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ABSTRACT 

Climate change is speeding up parts of the global water cycle, and the water cycle 

intensity (WCI) is a tool to quantify this acceleration. Given that groundwater is a 

component of the global water cycle, this dissertation aims to understand how WCI 

changes (attributable to climate change) affect groundwater availability, specifically for 

arid regions. A previous effort to quantify the WCI over any landscape made use of ground-

based datasets and focused on historical trends (1945 – 2014). This dissertation: (1) 

validated a remote sensing approach for quantifying the WCI over the contiguous United 

States (CONUS) for a more recent period (2001 – 2019) – to capture current climate change 

trends. Next, it (2) employed data analytics to predict groundwater level anomalies 

(GWLAs) across an arid region within the CONUS determined by the results of the WCI 

analysis, using observations from existing groundwater monitoring wells and remotely 

sensed predictor variables, such as, precipitation, soil moisture, evapotranspiration, and 

vegetation cover. Finally, it (3) explored the dynamic relationship between the results of 



the first two objectives for the arid region of interest, based on an innovative approach to 

statistical correlation and causation analysis. 

The water cycle is speeding up over about half of the CONUS particularly the west, 

and the state of Arizona might be experiencing much higher WCI rates on average 

compared to other arid regions of the CONUS. A multi-model approach to predict monthly 

GWLAs across multiple aquifers in Arizona between January 2010 and December 2019 

demonstrated satisfactory performance, and the predictive accuracy was much higher for 

the unconsolidated sand and gravel aquifers. Finally, a moderate to strong negative lead-

lag relationship between groundwater and WCI anomalies (GWLAs leading WCI 

anomalies) was revealed at various sites across the study area. Some of these locations 

were contained within Active Management Areas (AMAs) – areas characterized by high 

groundwater reliance and the enforcement of the strictest groundwater regulations. 

This study underscores the importance of groundwater monitoring and strategic 

management in vulnerable areas. The exclusive use of remotely sensed variables ensures 

that data scarce and vulnerable regions are well represented and the study’s objectives can 

be replicability globally. 
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CHAPTER 1 

INTRODUCTION 

All of the waters within the earth-atmosphere system are continuously cycled 

through a complex process known as the water cycle. As a cycle, there are no start or end 

points but rather a series of processes or phases that are a part of a continuous system. 

These phases include precipitation, evaporation, transpiration, surface runoff, and 

infiltration.  Climate change is known to impact this system (Trenberth, 2014; Malinowski 

and Skoczko, 2018). But what exactly is ‘climate change’, and why is it important?  

According to the Intergovernmental Panel on Climate Change (IPCC), climate 

change is simply the long-term (decades or longer) variation in average weather conditions 

of a place (Kumar, 2012), brought about by anthropogenic activities and emissions that 

increase the concentrations of greenhouses in the atmosphere (Kumar, 2012, Trenberth, 

2011; Trenberth, 2018). These gases are methane, carbon dioxide, and nitrous oxide 

(Trenberth, 2011), and they trap outgoing radiation, resulting in the accumulation of heat 

and warming of the planet (Trenberth, 2011; Trenberth, 2018). Between 1970 and 2004, 

the global anthropogenic greenhouse gas emissions increased by 70 percent (IPCC., 2007), 

and between 1990 and 2019, the warming effects associated with these gasses increased by 

45 percent (36 percent for carbon dioxide alone) (Indicators, 2015). This ultimately leads 

to a change in climate (MacCracken, 2001). 

This human-induced change in climate is changing precipitation patterns and the 

water cycle (Trenberth, 2011). Hydrologic extremes are becoming more extreme 
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(Kundzewicz, 2008; Malinowski and Skoczko, 2018) and the difference in precipitation 

patterns between wet and dry areas is intensifying (Dao et al., 2023). In particular, these 

changes are likely to impact the natural recharge of groundwater in many parts of the world. 

For instance, for most of the United States, a warming of 1.5 °C could lead to a loss of over 

100 billion cubic meters of groundwater storage within four years (Condon et al., 2020). 

This can be especially troubling for arid and semi-arid regions where surface water 

availability is already limited. 

Therefore, this dissertation addresses the impact of climate change on groundwater 

availability in arid regions through a systematic investigation comprising three distinct 

stages or phases:  

The first phase (chapter 2) aims to quantify the terrestrial water cycle response to 

climate change for any point on the globe, using remote sensing. The terrestrial water cycle 

is the continuous movement and re-distribution of water between the earth’s land surface 

and atmosphere, and groundwater is a component of that cycle. Huntington et al. (2018) 

proposed a framework for quantifying the terrestrial water cycle intensity (WCI) across the 

contiguous United States (CONUS), but their approach is primarily beneficial to data-rich 

regions like the CONUS. As a result, this phase will include the validation of a remote 

sensing WCI approach (for the CONUS) that will be more beneficial for data-scarce 

regions. Regions where the water cycle is intensifying will show a positive change in WCI 

(ΔWCI > 0) and a weakening cycle will show a negative change (ΔWCI < 0). (Huntington 

et al., 2018). 

Predicting groundwater in arid regions can be challenging due to several factors 

including the limited number of monitoring wells, insufficient and incomplete data, and 
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inaccurate estimates of aquifer recharge and discharge (Tladi et al., 2023). The second 

phase of the investigation (chapter 3) explores ways to overcome this challenge, using a 

combination of machine learning and geospatial interpolation models, and remotely sensed 

input variables to predict groundwater levels at a regional scale much smaller than the 

CONUS. Machine learning is a subset of artificial intelligence that learns patterns in 

datasets in order to make predictions, and its application can be seen in our everyday lives. 

For example, movie streaming services (such as Netflix) recommend new movies based on 

the movies we’ve seen previously, the time of the day we saw those movies, and so on. 

Online marketplaces (such as Amazon) recommend products to us based on items we’ve 

previously purchased or tried to purchase. Similarly, the focus here is to learn relationships 

between groundwater levels observed at monitoring wells and various remotely sensed 

explanatory variables such precipitation, soil moisture, land surface temperature, and so 

on, to predict groundwater levels at locations without monitoring wells. The study area 

selection for this phase will be based on the findings and interpretations from phase 1. 

Changes in terrestrial water cycle intensities from phase 1 serve as indicators of 

climate change, and groundwater levels from phase 2 are our measure of groundwater 

availability. Phase 3 (chapter 4) assesses the dynamic relationships between the research 

products of Phase 1 and 2 to evaluate dependencies and interactions between both variables 

at local scales within the region of interest.  

All of this would be done using remotely sensed datasets from satellites with global 

coverage, meaning that these can be replicated at any point on the globe. Still, the biggest 

beneficiaries of this remote sensing approach are the data sparse regions of the world where 

field based hydrological variables are limited or largely inaccessible. This study promises 
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to be a valuable resource for monitoring groundwater resources in the face of global 

warming and climate change threats, and it is my hope that it contributes substantially to 

the existing body of knowledge towards planning for an unpredictable climate future. 
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CHAPTER 2 

A SATELLITE-BASED APPROACH FOR QUANTIFYING TERRESTRIAL WATER 

CYCLE INTENSITY 1 

1 Zowam, F.J., Milewski, A.M., and Richards IV, D.F. 2023. Remote Sens. 15(14), 3632. 

Reprinted here with permission of the publisher. 
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Abstract 

The terrestrial water cycle intensity (WCI) is a widely used tool to quantify the 

impact of climate change on the distribution of global water resources. In this study, a 

satellite-based WCI was tested by comparing the parameter-elevation regressions on 

independent slopes model (PRISM) precipitation estimates with those of the Global 

Precipitation Measurement (GPM) satellite mission across the contiguous United States 

(CONUS), based on an existing Köppen–Geiger climate classification for the CONUS. 

Both precipitation products were not statistically different across all climate classes. 

Consequently, satellite-based WCI changes between two multiannual periods (2001 to 

2009 and 2010 to 2019) were calculated at a 0.1-degree spatial resolution using the GPM 

and a validated global evapotranspiration dataset. This study showed that: (1) The water 

cycle is speeding up in many parts of the CONUS, particularly the West, driven by recent 

increases in both precipitation and evapotranspiration through much of the region. (2) The 

El Niño-Southern Oscillation (ENSO) may be influencing the WCI of the CONUS by 

driving precipitation in the west, southeast, and parts of the north, and dryness in the 

northeast regions. The hydrological impacts of these results cannot be generalized. 

However, flood and drought risks, water availability and quality issues remain key primary 

concerns. 
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Introduction 

The terrestrial water cycle is the continuous circulation and redistribution of water 

between the earth’s land surface and atmosphere. The intensity of this circulation over any 

spatial-temporal scale is expressed as the sum of precipitation and evapotranspiration [1]. 

Globally, precipitation and evapotranspiration rates are increasing as mean air temperatures 

continue to rise due to global warming [2]. The period from 2012 to 2021 was the warmest 

decade recorded since 1901, where the warmest years were 2016 and 2020 [3]. In the 

United States, the last four decades, prior to 2021, have seen faster warming than the global 

average [3]. It is expected that these increased temperatures will strengthen the 

atmosphere’s evaporative demand, causing an increase in evapotranspiration rates due to 

water availability. This was evident during two fifteen-year periods spanning from 1984 to 

2015, where global evapotranspiration increased by at least 3.57 cubic miles/year as the 

areas covered by water also increased [4]. Increases in global evapotranspiration rates will 

increase the likelihood and frequencies of droughts in many parts of the world just as flood 

risks increase with increasing precipitation intensities. While floods and droughts are both 

undesirable and extreme hydrological events, droughts can particularly disrupt the natural 

recharge of both surface and groundwater systems and potentially threaten global water 

security. Thus, the terrestrial water cycle intensity (WCI) is a valuable tool for monitoring 

and assessing changes in specific components of the water cycle in response to a changing 

climate. 

By using climate variables from the parameter-elevation regressions on 

independent slopes model (PRISM) to calculate WCI changes for the contiguous United 
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States (CONUS) between the averages of 1945 to 1974 and 1985 to 2014 [1], two possible 

considerations became apparent. (1) The temporal spread of their study did not exclusively 

address current climate change anomalies. In the CONUS, the last two decades prior to 

2021 have shown most of the warmest years in a 120-year record [3]. (2) PRISM uses point 

measurements of climatic observations from a wide range of monitoring networks to 

develop spatially continuous climate datasets. Such methodology will be less effective in 

data-sparse regions of the world. In fact, most of the earth’s surface lacks adequate in situ 

precipitation measuring stations [5–7]. In developing countries, the situation is not 

improving [8–10]. Cases of inadequacy have been well reported over the continents of 

Africa [10–15] and South America [12,16–19]. To put this into perspective, the average 

rain gauge density in the United States is 1.3 gauges per 1000 sq. km [20], but Nigeria, one 

of the largest developing African countries, has only 87 operational stations and is 970 

short of achieving a density of 1 gauge per 874 sq. km [21]. In many regions of Africa and 

South America, the rain gauge density is as low as 1 gauge per 100,000 sq. km [22]. Of 

course, understanding WCI changes in these regions where hydrometeorological data may 

be limited is as useful as it is over data-rich areas. Therefore, addressing both issues is to 

evaluate the feasibility of using satellite-sourced variables to understand the implications 

of recent temperature anomalies for the WCI of the CONUS. 

The tropical rainfall measuring mission (TRMM) was the first satellite devoted to 

measuring precipitation from space [23]. It was launched in 1997 and estimated tropical 

rainfall for about 17 years [24–26]. Since the evolution of TRMM and its successor, the 

GPM mission, several researchers have evaluated the ability of various satellite-derived 

precipitation products to capture the patterns and intensity of rainfall. In the Middle East, 
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between 1998 and 2013, three of these products namely: the TRMM Multi-Satellite 

Precipitation Analysis 3B42 (TRMM-3B42) product, the Climate Prediction Center 

MORPHing technique (CMORPH), and the precipitation estimation from remotely sensed 

information using artificial neural networks (PERSIANN), failed to effectively replicate 

severe daily rainfall events [27]. Similar results were reported for a mountainous region in 

eastern Italy between 2003 and 2010 [28]. In Africa, the TRMM-3B42 was able to detect 

spatial and seasonal rainfall patterns, and reasonably estimate high-intensity events over 

the Blue Nile basin in Sudan between 2001 and 2016 [29]. Over the Three Gorges 

Reservoir area of China, between 2001 and 2016, all three products showed varying 

strengths in terms of rainfall amount, extreme precipitation, and rainy-day detection ability 

[30]. In most of these cases, TRMM proved to be a reliable source for continuous 

measurements in space and time at the monthly and annual scales. Its successor, the GPM 

mission, made use of the most advanced instruments in space [31] and improved spatial 

resolution (0.25° to 0.1°), revisit times (3 h to 30 min), and latitudinal coverage (quasi-

global) compared to TRMM [26]. Despite these advancements, the integrated multi-

satellite retrievals for the GPM (IMERG) algorithm, which estimates precipitation from 

GPM constellation retrievals, incorporates early TRMM estimates in its latest version to 

produce a consistent, long-term precipitation record [31,32]. Otherwise, systematic biases 

exist between both missions, underscoring the need to make appropriate considerations 

when utilizing their respective products. In east-central China, the final IMERG product 

outperformed the early IMERG, late IMERG, near-real-time, and post-processing TRMM 

products, providing the most accurate estimation of daily and monthly rainfall [33]. Over 

Singapore, the GPM IMERG performed better than two TRMM products (3B42 and 
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3B42RT) in detecting precipitation, capturing variabilities, and providing more accurate 

daily estimates [24]. Over a mountainous region in southwest China, the GPM IMERG and 

3B42 products were evaluated against observed rain gauge data from a dense gauge 

network, where the IMERG product showed improved capabilities to capture rainfall 

variability and detect medium and high-intensity events but tended to overestimate the 

high-intensity events [34]. In the CONUS, the GPM IMERG performed better than the 

3B42 product in capturing precipitation intensity variations, reducing missed-precipitation 

bias for winter and summer precipitation, reducing false-precipitation bias for summer 

precipitation, and showing better consistency in capturing spatial distribution patterns at 

monthly time scales, based on comparisons with ground-based, gauge-corrected radar 

systems [35]. Globally, IMERG enhances precipitation detection capacity, outperforms 

other satellite products in its ability to capture spatiotemporal variability of extreme events, 

and is one of the best alternatives to ground-based measurements [36]. 

On the other hand, satellite remote sensing of ET generally has lesser efficiencies 

than precipitation, with significant disparities among various observatory satellites. 

However, in a recent study, Elnashar et al. (2021) [37] ranked the performance of 12 global 

(satellite) ET datasets after validation against flux eddy covariance ET from 645 sites based 

on six metrics. The authors synthesized the best-performing products into a single, much-

improved ensemble global ET dataset across all land cover types, from 1982 to 2019. Their 

methodological approach provided some insight for this study. 

The main objectives of this study are twofold. (1) To develop a framework to test 

the ability of a remote sensing WCI by first evaluating the reliability of satellite products 

to estimate precipitation over the CONUS. Monthly PRISM and GPM IMERG 
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precipitation estimates between January 2001 and December 2019 will be compared for 

different climates based on three metrics and a statistical test on their difference. (2) Upon 

successful completion of the first objective, calculate WCI changes between two separate 

multiannual periods (2001–2009 and 2010–2019), using the GPM precipitation product 

and the Elnashar et al. (2021) validated ET datasets (Figure 1). 

Shifts in the water cycle are among the most consequential effects of climate change [38]. 

There are also naturally occurring climate variability signals that potentially modify 

regional climates and alter WCI patterns. The quasi-periodic fluctuation in equatorial 

Pacific Ocean temperatures, otherwise known as the El Niño—Southern Oscillation 

(ENSO) is the most prominent year-to-year climate variation affecting underlying weather 

and climate patterns on Earth [39]. Sea surface temperatures (SSTs) act as natural 

indicators of these events, where above-average temperatures may indicate a warm (El 

Niño) phase and below-average temperatures, a cold (La Niña) phase. Various impacts of 

El Niño and La Niña on the climatology of the CONUS have been well reported—some of 

which include: the correlation between summer rainfall in the central CONUS from 1950 

to 1990 and El Niño events [40], correlations between the 1988/1993 North America 

summer droughts/floods and La Niña/El Niño signals in those respective years [41], the 

influence of El Niño on winter precipitation in California from 1901 to 2010 [42], and the 

attribution of the 2012 drought in the south and south-central CONUS to the recurring 

2010-11 and 2011-12 La Niña episodes [43]. Therefore, in addition to calculating satellite -

based WCIs, this study also aims to quantify the influence of these events on WCI changes 

across the CONUS for the selected period of study. 
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Figure 1. Flow chart showing the conceptual framework, data acquisition, and processing 

steps towards the main objectives of the study. The blue boxes represent the precipitation 

datasets, and the red box represents the evapotranspiration dataset used in the study. 

 

Materials and Methods 

The final run of the IMERG fusion, the most suitable version for research purposes 

[44], was used in this study. It was accessed and downloaded from the NASA data portal 

(https://gpm.nasa.gov/data/directory, accessed on 11 May 2021). A gridded global 

precipitation dataset with 0.1-degree spatial (~11 km) and monthly temporal scale was 

downloaded in Tiff format for January 2001 to December 2019.  

A gridded PRISM precipitation raster dataset for the CONUS with 4 km (~0.04 

degree) cell size and monthly temporal scale was also downloaded. This dataset, acquired 

in Bil formats from the Oregon State PRISM data portal (https://prism.oregonstate.edu/ , 

accessed on 11 November 2022) for January 2001 to December 2019, was resampled to 

the spatial resolution of the GPM rasters. 

https://gpm.nasa.gov/data/directory
https://prism.oregonstate.edu/
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The [37] validated global ET research product was accessed from the Harvard 

Dataverse research data repository (https://doi.org/10.7910/DVN/ZGOUED, accessed on 

3 July 2021). A gridded monthly ET dataset with 0.01-degree (~1 km) spatial resolution 

was downloaded in Tiff format for the same period covered in both precipitation datasets. 

The downloaded rasters were upscaled to the spatial resolution of the precipitation datasets. 

The gridded GPM and PRISM products were compared for various climates based 

on the Beck et al. (2018) [45] present-day Köppen–Geiger climate classification (Figure 

2). The first letters in the classification scheme (A, B, C, D) represent the main climate 

types: tropical, arid, temperate, and cold [45]. The second (W, S, f, s, w, m) and third letters 

(h, k, a, b, c,) indicate moisture and air temperature characteristics, respectively [46]. The 

Csa climate class, for example, represents a temperate, mild climate with more 

precipitation in the winter than in summer where the summer months are hot, and is 

identical to the Csb except that it has hotter summers (Figure 2). 

https://doi.org/10.7910/DVN/ZGOUED
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Figure 2. Present day (1980–2016) Köppen–Geiger climate classification map by [45] 

showing 17 classes across the CONUS and the 17 randomly selected sample points for the 

first sample run. 

For each of the 17 different climate classes over the CONUS, 17 (0.1-degree) cells 

(each representing a climate class) were randomly selected (Figure 2). Monthly 

precipitation estimates were then extracted from both precipitation datasets, and the 

procedure was repeated twice to obtain a total of three sample runs and 51 (0.1-degree) 

cells—three cells representing each climate class. 

A paired t-test of the difference in means between the GPM and PRISM 

precipitation estimates was performed on each set of 17 randomly selected points, where a 

null hypothesis of zero was tested at a significance level of 0.05 (5%). First, a differencing 

technique to eliminate spatial and time correlations was applied to the datasets. 

Differencing both datasets reduced the number of observations by one. 
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The datasets were further compared based on three model evaluation metrics: 

coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), and Kling–Gupta 

efficiency (KGE). The NSE compared each observed (GPM) value with its corresponding 

simulated (PRISM) value, normalizing their difference by the variance of the observed 

time series. It ranges from negative infinity to one, with higher values indicating a well-

varied observed time series that aligns closely with the simulated values. Like the NSE, the 

KGE ranges from negative infinity to one but with more straightforward relationships 

between correlation, variability, and bias [47]. 

Following successful evaluations at the 51 randomly selected points, monthly WCI 

was calculated for each 0.1-degree cell across the CONUS by summing up the GPM 

IMERG precipitation and corresponding evapotranspiration values from Elnashar et al.  

(2021). The total annual WCI for each year was obtained by adding these monthly WCI 

values, year by year, and an annual average was calculated by averaging the cell values 

over the period of study (2001 to 2019). In addition, the WCI difference between the annual 

averages of 2001 to 2009 and 2010 to 2019 was calculated to show temporal trends and 

spatial patterns of change between both multiannual periods. 

El Niño (or La Niña) events in the Niño 3.4 region of the tropical Pacific Ocean 

have been defined differently in various studies, such as occurring when the December-

January-February (DJF) SST anomaly exceeds +/−0.5 °C [48,49], or when five consecutive 

three-month running means of SST anomalies exceed +/−0.5 °C between July and June 

[50]. Although definitions may vary, such events generally occur when anomalies exceed 

+/−0.5 C for several months [51]. In this study, a straightforward approach was used to 

analyze SST anomalies in the tropical Pacific Ocean. We simply calculated annual 
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averages of the three-month running means of SST anomalies obtained from [52]. The 

anomalies were originally derived by calculating SST departures from 30-year average 

baseline temperature conditions [52]. Applying the threshold of +/−0.5 °C, years with 

significant warm and cold phases were identified. These years were excluded from the 

dataset and WCI calculations were repeated. However, years that exceeded both El Niño 

and La Niña thresholds were considered neutral, indicating a lack of clear dominance of 

either El Niño or La Niña conditions, and therefore were not removed from the datasets.  

 

Results 

This section consists of two parts to address the study’s main objectives: Validation 

and WCI analyses. 

Validation 

The t-tests yielded identical results across all three sample runs, although only the 

results from the first run are presented (Table 1). P-values were greater than our chosen 

significance level of 0.05, so we would accept the null hypothesis that both precipitation 

products are not statistically different. The confidence interval (CI), which represents a 

range of acceptable null hypotheses, also included a zero at every sample point. Thus, we 

could still not rule out a zero difference in means between both datasets and would, 

therefore, accept the null hypothesis that they are not statistically different [53]. Also, 

(Cohen’s d) effect size calculations showed negligible differences between the GPM and 

PRISM precipitation datasets. Because of how the tests were set up, negative values imply 

that the mean of the GPM dataset was lesser than that of the PRISM dataset. 
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Table 1. Results of the t-test for the first run (first 17 points for 17 different climate 

classes). P-values and CIs were generated from the paired t-tests. The CI is a range of 

acceptable null hypotheses defined by lower and upper confidence limits [53]. Narrower 

CIs indicate smaller uncertainties in our estimates, and vice versa. The effect size 

represents the magnitude of the difference between GPM and PRISM datasets at each 

sample point. 

ID Class: Description P-Value CI 
Effect 

Size 

1 Am: Tropical Monsson  0.98 −7.96–8.13 0.0006 

2 Aw: Tropical Savannah 0.95 −6.84–7.24 0.0017 

3 BWh: Arid, desert, hot 0.98 −2.01–1.96 −0.0006 

4 BWk: Arid, desert, cold 0.90 −0.98–1.12 0.0030 

5 BSh: Arid, steppe, hot 0.99 −5.35–5.27 −0.0004 

6 BSk: Arid, steppe, cold 0.99 −3.14–3.09 −0.0004 

7 Csa: Temperate, dry summer, hot summer 0.99 −8.44–8.58 0.0003 

8 Csb: Temperate, dry summer, warm summer 0.93 −8.27–9.08 0.0022 

9 Cfa: Temperate, no dry season, hot summer 0.99 −6.05–6.00 −0.0002 

10 Cfb: Temperate, no dry season, warm summer 0.82 −7.80–9.86 0.0045 

11 Dsb: Cold, dry summer, warm summer 0.98 −3.82–3.93 0.0007 

12 Dsc: Cold, dry summer, cold summer 0.98 −3.40–3.30 −0.0010 

13 Dwa: Cold, dry winter, hot summer 0.99 −3.50–3.45 −0.0004 

14 Dwb: Cold, dry winter, warm summer 0.99 −2.79–2.83 0.0003 

15 Dfa: Cold, no dry season, hot summer 1.00 −6.06–6.07 0.0000 

16 Dfb: Cold, no dry season, warm summer 0.93 −5.28–5.76 0.0024 

17 Dfc: Cold, no dry season, cold summer 0.89 −2.24–1.94 −0.0046 
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Further evaluations based on the three performance metrics showed that the Dfc 

(cold, no dry season, cold summer) climate class, having the lowest R2 on all three sample 

runs, the lowest NSE for the second and third runs, and the lowest KGE value on the first 

run, demonstrated relatively weak agreement compared to other classes (Figure 3). 

Representing the climate of the Rockies (Figure 4), it is still unclear whether the weak 

agreements were due to terrain complexities, climatic factors, both, or other factors. 

Therefore, further investigation may be necessary to specifically determine the underlying 

causes of the relatively poor performance of the GPM satellite product over the Dfc 

climate. 
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Figure 3. Comparison of GPM and PRISM precipitation datasets based on R2, NSE, and 

KGE. The numbers (1), (2), and (3) represent the first, second, and third sample runs. The 

Dfc climate is represented as climate class 17. 

Figure 4. The Dfc climate region where GPM and PRISM showed the weakest 

agreement. 

Based on recommended R2 and NSE standards for monthly periods and local scales 

[54], agreement across all Köppen–Geiger climates was at least satisfactory on average. A 

ranking of climate classes by their relative agreements between both gridded precipitation 

products showed that while the Dfc was weakest, the Bwk (arid, desert, cold) class showed 

the strongest agreement (Figure 5). 
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Figure 5. Ranking of the 17 climate classes based on relative agreements between the GPM 

and PRISM gridded precipitation products, according to R2, NSE, and KGE values. 

WCI Analyses 

The average annual WCI between 2001 and 2019 varied across the CONUS. The 

west generally showed lower intensities, whereas the highest values were seen in the 

southeastern CONUS region. However, in the westernmost border around the western 

Washington region, values of over 4000 mm/yr. were recorded (Figure 6a). Similar patterns 

were seen for both precipitation and evapotranspiration averages. Two essential ingredients 

for precipitation are moisture and lift. Thus, with the Gulf of Mexico as a potential supplier 

of moisture, combined with the existence of several mountain ranges in the region, it is no 

surprise that there is that much rain in the southeast region. Likewise, the active weather 

caused by the low-pressure system of the Aleutian Islands explains the excessive amounts 

of rain along the western boundary (Figure 6b). To illustrate the importance of available 
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moisture for evapotranspiration, the areas with high precipitation (Figure 6b) appeared to 

also show relatively high evapotranspiration rates (Figure 6c). 

 

Figure 6. Average annual (a) water cycle intensity, (b) precipitation, and (c) 

evapotranspiration from 2001 to 2019. 
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To calculate the differences, the averages of the first period (2001–2009) were 

subtracted from the second (2010–2019). Following the initial calculations, El Niño, and 

La Niña years (Figure 7) were then removed from the datasets based on average annual 

SST anomalies and a threshold of +/−0.5℃. The El Niño years 2002, 2006, and 2015, and 

La Niña years 2007, 2008, and 2011 (Figure 7) were also identified in a different, 

independent study that compared average November-December-January (NDJ) and 

December-January-February (DJF) SST anomalies in the Niño 3.4 region with predefined 

threshold anomalies [55]. 

The west CONUS showed notable increases in WCI between both periods (Figure 

8a), mostly due to increases in both precipitation and evapotranspiration in the second 

period (Figure 8b, c). However, our adjusted results (Figure 8d–f) show that during the 

period of study, ENSO impacted the WCI for the CONUS primarily by bringing more 

water to the southeast, west, and parts of the north and less water to the northeast regions.  
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Figure 7. El Niño and La Niña years over the period of study. Average annual SST 

anomalies were compared with a threshold anomaly of +/−0.5 °C to identify El Niño and 

La Niña years, respectively. Years such as 2009, 2010, and 2018 where both positive and 

negative anomalies exceeded their respective El Niño and La Niña threshold anomalies 

were considered neutral, indicating a lack of clear dominance of either condition. 
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Figure 8. The difference in (a) water cycle intensity, (b) precipitation, and (c) evapotranspiration between the annual averages of 2001–

2009 and 2010–2019, and their respective differences without ENSO years (d–f). The cumulative density function (CDF) plots show 

the cumulative probabilities of change values for water cycle intensity (g), precipitation (h), and evapotranspiration (i) for both scenarios
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Discussion 

Satellite precipitation retrievals generally experience difficulties due to complex 

terrains and climate [5,56–61]. The GPM, in particular, is less accurate in mountainous 

regions than in plains [36,62–66]. Specific to the CONUS, snowfall underestimation of the 

GPM has been recorded in the western mountainous regions [36]. Likewise, we detected 

an underestimation in the Dfc climate over the Rockies. For each sample point in the 

region, the NEXRAD-TDWR radar coverage [67] showed a beam height of less than 3000 

feet above ground level, indicating good ground-based radar accuracy for the PRISM input. 

In addition, a local hill shade DEM for each point showed complex mountainous terrain 

that can affect GPM accuracy and a high elevation where snowfall and seasonal snow cover 

is expected. The research suggests that the complex terrain and high amounts of snow in 

the winter played a part in the underestimation of precipitation by the GPM for the Dfc 

climate region of the CONUS. However, micro-scale studies at finer spatial resolutions 

that account for more variables, such as local radar propagation characteristics and GPM 

flyovers to PRISM updates, are necessary to state this conclusively. 

The WCI results presented in this study reinforce the intuition that with 

precipitation and evapotranspiration as indicators, the WCI over any area might increase 

through one of three scenarios: (1) Increases in both precipitation and evapotranspiration, 

as seen in parts of the west CONUS. A few studies validate this [68,69], where the 

warming-induced intensification of the water cycle over the Midwest resulted in increased 

precipitation and evaporation rates. (2) A dominating influence of precipitation, notably in 

the Appalachian region of the east CONUS. This scenario may carry flood risks, as flood 

occurrences have consistently been reported in the south and central Appalachian regions 
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[70–72]. (3) A dominating influence of evapotranspiration, showing examples in parts of 

the west and southeast regions. Increases in drought risks in the West have been attributed 

to a combination of atmospheric, environmental, and consumptive water demands 

exceeding supply [73,74]. In general, scenarios 1 and 3 may directly impact regional water 

availability. Groundwater levels, for example, declined in the Midwest where the 

intensification of the water cycle increased precipitation and evaporation rates [68]. 

About 53% of the CONUS showed a positive WCI change, which implies that the 

water cycle is currently speeding up in and around more than half of the country. Of this, 

58.2% showed increases in both average precipitation and evapotranspiration (scenario 1). 

An increase in precipitation but decrease in evapotranspiration (scenario 2) constituted 

21.2%, while the reverse (scenario 3) made up 19.1%. Without ENSO years, 40.4% of the 

CONUS showed an intensified water cycle where 55.6%, 18.5%, and 24.5% represented 

the three scenarios, respectively, thereby providing supporting evidence that ENSO may 

be influencing the WCI of the CONUS. In both cases, however, the dominant 

representation of a faster water cycle for the periods of investigation is characterized by a 

simultaneous increase in both precipitation and evapotranspiration, where the increase in 

evapotranspiration is presumably the result of higher air temperatures and an increase in 

moisture availability. In a general sense, the impacts of ENSO on the WCI of the CONUS 

were primarily driven by changes in precipitation (Figure 8g–i). 

A faster water cycle presents a variety of hydrological consequences. Extreme 

precipitation and flood events become more likely, drought risks intensify, and the 

availability and quality of surface and groundwater resources can be impacted. For 

example, in coastal areas where aquifers are susceptible to saltwater intrusion, decreasing 
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groundwater recharge rates may lower the water table, allow the infiltration of saltwater,  

and consequently increase the severity of water quality issues. Unfortunately, these effects 

cannot be generalized for the CONUS. Therefore, further work at local, watershed, and 

regional scales is required to categorically express representative hydrological impacts for 

the various spatial (and temporal) scales of interest. 

 

Conclusion 

This study addressed two potential considerations within the framework of the 

Huntington et al. (2018) [1] study. For the same region, and with similar hydroclimatic 

variables, we evaluated the feasibility of a remote sensing WCI for a different, more recent 

period, allowing us to relate WCI changes to current climate change using satellite-based 

datasets. The period of investigation (2001–2019) was also determined by the availability 

of complete-year data for the GPM IMERG precipitation (2001-present) and 

evapotranspiration (1982–2019) datasets. To address the limitations of satellite-based 

precipitation estimates, particularly in complex terrains, we incorporated comparisons with 

ground-based PRISM estimates to provide validation for the satellite-based dataset and 

additional context on its limitations. We showed that the GPM IMERG precipitation 

product was not statistically different from ground-based gridded PRISM estimates across 

all Köppen–Geiger climates within the CONUS despite inherent challenges over complex 

mountainous terrains.  

Using the framework introduced by Huntington et al. (2018), we present the first 

satellite-based quantification of the terrestrial water cycle intensity. Comparing the results 

of both studies, the spatial patterns of average WCI changes presented in this study contrast 
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those of the framework study. As we’ve shown, between the averages of 2001 to 2009 and 

2010 to 2019, faster WCIs were seen around the west CONUS, contrary to the Huntington 

et al. (2018) study that showed a vulnerability of the east CONUS between the averages of 

1945 to 1974 and 1985 to 2014. This not only substantiates the influence of current 

temperature anomalies on the spatial patterns of regional water cycle intensities for the 

CONUS but the susceptibility of the global water cycle to climate variabilities. In addition, 

we attempted to more accurately associate climate change with shifts in WCIs by 

eliminating years that showed strong occurrences of El Niño and La Niña events from our 

calculations. Our recommendation for future studies is to address and quantify the impacts 

of other relevant cyclic patterns, particularly those not directly influenced by ENSO (El 

Niño and La Niña) events. 

Satellite missions for hydroclimatic variables different from those utilized in this 

study have also enhanced various other studies relating to the water cycle. Examples 

include GRACE (Gravity Recovery and Climate Experiment) [75] and its follow-on 

mission GRACE-FO [38] for water storage anomalies, SMOS (soil moisture and ocean 

salinity) [76,77] and SMAP (soil moisture active passive) [78] for soil moisture, and the 

Water Cycle Observation Mission (WCOM) for various components of the water cycle 

[79]. While WCIs generally inform the availability and distribution of water resources, 

remote sensing provides additional benefits including the availability and consistency of 

measurements to calculate the WCIs for wider spatial coverages and hydrologically 

inaccessible and data-sparse areas. A satellite-based WCI approach can be applied to any 

geographical region, covering spatial and temporal scales for which reliable satellite-based 

estimates are available. 
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In particular, the ability to calculate the WCI for any point on the globe and be able 

to determine if WCI changes are primarily driven by changes in precipitation, evaporation, 

or both, can allow regional water management agencies to make better-informed decisions 

on the storage and efficient distribution of water supplies. For example, negative WCI 

changes where precipitation is the decreasing variable and evapotranspiration is constant 

suggests that more water may need to be imported to the region or stored than previously 

in order to support the same amount of evapotranspiration. Conversely, positive WCI 

changes driven by evapotranspiration indicate the vital role of limited soil moisture in 

reducing the vapor pressure deficit in the atmosphere. Possible remedies may include 

supplementary water supply systems such as irrigation schemes to sustain agricultural 

practices, or importation to secure water for households and industries. Leveraging insights 

from WCI changes and harnessing the benefits of remote sensing for such calculations will 

help mitigate and overcome various water resources and associated socio-economic issues. 

It is our hope that this knowledge contributes to further work in refining water budget 

calculations to plan for an uncertain climate future. 
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Abstract 

Given the vulnerability of surface water to the direct impacts of climate change, the 

accurate prediction of groundwater levels has become increasingly important, particularly 

for dry regions, offering significant resource management benefits. This study presents the 

first statewide groundwater level anomaly (GWLA) prediction for Arizona across its two 

distinct aquifer types—unconsolidated sand and gravel aquifers and rock aquifers. 

Machine learning (ML) models were combined with empirical Bayesian kriging (EBK) 

geostatistical interpolation models to predict monthly GWLAs between January 2010 and 

December 2019. Model evaluations were based on the Nash–Sutcliffe efficiency (NSE) 

and coefficient of determination (R2) metrics. With average NSE/R2 values of 0.62/0.63 

and 0.72/0.76 during the validation and test phases, respectively, our multi-model approach 

demonstrated satisfactory performance, and the predictive accuracy was much higher for 

the unconsolidated sand and gravel aquifers. By employing a remote sensing-based 

approach, our proposed model design can be replicated for similar climates globally, and 

hydrologically data-sparse and remote areas of the world are not left out. 
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Introduction 

Global warming is threatening surface water supply in many parts of the word, 

particularly in arid regions. In these regions, groundwater, a viable alternative and an 

important source of freshwater, is often limited [1,2]. Considering that groundwater level 

(GWL) is an indicator of groundwater availability at any given time, monitoring GWLs 

provides significant insights into the dynamics of recharge and withdrawals and how they 

influence the long-term availability of groundwater. In arid regions, this can be challenging 

due to the inadequate distribution of groundwater wells and the presence of spatial and 

temporal data gaps in monitoring records [3]. Therefore, accurate and reliable predictive 

tools are essential for supporting the sustainable management of groundwater in these areas 

[3]. 

The relationships between GWL fluctuations and explanatory variables are 

generally complex and nonlinear [4–7]. However, machine learning (ML) algorithms can 

effectively learn these relationships. One of such algorithms is the support vector machine 

(SVM) for regression purposes (SVR), especially when embedded with the radial basis 

function (RBF) kernel [5,8]. Another algorithm capable of learning these relationships is 

random forest (RF) [9], which is the most employed ML technique for GWL predictions 

[10]. Both SVMs and RF are known to give accurate results [10,11]. 

Several studies have shown the RBF–SVR model to outperform various other 

techniques, such as artificial neural network (ANN) [12–14], radial basis function neural 

network (RBF–NN) [15], the autoregressive integrated moving average (ARIMA) model 

[16], RF [8], and the gradient boosting mechanism (GBM) [8]. These studies also attribute 
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the success of SVMs to their strong prediction capability and the ability to generalize well 

to unseen data. 

Likewise, various studies have reported success using RF for GWL prediction. For 

example, it outperformed K-nearest neighbor (KNN), ANN, and SVR based on root mean 

square error (RMSE) values during testing [17]; ANN and SVR based on R-squared (R2), 

mean absolute error (MAE), and RMSE values in training and R2 and MAE values in 

testing [11]; multilinear regression (MLR) based on R2, MAE, and RMSE values in both 

training and testing [18]; decision trees (DTs) and SVRs based on its R2 and RMSE values 

in testing [19]; and the XGBoost regressor based on its MAE and RMSE values in testing 

[20]. 

In addition to traditional ML methods, geostatistical interpolation (GI) techniques 

are also commonly used for GWL prediction. Kriging is the most utilized GI technique 

[21,22], where the measured values of a variable (GWL, in this case) at specific locations 

are used to make predictions at unmeasured areas. It relies on the correlation between the 

measured values as a function of distance, depicted by a semivariogram, to assign weights  

that describe the contribution of each measured point to the prediction at unmeasured 

locations [23]. Kriging presents an important advantage over other interpolation methods 

in being able to quantify and minimize prediction uncertainties [23]. 

Classical kriging (CK), the traditional form of kriging, relies on a single 

semivariogram assumed to be the true representation of the measured data. In contrast, 

empirical Bayesian kriging (EBK), an advanced kriging approach, incorporates multiple 

semivariograms to account for the uncertainties associated with estimating a single 

semivariogram [23]. Thus, EBK is a more robust kriging algorithm [23], and studies such 
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as Bouhout et al. (2022) [24] and Hussain et al. (2016) [25] have demonstrated its superior 

performance in GWL prediction applications. 

Our review of the existing literature suggests that RBF–SVR, RF, and EBK models 

are some of the most effective GWL prediction tools. To enhance the prediction accuracy, 

we propose an approach that integrates all three techniques to predict the monthly GWLAs 

across the state of Arizona (representative of arid/semi-arid systems) between January 2010 

and December 2019, using remotely sensed predictor variables. 

 

Materials and Methods 

Natural groundwater recharge in arid regions is often limited, raising concerns 

about the sustained availability of freshwater in these regions. Climate change exacerbates 

these issues by intensifying the hydrologic cycle, resulting in increased evapotranspiration 

rates and a reduction in the soil moisture available to recharge groundwater systems 

[26,27]. In a recent study, Zowam et al. (2023) [27] quantified terrestrial water cycle 

intensity (WCI) changes across the contiguous United States (CONUS) attributable to 

climate change and showed that the state of Arizona might be experiencing much higher 

relative WCI rates on average than other arid regions in the CONUS. These factors 

underscore the need for accurate prediction of the GWL in such regions to continue to 

effectively manage the potentially limited freshwater resources therein. 

Study Area and Target Variable 

The study area, covering about 114,000 mi2, is located in the southwest U.S. (Figure 

1). Its surficial geology is characterized primarily by unconsolidated deposits in the 

south/southwest–northwest corner of the state, with various rocks dominating the other 
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regions [28]. The consolidated rocks are mainly sedimentary and extrusive igneous 

(volcanic) rocks and constitute the mountain ranges that border the basins filled with 

unconsolidated materials [29]. These rocks are the main sources of sedimentary materials 

that fill the basin and have very low permeability and groundwater flow rates [29]. Many 

communities depend solely on groundwater to meet their water needs, which has led to a 

long history of over-extraction in many parts of the state [30]. In the late 1980s, the 

Colorado river arrived in Arizona and eased some of the pressure on groundwater to meet 

these needs, but the prolonged drought in the Colorado river basin, coupled with projected 

warming temperatures, is expected to not only reduce the surface water availability in the 

state but also further stress the aquifers in the region [30]. 

Daily GWL data from 59 monitoring wells were downloaded from the National 

Groundwater Monitoring Network (NGWMN) portal 

(https://cida.usgs.gov/ngwmn/index.jsp, accessed on 29 January 2023). Among these 

wells, 38 were drilled into unconsolidated sand and gravel aquifers and are managed by 

the Arizona Department of Water Resources (ADWR), while the remaining 21 were drilled 

into consolidated rock aquifers (Figure 1). Three of the rock aquifer wells used in this study 

are maintained by the U.S. Geological Survey (USGS), and the rest are managed by the 

ADWR. The depths of these wells varied and ranged from 89 to 1600 feet below ground 

surface (bgs) for the sand and gravel aquifers, and about 25 to 851 feet bgs for the rock 

aquifers, and the aquifers were predominantly unconfined. Daily GWL measurements were 

aggregated into monthly averages from January 2010 to December 2019. 

Missing data is the most common challenge in real-world ML applications [31], 

and various methods exist to address this issue. The simplest of these methods is mean 

https://cida.usgs.gov/ngwmn/index.jsp
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imputation (MI) [31]. In MI, the mean values of available observations are used to fill in 

missing observations, which has proven to work well with small variance distributions 

[32,33], i.e., distributions with a coefficient of variation (CV) less than 10% [34]. 

Therefore, with CV values ranging from 0.01 to 0.91% for the unconsolidated aquifers and 

0.001 to 0.21% for the rock aquifers, the MI method was ideal for the target variable 

(monthly GWL). Missing monthly values were replaced with the annual average GWL for 

the given year. 

To compute monthly GWLA, we calculated the mean GWL at each well and 

subtracted the monthly measurements from this mean value. 

 

Figure 1. Map of the study area showing the locations of groundwater monitoring wells. 

Predictor Variables 
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The selection of the input variables was informed by the Seyoum et al. (2019) [35] 

study as well as established hydrogeological principles. The initial variables included 

precipitation, soil moisture, evapotranspiration, land surface temperature, vegetation index, 

curve number, saturated hydraulic conductivity, and groundwater storage anomalies 

(Figure 2).  

 

Figure 2. Maps of initial predictor variables resampled to 0.125° × 0.125° grid resolution. 

P = precipitation, SM = soil moisture, ET = evapotranspiration, LST = land surface 

temperature, VI = vegetation index, CN = curve number, K = saturated hydraulic 

conductivity, GWSP = groundwater storage percentile. CN and K are representative values 

for the period of study, and all other variables are for January 2010. 

Precipitation (P)  

Precipitation is the most important hydrological variable for predicting 

groundwater recharge [36], thus playing a crucial role in determining GWL. In the last two 

decades, satellite-based precipitation measurement techniques have seen significant 
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advancements, and the Global Precipitation Measurement Mission (GPM) using the 

Integrated Multi-Satellite Retrievals for the GPM (IMERG) algorithm stands out as one of 

the best alternatives to ground-based measurements [27,37]. In particular, the GPM 

mission demonstrates significant potential to mitigate the challenges associated with 

estimating precipitation in arid regions [38]. In addition, under light rainfall conditions 

(typical of these regions), IMERG tends to produce lower detection errors and generally 

more accurate estimates [39]. The final run of the IMERG system provides the most 

accurate precipitation measurements, making it ideal for research purposes [40]. A monthly 

IMERG (final run) dataset with a 0.1° × 0.1° grid resolution was downloaded from the 

National Aeronautics and Space Administration (NASA) data portal for January 2010 to 

December 2019 (https://gpm.nasa.gov/data/directory, accessed on 11 May 2021). 

Soil Moisture (SM) 

SM and GWL tend to demonstrate a negative relationship [41–43], which can be 

much stronger for shallow groundwater [41]. For this study, we utilized a research product 

that integrated measurement efforts from both the European Space Agency (ESA) and 

NASA (https://doi.org/10.1594/PANGAEA.940409, accessed on 12 February 2023). The 

dataset was generated by downscaling ESA’s Climate Change Initiative (CCI) data using 

NASA’s Soil Moisture Active and Passive (SMAP) data [44]. The global dataset had a grid 

size of 9 km (~0.08° × 0.08°) and a daily temporal resolution covering a 43-year period 

from 1978 to 2020 [44]. We converted the daily rasters into monthly averages spanning 

our study period and extracted the monthly data for the study area. 

Evapotranspiration (ET) 

https://gpm.nasa.gov/data/directory
https://doi.org/10.1594/PANGAEA.940409
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The combined effects of liquid water losses from soil surfaces (evaporation) and its 

uptake by plants (transpiration) limit the amount that infiltrates the ground, thereby 

affecting GWLs. We utilized a global dataset with a fine grid size of 1 km (~0.01° × 0.01°) 

and a monthly temporal resolution (https://doi.org/10.7910/DVN/ZGOUED, accessed on 

3 July 2021). The dataset was obtained by synthesizing the best-performing satellite ET 

products following validation against flux eddy covariance ET and performed better than 

local products across the United States, China, and the continent of Africa [45]. 

Land Surface Temperature (LST) 

LST tends to exhibit a positive relationship with GWL, which is more pronounced 

for shallow groundwater [41]. This study utilized a gap-filled, continuous LST dataset 

generated by filling in missing pixels in the Moderate-Resolution Imaging 

Spectroradiometer (MODIS) 1 km resolution LST daily product [46]. Daytime (1:30 PM) 

and nighttime (1:30 AM) global datasets were downloaded from the Iowa State University 

research repository (https://doi.org/10.25380/iastate.c.5078492.v3, accessed on 12 

February 2023). The downloaded rasters were converted into monthly averages, and the 

final LST dataset was obtained by averaging the daytime and nighttime monthly estimates.  

Vegetation Index (VI) 

The presence of vegetation may affect groundwater recharge (and GWLs) in 

various ways, including slowing down runoff and enhancing ET through transpiration. VI 

values are unitless and help to visualize the locations and relative abundance of green 

vegetation. A monthly dataset with a 0.1° × 0.1° grid resolution was accessed and 

downloaded from the NASA Earth Observations (NEO) data portal 

https://doi.org/10.7910/DVN/ZGOUED
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(https://neo.gsfc.nasa.gov/view.php?datasetId=MOD_NDVI_M&date=2010-12-01, 

accessed on 12 February 2023). 

Curve Number (CN) and Runoff Depth (R) 

CN is a dimensionless parameter that characterizes the runoff potential of a surface. 

It is influenced by land use, soil characteristics, and the antecedent moisture conditions of 

soils. Lower numbers typically correspond to permeable soils with high infiltration rates, 

while higher numbers are associated with impervious surfaces and limited infiltration 

capacities. The CNs utilized in this study were generated using a 250 m hydrological soil 

group dataset (HYSOG250m) and the 2015 ESA–CCI 300 m land cover dataset, and 

available at a 250 m grid resolution (https://doi.org/10.6084/m9.figshare.7756202.v1, 

accessed on 12 February 2023). 

With the CN data, we generated a monthly dataset of R for the period of study using 

Grove et al. (1998)’s [47] equations: 

𝑅 =
(P – 0.2S) 2

(P +  0.8S)
 (1) 

Given that: 

S = (
1000

𝐶𝑁
) – 10 

(2) 

Where R = runoff depth, P = precipitation, S = potential maximum retention, and CN is the 

Curve Number [42]. 

Soil Saturated Hydraulic Conductivity (Ks and PKs) 

Soil saturated hydraulic conductivity describes the ability of soils to transmit water 

under saturated conditions [48]. Using remotely sensed environmental variables and the 

RF ML technique, Gupta et al. (2021) [49] generated four global Ks maps representing four 

https://neo.gsfc.nasa.gov/view.php?datasetId=MOD_NDVI_M&date=2010-12-01
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different soil depths at a 1 km (~0.01° × 0.01°) resolution. All four maps were utilized in 

this study (https://doi.org/10.5281/zenodo.3935359, accessed on 11 October 2023).  

To obtain a continuous and dynamic Ks dataset, we multiplied each Ks value by the 

monthly precipitation estimates. We selected precipitation as it is a primary driver of water 

input into the soil and significantly influences Ks. By integrating the precipitation data with 

Ks, we added temporal variability to the Ks variable, making it suitable for our ML models.  

P × Ksi = (PKs)i  (3) 

Here, P  is the precipitation dataset, Ks is the soil-saturated hydraulic conductivity dataset 

at a depth of i, and i ranges from 1 to 4. The four resulting outputs from equation 3 were 

averaged into a single, comprehensive PKs dataset for the study area. 

 Groundwater Storage Percentile (GWSP) 

 Using terrestrial water storage (TWS) observations from the Gravity Recovery and 

Climate Experiment (GRACE) satellite mission and a numerical model representing the 

interactions between water and energy across the Earth’s surface, scientists at NASA are 

able to determine weekly groundwater conditions, expressed as percentiles, based on 

comparison with historical data [50]. These percentiles indicate the probability of 

occurrence within the 1948 to 2014 period of record and are generated at a spatial 

resolution of 0.125° × 0.125° over North America from April 2002 to the present [50]. We 

downloaded the monthly averages of the GWSP from the Giovanni data portal 

(https://giovanni.gsfc.nasa.gov/giovanni/, accessed on 10 October 2023) for our period of 

study. Considering all the input datasets, the GWSP had the largest spatial resolution 

(0.125° × 0.125°), requiring all the other datasets to be resampled (upscaled) to the spatial 

resolution of the GWSP rasters.  

https://doi.org/10.5281/zenodo.3935359
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Groundwater recharge is typically computed using a simple water balance approach 

assuming negligible changes in soil water storage in the unsaturated zone [51]. Based on 

this idea, we introduced a secondary input variable, called the recharge index (RI), to 

represent the balance between the water inflows and outflows within each 0.125° × 0.125° 

grid and the amount potentially available to recharge groundwater.  

RI = P − ET − R (4) 

where P is precipitation; ET is evapotranspiration; R is runoff depth; and RI is the recharge 

index for a given grid. 

 GWLs from monitoring wells located within a grid were assumed to be 

representative of the entire grid, as were the predictor variables. Ultimately, this study 

utilized six predictor variables, namely soil moisture (SM), land surface temperature 

(LST), the vegetation index (VI), saturated hydraulic conductivity (Ks), the groundwater 

storage percentile (GWSP), and the recharge index (RI) (Table 1). 

Table 1. Final input variables used in the study and the processing involved. 

ID Variable Processing  Unit 

1 Soil moisture (SM)  × ○  m3/m3 

2 Land surface temperature (LST)  × ∆ ○  ℃ 

3 Vegetation index (VI)  ○  − 

4 Saturated hydraulic conductivity (PKs) *  ○ ∆ □  mm2/day 

5 Groundwater storage percentile (GWSP)  −  % 

6 Recharge index (RI) *  ○ | ○ | □  mm 
Note(s): × = convert daily data into monthly averages; ∆ = raster averaging; ○ = resampling 
to 0.125° × 0.125°; □ = raster arithmetic operations. NB: Secondary variables are marked 
with an asterisk (*), and the pipe symbol (|) separates the processing applied to each 
individual variable. 
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Model Algorithms 

 Developing an acceptable ML model with a monthly temporal resolution requires 

approximately 10–12 years of data [52]. Here, we utilize 10 years of monthly data (2010–

2019), meeting the acceptable sample size threshold. Selecting algorithms or models that 

are most appropriate for the data is another important aspect of ML. Getting this step wrong 

could result in unreliable predictions, leading to a disappointing predictive performance 

and misleading conclusions [53]. In this study, we selected two ML algorithms (and a GI 

technique) from a pool of candidates. The selected techniques are discussed in detail below: 

 SVM and SVR 

SVM was introduced by Vladimir Vapnik based on the idea of nonlinear mapping 

of input vectors to a high-dimensional feature space and constructing an optimal 

hyperplane to effectively separate the different groups or classes within that space [54]. 

The generalization capabilities of SVMs led to the development of the less popular SVR 

for real-value (regression) problems [55]. 

First proposed in 1996 by Harris Drucker and his colleagues [56], the SVR has 

become an effective tool for prediction problems, demonstrating excellent generalization 

abilities and a high prediction accuracy [55]. It works by incorporating a loss function 

(known as the epsilon insensitive margin of error, ϵ) in the form of a flexible tube formed 

symmetrically above and below the estimated function, where the prediction errors (ζ*) 

within the tube are accepted and those that fall outside are penalized (Figure 3). The 

objective of the SVR is to find the narrowest possible tube around the estimated function 

in a way that minimizes the prediction errors [55,57]. 
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Figure 3. One-dimensional SVR, where x is the input or independent variable and y is the 

dependent variable. Source: Awad and Khanna (2015) [55]. 

In general, the performance of the SVR model depends on the tube size (epsilon, 

ϵ), the regularization constant (C), and the choice of kernel function [58–60]. The C 

hyperparameter controls the complexity of the model, where large values may lead to 

overfitting [58,61]. By overfitting, the model learns the training data well but generalizes 

poorly, i.e., predicts poorly on new unseen data. Kernel functions are used to transform the 

data into the higher-dimensional feature space, enabling linear machine learning to 

improve the representation of the nonlinear relationships that exist in the original input 

space [62]. While there is no guide to the appropriate kernel functions for specific datasets, 

the most commonly used are the RBF and polynomial functions [63]. RBFs are versatile 

kernels used when there is a lack of prior knowledge about the data [64]. Such models 

(RBF-SVR) require an additional hyperparameter, gamma (γ), in addition to C and ϵ, which 

controls the width of the RBF [60,65,66]. The C hyperparameter must be a positive 

number, while ϵ and γ can be positive or zero [66]. 
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RF 

 The RF ML algorithm is an ensemble algorithm of multiple trees that improves the 

prediction accuracies of the single DT algorithm [19,67]. The different DTs are trained 

with subsets of the input variables and bootstrapped samples of the original training data 

such that each DT is unique, resulting in reduced variance [11]. By bootstrapping, samples 

are randomly drawn (with replacement) from the original training data, maintaining the 

sample size of the training data. Because the sampling is carried out with replacement, a 

particular observation may appear multiple times in a bootstrapped sample. 

Decision points in the DT structure are called nodes. At the nodes, tree branches 

are created based on the splitting criteria (Figure 4). The first node (without prior 

branching) is the root [68]. From the root, each node is split using the best variable among 

the subset of input variables chosen at that node [69]. The leaf is the final node (with no 

further branching) associated with an output value [68].  

RF model hyperparameters are the number of trees (DTs) and the number of input 

variables in the random subset at each node [11,69]. The final predictions are either 

determined by majority votes from individual DTs (classification) or by averaging the 

predictions from all the trees (regression) [69,70]. 
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Figure 4. A simple RF Model with three DTs.  

 EBK 

 EBK differs from CK in the way it optimizes the parameter uncertainty associated 

with creating a single semivariogram and the way it automates the optimization process. In 

a single semivariogram, the semivariance (the y-axis) measures the spatial dependency 

between pairs of observations or samples, and the lag (the x-axis) is their separation 

distance (Figure 5a). Depending on the characteristics of the data, a semivariogram may 

display three important components: a sill, a range, and a nugget (Figure 5a). The range is 

the distance (or lag) beyond which samples are not spatially autocorrelated, and the sill is 

the semivariance at that distance. The nugget is the y-intercept of the semivariogram and 
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represents variability at distances much smaller than the minimum spacing between pairs 

of sample points. 

With EBK, the input data are divided into subsets, specifying parameters such as 

the size of the subsets (subset size) and the degree of overlap between them (overlap factor). 

Within each subset, a semivariogram distribution is produced (Figure 5b), and predictions 

are made for each location using the distribution from one or more subsets [23]. 

 

Figure 5. (a) A single semivariogram. Source: Maliva (2016) [71]. (b) The EBK model 

showing a distribution of semivariograms. Source: Krivoruchko (2012) [23]. The red 

dotted lines represent the lower and upper quartiles, and the solid red line represents the 

median of the semivariogram distribution [23,72]. 

Model Design 

 The initial phase of the analysis aimed to assess the feasibility of ML to capture 

spatiotemporal patterns of GWLAs across the study area. For spatial patterns, we trained 

12 different SVR models (each corresponding to a specific month) on sixty percent of the 

dataset using manually tuned values of γ, C, and ϵ and tested each of the trained models 

with the remaining forty percent (Figure 6a). Each model was trained using three predictor 
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variables—LST, RI, and the previous month’s GWLA (except for the first month). 

Incorporating GWL from a prior time step is common practice. It is the most employed 

type of input data in GWL prediction [52]. To evaluate ML feasibility for temporal 

patterns, we utilized the same dataset as the test set but used all six predictor variables and 

the predicted output—replacing the “previous month GWLA” variable to ensure 

consistency in the number of predictors for each observation (Figure 6b). Following 

another random train/test split procedure, an RF model was trained on eighty-five percent 

of the data and tested on the remaining fifteen percent. The models were evaluated for their 

performance and predictive accuracy using the Nash–Sutcliffe efficiency (NSE) and the 

coefficient of determination (R2), respectively. The NSE ranges from –∞ to 1, while R2 

ranges from 0 to 1. For both metrics, a perfect prediction would yield a value of 1. 

 

Figure 6. Model design showing train/test split ratios for the spatial (a) and temporal (b) 

evaluations and the locations of the split wells. 

 Based on the results of the preliminary assessments, it was evident that 

incorporating some approximation of the GWL as a predictor variable would significant ly 
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enhance the model performance and predictive accuracy. Therefore, we sought to use EBK 

for those approximations. To ensure that the EBK predictions covered the study area, we 

obtained additional GWL data from 18 nearby monitoring wells outside the study area. A 

total of 120 EBK models were constructed using the Geostatistical Wizard interpolation 

tool in ArcGIS PRO, and monthly predictions from those models were converted into 

anomalies and incorporated into the dataset. A single RF ML model (Figure 7) was then 

developed to learn the patterns in substantial portions of the augmented dataset. 

This approach was first validated at three monitoring well locations. The 

measurements corresponding to those locations were removed from the dataset before 

performing the EBK. Because the accuracy of kriging is significantly influenced by the 

number and density of kriging points, we could not afford to eliminate additional wells 

(and their corresponding data) from the dataset. Subsequently, the EBK process was 

repeated using the entire dataset, and a final RF model was trained on a significant portion 

of this dataset, tested on a smaller subset, and eventually deployed at locations without 

monitoring wells. 
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Figure 7. RF schematic with three observations, the seven predictor variables, three 

randomly selected predictors to build each tree, and three DTs. The target variable is shown 

in blue, and the predicted outputs are shown in red. 

 

Results 

Analyses were done in RStudio (version 2023.06.0+421) and ArcGIS Pro (version 

2.9.3). The results are presented below. 

Initial Assessment of ML Capabilities 

 The SVR models effectively captured the spatial patterns of GWLA variation 

across the study area, based on the NSE and R2 values (Table 2). Each monthly model 
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(except for the January model) was trained using the previous month’s GWLA data. The 

unavailability of previous month measurements as input for the first (January) model 

resulted in its suboptimal performance. However, the predictions from subsequent models 

were averaged with the January prediction to obtain the final model predictions. 

Incorporating the suboptimal performance of the first model with the strengths of the 

subsequent models reduced model uncertainties and produced more accurate predictions 

(for the subsequent models). 

We observed notably high prediction accuracies for the summer months. In 

particular, the July model, with an NSE of 0.96 and an R2 of 0.97, demonstrated exceptional 

performance (Table 2). 

Table 2. Performance of Individual SVR Models.  

 Model NSE R2 

1 January – – 
2 February  0.88 0.88 
3 March  0.71 0.71 
4 April  0.51 0.51 
5 May  0.87 0.89 
6 June  0.90 0.93 
7 July  0.96 0.97 
8 August  0.87 0.87 
9 September  0.80 0.81 
10 October  0.77 0.78 
11 November  0.83 0.83 
12 December  0.91 0.92 
    

The test set (Figure 6b) was augmented with the predicted output of the SVR 

models, and a single RF model was trained on eighty-five percent of the augmented dataset. 
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Evaluation at the fifteen percent test wells (Figure 8) revealed much higher predictive 

accuracies for the sand and gravel aquifers (Table 3, Figure 9). 

 

Figure 8. Map showing the locations of the four test wells for temporal evaluations after 

the second (85:15) train/test split. 

Table 3. RF model performance evaluated at the four test wells (15 percent test split). 

ID Test Well Aquifer Type NSE R2 

1 Artesia School [D-08-26 33CDC1] Sand and gravel 0.87 0.87 

2 Geiler [B-16-02 21BAA2] Sand and gravel 0.80 0.80 
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3 Queen Creek [D-02-07 22BBC] Sand and gravel 0.84 0.87 

4 PE–11 [A-10-10 11ACB] Rock – 0.13 0.28 

 

 

Figure 9. Plots comparing the RF-predicted GWLA at each test well with observed values. 

The numbers 1–4 correspond to the four test wells shown in Figure 8 and Table 3. 

Integrating EBK GWL Predictions 

 The prediction output of each EBK model was integrated into the dataset as an input 

variable, and another RF model was trained on the updated dataset without the validation 
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wells (Figure 10), which were excluded from the EBK process. Excluding these wells 

allowed us to simulate real-world scenarios better and ensure unbiased model evaluations. 

Subsequently, the trained RF model was evaluated at all three validation locations, and the 

performance was, again, relatively higher for the unconsolidated sand and gravel aquifers 

(Table 4). 

 

Figure 10. Location of the validation wells (1–3). The validation wells were removed from 

the dataset before performing the EBK to ensure unbiased model evaluation. 
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Table 4. RF model performance at validation wells using the EBK predictions as input. 

ID Validation Well Aquifer Type NSE R2 

1 Antelope Wash [B-18-04 25AAA2] Sand and gravel 0.81 0.83 

2 Turtleback [C-03-11 31DBB] Sand and gravel 0.63 0.65 

3 Rumsey Park [A-10-10 04ABB] Rock 0.41 0.41 

 

The partial dependence plots (Figure 11) describe the relationships between each 

of the seven predictors (while keeping the others constant) and the RF-model-predicted 

output. Recall that the RI variable was calculated based on the precipitation, 

evapotranspiration, and runoff depth values (Equation (4)) and that the runoff depths were 

derived from precipitation (Equations (1) and (2)), so it primarily reflects changes in 

evapotranspiration (Figure 11). Additionally, ET is influenced by LST, which explains why 

the RI and LST variables exhibited similar relationships with GWL (Figure 11). 
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Figure 11. Partial dependence plots (PDPs) of the validation RF model. Each plot 

illustrates the relationship between the given predictor variable and the predicted output, 

showing how changes in the former influence the latter. 

 Following satisfactory validation performance, we repeated the EBK process using 

all 59 monitoring wells. As before, the interpolated GWL surfaces had a default grid size 

of 0.023° × 0.023°, likely determined by the geographical extent of the study area (Figure 

12a). The standard errors of the prediction were also computed, with higher values 

representing larger prediction uncertainties (Figure 12b). The interpolated GWL surfaces 

were resampled to 0.125° × 0.125°, matching the grid size for this study (Figure 12c). 

Monthly anomalies were calculated (for each monitoring well) from the resampled surfaces 

and added to the dataset as a new predictor variable. A final RF model was developed using 

the complete augmented dataset, excluding seven wells reserved for testing (Figure 13). 

 

 

Figure 12. EBK model output for January 2010 showing (a) GWL predictions at 0.023° × 

0.023°, (b) standard errors of those predictions at 0.023° × 0.023°, and (c) resampled GWL 

prediction surface at a 0.125° × 0.125° grid size. 
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Figure 13. Spatial locations of all the monitoring wells used in this study. Wells 1–7 were 

used to evaluate the performance of the final RF model. 

For the third time in this study, the RF model showed much better predictions at 

locations with monitoring wells drilled into unconsolidated sand and gravel aquifers 

compared to those in rock aquifers (Table 5). The average NSE and R2 values are 0.88 and 

0.92 for the former and 0.32 and 0.37 for the latter, respectively (Table 5). 
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Table 5. RF model performance using all monitoring wells for EBK predictions. Test wells 

marked with an asterisk (*) indicate that they were also used for validation. 

ID Test Well Aquifer Type NSE R2 

1 Antelope Wash [B-18-04 25AAA2] * Sand and gravel 0.98 0.99 

2 Turtleback [C-03-11 31DBB] * Sand and gravel 0.86 0.88 

3 Friendly Corners [D-09-08 29BCC] Sand and gravel 0.82 0.87 

4 Pantano Wash North [D-16-16 15ABD] Sand and gravel 0.88 0.94 

5 Truxton South [B-24-14 33ADA] Sand and gravel 0.84 0.90 

6 GC–3 [A-11-10 26DAB] Rock 0.44 0.46 

7 [A-19-14 03AAC1] Rock 0.20 0.28 
 

Following a satisfactory validation and test performance, we deployed the final RF 

model to make predictions at ungauged locations across the study area (Figure 14) and 

calculated the averages of those predictions for each 0.125° × 0.125° grid (Figure 15). 
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Figure 14. GWLA predictions for January 2010 after model deployment. The monitoring 

wells (black circles) represent both training and test wells for the final RF model. 
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Figure 15. Average GWLA for the period of study (January 2010 to December 2019), and 

the locations of the monitoring wells (black circles) used in this study. 

 

Discussion 

Although ML is able to understand complex relationships between GWLs and 

contributing factors, this study revealed much better predictive performance for the 

unconsolidated material aquifers, where the relationships are generally more 
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straightforward. Validation wells 1 and 3 were in close proximity to other wells (Figure 

10) and could have benefited from the spatial autocorrelation of GWLs between them, but 

well 3 did not. In fact, validation well 2 performed better than well 3, despite not having 

that advantage (Figure 10, Table 4). This discrepancy may have been due to several factors, 

including the intricate heterogeneities and geologic structures in rock aquifers. The PDP 

for the PKs variable (Figure 11) also showed a distinction between the two aquifer types. 

This suggests that even with increased precipitation, changes in aquifer properties (such as 

reduced permeability in rock aquifers) can restrict groundwater flow and contribute to a 

declining GWL, considering all other factors at play. Both aquifers showed a negative 

relationship with PKs, but GWLs were relatively higher for the unconsolidated material 

aquifers (Figure 11). This shows that under similar hydrological conditions and assuming 

all other factors are kept constant, the properties of unconsolidated aquifer materials may 

allow them to maintain higher GWLs compared to rock aquifers.  

The discrepancy in model performance could also have been due to both model and 

data limitations. RF, the most employed ML algorithm for GWL prediction [10], failed to 

effectively capture GWL trends in a dolomite rock aquifer in a semi-arid region [73] and 

was also outperformed in an aquifer with fractured hydrogeology in a similar climate [74], 

as shown by two separate studies. In both cases, deep learning (DL) models demonstrated 

the best performance. DL is a branch of ML that is based on the concept of deep neural 

networks and is especially known to outperform traditional (shallow) ML techniques in 

applications involving large amounts of data [75,76] and high dimensionality [75]. But 

drilling a large number of wells into hard rock formations in dry regions might not be 

practical for various reasons, including cost and limited water availability [77], which can 
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pose significant challenges for ML-based GWL predictions in rock aquifers in arid regions. 

Specifically, fewer wells were drilled into the consolidated rocks in the study area 

compared to the basin fill unconsolidated materials [29], which potentially limited the 

adequate representation of the geologic complexities of these rock aquifers. However, the 

relatively weak performance of the RF models for the rock aquifers presents opportunit ies 

for future research to investigate and enhance the model performance in such complex 

geologic and climate settings. These efforts should begin with acquiring the maximum 

amount of good-quality data for a comprehensive analysis. 

The prediction errors from the EBK models (Figure 12b) underscore the importance 

of the spatial density and distribution of the kriging data in ensuring the reliability of 

predictions. The largest uncertainties were seen around the boundaries of the study area, 

and the predictions in the vicinity of the monitoring wells were relatively more accurate. 

Two of the wells excluded in the validation phase (Figure 10) were included in the final 

model as test wells (Figure 13) and showed improved predictions (Table 4, Table 5), further 

underscoring the importance of data density and quality in kriging. 

Based on the percent increases in the mean squared error (MSE) when important 

predictor variables are left out, the RI and EBK variables were the most important in the 

validation RF model, where both variables showed similar levels of importance. However, 

in the final deployment model, EBK was the most important variable (by a significant 

margin). This suggests that incorporating spatial interpolation techniques such as EBK can 

substantially enhance the performance of ML models. Although the kriging process can be 

tedious and challenging, the model improvements they offer make these efforts worth it.  
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As shown, the average GWLA for the period of study was predominantly negative. 

In fact, only about twenty-eight percent of the study area showed a positive average 

anomaly during this period. This trend reflects the challenges in a dry/arid region with high 

groundwater demand and withdrawal rates possibly exceeding natural recharge. 

Historically, groundwater in Arizona has been pumped out faster than it has been 

replenished by natural means [78,79], resulting in overdraft in many agricultural and urban 

areas [79]. But as the quest to exploit deeper aquifers continues, the costs of drilling to 

these depths are much higher, as are the energy costs of pumping water from them [79]. 

This study therefore could be useful for optimizing the drilling process by identifying 

locations for new wells and increasing the likelihood of accessing groundwater at optimal 

depths. Efforts to manage the groundwater overdraft issue began with identifying regions 

with a high reliance on groundwater (known as Active Management Areas (AMAs)) and 

subsequently empowering the ADWR to monitor compliance within the AMAs with the 

regulatory frameworks in place [79,80]. Within these AMAs and beyond, this study can 

also aid in the monitoring and allocation of groundwater resources by identifying 

groundwater-deficient areas based on the average predicted GWLA values, and offer data-

driven support and recommendations towards the effective management of groundwater 

resources in vulnerable areas. 

 

Conclusion 

Groundwater is the largest reservoir of available freshwater in the world and a 

critically important resource. Its global relevance is amplified by the direct impacts of 

climate change on surface water sources, particularly in arid regions. In this study, we 
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demonstrated the effectiveness of ML in predicting monthly GWLAs when combined with 

reliable spatial interpolation models and developed the first statewide GWLA prediction 

model for the state of Arizona. Following satisfactory performance based on average 

NSE/R2 values of 0.62/0.63 and 0.72/0.76 during the validation and testing phases, 

respectively, monthly GWLA rasters were produced for January 2010 to December 2019. 

Moving forward, future studies may focus on addressing some of the challenges of 

applying traditional ML techniques to rock aquifers in dry regions discussed in this study, 

in terms of leveraging the available data and reducing prediction uncertainties in such 

complex settings. 

With well depths ranging from 25 to 1600 feet, this study demonstrated 

effectiveness for both shallow and deep aquifers. The model design utilized remotely 

sensed datasets from satellites with global coverage, enabling replicability for similar 

climates across the globe. Our remote sensing approach ensures that data-sparse regions of 

the world, where field-based hydrological variables are limited or largely inaccessible, are 

not left out. It is our hope that this work contributes substantially to the science of 

monitoring groundwater resources in the face of global warming and climate change 

threats, ensuring the availability of groundwater to meet domestic, agricultural, and 

industrial water needs. 

Abbreviations 

The list of abbreviations and acronyms used in this paper are tabulated below: 

ADWR Arizona Department of Water Resources 

AMA Active Management Area 
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ANN Artificial neural network 

ARIMA Autoregressive integrated moving average 

CONUS Contiguous United States 

CK Classical kriging 

CN Curve number 

CV Coefficient of variation 

DL Deep learning 

DT Decision tree 

EBK Empirical Bayesian kriging 

ET Evapotranspiration  

GBM Gradient boosting mechanism 

GI Geostatistical interpolation  

GRACE Gravity Recovery and Climate Experiment 

GWL Groundwater level 

GWLA Groundwater level anomaly 

GWSP Groundwater storage percentile 

KNN K-nearest neighbors 

Ks Soil saturated hydraulic conductivity 

LST Land surface temperature 

MAE Mean absolute error 

MI Mean imputation 

ML Machine learning 
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MLR Multilinear regression 

MSE Mean squared error 

NGWMN National Groundwater Monitoring Network 

P Precipitation  

PDP Partial dependence plot 

PKs Precipitation x soil saturated hydraulic conductivity 

R Runoff depth 

RBF Radial basis function 

RBF-NN Radial basis function neural network 

RBF-SVR Radial basis function support vector regression 

RF Random forest 

RI Recharge index 

RMSE Root mean square error 

SM Soil moisture 

SVM Support vector machine 

SVR Support vector machine for regression  

USGS U.S. Geological Survey 

VI Vegetation index 

WCI Water cycle intensity 
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AND CAUSATION ANALYSIS 1 
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Abstract 

Climate change (CC) is a global menace facing our planet today, where relatively 

short-term fluctuations in climate patterns (climate variability) indicate broader CC trends 

over longer timescales. Considering terrestrial water cycle intensity (WCI) and 

groundwater level (GWL) as indicators of CC and groundwater (GW) availability 

respectively, this study explored the dynamic relationship between WCI and GWL 

anomalies (WCIAs and GWLAs, respectively) in an arid region, based on an innovative 

approach to statistical correlation and causation analysis. Pearson correlation (r) assessed 

the strength and direction of a contemporaneous linear relationship between both variables, 

a cross-correlation function (ccf) determined the dynamic nature of those relationships 

considering monthly lags up to a predetermined maximum of 12 months, and Granger 

causality tests assessed the statistical significance of the lead variable for predicting the 

lagged variable. A contemporaneous linear relationship between both variables was mostly 

absent but appeared at various lags. At these lags, the strongest correlations were 

dominantly negative, with GWLA leading WCIA, as supported by the GC tests. This trend 

implies that the intensification of the water cycle reflects a decline in past GWLs in the 

affected areas, necessitating immediate water management actions. 
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Introduction 

Climate change (CC), according to the Intergovernmental Panel on Climate Change 

(IPCC), is the statistically significant variation in average weather conditions lasting for 

decades or longer [1]. It is a global menace today, driven largely by human activities that 

release greenhouse gases into the atmosphere, altering global temperature and precipitation 

patterns [1–3]. Climate variability (CV), on the other hand, refers to short-term fluctuations 

associated with CC [4]. Initially, it described the fluctuations due to natural processes, but 

is now understood to reflect the anthropogenic influences that define CC [4,5], and is  

therefore sometimes referred to as CC [5]. 

The effects of CC vary among different groups of people. For instance: the health 

industry is faced with issues such as heat stress [6], injuries from extreme weather events 

[7,8], anxiety/depression and post-traumatic stress disorders associated with climate -

induced disasters [6,9], behavioral disorders in elderly people and people with mental 

illnesses [9], and so on. Meteorological concerns include more frequent and intense 

extreme weather events such as floods, droughts, and hurricanes [2,8,10–12]. The severity 

and frequency of wildfires are also amplified [13,14]. In terms of agriculture, a positive, 

self-reinforcing feedback loop is likely because farmers not only contribute to CC but are 

also affected by it, and any attempts to compensate for these impacts exacerbate the effects 

on the climate [15].  

However, hydrogeologists are concerned about the impacts on groundwater (GW) 

–water found in soils and rocks beneath the ground. GW is the largest reservoir of available 

freshwater in the world [16–19] and a critically important resource. It is controlled by 

climate conditions and is expected to be impacted by CC [1,19,20]. These impacts could 



93 

 

 

be direct or indirect, where direct impacts generally affect its quantity and indirect impacts 

affect quality. Specifically, direct impacts involve the natural replenishments or recharge 

and directly affect the availability of the resource [19]. Indirect impacts may include 

alterations in GW chemistry [21], increased mobility of geogenic contaminants [22], and 

leaching of water-soluble contaminants [23] following intense and frequent precipitation 

events. Additionally, during droughts, and as a result of altered redox conditions of 

aquifers, environmental pollutants such as nitrates and sulphates may be mobilized [22]. In 

coastal areas, these impacts include seawater intrusion due to reduced precipitation and 

GW recharge [1,24], and seawater flooding due to increased frequency and intensity of 

large coastal storms causing sea levels to rise [25]. In general, CC is causing alterations to 

key aspects of GW quality, through variations in concentrations of organic and inorganic 

compounds, dissolved oxygen levels, salinity, and pH [26]. 

Effectively managing GW resources now requires the inclusion of CC and 

variability impact assessments, which have previously been overlooked [27,28]. Scientists 

at the U. S Geological Survey (USGS) work with various tiers of national partners and 

international collaborators to understand how these factors impact groundwater availability 

in the United States [27]. However, because the variations in climate patterns would mean 

that broad generalizations may not adequately capture these interactions, there is a need for 

more localized studies that provide specific insights into how these variations impact GW. 

At the same time, arid regions are environmentally fragile and highly sensitive to global 

CC and variability, making CC assessments in such regions a hot topic in the climate 

science field [29]. Given this context, this study assesses local CC – GW interactions in an 
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arid region in the contiguous United States, with a focus on impacts related specifically to 

GW availability. 

In examining these interactions, it is important to consider the following: (1) natural 

GW availability depends largely on precipitation, which is a major component of the global 

water cycle i.e. a dynamic system describing the continuous movement and exchange of 

water between the Earth’s surface and atmosphere. (2) CC has significant direct impacts 

on this system [30,31]. With extreme weather becoming even more extreme, the disparity 

in precipitation between wet and dry areas is expected to intensify [26]. (3) These changes 

or shifts in the water cycle over any landscape or terrain can be quantified using the 

terrestrial water cycle intensity (WCI) metric [32–34], where WCI is defined as the sum of 

precipitation (P) and evapotranspiration (ET) averaged across a landscape unit over a 

specified time step [33], and P and ET are important components of the global water cycle.  

Using satellite-based estimates of P and ET for the WCI computation, along with 

groundwater level (GWL) measurements from 59 monitoring wells, we explored the 

dynamic relationship between WCI and GWL anomalies at local scales across the 

predominantly arid U. S State of Arizona, employing an innovative approach to statistical 

correlation and causation analyses. We hypothesize that: (1) Monthly WCI and GWL 

anomalies over Arizona between January 2010 and December 2019 show a strong, negative 

correlation. (2) There is a strong lead-lag relationship between both variables, where the 

hypothesized lead variable (WCI anomaly) improves the prediction of the lag variable 

(GWL anomaly).  
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Figure 1. Study Area showing groundwater monitoring wells and surficial geology. 

Modified after: Zowam and Milewski (2024) [35]. 

 

Materials and Methods 

While there is currently no universally accepted WCI indicator over land [33], 

Huntington et al. (2018) [33] introduced a terrestrial WCI framework that represents 

landscape processes more effectively than previous efforts and can be applied across all 

spatial and temporal scales of interest. The authors defined the terrestrial WCI as the sum 

of P and ET over a specific landscape unit and time interval, and calculated the WCI for 

the contiguous United States (CONUS) between 1945 and 2014, using ground-based P and 

ET measurements. In a recent article, Zowam et al. (2023) [34] validated the use of remote 

sensing for the WCI computation and extended the calculations for the CONUS to cover a 
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more recent period (2001 to 2019). In this study, a similar remote-sensing WCI approach 

is applied for a much smaller landscape area (Arizona) and period (2010 to 2019). 

We utilized the final processing run of the Global Precipitation Measurement 

(GPM) dataset generated using the Integrated Multi-Satellite Retrievals for the GPM 

(IMERG) algorithm. IMERG is considered an excellent alternative to ground-based 

observations [36], and is particularly effective over semi-arid and arid regions [37,38]. The 

monthly 0.1° × 0.1° resolution dataset was downloaded from the NASA data portal 

(https://gpm.nasa.gov/data/directory, accessed on 11 May 2021). 

For ET, a finer grid resolution (0.01° × 0.01°) synthesizing various global satellite 

ET measurement efforts was downloaded from the Harvard Dataverse repository 

(https://doi.org/10.7910/DVN/ZGOUED, accessed on 3 July 2021). The synthesized 

product outperformed local ET products in the United States, China, and the continent of 

Africa [39]. Monthly GWL data was obtained by averaging daily observations from 59 

monitoring wells downloaded from the National Groundwater Monitoring Network 

(NGWMN) portal (https://cida.usgs.gov/ngwmn/index.jsp, accessed on 29 January 2023).  

The P and ET rasters (Table 1) were resampled to a grid size of 0.125° × 0.125° to 

ensure consistency with the Zowam and Milewski (2024) [35] study on gridded GWL 

prediction, conducted in the same study area. Anomalies for the resulting WCI rasters were 

calculated for each 0.125° × 0.125° grid by subtracting each month’s WCI from the annual 

average (2010 to 2019). Similarly, monthly GWL anomalies were determined at each well 

location by subtracting each month’s averaged GWL from the annual average at that 

location. 

https://gpm.nasa.gov/data/directory
https://doi.org/10.7910/DVN/ZGOUED
https://cida.usgs.gov/ngwmn/index.jsp
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Table 1. Summary of variables used in the study. All data was processed in ArcGIS Pro 

(version 2.9.3). 

ID Variable Type Resolution Unit 

1 P Grid 0.1° | monthly  mm 

2 ET Grid  0.01° | monthly mm 

3 GWL Point  –– | daily       feet 

Note(s): P = Precipitation; ET = Evapotranspiration; GWL = Groundwater level. P and ET 
were resampled to 0.125° × 0.125°, and produced the WCI rasters.  
 
Statistical Correlation 

Differencing both datasets (WCI and GWL anomaly) eliminated any existing time 

correlation and reduced the number of observations by one. The resulting datasets satisfied 

the assumptions for Pearson correlation, following assessments based on strip charts, 

histograms, and bivariate plots, while considering only substantial departures from 

normality. Pearson correlation was performed simultaneously on 59 grids, each 

corresponding to the location of a monitoring well, to determine the strength and direction 

of the linear relationship between the variables (r). 

𝑟𝑋𝑌  = 
∑(𝑋𝑖 −𝑋) (𝑌𝑖  −𝑌̅)

√ ∑(𝑋𝑖 −𝑋)
2

 ∑(𝑌𝑖  −𝑌̅)
2
   (1) [40] 

Where 𝑟𝑋𝑌 is the Pearson correlation coefficient between the variables X and Y ranging 

from –1 (perfect negative) to +1 (perfect positive); 𝑋𝑖  and 𝑌𝑖  are individual observations 

of variables X and Y respectively; 𝑋̅ is the mean of variable X; 𝑌̅ is the mean of variable Y 

[40]. 
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The statistical correlation described above assumes a contemporaneous relationship 

between WCI and GWL anomalies, which may not necessarily be the case. Thus, we 

repeated the correlations at several lag intervals, up to a predetermined maximum of 12 

months. This approach is known as cross-correlation and examines whether the 

fluctuations in one variable precede, are led by, or occur contemporaneously with 

fluctuations in the other variable [41]. The result of the cross-correlation function (ccf) 

analysis is a plot of correlation coefficients at the various examined lags, where the x-axis 

represents lag intervals, and y–axis indicates the correlation coefficients. The x-axis 

extends equally in both positive and negative directions from zero, meaning that a 

maximum lag of 12 months, for example, will show correlation coefficients at 24 different 

lags (–12 to +12). Considering how the analysis was set up, substantial correlation 

coefficients at negative lags indicate that the input time series precedes the output series, 

and vice–versa [42]. In this study, WCI anomaly (WCIA) is the input variable and GWL 

anomaly (GWLA) is the response variable of interest. 

Granger Causality 

 Originally developed in the field of economics [43], Granger Causality (GC) has 

been applied across various disciplines including atmospheric and climate sciences [44,45], 

and recently, in hydrogeology, to understand groundwater patterns [46]. 

Given two stationary time series X and Y, we say X granger causes Y if our ability 

to predict future values of Y is enhanced when using all information except current values 

of X [43,46]. This is expressed mathematically as:  

𝑋𝑡  = ∑ 𝑎𝑗 
𝑚
𝑗=1 𝑋𝑡−𝑗 + ∑ 𝑏𝑗 

𝑚
𝑗=1 𝑌𝑡−𝑗 + ∈𝑡  (2) [43] 

And: 
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𝑌𝑡 = ∑ 𝑐𝑗 
𝑚
𝑗=1 𝑋𝑡−𝑗 + ∑ 𝑑𝑗 

𝑚
𝑗=1 𝑌𝑡−𝑗 + 𝑛𝑡 (3) [43] 

Where 𝑋𝑡  and 𝑌𝑡 are two stationary time series, j is the current lag, m is the maximum 

number of lags considered,  𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗 and 𝑑𝑗 are coefficients, and ∈𝑡  and 𝑛𝑡 represent the 

two uncorrelated white noise series [43]. 𝑋𝑡  will granger cause 𝑌𝑡 if 𝑐𝑗 is not zero [43]. 

Similarly, 𝑌𝑡 will granger cause 𝑋𝑡  if 𝑏𝑗 is not zero [43]. If both events occur 

simultaneously, then a feedback relationship exists between both variables [43]. This is 

known as bidirectional Granger-causality [47,48,49]. 

GC tests were conducted on the significant lags identified in the ccf analysis, 

evaluating the influence of past values of one-time series on another. The null hypothesis 

that the past values of WCIA do not provide any useful information for predicting GWLA 

(and vice versa) was tested. The hypothesis for each test was rejected when a P–value less 

than 0.05 was returned. 

 

Figure 2. Methodological flow chart. The red (No) symbols imply that a correlation is 

close to zero. The blue (Yes) symbols indicate that a correlation is sufficiently different 
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from zero. A significant correlation is sufficiently different from zero and meets the 

threshold for statistical significance. 

 

Results 

All analyses were carried out in R (version 4.1.1). Statistical correlations were 

conducted at each monitoring well location, first at zero lags and then examined at lags up 

to 12 months (–12 to +12). The results (Table 2) show the correlation coefficients at zero 

lag, the maximum correlation coefficient (considering all lags) along with its 

corresponding lag, and an assessment of the significance of the correlation coefficients at 

both zero lag and the maximum correlation. Cross-correlation coefficients are normally 

distributed and considered statistically significant when they exceed the 95% confidence 

interval threshold, indicating that the observed correlation is unlikely due to random chance 

[50]. Maximum correlation (Max Cor) values greater than ±0.4 are shown in bold (Table 

2). The wells corresponding to these values (Figure 3) were the candidates for the GC test.  

 
Table 2. Summary of correlation analysis at all monitoring well locations. ‘Cor’ refers to 

the correlation coefficient, and ‘Max Cor’ refers to the maximum correlation coefficient 

considering all lags. Negative (–ve) lags at the Max Cor suggest that WCIA precedes 

GWLA, while positive (+ve) lags indicate the reverse. 

ID 
Cor 

(lag = 0) 

Significant? 

(Lag = 0) 

Max 

Cor 

Lag 

(Max Cor) 

Significant? 

(Max Cor) 

1 –0.07 No +0.45 | –0.44 –1 | +1 Yes 

2 +0.03 No –0.23 –11 Yes 

3 –0.09 No –0.20 –3 Yes 
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4 +0.08 No –0.33 –10 Yes 

5 –0.25 Yes –0.25 0 n/a 

6 +0.00 No +0.12 +3 No 

7 –0.07 No +0.22 +2 Yes 

8 –0.16 No +0.29 +4 Yes 

9 –0.26 Yes +0.35 +1 Yes 

10 +0.19 Yes –0.27 +1 Yes 

11 –0.10 No –0.26 –11 Yes 

12 +0.09 No +0.25 –6 Yes 

13 –0.09 No +0.30 +7 Yes 

14 +0.12 No –0.44 +1 Yes 

15 +0.05 No –0.25 –3 Yes 

16 –0.21 Yes +0.27 +3 Yes 

17 –0.02 No +0.26 –3 Yes 

18 +0.03 No –0.26 –2 Yes 

19 –0.07 No +0.21 +4 Yes 

20 –0.03 No –0.24 +1 Yes 

21 +0.05 No –0.32 +1 Yes 

22 –0.38 Yes –0.38 0 n/a 

23 +0.03 No +0.32 8 Yes 

24 –0.06 No –0.38 1 Yes 

25 +0.19 Yes +0.19 0 n/a 

26 –0.37 Yes –0.37 0 n/a 

27 –0.08 No +0.17 +7 No 
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28 –0.15 No +0.37 +6 Yes 

29 –0.19 Yes +0.45 –5 Yes 

30 +0.23 Yes –0.24 –4 Yes 

31 –0.20 Yes –0.37 +7 Yes 

32 +0.02 No +0.21 +10 Yes 

33 –0.00 No –0.60 +1 Yes 

34 –0.17 No –0.17 0 n/a 

35 –0.24 Yes +0.25 +3 Yes 

36 +0.00 No –0.22 –9 Yes 

37 –0.01 No +0.24 +11 Yes 

38 –0.05 No +0.23 +8 Yes 

39 –0.07 No +0.29 –7 Yes 

40 –0.12 No +0.19 +3 Yes 

41 +0.09 No –0.42 +2 Yes 

42 –0.11 No –0.26 –2 Yes 

43 +0.12 No –0.43 +1 Yes 

44 –0.07 No +0.31 +3 Yes 

45 –0.15 No –0.29 –6 Yes 

46 –0.12 No –0.26 –6 Yes 

47 –0.11 No –0.31 1 Yes 

48 –0.05 No –0.35 1 Yes 

49 –0.35 Yes –0.35 0 n/a 

50 +0.18 No –0.42 +1 Yes 

51 –0.31 Yes +0.38 –8 Yes 
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52 –0.14 No –0.33 –12 Yes 

53 –0.19 Yes –0.26 +12 Yes 

54 –0.16 No +0.36 –9 Yes 

55 +0.05 No +0.15 +10 No 

56 +0.06 No +0.24 –6 Yes 

57 –0.15 No –0.35 +7 Yes 

58 +0.03 No +0.31 –4 Yes 

59 –0.06 No –0.20 –2 Yes 
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Figure 3. Location of the GC test wells showing the dominant trend. The strongest 

correlations occurred at the locations of the colored circles. 

Examining Well 33 and considering the way the analysis was set up, WCIA 

preceding GWLA is indicated with red lines, and the reverse is shown in blue (Figure 4). 

In this example, the variables are not contemporaneously correlated since the maximum 

correlation occurs at a non-zero lag (+1). 

Figure 4. Ccf plot for Well 43. Negative lags (red) suggest that WCIA precedes GWLA, 
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and positive lags (blue) show GWLA preceding WCIA. The correlation at Zero lag is 

shown in the solid black line, and the black dotted lines represent the lower and upper 

confidence limits beyond which a correlation coefficient (y-axis) is statistically significant. 

 GC tests are forward-looking time-series analyses that determine whether past 

values of a predictor variable are useful for predicting current values of the target variable 

beyond the information obtained from past values of the target variable itself. Based on the 

P–Values (Table 3) and a 5% significance level, we reject the null hypothesis that past 

values of GWLA do not contain useful information for predicting WCIA values at all six 

wells. Similarly, we reject the null hypothesis that past values of WCIA do not contain 

useful information for predicting GWLA values at wells 1 and 33, where bidirectiona l 

causality may be occurring. 

 
Table 3. Results of the GC tests conducted at the wells with the largest lagged correlation 

coefficients. WCIA ~ GWLA implies that GWLA is treated as the independent variable, 

as determined by the ccf analysis for the respective wells.  GWLA ~ WCIA implies that 

WCIA is treated as the independent variable, to evaluate the presence of bidirectiona l 

causality. 

ID 
Lag 

(Max Cor) 

P-Value  

(WCIA ~ GWLA) 

P-Value 

 (GWLA ~ WCIA) 

1 +1 0.000000062 0.000000053 
14 +1 0.0000016 0.827 
33 +1 0.00000000000038 0.001 
41 +2 0.0000000065 0.148 
43 +1 0.0000012 0.08 
50 +1 0.0000054 0.06 
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Some of the GC test wells showed a close association with Active Management 

Areas (AMAs) (Figure 5). AMAs are areas experiencing groundwater overdraft issues due 

to their strong reliance on groundwater, prompting the active management of the resource 

[51]. For instance, the relationship between WCIA and GWLA is particularly notable at 

Well 33, as indicated by the results of the correlation analysis (Table 2), GC tests (Table 

2), its association with an AMA (Figure 5), and the scatter plots of contemporaneous and 

lagged correlations (Figure 6). 
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Figure 5. AMAs and correlation wells. The GC test wells represent the locations of the 

largest correlation coefficients in the study area. Some of these wells were located within 

AMAs (Prescott and Santa Cruz). 

 

Figure 6. Scatter plots for Well 33 illustrate contemporaneous (lag = 0) and lagged (lag = 

+1) relationships between WCI and GWL anomalies. 

 The ccf analysis, initially conducted on 59 monitoring well sites, was extended to 

59 ungauged sites (Figure 7) using the predicted GWLA data from Chapter Three. None 
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of these ungauged sites showed a correlation up to the threshold magnitude of 0.4 (Table 

4). 

 

Figure 7. Locations where ccf analysis between GWLA and WCIA were conducted. The 

black circles indicate the original monitoring well locations. The black stars represent 

ungagged sites corresponding to the locations of the WCIA (chapter Two) and ML–

predicted GWLA (chapter Three) grids. The red stars indicate the locations where the black 

stars showed the highest correlation coefficients. 
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Table 4. Summary of ccf analysis between GWLA and WCIA at the ungauged sites. The 

wells with lagged correlation coefficients greater than ±0.3 are shown in bold. 

ID 
Cor 

(lag = 0) 

Significant? 

(Lag = 0) 

Max 

Cor 

Lag 

(Max Cor) 

Significant? 

(Max Cor) 

1 –0.05 No –0.23 +8 Yes 

2 –0.04 No +0.15 –6 No 

3 –0.01 No +0.18 +5 No 

4 +0.12 No +0.26 +2 Yes 

5 –0.10 No –0.21 –4 No 

6 –0.03 No –0.20 +2 Yes 

7 +0.19 Yes –0.33 +4 Yes 

8 +0.12 No –0.33 +4 Yes 

9 +0.13 No –0.26 +4 Yes 

10 +0.07 No –0.29 –8 Yes 

11 –0.07 No +0.29 –8 Yes 

12 –0.07 No –0.19 +1 Yes 

13 +0.00 No –0.26 +1 Yes 

14 +0.17 Yes +0.17 0 n/a 

15 +0.11 No –0.19 –9 Yes 

16 –0.26 Yes +0.33 +2 Yes 

17 +0.02 No +0.15 +10 No 

18 –0.08 No –0.17 +10 No 

19 –0.13 No –0.19 +9 Yes 

20 –0.12 No +0.25 –1 Yes 

21 +0.15 No –0.22 –1 Yes 
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22 +0.24 Yes +0.24 0 n/a 

23 –0.05 No –0.17 –5 No 

24 –0.07 No +0.20 –5 Yes 

25 –0.09 No +0.22 +11 Yes 

26 –0.09 No –0.26 +8 Yes 

27 +0.05 No –0.18 +8 No 

28 +0.08 No +0.16 –5 No 

29 +0.15 No +0.16 –5 No 

30 –0.12 No +0.22 +6 Yes 

31 +0.21 Yes +0.21 0 n/a 

32 +0.12 No +0.29 +12 Yes 

33 –0.08 No +0.16 +1 No 

34 –0.07 No –0.18 +7 No 

35 +0.03 No +0.26 +4 Yes 

36 +0.10 No +0.16 –4 No 

37 +0.05 No –0.20 –2 Yes 

38 –0.17 No –0.26 +4 Yes 

39 +0.02 No –0.18 –3 No 

40 +0.09 No +0.21 +4 Yes 

41 +0.03 No +0.18 –5 No 

42 –0.06 No +0.20 +11 Yes 

43 +0.20 Yes +0.20 +8 Yes 

44 –0.09 No +0.23 +1 Yes 

45 +0.14 No +0.17 +8 No 
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46 –0.10 No –0.24 –8 Yes 

47 –0.10 No –0.21 –4 Yes 

48 +0.02 No +0.19 –10 Yes 

49 –0.04 No –0.16 +10 No 

50 –0.05 No –0.17 +8 No 

51 –0.01 No +0.23 –8 Yes 

52 –0.01 No +0.21 +4 Yes 

53 +0.03 No –0.24 +4 Yes 

54 +0.06 No +0.23 –12 Yes 

55 –0.02 No –0.25 –8 Yes 

56 +0.10 No –0.20 +2 No 

57 +0.04 No +0.16 +1 No 

58 +0.12 No +0.23 –10 Yes 

59 +0.09 No +0.22 –3 Yes 

      
 

 

Discussion 

The relationship between GWLs and driving factors is typically complex and 

nonlinear [35,52–55], but if precipitation is typically linearly correlated with GWL [56–

58], likewise ET [58], we expect the WCI, a variable obtained from precipitation and ET, 

to also show a linear relationship with GWL. This was mostly not the case for the 

contemporaneous relationship (lag = 0) between GWLA and WCIA examined in this study. 

However, a moderate to strong linear relationship was observed at six monitoring well 



112 

 

 

locations (1, 14, 33, 41, 43, and 50) when WCIA at time t + k was compared with GWLA, 

where k represents the lag (Table 2). This correlation occurred at positive lags, implying 

that changes in WCIA lagged GWLA, and was negative at all six sites, indicating that an 

increase in lagged values of WCIA corresponds to a decrease in GWLA values, and vice 

versa (Table 2). Groundwater influences climate in various ways, including contributions 

to soil moisture [19]. Aquifers are also often hydrologically connected to surface water 

bodies that they feed or that feed them, which may also influence the climate and the water 

cycle by providing additional moisture (in the case of a gaining stream). The findings in 

this study corroborate some of these known interactions and present a new outlook for 

climate and groundwater relationships in the study area. 

Contemporaneous correlation (lag = 0) was observed at wells 5, 22, 25, 26, 34, and 

49 (Table 2), because at those wells, the maximum correlation appeared at zero lag, 

indicating that the observed fluctuations between the two variables occurred within the 

same time period (without any delay between them). This correlation was not significant 

at well 34, but at wells 5 and 25, it was the only statistically significant correlation. 

Therefore, at wells 5 and 25, we accept the null hypothesis that there is no significant lead-

lag relationship between both variables at the examined lags. Also, the maximum 

correlations at non-zero lags were not statistically significant at wells 6, 27, and 55 (Table 

2). At these wells (as well as at well 34), there is no evidence of a relationship between 

WCIA and GWLA.  

The strongest lagged correlation (–0.60) was observed at well 33 (Table 2) and 

occurred at a lag of +1, indicating that GWLA in the current month had a strong linear 

relationship with WCIA in the following month (and vice-versa). GWLA also showed the 
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strongest relationships with precipitation (–0.58) and evapotranspiration (–0.43) 

anomalies, all three occurring at the same lag (+1), suggesting that the influence of GWL 

on climate at that location occurs at a lag of +1. GC tests returned statistically significant 

results at all six wells based on P-values (Table 3), implying that the past values of GWLA 

provide useful information for predicting WCIA values beyond what is provided by the 

autoregressive structure of the WCIA variable. But at wells 1 and 33, WCIA also provided 

useful information for predicting GWLA (Table 3). This suggests that bidirectiona l 

causality exists at those locations (and lag). However, at well 33 specifically, the much 

larger F-statistic implied stronger evidence for the former (GWLA granger causing 

WCIA). F-statistic measures the ratio of explained variance to unexplained variance in 

statistical analyses [59], and the corresponding p-value represents the probability of 

observing the statistic or one more extreme, if the null hypothesis, is true [60]. 

Out of the five AMAs – Santa Cruz, Prescott, Phoenix, Pinal, and Tucson [51], 

Prescott and Santa Cruz contained monitoring wells with some of the strongest lagged 

correlations, including well 33 (Figure 5). This suggests that these AMAs might be 

hydrogeologically sensitive to shifts in the terrestrial water cycle. At the ungauged sites, 

we lowered the substantial correlation threshold to a magnitude of 0.3 to account for 

uncertainties in the GWLA predictions. Two of the three ungauged sites where the highest 

correlation coefficients were observed showed a “GWLA leading WCIA” relationship 

(Table 4). One of the them happened to also be in the same AMA as Well 33 (Table 4, 

Well 7; Figure 7). Given that several other factors simultaneously influence GWLs, future 

research must expand on this insight to understand how each of these factors influences the 

WCI-GWL relationships at the AMAs and other vulnerable areas. 
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Conclusion 

The dynamic relationship between WCIs and GWLs at local scales across the 

predominantly arid U.S. State of Arizona was evaluated using statistical correlation and 

causation analyses. Circling back to the hypotheses outlined in the introduction: (1) GWLA 

did not show a strong negative contemporaneous correlation with WCIA. The correlation 

was weak or absent, and not necessarily negative across all wells. (2) Although the study 

identified a lead-lag relationship between both variables, this relationship was also not 

strong across all 59 wells and where it was strong, GWLA generally led WCIA. Therefore, 

we reject both hypotheses. 

The strongest lagged correlation coefficients across all (gauged and ungauged) sites 

were dominantly negative. This trend implies that a continuous intensification of the water 

cycle reflects a decline in past GWLs in the affected areas. This backward interpretation 

may help determine when immediate management responses and swift interventions are 

necessary. The connections with AMAs reinforce the need for the continuous monitoring 

and effective management of groundwater in vulnerable areas. 
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CHAPTER 5 

CONCLUSION 

In this study, the analyses progressed from a broad-scale national focus (chapter 

two) to local scales (chapters three and four), to understand climate change impacts on 

groundwater levels at local scales within a vulnerable semiarid/arid region. This chapter 

provides a summary of the key findings and reinforces their implications for water security 

and management. 

First, the water cycle is speeding up in many parts of the contiguous United States 

(CONUS) particularly the west, and the El Niño-Southern Oscillation (ENSO), the most 

prominent naturally occurring climate variability pattern, impacts this intensification by 

bringing more water to the southeast, west, and parts of the north, and reduced moisture to 

the northeast region [1]. In particular, the state of Arizona might be experiencing more 

pronounced intensification compared to other arid regions of the CONUS, and was the 

focus of the remainder of the study [1]. 

Machine learning methods were combined with advanced geospatial interpolation 

models to develop the first statewide groundwater level anomaly (GWLA) prediction for 

the US State of Arizona across its two distinct aquifer types: the unconsolidated sand and 

gravel aquifer, and rock aquifer [2]. The multi-model approach, which utilized only 

remotely sensed input variables, demonstrated satisfactory performance, and can be 

replicated for similar climates and hydrologically data-sparse and remote areas of the world 

[2]. 
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Eventually, a detailed statistical correlation analysis between water cycle intensity 

and groundwater level anomalies (WCIA, GWLA) was conducted at known monitoring 

well locations and several ungauged sites across the state of Arizona. The dominant 

(statistically significant) relationship was a negative lead-lag correlation between WCIA 

and GWLA, observed at eight of the sites (combining gauged and ungauged sites), where 

an increase in current WCIA would result in a decrease in past GWLA values, and vice-

versa [3]. Some of these sites coincided with areas previously designated as Active 

Management Areas (AMAs), where the strictest groundwater management regulations are 

enforced [3]. Notably, the strongest negative lead-lag relationship (–0.6) in this study was 

observed within one of these AMAs [3].  

Given that the changes in WCIA lag behind changes in GWLA, an intensified water 

cycle today may signal an already depleting groundwater resource at the affected sites. 

Therefore, to mitigate climate change impacts on groundwater availability across the study 

area, relevant authorities must take cues from studies like this to inform strategic 

groundwater management decisions in a timely and efficient manner and strengthen 

groundwater monitoring efforts. 
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