g) = ε[(g)] and covariance function
δ 2(g,g′) = ε[(ω(g)− µ(g))T × (ω(g)− µ(g)] is the output of the trained
GP model using training data.

Formally, let GP[i] = [g[i]1 , ...,g
[i]
k ]

T be the grid positions at which ri ob-
served k noisy RSSI readings from the source S[i] = [s[i]1 , ...,s

[i]
k ]

T . Since the
mean function is assumed to be zero without losing generality, each observa-
tion is noisy, with the formula y = ω(g)+ ε . To achieve this, given a sampling
location gk ∈ GP, we have the conditional posterior means µgk|GPj,y j and vari-
ance δ 2

gk|GPj,y j
as follows from the learned GP model defining the Gaussian

distribution of ω(gk)∼ N(µgk|GPj,y j ,δ
2
gk|GPj,y j

) for sample position k.
Once each robot learns its GP model for its current position, they share

GPs with the connected robots for global exploration. Since each local GP
is assumed to be learned by each robot, we assume that the underlying data
distribution to be explored can be characterized by a combination of n fused
GPs, GP = {GP1, ...,GPn} received from connected robots. We define p(g |
s1:n,X1:n) = bg

n as the likelihood that, for each point in the environment, g ∈
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GP is best characterized by the GP that the ri has learned. Then, we produce
a combination of GP models weighted by the bg

n at any grid g ∈ GP as a linear
combination of GP1, ...,GPn. The means µ ′g|GP,Y and variance δ ′2g|GP,Y for robot
i are the parameters that define the model as:

µ
′[i]
g|GP,Y =

n

∑
j=1

bg[i]
j ×µ

[i]
g|g j,y j

δ
′2[i]
g|GP,Y =

n

∑
j=1

bg[i]
j ×

(
δ

2[i]
g|g j,y j

+
(

µ
[i]
g|g j,y j

−µ
′[i]
g|GP,Y

)2
) (9.7)

In this problem, the algorithm computes the weight distribution in the expec-
tation step (E-Step). Then, the maximization step updates the parameters of
the local fused GP with the estimated weight distribution (M-Step), the same
as discussed in GPMix (Y. Shi et al., 2020). Finally, the weight distribution is
set to the following values before the first iteration for each random wireless
sample s at grid position g:

Obg ≈
{

1 if g ∈ GP[i],bg ≥ θ

0 Otherwise
∀ j = 1, . . . ,n (9.8)

Where θ is the threshold for exploration and Obg is the value of grid position
in the exploration grid map.

9.4.2 Relative Localization
Assume at a given time t, a team of robots considered as vertices of the graph
contains n ∈ N connected robots can form a weighted undirected graph, de-
noted by G = (V,E,A), of order n consists of a vertex set V = {v1, ...,vn}, an
undirected edge set E ∈V ×V is a range between connected robots and an ad-
jacency matrix A = {ai j}n×n with non-negative element ai j > 0, if (vi,v j)∈ E
and ai j = 0 otherwise. An undirected edge ei j in the graph G is denoted by
the unordered pair of robots (vi,v j), which means that robots vi and v j can
exchange information with each other.

Here, we only consider the undirected graphs, indicating that the robots’
communications are all bidirectional. Then, the connection weight between
robots vi and v j in graph G satisfies ai j = a ji > 0 if they are connected; oth-
erwise, ai j = a ji = 0. Without loss of generality, it is noted that aii = 0 indi-
cates no self-connection in the graph. The degree of robot vi is defined by
d(vi) = ∑

n
j=1 ai j where j ̸= i and i = 1,2, ...,n. The Laplacian matrix of

the graph G is defined as Ln = D− A, where D is the diagonal with D =
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diag{d(v1),d(v2), ...,d(vn)}. If the graph G is undirected, Ln is symmetric
and positive semi-definite. A path between robots vi and v j in a graph G is
a sequence of edges {(vi,vi1),(vi1,vi2), ...,(vin−1,vin),(vin,v j)} in the graph
with distinct robots vin ∈V . An undirected graph G is connected if a path exists
between any pair of distinct robots vi and v j where (i, j = 1, ...,n).

We begin by creating the Estimated Relative Position Measurement Graph
(ERPMG): GE = (VE ,EE ,AE), based on the Relative Position Estimation
Graph (RPMG): G = (V,E,A), which can be constructed using range infor-
mation received from connected robots of an n-robot system and describes the
relative position measurements among robots. Based on robotic motion con-
straints, we extend RPMG to accommodate all possible robot positions in the
succeeding time step.

Since each robot also gets RSSI from other robots, we may map the pre-
dicted relative positions for each robot using the model and identify the k soft
maximum out of them by locating the intersection region as an area of interest.
Once we have k possible positions of each robot, we can generate < nk solvable
graphs for optimization.

We consider a network with n robots for optimization of expanded graphs,
labeled by V = {1,2, ...,n} and k possible connections to other robots. Every
robot i has a local convex objective function and a global constraint set. The
network cost function is given by:

minimize f (x) =
N

∑
i=1

fi(x)

subject to x ∈D =
{

x ∈ Rk : c(x)≤ 0
}

Here, x ∈ Rk is a global decision vector; fi : Rk → R is the convex objective
function of robot i known only by robot i; D is a bounded convex domain,
which is (without loss of generality) characterized by an inequality constraint,
i.e., c(x)≤ 0, where c : Rk→ R is a convex constraint function known by all
robots. In addition, to estimate the relative positioning of connected robots, we
also calculate the probability of estimation bel j(X̃) = p(X̃ j|X̃i,si, j) for each
relative position, where X̃ corresponds to the position estimation by x, which
will be used in the improvisation of the exploration grid. Technical and theoret-
ical details of the proposed relative localization technique are explained in our
previous work DGORL (Latif & Parasuraman, 2022a).
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9.4.3 Rao-Blackwellization for SEAL
In the Rao-Blackwellization update procedure, according to (Rao, 2008), the
proposal distribution is suboptimal, especially when the proprioceptive odome-
ter measurements are less accurate than the position estimates through the rela-
tive location as mentioned in Section 9.4.2. Instead, we can use the persistent
exploration grid map belief in Gaussian Process as discussed in Section 9.4.1 to
improve the localization accuracy and vice versa. Furthermore, in a Bayesian
framework, we explicitly incorporate the exploration grid map belief into the
measurement likelihood function:

bel[i]j (X̃)

= ψbel
[i]
j (X̃)

∫
g

p(s j|g, X̃1: j,s1: j−1)
[i]p(g|X̃1: j−1,s1: j−1)

[i]dg

= ψbel
[i]
j (X̃)

∫
g

p(s j|g, X̃1: j,s1: j−1)
[i]bg[i]

j−1dg

(9.9)

According to the definition of posterior map belief, bg[i]
j−1 is a sufficient statis-

tic for all previous positions X̃1: j−1 and RSSI s1: j−1, and ψ is the belief update
constant, the following expression holds:

p(s j|g, X̃1: j,s1: j−1)
[i] ≈ p(s j|g, X̃ j,b

g
j−1)

[i] (9.10)

Similarly, the belief bg[i]
j is also a sufficient statistic for the current estimated

position X̃ j and the previous map belief bg[i]
j−1 , so we can get:

p(s j|g, X̃ j,b
g
j−1)

[i] ≈ p(s j|bg
j)
[i] (9.11)

Thus Eq. 9.9 can be written as:

bel[i]j (X̃) ∝ bel
[i]
j (X̃)

∫
g

p(s j|bg
j)
[i]bg[i]

j−1dg (9.12)

Now the weight of sample j possesses the sample position for robot i can be
defined as:

w[i]
j =

∫
g

p(s j|bg[i]
j )bg[i]

j−1dg. (9.13)

Furthermore, for a sample approximating the position belief, a straightforward
method to estimate pose uncertainty is to use all normalized weights in a dis-
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Algorithm 13: Distributed Linearized Convex Hull Optimization
1 C = convex hull (O f ∪Oo) #convex hull of observed
walls and space;

2 Co = Oo ∈ H #identify occupied cells on convex
hull contour;

3 Lo = Probabilistic Hough Lines(Co) #search for lines on
convex hull;

4 for each l in Lo do
5 ci, j ∈ Io = find intersections(l) #identify

intersecting hull lines;
6 end
7 C = convex hull(O f ∪Oo∪ Io) #convex hull of

observations and intersection points;
8 if C is linear then
9 return C;

10 else
11 LC = Linearize (C) #Linearize convex hull;
12 return LC;
13 end

cretized way as:

H(bel[i](X̃)) =−
∫

bel[i](X̃) logbel[i](X̃)dX̃

≈−
Ns

∑
j=1

ω
[i]
j logω

[i]
j

(9.14)

9.4.4 Maximum Exploration with Distributed Linearized
Convex Hull Optimization

The primary goal of linearizing convex hull optimization is to maximize the
coverage of the explorable space and distribute robots to unknown areas.

The method, as shown in Alg. 13, is a heuristic approach that starts by fig-
uring out the convex hull of the observed map. Observing wall cells in the
exploration map on the convex hull is used to forecast potential unobserved
areas of the area. The probabilistic Hough line transformation, which uses a
maximum likelihood estimation of a line via sparsely connected points, is used
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to find these unobserved sections of the region. It identifies unseen connections
between observed wall segments. The map’s unseen areas are then expanded
along the identified wall lines.

Each junction of these wall-line projections adds a projected corner (repre-
sented by a single cell, ci, j ∈ Io) to the exploration map. Limiting the distance
of predicted corners from the closest observations is necessary to prevent nearly
parallel lines from predicting corner locations that are unreasonably far from
the observed space. The observed areas of the map and the corner points are
then combined to form a new convex hull. This new convex hull provides an
initial estimation of the boundaries of the exploration space. The cells inside
the hull are initially anticipated to be free, while the cells along the hull are
predicted to be occupied in the exploration map.

In the case of a non-linearize convex hull, projecting robots to specific unex-
plored regions would be non-optimal. To linearize a non-convex hull, we first
need to find a convex hull that approximates the non-convex function. This
can be done using techniques such as convex relaxation or piecewise lineariza-
tion. Once we have a convex hull approximation, we can use the following
linearization equation:

f (C)≥
n

∑
j=1

a j∇ f j(C)+b, (9.15)

where f (C) is the non-convex function we want to optimize, ∇ f j(C) are the
convex functions that approximate f (C), a j are non-negative coefficients, and
b is a constant that ensures the approximation is valid.

Upkeep on the projected map is done before moving on to the whole ex-
ploration. To account for unseen depth in barriers, occupied cells, Oo∪ Io, are
inflated into I f ; for example, when an obstacle is only visible from one side, it
has no observable depth. User-specified inflation depth is determined by prior
operating environment knowledge. Then, the map’s unreachable regions inside
the expected perimeter are labeled as inferred obstacles.

9.4.5 Time Complexity
We examine the temporal complexity for each observation using Algs. 12 and 13.
The map resolution αM , the map size n, the maximum size of a convex hull
C, the number of beams per scan nz, the number of measurement αz, and the
one of continuous map occupancy αm for a map of size m is used to define the
complexity. We assume that the squared grid’s size is fixed, the query time is
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Table 9.1: Performance results of different approaches. ∗ indicates the best per-
former. L - Localization. E - Exploration.

Parameters
SLAM + RRT DRL DGORL SEAL

(L. Zhang et al., 2020) (Hu et al., 2020) (Latif & Parasuraman, 2022a) (ours)
L + E E Only L Only L + E

Exploration Metrics
Mapping Time (s) 302±22 273±33 N/A 247∗±19
Total distance (m) 267±14 198±21 N/A 139∗±11
Explored Area (%) 92±2 94±3 N/A 97∗±2

Localization and Mapping Metrics
Map SSIM 0.69±0.15 0.72±0.12 N/A 0.88∗±0.09
ATE (m) 0.5±0.09 N/A 0.09±0.04 0.04∗±0.02
ALE (m) 1.3±0.14 N/A 0.81±0.5 0.63∗±0.2

Computing, Communication, and Efficiency Metrics
CPU (%) 109±20 88±17 N/A 82∗±11

RAM (MB) 1014±22 1321±59 N/A 891∗±27
Communication (MB) 2.4±0.07 2.7±0.09 N/A 1.2∗±0.04

constant, and the data structure containing the OG map is identical to the GP
data structure.

The proposed SEAL has two parallel processes: Gaussian process fusion for
exploration belief estimation and Graph optimization for belief estimation of
relative localization. Rao-Blackwellization will use both beliefs to update overall
localization and map beliefs. The resulting time complexity of two parallel
processes are O(n2) and O(α−2

M nzα
−1
z α−1

m ). It is worth noting that the time
complexities of standard Log-Odds for generating OG mapping from GP are
O(nzlogn). Note that nz < n normally because of the limited sensing range and
narrow beam angle. The time complexity of the proposed SEAL is, at worst,
quadratic about the cone size and map resolution for belief update and GP
computation, respectively. Importantly, the time cost of map belief update is
quite similar to Log-Odds approach in a large scene because the independence
of map size n and the actual cone size is much smaller in cluttered environments.
The time efficiency of SEAL calculation also depends on the linearization of
convex hull optimization, which is O(nlogn). Hence, the overall upper bound
on the time complexity per robot for the proposed SEAL will be O(n×m),
where m is the number of immediate (connected) neighbor robots.

This time complexity is significantly better than other methods, such as
SLAM + RRT (L. Zhang et al., 2020) and DRL (Hu et al., 2020), which have
complexities O(n× log(n)) and O(n× k), respectively, where k is the number
of temporal states, and m << k.
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Figure 9.3: Exploration grid maps along trajectories: The top pictures show the
Bookstore world and the bottom pictures show the House world. (Top Left)
Explored map using RRT (L. Zhang et al., 2020), (Top Center) Explored map
using proposed SEAL, (Top Right) Explored maps’ confidence (belief map)
of SEAL. (Bottom Left) Explored map using DRL (Hu et al., 2020), (Bottom
Center) Explored map using proposed SEAL, (Bottom Right) Explored maps’
confidence (belief map) of SEAL. Confidence maps are provided only by SEAL.

9.5 Experimental Validation
We evaluated the SEAL approach in two situations in ROS Gazebo-modified
versions of the AWS bookstore and house worlds. A laser sensor with a 180◦

field of vision, a 5 m range, and 1500 beams per scan are installed on the robot’s
wheeled platform. The robot’s maximum speeds in both directions are 0.2 m

s
and 0.8 rad

s , respectively. Each robot in the experimentation performs SEAL
and generates a map based on updated belief for the GP grid using Rao-Blackwellization
(discussed in Section 9.4.3). Each robot computes linearized convex hull opti-
mization for navigation, subsequently moving to the closest boundary based
on the temporal convex hull.
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Figure 9.4: Exploration progress (Left) and localization error (Right) of the
proposed SEAL, RRT (L. Zhang et al., 2020), and DRL (Hu et al., 2020) based
exploration and mapping.

9.5.1 Evaluation Metrics
Exploration: The exploration approach and the method put forward by RRT
(L. Zhang et al., 2020) and DRL (Hu et al., 2020) are compared with that of
SEAL in the bookstore and house worlds, respectively, since they use the same
environments so that we can obtain a fair comparison. Below are the used
metrics for evaluation:

1. Mapping Time: The amount of time spent in the mapping (a measure
of how effective is the multi-robot exploration);

2. Total Distance Traveled: This term refers to the cumulative path length
of all robot’s trajectory, which is necessary for a multi-robot system to
explore the entire map. The entire trajectory length gives an idea of the
robot’s energy usage while subtly describing its investigation’s effective-
ness;

3. Exploration Percentage: The percentage of the generated map with
time elapsed;

4. Map SSIM: Structural similarity index measure of generated maps com-
pared with ground truth map;

5. CPU Utilization: The maximum percentage consumption of the pro-
cessor of a robot throughout the robot’s trajectory;

6. Memory Consumption (RAM): The maximum occupied memory by
the robot throughout the trajectory;
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Figure 9.5: (Left) Localization error comparison with RRT (L. Zhang et al.,
2020) and DGORL (Latif & Parasuraman, 2022a), (Right) Predicted trajectory
of the three robots for different approaches.

7. Communication payload (Data Size): The maximum size of shared
data by a robot.

Localization: The localization approach used RRT-Exploration (L. Zhang
et al., 2020) (which used GMapping for SLAM and Map merging to merge
maps and find relative localization between robots) and DGORL (Latif & Para-
suraman, 2022a) (which only does relative localization) are compared in our
experiments. We use the below metrics for evaluation:

1. ATE (m): The absolute trajectory error computed for the whole navi-
gated trajectory by each approach, which measured the deviation from
the ground truth;

2. ALE (m): The absolute localization error for the predicted location of
each approach.

9.5.2 Exploration Results
Comprehensive listing of all results are provided in Table 9.1. To reduce mea-
surement noise, we examined the exploration performance of each strategy after
several trials. There are several simulations run in a three-robot system. Fig. 9.3
displays the mapping results of each approach made by the three robots in the
simulated area. Fig. 9.3 also delineates the belief maps generated by SEAL, which
are not provided by typical SLAM (or map merging) algorithms or other explo-
ration approaches.
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Figure 9.6: Localization performance of SEAL for the individual robot.

Note that the results consider the typical mapping time, the distance trav-
eled, and the effectiveness of the mapping. Comparison with the original map
is used to gauge mapping effectiveness and reported percentages are adjusted us-
ing gazebo world dimensions. Fig. 9.4 delineates the reduced traveled distance
and achieves a high exploration percentage. It can be seen that the proposed
SEAL traveled approximately half the distance and achieved a comparable explo-
ration percentage. Furthermore, The exploration capabilities of RRT, DRL,
and SEAL are thoroughly compared in Table 9.1. These results suggest that
SEAL is a more effective method for exploration activities, producing superior
outcomes.

9.5.3 Localization Results
We also have analyzed the localization performance of SOTA RRT and our
previous approach DGORL for localization and compared results with the pro-
posed SEAL. Fig. 9.5 has shown the trajectory by each approach and localization
error in terms of RMSE. Results show that our SEAL algorithm outperformed
the RRT Exploration and DGORL, as it incorporates the map belief for loca-
tion correction and achieved 25% higher localization accuracy than DGORL
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Figure 9.7: Overall localization error comparison with RRT (L. Zhang et al.,
2020) and DGORL (Latif & Parasuraman, 2022a) for complete exploration.

and 10% higher than RRT. We have plotted individual robots’ localization per-
formance to better visualize the accuracy of relative localization independently
in Figure 9.6. Results have shown an insignificant difference between each
robot’s localization accuracy, which validates the performance of the proposed
SEAL even on individual robot levels. To analyze the localization performance
over iterations, Fig. 9.4 provides evidence for a gradual reduction in RMSE
over robotic progression towards the maximum exploration. Additionally, Ta-
ble 9.1 provided exact data showing the significant improvement of the absolute
trajectory and localization errors by SEAL compared to the state-of-the-art ap-
proaches. Specifically, the proposed SEAL has 25% higher localization accuracy
than RRT and DGORL.

9.6 Summary
This chapter presents a novel method called simultaneous exploration and local-
ization (SEAL) for distributed multi-robot systems to improve localization ac-
curacy and exploration efficiency. SEAL integrates Gaussian Processes (GP) and
graph optimization techniques, resulting in high localization accuracy and fast
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exploration without relying on global localization information. The methodol-
ogy involves choosing the next-best unexplored area for distributed exploration
through linearized convex hull optimization and enhancing the posterior belief
of exploration and localization through GP modeling over relative localization
via the Rao-Blackwellization technique.

SEAL was compared against two state-of-the-art exploration methods: Rapidly
exploring Random Tree (RRT)-based exploration and Deep Reinforcement
Learning (DRL)-based exploration. For localization, it was compared to the typ-
ical Gmapping-based SLAM method and a relative localization method known
as DGORL. The SEAL approach outperformed these methods’ exploration
and localization performances in various simulations, demonstrating its practi-
cality in real-world applications. Specifically, it significantly reduced time com-
plexity per robot compared to RRT and DRL while maintaining improved
localization accuracy and mapping efficiency.

Notably, SEAL does not rely on boundary information for localization or
external sensors, making it suitable for dynamic settings with limited features
or no prior knowledge. These qualities make SEAL a potentially powerful tool
for multi-robot exploration and localization in mapping, search and rescue ap-
plications, and environmental monitoring. The code for this methodology has
been open-sourced as a ROS package for the robotics community to utilize and
further develop. This chapter concludes the dissertation proposed solutions
into an integrated solution for simultaneous exploration and localization.
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Chapter 10

Conclusion

In this dissertation, we propose and explore various novel algorithms to tackle
crucial problems in multi-robot systems, particularly those related to localiza-
tion, exploration, and optimization challenges in ad hoc wireless networks. Our
first contribution, the collaborative direction of arrival (CDOA) based instan-
taneous localization method, optimally utilizes wireless signals for efficient po-
sition estimation of robotic nodes in GPS-denied environments. This method
demonstrated a significant improvement in localization accuracy through rig-
orous experimentation over traditional non-sampling-based methods and exist-
ing sampling-based techniques, offering high efficiency with less computational
overhead.

We further extend our research by proposing the multi-robot synergistic
localization (MRSL) algorithm. This innovative algorithm enables individual
robots within a multi-robot system to cooperatively update their position es-
timations using pose and sensor data. The computational efficiency of this
Bayesian rule-based integration method, scalability, robustness, and fault toler-
ance, marks it as an advance over existing multi-robot collaboration algorithms.
Our third contribution is the exploration of graph theory to solve multi-robot
relative localization problems. By estimating a relative pose measurement graph
and utilizing graph optimization techniques, our method yielded high localiza-
tion accuracy while maintaining competitive optimization times. Our fourth
contribution, the GPRL approach, ingeniously combines Gaussian Process Re-
gression with hierarchical inferencing for relative localization using RSSI data.
This method demonstrated superior performance in accuracy and efficiency
compared to state-of-the-art methods, offering a reliable solution for diverse
robots.

In addition, we proposed a novel reinforcement learning-aided coordina-
tion algorithm for swarm robotic exploration problems. This approach, offer-
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ing local information transfer in a distributed manner, demonstrated significant
improvement in maze coverage performance in low communication range and
high packet loss environments over conventional search-based and heuristic
methods. To meet the demands of practical scenarios, our sixth contribution,
CQLite, adopts a distributed Q-learning approach with reduced communica-
tion and computation overhead. The high efficiency of CQLite, as supported by
empirical data, suggests its potential for applications in real-world multi-robot
exploration. Finally, we developed a simultaneous exploration and localization
(SEAL) approach for distributed multi-robot systems, integrating Gaussian
Processes and graph optimization techniques. SEAL’s superior performance
in exploration and localization tasks and its ability to function effectively in
dynamic settings with no prior knowledge underscore its potential for various
robotic applications.

These contributions enhance our understanding and handling of multi-
robot systems’ localization and exploration challenges in ad hoc wireless net-
works.

10.1 Future Work
Our future work primarily focuses on expanding and enhancing the proposed
algorithms to achieve better performance in real-world environments. Future
work can include further enhancements to the accuracy and efficiency of these
methods, overcoming their limitations by integrating additional techniques and
broadening their applicability in real-world settings. Our work has laid a solid
foundation and opened new avenues for continued research in collaborative
algorithms for ad hoc multi-robot networks.

Firstly, for the SEAL approach discussed in Chapter 9, we intend to com-
bine it with the Gaussian Process-based relative Localization method explored
in Chapter 6. Integrating these two methods will yield more efficient solu-
tions for multi-robotic exploration and localization tasks. Such a combination
would take advantage of SEAL’s superior exploration capability and GPRL’s
efficient relative localization, potentially resulting in a more effective algorithm
that could tackle the exploration and localization problem synergistically.

Secondly, we plan to examine the robustness and resilience of these algo-
rithms to various perturbations that commonly occur in real-world scenarios.
To achieve this, we aim to integrate Byzantine fault detection into our multi-
robot systems to handle malevolent nodes or data corruptions using a graph-
theoretic approach. In this way, our multi-robot systems could still function
effectively even in the face of unexpected faults or adversarial attacks, provid-
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ing a more reliable solution for practical applications. This augmentation will
extend our existing research on robustness and fault tolerance in multi-robot
systems.

Thirdly, we plan to enhance the reinforcement learning-aided coordina-
tion algorithm for swarm robotic exploration by incorporating more complex
learning mechanisms, such as deep reinforcement learning. We believe that
this augmentation could potentially address the constraints faced by conven-
tional reinforcement learning methods and further improve the maze coverage
performance in low communication range and high packet loss environments.
This also opens up an avenue for exploring the potential synergies between deep
learning and reinforcement learning techniques in the context of swarm robotic
exploration.

Lastly, future work could also include empirical validation of the proposed
algorithms in different scenarios and their comparison with state-of-the-art solu-
tions. We aim to conduct rigorous experimentation in diverse environments to
showcase the practical effectiveness of our algorithms and their adaptability in
various real-world settings. These investigations will not only enable us to fur-
ther validate our research contributions but will also broaden their applicability
by making necessary adjustments and adaptations based on the findings.

Overall, the future direction of this research lies in refining the proposed
algorithms and integrating advanced techniques to ensure their robustness, effi-
ciency, and practical applicability in handling the complex challenges associated
with multi-robot systems in ad hoc wireless networks.

182



Appendix A

Below are the specific details of the methods implemented from the state-of-the-
art fingerprint-less localization techniques so as to compare with the proposed
CDOA methods.

A.0.1 Trilateration (Manolakis, 1996)
Trilateration is a historical model-based technique (Manolakis, 1996) that uses
distances to determine the receiver’s location numerically. To calculate with
trilateration, we need three transmitting devices to obtain a 2-D position and
four to find a 3-D position. The distances between the transmitter and the
receivers and the right number of transmitting devices are necessary. A frequent
method for calculating the distance between devices is to use the RSSI of a
signal. For 2-D space, with three anchor nodes N1,N2,N3 and positions in space
be (a1,b1),(a2,b2),(a3,b3) respectively. We can find the unknown position
(x,y) of the receiver as:

(a1− x)2 +(b1− y)2 = d2
1

(a2− x)2 +(b2− y)2 = d2
2

(a3− x)2 +(b3− y)2 = d2
3

To minimize the posting error, we need to minimize the following objective
function using a non-linear least squares technique:

f (x,y) =
3

∑
i=1

[√
(x−ai)2 +(y−bi)2−di

]2
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A.0.2 Weighted Centroid (Z.-M. Wang & Zheng, 2014)
The basic idea of a weighted centroid localization algorithm (e.g., (Z.-M. Wang
& Zheng, 2014)) based on RSSI is that unknown nodes gather RSSI informa-
tion from the beacon nodes around them. Assuming there are n anchor nodes
in the wireless sensor network, with coordinates (x1,y1), (x2,y2), ...,(xn,yn),
respectively, the location of the unknown node can be obtained by using the
improved centroid algorithm estimating the coordinates of n nodes as:{

x = w1
∗x1

+w2
∗x2w3

∗x3
+...+wn

∗xn
w1+w1+w1+...+w1

y = w1
∗y1

+w2
∗y2w3

∗y3
+...+wn

∗yn
w1+w1+w1+...+w1

wi =
RSSIi

RSSI1 +RSSI2 +RSSI3 + . . .+RSSIn

i ∈ (1,2,3, . . . ,n)

A.0.3 Differential RSS (Podevijn et al., 2018)
The Differential RSS method in (Podevijn et al., 2018) works without knowing
to transmit power beforehand. There are two phases in this technique; offline
and online phases. During the offline phase, received RSS values are generated
using the representative (measured) RSS model for each grid point. During the
online phase, the measured DRSS values for each grid point are compared to the
theoretical ones. The estimated location (X, Y) is determined as the grid point
with the theoretical RSS values closest (the least squares) to the ones measured:

(X ,Y ) = min
x,y

N

∑
i=1

(DRSS(x,y),i,T −DRSSi,M)2

Here DRSS(x,y),I,T denotes the actual differential RSS value at position (x,y)
from or at anchor i, i = 1...N with N is the number of anchors.RSSi,M is the
measured RSS value from or at anchor i and is therefore required. DRSS0 is
obtained from a measurement at a reference point using the below equation.

DRSSi = RSSi−RSS1

Here, RSS1 denotes the most significant received signal strength. In the algo-
rithm, n is considered constant and known.
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A.0.4 Improved RSSI (W. Xue et al., 2017)
The mean or probability of the RSSI signal uses to determine the RSSI signal
characteristics. However, because of multipath and non-line-of-sight propa-
gation in a complex and dynamic interior environment, RSSI characteristics
can vary significantly in time and space. For example, if multipath interference
is higher than the signal, the probability distribution is right-skewed. As a re-
sult, the RSSI signal’s mean does not adequately represent RSSI’s dynamic
nature. Therefore, the improved RSSI algorithm (W. Xue et al., 2017) works
to bag RSSIs for a particular time interval to maintain the temporal correlation
between observations, then extract top k values from decidedly sorted observa-
tions (value of k determined to be 13 for indoor localization). Later on, average
out the extracted observation to find the finest RSSI will then be used to calcu-
late the differential distance from the previous observation using the differential
of standard signal intensity attenuation model as:

∆d = do10
A−Rt
10η −do10

A−Rt−1
10η ,

where do set to one meter, A is received RSSI at do, Rt and Rt−1 are the processed
RSSI at time t and t−1 respectively. For localization, an initial position is (0, 0),
and subsequent positions are estimated using the intersection of ∆d measured
from each access point using standard rules of trilateration.

A.0.5 Particle Filter Extended Kalman Filter (PF-EKF) (Za-
fari et al., 2018)

For indoor localization, Bayesian filtering is an appealing solution. Which, on
the other hand, requires the system(depicts how the state changes over time.)
and measurement (relates the noisy measurements (RSSI for PF and the user
position for EKF) with the state/position) models. Using a recursive filter, the
PF-EKF algorithm in (Zafari et al., 2018) calculates the posterior Probability
Density Function (PDF). The prediction and update stages of recursive fil-
ters are where the state predicts and then updates once the measurements are
available. Then, using the Bayes theorem, the updated state has gathered mea-
surements to adjust the prediction PDF. The algorithm first uses a particle filter
to find the estimated PDF in weighted random samples as:

p(yi|x1:i)≈
Ns

∑
k=1

wk
i δ (yi− yk

i )
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Furthermore, we used this PDF in an extended Kalman filter to get the predic-
tion of position and update the measurement model for future estimation as:
Predict:

Ȳi−1 = FYi−1

P̄i−1 = FPi−1FT +Q

Update:

Ki = P̄i−1HT (HP̄i−1HT +R)−1

Ȳi = Ȳi−1 +Ki(Xi−HȲi−1)

Pi = P̄i−1(1−KH)

A.0.6 SBL-DOA (H. Wang et al., 2019).
The proposed method in (H. Wang et al., 2019) focuses on assisted vehicle local-
ization based on three collaborative base stations and SBL-based robust DOA
estimation. To accurately estimate the direction of arrival (DOA) for vehicle
localization, the authors create the sparse Bayesian learning (SBL) technique.
The main concept is to use three base stations for cooperative localization and
to take advantage of the previously known sparsity in the angular space. The
SBL-based robust DOA estimation problem is formulated as:

minimize
θ ,α

1
2
|y−A(θ)x|22 +

γ

2
|x|1

subject to αi =
1

σ2
i
, i = 1, . . . ,N,

where y represents the received signal, A(θ) denotes the steering matrix, x is
the sparse vector of interest, α is the hyperparameter vector, and γ is the regu-
larization parameter.

After obtaining the DOA estimates, the proposed method triangulates the
robot’s location using the base stations. For a system with three base stations,
the vehicle’s position (x,y) is calculated using the following set of equations:

d1 =
√
(x− x1)2 +(y− y1)2

d2 =
√
(x− x2)2 +(y− y2)2

d3 =
√
(x− x3)2 +(y− y3)2,
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where (xi,yi) denotes the position of the i-th base station and di represents the
distance between the vehicle and the i-th base station.

By applying the SBL-based robust DOA estimation and triangulation, the
proposed approach in (H. Wang et al., 2019) achieves accurate and reliable vehi-
cle localization in the presence of multipath and shadowing effects commonly
encountered in urban environments.

Figure A.1: A sample output comparison of different localization algorithms in
a 40 x 40 m bounded region.
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