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ABSTRACT

Climate change is speeding up parts of the global water cycle, and the water cycle
mtensity (WCI) is a tool to quantify this acceleration. Given that groundwater is a
component of the global water cycle, this dissertation aims to understand how WCI
changes (attributable to climate change) affect groundwater availability, specifically for
arid regions. A previous effort to quantify the WCI over any landscape made use of ground-
based datasets and focused on historical trends (1945 — 2014). This dissertation: (1)
validated a remote sensing approach for quantifying the WCI over the contiguous United
States (CONUS) for amore recent period (2001 —2019) — to capture current climate change
trends. Next, it (2) employed data analytics to predict groundwater level anomalies
(GWLAs) across an arid region within the CONUS determined by the results of the WCI
analysis, using observations from existing groundwater monitoring wells and remotely
sensed predictor variables, such as, precipitation, soil moisture, evapotranspiration, and

vegetation cover. Fially, it (3) explored the dynamic relationship between the results of



the first two objectives for the arid region of interest, based on an innovative approach to
statistical correlation and causation analysis.

The watercycle is speeding up over about half of the CONUS particularly the west,
and the state of Arizona might be experiencing much higher WCI rates on average
compared to other arid regions of the CONUS. A multi-model approach to predict monthly
GWLAs across multiple aquifers in Arizona between January 2010 and December 2019
demonstrated satisfactory performance, and the predictive accuracy was much higher for
the unconsolidated sand and gravel aquifers. Finally, a moderate to strong negative lead-
lag relationship between groundwater and WCI anomalies (GWLAs leading WCI
anomalies) was revealed at various sites across the study area. Some of these locations
were contained within Active Management Areas (AMAs) — areas characterized by high
groundwater reliance and the enforcement of the strictest groundwater regulations.

This study underscores the importance of groundwater monitoring and strategic
management in vulnerable areas. The exclusive use of remotely sensed variables ensures
that data scarce and vulnerable regions are well represented and the study’s objectives can

be replicability globally.
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CHAPTER 1
INTRODUCTION

All of the waters within the earth-atmosphere system are continuously cycled
through a complex process known as the water cycle. As a cycle, there are no start or end
points but rather a series of processes or phases that are a part of a continuous system.
These phases include precipitation, evaporation, transpiration, surface runoff, and
infiltration. Climate change is known to impact this system (Trenberth, 2014; Malinow ski
and Skoczko, 2018). But what exactly is ‘climate change’, and why is it important?

According to the Intergovernmental Panel on Climate Change (IPCC), climate
change is simply the long-term (decades or longer) variation in average weather conditions
of a place (Kumar, 2012), brought about by anthropogenic activities and emissions that
increase the concentrations of greenhouses in the atmosphere (Kumar, 2012, Trenberth,
2011; Trenberth, 2018). These gases are methane, carbon dioxide, and nitrous oxide
(Trenberth, 2011), and they trap outgoing radiation, resulting in the accumulation of heat
and warming of the planet (Trenberth, 2011; Trenberth, 2018). Between 1970 and 2004,
the global anthropogenic greenhouse gas emissions increased by 70 percent (IPCC., 2007),
and between 1990 and 2019, the warming effects associated with these gasses increased by
45 percent (36 percent for carbon dioxide alone) (Indicators, 2015). This ultimately leads
to a change in climate (MacCracken, 2001).

This human-induced change in climate is changing precipitation patterns and the

water cycle (Trenberth, 2011). Hydrologic extremes are becoming more extreme



(Kundzewicz, 2008; Malinowski and Skoczko, 2018) and the difference in precipitation
patterns between wet and dry areas is intensifying (Dao et al., 2023). In particular, these
changes are likely to impact the natural recharge of groundwater in many parts of the world.
For instance, for most of the United States, a warming of 1.5 °C could lead to a loss of over
100 billion cubic meters of groundwater storage within four years (Condon et al., 2020).
This can be especially troubling for arid and semi-arid regions where surface water
availability is already limited.

Therefore, this dissertation addresses the impact of climate change on groundwater
availability in arid regions through a systematic investigation comprising three distinct
stages or phases:

The first phase (chapter 2) aims to quantify the terrestrial water cycle response to
climate change for any point on the globe, using remote sensing. The terrestrial water cycle
is the continuous movement and re-distribution of water between the earth’s land surface
and atmosphere, and groundwater is a component of that cycle. Huntington et al. (2018)
proposed a framework for quantifying the terrestrial water cycle ntensity (WCI) across the
contiguous United States (CONUS), but their approach is primarily beneficial to data-rich
regions like the CONUS. As a result, this phase will include the validation of a remote
sensing WCI approach (for the CONUS) that will be more beneficial for data-scarce
regions. Regions where the water cycle is intensifying will show a positive change n WCI
(AWCI >0) and a weakening cycle will show a negative change (AWCI <0). (Huntington
et al., 2018).

Predicting groundwater in arid regions can be challenging due to several factors

including the limited number of monitoring wells, msufficient and incomplete data, and



inaccurate estimates of aquifer recharge and discharge (Tladi et al., 2023). The second
phase of the investigation (chapter 3) explores ways to overcome this challenge, using a
combination of machine learning and geospatial interpolation models, and remotely sensed
mput variables to predict groundwater levels at a regional scale much smaller than the
CONUS. Machine learning is a subset of artificial intelligence that learns patterns in
datasets in order to make predictions, and its application canbe seenin our everyday lives.
For example, movie streaming services (such as Netflix) recommend new movies based on
the movies we’ve seen previously, the time of the day we saw those movies, and so on.
Online marketplaces (such as Amazon) recommend products to us based on items we’ve
previously purchased or tried to purchase. Similarly, the focus here is to learn relationships
between groundwater levels observed at monitoring wells and various remotely sensed
explanatory variables such precipitation, soil moisture, land surface temperature, and so
on, to predict groundwater levels at locations without monitoring wells. The study area
selection for this phase will be based on the findings and interpretations from phase 1.

Changes in terrestrial water cycle intensities from phase 1 serve as indicators of
climate change, and groundwater levels from phase 2 are our measure of groundwater
availability. Phase 3 (chapter 4) assesses the dynamic relationships between the research
products of Phase 1 and 2 to evaluate dependencies and interactions between both variables
at local scales within the region of interest.

All of this would be done using remotely sensed datasets from satellites with global
coverage, meaning that these can be replicated at any point on the globe. Still, the biggest
beneficiaries of this remote sensing approach are the data sparse regions of the world where

field based hydrological variables are limited or largely inaccessible. This study promises



to be a valuable resource for monitoring groundwater resources in the face of global
warming and climate change threats, and it is my hope that it contributes substantially to

the existing body of knowledge towards planning for an unpredictable climate future.
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Abstract

The terrestrial water cycle intensity (WCI) is a widely used tool to quantify the
impact of climate change on the distribution of global water resources. In this study, a
satellite-based WCI was tested by comparing the parameter-elevation regressions on
independent slopes model (PRISM) precipitation estimates with those of the Global
Precipitation Measurement (GPM) satellite mission across the contiguous United States
(CONUS), based on an existing Koppen—Geiger climate classification for the CONUS.
Both precipitation products were not statistically different across all climate classes.
Consequently, satellite-based WCI changes between two multiannual periods (2001 to
2009 and 2010 to 2019) were calculated at a 0.1-degree spatial resolution using the GPM
and a validated global evapotranspiration dataset. This study showed that: (1) The water
cycle is speeding up in many parts of the CONUS, particularly the West, driven by recent
increases in both precipitation and evapotranspiration through much of the region. (2) The
El Nino-Southern Oscillation (ENSO) may be influencing the WCI of the CONUS by
driving precipitation in the west, southeast, and parts of the north, and dryness in the
northeast regions. The hydrological impacts of these results cannot be generalized.

However, flood and drought risks, wateravailability and quality issues remain key primary

concerns.



Introduction

The terrestrial water cycle is the continuous circulation and redistribution of water
between the earth’s land surface and atmosphere. The intensity of this circulation over any
spatial-temporal scale is expressed as the sum of precipitation and evapotranspiration [1].
Globally, precipitation and evapotranspiration rates are increasing as mean air temperatures
continue to rise due to global warming [2]. The period from 2012 to 2021 was the warmest
decade recorded since 1901, where the warmest years were 2016 and 2020 [3]. In the
United States, the last four decades, prior to 2021, have seen faster warming than the global
average [3]. It is expected that these increased temperatures will strengthen the
atmosphere’s evaporative demand, causing an increase in evapotranspiration rates due to
water availability. This was evident during two fifteen-year periods spanning from 1984 to
2015, where global evapotranspiration increased by at least 3.57 cubic miles/year as the
areas covered by water also increased [4]. Increases in global evapotranspiration rates will
increase the likelihood and frequencies of droughts in many parts of the world just as flood
risks increase with increasing precipitation intensities. While floods and droughts are both
undesirable and extreme hydrological events, droughts can particularly disrupt the natural
recharge of both surface and groundwater systems and potentially threaten global water
security. Thus, the terrestrial water cycle intensity (WCI) is a valuable tool for monitoring

and assessing changes in specific components of the water cycle in response to a changing

climate.

By wusing climate variables from the parameter-elevation regressions on

independent slopes model (PRISM) to calculate WCI changes for the contiguous United



States (CONUS) between the averages of 1945 to 1974 and 1985 to 2014 [1], two possible
considerations became apparent. (1) The temporal spread of their study did not exclusively
address current climate change anomalies. In the CONUS, the last two decades prior to
2021 have shown most of the warmest years in a 120-year record [3]. (2) PRISM uses point
measurements of climatic observations from a wide range of monitoring networks to
develop spatially continuous climate datasets. Such methodology will be less effective in
data-sparse regions of the world. In fact, most of the earth’s surface lacks adequate in situ
precipitation measuring stations [5—7]. In developing countries, the situation is not
improving [8-10]. Cases of mnadequacy have been well reported over the continents of
Africa [10-15] and South America [12,16-19]. To put this into perspective, the average
rain gauge density in the United States is 1.3 gauges per 1000 sq. km [20], but Nigeria, one
of the largest developing African countries, has only 87 operational stations and is 970
short of achieving a density of 1 gauge per 874 sq. km [21]. In many regions of Africa and
South America, the rain gauge density is as low as 1 gauge per 100,000 sq. km [22]. Of
course, understanding WCI changes in these regions where hydrometeorological data may
be limited is as useful as it is over data-rich areas. Therefore, addressing both issues is to
evaluate the feasibility of using satellite-sourced variables to understand the mmplications
of recent temperature anomalies for the WCI of the CONUS.

The tropical rainfall measuring mission (TRMM) was the first satellite devoted to
measuring precipitation from space [23]. It was launched in 1997 and estimated tropical
rainfall for about 17 years [24-26]. Since the evolution of TRMM and its successor, the
GPM mission, several researchers have evaluated the ability of various satellite-derived

precipitation products to capture the patterns and intensity of rainfall. Inthe Middle East,
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between 1998 and 2013, three of these products namely: the TRMM Multi-Satellite
Precipitation Analysis 3B42 (TRMM-3B42) product, the Climate Prediction Center
MORPHing technique (CMORPH), and the precipitation estimation from remotely sensed
information using artificial neural networks (PERSIANN), failed to effectively replicate
severe daily rainfall events [27]. Similar results were reported for a mountainous region in
eastern Italy between 2003 and 2010 [28]. In Africa, the TRMM-3B42 was able to detect
spatial and seasonal rainfall patterns, and reasonably estimate high-intensity events over
the Blue Nile basin in Sudan between 2001 and 2016 [29]. Over the Three Gorges
Reservoir area of China, between 2001 and 2016, all three products showed varying
strengths in terms of rainfall amount, extreme precipitation, and rainy-day detection ability
[30]. In most of these cases, TRMM proved to be a reliable source for continuous
measurements in space and time at the monthly and annual scales. Its successor, the GPM
mission, made use of the most advanced instruments in space [31] and improved spatial
resolution (0.25° to 0.1°), revisit times (3 h to 30 min), and latitudinal coverage (quasi-
global) compared to TRMM [26]. Despite these advancements, the integrated multi-
satellite retrievals for the GPM (IMERGQG) algorithm, which estimates precipitation from
GPM constellation retrievals, incorporates early TRMM estimates in its latest version to
produce a consistent, long-term precipitation record [31,32]. Otherwise, systematic biases
exist between both missions, underscoring the need to make appropriate considerations
when utilizing their respective products. In east-central China, the final IMERG product
outperformed the early IMERG, late IMERG, near-real-time, and post-processing TRMM
products, providing the most accurate estimation of daily and monthly ramnfall [33]. Over

Singapore, the GPM IMERG performed better than two TRMM products (3B42 and
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3B42RT) m detecting precipitation, capturing variabilities, and providing more accurate
daily estimates [24]. Over a mountainous region in southwest China, the GPM IMERG and
3B42 products were evaluated against observed rain gauge data from a dense gauge
network, where the IMERG product showed improved capabilities to capture rainfall
variability and detect medium and high-intensity events but tended to overestimate the
high-intensity events [34]. In the CONUS, the GPM IMERG performed better than the
3B42 product in capturing precipitation intensity variations, reducing missed-precipitation
bias for winter and summer precipitation, reducing false-precipitation bias for summer
precipitation, and showing better consistency in capturing spatial distribution patterns at
monthly time scales, based on comparisons with ground-based, gauge-corrected radar
systems [35]. Globally, IMERG enhances precipitation detection capacity, outperforms
other satellite products in its ability to capture spatiotemporal variability of extreme events,
and is one of the best alternatives to ground-based measurements [36].

On the other hand, satellite remote sensing of ET generally has lesser efficiencies
than precipitation, with significant disparities among various observatory satellites.
However, in a recentstudy, Elnashar etal. (2021) [37] ranked the performance of 12 global
(satellite) ET datasets after validation against flux eddy covariance ET from 645 sites based
on six metrics. The authors synthesized the best-performing products into a single, much-
improved ensemble global ET datasetacross all land cover types, from 1982 to 2019. Their
methodological approach provided some insight for this study.

The main objectives of this study are twofold. (1) To develop a framework to test
the ability of a remote sensing WCI by first evaluating the reliability of satellite products

to estimate precipitation over the CONUS. Monthly PRISM and GPM IMERG
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precipitation estimates between January 2001 and December 2019 will be compared for
different climates based on three metrics and a statistical test on their difference. (2) Upon
successful completion of the first objective, calculate WCI changes between two separate
multiannual periods (2001-2009 and 2010-2019), using the GPM precipitation product
and the Elnashar etal. (2021) validated ET datasets (Figure 1).

Shifts in the water cycle are among the most consequential effects of climate change [38].
There are also naturally occurring climate variability signals that potentially modify
regional climates and alter WCI patterns. The quasi-periodic fluctuation in equatorial
Pacific Ocean temperatures, otherwise known as the El Nifio—Southern Oscillation
(ENSO) is the most prominent year-to-year climate variation affecting underlying weather
and climate patterns on Earth [39]. Sea surface temperatures (SSTs) act as natural
indicators of these events, where above-average temperatures may indicate a warm (EIl
Nifo) phase and below-average temperatures, a cold (La Nifia) phase. Various impacts of
El Nifio and La Nifia on the climatology of the CONUS have been well reported—some of
which include: the correlation between summer rainfall in the central CONUS from 1950
to 1990 and El Nino events [40], correlations between the 1988/1993 North America
summer droughts/floods and La Nifia/El Nifo signals in those respective years [41], the
influence of El Nifio on winter precipitation in California from 1901 to 2010 [42], and the
attribution of the 2012 drought in the south and south-central CONUS to the recurring
2010-11 and 2011-12 La Nifa episodes [43]. Therefore, in addition to calculating satellite -
based WCls, this study also aims to quantify the influence of these events on WCI changes

across the CONUS for the selected period of study.
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Figure 1. Flow chart showing the conceptual framework, data acquisition, and processing
steps towards the main objectives of the study. The blue boxes represent the precipitation

datasets, and the red box represents the evapotranspiration datasetused in the study.

Materials and Methods

The final run of the IMERG fusion, the most suitable version for research purposes
[44], was used i this study. It was accessed and downloaded from the NASA data portal
(https://gpm.nasa.gov/data/directory, accessed on 11 May 2021). A gridded global
precipitation dataset with 0.1-degree spatial (~11 km) and monthly temporal scale was
downloaded in Tiff format for January 2001 to December 2019.

A gridded PRISM precipitation raster dataset for the CONUS with 4 km (~0.04
degree) cell size and monthly temporal scale was also downloaded. This dataset, acquired
in Bil formats from the Oregon State PRISM data portal (https://prism.oregonstate.edu/,
accessedon 11 November 2022) for January 2001 to December 2019, was resampled to

the spatial resolution of the GPM rasters.


https://gpm.nasa.gov/data/directory
https://prism.oregonstate.edu/
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The [37] validated global ET research product was accessed from the Harvard
Dataverse research data repository (https:/doi.org/10.7910/DVN/ZGOUED, accessed on
3 July 2021). A gridded monthly ET dataset with 0.01-degree (~1 km) spatial resolution
was downloaded m Tiff format for the same period covered in both precipitation datasets.
The downloaded rasters were upscaled to the spatial resolution of the precipitation datasets.

The gridded GPM and PRISM products were compared for various climates based
on the Beck et al. (2018) [45] present-day Koppen—Geiger climate classification (Figure
2). The first letters in the classification scheme (A, B, C, D) represent the main climate
types: tropical, arid, temperate, and cold [45]. The second (W, S, f, s, w, m) and third letters
(h, k, a, b, c,) indicate moisture and air temperature characteristics, respectively [46]. The
Csa climate class, for example, represents a temperate, mild climate with more
precipitation in the winter than in summer where the summer months are hot, and is

identical to the Csb except that it has hotter summers (Figure 2).


https://doi.org/10.7910/DVN/ZGOUED
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Képpen—Geiger Climate Classification: Sample points
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Figure 2. Present day (1980-2016) Koppen—Geiger climate classification map by [45]
showing 17 classes across the CONUS and the 17 randomly selected sample points for the
first sample run.

For each of the 17 different climate classes over the CONUS, 17 (0.1-degree) cells
(each representing a climate class) were randomly selected (Figure 2). Monthly
precipitation estimates were then extracted from both precipitation datasets, and the
procedure was repeated twice to obtain a total of three sample runs and 51 (0.1-degree)
cells—three cells representing each climate class.

A paired t-test of the difference in means between the GPM and PRISM
precipitation estimates was performed on each set of 17 randomly selected points, where a
null hypothesis of zero was tested at a significance level of 0.05 (5%). First, a differencing
technique to eliminate spatial and time correlations was applied to the datasets.

Differencing both datasets reduced the number of observations by one.
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The datasets were further compared based on three model evaluation metrics:
coefficient of determination (R2), Nash—Sutcliffe efficiency (NSE), and Kling—Gupta
efficiency (KGE). The NSE compared each observed (GPM) value with its corresponding
simulated (PRISM) value, normalizing their difference by the variance of the observed
time series. It ranges from negative infinity to one, with higher values indicating a well-
varied observed time series that aligns closely with the simulated values. Like the NSE, the
KGE ranges from negative infinity to one but with more straightforward relationships
between correlation, variability, and bias [47].

Following successful evaluations atthe 51 randomly selected points, monthly WCI
was calculated for each 0.1-degree cell across the CONUS by summing up the GPM
IMERG precipitation and corresponding evapotranspiration values from Elnashar et al.
(2021). The total annual WCI for each year was obtained by adding these monthly WCI
values, year by year, and an annual average was calculated by averaging the cell values
over the period of study (2001 to 2019). In addition, the WCI difference between the annual
averages of 2001 to 2009 and 2010 to 2019 was calculated to show temporal trends and
spatial patterns of change between both multiannual periods.

El Nifio (or La Nina) events in the Nifio 3.4 region of the tropical Pacific Ocean
have been defined differently in various studies, such as occurring when the December-
January-February (DJF) SST anomaly exceeds+/—0.5 °C [48,49], or when five consecutive
three-month running means of SST anomalies exceed +/—0.5 °C between July and June
[50]. Although definitions may vary, such events generally occur when anomalies exceed
+/=0.5 C for several months [51]. In this study, a straightforward approach was used to

analyze SST anomalies in the tropical Pacific Ocean. We simply calculated annual
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averages of the three-month running means of SST anomalies obtained from [52]. The
anomalies were originally derived by calculating SST departures from 30-year average
baseline temperature conditions [52]. Applying the threshold of +/—0.5 °C, years with
significant warm and cold phases were identified. These years were excluded from the
dataset and WCI calculations were repeated. However, years that exceeded both El Nifio
and La Nina thresholds were considered neutral, indicating a lack of clear dominance of

either El Nifio or La Niia conditions, and therefore were not removed from the datasets.

Results

This section consists of two parts to address the study’s main objectives: Validation
and WCI analyses.
Validation

The t-tests yielded identical results across all three sample runs, although only the
results from the first run are presented (Table 1). P-values were greater than our chosen
significance level of 0.05, so we would accept the null hypothesis that both precipitation
products are not statistically different. The confidence interval (CI), which represents a
range of acceptable null hypotheses, also included a zero at every sample point. Thus, we
could still not rule out a zero difference in means between both datasets and would,
therefore, accept the null hypothesis that they are not statistically different [53]. Also,
(Cohen’s d) effect size calculations showed negligible differences between the GPM and
PRISM precipitation datasets. Because of how the tests were set up, negative values imply

that the mean of the GPM dataset was lesser than that of the PRISM dataset.
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Table 1. Results of the t-test for the first run (first 17 points for 17 different climate

classes). P-values and CIs were generated from the paired t-tests. The CI is a range of

acceptable null hypotheses defined by lower and upper confidence limits [53]. Narrower

CIs indicate smaller uncertainties in our estimates, and vice versa. The effect size

represents the magnitude of the difference between GPM and PRISM datasets at each

sample point.

ID Class: Description P-Value Cl ESfifgé:t
1 Am: Tropical Monsson 098  —7.96-8.13  0.0006
2 Aw: Tropical Savannah 095 —6.84-7.24  0.0017
3 BWh: Arid, desert, hot 098  —2.01-1.96  —0.0006
4 BWk: Arid, desert, cold 0.90 —0.98-1.12  0.0030
5 BSh: Arid, steppe, hot 0.99 —5.35-5.27  —0.0004
6 BSk: Arid, steppe, cold 099  -3.14-3.09 —0.0004
7 Csa: Temperate, dry summer, hot summer 099  —8.44-8.58  0.0003
8 Csb: Temperate, dry summer, warm summer 0.93 —8.27-9.08  0.0022
9 Cfa: Temperate, no dry season, hot summer 0.99 —6.05-6.00 —0.0002
10 Cfb: Temperate, no dry season, warm summer 0.82 —7.80-9.86  0.0045
11 Dsb: Cold, dry summer, warm summer 0.98 —3.82-3.93 0.0007
12 Dsc: Cold, dry summer, cold summer 0.98 —3.40-3.30 —0.0010
13 Dwa: Cold, dry winter, hot summer 0.99  —3.50-3.45 —0.0004
14 Dwb: Cold, dry winter, warm summer 0.99 —2.79-2.83 0.0003
15 Dfa: Cold, no dry season, hot summer 1.00 —6.06-6.07  0.0000
16 Dfb: Cold, no dry season, warm summer 0.93 —5.28-5.76  0.0024
17 Dfc: Cold, no dry season, cold summer 0.89 —2.24-1.94 —0.0046
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Further evaluations based on the three performance metrics showed that the Dfc
(cold, no dry season, cold summer) climate class, having the lowest R2 on all three sample
runs, the lowest NSE for the second and third runs, and the lowest KGE value on the first
run, demonstrated relatively weak agreement compared to other classes (Figure 3).
Representing the climate of the Rockies (Figure 4), it is still unclear whether the weak
agreements were due to terrain complexities, climatic factors, both, or other factors.
Therefore, further investigation may be necessary to specifically determine the underlying

causes of the relatively poor performance of the GPM satellite product over the Dfc

climate.
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Figure 3. Comparison of GPM and PRISM precipitation datasets based on R2, NSE, and
KGE. The numbers (1), (2), and (3) represent the first, second, and third sample runs. The

Dfc climate is represented as climate class 17.

Koppen—Geiger Climate Classification: Sample points
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Figure 4. The Dfc climate region where GPM and PRISM showed the weakest
agreement.

Based on recommended R? and NSE standards for monthly periods and local scales
[54], agreement across all Koppen—Geiger climates was at least satisfactory on average. A
ranking of climate classes by their relative agreements between both gridded precipitation
products showed that while the Dfc was weakest, the Bwk (arid, desert, cold) class showed

the strongest agreement (Figure 5).
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Overall Performance Ranking
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Figure 5. Ranking of the 17 climate classes based on relative agreements between the GPM
and PRISM gridded precipitation products, according to R2, NSE, and KGE values.
WCI Analyses

The average annual WCI between 2001 and 2019 varied across the CONUS. The
west generally showed lower intensities, whereas the highest values were seen in the
southeastern CONUS region. However, in the westernmost border around the western
Washington region, values of over 4000 mm/yr. were recorded (Figure 6a). Similar patterns
were seen for both precipitation and evapotranspiration averages. Two essential ingredients
for precipitation are moisture and lift. Thus, with the Gulf of Mexico as a potential supplier
of moisture, combined with the existence of several mountain ranges in the region, it is no
surprise that there is that much rain in the southeast region. Likewise, the active weather
caused by the low-pressure system of the Aleutian Islands explains the excessive amounts

of rain along the western boundary (Figure 6b). To illustrate the importance of available
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moisture for evapotranspiration, the areas with high precipitation (Figure 6b) appeared to

also show relatively high evapotranspiration rates (Figure 6c).

ANNUAL AVERAGES: 2001 - 2019

] conTiGuous usa

WCI (mm/yr)

B 166-894
Water Cycle Intensity I 895 - 1448
(WCI) I 1449 - 2055
0 250 500 1000 Miles M 2056 - 2629
PG LR L I 2630 - 4556

# [] conTiGuous usa

P (mm/yr)
- 108 - 685

o 686 - 1138
Precipitation = i5eiss
(P) o I 1577 - 1944
0 250 500 1000 Miles B 1945 - 3933

” [ conTiGuous UsA

ET (mm/yr)
Bl 12-318
I 319-497
I 498 - 667

. [ 668 - 868
0 250 500 1000 Mil i
At - g -

Evapotranspiration
(ET)

Figure 6. Average annual (@) water cycle intensity, (b) precipitation, and (C)

evapotranspiration from 2001 to 2019.
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To calculate the differences, the averages of the first period (2001-2009) were
subtracted from the second (2010-2019). Following the mitial calculations, El Nifo, and
La Nina years (Figure 7) were then removed from the datasets based on average annual
SST anomalies and a threshold of +/—0.5°C. The El Nifio years 2002, 2006, and 2015, and
La Nifa years 2007, 2008, and 2011 (Figure 7) were also identified in a different,
independent study that compared average November-December-January (NDJ) and
December-January-February (DJF) SST anomalies in the Nifio 3.4 region with predefined
threshold anomalies [55].

The west CONUS showed notable increases in WCI between both periods (Figure
8a), mostly due to increases in both precipitation and evapotranspiration in the second
period (Figure 8b, c). However, our adjusted results (Figure 8d—f) show that during the
period of study, ENSO impacted the WCI for the CONUS primarily by bringing more

water to the southeast, west, and parts of the north and less water to the northeast regions.
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El Nifio and La Nina Years
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Figure 7. El Nino and La Nifia years over the period of study. Average annual SST
anomalies were compared with a threshold anomaly of +/—0.5 °C to identify El Nifio and
La Nifia years, respectively. Years such as 2009, 2010, and 2018 where both positive and
negative anomalies exceeded their respective El Nifio and La Nifa threshold anomalies

were considered neutral, indicating a lack of clear dominance of either condition.
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Figure 8. The difference in (a) water cycle intensity, (b) precipitation, and (C) evapotranspiration between the annual averages of 2001—
2009 and 2010-2019, and their respective differences without ENSO years (d—f). The cumulative density function (CDF) plots show

the cumulative probabilities of change values for water cycle intensity (g), precipitation (h), and evapotranspiration (i) for both scenarios
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Discussion

Satellite precipitation retrievals generally experience difficulties due to complex
terrains and climate [5,56—61]. The GPM, in particular, is less accurate in mountainous
regions than in plains [36,62—66]. Specific to the CONUS, snowfall underestimation of the
GPM has been recorded in the western mountainous regions [36]. Likewise, we detected
an underestimation in the Dfc climate over the Rockies. For each sample point in the
region, the NEXRAD-TDWR radar coverage [67] showed a beam height of less than 3000
feetabove ground level, indicating good ground-based radar accuracy for the PRISM nput.
In addition, a local hill shade DEM for each point showed complex mountainous terrain
that can affect GPM accuracyand a high elevation where snowfall and seasonal snow cover
is expected. The research suggests that the complex terrain and high amounts of snow in
the winter played a part in the underestimation of precipitation by the GPM for the Dfc
climate region of the CONUS. However, micro-scale studies at finer spatial resolutions
that account for more variables, such as local radar propagation characteristics and GPM
flyovers to PRISM updates, are necessary to state this conclusively.

The WCI results presented in this study reinforce the intuition that with
precipitation and evapotranspiration as indicators, the WCI over any area might increase
through one of three scenarios: (1) Increases in both precipitation and evapotranspiration,
as seen in parts of the west CONUS. A few studies validate this [68,69], where the
warming-induced intensification of the water cycle over the Midwest resulted in increased
precipitation and evaporation rates. (2) A dominating influence of precipitation, notably in
the Appalachian region of the east CONUS. This scenario may carry flood risks, as flood

occurrences have consistently been reported in the south and central Appalachian regions
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[70-72]. (3) A dominating influence of evapotranspiration, showing examples in parts of
the west and southeast regions. Increases in drought risks in the West have been attributed
to a combination of atmospheric, environmental, and consumptive water demands
exceeding supply [73,74]. In general, scenarios 1 and 3 may directly impact regional water
availability. Groundwater levels, for example, declined in the Midwest where the
intensification of the water cycle increased precipitation and evaporation rates [68].

About 53% of the CONUS showed a positive WCI change, which implies that the
water cycle is currently speeding up in and around more than half of the country. Of this,
58.2% showed increases in both average precipitation and evapotranspiration (scenario 1).
An increase in precipitation but decrease in evapotranspiration (scenario 2) constituted
21.2%, while the reverse (scenario 3) made up 19.1%. Without ENSO years, 40.4% of the
CONUS showed an intensified water cycle where 55.6%, 18.5%, and 24.5% represented
the three scenarios, respectively, thereby providing supporting evidence that ENSO may
be influencing the WCI of the CONUS. In both cases, however, the dominant
representation of a faster water cycle for the periods of investigation is characterized by a
simultaneous increase in both precipitation and evapotranspiration, where the increase in
evapotranspiration is presumably the result of higher air temperatures and an increase in
moisture availability. In a general sense, the impacts of ENSO on the WCI of the CONUS
were primarily driven by changes in precipitation (Figure 8g—i).

A faster water cycle presents a variety of hydrological consequences. Extreme
precipitation and flood events become more likely, drought risks intensify, and the
availability and quality of surface and groundwater resources can be impacted. For

example, in coastal areas where aquifers are susceptible to saltwater intrusion, decreasing
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groundwater recharge rates may lower the water table, allow the infiltration of saltwater,
and consequently increase the severity of water quality issues. Unfortunately, these effects
cannot be generalized for the CONUS. Therefore, further work at local, watershed, and
regional scales is required to categorically express representative hydrological impacts for

the various spatial (and temporal) scales of interest.

Conclusion

This study addressed two potential considerations within the framework of the
Huntington et al. (2018) [1] study. For the same region, and with similar hydroclimatic
variables, we evaluated the feasibility of a remote sensing WCI for a different, more recent
period, allowing us to relate WCI changes to current climate change using satellite-based
datasets. The period of investigation (2001-2019) was also determined by the availability
of complete-year data for the GPM IMERG precipitation (2001-present) and
evapotranspiration (1982—-2019) datasets. To address the limitations of satellite-based
precipitation estimates, particularly in complex terrains, we incorporated comparisons with
ground-based PRISM estimates to provide validation for the satellite-based dataset and
additional context on its limitations. We showed that the GPM IMERG precipitation
product was not statistically different from ground-based gridded PRISM estimates across
all Képpen—Geiger climates within the CONUS despite inherent challenges over complex
mountainous terrains.

Using the framework introduced by Huntington et al. (2018), we present the first
satellite-based quantification of the terrestrial water cycle mtensity. Comparing the results

of both studies, the spatial patterns of average WCI changes presented in this study contrast
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those of the framework study. As we’ve shown, between the averages of 2001 to 2009 and
2010 to 2019, faster WCIs were seen around the west CONUS, contrary to the Huntington
etal (2018) study that showed a vulnerability of the east CONUS between the averages of
1945 to 1974 and 1985 to 2014. This not only substantiates the influence of current
temperature anomalies on the spatial patterns of regional water cycle intensities for the
CONUS but the susceptibility of the global water cycle to climate variabilities. In addition,
we attempted to more accurately associate climate change with shifts in WCIs by
eliminating years that showed strong occurrences of El Nifio and La Nifia events from our
calculations. Our recommendation for future studies is to address and quantify the impacts
of other relevant cyclic patterns, particularly those not directly influenced by ENSO (El
Nino and La Nina) events.

Satellite missions for hydroclimatic variables different from those utilized in this
study have also enhanced various other studies relating to the water cycle. Examples
include GRACE (Gravity Recovery and Climate Experiment) [75] and its follow-on
mission GRACE-FO [38] for water storage anomalies, SMOS (soil moisture and ocean
salinity) [76,77] and SMAP (soil moisture active passive) [78] for soil moisture, and the
Water Cycle Observation Mission (WCOM) for various components of the water cycle
[79]. While WClIs generally inform the availability and distribution of water resources,
remote sensing provides additional benefits including the availability and consistency of
measurements to calculate the WClIs for wider spatial coverages and hydrologically
inaccessible and data-sparse areas. A satellite-based WCI approach can be applied to any
geographical region, covering spatial and temporal scales for which reliable satellite-based

estimates are available.
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In particular, the ability to calculate the WCI for any point on the globe and be able
to determine if WCI changes are primarily driven by changes in precipitation, evaporation,
or both, canallow regional water management agencies to make better-informed decisions
on the storage and efficient distribution of water supplies. For example, negative WCI
changes where precipitation is the decreasing variable and evapotranspiration is constant
suggests that more water may need to be imported to the region or stored than previously
in order to support the same amount of evapotranspiration. Conversely, positive WCI
changes driven by evapotranspiration indicate the vital role of limited soil moisture in
reducing the vapor pressure deficit in the atmosphere. Possible remedies may include
supplementary water supply systems such as irrigation schemes to sustain agricultural
practices, or importation to secure water for households and industries. Leveraging insights
from WCI changes and harnessing the benefits of remote sensing for such calculations will
help mitigate and overcome various water resources and associated socio-economic issues.
It is our hope that this knowledge contributes to further work in refining water budget

calculations to plan for an uncertain climate future.
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Abstract

Given the vulnerability of surface water to the direct impacts of climate change, the
accurate prediction of groundwater levels has become increasingly important, particularly
for dry regions, offering significant resource management benefits. This study presents the
first statewide groundwater level anomaly (GWLA) prediction for Arizona across its two
distinct aquifer types—unconsolidated sand and gravel aquifers and rock aquifers.
Machine learning (ML) models were combined with empirical Bayesian kriging (EBK)
geostatistical interpolation models to predict monthly GWLAs between January 2010 and
December 2019. Model evaluations were based on the Nash—Sutcliffe efficiency (NSE)
and coefficient of determination (R2) metrics. With average NSE/R? values of 0.62/0.63
and 0.72/0.76 during the validation and test phases, respectively, our multi-model approach
demonstrated satisfactory performance, and the predictive accuracy was much higher for
the unconsolidated sand and gravel aquifers. By employing a remote sensing-based
approach, our proposed model design can be replicated for similar climates globally, and

hydrologically data-sparse and remote areas of the world are not left out.
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Introduction

Global warming is threatening surface water supply in many parts of the word,
particularly in arid regions. In these regions, groundwater, a viable alternative and an
important source of freshwater, is often limited [1,2]. Considering that groundwater level
(GWL) is an indicator of groundwater availability at any given time, monitoring GWLs
provides significant insights into the dynamics of recharge and withdrawals and how they
influence the long-term availability of groundwater. In arid regions, this can be challenging
due to the inadequate distribution of groundwater wells and the presence of spatial and
temporal data gaps in monitoring records [3]. Therefore, accurate and reliable predictive
tools are essential for supporting the sustainable management of groundwater in these areas
[3].

The relationships between GWL fluctuations and explanatory variables are
generally complex and nonlinear [4-7]. However, machine learning (ML) algorithms can
effectively learn these relationships. One of such algorithms is the support vector machine
(SVM) for regression purposes (SVR), especially when embedded with the radial basis
function (RBF) kernel [5,8]. Another algorithm capable of learning these relationships is
random forest (RF) [9], which is the most employed ML technique for GWL predictions
[10]. Both SVMs and RF are known to give accurate results [10,11].

Several studies have shown the RBF—SVR model to outperform various other
techniques, such as artificial neural network (ANN) [12—14], radial basis function neural
network (RBF-NN) [15], the autoregressive integrated moving average (ARIMA) model

[16], RF [8], and the gradient boosting mechanism (GBM) [8]. These studies also attribute
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the success of SVMs to their strong prediction capability and the ability to generalize well
to unseen data.

Likewise, various studies have reported success using RF for GWL prediction. For
example, it outperformed K-nearest neighbor (KNN), ANN, and SVR based on root mean
square error (RMSE) values during testing [17]; ANN and SVR based on R-squared (R2),
mean absolute error (MAE), and RMSE values in training and R? and MAE values in
testing [11]; multilinear regression (MLR) based on R2, MAE, and RMSE values in both
training and testing [18]; decision trees (DTs) and SVRs based on its Rz and RMSE values
n testing [19]; and the XGBoost regressor based on its MAE and RMSE values i testing
[20].

In addition to traditional ML methods, geostatistical interpolation (GI) techniques
are also commonly used for GWL prediction. Kriging is the most utilized GI technique
[21,22], where the measured values of a variable (GWL, in this case) at specific locations
are used to make predictions at unmeasured areas. Itrelies on the correlation between the
measured values as a function of distance, depicted by a semivariogram, to assign weights
that describe the contribution of each measured point to the prediction at unmeasured
locations [23]. Kriging presents an important advantage over other interpolation methods
in being able to quantify and minimize prediction uncertainties [23].

Classical kriging (CK), the traditional form of kriging, relies on a single
semivariogram assumed to be the true representation of the measured data. In contrast,
empirical Bayesian kriging (EBK), an advanced kriging approach, incorporates multiple
semivariograms to account for the uncertamties associated with estimating a single

semivariogram [23]. Thus, EBK is a more robust kriging algorithm [23], and studies such
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as Bouhout et al. (2022) [24] and Hussain et al. (2016) [25] have demonstrated its superior
performance in GWL prediction applications.

Our review of the existing literature suggests that RBF—SVR, RF, and EBK models
are some of the most effective GWL prediction tools. To enhance the prediction accuracy,
we propose an approach that integrates all three techniques to predict the monthly GWLAs
across the state of Arizona (representative of arid/semi-arid systems) between January 2010

and December 2019, using remotely sensed predictor variables.

Materials and Methods

Natural groundwater recharge in arid regions is often limited, raising concerns
about the sustained availability of freshwater in these regions. Climate change exacerbates
these issues by intensifying the hydrologic cycle, resulting in increased evapotranspiration
rates and a reduction in the soil moisture available to recharge groundwater systems
[26,27]. In a recent study, Zowam et al. (2023) [27] quantified terrestrial water cycle
mtensity (WCI) changes across the contiguous United States (CONUS) attributable to
climate change and showed that the state of Arizona might be experiencing much higher
relative WCI rates on average than other arid regions in the CONUS. These factors
underscore the need for accurate prediction of the GWL in such regions to continue to
effectively manage the potentially limited freshwater resources therein.

Study Area and Target Variable

The study area,covering about 114,000 mi2, is located in the southwest U.S. (Figure
1). Its surficial geology is characterized primarily by unconsolidated deposits in the

south/southwest—northwest corner of the state, with various rocks dominating the other
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regions [28]. The consolidated rocks are mainly sedimentary and extrusive igneous
(volcanic) rocks and constitute the mountain ranges that border the basins filled with
unconsolidated materials [29]. These rocks are the main sources of sedimentary materials
that fill the basin and have very low permeability and groundwater flow rates [29]. Many
communities depend solely on groundwater to meet their water needs, which has led to a
long history of over-extraction in many parts of the state [30]. In the late 1980s, the
Colorado river arrived in Arizona and eased some of the pressure on groundwater to meet
these needs, but the prolonged drought in the Colorado river basin, coupled with projected
warming temperatures, is expected to not only reduce the surface water availability in the
state but also further stress the aquifers in the region [30].

Daily GWL data from 59 monitoring wells were downloaded from the National
Groundwater Monitoring Network (NGWMN) portal
(https:/cida.usgs.gov/ngwmn/index.jsp, accessed on 29 January 2023). Among these
wells, 38 were drilled into unconsolidated sand and gravel aquifers and are managed by
the Arizona Department of Water Resources (ADWR), while the remaining 21 were drilled
into consolidated rock aquifers (Figure 1). Three of the rock aquifer wells used in this study
are maintained by the U.S. Geological Survey (USGS), and the rest are managed by the
ADWR. The depths of these wells varied and ranged from 89 to 1600 feet below ground
surface (bgs) for the sand and gravel aquifers, and about 25 to 851 feet bgs for the rock
aquifers, and the aquifers were predominantly unconfined. Daily GWL measurements were
aggregated into monthly averages from January 2010 to December 2019.

Missing data is the most common challenge in real-world ML applications [31],

and various methods exist to address this issue. The simplest of these methods is mean
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imputation (MI) [31]. In MI, the mean values of available observations are used to fill in
missing observations, which has proven to work well with small variance distributions
[32,33], ie., distributions with a coefficient of variation (CV) less than 10% [34].
Therefore, with CV values ranging from 0.01 to 0.91% for the unconsolidated aquifers and
0.001 to 0.21% for the rock aquifers, the MI method was ideal for the target variable
(monthly GWL). Missing monthly values were replaced with the annual average GWL for

the given year.
To compute monthly GWLA, we calculated the mean GWL at each well and

subtracted the monthly measurements from this mean value.

Arizona, USA

—36°N
Surficial geology

[0 Unconsolidated deposits
[0 Rocks <}

Monitoring Wells

@ Sand and gravel aquifer -33°N

@ Rock aquifer
0 50 100 Miles

Figure 1. Map of the study area showing the locations of groundwater monitoring wells.

Predictor Variables
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The selection of the input variables was informed by the Seyoum et al. (2019) [35]
study as well as established hydrogeological principles. The initial variables included
precipitation, soil moisture, evapotranspiration, land surface temperature, vegetation index,

curve number, saturated hydraulic conductivity, and groundwater storage anomalies

(Figure 2).
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Figure 2. Maps of initial predictor variables resampled to 0.125° x 0.125° grid resolution.
P = precipitation, SM = soil moisture, ET = evapotranspiration, LST = land surface
temperature, VI = vegetation index, CN = curve number, K = saturated hydraulic
conductivity, GWSP = groundwater storage percentile. CN and K are representative values
for the period of study, and all other variables are for January 2010.

Precipitation (P)

Precipitation is the most important hydrological variable for predicting
groundwater recharge [36], thus playing a crucial role in determining GWL. In the last two

decades, satellite-based precipitation measurement techniques have seen significant
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advancements, and the Global Precipitation Measurement Mission (GPM) using the
Integrated Multi-Satellite Retrievals for the GPM (IMERG) algorithm stands out as one of
the best alternatives to ground-based measurements [27,37]. In particular, the GPM
mission demonstrates significant potential to mitigate the challenges associated with
estimating precipitation in arid regions [38]. In addition, under light rainfall conditions
(typical of these regions), IMERG tends to produce lower detection errors and generally
more accurate estimates [39]. The final run of the IMERG system provides the most
accurate precipitation measurements, making it ideal for research purposes [40]. A monthly
IMERG (final run) dataset with a 0.1° x 0.1° grid resolution was downloaded from the
National Aeronautics and Space Administration (NASA) data portal for January 2010 to
December 2019 (https:/gpm.nasa.gov/data/directory, accessedon 11 May 2021).

Soil Moisture (SM)

SM and GWL tend to demonstrate a negative relationship [41-43], which can be
much stronger for shallow groundwater [41]. For this study, we utilized a research product
that integrated measurement efforts from both the European Space Agency (ESA) and
NASA (https://doi.org/10.1594/PANGAEA.940409, accessed on 12 February 2023). The
dataset was generated by downscaling ESA’s Climate Change Initiative (CCI) data using
NASA’s Soil Moisture Active and Passive (SMAP) data [44]. The global dataset had a grid
size of 9 km (~0.08° % 0.08°) and a daily temporal resolution covering a 43-year period
from 1978 to 2020 [44]. We converted the daily rasters into monthly averages spanning
our study period and extracted the monthly data for the study area.

Evapotranspiration (ET)
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The combined effects of liquid water losses from soil surfaces (evaporation) and its
uptake by plants (transpiration) limit the amount that infiltrates the ground, thereby
affecting GWLs. We utilized a global dataset with a fine grid size of 1 km (~0.01° x 0.01°)
and a monthly temporal resolution (https:/doi.org/10.7910/DVN/ZGOUED, accessed on
3 July 2021). The dataset was obtained by synthesizing the best-performing satellite ET
products following validation against flux eddy covariance ET and performed better than
local products across the United States, China, and the continent of Africa [45].

Land Surface Temperature (LST)

LST tends to exhibit a positive relationship with GWL, which is more pronounced
for shallow groundwater [41]. This study utilized a gap-filled, continuous LST dataset
generated by filling in missing pixels in the Moderate-Resolution Imaging
Spectroradiometer (MODIS) 1 km resolution LST daily product [46]. Daytime (1:30 PM)
and nighttime (1:30 AM) global datasets were downloaded from the Iowa State University
research repository (https:/doi.org/10.25380/1astate.c.5078492.v3, accessed on 12
February 2023). The downloaded rasters were converted into monthly averages, and the
final LST dataset was obtained by averaging the daytime and nighttime monthly estimates.

Vegetation Index (VI)

The presence of vegetation may affect groundwater recharge (and GWLs) in
various ways, including slowing down runoff and enhancing ET through transpiration. VI
values are unitless and help to visualize the locations and relative abundance of green

vegetation. A monthly dataset with a 0.1° x 0.1° grid resolution was accessed and

downloaded from the NASA Earth Observations (NEO) data portal
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(https://neo.gsfc.nasa.gov/view.php?datasetld=MOD NDVI M&date=2010-12-01,
accessed on 12 February 2023).

Curve Number (CN) and Runoff Depth (R)

CN is a dimensionless parameter that characterizes the runoff potential of a surface.
It is influenced by land use, soil characteristics, and the antecedent moisture conditions of
soils. Lower numbers typically correspond to permeable soils with high infiltration rates,
while higher numbers are associated with impervious surfaces and limited infiltration
capacities. The CNs utilized in this study were generated using a 250 m hydrological soil
group dataset (HYSOG250m) and the 2015 ESA—CCI 300 m land cover dataset, and
available at a 250 m grid resolution (https://doi.org/10.6084/m9.figshare.7756202.v1,
accessed on 12 February 2023).

With the CN data, we generated a monthly datasetof R for the period of study using

Grove et al. (1998)’s [47] equations:

_ (P-0.29)2 W
(P + 0.89)
Given that:
. <1000> 0 2)
~\CN

Where R = runoff depth, P = precipitation, S= potential maximum retention, and CN is the
Curve Number [42].

Soil Saturated Hydraulic Conductivity (K, and PKj)

Soil saturated hydraulic conductivity describes the ability of soils to transmit water
under saturated conditions [48]. Using remotely sensed environmental variables and the

RF ML technique, Gupta etal. (2021) [49] generated four global K¢ maps representing four
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different soil depths ata 1 km (~0.01° x 0.01°) resolution. All four maps were utilized in
this study (https://doi.org/10.5281/zenodo0.3935359, accessedon 11 October 2023).

To obtain a continuous and dynamic Ky dataset, we multiplied each K, value by the
monthly precipitation estimates. We selected precipitation as it is a primary driver of water
input into the soil and significantly influences K. By integrating the precipitation data with
K, we added temporal variability to the K variable, making it suitable for our ML models.

P x K= (PKJ)i (3)
Here, P is the precipitation dataset, Ky is the soil-saturated hydraulic conductivity dataset
at a depth of i, and i ranges from 1 to 4. The four resulting outputs from equation 3 were
averaged into a single, comprehensive PK; dataset for the study area.

Groundwater Storage Percentile (GWSP)

Using terrestrial water storage (TWS) observations from the Gravity Recovery and
Climate Experiment (GRACE) satellite mission and a numerical model representing the
interactions between water and energy across the Earth’s surface, scientists at NASA are
able to determine weekly groundwater conditions, expressed as percentiles, based on
comparison with historical data [50]. These percentiles indicate the probability of
occurrence within the 1948 to 2014 period of record and are generated at a spatial
resolution of 0.125° x 0.125° over North America from April 2002 to the present [5S0]. We
downloaded the monthly averages of the GWSP from the Giovanni data portal
(https://giovanni.gsfc.nasa.gov/giovanni/, accessedon 10 October 2023) for our period of
study. Considering all the input datasets, the GWSP had the largest spatial resolution
(0.125° x 0.125°), requiring all the other datasets to be resampled (upscaled) to the spatial

resolution of the GWSP rasters.
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Groundwater recharge is typically computed using asimple waterbalance approach
assuming negligible changes in soil water storage in the unsaturated zone [51]. Based on
this idea, we introduced a secondary input variable, called the recharge index (RI), to
represent the balance between the water inflows and outflows within each 0.125° x 0.125°
grid and the amount potentially available to recharge groundwater.

RI=P—-ET-R 4
where P is precipitation; ET is evapotranspiration; R is runoff depth; and Rl is the recharge
index for a given grid.

GWLs from monitoring wells located within a grid were assumed to be
representative of the entire grid, as were the predictor variables. Ultimately, this study
utilized six predictor variables, namely soil moisture (SM), land surface temperature
(LST), the vegetation index (VI), saturated hydraulic conductivity (K;), the groundwater
storage percentile (GWSP), and the recharge index (RI) (Table 1).

Table 1. Final input variables used in the study and the processing involved.

ID Variable Processing Unit

1 Soil moisture (SM) X0 m3/m?
2 Land surface temperature (LST) XA O °C

3 Vegetation index (VI) o) —

4 Saturated hydraulic conductivity (PKj) * oADO mm?/day
5 Groundwater storage percentile (GWSP) — %

6 Recharge index (RI) * o|o|O mm

Note(s): x =convert daily data mto monthly averages; A =rasteraveraging; o =resampling
to 0.125° x 0.125°; o = raster arithmetic operations. NB: Secondary variables are marked
with an asterisk (*), and the pipe symbol (]) separates the processing applied to each
individual variable.



55

Model Algorithms

Developing an acceptable ML model with a monthly temporal resolution requires
approximately 10-12 years of data [52]. Here, we utilize 10 years of monthly data (2010—
2019), meeting the acceptable sample size threshold. Selecting algorithms or models that
are most appropriate for the datais another important aspectof ML. Getting this step wrong
could result in unreliable predictions, leading to a disappointing predictive performance
and misleading conclusions [53]. In this study, we selected two ML algorithms (and a GI
technique) from a pool of candidates. The selected techniques are discussed in detail below:

SVM and SVR

SVM was introduced by Vladimir Vapnik based on the idea of nonlinear mapping
of mput vectors to a high-dimensional feature space and constructing an optimal
hyperplane to effectively separate the different groups or classes within that space [54].
The generalization capabilities of SVMs led to the development of the less popular SVR
for real-value (regression) problems [55].

First proposed in 1996 by Harris Drucker and his colleagues [56], the SVR has
become an effective tool for prediction problems, demonstrating excellent generalization
abilities and a high prediction accuracy [55]. It works by incorporating a loss function
(known as the epsilon insensitive margin of error, €) in the form of a flexible tube formed
symmetrically above and below the estimated function, where the prediction errors (C*)
within the tube are accepted and those that fall outside are penalized (Figure 3). The
objective of the SVR is to find the narrowest possible tube around the estimated function

in a way that minimizes the prediction errors [55,57].
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Figure 3. One-dimensional SVR, where x is the input or independent variable and y is the
dependent variable. Source: Awad and Khanna (2015) [55].

In general, the performance of the SVR model depends on the tube size (epsilon,
€), the regularization constant (C), and the choice of kernel function [58—60]. The C
hyperparameter controls the complexity of the model, where large values may lead to
overfitting [58,61]. By overfitting, the model learns the training data well but generalizes
poorly, ie., predicts poorly on new unseen data. Kernel functions are used to transform the
data into the higher-dimensional feature space, enabling linear machine learning to
improve the representation of the nonlinear relationships that exist in the original nput
space [62]. While there is no guide to the appropriate kernel functions for specific datasets,
the most commonly used are the RBF and polynomial functions [63]. RBFs are versatile
kernels used when there is a lack of prior knowledge about the data [64]. Such models
(RBF-SVR) require an additional hyperparameter, gamma (y), in addition to C and €, which
controls the width of the RBF [60,65,66]. The C hyperparameter must be a positive

number, while € and y can be positive or zero [66].
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RF

The RF ML algorithm is an ensemble algorithm of multiple trees that improves the
prediction accuracies of the single DT algorithm [19,67]. The different DTs are trained
with subsets of the mput variables and bootstrapped samples of the original training data
such that each DT is unique, resulting in reduced variance [11]. By bootstrapping, samples
are randomly drawn (with replacement) from the original training data, maintaining the
sample size of the training data. Because the sampling is carried out with replacement, a
particular observation may appear multiple times in a bootstrapped sample.

Decision points in the DT structure are called nodes. At the nodes, tree branches
are created based on the splitting criteria (Figure 4). The first node (without prior
branching) is the root [68]. From the root, eachnode is split using the best variable among
the subset of input variables chosen at that node [69]. The leaf is the final node (with no
further branching) associated with an output value [68].

RF model hyperparameters are the number of trees (DTs) and the number of nput
variables in the random subset at each node [11,69]. The final predictions are either
determined by majority votes from individual DTs (classification) or by averaging the

predictions from all the trees (regression) [69,70].
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Figure 4. A simple RF Model with three DTs.

EBK

EBK differs from CK in the way it optimizes the parameter uncertainty associated
with creating a single semivariogram and the way it automates the optimization process. In
a single semivariogram, the semivariance (the y-axis) measures the spatial dependency
between pairs of observations or samples, and the lag (the x-axis) is their separation
distance (Figure 5a). Depending on the characteristics of the data, a semivariogram may
display three important components: a sill, a range, and a nugget (Figure 5a). The range is
the distance (or lag) beyond which samples are not spatially autocorrelated, and the sill is

the semivariance at that distance. The nugget is the y-intercept of the semivariogram and
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represents variability at distances much smaller than the minimum spacing between pairs
of sample points.

With EBK, the input data are divided into subsets, specifying parameters such as
the size of the subsets (subset size) and the degree of overlap between them (overlap factor).
Within each subset, a semivariogram distribution is produced (Figure 5b), and predictions

are made for each location using the distribution from one or more subsets [23].

Semivariance

Lag distance (h) Lag distance (h)
Figure 5. (a) A single semivariogram. Source: Maliva (2016) [71]. (b) The EBK model
showing a distribution of semivariograms. Source: Krivoruchko (2012) [23]. The red
dotted lines represent the lower and upper quartiles, and the solid red line represents the
median of the semivariogram distribution [23,72].
Model Design
The initial phase of the analysis aimed to assess the feasibility of ML to capture
spatiotemporal patterns of GWLAs across the study area. For spatial patterns, we trained
12 different SVR models (each corresponding to a specific month) on sixty percent of the
dataset using manually tuned values of y, C, and € and tested each of the trained models

with the remaining forty percent (Figure 6a). Each model was trained using three predictor
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variables—LST, RI, and the previous month’s GWLA (except for the first month).
Incorporating GWL from a prior time step is common practice. It is the most employed
type of input data in GWL prediction [52]. To evaluate ML feasibility for temporal
patterns, we utilized the same dataset as the test set but used all six predictor variables and
the predicted output—replacing the “previous month GWLA” variable to ensure
consistency in the number of predictors for each observation (Figure 6b). Following
another random train/test split procedure, an RF model was trained on eighty-five percent
of the data and tested on the remaining fifteen percent. The models were evaluated for their
performance and predictive accuracy using the Nash—Sutcliffe efficiency (NSE) and the
coefficient of determination (R2), respectively. The NSE ranges from —oo to 1, while R2

ranges from 0 to 1. For both metrics, a perfect prediction would yield a value of 1.
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Figure 6. Model design showing train/test split ratios for the spatial (a) and temporal (b)

evaluations and the locations of the split wells.

Based on the results of the preliminary assessments, it was evident that

incorporating some approximation of the GWL as a predictor variable would significantly

36*N
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enhance the model performance and predictive accuracy. Therefore, we sought to use EBK
for those approximations. To ensure that the EBK predictions covered the study area, we
obtained additional GWL data from 18 nearby monitoring wells outside the study area. A
total of 120 EBK models were constructed using the Geostatistical Wizard interpolation
tool in ArcGIS PRO, and monthly predictions from those models were converted into
anomalies and incorporated into the dataset. A single RF ML model (Figure 7) was then
developed to learn the patterns in substantial portions of the augmented dataset.

This approach was first validated at three monitoring well locations. The
measurements corresponding to those locations were removed from the dataset before
performing the EBK. Because the accuracy of kriging is significantly influenced by the
number and density of kriging points, we could not afford to eliminate additional wells
(and their corresponding data) from the dataset. Subsequently, the EBK process was
repeated using the entire dataset, and a final RF model was trained on a significant portion
of this dataset, tested on a smaller subset, and eventually deployed at locations without

monitoring wells.
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Figure 7. RF schematic with three observations, the seven predictor variables, three

randomly selected predictors to build each tree, and three DTs. The target variable is shown

in blue, and the predicted outputs are shown in red.

Results
Analyses were done in RStudio (version 2023.06.0+421) and ArcGIS Pro (version
2.9.3). The results are presented below.

Initial Assessment of ML Capabilities

The SVR models effectively captured the spatial patterns of GWLA variation

across the study area, based on the NSE and R? values (Table 2). Each monthly model
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(except for the January model) was trained using the previous month’s GWLA data. The
unavailability of previous month measurements as input for the first (January) model
resulted in its suboptimal performance. However, the predictions from subsequent models
were averaged with the January prediction to obtain the final model predictions.
Incorporating the suboptimal performance of the first model with the strengths of the
subsequent models reduced model uncertainties and produced more accurate predictions
(for the subsequent models).

We observed notably high prediction accuracies for the summer months. In
particular, the July model, with an NSE of 0.96 and an R? of 0.97, demonstrated exceptional
performance (Table 2).

Table 2. Performance of Individual SVR Models.

Model NSE R?
1 January - —
2 February 0.88 0.88
3 March 0.71 0.71
4 April 0.51 0.51
5 May 0.87 0.89
6 June 0.90 0.93
7 July 0.96 0.97
8 August 0.87 0.87
9 September 0.80 0.81
10 October 0.77 0.78
11 November 0.83 0.83
12 December 0.91 0.92

The test set (Figure 6b) was augmented with the predicted output of the SVR

models, and asingle RF model was trained on eighty-five percent of the augmented dataset.
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Evaluation at the fifteen percent test wells (Figure 8) revealed much higher predictive

accuracies for the sand and gravel aquifers (Table 3, Figure 9).

Training and Test Wells
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Figure 8. Map showing the locations of the four test wells for temporal evaluations after

the second (85:15) train/test split.

Table 3. RF model performance evaluated at the four test wells (15 percent test split).

ID Test Well Aquifer Type NSE R?

1 Artesia School [D-08-26 33CDC1] Sand and gravel  0.87 0.87

2 Geiler [B-16-02 21BAA?2] Sand and gravel  0.80 0.80
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Figure 9. Plots comparing the RF-predicted GWLA at each test well with observed values.
The numbers 1-4 correspond to the four test wells shown in Figure 8 and Table 3.

Integrating EBK GWL Predictions

The prediction output of eachEBK model was integrated into the dataset asan input

variable, and another RF model was trained on the updated dataset without the validation
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wells (Figure 10), which were excluded from the EBK process. Excluding these wells
allowed us to simulate real-world scenarios better and ensure unbiased model evaluations.
Subsequently, the trained RF model was evaluated at all three validation locations, and the
performance was, again, relatively higher for the unconsolidated sand and gravel aquifers

(Table 4).
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Figure 10. Location of the validation wells (1-3). The validation wells were removed from

the dataset before performing the EBK to ensure unbiased model evaluation.
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Table 4. RF model performance at validation wells using the EBK predictions as input.

ID Validation Well Aquifer Type NSE R?
1 Antelope Wash [B-18-04 25AAA2] Sand and gravel 0.81 0.83
2 Turtleback [C-03-11 31DBB] Sand and gravel 0.63 0.65
3 Rumsey Park [A-10-10 04ABB] Rock 0.41 0.41

The partial dependence plots (Figure 11) describe the relationships between each
of the seven predictors (while keeping the others constant) and the RF-model-predicted
output. Recall that the RI wvariable was calculated based on the precipitation,
evapotranspiration, and runoff depth values (Equation (4)) and that the runoff depths were
derived from precipitation (Equations (1) and (2)), so it primarily reflects changes in
evapotranspiration (Figure 11). Additionally, ET is influenced by LST, which explains why
the RI and LST variables exhibited similar relationships with GWL (Figure 11).
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Figure 11. Partial dependence plots (PDPs) of the validaton RF model. Each plot
illustrates the relationship between the given predictor variable and the predicted output,
showing how changes in the former influence the latter.

Following satisfactory validation performance, we repeated the EBK process using
all 59 monitoring wells. As before, the interpolated GWL surfaces had a default grid size
of 0.023° x 0.023°, likely determined by the geographical extent of the study area (Figure
12a). The standard errors of the prediction were also computed, with higher values
representing larger prediction uncertainties (Figure 12b). The interpolated GWL surfaces
were resampled to 0.125° x 0.125°, matching the grid size for this study (Figure 12c).
Monthly anomalies were calculated (for each monitoring well) from the resampled surfaces
and added to the datasetas a new predictor variable. A final RF model was developed using

the complete augmented dataset, excluding seven wells reserved for testing (Figure 13).
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Figure 12. EBK model output for January 2010 showing (a) GWL predictions at 0.023°

0.023°, (b) standard errors of those predictions at 0.023° x 0.023°, and (C) resampled GWL

prediction surface ata 0.125° x 0.125° grid size.
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Figure 13. Spatial locations of all the monitoring wells used in this study. Wells 1-7 were

used to evaluate the performance of the final RF model.

For the third time in this study, the RF model showed much better predictions at

locations with monitoring wells driled into unconsolidated sand and gravel aquifers

compared to those in rock aquifers (Table 5). The average NSE and R2 values are 0.88 and

0.92 for the former and 0.32 and 0.37 for the latter, respectively (Table 5).
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Table 5. RF model performance using all monitoring wells for EBK predictions. Test wells

marked with an asterisk (*) indicate that they were also used for validation.

ID Test Well Aquifer Type NSE R?
1 Antelope Wash [B-18-04 25AAA2] * Sand and gravel 0.98 0.99
2 Turtleback [C-03-11 31DBB] * Sand and gravel 0.86 0.88
3 Friendly Corners [D-09-08 29BCC] Sand and gravel 0.82 0.87
4  Pantano Wash North [D-16-16 15ABD] Sand and gravel 0.88 0.94
5 Truxton South [B-24-14 33ADA] Sand and gravel 0.84 0.90
6 GC-3 [A-11-10 26DAB] Rock 0.44 046
7 [A-19-14 03AACI] Rock 0.20 0.28

Following a satisfactory validation and test performance, we deployed the final RF

model to make predictions at ungauged locations across the study area (Figure 14) and

calculated the averages of those predictions for each 0.125° x 0.125° grid (Figure 15).
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Figure 14. GWLA predictions for January 2010 after model deployment. The monitoring

wells (black circles) represent both training and test wells for the final RF model.
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Average GWLA (2010 - 2019)
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Figure 15. Average GWLA for the period of study (January 2010 to December 2019), and

the locations of the monitoring wells (black circles) used in this study.

Discussion
Although ML is able to understand complex relationships between GWLs and
contributing factors, this study revealed much better predictive performance for the

unconsolidated material aquifers, where the relationships are generally more
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straightforward. Validation wells 1 and 3 were in close proximity to other wells (Figure
10) and could have benefited from the spatial autocorrelation of GWLs between them, but
well 3 did not. In fact, validation well 2 performed better than well 3, despite not having
that advantage (Figure 10, Table 4). This discrepancy may have been due to several factors,
including the intricate heterogeneities and geologic structures in rock aquifers. The PDP
for the PK; variable (Figure 11) also showed a distinction between the two aquifer types.
This suggests that even with increased precipitation, changes in aquifer properties (such as
reduced permeability in rock aquifers) can restrict groundwater flow and contribute to a
declining GWL, considering all other factors at play. Both aquifers showed a negative
relationship with PKg, but GWLs were relatively higher for the unconsolidated material
aquifers (Figure 11). This shows that under similar hydrological conditions and assuming
all other factors are kept constant, the properties of unconsolidated aquifer materials may
allow them to maintain higher GWLs compared to rock aquifers.

The discrepancy in model performance could also have been due to both model and
data limitations. RF, the most employed ML algorithm for GWL prediction [10], failed to
effectively capture GWL trends in a dolomite rock aquifer in a semi-arid region [73] and
was also outperformed in an aquifer with fractured hydrogeology in a similar climate [74],
as shown by two separate studies. In both cases, deep learning (DL) models demonstrated
the best performance. DL is a branch of ML that is based on the concept of deep neural
networks and is especially known to outperform traditional (shallow) ML techniques in
applications mvolving large amounts of data [75,76] and high dimensionality [75]. But
drilling a large number of wells into hard rock formations in dry regions might not be

practical for various reasons, including cost and limited water availability [77], which can
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pose significant challenges for ML-based GWL predictions in rock aquifers in arid regions.
Specifically, fewer wells were drilled into the consolidated rocks in the study area
compared to the basin fill unconsolidated materials [29], which potentially lLimited the
adequate representation of the geologic complexities of these rock aquifers. However, the
relatively weak performance of the RF models for the rock aquifers presents opportunities
for future research to investigate and enhance the model performance in such complex
geologic and climate settings. These efforts should begin with acquiring the maximum
amount of good-quality data for a comprehensive analysis.

The prediction errors from the EBK models (Figure 12b) underscore the importance
of the spatial density and distribution of the kriging data in ensuring the reliability of
predictions. The largest uncertainties were seen around the boundaries of the study area,
and the predictions in the vicinity of the monitoring wells were relatively more accurate.
Two of the wells excluded in the validation phase (Figure 10) were included in the final
model as testwells (Figure 13) and showed improved predictions (Table 4, Table 5), further
underscoring the importance of data density and quality in kriging.

Based on the percent increases in the mean squared error (MSE) when important
predictor variables are left out, the RI and EBK variables were the most important in the
validation RF model, where both variables showed similar levels of importance. However,
in the final deployment model, EBK was the most important variable (by a significant
margin). This suggests that incorporating spatial interpolation techniques such as EBK can
substantially enhance the performance of ML models. Although the kriging process can be

tedious and challenging, the model improvements they offer make these efforts worth it.
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As shown, the average GWLA for the period of study was predominantly negative.
In fact, only about twenty-eight percent of the study area showed a positive average
anomaly during this period. This trend reflects the challenges in a dry/arid region with high
groundwater demand and withdrawal rates possibly exceeding natural recharge.
Historically, groundwater in Arizona has been pumped out faster than it has been
replenished by natural means [78,79], resulting in overdraft in many agricultural and urban
areas [79]. But as the quest to exploit deeper aquifers continues, the costs of drilling to
these depths are much higher, as are the energy costs of pumping water from them [79].
This study therefore could be useful for optimizing the drilling process by identifying
locations for new wells and increasing the likelihood of accessing groundwater at optimal
depths. Efforts to manage the groundwater overdraft issue began with identifying regions
with a high reliance on groundwater (known as Active Management Areas (AMAs)) and
subsequently empowering the ADWR to monitor compliance within the AMAs with the
regulatory frameworks in place [79,80]. Within these AMAs and beyond, this study can
also aid in the monitoring and allocation of groundwater resources by identifying
groundwater-deficient areas based on the average predicted GWLA values, and offer data-
driven support and recommendations towards the effective management of groundwater

resources in vulnerable areas.

Conclusion
Groundwater is the largest reservoir of available freshwater in the world and a
critically important resource. Its global relevance is amplified by the direct impacts of

climate change on surface water sources, particularly in arid regions. In this study, we
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demonstrated the effectiveness of ML in predicting monthly GWLAs when combined with
reliable spatial interpolation models and developed the first statewide GWLA prediction
model for the state of Arizona. Following satisfactory performance based on average
NSE/R? values of 0.62/0.63 and 0.72/0.76 during the validation and testing phases,
respectively, monthly GWLA rasters were produced for January 2010 to December 2019.
Moving forward, future studies may focus on addressing some of the challenges of
applying traditional ML techniques to rock aquifers in dry regions discussed in this study,
in terms of leveraging the available data and reducing prediction uncertainties in such
complex settings.

With well depths ranging from 25 to 1600 feet, this study demonstrated
effectiveness for both shallow and deep aquifers. The model design utilized remotely
sensed datasets from satellites with global coverage, enabling replicability for similar
climates across the globe. Our remote sensing approach ensures that data-sparse regions of
the world, where field-based hydrological variables are limited or largely inaccessible, are
not left out. It is our hope that this work contributes substantially to the science of
monitoring groundwater resources in the face of global warming and climate change
threats, ensuring the availability of groundwater to meet domestic, agricultural, and
industrial water needs.

Abbreviations
The list of abbreviations and acronyms used in this paper are tabulated below:
ADWR Arizona Department of Water Resources

AMA Active Management Area
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ARIMA

CONUS

CK

CN

Ccv

DL

DT
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ET

GBM

GI

GRACE

GWL

GWLA

GWSP

KNN

Ks

LST

MAE

MI

ML
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Artificial neural network
Autoregressive integrated moving average
Contiguous United States

Classical kriging

Curve number

Coefficient of variation

Deep learning

Decision tree

Empirical Bayesian kriging
Evapotranspiration

Gradient boosting mechanism
Geostatistical interpolation

Gravity Recovery and Climate Experiment
Groundwater level

Groundwater level anomaly
Groundwater storage percentile
K-nearest neighbors

Soil saturated hydraulic conductivity
Land surface temperature

Mean absolute error

Mean imputation

Machine learning



MLR

MSE

NGWMN

PDP

PKs

RBF-NN

RBF-SVR

RI

RMSE

SM

SVM

SVR

USGS

VI

WCI
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Multilinear regression

Mean squared error

National Groundwater Monitoring Network
Precipitation

Partial dependence plot

Precipitation x soil saturated hydraulic conductivity
Runoff depth

Radial basis function

Radial basis function neural network

Radial basis function support vector regression
Random forest

Recharge index

Root mean square error

Soil moisture

Support vector machine

Support vector machine for regression

U.S. Geological Survey

Vegetation index

Water cycle intensity
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Abstract

Climate change (CC) is a global menace facing our planet today, where relatively
short-term fluctuations in climate patterns (climate variability) indicate broader CC trends
over longer timescales. Considering terrestrial water cycle mtensity (WCI) and
groundwater level (GWL) as indicators of CC and groundwater (GW) availability
respectively, this study explored the dynamic relationship between WCI and GWL
anomalies (WCIAs and GWLAs, respectively) in an arid region, based on an innovative
approach to statistical correlation and causation analysis. Pearson correlation (r) assessed
the strength and direction of a contemporaneous linear relationship between both variables,
a cross-correlation function (ccf) determined the dynamic nature of those relationships
considering monthly lags up to a predetermined maximum of 12 months, and Granger
causality tests assessed the statistical significance of the lead variable for predicting the
lagged variable. A contemporaneous linear relationship between both variables was mostly
absent but appeared at various lags. At these lags, the strongest correlations were
dommantly negative, with GWLA leading WCIA, as supported by the GC tests. This trend
implies that the itensification of the water cycle reflects a decline in past GWLs in the

affected areas, necessitating immediate water management actions.
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Introduction

Climate change (CC), according to the Intergovernmental Panel on Climate Change
(IPCCQ), is the statistically significant variation in average weather conditions lasting for
decades or longer [1]. Itis a global menace today, driven largely by human activities that
release greenhouse gases into the atmosphere, altering global temperature and precipitation
patterns [1-3]. Climate variability (CV), on the other hand, refers to short-term fluctuations
associated with CC [4]. Initially, it described the fluctuations due to natural processes, but
is now understood to reflect the anthropogenic influences that define CC [4,5], and is
therefore sometimes referredto as CC [5].

The effects of CC vary among different groups of people. For instance: the health
industry is faced with issues such as heat stress [6], injuries from extreme weather events
[7,8], anxiety/depression and post-traumatic stress disorders associated with climate-
induced disasters [6,9], behavioral disorders in elderly people and people with mental
ilnesses [9], and so on. Meteorological concerns include more frequent and intense
extreme weather events such as floods, droughts, and hurricanes [2,8,10—12]. The severity
and frequency of wildfires are also amplified [13,14]. In terms of agriculture, a positive,
self-reinforcing feedback loop is likely because farmers not only contribute to CC but are
also affected by it, and any attempts to compensate for these impacts exacerbate the effects
on the climate [15].

However, hydrogeologists are concerned about the impacts on groundwater (GW)
—water found in soils and rocks beneath the ground. GW is the largest reservoir of available
freshwater in the world [16—19] and a critically important resource. It is controlled by

climate conditions and is expected to be impacted by CC [1,19,20]. These impacts could
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be direct or indirect, where direct impacts generally affectits quantity and indirect impacts
affect quality. Specifically, direct impacts involve the natural replenishments or recharge
and directly affect the availability of the resource [19]. Indirect impacts may include
alterations in GW chemistry [21], increased mobility of geogenic contaminants [22], and
leaching of water-soluble contaminants [23] following intense and frequent precipitation
events. Additionally, during droughts, and as a result of altered redox conditions of
aquifers, environmental pollutants such as nitrates and sulphates may be mobilized [22]. In
coastal areas, these impacts include seawater intrusion due to reduced precipitation and
GW recharge [1,24], and seawater flooding due to increased frequency and intensity of
large coastal storms causing sea levels to rise [25]. In general, CC is causing alterations to
key aspects of GW quality, through variations in concentrations of organic and inorganic
compounds, dissolved oxygen levels, salinity, and pH [26].

Effectively managing GW resources now requires the inclusion of CC and
variability impact assessments, which have previously been overlooked [27,28]. Scientists
at the U. S Geological Survey (USGS) work with various tiers of national partners and
mternational collaborators to understand how these factors impact groundwater availability
in the United States [27]. However, because the variations in climate patterns would mean
that broad generalizations may not adequately capture these interactions, there is a need for
more localized studies that provide specific insights into how these variations impact GW.
At the same time, arid regions are environmentally fragile and highly sensitive to global
CC and variability, making CC assessments in such regions a hot topic in the climate

science field [29]. Given this context, this study assesses local CC — GW mnteractions in an
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arid region in the contiguous United States, with a focus on impacts related specifically to
GW availability.

In examining these interactions, it is important to consider the following: (1) natural
GW availability depends largely on precipitation, which is a major component of the global
water cycle i.e. a dynamic system describing the continuous movement and exchange of
water between the Earth’s surface and atmosphere. (2) CC has significant direct impacts
on this system [30,31]. With extreme weather becoming even more extreme, the disparity
in precipitation between wet and dry areas is expected to intensify [26]. (3) These changes
or shifts in the water cycle over any landscape or terrain can be quantified using the
terrestrial water cycle intensity (WCI) metric [32—34], where WCI is defined as the sum of
precipitation (P) and evapotranspiration (ET) averaged across a landscape unit over a
specified time step [33], and P and ET are important components of the global water cycle.

Using satellite-based estimates of P and ET for the WCI computation, along with
groundwater level (GWL) measurements from 59 monitoring wells, we explored the
dynamic relationship between WCI and GWL anomalies at local scales across the
predominantly arid U. S State of Arizona, employing an innovative approach to statistical
correlation and causation analyses. We hypothesize that: (1) Monthly WCI and GWL
anomalies over Arizona between January 2010 and December 2019 show a strong, negative
correlation. (2) There is a strong lead-lag relationship between both variables, where the
hypothesized lead variable (WCI anomaly) improves the prediction of the lag variable

(GWL anomaly).
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Figure 1. Study Area showing groundwater monitoring wells and surficial geology.

Modified after: Zowam and Milewski (2024) [35].

Materials and Methods

While there is currently no universally accepted WCI indicator over land [33],
Huntington et al. (2018) [33] introduced a terrestrial WCI framework that represents
landscape processes more effectively than previous efforts and can be applied across all
spatial and temporal scales of interest. The authors defined the terrestrial WCI as the sum
of P and ET over a specific landscape unit and time interval, and calculated the WCI for
the contiguous United States (CONUS) between 1945 and 2014, using ground-based P and
ET measurements. In a recent article, Zowam et al. (2023) [34] validated the use of remote

sensing for the WCI computation and extended the calculations for the CONUS to cover a
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more recent period (2001 to 2019). In this study, a similar remote-sensing WCI approach
is applied for a much smaller landscape area (Arizona) and period (2010 to 2019).

We utilized the final processing run of the Global Precipitation Measurement
(GPM) dataset generated using the Integrated Multi-Satellite Retrievals for the GPM
(IMERG) algorithm. IMERG is considered an excellent alternative to ground-based
observations [36], and is particularly effective over semi-arid and arid regions [37,38]. The
monthly 0.1° % 0.1° resolution dataset was downloaded from the NASA data portal
(https://gpm.nasa.gov/data/directory, accessedon 11 May 2021).

For ET, a finer grid resolution (0.01° x 0.01°) synthesizing various global satellite
ET measurement efforts was downloaded from the Harvard Dataverse repository
(https:/doi.org/10.7910/DVN/ZGOUED, accessed on 3 July 2021). The synthesized
product outperformed local ET products in the United States, China, and the continent of
Africa [39]. Monthly GWL data was obtained by averaging daily observations from 59
monitoring wells downloaded from the National Groundwater Monitoring Network
(NGWMN) portal (https://cida.usgs.gov/ngwmn/index.jsp, accessedon 29 January 2023).

The P and ET rasters (Table 1) were resampled to a grid size of 0.125° x 0.125° to
ensure consistency with the Zowam and Milewski (2024) [35] study on griddled GWL
prediction, conducted in the same study area. Anomalies for the resulting WCI rasters were
calculated for each 0.125° x 0.125° grid by subtracting each month’s WCI from the annual
average (2010 to 2019). Similarly, monthly GWL anomalies were determined at each well
location by subtracting each month’s averaged GWL from the annual average at that

location.


https://gpm.nasa.gov/data/directory
https://doi.org/10.7910/DVN/ZGOUED
https://cida.usgs.gov/ngwmn/index.jsp
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Table 1. Summary of variables used in the study. All data was processed in ArcGIS Pro

(version 2.9.3).

ID Variable Type Resolution Unit
1 P Grid 0.1° | monthly mm
2 ET Grid 0.01° | monthly mm
3 GWL Point — | daily feet

Note(s): P =Precipitation; ET = Evapotranspiration; GWL = Groundwater level. P and ET
were resampled to 0.125° x 0.125°, and produced the WCI rasters.

Statistical Correlation

Differencing both datasets (WCI and GWL anomaly) eliminated any existing time
correlation and reduced the number of observations by one. The resulting datasets satisfied
the assumptions for Pearson correlation, following assessments based on strip charts,
histograms, and bivariate plots, while considering only substantial departures from
normality. Pearson correlation was performed simultaneously on 59 grids, each
corresponding to the location of a monitoring well, to determine the strength and direction

of the linear relationship between the variables (r).

2(X; —X) (v -V)

Txy =
(2007 303 -7

(1) [40]

Where 7yy is the Pearson correlation coefficient between the variables X and Y ranging
from —1 (perfect negative) to +1 (perfect positive); X; and Y; are individual observations
of variables X and Y respectively; X is the mean of variable X; Y is the mean of variable Y

[40].



98

The statistical correlation described above assumes a contemporaneous relationship
between WCI and GWL anomalies, which may not necessarily be the case. Thus, we
repeated the correlations at several lag intervals, up to a predetermined maximum of 12
months. This approach is known as cross-correlation and examines whether the
fluctuations in one variable precede, are led by, or occur contemporaneously with
fluctuations in the other variable [41]. The result of the cross-correlation function (ccf)
analysis is a plot of correlation coefficients at the various examined lags, where the x-axis
represents lag intervals, and y—axis indicates the correlation coefficients. The x-axis
extends equally n both positive and negative directions from zero, meaning that a
maximum lag of 12 months, for example, will show correlation coefficients at 24 different
lags (—12 to +12). Considering how the analysis was set up, substantial correlation
coefficients at negative lags indicate that the input time series precedes the output series,
and vice—versa [42]. In this study, WCI anomaly (WCIA) is the input variable and GWL
anomaly (GWLA) is the response variable of interest.

Granger Causality

Origmally developed in the field of economics [43], Granger Causality (GC) has
been applied across various disciplines including atmospheric and climate sciences [44,45],
and recently, in hydrogeology, to understand groundwater patterns [46].

Given two stationary time series X and Y, we say X granger causes Y if our ability
to predict future values of Y is enhanced when using all information except current values
of X [43,46]. This is expressed mathematically as:

Xe =20l X j+ 200, bj Y j+ € (2) [43]

And:
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Yi=Xllic Xe j+ XL, dj Ve j+my (3) [43]
Where X; and Y, are two stationary time series, j is the current lag, m is the maximum
number of lags considered, a;, b;, cjand d;are coefficients, and €; and n; represent the
two uncorrelated white noise series [43]. X; will granger cause Y; if ¢;is not zero [43].
Similarly, Y, will granger cause X; if bjis not zero [43]. If both events occur
simultaneously, then a feedback relationship exists between both variables [43]. This is
known as bidirectional Granger-causality [47,48,49].

GC tests were conducted on the significant lags identified in the ccf analysis,
evaluating the influence of past values of one-time series on another. The null hypothesis
that the past values of WCIA do not provide any useful information for predicting GWLA
(and vice versa) was tested. The hypothesis for each test was rejected when a P—value less

than 0.05 was returned.

Correlation
Yes (lag = 0)

Y Correlation Correlation
A (lag = n) A (tag = ) ’

Significant ? ——. Significant ? 4>.

Causation «
Tests

Yes

Yes

Figure 2. Methodological flow chart. The red (No) symbols imply that a correlation is

close to zero. The blue (Yes) symbols indicate that a correlation is sufficiently different
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from zero. A significant correlation is sufficiently different from zero and meets the

threshold for statistical significance.

Results

All analyses were carried out in R (version 4.1.1). Statistical correlations were
conducted at each monitoring well location, first at zero lags and then examined atlags up
to 12 months (—12 to +12). The results (Table 2) show the correlation coefficients at zero
lag, the maximum correlation coefficient (considering all lags) along with its
corresponding lag, and an assessment of the significance of the correlation coefficients at
both zero lag and the maximum correlation. Cross-correlation coefficients are normally
distributed and considered statistically significant when they exceed the 95% confidence
interval threshold, indicating that the observed correlation is unlikely due to random chance
[50]. Maximum correlation (Max Cor) values greater than +0.4 are shown in bold (Table

2). The wells corresponding to these values (Figure 3) were the candidates for the GC test.

Table 2. Summary of correlation analysis at all monitoring well locations. ‘Cor’ refers to
the correlation coefficient, and ‘Max Cor’ refers to the maximum correlation coefficient
considering all lags. Negative (—ve) lags at the Max Cor suggest that WCIA precedes

GWLA, while positive (+ve) lags indicate the reverse.

ID Cor Significant? Max Lag Significant?
(lag =0) (Lag =0) Cor (Max Cor) (Max Cor)

1 -0.07 No +0.45|-0.44 -1|+1 Yes

2 +0.03 No —-0.23 —11 Yes

3 —-0.09 No —0.20 -3 Yes
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11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

+0.08
—-0.25
+0.00
-0.07
—-0.16
—-0.26
+0.19
—-0.10
+0.09
—-0.09
+0.12
+0.05
—-0.21
—-0.02
+0.03
-0.07
—-0.03
+0.05
—-0.38
+0.03
—-0.06
+0.19
—-0.37

—-0.08

No

Yes

No
Yes
Yes

No

No

No

Yes

No

Yes

Yes

—0.33
—0.25
+0.12
+0.22
+0.29
+0.35
—-0.27
—0.26
+0.25
+0.30
-0.44
—0.25
+0.27
+0.26
—0.26
+0.21
—-0.24
—0.32
—0.38
+0.32
—0.38
+0.19
—-0.37

+0.17

-10

+3
+2
+4
+1
+1

-11

+4
+1

+1

+7

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

n/a

Yes

Yes
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29
30
31
32
33
34
35
36
37
38
39
40
41
42

43

45
46
47
48
49
50
51

-0.15
-0.19
+0.23
-0.20
+0.02
-0.00
-0.17
—0.24
+0.00
-0.01
—0.05
—0.07
-0.12
+0.09
—0.11
+0.12
—0.07
—0.15
-0.12
—0.11
—0.05
-0.35
+0.18

-0.31

No

Yes

Yes

Yes

No

No

No

Yes

Yes

No

Yes

+0.37
+0.45
—0.24
—0.37
+0.21
-0.60
—0.17
+0.25
—0.22
+0.24
+0.23
+0.29
+0.19
-0.42
—0.26
-0.43
+0.31
—0.29
—0.26
—-0.31
—0.35
—0.35
-0.42

+0.38

+7

+10

+11

+8

Yes
Yes
Yes
Yes
Yes
Yes
n/a
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
n/a
Yes

Yes
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53

54

55

56

57

58

59

-0.14

-0.19

-0.16

+0.05

+0.06

-0.15

+0.03

—-0.06

No —-0.33 -12
Yes —-0.26 +12
No +0.36 -9
No +0.15 +10
No +0.24 -6
No —-0.35 +7
No +0.31 -4
No —-0.20 -2

Yes

Yes

Yes

Yes

Yes

Yes

Yes
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GC Test Locations

1 33 ® 43
® 14 o an 50

@ Other monitoring well

—36°N

—~33°N
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Figure 3. Location of the GC test wells showing the dominant trend. The strongest
correlations occurred at the locations of the colored circles.

Examining Well 33 and considering the way the analysis was set up, WCIA
preceding GWLA is indicated with red lines, and the reverse is shown in blue (Figure 4).
In this example, the variables are not contemporaneously correlated since the maximum

correlation occurs at a non-zero lag (+1).

CCF Plot (Well 33)

02

0.0 I 1

0.2 :~

04

Figure 4. Ccf plot for Well 43. Negative lags (red) suggest that WCIA precedes GWLA,
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and positive lags (blue) show GWLA preceding WCIA. The correlation at Zero lag is
shown in the solid black line, and the black dotted lines represent the lower and upper
confidence limits beyond which a correlation coefficient (y-axis) is statistically significant.

GC tests are forward-looking time-series analyses that determine whether past
values of a predictor variable are useful for predicting current values of the target variable
beyond the information obtained from past values of the target variable itself. Based on the
P—Values (Table 3) and a 5% significance level, we reject the null hypothesis that past
values of GWLA do not contain useful information for predicting WCIA values at all six
wells. Similarly, we reject the null hypothesis that past values of WCIA do not contain
useful information for predicting GWLA values at wells 1 and 33, where bidirectional

causality may be occurring.

Table 3. Results of the GC tests conducted at the wells with the largest lagged correlation
coefficients. WCIA ~ GWLA implies that GWLA is treated as the independent variable,
as determined by the ccfanalysis for the respective wells. GWLA ~ WCIA implies that

WCIA is treated as the independent variable, to evaluate the presence of bidirectional

causality.
ID Lag P-Value P-Value
(Max Cor) (WCIA ~ GWLA) (GWLA ~WCIA)
1 +1 0.000000062 0.000000053
14 +1 0.0000016 0.827
33 +1 0.00000000000038 0.001
41 +2 0.0000000065 0.148
43 +1 0.0000012 0.08

50 +1 0.0000054 0.06



106

Some of the GC test wells showed a close association with Active Management
Areas (AMAs) (Figure 5). AMAs are areas experiencing groundwater overdraft issues due
to their strong reliance on groundwater, prompting the active management of the resource
[51]. For instance, the relationship between WCIA and GWLA is particularly notable at
Well 33, as indicated by the results of the correlation analysis (Table 2), GC tests (Table
2), its association with an AMA (Figure 5), and the scatter plots of contemporaneous and

lagged correlations (Figure 6).

AMA and Correlation Wells

~36°N

33°N

GC Wells o

®-
1 33 ® 43
Q14 On 50 AMA

L — = Prescott
@ Other monitoring well
Santa Cruz  [30°N
0 25  50Miles
Pt — - Other

114°W 112°W 110°W
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Figure 5. AMAs and correlation wells. The GC test wells represent the locations of the

largest correlation coefficients in the study area. Some of these wells were located within

AMAs (Prescott and Santa Cruz).

Well 33 (Lag = 0)

Well 33 (Lag =

+1)

06 ¢ .

04 o ® ¢ o
s 1. 8 St e
O] : . * : %= * ity

_02 — Y 0%0 L ] .S

W : -« o

r=-0.003
-06 - ) |
[ I | [ I
-200 -100 0 100 200
WCIA

GWLA

WCIA

Figure 6. Scatter plots for Well 33 illustrate contemporaneous (lag = 0) and lagged (lag =

+1) relationships between WCI and GWL anomalies.

The ccfanalysis, initially conducted on 59 monitoring well sites, was extended to

59 ungauged sites (Figure 7) using the predicted GWLA data from Chapter Three. None
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of these ungauged sites showed a correlation up to the threshold magnitude of 0.4 (Table

4).

Distribution of Correlation Sites

—36°N

—33°N

@® Monitoring well site

% Ungauged site — - AMA
0 50 100 Miles

% Highest correlation
_—

114°W 112|°W 110°W

Figure 7. Locations where ccfanalysis between GWLA and WCIA were conducted. The
black circles indicate the original monitoring well locations. The black stars represent
ungagged sites corresponding to the locations of the WCIA (chapter Two) and ML—
predicted GWLA (chapter Three) grids. The red stars indicate the locations where the black

stars showed the highest correlation coefficients.
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Table 4. Summary of ccfanalysis between GWLA and WCIA at the ungauged sites. The

wells with lagged correlation coefficients greater than 0.3 are shown in bold.

ID Cor Significant? Max Lag Significant?
(lag =0) (Lag =0) Cor (Max Cor) (Max Cor)
1 —-0.05 No —0.23 +8 Yes
2 -0.04 No +0.15 -6 No
3 —-0.01 No +0.18 +5 No
4 +0.12 No +0.26 +2 Yes
5 —0.10 No -0.21 —4 No
6 -0.03 No -0.20 +2 Yes
7 +0.19 Yes -0.33 +4 Yes
8 +0.12 No -0.33 +4 Yes
9 +0.13 No -0.26 +4 Yes
10 +0.07 No -0.29 -8 Yes
11 —-0.07 No +0.29 -8 Yes
12 —-0.07 No -0.19 +1 Yes
13 +0.00 No -0.26 +1 Yes
14 +0.17 Yes +0.17 0 n/a
15 +0.11 No -0.19 -9 Yes
16 —0.26 Yes +0.33 +2 Yes
17 +0.02 No +0.15 +10 No
18 —0.08 No -0.17 +10 No
19 —-0.13 No —-0.19 +9 Yes
20 -0.12 No +0.25 -1 Yes
21 +0.15 No -0.22 -1 Yes
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23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

+0.24

—-0.05

-0.07

—-0.09

—-0.09

+0.05

+0.08

+0.15

-0.12

+0.21

+0.12

—-0.08

—-0.07

+0.03

+0.10

+0.05

-0.17

+0.02

+0.09

+0.03

—-0.06

+0.20

-0.09

+0.14

+0.24

-0.17

+0.20

+0.22

-0.26

—-0.18

+0.16

+0.16

+0.22

+0.21

+0.29

+0.16

—-0.18

+0.26

+0.16

—-0.20

-0.26

—-0.18

+0.21

+0.18

+0.20

+0.20

+0.23

+0.17

+11
+8

+8

+6

+12
+1
+7

+4

+11
+8
+1

+8

n/a

Yes
Yes

Yes

No
No
Yes
n/a

Yes

Yes
Yes

Yes
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46 —-0.10 No —-0.24 -8 Yes
47 -0.10 No -0.21 -4 Yes
48 +0.02 No +0.19 -10 Yes
49 —-0.04 No —-0.16 +10 No
50 —0.05 No —0.17 +8 No
51 —-0.01 No +0.23 -8 Yes
52 —-0.01 No +0.21 +4 Yes
53 +0.03 No -0.24 +4 Yes
54 +0.06 No +0.23 -12 Yes
55 -0.02 No -0.25 -8 Yes
56 +0.10 No -0.20 +2 No
57 +0.04 No +0.16 +1 No
58 +0.12 No +0.23 -10 Yes
59 +0.09 No +0.22 -3 Yes
Discussion

The relationship between GWLs and driving factors is typically complex and

nonlinear [35,52-55], but if precipitation is typically linearly correlated with GWL [56—

58], likewise ET [58], we expect the WCI, a variable obtained from precipitation and ET,

to also show a linear relationship with GWL. This was mostly not the case for the

contemporaneous relationship (lag =0) between GWLA and WCIA examined in this study.

However, a moderate to strong linear relationship was observed at six monitoring well
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locations (1, 14, 33, 41, 43, and 50) when WCIA at time t + k was compared with GWLA,
where k represents the lag (Table 2). This correlation occurred at positive lags, implying
that changes in WCIA lagged GWLA, and was negative at all six sites, indicating that an
increase in lagged values of WCIA corresponds to a decrease in GWLA values, and vice
versa (Table 2). Groundwater influences climate in various ways, including contributions
to soil moisture [19]. Aquifers are also often hydrologically connected to surface water
bodies that they feed or that feed them, which may also influence the climate and the water
cycle by providing additional moisture (in the case of a gaining stream). The findings in
this study corroborate some of these known interactions and present a new outlook for
climate and groundwater relationships in the study area.

Contemporaneous correlation (lag = 0) was observed at wells 5, 22, 25, 26, 34, and
49 (Table 2), because at those wells, the maximum correlation appeared at zero lag,
indicating that the observed fluctuations between the two variables occurred within the
same time period (without any delay between them). This correlation was not significant
at well 34, but at wells 5 and 25, it was the only statistically significant correlation.
Therefore, at wells 5 and 25, we accept the null hypothesis that there is no significant lead-
lag relationship between both variables at the examined lags. Also, the maximum
correlations at non-zero lags were not statistically significant at wells 6, 27, and 55 (Table
2). At these wells (as well as at well 34), there is no evidence of a relationship between
WCIA and GWLA.

The strongest lagged correlation (—0.60) was observed at well 33 (Table 2) and
occurred at a lag of +1, indicating that GWLA in the current month had a strong linear

relationship with WCIA m the following month (and vice-versa). GWLA also showed the
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strongest relationships  with precipitation (—0.58) and evapotranspiration (—0.43)
anomalies, all three occurring at the same lag (+1), suggesting that the influence of GWL
on climate at that location occurs at a lag of +1. GC tests returned statistically significant
results atall six wells based on P-values (Table 3), implying that the past values of GWLA
provide useful information for predicting WCIA values beyond what is provided by the
autoregressive structure of the WCIA variable. But at wells 1 and 33, WCIA also provided
useful information for predictng GWLA (Table 3). This suggests that bidirectional
causality exists at those locations (and lag). However, at well 33 specifically, the much
larger F-statistic implied stronger evidence for the former (GWLA granger causing
WCIA). F-statistic measures the ratio of explained variance to unexplained variance in
statistical analyses [59], and the corresponding p-value represents the probability of
observing the statistic or one more extreme, if the null hypothesis, is true [60].

Out of the five AMAs — Santa Cruz, Prescott, Phoenix, Pinal, and Tucson [51],
Prescott and Santa Cruz contained monitoring wells with some of the strongest lagged
correlations, including well 33 (Figure 5). This suggests that these AMAs might be
hydrogeologically sensitive to shifts in the terrestrial water cycle. At the ungauged sites,
we lowered the substantial correlation threshold to a magnitude of 0.3 to account for
uncertainties in the GWLA predictions. Two of the three ungauged sites where the highest
correlation coefficients were observed showed a “GWLA leading WCIA™ relationship
(Table 4). One of the them happened to also be in the same AMA as Well 33 (Table 4,
Well 7; Figure 7). Given that several other factors simultaneously influence GWLs, future
researchmust expand on this insight to understand how each of these factors influences the

WCI-GWL relationships at the AMAs and other vulnerable areas.
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Conclusion

The dynamic relationship between WCIs and GWLs at local scales across the
predominantly arid U.S. State of Arizona was evaluated using statistical correlation and
causation analyses. Circling back to the hypotheses outlined in the introduction: (1) GWLA
did not show a strong negative contemporaneous correlation with WCIA. The correlation
was weak or absent, and not necessarily negative across all wells. (2) Although the study
identified a lead-lag relationship between both variables, this relationship was also not
strong across all 59 wells and where it was strong, GWLA generally led WCIA. Therefore,
we reject both hypotheses.

The strongest lagged correlation coefficients across all (gauged and ungauged) sites
were dominantly negative. This trend implies that a continuous intensification of the water
cycle reflects a decline in past GWLs in the affected areas. This backward interpretation
may help determine when immediate management responses and swift interventions are
necessary. The connections with AMAs reinforce the need for the continuous monitoring

and effective management of groundwater in vulnerable areas.
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CHAPTER 5
CONCLUSION

In this study, the analyses progressed from a broad-scale national focus (chapter
two) to local scales (chapters three and four), to understand climate change impacts on
groundwater levels at local scales within a vulnerable semiarid/arid region. This chapter
provides a summary of the key findings and reinforces their implications for water security
and management.

First, the water cycle is speeding up in many parts of the contiguous United States
(CONUYS) particularly the west, and the El Nifio-Southern Oscillation (ENSO), the most
prominent naturally occurring climate variability pattern, impacts this intensification by
bringing more water to the southeast, west, and parts of the north, and reduced moisture to
the northeast region [1]. In particular, the state of Arizona might be experiencing more
pronounced intensification compared to other arid regions of the CONUS, and was the
focus of the remainder of the study [1].

Machine learning methods were combined with advanced geospatial interpolation
models to develop the first statewide groundwater level anomaly (GWLA) prediction for
the US State of Arizona across its two distinct aquifer types: the unconsolidated sand and
gravel aquifer, and rock aquifer [2]. The multi-model approach, which utilized only
remotely sensed mput variables, demonstrated satisfactory performance, and can be

replicated for similar climates and hydrologically data-sparse and remote areas of the world

[2].



124

Eventually, a detailed statistical correlation analysis between water cycle intensity
and groundwater level anomalies (WCIA, GWLA) was conducted at known monitoring
well locations and several ungauged sites across the state of Arizona. The dominant
(statistically significant) relationship was a negative lead-lag correlation between WCIA
and GWLA, observed at eight of the sites (combining gauged and ungauged sites), where
an increase in current WCIA would result in a decrease in past GWLA values, and vice-
versa [3]. Some of these sites coincided with areas previously designated as Active
Management Areas (AMAs), where the strictest groundwater management regulations are
enforced [3]. Notably, the strongest negative lead-lag relationship (—0.6) in this study was
observed within one of these AMAs [3].

Given that the changes in WCIA lag behind changes in GWLA, an intensified water
cycle today may signal an already depleting groundwater resource at the affected sites.
Therefore, to mitigate climate change impacts on groundwater availability across the study
area, relevant authorities must take cues from studies like this to inform strategic
groundwater management decisions in a timely and efficient manner and strengthen

groundwater monitoring efforts.
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